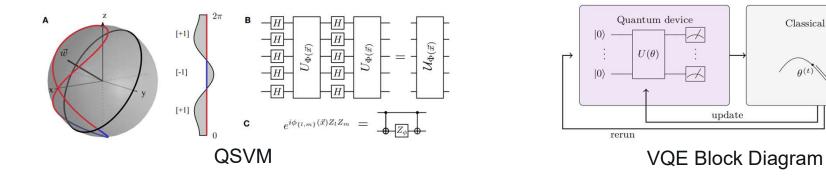


QML – A Cardiology Application

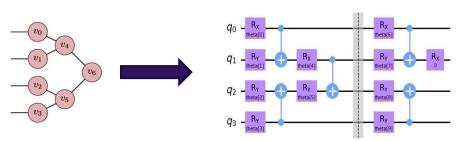

Two projects, one team:

- Mentees:
 - Alfaxad Eyembe
 - Hemavathi Santhanam
 - Soham Bopardikar
 - Tan Jun Liang
- Mentors:
 - Daniel Sierra-Sosa
 - Pierre Decoodt

Quantum Vector Support Machine and Variational Quantum Eigensolver

Results:

Technique	Accuracy	Precision_0	Precision_1	Recall_0	Recall_1	F1-Score_0	F1-Score_1
SVM	80.25%	82.30%	78.40%	77.50%	83.05%	79.83%	80.66%
Naive Bayes	78.99%	83.19%	75.20%	75.20%	83.19%	78.99%	78.99%
Logistic Regression	78.99%	81.42%	76.80%	76.03%	82.05%	78.63%	79.34%
Decision Tree	85.29%	84.07%	86.40%	84.82%	85.71%	84.44%	86.06%
Random Forest	88.24%	91.15%	85.60%	85.12%	91.45%	88.03%	88.43%
XGBoost	84.03%	87.61%	80.80%	80.49%	87.83%	83.90%	84.17%
QSVM	77.73%	75.00%	80.51%	79.65%	76.00%	77.25%	78.19%
VQC	73.95%	72.57%	75.20%	72.57%	75.20%	72.57%	75.20%


Classical device

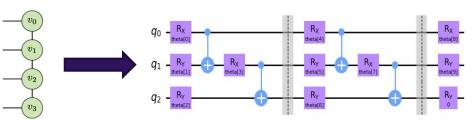
 $\theta^{(t+1)}$

 $\theta^{(t)}$

Tensor-Networks as Ansatz

<u>Tree Tensor Networks(TTN)</u>

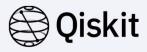
Representation of the four qubit classical TTN on the left and Q-TTN on the right


Q-TTN Circuit Result:

		Precision_	Precision_			F1-	F1-
Dataset	Accuracy	0	1	Recall_0	Recall_1	Score_0	Score_1
Cleveland	63.9%	60.0%	81.8%	93.8%	31.0%	73.2%	45.0%
Hungarian	57.9%	0.0%	57.9%	0.0%	100.0%	0.0%	73.3%
Summary	66.0%	59.4%	82.4%	89.4%	44.8%	71.4%	58.0%

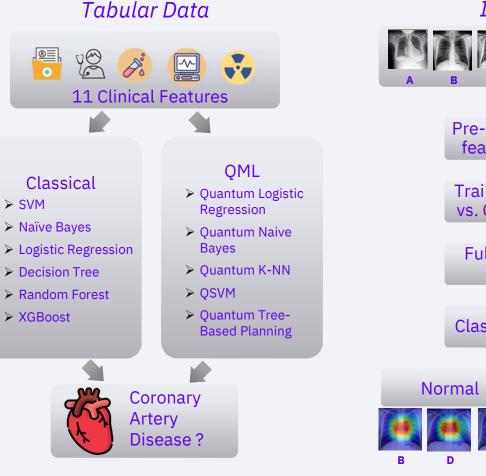
Prominent Features of Tensor Networks:

