arXiv:2008.09503v1 [quant-ph] 21 Aug 2020

Systematic Crosstalk Mitigation for Superconducting
Qubits via Frequency-Aware Compilation

Yongshan Ding, Pranav Gokhale, Sophia Fuhui Lin
Richard Rines, Thomas Propson, and Frederic T. Chong

Department of Computer Science, University of Chicago, Chicago, IL 60615, USA

Abstract—One of the key challenges in current Noisy
Intermediate-Scale Quantum (NISQ) computers is to control a
quantum system with high-fidelity quantum gates. There are
many reasons a quantum gate can go wrong — for supercon-
ducting transmon qubits in particular, one major source of
gate error is the unwanted crosstalk between neighboring qubits
due to a phenomenon called frequency crowding. We motivate
a systematic approach for understanding and mitigating the
crosstalk noise when executing near-term quantum programs on
superconducting NISQ computers. We present a general soft-
ware solution to alleviate frequency crowding by systematically
tuning qubit frequencies according to input programs, trading
parallelism for higher gate fidelity when necessary. The net result
is that our work dramatically improves the crosstalk resilience
of tunable-qubit, fixed-coupler hardware, matching or surpassing
other more complex architectural designs such as tunable-coupler
systems. On NISQ benchmarks, we improve worst-case program
success rate by 13.3x on average, compared to existing traditional
serialization strategies.

Index Terms—quantum computing, error mitigation, compiler
optimization, superconducting qubit

I. INTRODUCTION

Current Noisy Intermediate-Scale Quantum (NISQ) com-
puters [2], [26], [27], [43], [52] aim to isolate and control a
non-trivial quantity of quantum bits (qubits) with high preci-
sion. Scaling up a quantum computer requires improvements
in both the quality of qubits (with longer lifetime) and the
quality of gates (with higher fidelity).

In case of superconducting transmon qubits [4], [25], [32],
which is the subject of this work, gate speeds have been
achieved three to four orders of magnitude faster than qubit
lifetime [3], [6], [12], [45]. Although fast gates are desirable;
they are prone to errors caused by imprecise control. Among
all sources of gate errors, crosstalk is the most dominant
[37], [38]. Errors caused by crosstalk, such as exchange of
excitation and leakage to non-computational states, are found
to have detrimental effect to quantum states, and such errors
can accumulate as we execute a program [3].

What is crosstalk? There is hardly a single precise noise
model that captures all aspects of crosstalk, but rather, it is a
combination of unwanted interactions between coupled qubits
on a quantum chip. This type of crosstalk noise prevails in
many leading architectures, including trapped ion and super-
conducting systems [13], [33], [41], [42]. For superconducting

Corresponding author: yongshan@uchicago.edu

Qubit Tunability
(harder to build)

Tunable Qubit
Fixed Coupler

Tunable Qubit
Tunable Coupler

THIS WORK GOOGLE SYCAMORE
Coupler Tunability
(harder to build)
Fixed Qubit Fixed Qubit
Fixed Coupler Tunable Coupler
IBM Q

Fig. 1. Technological design choices for mitigating crosstalk. Higher tun-
ability offers better control over the device, but induces higher fabrication
overhead and sensitivity to control noise. Our work targets a balanced design,
i.e. tunable qubits and fixed coupler, to achieve high program success rate via
software optimization of error mitigation.

transmon systems, two qubits interact with each other via
resonance of qubit frequency. Two main technology options
for avoiding accidental resonance of qubits are: i) to tune
qubit frequencies apart using tunable qubits; 7¢) to temporarily
disable connections between qubits using tunable couplers.
Fig. 1 illustrate the different design choices of leading QC
architectures. Current IBM Q systems [26] are built with fixed
qubit frequency and fixed coupling, relying on a scheduler to
avoid crosstalking gates [40]; Google’s architectures generally
use tunable qubits with either fixed coupler [3] or tunable
coupler [2].

Crosstalk noise is found to be highly dependent on the
interaction strength between the qubits. For instance, Fig. 2
shows the interaction between two connected (directly via a
capacitor) frequency-tunable transmon qubits [33]. Unless the
two qubit frequencies (w4 and wp) are tuned sufficiently apart,
there remains some residual coupling between them, leading
to unwanted crosstalk.

When executing a quantum program, qubits are tuned dy-
namically to their assigned idle and interaction frequencies
to perform single-qubit gates and two-qubit gates, respec-
tively. As systems scale up and the frequency range becomes
crowded, choosing frequencies for all qubits becomes in-
creasingly challenging, necessitating compiler techniques for
tuning frequencies systematically and scheduling instructions
intelligently [17].

Fig. 3 is an overview of our approach. This work aims

0.0014 = ‘ ‘ L
" &= On resonance with qubit B

0.0012]
(o2}
£ 0.0010 -
(=] .
=4) .. -
£ 0.0008 | N]
n Ji —
S o006l /]
§ / Qubit A Qubit B
E 000047 -----
= 0.0002 - Wy Coupler wg

wp,
0.0000 - | N

5.38 5.40 5.42 5.44 5.46 5.48 5.50
Qubit A frequency, wa/27t (GHz)

Fig. 2. Interaction strength between two transmon qubits as we tune the
frequency w4 while holding wp constant. The strength peaks when two
transmons are on resonance (w4 = wp). Residual coupling remains when
w4 is close to wp, and diminishes as w 4 is tuned far away from wp. Inset:
Schematics of two connected qubits.

to provide means for understanding and mitigating the im-
pact of crosstalk, from a software optimization perspective.
Recent work by architects have demonstrated that software
optimizations can lead to efficient noise mitigation, effectively
providing the equivalent of months of hardware progress.
For example, [34], [39], [49] show how to improve qubit
utilization, and [21], [48] show how to optimize pulses to
speedup gates. We demonstrate that quantum programs can be
optimized to reduce the chance of crosstalk and decoherence
by scheduling instructions at the right operational frequency
and time step, preventing spectral and temporal collisions,
respectively. To do so, we define a type of graph called the
crosstalk graph; our mitigation technique maps the frequency-
aware compilation problem to the coloring of crosstalk graph.
Furthermore, the diversity of gate decomposition gives us an
extra degree of freedom in scheduling. In sum, our main
contributions include:

o An efficient compilation algorithm that mitigates the
impact of crosstalk and decoherence via program-specific
frequency tuning and instruction scheduling, making
tunable-qubit, fixed-coupler systems a competitive, scal-
able design.

« A systematic analysis of device tunability and sensitivity
to provide insights on the advantages and disadvantages
of different architectural designs, such as IBM’s fixed-
frequency systems and Google’s tunable-coupler systems.

o Evaluations of our crosstalk mitigation algorithm on a
variety of NISQ benchmarks including BV [7], QAOA
[19], QGAN [36], ISING [6], and XEB [2] circuits.

The rest of the paper describes the details of our approach.
Section II reviews the superconducting transmon architectures
on which this work mainly focuses, and introduces gate oper-
ations and crosstalk noises on those architectures. Section III
compares the leading superconducting architectures and shows
how the frequency-tunable qubit architecture is made competi-
tive by our algorithm. Section IV is our proposed methodology
for mitigating the frequency crowding problem, where we
define the crosstalk graph and present our frequency tuning

Quantum Program

~

Hybrid Primitive i
{_ Gate Decomposition |

J

' Crosstalk Graph Coloring

(Section V)

’ SMT Solver Optimization

;

i Noise-Aware
| Queueing Scheduler |

(Section 1V)

Crosstalk Model

Executable
Optimized Circuit
+

=
]
=]
o
=
=
o
o
o
—
IS
3
¥
>
Q
=
]
5
o
1)
S
o

{

_ Freqg. Assignment Y,

Low-level Control Pulses

Characterization

Superconducting
QC Device

Fig. 3. Flow of our crosstalk mitigation software for tunable superconducting
QC systems. We develop a frequency-aware compilation algorithm that
systematically reduces crosstalk and decoherence.

algorithm and circuit optimizations. Section V contains the
implementation details of the proposed algorithm. Section VI
and Section VII evaluates our approach on a suite of NISQ
algorithms. Finally, Section VIII discusses the implications
and remaining issues.

II. BACKGROUND

A. Basics of Superconducting Qubits

We start with a brief overview of superconducting qubits
and how they are manipulated for computation. Transmon-
like variety of superconducting qubits [5], [16], [25], [28] are
among the most widely deployed quantum computer architec-
tures [2], [33], [44]. The discussions in this work are centered
around techniques for frequency-tunable transmons [4], [5],
[6], [28], but some general principles will be applicable to all
types of superconducting architectures.

A superconducting transmon quantum bit (qubit), as shown
in Fig. 4, is by design a multi-level quantum system made out
of lithographically printed circuit elements, configured such
that they exhibit atom-like energy spectra. The lowest two
levels are used as the bit 0 and 1 for computation. The ground
energy level represents the state |0) = [1 0]7, and the first
excited energy level represents the state |1) = [0 1]7. Unlike
a classical bit, a qubit can be in a linear combination of 0
and 1: [¢)) = a|0) + B3|1) = [a B]T, where a, 3 are complex
coefficients satisfying || + |3]2 = 1.

