Lanczos Algorithm for Qiskit Dynamics

Mentor – Mirko Amico, IBM

Mentee – R K Rupesh, University of Hyderabad

$|\psi(t)\rangle = e^{-iHt}|\psi(0)\rangle$

Why Lanczos

• Local Hamiltonians describing qubit systems are sparse

$$
H = \begin{pmatrix} 0 & 0 & \alpha & \beta \\ 0 & d_0 & 0 & 0 \\ \alpha^* & 0 & 0 & 0 \\ \beta^* & 0 & 0 & d_1 \end{pmatrix}
$$

- Calculating time evolution requires exponentiating the Hamiltonian $|\psi(t)\rangle = e^{-iHt}|\psi_0\rangle$
- This can be done by diagonalizing H

 $e^{-iHt} = S^{\dagger}e^{-iDt}S$

Time evolution requires only sparse matrix - vector multiplication $\overline{|\psi(t)\rangle} = e^{-iHt}|\psi_{0}\rangle$

$$
(\mathcal{Y})^{\prime} = \sum_{n} \frac{(-it)^n}{n!} H^n |\psi_0\rangle
$$

$$
= \sum_{n} \frac{(-it)^n}{n!} |\psi_n\rangle
$$

 $|u_0\rangle = |\psi\rangle$ $|u_1\rangle = H|u_0\rangle$ $|u_2\rangle = H|u_1\rangle$...

Why Lanczos (Krylov Subspace)

- $K_r = \{ |\psi\rangle, A|\psi\rangle, A^2 |\psi\rangle, A^3 |\psi\rangle ... A^{k-1} |\psi\rangle \}$ Is the krylov subspace for a given matrix A and vector $|\psi\rangle$ of order k
- One can construct a basis $\{|\phi_i\rangle\}$ for this subspace using Gram-Schmidt

$$
|\widetilde{\phi}_{k-1}\rangle = |u_{k-1}\rangle - \sum_{i} \langle \phi_i | u_{k-1} \rangle | \phi_i \rangle
$$

$$
|\phi_{k-1}\rangle = \frac{|\widetilde{\phi}_{k-1}\rangle}{\langle \widetilde{\phi}_{k-1}|\widetilde{\phi}_{k-1}\rangle}
$$

Why Lanczos (Krylov Subspace)

- One can construct an orthogonal matrix $Q_{n,k}$ With $|\phi_i\rangle$ as the columns such that $T_{k,k} = Q_{k,n}^{\dagger} H_{n,n} Q_{n,k}$
- Where T is a Tridiagonal matrix
- Diagonalizing this Tridiagonal matrix is a lot faster since typically, $k \ll n$
- The Eigen-vectors of T is then an approximation of the lowest k Eigen vectors of H
- Therefore, we have $V_n = Q_{n,k} V_k$ where $V_{n,k}$ are the eigenvectors of T

Lanczos vs NumPy

(ground state calculation)

(RunTime)₁₀₀ vs Array Dimension

Lanczos Time-evolution

• Once we have the basis vectors and the Tridiagonal projection, we have the equation

$$
H_{n,n} = Q_{n,k} T_{k,k} Q_{k,n}^{\dagger}
$$

- Thus, the time evolution unitary becomes
- $e^{-iHt} = e^{-iQTQ^{\dagger}t} = Qe^{-iTt}Q^{\dagger} = QVe^{-i\text{diag}(T)t}V^{\dagger}Q^{\dagger}$
- If we had chosen the initial vector of the Lanczos iteration to be same as the initial state which we want to evolve, then the rows of Q (other than first) are orthogonal to $|\psi_i\rangle$

Lanczos Time-evolution

- If we had chosen the initial vector of the Lanczos iteration to be same as the initial state which we want to evolve, then the rows of Q (other than first) are orthogonal to $|\psi_i\rangle$
- $e^{-iHt} = QV_k e^{-i\textbf{diag}(T)t} V_k^{\dagger} Q^{\dagger} |\psi_i\rangle$

$$
=QV_k e^{-i \textbf{diag}(T)t} V_k^{\dagger} \delta_{0,k}
$$

$$
=QV_{k}e^{-i\text{diag}(T)t}V_{0}^{\dagger}=QV_{k}\exp(-iE_{T}t)|\psi_{i}\rangle
$$

This increases the accuracy of the simulation since we aren't affected by loss of orthogonality.

The PR

 $\odot \cdots$

Implementing Lanczos algorithm as a new solver method #109

Q Conversation 1

 $\overline{\bullet}$ Commits 27 $\overline{\bullet}$ Checks 0

 $\boxed{\pm}$ Files changed 5

rupeshknn commented 3 days ago · edited •

Summary

Lanczos algorithm is an approximate diagonalisation method. It is implemented as an LMDE method and is a considerable speedup compared to scipy.expm

Details and comments

This PR adds a new fixed-step solver method lanczos diag. This method only works with hermitian generators and works best in sparse evaluation mode. A follow up with a Jax implementation of the same is in progress.

Thank You

R K Rupesh

MSc Physics, University of Hyderabad

Gachibowli, India

GitHub: github.com/rupeshknn/lanczos-QD