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1 Introduction

Quantum circuits in error correction codes are prone to noise which are caused
by either a bit flip after applying a given gate or by measuring the link qubits.

Decoding the code qubits is a crucial part of the error correction process.Therefore
the following decoding algorithm can be used to test if there is any form of noise
in the circuit, where it is and how it affects the logical readout.The code can
still be improved further.

Description of the decoding process
Suppose we have the following logical 1 qubit operations.

In error correction we have the code qubits, link qubits and rounds (which in
this case imply the classical bits where the output of the syndrome measurements
are stored).

Generally, measurements are usually done on qubits to be able to obtain their
value at the given point but this makes the given qubits collapse into a classical
state and this will limit us from going on with the original operations. There is
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need to tell if errors have occurred while still carrying out any algorithm.this is
where error detection and correction comes in.

In error correction codes, we have the code qubits which represent the repe-
tition codes and the link qubits which are less code qubit by one.i.e link qubits=
n, code qubits =n+1.this enables the error correction process to detect errors
using the syndrome measurement which is applied in the link qubits.this allows
us to detect points where the error has occured which type of error it is and how
to correct the error. The possible errors are bit flip and measurement error.

Bit flip errors are noted if the susequent measurements differ for a given qubit
while measurement error is noted when a given error is not noted in subsequent
measurements.

The number of syndrome measurements are usually represented by ’T’ and
the number of measurements done are not restricted. Link qubits are usually
reset to 0 if the result at the end of a given measurement are not all 0 so that
more measurements can be carried out.

Suppose we have the following results after a given number of measurements:
Example 1:

1 0 001 100 100

1. 1 0 represent the logical readouts

2. 001 100 100 represent the various measurements

The 1 0 in 1 above represents the logical readout which in a perfect scenario
should be either 1 1 or 0 0.
Every bit in 2 above represent the difference between a pair of subsequent qubits
eg.

1. From 001 we are able to tell that d1 = d2 = d3 6= d4

2. From 100 we are able to tell that d1 6= d2 = d3 6= d4

3. From 100 we are able to tell that d1 = d2 = d3 6= d4

(a) In 2 that d1 6= d2 = d3 6= d4 d1 flipped while d4 remains unequal to
the rest since the error was carried forward.

(b) In 3 d1 flips again showing us that the bit never flipped to begin with
and hence we take it as a measurement error.

(c) d4 remains constant since there is no change between 2 and 3 above
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Example 2:

0 0 000 001 001

1. 0 0 represent the logical readouts

2. 000 001 001 represent the various measurements

The 0 0 in 1 above represents the logical readout which would give a logical bit
of 0.
Every bit in 2 above represent the difference between a pair of subsequent qubits
eg.

1. From 000 we are able to tell that d1 = d2 = d3 = d4

2. From 001 we are able to tell that d1 = d2 = d3 6= d4

3. From 001 we are able to tell that d1 = d2 = d3 = d4

(a) In 1 no error occurred

(b) In 2 a bit flipped on d4

(c) In 3 d4 flipped again showing us that is was probably a measurement
error.

A better understanding of the logical process behind the error detection and
correction through the minimum weight perfect matching method is required to
further break down and understand the decoding process hence improve error
correction.
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