Qiskit Advocate Mentorship Program, Spring'23

Project : Implement Date-reuploading classifier in Qiskit Machine Learning #3

Mentor: Atsushi Matsuo Researcher at IBM , Japan

Eraraya Ricardo Muten

MS, Quantum Science & Technology, Technical University of Munich

Shivani Rajput Research Associate, University of Delhi , India

Project Description

Data re-uploading is a recently proposed idea of quantum neural network, which uses a quantum circuit with a series of data re-uploading and processing layers. Unlike the conventional quantum circuit of quantum neural network, it has multiple layers of re-uploading input data. In this project, we will implement the data reuploading quantum neural network in Qiskit Machine Learning. The goal of this project is to write code and create a pull request.

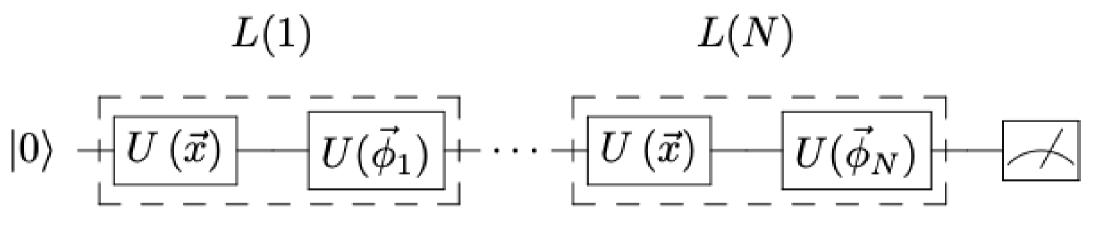


Figure from Pérez-Salinas et al. (2019)

Original Paper: https://quantum-journal.org/papers/q-2020-02-06-226/pdf/

Progress

Step 1 - Prepared Data-reuploading class

a) For Single Qubits: Only Rotational Gate layer (L)

 $U(\phi, x) = L(N) L(N-1) \dots L(2)L(1)$

 $L(i) = U\left(\vec{ heta}_i + \vec{w}_i \circ \vec{x}\right)$ $L(i) = U\left(\vec{ heta}_i^{(k)} + \vec{w}_i^{(k)} \circ \vec{x}\right)$

 $U(\vec{\theta}) = Rx(\theta x)Ry(\theta y)Rz(\theta z) \vec{\theta} = (\theta x, \theta y, \theta z) \vec{w} = (w_x w_y w_z) \vec{x} = input data(N) = no of layers$

b) Multi qubits without entanglement : Stacking the same ansatz(U) for multiple qubits.

c) Multi qubits with entanglement (CZ gates). Alternating between (L) Rotational Layer and and (E)entanglement layer.

 $U(\phi, x) = L(N) E L(N-1) E E L(2) EL(1)$

Original Paper: https://quantum-journal.org/papers/q-2020-02-06-226/pdf/

$$\circ \vec{x}^{(k)} \cdots U \left(\vec{\theta}_{i}^{(1)} + \vec{w}_{i}^{(1)} \circ \vec{x}^{(1)} \right),$$

[Note : followed Linear entanglement]

Progress

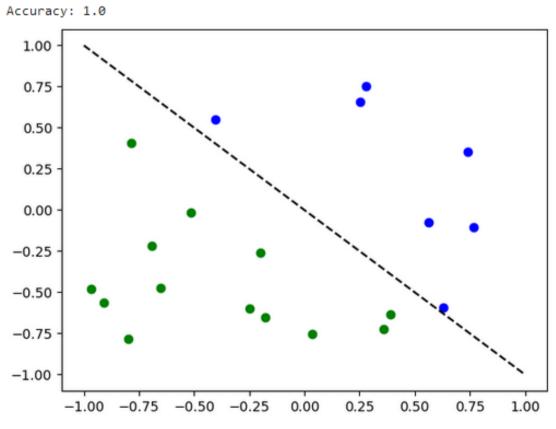
Step2: Integration with QNN implementation of Qiskit Machine Learning (EstimatorQNN) and SamplerQNN) and used PyTorch with TorchConnector feature of Qiskit.

Step3: Optimization

The optimization process is initiated using the optimizer and loss function.