When a transmon gets accidentally excited to the second
(or higher) energy level, e.g. |¢) = «|0) + §|1) + 7|2}, for
~v # 0, we call this process “leakage”. This can happen due
to imprecision in quantum control. The energy gap between
the ground state |0) and the first excited state |1) is known as
the qubit frequency, i.e. wy, = wp1 = Eg1/h, where h is the

Sensitive to flux noise

/ Sweet spots. — P Flux drive

Microwave drive

%,
. Vy(t)

-1.0 -0.5 0.0 0.5 1.0

Qubit frequency, w27t (GHz)
N
/
/

Frequency-tunable
Transmon Qubit

External magnetic flux, ¢/mt

Fig. 4. Left: Qubit frequencies as a function of external magnetic flux.
The first three levels of the transmon, wp1 and w2, are plotted. Shaded
area is where the qubit is sensitive to flux noise. Right: Circuit diagram
for a frequency-tunable (asymmetric) transmon qubit (highlighted in black),
consisting of a capacitor and two asymmetric Josephson junctions. Highlighted
in gray are two control lines: the external magnetic flux control ¢ and
microwave voltage drive line V;(t) for each transmon qubit.

Planck’s constant. Hence, we will sometimes use the terms
energy and frequency interchangeably. More generally, wg;
is referred to as the (first-level) qubit frequency and wqs is
the second-level qubit frequency, defined as the gap between
the ground state |0) and the second excited state |2). The
frequency of a transmon qubit can be changed by applying
external magnetic flux through the transmon loop, as shown
in Fig. 4. In this case, there are two frequency sweet spots,
i.e. frequency values that are relatively stable against flux
noise [33]. As such, choosing operating frequencies around
the sweet spots is desirable for tunable architectures.

B. Operations and Noises

In QC systems, computation is accomplished by applying
a sequence of instructions/operations called quantum gates,
which take one quantum state to another through unitary
transformations, i.e. [¢)) — U |¢), where U is a unitary matrix.
These primitive transformations are implemented by driving
the qubits via 4) microwave voltage signals, and i) local
magnetic flux pulses. The control mechanism for each qubit
is illustrated in Fig. 4.

A quantum compiler takes a quantum program written
in a high-level programming language, performs a series of
transformations and optimizations on the intermediate repre-
sentations (IR) or quantum circuits, and finally outputs low-
level control pulses for driving the qubits. At the end, results
of the application are obtained by readout operations (called
measurements) on the qubits, which collapse each qubit’s
quantum state to a classical bit |0) or |1).

1) Single-qubit Gates and Decoherence Noise: In super-
conducting transmon systems, single-qubit gates are imple-
mented by driving the target qubit via: ¢) a microwave drive
line (feeding time-dependent voltage signals V;(t)) through a
capacitor connected to the qubit, and 47) a flux drive line (with
time-dependent magnetic flux pulses) [33]. For example, Rx
and Ry rotation gates are implemented by sending microwave
voltage signals in-phase (I) and out-of-phase (Q) through
the drive line, respectively. Other single-qubit gates, such as

qubit A

tiswap tez

%

oo Pa PB

Two capacitively
coupled qubits

W01 1
/
2P

Qubit frequency, w/2m (GHz)

qubit A

Time (us)

Fig. 5. Two-qubit interactions for two capacitively coupled transmons. Left:
Two-qubit gates are implemented with resonance of qubit frequencies. Shown
here are how qubit frequencies are tuned for ¢SWAP gate and CZ gate. Right:
Circuit diagram of two capacitively coupled transmon qubits.

Hadamard gate (H), can be accomplished by a combination of
Rx and Ry gates.

Qubits naturally decay due to perturbations from the envi-
ronment. Such decay can happen in two ways: i) T relaxation
(i.e. spontaneous loss of energy causing decay from |1) to
|0)), and i) T% dephasing (i.e. loss of relative quantum phase
between |0) and |1)). We can model both decays in a combined
decoherence error: ¢,(t) = (1 — e~ t/T1)(1 — e7*/72), where
t is time, and 73,75, are constants characterizing the speed of
the decays, for some qubit gq.

2) Two-qubit Gates and Crosstalk Noise: Two-qubit gates
play important roles in quantum computation, as they imple-
ment entangling operations, that is, transformations of one
qubit conditioned on the state of the other qubit [10]. Some
commonly used two-qubit gates include CNOT (controlled-not)
gate and SWAP gate. Despite their simple forms in the unitary
matrix representations, these gates are not typically supported
directly in the target architecture. For example, they need to
be decomposed into primitive gates, such as :SWAP gate and
CZ (controlled-phase) gate, for tunable transmon architectures.
The matrix forms for the :SWAP gate and the CZ gate are:

1 0 0 O 10 0 O
iSHAP — 0 0 — 0 c7 — 01 0 O
0 — 0 0f’ 001 O
0 0 0 1 00 0 -1

These gates are implemented by tuning the frequencies of
the two interacting qubits to some desired operating point,
denoted interaction frequencies. Then, the qubits are held at
that frequency for a duration of time ¢, depending on the
interaction strength g between the two qubits. Fig. 5 depicts
this process. Appendix C explains the overhead of dynamically
changing qubit frequencies.

In the most general sense, crosstalk (i.e. unwanted inter-
action) happens when two qubits are accidentally tuned on
(or close to) resonance. Fig. 2 shows how interaction strength
varies with closeness of frequencies, dw = |wa — wp|. Gate
time ¢ is shorter when ¢ is higher (i.e. when dw is small).
Two-qubit gate error can therefore be modeled as a function
of qubit frequencies and time: €,(w,t), for any gate g (see
Appendix B for details). For example, crosstalk can occur

when a pair of two-qubit gates (on connected qubits simul-
taneously) happened to use very close interaction frequencies,
as highlighted in Fig. 6. Section IV illustrates in details how
to understand and mitigate these types of crosstalk error.

III. RELATED WORK

A number of hardware features have been proposed to
help mitigate crosstalk:) connectivity reduction, i) qubit
frequency tuning, and #ii) coupler tuning. In addition to
these hardware features, some software constraints are usually
imposed to effectively reduce crosstalk; for example, certain
operations may be prohibited to occur simultaneously.

Connectivity reduction works by building devices with
sparse connections between qubits, hence reducing the number
of possible crosstalk channels. This greatly increases the
circuit mapping and re-mapping overhead for executing a
logical circuit, since many SWAP gates are needed. Moreover,
this model necessitates an intelligent scheduler to serialize
operations to avoid crosstalk [40]. This strategy is commonly
deployed for fixed-frequency transmon architectures, e.g. from
IBM [26]. Because of their non-tunable nature, these architec-
tures have stringent constraints on the initial qubit frequencys;
a number of optimizers are proposed for this issue [9], [35].

A second class of techniques rely on actively tuning qubit
frequencies to avoid crosstalk, featured in some prototypes
[25] and by Google [3]. Software can decide when to schedule
an instruction and which frequency to operate the instruction
at. In this class, [50] found a frequency assignment for the
surface code circuit; [24] suggests a sudoku-style pattern of
frequency assignment for cavity grid.

A third class builds not only frequency-tunable qubits but
also tunable couplers between qubits, termed “gmon” architec-
tures [11]. Without resorting to permanently reducing device
connectivity in hardware, a different subset of connections
are activated (via flux drives to the couplers) at different
time steps. As such, a schedule for when to activate couplers
is needed. After this work is submitted, [31] outlines the
frequency optimizer used in [2]. Our results show comparable
performance to [31] but with simpler hardware (no tunable
couplers). The control parameters used in [31] are hard to
predict, but in our evaluation, we include most of the leading
noises, e.g., decoherence, sidebands resonance, leakages, flux
noises, time overheads of flux tuning, etc.

Most previous studies on quantum program compilation
[20], [48] have largely targeted short program execution time
(i.e. low circuit depth), and neglected the impact of gate
errors such as crosstalk. Optimizations are performed at the
gate level, typically involving strategic qubit mapping and
instruction scheduling. Recent efforts [35], [40] are among
the first to explore architects’ role in mitigating crosstalk.

Our work here shows that frequency-tunable architecture
without connectivity reduction and without tunable couplers
(but with our software crosstalk mitigation) is competitive
against other architectures. The frequency-tunable but untun-
able coupler architecture is an optimization sweet spot. On
one end of the spectrum, fixed-frequency architectures have a

relatively constrained space for software optimization. On the
other end of the spectrum, requiring both qubit frequencies
and couplers to be tunable introduces higher overhead in
fabrication and higher control noises.

IV. SYSTEMATIC CROSSTALK MITIGATION

This work aims to demonstrate that systematic software
optimizations can dramatically mitigate crosstalk, utilizing a
variety of microarchitecture tunability features. These features
(such as different degree of tunability in qubits themselves
and their couplers) allow the hardware to be dynamically
configured to avoid crosstalk as program executes. We propose
frequency-aware software that reduces the chances of both
decoherence and crosstalk, via strategic frequency tuning and
instruction scheduling.

A. Understanding Crosstalk Constraints

Crosstalk mitigation is one of the major challenges in
scaling up superconducting quantum architectures. Each qubit
has a frequency wgl, as well as its associated higher-level
excitation frequency w,?, which is slightly smaller than w('.
For qubit A and qubit B connected by a capacitor:

(i) when qubits are non-interacting (i.e. during Identity
or single-qubit gates), their idle frequencies should have
sufficient separation (e.g. w9 # w¥, W4 # wi?, and
ol 7

when implementing two-qubit gates, they should be
placed on resonance at interaction frequency (e.g. W% =
wY for iSWAP gate, and w9! = w}f or w!¥ = WY for
CZ gate).

To avoid crosstalk, every pair of connected qubits must
be fabricated or tuned to idle frequencies that satisfy the
above constraints. However, each qubit can choose from a
limited range ' of frequency spectrum. Furthermore, every
two-qubit gate needs an interaction frequency far enough from
those of its neighboring gates. This issue is termed frequency
crowding, because the frequencies grow increasingly crowded
and the above constraints become harder to satisfy, as systems
scale up and as programs use more parallelism. It is critical
to determine the assignment of frequencies that minimizes
unwanted crosstalk.

