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Abstract 

The prosperous development of both hardware and algorithms for quantum 

computing (QC) potentially prompts a paradigm shift in scientific computing in 

various fields. As an increasingly active topic in QC, the variational quantum 

algorithm (VQA) provides a promising direction for solving partial differential 

equations on Noisy Intermediate Scale Quantum (NISQ) devices. Although a clear 

perspective on the advantages of QC over classical computing techniques for specific 

mathematical and physical problems exists, applications of QC in computational fluid 

dynamics to solve practical flow problems, though promising, are still in an early 
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stage of development. To explore QC in practical simulation of flow problems, this 

work applies a variational hybrid quantum-classical algorithm, namely the variational 

quantum linear solver (VQLS), to solve heat conduction equation through finite 

difference discretization of the Laplacian operator. Details of VQLS implementation 

are discussed by various test instances of linear systems. Finally, the successful 

statevector simulations of the heat equation in one and two dimensions demonstrate 

the validity of the present algorithm by proof-of-concept results. In addition, the 

heuristic scaling for the heat conduction problem indicates the time complexity of the 

present approach with logarithmic dependence on the precision ε and linear 

dependence on the number of qubits n. 

 

Keywords: quantum computing, quantum simulation, variational quantum linear 

solver, heat equation, near-term quantum device. 

 

1. Introduction 

The slower pace of benefits from Moore’s law has prompted many discussions 

about its validity over the recent years [1]. Limited by the increasingly smaller sizes 

of silicon processes, groundbreaking advance of computational performance in 

classical computing framework is becoming more and more effortful. Different from 

the conventional computing paradigm, quantum computing (QC) performs the 

calculations through the physical manipulation of quantum systems, which is a 

potential game-changer in the scientific computing community and may unleash 
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unprecedented growth in computational capabilities. 

Recent decades have witnessed the rapid development of algorithms and 

hardware for QC technology. A quantum advantage has been demonstrated for the 

first time in a benchmark task of sampling the output of a pseudo-random quantum 

circuit [2]. Such a milestone inspires numerous explorations of QC in various 

scientific and engineering areas, such as material science, chemistry, machine learning 

and fluid dynamics, especially in current Noisy Intermediate Scale Quantum (NISQ) 

[3] era. In particular, the computational fluid dynamics (CFD), which is closely 

associated with the scientific computing techniques, naturally benefits from the 

promising computation power of QC [4,5]. The essence of CFD is to discretize the 

partial differential equations (PDEs) describing fluid phenomena into a set of linear 

algebraic equations which can be numerically resolved on computational platforms. 

Applications of CFD to eningeering problems place high demands in computational 

scale and efficiency, many of which are still beyond current computational 

capabilities. Thus, for sophisticated CFD missions, QC indeed provides a potential 

alternative to classical computing framework [6-9].  

Within the context of quantum computing for CFD (QCFD), many quantum 

algorithms have been developed. In the literature, typical approaches with practical 

implementations on the quantum simulators or real devices include quantum machine 

learning (QML) [10-12], Harrow-Hassidim-Lloyd (HHL) algorithm [13-17] and 

variational quantum algorithms [18-20]. 

Among them, the HHL algorithm was initially proposed as a heuristic algorithm 



4 

 

to solve the linear problem of A x b  where A denotes a Hermitian sparse N × N 

matrix and b is a unit vector. This work [13] reported an exponential speedup for the 

HHL algorithm. Subsequently, many research applied it as a subroutine to solve PDEs 

[14-17,21,22]. However, it remains unclear whether the utilization of the HHL 

algorithm can achieve the exponential speedup for practical fluid problems involving 

a much larger size and more complex structure of the matrix A. At present, it has been 

demonstrated on the circuit quantum computers that the HHL-type linear solvers are 

limited to 4 × 4 matrices [23,24]. Apart from the limited computational scale, in the 

NISQ era, short coherence time of noisy quantum devices which are not fault-tolerant 

and cannot perfectly control the qubits could be the major obstacle to the application 

of the HHL algorithm. 

