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a b s t r a c t 

In this work, we propose a novel design for optical neural network system based on reservoir computing. 

The optical neurons in the system consist of directional couplers, optical fibers, and optical amplifiers. The 

nonlinear activation function of optical neuron can be obtained by the optical amplifiers. Mach–Zehnder 

phase modulators and the directional couplers are used to build the readout matrix in the output layer. 

The performance of the system is studied by a commercial software of optical fiber telecommunication 

system. The results show that the randomly connected optical neuron networks of the reservoir comput- 

ing can provide a better performance. 

© 2019 Elsevier B.V. All rights reserved. 

1

 

o  

I  

p  

a  

M  

k  

[  

t  

t  

a  

c  

c  

f  

d  

h  

f  

d  

f  

i  

[

 

a  

n  

s  

i  

t  

e  

s  

g  

n  

t  

s

 

i  

p  

[  

e  

M  

[  

o  

t  

m

 

t  

m  

a  

b  

r  

t  

s  

t  

h

0

. Introduction 

Machine learning [1,2] has been an attractive technique because

f raising performance with experience computed from big data.

t has provided a grand playground for researchers across com-

uter science, mathematics, material science, engineering, physics,

nd medicine. The application range includes the navigation on

ars [3] , speech/visual recognition [4,5] , consumer-targeted mar-

eting [6] , the health score of restaurant [7] , the fashion suggestion

8] , the prediction of the power loading of residential building [9] ,

he rainfall forecasting [10] , the prediction of the traffic flow [11] ,

he identification of the students who need to be assisted [12]

nd the movies in that people may be interested [13] , etc. The

lassification of two-dimensional images can be achieved by using

onvolution neural network [14] . Recently a method deepening the

ully connected neural network showed that it is easier to train the

ata for the irregular regression and time-series forecasting [15] . A

ybrid learning algorithm for multi-layer neural networks has been

ound to be more suitable for hardware implantation [16] . Three-

imensional information extracted from two-dimensional images

or the application the human pose recovery is also started to be

nvestigated [17] . The recovery error has been reduced by 20–25%

18] . 

Recurrent Neural Network (RNN) is one of the methods which

re characterized by feedback (“recurrent”) loops in the neuron

etworks. It can maintain an ongoing activation even in the ab-

ence of input and thus has a dynamic memory [19] . Owing to the
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ntegrating both the highly transformable computational capabili-

ies and the large dynamic memory, RNN represents a very pow-

rful generic tool. Recently, RNN has been demonstrated a great

uccess in construction of gene regulatory network [20] , and lan-

uage modeling [21] . Unfortunately, the long training time and the

umerous parameters to be optimized are required. This results in

he fact that RNN is not suitable for the applications where the

hort training time is necessary. 

Reservoir computing (RC) is a neuromorphic computing method

n which the nonlinear response of each neuron provides the ca-

ability to classify the input data into a higher-dimensional space

22,23] . The neurons consist of a feedback loop and a nonlin-

ar activation function. Any nonlinear activation function such as

ackey–Glass oscillator [24] , sinusoidal [25] , tanh [26] , sigmoid

25] or chaotic functions [27] can be used for this purpose. A read-

ut matrix in output layer is trained by using a pseudo-inverse ma-

rix method [28] with which the time-consuming problem of RNN

ay be exempted. 

For RC performed by the conventional personal computers, as

he input and target data sizes are huge, the calculation time is

ainly consumed by the multiplications between the input data

nd the matrix in reservoir layer. The required memory size might

e huge. Some high performance CPUs or GPUs might be used to

educe the calculation time. The optical reservoir computing sys-

em has been experimentally demonstrated to be a candidate to

ignificantly ameliorate the calculation performance [29] . To realize

he optical neuron networks, the Field Programmable Gate Array

FPGA) was used due to the rapid re-programmability [28] . How-

ver, the time delay for the calculation and the limited memory

ize in FPGA as well as the time for the conversion between opti-

al and electronic (O–E) signals could restrict the possibility of the

https://doi.org/10.1016/j.neucom.2019.07.051
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Fig. 1. Schematic of the reservoir computing system. 
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applications. An all-optical RC system in free-space using a spatial

light modulator and a diffractive optical element has been demon-

strated recently [30] . The readout matrix learning is realized in

tuning the digital micro-mirror devices. The learning task can be

completed after 10 0 0 iterations. 

During the last decades, optics has been proved to be the best

means of conveying information from one point to another [31] .