- Compact representation of complex quantum states.
- Efficient simulation of long-range quantum systems
- Ability to accurately capture entanglement
- Better Time Complexity


Matrix Product State(MPS)

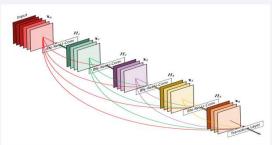
Representation of the three qubit classical MPS on the left and Q-MPS on the right

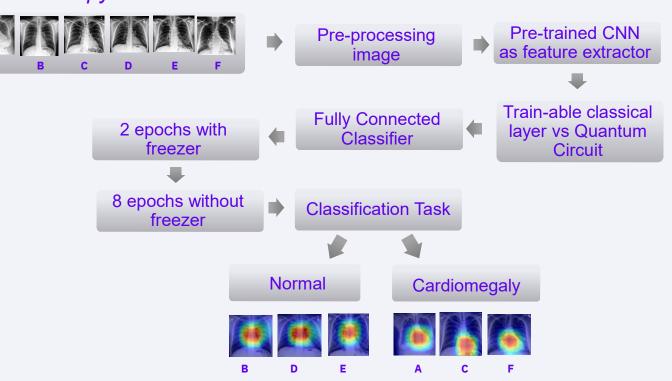
Q-MPS Circuit Result:


		Precision_					
Dataset	Accuracy	0	Precision_1	Recall_0	Recall_1	F1-Score_0	F1-Score_1
Cleveland	75.4%	70.7%	85.0%	90.6%	58.6%	79.5%	69.4%
Hungarian	63.2%	66.7%	62.5%	25.0%	90.9%	36.4%	74.1%
Summary_IE							
EE	73.1%	68.7%	78.5%	79.6%	67.2%	73.8%	72.4%

QML – A Cardiology Application

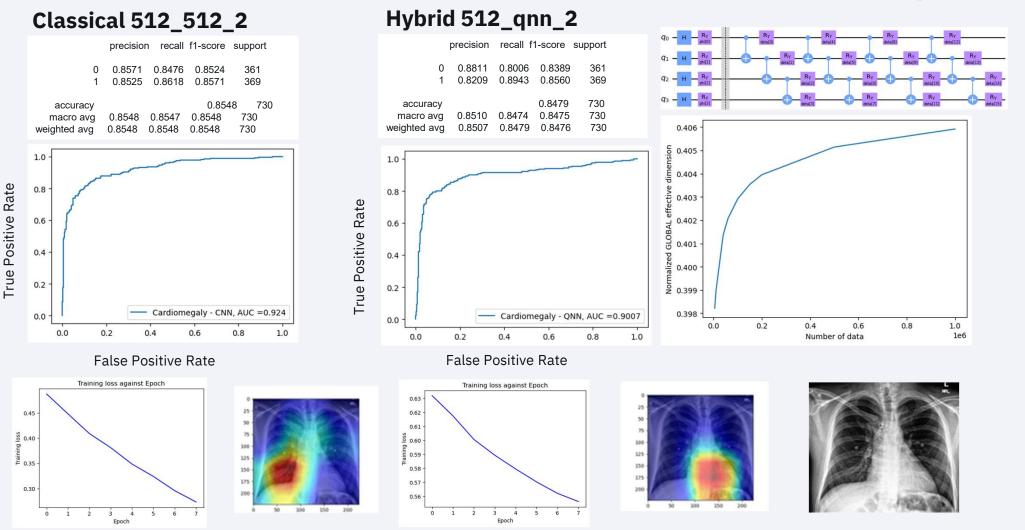
Two projects, one team:


- Mentees:
 - Alfaxad Eyembe
 - Hemavathi Santhanam
 - Soham Bopardikar
 - Tan Jun Liang
- Mentors:
 - Daniel Sierra-Sosa
 - Pierre Decoodt



Classical Vs Classical-Quantum Hybrid Model (method)

Densenet121


With pytorch

Qiskit

Classical Vs Classical-Quantum Hybrid Model (8 epochs)