Unlike the HHL-type algorithms, the VQA algorithms adapt to the NISQ 

hardware and are becoming realistic strategies to execute the actual quantum 

advantage. In practice, the successful application of VQA algorithms to solve linear 

systems refers to the variational quantum linear solver (VQLS) [25-28]. The VQLS 

algorithm can also serve as a subroutine similar to the HHL algorithm. Specifically, 

the system of linear equations obtained by discretizing PDEs with proper numerical 

schemes like the finite difference method (FDM) [31,32] and finite element method 

(FEM) [33] is solved by the VQLS algorithm. Such a technique has been applied to 

solve the Poisson equation [20,34,35]. However, practical applications of the VQLS 

algorithm to flow problems of engineering interest remain scarce. Further 

explorations are needed to quantify the actual quantum advantage of a heuristic 



5 

 

quantum technology over the classical numerical methods.  

Here, we demonstrate a practical utility of the VQLS algorithm by solving the 

heat conduction problem governed by a Laplace’s equation. The Laplace’s equation is 

a special case of the Poisson’s equation and has been broadly used in fluid dynamics. 

Although there exist several studies of such heat transfer applications [15,36,37] using 

other non-variational quantum algorithms, in the NISQ era, those methods may be 

less competitive than the incorporation with the VQLS algorithm which employs a 

shallower-depth quantum circuit for efficient evaluation of a cost function. Inspired 

by the aforementioned works [20,34,35] about the Poisson’s equation and based on 

the fact of relatively easy implementations for the Laplace’s equation, we can focus 

on assessing the performance of the VQLS algorithm in this practical problem. This 

work may lay a foundation for further applications of the VQLS algorithm to more 

complicated fluid flow problems. 

The remainder of this paper is organized as follows. Section 2 states the heat 

equation and FDM algorithm for its discretization. The VQLS algorithm is then 

introduced. In Section 3, technical details of the VQLS implementation are discussed, 

followed by its application to solve the heat conduction problem in Section 4. Section 

5 concludes this paper with some remarks. 

 

2. Methods 

2.1. Governing equations and finite difference discretization 

In this paper, the steady state heat transfer problem which can be described by a 
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systems of linear PDEs is considered via the following d-dimensional Laplace’s 

equation without a source term: 
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where T denotes temperature. Dirichlet boundary conditions are enforced with the 

temperature T1 for the bottom boundary and T2 for the upper boundary. The other 

boundaries are periodic. After discretizing Eq. (1) by the FDM, a linear system can be 

obtained. Specifically, in two dimensions, we have the following expression. 

 
2 2

2

2 2
0.

T T
T

x y

 
   

 
 (2) 

Discretizing Eq. (2) with the central difference yields 
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When the uniform mesh is used, i.e., the mesh spacings x y   , the following 

equation can be further obtained. 

 1, 1, , 1 , 1 ,4 0.i j i j i j i j i jT T T T T         (4) 

The subscripts i and j in above equations indicate the grid indices in the x- and y- axes, 

respectively. Considering that there are N + 2 grids in both directions, i and j can be 1, 

2, …, N + 2. For illustration purposes, Fig. 1 presents a schematic diagram of the heat 

conduction problem on the uniform mesh.  



7 

 

 

Fig. 1. Schematic diagram of heat conduction problem. 

Given the Dirichlet boundary conditions and Eq. (3) for each interior grid point 

in the whole flow domain, such a problem can be equivalently solved via directly 

computing the solutions of a systems of coupled linear equations as follows, 

 ,A x b  (5) 

where 
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 (6) 

Clearly, A is a 2 2N N  sparse matrix and b denotes the known vector by setting T1 
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= 0 and T2 = 1. Note that the number of interior grids is N2 = 2n  where n represents 

the number of qubits used.  

In the similar form, the linear system for the one-dimensional case is cast as 

follows. 
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In this case, the number of interior grids is N = 2n  with the number of qubits n. 

Solutions of the above linear systems can be solved by the VQLS algorithm 

introduced in Subsection 2.2, which closes the loop of simulating the heat conduction 

problem. 