Remarkable speed and multiplexing capability of optics makes

it very attractive for ultrafast data transmission, and information

processing [32] . The potential role of optics in supercomputing is

still under consideration. In this work, we propose a novel optical

reservoir computing system. The system is composed of the input

layer, the reservoir layer and the output layer. The input weight

matrix for the input layer consists of the directional couplers.

For the nonlinear activation function required in reservoir layer,

it has been implemented using birefringent interferometer [27] ,

LiNbO 3 Mach–Zehnder interferometer [33] , semiconductor optical

amplifiers [34] , semiconductor saturable absorber mirror [35] ,

microring [36] , and ring resonators [37] . In this work, we use the

all-optical loop formed by optical fibers and erbium-doped fiber

amplifier (EDFA) to obtain the nonlinear activation function. No

O–E conversion is required in the reservoir layer. The time con-

sumption problem can be lessened. In literature, for the readout

matrix of the output layer, a configuration with LiNbO 3 Mach–

Zehnder intensity modulator and a balanced photodiode has been

proposed [38] . In this work, a simple configuration using a Mach–

Zehnder phase modulator and the directional coupler is proposed

to build the readout matrix in output layer. We study the entire

optical fiber-based RC system using the commercial software for

optical fiber telecommunication system. In RC, it is reported that

the neurons in the reservoir should be randomly connected to

obtain a higher performance [26] . In this work, the performance

of neuromorphic computing with and without interconnection

between optical neurons is also investigated. The purpose of the

system is to provide the faster calculation performance compared

to modern computers. The results obtained in this study will be

further used to build the miniature system with integrated optics

and nano-optics components. 

2. Principle of reservoir computing 

The RC system is composed of the input, reservoir and output

layers which consist of the input weight matrix W 

in , the recurrent
eight matrix W , and the readout matrix W 

out , respectively. The

chematic of the RC system is illustrated in Fig. 1 . The input layer

hich corresponds to the matrix W 

in is used to scale the size of

he input data to the size of the reservoir layer which corresponds

o the matrix W . The learning is completed in a single pass through

raining data. The optimal readout matrix W 

out in the output layer

s used to convert the result of the reservoir layer to the output of

he RC system. 

The RC is a recurrent system which consists of a temporal finite

nternal states x (n) (typically called neurons), which are perturbed

y temporally external input u (n) in discrete time. 

The neuron can be described as a function of the current in-

ut and its previous calculation result which can be expressed by

39] 

˜ 
 ( n ) = f 

(
W 

in [ 1 ; u ( n ) ] , W x ( n − 1 ) 
)

(1)

 ( n ) = ( 1 − α) x ( n − 1 ) + α ˜ x ( n ) (2)

here the function f is the nonlinear activation function of the

euron. The hyperbolic tangent function, tanh(), is usually used as

he nonlinear activation function to converge the output of neu-

ons within −1 and 1. α is the leaky rate. W 

in is the input weight

atrix. W is a recurrent weight matrix of internal network connec-

ion. The network output y ( n ) is given by 

 ( n ) = W 

out [ 1 ; u ( n ) ; x ( n ) ] (3)

here W 

out is the readout matrix. By collecting the training data

1; u(n); x(n) ] and the training target signal, the readout matrix

 

out can be obtained by the pseudo-inverse matrix method [28] .

he normalized root mean square error (NRMSE) is used to esti-

ate the difference between the theoretical output and the system

utput, given by 

RMSE = 

√ ∑ N 
i =1 ( Y 

′ −Y ) 
2 

N 

( max ( Y ′ ) − min ( Y ′ ) ) 
(4)

here Y ′ and Y are the theoretical output and the output of RC, re-

pectively. N is the number of the evaluated samples. max ( Y ′ ) and

in ( Y ′ ) represent the maximum and minimum values of Y ′ , respec-

ively. When the output of RC is close to the theoretical output, the

RMSE approaches 0. 
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Fig. 2. Generation of input optical signals. A laser at the wavelength of 1550 nm 

is used as the light source. The time-dependent input electrical signals are applied 

to drive a Mach–Zehnder modulator thereby producing time-dependent optical sig- 

nals. The optical signal is injected to the input layer. 

