
Integrating
MQTBench
to RedQueen
Archana Ravindar,

Golang Compiler Developer, Linux Toolchain
team, IBM Systems

Mentor: Matthew Treinish

Motivation

• A Q compiler translates an abstract quantum
circuit to the hardware so that it can run
efficiently on that hardware
• It involves several passes to ensure the most optimal

circuit is obtained as a result of translation

• Evaluation of the Q compiler is important
• To make sure it generates the optimal circuit in most

cases
• Since Qiskit is opensource, we need to ensure from

time to time that no new changes have caused a
regression in performance

• MQTBench is a benchmark suite developed by TU
Munich to test various compiler implementations
including qiskit and includes applications from several
domains - https://github.com/cda-tum/MQTBench

• This QAMP project is about integrating MQTBench with
redQueen – the existing compiler test benchmark
framework that uses pytest underneath

https://github.com/cda-tum/MQTBench

Implementation
Details

• MQTBench supports creation of quantum circuits at multiple
abstraction levels – for this project we select the algorithmic-
level and target-independent level denoted by {0,1} in the code

• Pytest parameters: Circuit abstraction level{0,1}, circuit
optimization level{0,1,2,3}, various Benchmarks{*} on various
supported Backends{*}

• Tests added from the MQTBench framework:
• Amplitude estimation, Deustch Jozsa, Grover, Ghz
• Graphstate
• PortfolioQAOA, PortfolioVQE
• QAOA
• QFT, QFTEntangled
• QGAN (Machine learning)
• QPEExact, QPEInexact
• Qwalk
• Realamprandom, su2random, twolocalrandom
• VQE
• Wstate
• HHL
• Pricingcall, Pricingput (Finance)
• Tsp (optimization)

• Pull request: https://github.com/Qiskit/red-queen/pull/48

https://github.com/Qiskit/red-queen/pull/48

Results
Strengthened RedQueen by adding 23 more
benchmarks from MQTBench pertaining to
various domains such as finance, optimization
and machine learning using the same reporting
interface that measures compilation time,
Circuit size, depth, fidelity

Running the following command produces the results in a table which are plotted for ease of viewing
pytest ./red_queen/games/applications/testmqtone.py -m qiskit –store
python3.10 -m report.console_tables --storage ./results/0001_bench.json

0 5 10 15 20 25 30 35 40

ae

ghz

graphstate

grover-v-chain

portfoliovqe

pricingput

qft

qgan

qpeinexact

realamprandom

tsp

vqe

compilation time of different benchmarks across backends
at fixed optimization level(2)

fake-montreal fake-washington

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

ae

ghz

graphstate

grover-v-chain

portfoliovqe

pricingput

qft

qgan

qpeinexact

realamprandom

tsp

vqe

fake-washington: Compilation time at optimization
levels 2 v/ 3

opt-2 opt-3

By-products

• The journey was as it is exciting but we also found useful stuff along the way!

• MQTBench was pinned to qiskit version which forced us to use an older version of
qiskit terra and they lose out on getting advantages of the latest and greatest updates
to qiskit terra. Raised a bug in MQTBench git repo. https://github.com/cda-
tum/MQTBench/issues/133 and the issue has been fixed recently

https://github.com/cda-tum/MQTBench/issues/133

On the job Learning

• Learnt about nuances of pytest while working on this project and
how one can debug issues in pytest

• We started out to generate .qasm files and then run them but
some of the circuits in MQTBench are pretty big so the qasm files
would be even bigger to handle so we decided to create circuits in
memory and operate upon them

• Got to learn about how we can add code to compare ideal and
noisy simulations. For some benchmarks with fairly big circuits
(1000+ gates) Aer simulation was taking too much time to
complete before the stipulated end date so we removed the Aer
code for these circuits

• While encountering failures in qiskit for some benchmark
combinations got to hear from Matthew on the kind of challenges
quantum compiler writers encounter and they are so different
from the typical issues seen in classical compilers

• Overall it has been the most enjoyable 3 months I have spent on
any project! and I intend to pursue learning and contributing to
quantum compiler code base

Future Work

• Three of the MQTBench circuit
benchmarks deserve special
treatment as the APIs to
create the circuit are written
specially. These were not
included in the QAMP pull
request and we plan to work
on this as an extension of this
work

• Adding better visualization in
the redQueen results output

Thanks to my mentor
Matthew Treinish and
the Qiskit Advocate
Team!!