 

2.2. Variational quantum linear solver to solve linear systems of equations 

The VQLS is a variational quantum algorithm for solving linear systems of 

equations with superior efficiency to classical computational methods on NISQ 

quantum computers. In specific, for the linear systems in Eq. (5), the VQLS can find a 

normalized x  to fulfil the relationship A x b  where b  denotes the 

quantum state from the known vector b. Fig. 2 depicts an overview of the VQLS 

algorithm. As illustrated, the input to this algorithm are the matrix A given as a linear 
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combination of unitary matrices Am with the coefficients cm and a short-depth 

quantum circuit U such that 0Ub . This process can be completed through state 

preparation. Then the cost function C(α) is constructed and evaluated with a devised 

parameterized ansatz V(α). Through the hybrid quantum-classical optimization loop, 

the optimal parameters α* for the ansatz circuit can be found when the cost function 

C(α) achieves the convergence criterion. At the feedback loop termination, the ansatz 

V(α*) prepares the quantum state 
*x  that is proportional to the solution x, as the 

final output. Here, for clarity purposes, only three processes, namely, state preparation, 

ansatz and cost function are illustrated. Interesting readers may refer to Ref. [25] for 

more details of the VQLS algorithm.  

 

 

Fig. 2. Basic VQLS algorithm schematic diagram. 

 

A. State preparation 

The input to the VQLS algorithm requires the quantum states representing the 

matrix A and the vector b. In practical implementation, the matrix A is decomposed 
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into a linear combination of unitary matrices Am with cm complex coefficients as 

follows: 

 
1

.
M

m m
m

A c A


   (8) 

For the decomposition, one popular approach [20,25,27,34] is based on the identity I 

and the following Pauli gates basis of X, Y and Z. 
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For example, for a matrix A with the size 2n × 2n, the Pauli basis can be selected as 

 1 ,
n

n lP P      , , ,lP I X Y Z . And mA  will belong to n . Its 

corresponding coefficients cm are determined via  Tr 2n
m mc A A  .  

A normalized complex vector of a quantum state b  should also be prepared. 

This can be fulfilled by applying a unitary operation U to the ground state 0 , i.e., 

 0 .Ub  (10) 

The unitary operation U may be found by using the method proposed by Shende et al. 

[30].  

 

B. Hardware-efficient ansatz 

The VQLS employs an ansatz for the gate sequence V(α) which simulates a 

potential solution   0Vx  . In fact, it is free to choose the ansatz for specific 

problems, while we will follow the popular choice of using the fixed structure 

hardware-efficient ansatz [25,29]. As illustrated in Fig. 3, such an ansatz consists of 

multiple layers (a layer is identified in the green square) of controlled-Z gates across 
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alternating pairs of neighboring qubits entangled by Ry(α) rotation gates. In Fig. 3, all 

parameters α are set to 1 for illustration purposes. Noteworthily, during every run of 

the quantum circuit, the structure of quantum gates remains the same and only the 

parameters   in Ry gates change.  

 

 

Fig. 3. An example of the fixed structure hardware-efficient ansatz.  

 

C. Cost function 

With the ansatz V(α), the state     0V    can be prepared. Hereinafter, 

    is denoted as “  ” for simplicity. Since the VQLS algorithm aims to 

minimize the cost function, when the state A   is nearly proportional to |b⟩, 

the output of the cost function should be very small. When the vectors are close to 

being orthogonal, the output of the cost function will be very large. Thus, the 

following cost function is introduced 

  

= | ,

Gp PC H
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  

   
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with the projection Hamiltonian 
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 .PH I  b b  (12) 

Generally, normalizing the cost function is necessary to increase the accuracy of the 

algorithm. Practically, by replacing |Φ⟩ with |Φ⟩/    where    denotes 

the norm of |Φ⟩, ||Φ||: 
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The minimization of pC  with respect to the variational parameters should lead 

towards the problem solution. 