Step4: After optimization, the trained model (**model1**) is used to make predictions on the input data (X), and the accuracy of the predictions is calculated by comparing them to the ground truth labels (**y_**)

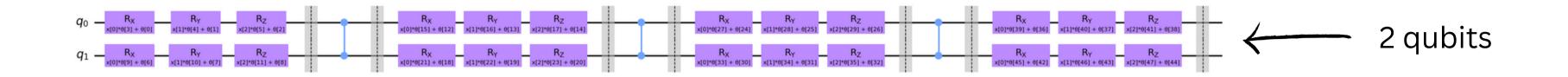
Original Paper: https://quantum-journal.org/papers/q-2020-02-06-226/pdf/



<u>Progress</u>

DRC = DataReuploading(num_qubits=1, num_features=2, num_layers=4)

y_predict = [] for x, y_target in zip(X, y): output = model1(Tensor(x)) y_predict += [np.sign(output.detach().numpy())[0]] print("Accuracy:", sum(y_predict == y) / len(y)) # Plot results # red == wrongly classified for x, y_target, y_p in zip(X, y, y_predict): if y_target == 1: plt.plot(x[0], x[1], "bo") else: plt.plot(x[0], x[1], "go") if y_target != y_p: plt.plot([-1, 1], [1, -1], "--", color="black") plt.show()



Result: accuracy 100%


```
# Evaluate model and compute accuracy
plt.scatter(x[0], x[1], s=200, facecolors="none", edgecolors="r", linewidths=2)
```

Example Circuits

q ₀ - R _x - R _y - R _z - R	R _X R _Y R _Z	R _X R _Y R _Z R _Z R _Z R _Z R _Z	R _X R _Y R _Z R _Z R _Z R _Z R _Z R _Z
q1 - Rx Ry Ry Rz	R _X R _Y R _Z R _Z R _Z R _Z	R _X R _Y R _Y R _Z R _Z x ₁₁ 1°6(58) + 6(55) x ₁₁ °6(58) + 6(55) + 6(56)	R _X R _Y R _Z R _Z R _Z R _Z R _Z (2)*6(81) + 6(78)
$q_2 = \frac{R_x}{x_{[0]^{e_{1(5]}} + e_{1(2]}]}} = \frac{R_y}{x_{[1]^{e_{1(5]}} + e_{1(3]}]}} = \frac{R_z}{x_{[2]^{e_{1(2)}} + e_{1(2]}]}}$	R _X R _Y R _Z R _Z R _Z R _Z R _Z	R _X R _Y R _Z R _Z R _Z R _Z	R _X R _Y R _Z
$q_3 - \frac{R_X}{x_{(0)}^{n}(21) + \theta(10)} - \frac{R_Y}{x_{(1)}^{n}(22) + \theta(10)} - \frac{R_Y}{x_{(2)}^{n}(23) + \theta(20)}$	R _X R _Y R _Z	R _X R _Y R _Z R _Z	RX RX RX RX RZ

$\frac{R_X}{x_{[0]^{\circ}0[39] + 0[36]} - \frac{R_Y}{x_{[1]^{\circ}0[40] + 0[37]} - \frac{R_Z}{x_{[2]^{\circ}0[41] + 0[38]}}}$	R _X R _Y R _Z	-
R _X R _Y R _Z R _Z R _Z R _Z R _Z R _Z x ₁₁ *θ(45] + θ(43] x ₁₂ *θ(47] + θ(44]	R _X R _Y R _Z R _Z x[1]*0[63] + 0[60] x[1]*0[64] + 0[61] x[2]*0[65] + 0[62]	-
R _X R _Y R _Z R _Z R _Z R _Z R _Z x[1]*6[52] + 0[49] x[2]*6[53] + 0[50]	R _X R _Y R _Z R _Z x[1]*0[70] + 0[67] x[2]*0[71] + 0[68]	-

Work to be done..

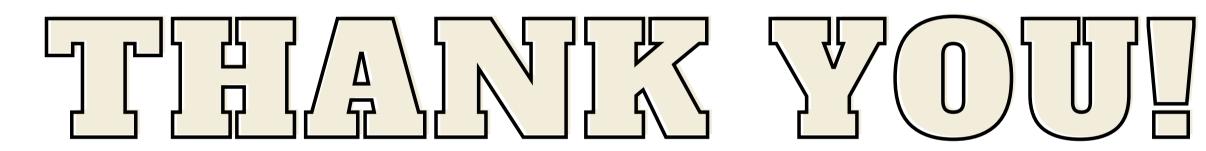
We will implement the prepared class inside the Qiskit Machine Learning. ${ \bullet }$

We will write some tutorials with different datasets and configurations.

For ex: Training the ansatz with single qubits and multi qubits with different number of features and layers

Original Paper: https://quantum-journal.org/papers/q-2020-02-06-226/pdf/

Work to be done..


• Circle Classification

Results of the circle classification obtained with a singlequbit classifier with different number of layers using the L-BFGS-B minimizer and the weighted fidelity cost function. Results of the 3-circles problem classification obtained with a single-qubit classifier with different number of layers using the L-BFGS-B minimizer and the weighted fidelity cost function.

To do- WE WILL TRY TO DO THE SAME CLASSIFICATION USING OUR PREPARED CLASS AND WE WILL BE USING REGULAR FIDELITY