(ii)

B. Frequency Tuning and Instruction Scheduling

To remedy this frequency crowding issue, we present a
systematic scheme that dynamically tunes the device and
schedules instructions according to input programs. Consider
the toy program in Fig. 6 as an example — we found that
a general recipe for avoiding crosstalk between two parallel
gates is to create sufficient separation: i) either in frequency,
i) or in time.

In order to understand and mitigate the impact of crosstalk,
we begin with two simple observations: ¢) Every qubit (when
not interacting with others) needs to pick a 0-1 excitation
frequency sufficiently far apart from the 0-1 or 1-2 excitation

'For example, in a typical frequency-tunable transmon architecture, each
qubit can be tuned to frequency around 5 GHz to 7 GHz [2].

(a) (b)

Quantum Program
for i in range(1,5):

H(qlil)
CNOT(ql1], ql31)
CNOT(q[21, ql4])

()

q
ql—D [] E'S
2]
q3 vig_hlg';z}fstalk I?Eﬁ cros;télk)
—{ & (]
qa 1
L1

Mapped Quantum Circuit

| o1

~

Optimized circuit

Freq. Assignments

Freq (GHz)

Low crosstalk: separate in frequency

SV

Low crosstalk: separate in time

q1
/ \ q2
qs

——Yqa

\

Time (us) /

Fig. 6.

(a) An example quantum program on four qubits. (b) The quantum program is mapped to a QC system of 2 X 2 qubits with nearest-neighbor

connectivity. In a quantum circuit, qubits are lines; gates are applied to the qubits from left to right. Highlighted in red are the parallel quantum gates with
high likelihood of crosstalk. (¢) The optimized circuit and frequency assignment resulting from our compilation algorithm. Crosstalk is mitigated by avoiding

spectral and temporal collisions in the those gates.

frequencies of its neighbors. i) The extend of tunability is
limited and there are few preferred operational frequencies
for each qubit. These two constraints are naturally in tension
with each other. The key is to balance the two.

To the best of our knowledge, this work is the first to
study strategies for systematically tuning qubit frequencies in
a program-aware fashion.

Throughout the remainder of this paper, we explore
crosstalk on a flux-tunable transmon architecture with 2-D
mesh-like connectivity. Nonetheless, the input to our algorithm
can be any arbitrary device topology; hence the crosstalk
mitigation techniques we introduce here are applicable to
all types of device connectivity, as showed quantitatively in
Section VII-F.

C. Resolving Frequency Crowding via Graph Coloring

This section will focus on two types of graphs: 7) the
device connectivity graph, and i) the crosstalk graph. For
each of these two graphs, we will define formally and illustrate
how coloring them can effectively reduce crowding of qubit
frequencies.

1) Idle Frequencies and Connectivity Graph: Qubit con-
nectivity is an important characteristic of a quantum device,
as it describes the pairs of qubits between which a two-qubit
gate can be directly performed. For completeness, we revisit
the definition of a connectivity graph: In a connectivity graph
G, each vertex is a qubit, every edge is a coupling between the
two qubits, e.g. a capacitor in the frequency-tunable transmon
architecture.

When the qubits are idle (i.e. not interacting with any other
qubits), we want to avoid collision of frequencies for every

pair of connected qubits. Therefore, we park the qubits at
“idle frequencies”. To avoid collisions in idle frequencies, it
is equivalent to coloring the connectivity graph where no two
end-points of an edge share the same color. If a connectivity
graph is colorable by c colors, then we need only c frequency
values {wo, w1, ...,we—1} to keep idle qubits from interacting
If the separation between the c frequencies are large enough
(i-e. any |w; — w,| sufficiently larger than the anharmonicity),
then the higher-energy excitation frequencies are also well
separated from the other frequencies, reducing interactions
through the leakage channel as well. This strategy works well
for simple connectivity graphs like the 2-D mesh, because the
2-D mesh is bipartite and thus 2-colorable. We also test the
general applicability of our algorithm on different choices of
device connectivity.

2) Interaction Frequencies and Crosstalk Graph: Two-
qubit gates are implemented by bringing the two qubits on
resonance at some “interaction frequency”. Any other qubits
nearby should be tuned off-resonance from that frequency to
avoid unwanted interactions. We define the crosstalk graph
to exactly match this constraint. The crosstalk graph G, of
a connectivity graph G, represent the potential crosstalk that
could happen between qubits, which must be addressed by
frequency tuning. Here we describe how to construct the
crosstalk graph G:

(i) Derive the line graph? G, of the connectivity graph G..
(i) Connect two vertices in G, if the corresponding two

2A line graph of a graph G’ maps each edge in G to a vertex, and two
vertices are connected if the two edges in G share a same vertex. [23]

Fig. 7. Left: the connectivity graph for a 5 X 5 mesh of qubits; 2 colors (highlighted in blue and purple) are needed to color the nodes of the graph.
The colors map to idle frequencies of the qubits. Center: when the two qubits at the center choose an interaction frequency (highlighted in red) all qubits
within the crosstalk range must be tuned off resonance from this interaction frequency. Right: A non-crosstalking edge coloring of the 2-D mesh, resulting
from coloring the crosstalk graph. 8 colors are required to avoid crosstalk among maximum simultaneous operations. Notably, fewer colors will suffice for

program-specific compilation that utilizes circuit slicing and subgraph coloring.

edges in G, is distance® one apart.

To elucidate the structures behind the crosstalk graph, we
use a b X 5 quantum chip as an example. Consider the middle
edge highlighted in red in the center panel of Fig. 7. Every
orange edge either shares a common vertex with the red edge
or is connected to the red edge by a third edge. Thus in the
crosstalk graph, the vertex corresponding to the red edge in
G is connected with the vertices corresponding to all orange
edges. If we tune the qubits on the red edge to an interaction
frequency w;n,¢, then during the gate time, none of the orange
edges should share that frequency.

Although quite dense (see Fig. 14), the crosstalk graph for a
2-D mesh can be colored by 8 colors as shown at the right of
Fig. 7. This coloring is general for any N x N 2-D mesh, and
8 is the minimum number of colors needed. See Appendix A
for an example of idle and interaction frequencies resulting
from coloring crosstalk graph.

We report an important observation here: for a device with
2-D mesh connectivity, crosstalk due to frequency crowding
is mostly localized. In other words, the frequency space does
not become more and more crowded as we increase the size
of the mesh. To understand how localized is it, we extend
our discussion on nearest-neighbor crosstalk to next-neighbor
crosstalk.

3) Generalization to Higher Distance: So far, we have
been discussing crosstalk between directly coupled qubits (i.e.
nearest-neighbor crosstalk). One could imagine the residual
coupling between a qubit and its next-neighbor could result in
crosstalk as well. We introduce a generalization to the crosstalk
graph to higher distance d, denoted as ng): The distance-d
crosstalk graph G&d) of a connectivity graph G, has a vertex
for each edge in G, and two vertices are connected if the
two edges in G, share a common vertex or are connected by
a path of length d.

3Distance between two edges equals the length of the shortest path that
connects the two edges.

V. OUR APPROACH

A. Frequency-Aware Compilation: Overview

Now we illustrate the key steps in our crosstalk mitigation
algorithm — the inputs to the algorithm include device charac-
teristics (e.g. qubit number, connectivity, transmon tunability),
program characteristics (e.g. a scheduled quantum circuit), and
optimization level (e.g. crosstalk distance).

Finding optimal (idle and interaction) frequency configura-
tions based on device and program characteristics is a high-
dimensional optimization problem; we break the problem into
multiple scalable sub-problems. As shown in Fig. 3, we begin
by constructing a crosstalk graph for the input device. Next, the
input program is decomposed into primitive gates and sliced
into layers (time steps). Then, we produce a feasible coloring
of an active subgraph of the crosstalk graph for each layer
of the circuit. From the colors, we thereafter map to the idle
and interaction frequencies via a Satisfiability Modulo Theory
(SMT) solver [8], [15]. Lastly, we produce a feasible schedule
of the program (i.e. gate instructions and qubit frequencies for
each time step), throttling parallelism if necessary. Algorithm 1
is the main algorithm outlining this process. Specifically, line
10-16 is the queueing schedule in Section V-B6; line 17-19 is
the coloring step in Section V-B2; line 20-22 corresponds to
the SMT solver optimization in V-B3.

B. Optimization Details

This section is dedicated to explaining the key ingredi-
ents of the algorithm in greater detail. Through a series
of optimizations, our frequency-aware compilation algorithm
drastically reduces the chance of crosstalk and scales favorably
with systems sizes, making it a viable long-term solution to
frequency tuning for superconducting qubits.

1) Crosstalk Graph Construction: In Section IV-C, we
outlined how the crosstalk graph is constructed; the steps are
made rigorous in the following Algorithm 2. By abstracting all
possible crosstalk channels between pairs of qubits as graph
theoretical objects, we are now equipped to quantitatively

Algorithm 1 Frequency-Aware Compilation

: d < crosstalk distance parameter

: G, < connectivity graph of the device D

G <+ gen_crosstalk_graph(D, d)

C. < coloring(G.)

Q. + colors in C; are mapped to parking frequencies
P « decompose input program P into primitive gates
S < first layer (time step) of program P

Q<+ o

9: while S non empty do

10: I+ o

11: S < sort S by criticality

12: for gate in S do

13: if not noise_conflict(gate, I) then

14: I + IU{gate}

15: end if

16: end for

17: FE < collect relevant two-qubit gates in [

18: H < subgraph(G, E)

19: C' < coloring(H)

20: Q « smt_find(C)

21: S« (S\ I) U {next layer of P}

22: F' <+ qubit frequencies for this cycle based on €. and 2
23: Q= QU{(I,F)}

24: end while

25: return Q)

AN I

Algorithm 2 gen_crosstalk_graph

1: G < connectivity graph of the device D

2: G <+ networkx.line_graph(G.)