Clearly, there are two values to be calculated in order to evaluate the cost 

function, namely |⟨b|Φ⟩|2 and ⟨Φ|Φ⟩. A standard quantum computation technique 

called the Hadamard Test can estimate all expectation values of the previous 

expression. In quantum computation, the Hadamard test is a method used to create a 

random variable whose expected value is the expected real part of the observed value 

of a quantum state, i.e., Re U  ,with respect to some unitary operator. In this 

way, |  can be computed by  
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and 
2

|b  can be got via 
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In order to compute | , every possible term 
† †0 0m nV A A V  should be 

calculated using the Hadamard test. This requires the preparation of the state 0V  
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(corresponding to   in the above introduction of Hadamard test), and controlled 

operations with some control-auxiliary qubits for the unitary matrices A†
m and An 

(corresponding to U in the above introduction of Hadamard test). As illustrated in the 

fixed hardware ansatz, 0V  can be got. Similarly, in order to compute 
2

|b , 

every possible terms 
† †0 0mV A U  and 

†0 0nU A V  should be calculated using 

the Hadamard test. This requires the preparation of the state 0V , and controlled 

operations with some control-auxiliary qubits for the unitary matrices A†
m, An, U and 

V.  

However, this global expression might be experimentally challenging in the 

Hardmard test since it requires to apply all the unitaries (U†, A†
m, An and V) in a 

controlled way, i.e., conditioned on the state of an ancillary qubit. The local cost 

function is to minimize a local version of the cost function which is easier to measure 

and, at the same time, leads to the same optimal solution. This local cost function can 

be obtained by replacing the projector |0⟩⟨0| in the previous expression with the 

following positive operator: 
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where Zj is the Pauli Z operator locally applied to the jth qubit. This gives a new 

2
|b : 
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Thus, the local cost function will be 
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and so we can solve our problem by minimizing C . Substituting the definition of P 

into the expression for C , we get: 
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which can be computed whenever we are able to measure the following coefficients 

 
† † †

, , 0 0 ,m n j m j nu V A UZ U A V  (20) 

where we used the convention that if j=−1, Z−1 is replaced with the identity, i.e., 

 
† †

, , 1 0 0 .m n m nu V A A V   (21) 

Also in this case the complex coefficients , ,m n ju  can be experimentally measured 

with a Hadamard test. 

 

3. Implementation Tests of Variational Quantum Linear Solver 

Based on the theoretical background of the VQLS algorithm illustrated in 

Subsection 2.2, this section applies this algorithm to solve a series of test problem 

instances on a quantum simulator as a proof-of-concept first. Generally, there are 

three factors affecting the convergence [34], i.e., the number of shots which 

determines numerical noise on evaluation process, the ansatz as the number of qubit 

increases and optimizer as the number of variables rises. In this work, we employ a 

hardware-efficient ansatz V(α) as described in Subsection 2.2. For the selection of 

classical optimizer, the comparison of various optimizers reported in Ref. [39] offers 
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important guidance. Here, the gradient-descent optimizer with momentum [40,41] is 

utilized in the current study. It is known that the initialization parameters of the ansatz 

can have a great impact on the optimization of its parameters, and accordingly the 

initial parameters have been set randomly without loss of generality.  

Details of implementation about the number of shots and heuristic scaling are 

discussed with the simulated results. Although these discussions basically are 

problem-specific, the analyses are deemed relevant and indeed provide proper 

guidance for other applications. All quantum simulations are implemented using the 

Xanadu’s Pennylane open-source library [38] with a statevector simulator as a 

backend. In the comparison hereinafter, the results obtained by the classical solver 

and VQLS solver are noted as “classic” and “VQLS”, respectively.  

 

3.1 Definition of the test case 

Here, the illustrative test instance is given by a matrix A of size N × N with a 

state vector b  as follows.  
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 (22) 

where n represents the number of qubits used and N = 2n. H is the Hadamard gate 

which is represented by the following Hadamard matrix. 

 
1 11

.
1 12

H
 
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 (23) 

The coefficients c0 , c1 and c2 in Eq. (22) determine the matrix property. In this test, c1 
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and c2 are fixed with c1 = c2 = 0.2, while we adjust c0 to change the condition number 

k for the matrix A. Accordingly, the matrix A has the following expression. 
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Clearly, the matrix A is restricted to be sparse. The condition number is fixed at 

2.3333 when c0 = 1 no matter how many numbers of qubits are used.  