Fig. 3. Structure of optical neuron which consists of two optical couplers, an EDFA, 

and a 53 m-long optical fiber. 
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. Optical RC system 

.1. Input optical signals 

The input of the RC system is depicted in Fig. 2 . A laser emit-

ing at the wavelength of 1550 nm is chosen to serve as the light

ource. The 3-dB line width of the laser is 10 pm which is a typ-

cal value of 1550 nm laser source. The power of the laser is var-

ed from 0.01 W to 10 W to investigate the performance of the RC

ystem. Although the power of laser light above 1 W might in-

uce the nonlinear effect in the optical fibers, in this work, we

gnore the non-linear effect to investigate the feasibility of the

ystem. The light is launched into the Mach–Zehnder modulator

MZM) on which the input electrical signals are applied to produce

he modulated the optical signals. Typical Mach–Zehnder modula-

or is used in the simulation. The V π is 3.11V. The bandwidth is

ot defined to obtain the perfect triangular and rectangular optical

ignals. 

.2. Optical neuron 

The schematic of the optical neuron is shown in Fig. 3 . It con-

ists of optical fibers, directional couplers, and EDFA. The optical

ber is chosen to be single mode with the length of 53 m. The

oupling ratio of the directional couplers is 50%. The input signal

s launched into the directional coupler 1. The two outputs of the

irectional couplers 1 and the two inputs of the directional coupler

 are connected directly and connected using the 53m-long opti-

al fiber, respectively. One of the outputs of the directional coupler

 serves as the output of the optical neuron. Another one is con-

ected to the EDFA which provides the nonlinearity for activating

he neuron. The saturation power and the small signal gain of the

DFA are chosen to be 0.1 W and 10, respectively. The noise figure

f all EDFA is set to be 4 dB, a typical value of a commercial EDFA

roduct. The output 2 of the optical neuron could be connected

ack to the feedback of the same optical neuron or to feedback

he other optical neurons. Therefore, the recurrence of signals and

he interconnection between the optical neurons can be achieved. 
.3. RC systems without and with interconnection between optical 

eurons 

Two types of RC systems which consist of two optical neurons

re depicted in Fig. 4 . The input optical signals are launched into

he input layer which consists of a directional coupler acting as

he input weight matrix W 

in . For the reservoir computing, the ele-

ents of W 

in are defined randomly between 0 and 1. For the cor-

esponding components in our optical RC system, directional cou-

lers, the coupling ratio is defined randomly to be 0.55. The reser-

oir layer W consists of two optical neurons. Fig. 4 (a) shows the

C system without interconnection between optical neurons. Each

ptical neuron’s output 2 signals are fed into its own feedback

blue dashed line in Fig. 4 (a)]. The RC system with interconnection

etween optical neurons is depicted in Fig. 4 (b). [red dashed line

n Fig. 4 (b)]. Each neuron’s output 2 is fed into the other neuron’s

eedback. The multiplication between the output signals of the

ptical neurons and the readout matrix W 

out can be approximately

chieved using the directional coupler in the output layer. To

erform the learning process, the pseudo-inversion of the readout

atrix is replaced by the optical delay tuning of the phase modula-

or in the output layer to optimize the output data with the lowest

RMSE. The coupling ratio of the directional coupler is chosen to

e 50% to obtain the higher visibility of the optical interference.

he optical signals are converted to the electrical signals by the

hotodetector. The quantum efficiency of the photodetector is set

o be 80% which is typical value of the commercial components. 

. Results and discussion 

To evaluate the performance of the RC systems without and

ith interconnection between optical neurons, the input signal,

hich is composed of randomly arranged rectangular and trian-

ular waveforms, is launched into the RC system as shown in

ig. 5 (a). The input optical signals are modulated between 0 and

.1 W. The corresponding theoretical outputs of the RC system are

 (high-level output) and 0 (low-level output) for the rectangular

nd triangular waveforms, respectively, as shown the red line in

ig. 5 (a). 

The RC systems is simulated by the commercial software for

ptical-fiber telecommunication system, OptSim. The optical delay

s tuned using the phase modulator (PM) between one of the op-

ical neurons and the directional couplers in the output layer to

btain the lowest NRMSE. Fig. 5 (b) and (c) shows the simulation

esults of the RC systems without and with interconnection be-

ween optical neurons, respectively. Black and red lines represent

he output signals of the RC system and the theoretical output sig-

als, respectively. We can observe that the high-level and low-level

utputs can be obtained when the input optical signals are rectan-

ular and triangular waveforms, respectively. The result shows that

he RC system can classify the waveforms of the input optical sig-

als. 