3: S+ o

4: for pair of nodes (e, e2) in G¢ do

5: (u1,v1) ¢ pair of qubits for e;

6 (u2,v2) « pair of qubits for ez

7 cond < dist(ui,uz) < d or dist(ui,vz2) <d
8: cond < cond or dist(vi,u2) < d or dist(vi,v2) < d
9: if cond then

10: S+ Su{(e1,e2)}

11: end if

12: end for

13: G.add_edges_from(S)

14: return G

analyze and systematically mitigate crosstalk errors due to
frequency crowding.

2) Circuit Slicing and Subgraph Coloring: One of the
major advantages of our approach is in producing a dynamic
frequency assignment tailored for each input program. This
wins over a static (program independent) frequency assign-
ment because frequencies are substantially less crowded when
only considering a subset of couplings between qubits that are
“active” for a given time step. Here active couplings refers to
only those pairs of qubits currently involved in two-qubit gates.

We identify the active subgraph H of the crosstalk graph G,
by profiling the two-qubit gates in one time step. The (vertex)
coloring of H, denoted as C', is an assignment of labels
(called colors) for the vertices of H such that no two adjacent
vertices share the same color, while minimizing the number
of colors in total. Graph coloring is known to be an NP-
complete problem; section VII-C shows how we maintained
efficiency. In our optimization, we apply a polynomial-time

greedy approximation, the Welsh-Powell algorithm [51], to
color the active subgraph.

As a result, a feasible coloring of H yields a set of
non-colliding interaction frequencies for the two-qubit gates.
Qubits that undergo Identity or single-qubit gates are
parked at idle frequencies, determined by coloring the device
connectivity graph. In the next section, we describe how to
map from a coloring to a frequency assignment via a SMT
solver.

3) SMT Solver Optimization: The mapping from colors C
to frequencies {2 is reduced to a constrained optimization
problem. The objective is to assign |C| frequencies within
some range [wyo,wp;], satisfying the crosstalk constraints in
Section IV-A. We use a SMT solver to find a feasible solution
with the following constraints.

Ve € Cuwio < e < Wi, (1)
V., Leys |xc,; - ;L‘Cj‘ >4, 2)
|Te, + a0 — x| > 6, (3)

where « is the anharmonicity, and 0 is a threshold. Then,
smt_find uses a simple binary search to find the maximum
threshold §, for which a feasible solution exists. We ensure
the efficiency of the procedure by keeping |C| small.

Once the optimal solution is found, a one-to-one mapping
from C to Q is enforced by a total ordering, motivated by
the fact that higher interaction frequency value would yield
faster gate time, i.e., tgate ~ 1/w [33]. In particular, let us
denote n(c) as the number of times ¢ appear in C' and w(c)
as the frequency value to which ¢ maps. We dictate that,
for any ¢;,¢; € C, if n(¢;) > n(cj) then w(e;) > w(ey).
The following section details how the frequency ranges are
determined.

4) Frequency Partitioning: We partition the range of tun-
able frequency spectrum into three regions: interaction region,
exclusion region, and parking region. Similar partitioning
strategies has been studied for surface code error correction
circuits [50]. This allows us to decouple the idle frequency
assignment from that of the interaction frequency. For a real-
istic frequency-tunable transmon, the tunable range is typically
just a few GHz. So a reasonable design would use a partition
with 1 GHz interaction region, 0.5 GHz exclusion region,
and 1 GHz parking region. By this design, no frequency is
assigned in the exclusion region (which are most sensitive
to flux noise), preventing idle qubits from interacting with
iswap/cphase qubits.

The interaction frequencies are determined using the color-
ing C' for H. This is a two-step process. First, each coupling
in H (that is a pair of qubits performing a two-qubit gate)
gets assigned a color ¢ € C corresponds to an interaction
frequency. Second, qubits that appear in its complement G\ H
remain in their parking frequencies.

5) Hybrid Circuit Decomposition: To implement a two-
qubit gate that is not directly supported by the frequency-
tunable transmon architecture, we need to decompose it into
a series of native gates. Two commonly used two-qubit gates

¢— F— ¢

I

=

] [F]

<

S A

=] [#]

=

A

T
#
#

(d)

Fig. 8. (a): The CNOT gate, decomposed with :SWAP. (b): The SWAP gate,
decomposed with v/iSWAP. (¢): The CNOT gate, decomposed with Cz. (d):
The SWAP gate, decomposed with CZ.

in quantum programs are the CNOT gate and the SWAP gate,
because they implement relatively simple Boolean logic. Fig. 8
shows that they can be decomposed into 1 SWAP (or v/¢SWAP)
and CZ gates.

The strategy for circuit decomposition can affect perfor-
mance. Compared to decomposing all the two-qubit gates
in a circuit with one type of native gates, hybrid strategies
can help achieve better fidelity. A simple hybrid strategy is
to decompose CNOT gates with CZ, and SWAP gates with
ViSWAP. As depicted in Fig. 8, this strategy is advantageous
because CNOT (SWAP) is cheaper to implement with CZ
(ViSWAP) gates than with v/iSWAP (CZ) gates.

6) Noise-Aware Queueing Scheduler: Finally, parallelism
is another crucial concern in our algorithm — on one hand,
parallelism helps shorten the circuit execution time, reducing
chances of decoherence; on the other hand, it crowds the
interaction frequency range, increasing chances of crosstalk.
Our noise-aware queueing scheduler finds a sweet spot by
strategically serializing gates that are likely to cause crosstalk.
In algorithm 1 (line 9-16), gates are delayed based on their
criticality and potential noise conflicts. Criticality of a gate
is its position along the program critical path, calculated
by profiling the input program during circuit slicing on line
7. Function noise_conflict predicts potential crosstalk:
when scheduling g (e.g. CNOT (g1, g2)), if too many of its
neighbors in the crosstalk graph are already in I, then their
interaction frequencies are likely very close, so we postpone
g for the next time step. Serialization is done conservatively
while maintaining minimal impact on the critical path length of
the program (that is the circuit depth). This greedy scheduling
approach is shown to be effective in balancing crosstalk and
decoherence.

VI. EVALUATION

A. Tuning and Scheduling Baselines

We test the performance of our frequency-aware compi-
lation algorithm (i.e. ColorDynamic) in comparison to four

TABLE I
LIST OF ALGORITHMS USED IN OUR EVALUATION

Algorithms Microarch. Features
Baseline N Tunable transmon, fixed coupler, Qiskit [1]
scheduler
Baseline G Tunable transmon, tunable coupler, tiling
scheduler
Bascline U Tunable transmon (with single interaction
aseline frequency), fixed coupler, serial scheduler
. Tunable transmon, fixed coupler,
Baseline S
crosstalk-aware scheduler
ColorD . Tunable transmon, fixed coupler,
OIOILYNamic |- ... sstalk-aware scheduler

baselines, Baseline N (naive), Baseline G (gmon), Baseline
U (uniform), and Baseline S (static), shown in Table I;
they represent strategies of frequency tuning and instruction
scheduling from leading industry architectures.

Baseline N: Naive Compilation. A conventional crosstalk-
unaware compilation algorithm. Qubits are assigned with
separated idle and interaction frequencies.

Baseline G: Gmon with Tunable Coupler. This base-
line has advanced hardware requirements to activate cou-
plers — the “gmon” architecture, implemented in Google’s
recent Sycamore quantum architectures [2], takes advantage
of both tunable qubit and tunable coupling features to mitigate
crosstalk. On the flip side, the flux-tunable coupler would incur
fabrication overheads, and introduce extra sensitivity to flux
noise. We reconstruct and evaluate a gmon-like architecture
where the couplers are activated following the same pattern
used for Sycamore, and idle and interaction frequencies match
exactly the reported values in [2].

Baseline U: Uniform Frequency with Serialization. This
baseline relies on serialization to avoid crosstalk, similar to
[26], [40]. All two-qubit gates share one common interaction
frequency w;,¢, demonstrating the impact of serialization.

Baseline S: Static Frequency-Aware Compilation. Baseline
S optimizes the idle and interaction frequencies independent
of input programs, producing a static set of optimized values.
Most crosstalk-aware optimizers perform this type of static
optimization [2], [50].

ColorDynamic: Program-specific Frequency-Aware Com-
pilation. This is the pinnacle of our work. Instead of finding
a static interaction frequency solution for all programs, Color-
Dynamic returns optimized frequencies for each time step of a
program. It combines all optimizations in Algorithm 1, includ-
ing circuit slicing, strategical decomposition and serialization,
graph coloring, and SMT solvers.

B. Benchmarks

We study the performance of our algorithm through a variety
of NISQ benchmarks, shown in Table II. These benchmarks
are among the best known applications for near-term quantum
machines. We also include circuits for benchmarking simul-

taneous quantum gates to demonstrate the impact of crosstalk
on the fidelity of those gates [2].

In our evaluation, we vary number of qubits n = 4,9, 16, 25.
These circuits are of most interest, because the range of
crosstalk is typically localized, as shown in Fig. 7.

TABLE I
LIST OF BENCHMARKS USED IN OUR EVALUATION

Benchmarks | Descriptions
BV (n) Bernstein-Varzirani (BV) algorithm on n qubits [7]
Quantum Approximate Optimization Algorithm
QAOQA (n) (QAOA) [19] for MAX-CUT on an Erdos-Renyi
random graph with n vertices
Linear Ising model simulation of spin chain of
ISING (n) 1
ength n [6]
OGAN (n) Quantum Generative Adversarial Network (QGAN)
with training data of dimentsion 2™ [36]
XEB (n, D) Cross entropy benchmarking circuit for calibrating
! two-qubit gates on n qubits with p cycles [2]

C. Experimental Setup

Software implementation: Our compilation algorithms are
implemented in Python 3.7, interfacing the IBM Qiskit
software library [1]. The graph coloring optimization uses
greedy_coloring in NetworkX library [22], and the
SMT optimization uses Z3 solver [15] through the Z3py
APIs. All compilation experiments use Intel E5-2680v4
(2.4GHz, 64GB RAM).