 

3.2 Results and discussion 

First, the test instance of matrix size 1024 × 1024, i.e., the number of qubits n = 

10, is solved first to validate the VQLS algorithm for large matrix problems. Fig. 4 

plots the obtained solutions, in which the x-axis denotes the index of the solution 

point and the y-axis represents the value of the solution. Note that the perfect 

simulation with the statevector simulator outputs the analytical state of the solution 

without any noise. These quantum solutions are extracted when the local cost reaches 

the convergence threshold of 10-9. Clearly, good agreement between the results 

computed by the VQLS and classical solver are shown, which indicates the validity of 

the VQLS algorithm in solving a large linear system.  
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Fig. 4. Analytical state obtained by using the VQLS algorithm with n = 10. 

 

In fact, although the statevector simulator which conducts the perfect simulations 

is used here, it is not realistic as a real quantum device would have to sample the 

circuit many times to generate these probabilities. Thus, the simulations have to be 

run with a circuit that samples the circuit instead of calculating the probabilities 

numerically. Theoretically, this simulation would only converge somewhat well for a 

very large number of shots (runs of the circuit, in order to calculate the probability 

distribution of outcomes). Thus the effect of the noise resulted from the number of 

shots is analyzed. As shown from Fig. 5 to Fig. 8, when the number of shots is 

selected as 3000, the quantum solutions after sampling differ from the analytical state. 

As the matrix size increases (from 8 × 8 to 256 × 256), the difference becomes larger. 

The variance of the state probability shows the same phenomena.  
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(a) Analytical state 
(b) Quantum solutions 

with 3000 shots 

(c) Quantum state probabilities 

with 3000 shots 

Fig. 5. Results obtained by using the VQLS algorithm with n = 3: (a) Analytical state, 

(b) quantum solutions with 3000 shots and (c) quantum state probabilities with 3000 

shots. 

 

   

(a) Analytical state 
(b) Quantum solutions 

with 3000 shots 

(c) Quantum state probabilities 

with 3000 shots 

Fig. 6. Results obtained by using the VQLS algorithm with n = 4: (a) Analytical state, 

(b) quantum solutions with 3000 shots and (c) quantum state probabilities with 3000 

shots. 
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(a) Analytical state 
(b) Quantum solutions 

with 3000 shots 

(c) Quantum state probabilities 

with 3000 shots 

Fig. 7. Results obtained by using the VQLS algorithm with n = 5: (a) Analytical state, 

(b) quantum solutions with 3000 shots and (c) quantum state probabilities with 3000 

shots. 

 

   

(a) Analytical state 
(b) Quantum solutions 

with 3000 shots 

(c) Quantum state probabilities 

with 3000 shots 

Fig. 8. Results obtained by using the VQLS algorithm with n = 8: (a) Analytical state, 

(b) quantum solutions with 3000 shots and (c) quantum state probabilities with 3000 

shots. 

 

Then the dependence of the precision ε on the number of shots is further 

evaluated. Fig. 9 plots the relationships between the number of shots and the precision. 

For each data point, we implemented and averaged over 10 executions of the VQLS 

solver. In the log-log scale, it is clear that the dependence on the number of shots for 

the precision appears to be linear. As the number of qubit increases, the condition 

number of the matrix A becomes large and more variables should be optimized. Thus, 

the high fidelity requires more number of shots. 
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Fig. 9. Logarithmic plots of precision (ε) versus number of shots. 

 

The time complexity of the VQLS is explored as well. We increase the number 

of qubits and analyses the scaling of VQLS with n. To conduct the heuristic scaling of 

the condition number, we change the coefficients c with n = 4. Note that for the 

heuristic scaling, the perfect simulation is conducted without finite sampling. 

Furthermore, the run time of the solver is quantified with the evaluations-to-solution, 

which refers to the number of exact cost function evaluations during the optimization 

need to guarantee that the precision ε is below a specific criteria.  

