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Introduction: Our goal is to predict the time evolution of a reduced density matrix (RDM) of a subsystem 

using quantum machine learning. To this end we are using the Deep Quantum Neural Network (DQNN) 

[1] architecture as a base model to learn arbitrary open quantum systems. We have managed to 

implement a numerical model of DQNNs using ‘qiskit quantum_info’ package as well as the unique unitary 

update rule developed in Ref. [1], which assembles backpropagation in neural networks. This 

implementation allows us to classically train the model very fast by not actually computing the gradient 

at every step. Meanwhile, we have also implemented the circuit-based DQNN model with ‘qiskit 

QuantumCircuit’ instance, which would be more practical for NISQ era.  

 

Using the above DQNN (Deep Quantum Neural Network) [1] as the machine learning architecture, we aim 

to predict the time evolving RDM for a for various instances of the 1D Heisenberg model. We used exact 

diagonalization (ED) to create a time series of RDMs representing our training and validation data sets. 

 

 Results: With the initial state as a trivial product state, in fig.1, we successfully trained a [1,4,1] DQNN 

model featuring 1, 4, and 1 qubits in the input hidden and output layers respectively and get the training 

loss function (average fidelity) and validation loss function (average fidelity) to converge to 1 after 100 

epochs. We can also predict the expectation value of X, Y, Z Pauli matrices. The result of the prediction is 

very close to the result from ED shown in fig.2.   

 

For product starting states we also investigated the effect of going beyond a Markov assumption by 

incorporating an RDM history into the input to our DQNN.  Accordingly, we have successfully predicted 

the quantum state of a qubit in the Heisenberg chain, by observing few (1~3) past states of that qubit (Fig 

3). The model with Markovian assumption was equally accurate as the model without for the starting 

states considered. We further observed that the trainability of DQNN on open quantum system is 

dependent on the initial state. 

 

Fig. 1:  Training of DQNN  



 
Fig.2 Exact and predicted Bloch vector dynamics for a single site form the 1D Heisenberg chain  
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Fig.3 Exact and predicted Bloch vector dynamics for a single site form the 1D Heisenberg chain including 

non-Markov history dependence 

 

Future work: We plan to test our circuit implementation of the DQNN in the coming days and assess 

performance relative to classical matrix based approaches. Moreover, we will try different models to 

explore the limitations of this DQNN architecture. We hope to test some non-integrable models which 

potentially depolarize the reduced density matrix.   
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