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𝜓𝜓 𝑡𝑡 = 𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖 𝜓𝜓 0



Why Lanczos

• Local Hamiltonians describing qubit systems are sparse

𝐻𝐻 =

0 0 𝛼𝛼 𝛽𝛽
0 𝑑𝑑0 0 0
𝛼𝛼∗ 0 0 0
𝛽𝛽∗ 0 0 𝑑𝑑1

• Calculating time evolution requires exponentiating the Hamiltonian
𝜓𝜓 𝑡𝑡 = 𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖 𝜓𝜓0

• This can be done by diagonalizing 𝐻𝐻
𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑆𝑆†𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖𝑆𝑆
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Why Lanczos

• Time evolution requires only sparse matrix – vector multiplication
𝜓𝜓 𝑡𝑡 = 𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖 𝜓𝜓0
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𝑛𝑛!

𝑛𝑛

|𝑢𝑢𝑛𝑛⟩

• 𝑢𝑢0 = 𝜓𝜓 𝑢𝑢1 = 𝐻𝐻 𝑢𝑢0 𝑢𝑢2 = 𝐻𝐻 𝑢𝑢1 . . . .
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Why Lanczos
(Krylov Subspace)

• 𝐾𝐾𝑟𝑟 = {|𝜓𝜓⟩, 𝐴𝐴 𝜓𝜓 , 𝐴𝐴2 𝜓𝜓 , 𝐴𝐴3 𝜓𝜓 …𝐴𝐴𝑘𝑘−1|𝜓𝜓⟩} Is the krylov subspace for a given matrix 
𝐴𝐴 and vector 𝜓𝜓 of order 𝑘𝑘

• One can construct a basis {|𝜙𝜙𝑖𝑖⟩} for this subspace using Gram-Schmidt

�𝜙𝜙 𝑘𝑘−1 = 𝑢𝑢𝑘𝑘−1 −�
𝑖𝑖

𝜙𝜙𝑖𝑖 𝑢𝑢𝑘𝑘−1 |𝜙𝜙𝑖𝑖⟩

|𝜙𝜙𝑘𝑘−1⟩ =
�𝜙𝜙 𝑘𝑘−1

⟨ �𝜙𝜙 𝑘𝑘−1 �𝜙𝜙 𝑘𝑘−1
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Why Lanczos
(Krylov Subspace)

• One can construct an orthogonal matrix 𝑄𝑄𝑛𝑛,𝑘𝑘 With 𝜙𝜙𝑖𝑖 as the columns such that
𝑇𝑇𝑘𝑘,𝑘𝑘 = 𝑄𝑄𝑘𝑘,𝑛𝑛

† 𝐻𝐻𝑛𝑛,𝑛𝑛𝑄𝑄𝑛𝑛,𝑘𝑘

• Where 𝑇𝑇 is a Tridiagonal matrix

• Diagonalizing this Tridiagonal matrix is a lot faster since typically, 𝑘𝑘 ≪ 𝑛𝑛

• The Eigen-vectors of T is then an approximation of the lowest k Eigen vectors  of H

• Therefore, we have 𝑉𝑉𝑛𝑛 = 𝑄𝑄𝑛𝑛,𝑘𝑘𝑉𝑉𝑘𝑘 where 𝑉𝑉_𝑘𝑘 are the eigenvectors of T
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7

Lanczos vs NumPy

(ground state calculation)



Lanczos Time-evolution

• Once we have the basis vectors and the Tridiagonal projection, we have the 
equation

𝐻𝐻𝑛𝑛,𝑛𝑛 = 𝑄𝑄𝑛𝑛,𝑘𝑘𝑇𝑇𝑘𝑘,𝑘𝑘𝑄𝑄𝑘𝑘,𝑛𝑛
†

• Thus, the time evolution unitary becomes

• 𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖𝑄𝑄†𝑡𝑡 = 𝑄𝑄𝑄𝑄−𝑖𝑖𝑖𝑖𝑖𝑖𝑄𝑄† = 𝑄𝑄𝑉𝑉𝑒𝑒−𝑖𝑖𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝 𝑇𝑇 𝑡𝑡 𝑉𝑉†𝑄𝑄†

• If we had chosen the initial vector of the Lanczos iteration to be same as the initial 
state which we want to evolve, then the rows of 𝑄𝑄 (other than first) are orthogonal to 
|𝜓𝜓𝑖𝑖⟩
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Lanczos Time-evolution

• If we had chosen the initial vector of the Lanczos iteration to be same as the initial 
state which we want to evolve, then the rows of 𝑄𝑄 (other than first) are orthogonal to 
|𝜓𝜓𝑖𝑖⟩