In Fig. 10, the change of evaluations-to-solution with number of shots is found to 

be linear where the x-axis is plotted in the logarithmic scale, implying that the 1/ε 

scaling is logarithmic. In addition, the dependences on the number of qubits (or the 

matrix size) and the condition number are heuristically scaled in Fig. 11 and Fig. 12, 

respectively. They both appear to be linear for this case. These results confirm the 

competitive efficiency of the VQLS compared with the classical methods. 
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(a)  (b)  

  

(c)  (d)  

Fig. 10. VQLS heuristic scaling for the matrices generated according to Eq. (22). The 

evaluations-to-solution is the number of executions needed to guarantee a desired 

precision ε. Evaluations-to-solution versus 1/ε for a system of (a) n = 3 qubits, (b) n = 

4 qubits, (c) n = 5 qubits and (d) n = 8 qubits. The x axis is shown in a log scale. For 

all values of n the data were fitted with a linear function, implying that the 1/ε scaling 

is logarithmic. 
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Fig. 11. VQLS heuristic scaling for the matrices generated according to Eq. (22). The 

evaluations-to-solution is the number of executions needed to guarantee a desired 

precision ε = 0.001. Evaluations-to-solution versus number of qubits n for systems of 

the condition number k = 2.3333. The dependence on n appears to be linear 

(logarithmic in N) for this case. 

 

 

Fig. 12. VQLS heuristic scaling for the matrices generated according to Eq. (22). The 

evaluations-to-solution is the number of executions needed to guarantee a desired 

precision ε. Evaluations-to-solution versus condition number k for a system of the 

number of qubits n = 4.  
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4. Applications to Heat Conduction Problem 

The preceding analysis can be extended to simulate the heat conduction problem 

with one and higher dimensions. Consider the cast linear systems presented in Eqs. (6)

and (7). The corresponding implementation details and results with discussions are 

presented in this section. Note that the discussions hereinafter only include the perfect 

simulations with the statevector quantum simulator. The analysis of heuristic scaling 

only include converged results and each instances are run 10 times to get the averaged 

data. 

 

4.1. One-dimensional heat conduction 

In one-dimensional case, the linear system is a strictly tridiagonal matrix. Given 

the boundary conditions and applying a proper normalization, the quantum states for 

the matrix A and vector b can be obtained. For example when N = 8 grids are used to 

discretize the computational domain, correspondingly n = 3, the matrix A can be 

linearly decomposed to 8 items as follows. 

 

7

0

0 1 2 0 1 2 0 1 2

0 1 2 1 2 1 2 2

2( 0.125 0.125 0.125

0.125 0.25 0.25 0.5 ).

k k
k

A c A

I X X X X YY Y X Y

Y Y X X X YY X





    

  


 (25) 

The state for the vector b is given by 

 0 1 2 0 .X X Xb  (26) 

Two simulated results of N = 32 and 256 are present in Fig. 13. When the cost 
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function plateaus, the results obtained by the quantum VQLS solver are in acceptable 

agreement with solutions of the classical solver applied to this problem. The largest 

variance occurs when N = 32 which is to be expected because of our use of a random 

initial parameters for ansatz. When optimal parameters are given, the quantum and 

classical solvers may produce comparable errors. 

 

  

(a) Convergence rate when N = 32 
(b) Solutions of temperature when N = 

256 

Fig. 13. Results of one-dimensional heat conduction problem: (a) Comparison of 

solutions when N = 32, (b) comparison of solutions when N = 256. 

 

Similar to the analyses in Section 3, the time complexity is discussed via the 

heuristic scaling. Since the condition number changes with the size of the matrix 

(namely the system size N), we cannot scale the time complexity solely depending on 

the number of qubits or the condition number. Thus we combine them and conduct the 

heuristic scaling for the one-dimensional problem. The relationship for the 

evaluations-to-solution versus 1/ε is determined. Furthermore, the scaling for 

evaluations-to-solution versus the system size N guaranteeing a desired ε precision is 
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found. The corresponding results are shown in Fig. 14 and Fig. 15. Obviously, for all 

values of n, the data were nearly fitted with a linear function, implying that the 1/ε 

scaling is logarithmic. From the heuristic scaling with number of qubits n for ε = 0:05. 

the dependence appears to be linear (logarithmic in N) for this example. 

