## QAMP Spring 2022



Mentee: Leonardo Placidi (Qiskit Advocate)

Mentor: Atsushi Matsuo (IBM Research Tokyo)





### Add performance benchmarks for Qiskit Machine Learning #4

### The Task

potential benchmarks.

further improvement if any.

benchmarks.

1)

2)

3)



#### QuantumKernel

CLASS QuantumKernel(feature\_map=None, enforce\_psd=True, batch\_size=900, quantum\_instance=None, user\_parameters=None) [SOURCE]

Bases: object

Quantum Kernel.

The general task of machine learning is to find and study patterns in data. For many algorithms, the datapoints are better understood in a higher dimensional feature space, through the use of a kernel function:

 $K(x,y) = \langle f(x), f(y) \rangle.$ 

Here K is the kernel function, x, y are n dimensional inputs. f is a map from n-dimension to m-dimension space.  $\langle x, y \rangle$  denotes the dot product. Usually m is much larger than n.

The quantum kernel algorithm calculates a kernel matrix, given datapoints x and y and feature map f, all of n dimension. This kernel matrix can then be used in classical machine learning algorithms such as support vector classification, spectral clustering or ridge regression.



Analyze the <u>QuantumKernel</u> code/features for

Re-use the existing code and implement new

Analyze the obtained results and suggest

### **Qiskit Application Benchmarks**

license Apache-2.0 () Application Benchmarks Tests passing

# The work in progress



- We wrote 3 codes to benchmark
  <u>OuantumKernel</u> and <u>OuantumKernelTrainer</u>.
  We benchmark with regard to classification
  tasks. We made a <u>draft pull request</u>.
- 2) These first benchmarks check the most common statistics, such as time to fit the model and the quality of the prediction performance.
- 3) We are currently working on the visualization with the tool <u>airspeed velocity</u>.

### Next steps



### Visualize soon the successful benchmarks results.

Experiment and test the performances with different feature maps that we propose. Possibly adding some new datasets to the benchmark!

### That's all, for now!





Leonardo Placidi and Atsushi Matsuo