Adding a "no-inline" option to Qiskit transpiler

Qamp-fall-22 #16

Mentor: Adrien Suau

Mentee: Juon Kim, Pranshi Saxena

Qiskit transpiler

Background

- Real quantum devices can only execute a limited hardware-specific quantum gates
- Requires Human-defined gates → Machine-compatible gates

Transpilation (≠ Compilation)

- Optimize the performance and compensate for the effects of noise, decoherence, errors
- Physically realizable with the quantum hardware

Qiskit transpiler

Inline Qiskit transpiler

- Optimization by unrolling(inlining in the classical context) the instruction
- "Flat" quantum circuit
 - Each part is independent
 - Limited to reuse the module
 - Apply all the transpiler passes in each part
- → Hard to handle requests for changes

No-inline Qiskit transpiler

- "Hierarchical" structure
 - Each part is interconnected
 - Easy to reuse the module
 - Apply the transpiler pass once and reapply it to other part
- → Easy to handle requests for changes → High performance

No-inline Qiskit transpiler

Goal

- 1. Implement classical feedback in the quantum circuit
 - Depends on the result of measurement
- 2. Make subroutine easy
 - Avoid repeating the same circuit transpilation

Advantage

- Can apply on various quantum hardware
- Can adapt the transpiler to classical feedback
- Transpile the quantum circuits more efficient and faster