Architectural features: We consider a 2D grid of N x N
asymmetric frequency-tunable transmons, each having maxi-
mum frequencies w, (in GHz) sampled from Gaussian dis-
tribution: © ~ N (w,0.1), with nearly constant aharmonicity
a/2r = (w12 — wo1)/27 ~ 200 MHz, to account for
realistic variation in fabrication and initial detuning. Any
pair of nearest-neighbor qubits are directly connected with a
capacitor; the coupling strength g depends on the frequencies
of the qubits, which is typically around g/27 =~ 30 MHz. For
gmon-like experiments, qubits are connected by flux-tunable
couplers, each with its own independent external magnetic flux
control. These parameters are set to realistic values in line with
experimental data from the literature [29].

Metrics: For our compilation experiments, we need to
efficiently compute the program success rate — we define a
heuristic for efficiently estimating the worst case success rate
of a program under crosstalk and decoherence noises.

Psuccess = HgEG(l - 69) ' HQEQ(I - eq) (4)

where €, is the crosstalk gate error, and €, is qubit decoherence
error. Details on €, can be found in Appendix B, equation 6;
€4 is captured by modeling 77 and 75 during idle or gate time,
as studied in [29]. A similar metric to Pgyccess 18 used in [2],
[53].

Besides being efficiently computable, this heuristic has
useful operational significance — we can understand and
mitigate the worst-case impact of crosstalk and decoherence

on the systems during compile-time or run-time of quantum
programs. Of course, to gain full knowledge of the crosstalk
and decoherence errors, we need full noisy circuit simulation,
which quickly becomes intractable as circuit size grows be-
yond tens of qubits. Hence, we validate the heuristic estimator
on small-scale circuits, for which noisy circuit simulation is
possible.

VII. RESULTS
A. Program Success Rate

Fig. 9 shows worst-case overall success rate, estimated using
our heuristic equation 4. Note that statistics, such as those from
gqaoa (16) and ising (16) circuits, are excluded from the
analysis due to their estimated success rates being lower than
10~%. Baseline N is crosstalk-unaware; as a result, crosstalk
has detrimental impact on program success rates for any circuit
with parallel two-qubit gates on adjacent qubits, as shown in
Fig. 9. ColorDynamic achieves comparable performance to
Baseline G but with simpler hardware (no tunable couplers).
Results for Baseline G in Fig. 9 is a conservative estimate,
assuming couplers can be deactivated perfectly. We study the
effect of residual coupling in Fig. 12. Compared to Baseline U
(with serialization), ColorDynamic consistently outperforms,
achieving 13.3x better success rate on average. Compared to
Baseline S, across all benchmarks, ColorDynamic outperforms
static strategies because it is able to exploit program structures
and assign frequencies tailored for every layer of the program.

B. Impact on Serialization

Fig. 10 compares the resulting program depth and deco-
herence error across algorithms. Although serialization can
effectively prevent gates from crosstalk (commonly adopted
such as for IBM’s fixed-frequency qubits), it results in deeper
circuits (i.e. longer execution time), which consequently im-
plies higher qubit decoherence. Overall, baseline U requires
the most amount of serialization. ColorDynamic produces
1.02x average decoherence error, compared to baseline G,
and 0.90x average decoherence error, compared to baseline
U. Lower decoherence error is desirable when executing on
NISQ hardware.

C. Scalability and Complexity

Globally optimizing for the best frequency configuration
based on device and program characteristics is challenging;
our approach breaks the optimization problem into multiple
scalable sub-problems. ColorDynamic keeps the complexity
of each sub-problem small, trading off program parallelism
for optimization complexity when necessary. In particular,
the leading costs stem from coloring of crosstalk graphs and
application of SMT solvers.

The greedy coloring algorithm takes time polynomially in
the graph size, which is kept small thanks to circuit slicing
and strategic serialization. The number of variables/constraints
in the SMT solver is proportional to the number of colors
obtained from coloring; in the next section, we demonstrate
that the number of colors remains small. Empirically, we report

1= 3
9 E E
E ool :
» 0.100 = -
g]
3 E 1 M BaselineN
S 0010k _ i
an E 5 W Baseline G
I = 1 Baseline U
2 0,001 E
2 E I I 3 Baseline S
<} E E
* 104;_ Al Al Al TI IT Al Al Al i .’\ Al Al Al Al Al Al Al ’\I Al Al Al n _; ® Colorbynamie
P F PO PP O PP PP OO SSS S S 6
N A R L -\ S A SN NN O N S DN DS
T E LT L F LT EE S S FSETY S SN
& & FEEF &y &8s

Fig. 9. Log-scale worst-case program success rates using crosstalk-mitigation algorithms, estimated by heuristics. Higher success rate is better. Across the
benchmarks, ColorDynamic performs consistently well compared to other algorithms. In particular, it matches the crosstalk resilience of baseline G (with
tunable-qubit, tunable coupler), but on fixed-coupler hardware which is more robust to external noise. Results for qaoa(16) and ising(16) are omitted due to

high circuit depth and qubit decoherence.

60 [3 1.0F !
H Baseline G [l Baseline G
50| . 1 & o0s8f ,]
- [7] Baseline U g [7] Baseline U
‘% 40 M ColorDynamic "g 06 B ColorDynamic
a e
g 30 o
8 2 o4
O 20 3
a
10 0.2
0 0.0

N

N S

93\
o
9
(4
¥

* o
N
&

~
Nl
v:’
2
£

o > o
& S &
£ & ¥

Fig. 10. Left: Circuit depth resulting from crosstalk-mitigation algorithms. Across the benchmarks, ColorDynamic avoids crosstalk without incurring significant
serialization. Right: Decoherence errors resulting from crosstalk-mitigation algorithms. Lower is better.

0.500

bv(16)
qaoa(4)

¥4

0100 ising(4)

qgan(4)
qgan(16)
xeb(16,5)
xeb(16,10)
xeb(16,15)

0.050

o

0.010

Program Success Rate

0.005

L L L L

1 2 3

Max Number of Colors

Fig. 11. Finding sweet spot of tunability. More than three colors (i.e.
frequencies) are typically unnecessary for NISQ benchmarks.

the number of colors and compilation time of ColorDynamic
across benchmarks in Fig. 13. Compilation time remains less
than 30 seconds on systems up to 81 qubits for a highly parallel
benchmark such as XEB.

D. Sensitivity on Tunability

In ColorDynamic, we can limit the maximum number of
colors used for assigning qubit frequencies. To guarantee
low crosstalk, fewer colors implies more serialization. In
Fig. 11, we examine the balance between spectral and temporal
optimizations, and find the best tunability for each benchmark.
In general, we observe optimal operating point at 1 or 2 colors,
depending on the initial parallelism of the benchmark. This
result has significant hardware implications — such program-

0.100
k)
©
14
@
@ 0010 —e— xeb(9, 10)
o
a3 ~m- xeb(16, 10)
E 0.001 F xeb(9, 15)
g xeb(16, 15)
['%

104 L

L L
0.0 0.2 0.4 0.6 0.8

Residual Coupling factor

Fig. 12. Log-scale success rate by strength of residual coupling. Baseline G
success rate decays exponentially as residual coupling increases.

specific optimization shows that frequency-tunable qubits with
2 frequency sweet spots are good candidates for near-term
algorithms, hence building qubits with more sweet spots will
only give diminishing returns.

E. Gmon’s Sensitivity to Residual Coupling

In our evaluation, Baseline G conservatively assumes that
coupling can be (de)activated perfectly. In practice, tuning
couplers increases sensitivity to control noises. In Fig. 12,
we demonstrate how the performance degrade exponentially
as residual coupling increases. Such exponential decay in
performance motivates the necessity of strategic frequency
tuning for tunable qubit and coupler architectures.

BV(9) QAOA(4) ISING(4)
5) 5 3B B 5 % B
4 —e— Colors 30 o 4 30 o 4 0 o
o . -o- Compile Time 25 E » 25 € o 25 E
G 3 20~ 53 0= 5 3 20
s} © 5} k) p 15 @
o2 18_5 o2 }g'ﬁ o2 10 &
! 5 § ! 5 § ! 5 §
o [e]
0 0 O 0t0=—0—0—0"0—0-—0-—0-—0i; O 0 o—0—0—0—>0—0—0—0—0o 0o O
o 'FOBaselineU o g
& 0.100, M Colorynamic & 0.100 & 0.100
2 2 2
2 0010 2 0.010 8 0010
o o (5]
@ oootl [l ﬂ | j ﬂ 7H 7H i3 aoootl LM 0L LNN NN @ 0.001 I, I, I,u I EEEERE
P L RPAL P FLRPOL PR YTy g
SFTETTSGPTH SESEEFSFFFS SESEFSFSFS
QGAN(16 XEB(16,1)
5 3B B 5 35w
4 30 30 o
® 25 E o ! 5 E
53 20~ 53 o e
[e] [=
o 0g 87 b
1 5 g 1 5 g
0 0o O 0 0o O
g e
[0 ©
' 0.100 @ 0.100
123 [}
1 173
g oot g o010
el N EERREED aooott UM LI NN NIEIN
,;,\bv‘b"v-«\bhv_\f_b_\:\/ q§_\g:__vfbw¢b<ovrbw
ECLTLTLTSTTTE CCTTTS T

Fig. 13. Results on general device connectivity across benchmarks. Top: Number of colors (for interaction frequency) and compilation time of ColorDynamic.
Bottom: Log-scale program success rate for Baseline U and ColorDynamic. Denser connectivity from left to right along x-axis. n-EX-k is an n-ary express

cube [14] with inserted connections every k£ nodes.