• 𝑒𝑒−𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑄𝑄𝑉𝑉𝑘𝑘𝑒𝑒−𝑖𝑖𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝 𝑇𝑇 𝑡𝑡 𝑉𝑉𝑘𝑘
†𝑄𝑄†|𝜓𝜓𝑖𝑖⟩

= 𝑄𝑄𝑉𝑉𝑘𝑘𝑒𝑒−𝑖𝑖𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝 𝑇𝑇 𝑡𝑡 𝑉𝑉𝑘𝑘
†𝛿𝛿0,𝑘𝑘

= 𝑄𝑄𝑉𝑉𝑘𝑘𝑒𝑒−𝑖𝑖𝐝𝐝𝐝𝐝𝐝𝐝𝐝𝐝 𝑇𝑇 𝑡𝑡 𝑉𝑉0
† = 𝑄𝑄𝑉𝑉𝑘𝑘exp(−𝑖𝑖𝐸𝐸𝑇𝑇𝑡𝑡)|𝜓𝜓𝑖𝑖⟩

• This increases the accuracy of the simulation since we aren’t affected by loss of 
orthogonality.
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The PR
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MSc Physics, University of Hyderabad

Gachibowli, India

GitHub: github.com/rupeshknn/lanczos-QD
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Why Lanczos

Local Hamiltonians describing qubit systems are sparse



Calculating time evolution requires exponentiating the Hamiltonian



This can be done by diagonalizing 
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Why Lanczos

Time evolution requires only sparse matrix – vector multiplication
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Why Lanczos
(Krylov Subspace)

  Is the krylov subspace for a given matrix  and vector  of order 

One can construct a basis  for this subspace using Gram-Schmidt
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Why Lanczos
(Krylov Subspace)

One can construct an orthogonal matrix  With  as the columns such that



Where  is a Tridiagonal matrix

Diagonalizing this Tridiagonal matrix is a lot faster since typically, 

The Eigen-vectors of T is then an approximation of the lowest k Eigen vectors  of H

Therefore, we have  where  are the eigenvectors of T
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Lanczos vs NumPy

(ground state calculation)
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Lanczos vs NumPy

(ground state calculation)









Lanczos Time-evolution

Once we have the basis vectors and the Tridiagonal projection, we have the equation



Thus, the time evolution unitary becomes



If we had chosen the initial vector of the Lanczos iteration to be same as the initial state which we want to evolve, then the rows of  (other than first) are orthogonal to  
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Lanczos Time-evolution

If we had chosen the initial vector of the Lanczos iteration to be same as the initial state which we want to evolve, then the rows of  (other than first) are orthogonal to  



          

             

This increases the accuracy of the simulation since we aren’t affected by loss of orthogonality.
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The PR
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« Local Hamiltonians describing qubit systems are sparse

0 0 a P
[0 dy 0 O
- a* 0 0 O
g* 0 0 dy

+ Calculating time evolution requires exponentiating the Hamiltonian

[p(©) = e~ ]yo)

» This can be done by diagonalizing H
e tHt — gto—iDtg






image11.png

« Time evolution requires only sparse matrix — vector multiplication
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One can construct an orthogonal matrix @, , With |¢;) as the columns such that
Ty = Q;,an,nQn,k

Where T is a Tridiagonal matrix

Diagonalizing this Tridiagonal matrix is a lot faster since typically, k < n

The Eigen-vectors of T is then an approximation of the lowest k Eigen vectors of H

Therefore, we have V;, = Q, xVi where V_k are the eigenvectors of T
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Once we have the basis vectors and the Tridiagonal projection, we have the
equation

Hypn = Qn,ka,le-cl—,n
Thus, the time evolution unitary becomes
e —iHt — o—iQTQTt _ Qe~iTtQt = QVe-idiag(Mt 1ot

If we had chosen the initial vector of the Lanczos iteration to be same as the initial
state which we want to evolve, then the rows of Q (other than first) are orthogonal to
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» If we had chosen the initial vector of the Lanczos iteration to be same as the initial
state which we want to evolve, then the rows of Q (other than first) are orthogonal to
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» This increases the accuracy of the simulation since we aren’t affected by loss of
orthogonality.
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Implementing Lanczos algorithm as a new solver method #7109

rupeshknn wants to merge 27 commits into Qiskit:main from rupeshknn:lanczos (O

) Conversation 1 -o- Commits 27 [l Checks o Files changed 5
@ rupeshknn commented 3 days ago « edited @
Summary

Lanczos algorithm is an approximate diagonalisation method. It is implemented as an LMDE method and is a considerable
speedup compared to scipy.expm
Details and comments

This PR adds a new fixed-step solver method lanczos_diag . This method only works with hermitian generators and works best in
sparse evaluation mode. A follow up with a Jax implementation of the same is in progress.
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