 

  

(a)  (b)  

  

(c)  (d)  

Fig. 14. Heuristic scaling for one-dimensional heat conduction problem. The 

evaluations-to-solution versus 1/ε for n = 3; 4; 5 and 8. The x-axis is shown in a log 

scale. For all values of n, the data were nearly fitted with a linear function, implying 

that the 1/ε scaling is logarithmic. 
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Fig. 15. Heuristic scaling with number of qubits n when ε = 0:05 for one-dimensional 

heat conduction problem. The dependence on n appears to be linear (logarithmic in N) 

for this example. 

 

4.2. Two-dimensional heat conduction 

When a higher dimension is considered for the heat conduction problem, as 

shown in Eq. (6), the structure of the linear system becomes a block symmetric 

banded/Toeplitz matrix. Similar to the one-dimensional case, the quantum states for 

the matrix A and vector b should be prepared via quantum logic operators for 

execution in quantum circuits. When n = 6 qubits are used for the ansatz, i.e., N = 8 

interior grids in each direction, the matrix A can be linearly decomposed to 15 items. 

For the case of n = 8 and N = 16, there are 31 items for linear combination of unitaries 

for the matrix A.  

Fig. 16 and Fig. 17 plot the results obtained by the VQLS solver applied to this 

problem. The reference data are computed by a classical solver with the direct method. 

As we see from the comparisons of the temperature solutions and contours, excellent 
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agreements have been achieved.  

Fig. 18 and Fig. 19 depict the heuristic scaling for the dependence on ε and the 

number of qubits n, respectively. It can be observed that, similar to the conclusion in 

the one-dimensional case, the 1/ε scaling is logarithmic and the dependence on n 

appears to be linear (logarithmic in N). 

 

 

(a) 

  

(b) Classical solver (c) VQLS solver 

Fig. 16. Results of two-dimensional heat conduction problem when N = 8 and ε = 0.05: 

(a) comparison of solutions; (b) the temperature contours obtained by the classical 

solver and (c) the temperature contours obtained by the VQLS solver. 
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(a) 

  

(b) Classical solver (c) VQLS solver 

Fig. 17. Results of two-dimensional heat conduction problem when N = 16 and ε = 

0.05: (a) comparison of solutions; (b) the temperature contours obtained by the 

classical solver and (c) the temperature contours obtained by the VQLS solver. 

 

  

(a)  (b)  
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(c) 

Fig. 18. Heuristic scaling for two-dimensional heat conduction problem. The 

evaluations-to-solution versus 1/ε for n = 4; 6 and 8. The x-axis is shown in a log 

scale. For all values of n, the data were nearly fitted with a linear function, implying 

that the 1/ε scaling is logarithmic. 

 

 

Fig. 19. Heuristic scaling with number of qubits n when ε = 0:05 for two-dimensional 

heat conduction problem. The dependence on n appears to be linear (logarithmic in N) 

for this example. 

 

5. Conclusions and Perspectives 
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This paper presents a practical application of the variational quantum linear 

solver for heat equations which include a Laplacian operator to be solved. Using 

statevector simulations, it is demonstrated that the variational quantum algorithms can 

be useful in numerical resolution of partial differential equations. The relationship 

between the shots and variance is revealed. By doing comprehensive assessment of 

various parameters, the time complexity of the VQLS algorithm is demonstrated to 

scale efficiently in the precision, the condition number and the size of the linear 

system. In addition, with the successful simulations of the one- and two-dimensional 

heat conduction problem, the present VQLS based method is well validated in terms 

of accuracy and efficiency. Based on agreeable results, the heuristic scaling shows the 

nearly logarithmic dependence on 1/ε and linear dependence on the number of qubits 

(or logarithmic dependence on the system size). 

In this study, due to computational limitations, only the relatively small sizes of 

linear systems are considered. Moreover, the ansatz and optimizer may be 

non-optimal. Although expected results for the heat conduction problem are obtained 

by the present quantum solver, it should be admitted that solving linear system of 

equations in general which results from PDEs is still challenging, and future 

discussion about the potential speed-up for the restricted and practical tasks would be 

an interesting research direction. 
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