F. General Device Connectivity

To demonstrate the general applicability of our algorithm
with respect to device connectivity, we perform a systematic
study shown in Fig. 13. Denser connectivity for supercon-
ducting device is challenging [30], due to limitations such as
coupling and addressing qubits. As such, we target a class
of connectivity graphs with increasing density while incurring
minimal wiring overhead, namely the “express cubes” [14] de-
signed for interconnection networks. In particular, we augment
an increasing number of connections to a 1-D linear path and
a 2-D grid, denoted as 1EX-k and 2EX-k graphs respectively,
where k stands for inserting a connection every k nodes [14].

ColorDynamic consistently improves program success rate
by 3.97x in geometric mean across all benchmarks, compared
to baseline U. Depending on applications, best performance
is usually found on connectivity not too sparse or denser than
grid. Compilation time of ColorDynamic is kept low (~ 10
seconds) in practice, because the number of colors remains
small, as argued in Section VII-C and Fig. 11. Empirically,
we see some increase in the extreme cases with unrealistically
dense connectivity, but still within a desirable range.

VIII. CONCLUSION

In this work, we introduce a systematic approach to soft-
ware mitigation of crosstalk due to frequency crowding. Our
approach allows fixed coupler architectures to compete with
tunable coupler architectures in reliability, potentially simpli-
fying the fabrication of quantum machines. The general appli-
cability of our algorithm with respect to device connectivity
also motivates potential paths forward in terms of hardware

connectivity design. One extension to our work is to apply the
methodology of ColorDynamic to guide both qubit tuning and
coupler tuning. In fact, the methodology is extensible to any
quantum architectures with tunable qubits; it solves a generic
calibration problem for isolating or interacting qubits. Finally,
complementing Gmon architecture with ColorDynamic opti-
mization would also be a natural extension.

The compilation and simulation software used in this paper
is open-sourced and available on GitHub [18].

ACKNOWLEDGMENTS

This work is funded in part by EPiQC, an NSF Expedition
in Computing, under grants CCF-1730449; in part by STAQ,
under grant NSF Phy-1818914; and in part by DOE grants DE-
SC0020289 and DE-SC0020331. This work was completed in
part with resources provided by the University of Chicago
Research Computing Center. PG is supported by the Depart-
ment of Defense (DoD) through the National Defense Science
& Engineering Graduate Fellowship (NDSEG) Program. We
thank Kenneth Brown, Ike Chuang, Morten Kjaergaard, Nel-
son Leung, Prakash Murali, David Schuster, and Christopher
Wang for fruitful discussions. We also thank the anonymous
reviewers for their valuable comments and suggestions.

APPENDIX A
EXAMPLE IDLE AND INTERACTION FREQUENCIES BY
COLORDYNAMIC

This section provides a concrete example of the idle and
interaction frequencies for a 4 x 4 qubit systems, resulting
from the proposed ColorDynamic algorithm, as shown in

Connectivity graph Idle Frequencies (GHz)

EX

=)
=
3

.958

.048

o)
s
o

o
=3
=)
@ .u‘ @
w
@
&

o

Interaction

6.960

requencies (GHz)

<D
&

D
@

Fig. 14. Example qubit frequencies, wo1. Top: the connectivity graph G of
a 4 X 4 qubit mesh on the left, and the resulting idle frequencies by coloring
G on the right. Bottom: the crosstalk graph G on the left, and the resulting
interaction frequencies for the subgraph of GG highlighted in red on the right.

Crosstalk graph

@D

20 20

s A Complete CZ
Maximum Leakag
0 K
Complete CZ
e R
05 H

0.0
010 012 014 016 018 020 022 024

External magentic flux, ¢/t

Complete iSWAP

Complete iSWAP

Time (ri/g)
5

°
o
Probability of state transition

0.0
010 042 014 016 018 020 022 024

External magentic flux, ¢/rt

Fig. 15. Left: Probability of state transition between |01) and |10}, as
a function of external magnetic flux and time. Right: Probability of state
transition between |11) and |20), as a function of external magnetic flux and
time.

Fig. 14. Notably, the idle frequencies are assigned in a checker
board pattern of high and low values to avoid crosstalk with
nearest neighbors. The interaction frequencies are assigned to
the qubits performing simultaneous two-qubit gates in one of
the time-steps of the xeb (16, p) circuit [2]. Frequencies
are optimized by subgraph coloring and SMT solvers. Each
asymmetric transmon qubit has two sweet spots, as shown in
Fig. 4. As such, we keep the idle frequencies close to the low
sweet spot near 5 GHz, and the interaction frequencies close
to the high sweet spot near 7 GHz.

APPENDIX B
GATE ERRORS DUE TO CROSSTALK

We continue to elaborate on our heuristic noise model for
estimating gate error €,(w,t), following Section II and VI.
For frequency-tunable transmon qubits, two-qubit gates are
accomplished via resonance. Depending on the energy levels
that the resonance occurs, we can implement :SWAP and CZ
gates. In Fig. 15, we plot the probability of state transitions as
we tune the local magnetic flux of one of the qubit (along x-

axis) and as the time spent on that operating point is increased
(along y-axis). Let dw = |wa—wp| be the frequency difference
of two adjacent qubits, with residual coupling strength [33]:

/ 9(2)
g(ow) = o ©

as shown in Fig. 2, where gy depends on the effective coupling
capacitance Cy,. The coupling strength determines how fast
and strong the state transitions undergo. When brought on
resonance, the two states |01) and |10) will undergo Rabi
oscillation, giving rise to a periodic exchange of energy
population. The transition probability is Pr[t] = sin (gt)°,
where g is the coupling strength. Following [3], the crosstalk
error (for idle qubits) is

eg(0w, 1) = 1 — sin (¢ (sw)t)”. (6)

For :SWAP gate operations, we want a complete exchange
of population, predicted at ¢ = %. We note that for ¢t =
%, it results in another important operation relevant to this

work, the v/¢SWAP gate. The CZ operation is implemented by
resonance of |11) and |20). Due to the higher photon number,
the coupling strength is scaled by a constant factor, v/2g. A
complete CZ happens when exchanged from |11) to |20), and
back to |11), in other words, CZ gate time is ¢t = szg.

APPENDIX C
OVERHEAD OF DYNAMIC TUNING

Our algorithm relies on dynamically changing qubit fre-
quencies via an external magnetic flux (Fig. 4). Our simulation
analysis has taken both the time and error overheads into
account, including flux control noise. Flux tuning has been
experimentally demonstrated in fast gate implementations and
system calibrations [30]. The time overhead of flux tuning
is only a fraction of quantum gate. How fast the pulses are
changed is parametrically controlled; state-of-the-art controls
show accurate, fast tuning (within 2 ns) [46], giving rise to fast
single-qubit flux (Rz) gate and two-qubit ¢SWAP and CZ gates
(around 50 ns) with > 99.5% fidelity [29], compared to a two-
qubit CR gate (around 160 ns [47]) on fixed-frequency qubit
architectures. Control noises and pulse distortions are indeed
present in current tunable systems [2]; techniques such as
frequency sweet-spots (Fig. 4) and limiting number of colors
(Fig. 11) are designed to mitigate them.

REFERENCES

[1] H. Abraham, I. Y. Akhalwaya, G. Aleksandrowicz, T. Alexander,
G. Alexandrowics, E. Arbel, A. Asfaw, C. Azaustre, AzizNgoueya,
P. Barkoutsos, G. Barron, L. Bello, Y. Ben-Haim, D. Bevenius, L. S.
Bishop, S. Bosch, S. Bravyi, D. Bucher, F. Cabrera, P. Calpin, L. Capel-
luto, J. Carballo, G. Carrascal, A. Chen, C.-F. Chen, R. Chen, J. M.
Chow, C. Claus, C. Clauss, A. J. Cross, A. W. Cross, S. Cross,
J. Cruz-Benito, C. Culver, A. D. Cércoles-Gonzales, S. Dague, T. E.
Dandachi, M. Dartiailh, DavideFrr, A. R. Davila, D. Ding, J. Doi,
E. Drechsler, Drew, E. Dumitrescu, K. Dumon, I. Duran, K. EL-Safty,
E. Eastman, P. Eendebak, D. Egger, M. Everitt, P. M. Fernidndez,
A. H. Ferrera, A. Frisch, A. Fuhrer, M. GEORGE, J. Gacon, Gadi,
B. G. Gago, J. M. Gambetta, A. Gammanpila, L. Garcia, S. Garion,
J. Gomez-Mosquera, S. de la Puente Gonzdlez, I. Gould, D. Green-
berg, D. Grinko, W. Guan, J. A. Gunnels, I. Haide, I. Hamamura,
V. Havlicek, J. Hellmers, £.. Herok, S. Hillmich, H. Horii, C. Howington,

[2]

[3]

[4]

[5]

[6]

[7]
[8]

[9]

[10]

(11]

[12]

[13]

S. Hu, W. Hu, H. Imai, T. Imamichi, K. Ishizaki, R. Iten, T. Itoko,
A. Javadi-Abhari, Jessica, K. Johns, T. Kachmann, N. Kanazawa, Kang-
Bae, A. Karazeev, P. Kassebaum, S. King, Knabberjoe, A. Kovyrshin,
V. Krishnan, K. Krsulich, G. Kus, R. LaRose, R. Lambert, J. Latone,
S. Lawrence, D. Liu, P. Liu, Y. Maeng, A. Malyshev, J. Marecek,
M. Marques, D. Mathews, A. Matsuo, D. T. McClure, C. McGarry,
D. McKay, D. McPherson, S. Meesala, M. Mevissen, A. Mezzacapo,
R. Midha, Z. Minev, A. Mitchell, N. Moll, M. D. Mooring, R. Morales,
N. Moran, P. Murali, J. Miiggenburg, D. Nadlinger, G. Nannicini,
P. Nation, Y. Naveh, P. Neuweiler, P. Niroula, H. Norlen, L. J. O’Riordan,
0. Ogunbayo, P. Ollitrault, S. Oud, D. Padilha, H. Paik, S. Perriello,
A. Phan, M. Pistoia, A. Pozas-iKerstjens, V. Prutyanov, D. Puzzuoli,
J. Pérez, Quintiii, R. Raymond, R. M.-C. Redondo, M. Reuter, J. Rice,
D. M. Rodriguez, M. Rossmannek, M. Ryu, T. SAPV, SamFerracin,
M. Sandberg, N. Sathaye, B. Schmitt, C. Schnabel, Z. Schoenfeld, T. L.
Scholten, E. Schoute, J. Schwarm, I. F. Sertage, K. Setia, N. Shammabh,
Y. Shi, A. Silva, A. Simonetto, N. Singstock, Y. Siraichi, I. Sitdikov,
S. Sivarajah, M. B. Sletfjerding, J. A. Smolin, M. Soeken, 1. O. Sokolov,
SooluThomas, D. Steenken, M. Stypulkoski, J. Suen, H. Takahashi,
I. Tavernelli, C. Taylor, P. Taylour, S. Thomas, M. Tillet, M. Tod,
E. de la Torre, K. Trabing, M. Treinish, TrishaPe, W. Turner, Y. Vaknin,
C. R. Valcarce, F. Varchon, A. C. Vazquez, D. Vogt-Lee, C. Vuillot,
J. Weaver, R. Wieczorek, J. A. Wildstrom, R. Wille, E. Winston, J. J.
Woehr, S. Woerner, R. Woo, C. J. Wood, R. Wood, S. Wood, J. Wootton,
D. Yeralin, R. Young, J. Yu, C. Zachow, L. Zdanski, C. Zoufal, Zoufalc,
azulehner, bcamorrison, brandhsn, chlorophyll zz, danlpal, dimelO,
drholmie, elfrocampeador, faisaldebouni, fanizzamarco, gruu, kanejess,
klinvill, kurarrr, lerongil, ma5x, merav aharoni, ordmoj, sethmerkel,
strickroman, sumitpuri, tigerjack, toural, vvilpas, welien, willhbang,
yang.luh, yelojakit, and yotamvakninibm, “Qiskit: An open-source
framework for quantum computing,” 2019.

F. Arute, K. Arya, R. Babbush, D. Bacon, J. C. Bardin, R. Barends,
R. Biswas, S. Boixo, F. G. Brandao, D. A. Buell et al, “Quantum
supremacy using a programmable superconducting processor,” Nature,
vol. 574, no. 7779, pp. 505-510, 2019.

R. Barends, C. Quintana, A. Petukhov, Y. Chen, D. Kafri, K. Kechedzhi,
R. Collins, O. Naaman, S. Boixo, F. Arute et al., “Diabatic gates for
frequency-tunable superconducting qubits,” Physical Review Letters, vol.
123, no. 21, p. 210501, 2019.

R. Barends, J. Kelly, A. Megrant, D. Sank, E. Jeffrey, Y. Chen, Y. Yin,
B. Chiaro, J. Mutus, C. Neill er al., “Coherent josephson qubit suitable
for scalable quantum integrated circuits,” Physical review letters, vol.
111, no. 8, p. 080502, 2013.

R. Barends, J. Kelly, A. Megrant, A. Veitia, D. Sank, E. Jeffrey, T. C.
White, J. Mutus, A. G. Fowler, B. Campbell et al., “Superconducting
quantum circuits at the surface code threshold for fault tolerance,”
Nature, vol. 508, no. 7497, pp. 500-503, 2014.

R. Barends, A. Shabani, L. Lamata, J. Kelly, A. Mezzacapo,
U. Las Heras, R. Babbush, A. G. Fowler, B. Campbell, Y. Chen et al.,
“Digitized adiabatic quantum computing with a superconducting circuit,”
Nature, vol. 534, no. 7606, pp. 222-226, 2016.

E. Bernstein and U. Vazirani, “Quantum complexity theory,” SIAM
Journal on computing, vol. 26, no. 5, pp. 1411-1473, 1997.

N. Bjgrner, A.-D. Phan, and L. Fleckenstein, “vz-an optimizing smt
solver,” in International Conference on Tools and Algorithms for the
Construction and Analysis of Systems. Springer, 2015, pp. 194—-199.
M. Brink, J. M. Chow, J. Hertzberg, E. Magesan, and S. Rosenblatt,
“Device challenges for near term superconducting quantum processors:
frequency collisions,” in 2018 IEEE International Electron Devices
Meeting (IEDM). 1EEE, 2018, pp. 6-1.

S. Caldwell, N. Didier, C. Ryan, E. Sete, A. Hudson, P. Karalekas,
R. Manenti, M. da Silva, R. Sinclair, E. Acala et al., “Parametrically
activated entangling gates using transmon qubits,” Physical Review
Applied, vol. 10, no. 3, p. 034050, 2018.

Y. Chen, C. Neill, P. Roushan, N. Leung, M. Fang, R. Barends, J. Kelly,
B. Campbell, Z. Chen, B. Chiaro et al., “Qubit architecture with high
coherence and fast tunable coupling,” Physical review letters, vol. 113,
no. 22, p. 220502, 2014.

A. D. Céreoles, E. Magesan, S. J. Srinivasan, A. W. Cross, M. Steffen,
J. M. Gambetta, and J. M. Chow, “Demonstration of a quantum error
detection code using a square lattice of four superconducting qubits,”
Nature communications, vol. 6, no. 1, pp. 1-10, 2015.

D. A. Craik, N. Linke, M. Sepiol, T. Harty, J. Goodwin, C. Ballance,
D. Stacey, A. Steane, D. Lucas, and D. Allcock, “High-fidelity spatial

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

(27]

(28]

[29]

(30]

(31]

[32]

[33]

[34]

and polarization addressing of ca+ 43 qubits using near-field microwave
control,” Physical Review A, vol. 95, no. 2, p. 022337, 2017.

W. J. Dally, “Express cubes: Improving the performance ofk-ary n-cube
interconnection networks,” IEEE Transactions on Computers, vol. 40,
no. 9, pp. 1016-1023, 1991.

L. De Moura and N. Bjgrner, “Z3: An efficient smt solver,” in Inter-
national conference on Tools and Algorithms for the Construction and
Analysis of Systems. Springer, 2008, pp. 337-340.

L. DiCarlo, J. M. Chow, J. M. Gambetta, L. S. Bishop, B. R. Johnson,
D. Schuster, J. Majer, A. Blais, L. Frunzio, S. Girvin et al., “Demonstra-
tion of two-qubit algorithms with a superconducting quantum processor,”
Nature, vol. 460, no. 7252, pp. 240-244, 2009.

Y. Ding and F. T. Chong, “Quantum computer systems: Research for
noisy intermediate-scale quantum computers,” Synthesis Lectures on
Computer Architecture, vol. 15, no. 2, pp. 1-227, 2020.

Y. Ding, P. Gokhale, T. Propson, C. Winkler, and S. F. Lin,
“FastSC: Frequency-Aware Synthesis Toolbox for Superconducting
Quantum Computers,” https://github.com/yongshanding/FastSC, EPiQC,
Aug 2020.

E. Farhi, J. Goldstone, and S. Gutmann, “A quantum approximate
optimization algorithm,” arXiv preprint arXiv:1411.4028, 2014.

P. Gokhale, Y. Ding, T. Propson, C. Winkler, N. Leung, Y. Shi,
D. I. Schuster, H. Hoffmann, and F. T. Chong, “Partial compilation of
variational algorithms for noisy intermediate-scale quantum machines,”
in Proceedings of the 52nd Annual IEEE/ACM International Symposium
on Microarchitecture, 2019, pp. 266-278.

P. Gokhale, A. Javadi-Abhari, N. Earnest, Y. Shi, and F. T. Chong, “Op-
timized quantum compilation for near-term algorithms with openpulse,”
arXiv preprint arXiv:2004.11205, 2020.

A. Hagberg, P. Swart, and D. S Chult, “Exploring network struc-
ture, dynamics, and function using networkx,” Los Alamos National
Lab.(LANL), Los Alamos, NM (United States), Tech. Rep., 2008.

F. Harary and R. Z. Norman, “Some properties of line digraphs,”
Rendiconti del Circolo Matematico di Palermo, vol. 9, no. 2, pp. 161—
168, 1960.

F. Helmer, M. Mariantoni, A. G. Fowler, J. von Delft, E. Solano,
and F. Marquardt, “Cavity grid for scalable quantum computation with
superconducting circuits,” EPL (Europhysics Letters), vol. 85, no. 5, p.
50007, 2009.

M. Hutchings, J. B. Hertzberg, Y. Liu, N. T. Bronn, G. A. Keefe,
M. Brink, J. M. Chow, and B. Plourde, “Tunable superconducting qubits
with flux-independent coherence,” Physical Review Applied, vol. 8,
no. 4, p. 044003, 2017.

“Quantum Takes Flight: Moving from Laboratory Demonstrations
to Building Systems,” https://www.ibm.com/blogs/research/2020/01/
quantum-volume-32/, accessed: 2020-04-05.

“Intel Introduces ‘Horse Ridge’ to Enable Commercially
Viable Quantum Computers,” https://newsroom.intel.com/news/

intel-introduces-horse-ridge-enable-commercially- viable-quantum-computers/

#gs.2es8bu, accessed: 2020-04-05.

J. Kelly, R. Barends, A. G. Fowler, A. Megrant, E. Jeffrey, T. C. White,
D. Sank, J. Y. Mutus, B. Campbell, Y. Chen et al., “State preservation by
repetitive error detection in a superconducting quantum circuit,” Nature,
vol. 519, no. 7541, pp. 66-69, 2015.

M. Kjaergaard, M. Schwartz, A. Greene, G. Samach, A. Bengtsson,
M. O’Keeffe, C. McNally, J. Braumiiller, D. Kim, P. Krantz et al.,
“A quantum instruction set implemented on a superconducting quantum
processor,” arXiv preprint arXiv:2001.08838, 2020.

M. Kjaergaard, M. E. Schwartz, J. Braumiiller, P. Krantz, J. I.-J. Wang,
S. Gustavsson, and W. D. Oliver, “Superconducting qubits: Current state
of play,” Annual Review of Condensed Matter Physics, vol. 11, pp. 369—
395, 2020.

P. V. Klimov, J. Kelly, J. M. Martinis, and H. Neven, “The snake
optimizer for learning quantum processor control parameters,” arXiv
preprint arXiv:2006.04594, 2020.

J. Koch, M. Y. Terri, J. Gambetta, A. A. Houck, D. Schuster, J. Majer,
A. Blais, M. H. Devoret, S. M. Girvin, and R. J. Schoelkopf, “Charge-
insensitive qubit design derived from the cooper pair box,” Physical
Review A, vol. 76, no. 4, p. 042319, 2007.

P. Krantz, M. Kjaergaard, F. Yan, T. P. Orlando, S. Gustavsson, and
W. D. Oliver, “A quantum engineer’s guide to superconducting qubits,”
Applied Physics Reviews, vol. 6, no. 2, p. 021318, 2019.

G. Li, Y. Ding, and Y. Xie, “Tackling the qubit mapping problem
for nisq-era quantum devices,” in Proceedings of the Twenty-Fourth

https://github.com/yongshanding/FastSC
https://www.ibm.com/blogs/research/2020/01/quantum-volume-32/
https://www.ibm.com/blogs/research/2020/01/quantum-volume-32/
https://newsroom.intel.com/news/intel-introduces-horse-ridge-enable-commercially-viable-quantum-computers/#gs.2es8bu
https://newsroom.intel.com/news/intel-introduces-horse-ridge-enable-commercially-viable-quantum-computers/#gs.2es8bu
https://newsroom.intel.com/news/intel-introduces-horse-ridge-enable-commercially-viable-quantum-computers/#gs.2es8bu

[35]

[36]

(37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

International Conference on Architectural Support for Programming
Languages and Operating Systems, 2019, pp. 1001-1014.

——, “Towards efficient superconducting quantum processor architec-
ture design,” in Proceedings of the Twenty-Fifth International Con-
ference on Architectural Support for Programming Languages and
Operating Systems, 2020, pp. 1031-1045.

S. Lloyd and C. Weedbrook, “Quantum generative adversarial learning,”
Physical review letters, vol. 121, no. 4, p. 040502, 2018.

D. C. McKay, S. Sheldon, J. A. Smolin, J. M. Chow, and J. M. Gambetta,
“Three-qubit randomized benchmarking,” Physical review letters, vol.
122, no. 20, p. 200502, 2019.

P. Mundada, G. Zhang, T. Hazard, and A. Houck, “Suppression of qubit
crosstalk in a tunable coupling superconducting circuit,” Physical Review
Applied, vol. 12, no. 5, p. 054023, 2019.

P. Murali, J. M. Baker, A. Javadi-Abhari, F. T. Chong, and M. Martonosi,
“Noise-adaptive compiler mappings for noisy intermediate-scale quan-
tum computers,” in Proceedings of the Twenty-Fourth International
Conference on Architectural Support for Programming Languages and
Operating Systems, 2019, pp. 1015-1029.

P. Murali, D. C. McKay, M. Martonosi, and A. Javadi-Abhari, “Software
mitigation of crosstalk on noisy intermediate-scale quantum computers,”
arXiv preprint arXiv:2001.02826, 2020.

C. Neill, P. Roushan, K. Kechedzhi, S. Boixo, S. V. Isakov, V. Smelyan-
skiy, A. Megrant, B. Chiaro, A. Dunsworth, K. Arya et al., “A blueprint
for demonstrating quantum supremacy with superconducting qubits,”
Science, vol. 360, no. 6385, pp. 195-199, 2018.

C. Ospelkaus, C. E. Langer, J. M. Amini, K. R. Brown, D. Leibfried, and
D. J. Wineland, “Trapped-ion quantum logic gates based on oscillating
magnetic fields,” Physical review letters, vol. 101, no. 9, p. 090502,
2008.

J. Preskill, “Quantum computing in the nisq era and beyond,” Quantum,
vol. 2, p. 79, 2018.

M. Reagor, C. B. Osborn, N. Tezak, A. Staley, G. Prawiroatmodjo,
M. Scheer, N. Alidoust, E. A. Sete, N. Didier, M. P. da Silva et al.,
“Demonstration of universal parametric entangling gates on a multi-
qubit lattice,” Science advances, vol. 4, no. 2, p. eaao3603, 2018.

M. D. Reed, L. DiCarlo, S. E. Nigg, L. Sun, L. Frunzio, S. M.
Girvin, and R. J. Schoelkopf, “Realization of three-qubit quantum error
correction with superconducting circuits,” Nature, vol. 482, no. 7385,
pp. 382-385, 2012.

M. Rol, F. Battistel, F. Malinowski, C. Bultink, B. Tarasinski, R. Vollmer,
N. Haider, N. Muthusubramanian, A. Bruno, B. Terhal et al., “Fast, high-
fidelity conditional-phase gate exploiting leakage interference in weakly
anharmonic superconducting qubits,” Physical review letters, vol. 123,
no. 12, p. 120502, 2019.

S. Sheldon, E. Magesan, J. M. Chow, and J. M. Gambetta, “Procedure for
systematically tuning up cross-talk in the cross-resonance gate,” Physical
Review A, vol. 93, no. 6, p. 060302, 2016.

Y. Shi, N. Leung, P. Gokhale, Z. Rossi, D. I. Schuster, H. Hoffmann,
and F. T. Chong, “Optimized compilation of aggregated instructions
for realistic quantum computers,” in Proceedings of the Twenty-Fourth
International Conference on Architectural Support for Programming
Languages and Operating Systems, 2019, pp. 1031-1044.

S. S. Tannu and M. K. Qureshi, “A case for variability-aware policies for
nisq-era quantum computers,” arXiv preprint arXiv:1805.10224, 2018.

R. Versluis, S. Poletto, N. Khammassi, B. Tarasinski, N. Haider,
D. Michalak, A. Bruno, K. Bertels, and L. DiCarlo, “Scalable quantum
circuit and control for a superconducting surface code,” Physical Review
Applied, vol. 8, no. 3, p. 034021, 2017.

D. J. Welsh and M. B. Powell, “An upper bound for the chromatic
number of a graph and its application to timetabling problems,” The
Computer Journal, vol. 10, no. 1, pp. 85-86, 1967.

K. Wright, K. Beck, S. Debnath, J. Amini, Y. Nam, N. Grzesiak, J.-S.
Chen, N. Pisenti, M. Chmielewski, C. Collins et al., “Benchmarking an
11-qubit quantum computer,” Nature Communications, vol. 10, no. 1,
pp. 1-6, 2019.

A. Zlokapa, S. Boixo, and D. Lidar, “Boundaries of quantum supremacy
via random circuit sampling,” arXiv preprint arXiv:2005.02464, 2020.

	I Introduction
	II Background
	II-A Basics of Superconducting Qubits
	II-B Operations and Noises
	II-B1 Single-qubit Gates and Decoherence Noise
	II-B2 Two-qubit Gates and Crosstalk Noise

	III Related Work
	IV Systematic Crosstalk Mitigation
	IV-A Understanding Crosstalk Constraints
	IV-B Frequency Tuning and Instruction Scheduling
	IV-C Resolving Frequency Crowding via Graph Coloring
	IV-C1 Idle Frequencies and Connectivity Graph
	IV-C2 Interaction Frequencies and Crosstalk Graph
	IV-C3 Generalization to Higher Distance

	V Our Approach
	V-A Frequency-Aware Compilation: Overview
	V-B Optimization Details
	V-B1 Crosstalk Graph Construction
	V-B2 Circuit Slicing and Subgraph Coloring
	V-B3 SMT Solver Optimization
	V-B4 Frequency Partitioning
	V-B5 Hybrid Circuit Decomposition
	V-B6 Noise-Aware Queueing Scheduler

	VI Evaluation
	VI-A Tuning and Scheduling Baselines
	VI-B Benchmarks
	VI-C Experimental Setup

	VII Results
	VII-A Program Success Rate
	VII-B Impact on Serialization
	VII-C Scalability and Complexity
	VII-D Sensitivity on Tunability
	VII-E Gmon's Sensitivity to Residual Coupling
	VII-F General Device Connectivity

	VIII Conclusion
	Appendix A: Example Idle and Interaction Frequencies by ColorDynamic
	Appendix B: Gate Errors due to Crosstalk
	Appendix C: Overhead of Dynamic Tuning
	References