To evaluate the NRMSE of the RC system, the max(Y’) and

in(Y’) in Eq. (4) are calculated by averaging the power of the sig-

als for high-level and low-level output. The NRMSE for Fig. 5 (b)

nd (c) are 0.19 and 0.14, respectively. It is found that the NRMSE

f the RC system with interconnection between optical neurons is

ower than that without interconnection between optical neurons.

he result is consistent with the property of RC method in which

he neurons in the reservoir should be randomly connected [26] . 

.1. Performance of RC system for linear and nonlinear operation in 

DFA 

According to the property of RC method, the neuron should

e activated by a nonlinear activation function [39] . Under this
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Fig. 4. RC systems (a) without and (b) with interconnection between optical neurons. PM and PD stand for the phase modulator and the photodetector, respectively. The 

blue dashed line indicates the fact that the output 2 of the optical neuron is fed into the feedback of the same optical neuron. There is no interconnection between optical 

neurons. The red dashed line indicated the fact that the output 2 of the optical neuron is fed into the feedback of the other optical neuron. There is an interconnection 

between the two optical neurons. 

Fig. 5. (a) Input optical signals (black line) and theoretical output (red line) of RC 

system. (b) and (c) represent the output signals of RC system without and with 

interconnection between the optical neurons, respectively. 
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onlinear condition, the optical neuron can provide the capability

o classify the input data into a higher-dimensional space [22] .

n this study, the nonlinear activation function is provided by the

DFA in the optical neurons. According to the gain model of EDFA

n our simulation, the gain coefficient G is expressed as 

 = 

G 0 

1 + G 0 
P in 
P sat 

(5)

here G 0 is the small signal gain. P sat is the saturation output

ower. P in is the input power. P sat and G 0 of EDFA are chosen to

e 0.1 W and 10, respectively. Fig. 6 shows the output power of

DFA in varying the input power P in from 0.01 W to 10 W. When

he input power of EDFA is lower than 0.05 W, G is approximately

onstant leading to the fact that the relation between the input

nd output power of the EDFA is approximately linear. When the

nput power increases from 0.05 W, the output power bends over

here the EDFA operates in the nonlinear regime. 

To study the performance of the RC system for linear and non-

inear operation in EDFA, the power of the input optical signals of

he RC system is varied from 0.01 W to 10 W. Fig. 7 shows the sim-

lation results of RC system with interconnection between opti-

al neurons. Fig. 7 (a) shows the output signals of RC system when

he power of the input optical signal is 0.01 W. In this case, the

DFA in the optical neurons is operated in the linear regime. The

orresponding NRMSE of the RC system is 0.48. Fig. 7 (b) and (c)

hows the output signals of RC system when the power of the in-

ut optical signal is 1 W and 10 W, respectively. The results show
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Fig. 6. Output power of the EDFA as the input power is varied from 0 to 10 W. 

( P sat = 0.1 W, G 0 = 10). The dashed line indicates the fact that when the input power 

is lower than 0.05 W, the EDFA is approximately operated in the linear regime. 

When the input power is larger than 0.05 W, the EDFA is operated in the non-linear 

regime. 

Fig. 7. Outputs of the RC system with interconnection between optical neurons un- 

der the difference power of the input optical signals. From top to bottom: power 

of the input optical signals is (a) 0.01 W (b) 1 W (c) 10 W, respectively. The red line 

indicates the theoretical output. 
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Fig. 8. NRMSE versus power of the input optical signals. Solid lines represent the 

NRMSE obtained by defining min(Y’) to be the average of low-level output signals. 

Dashed lines represent the NRMSE obtained by defining min(Y’) to be 0. Blue (red) 

lines indicate the RC systems without (with) interconnection between optical neu- 

rons. 

c  

(  

A  

a  

T  

b  

p  

i  

r  

t  

n  

t  

t  

t  

b  

w

 

a  

T  

s  

b  

i  

s  

g  

i  

o  

4  

a  

c  

l  

o  

4  

c

5

 

b  

v  

d  

t  

i  
hat the output signals (black lines) are close to theoretical output

red lines). The NRMSE for Fig. 7 (b) and (c) are 0.133 and 0.134,

espectively. These results demonstrate the property of RC method

n which optical neurons should be activated by a nonlinear acti-

ation function [39] . 

The correlation between NRMSE and the power of the input op-

ical signals are depicted in Fig. 8 . The power of the input optical

ignals of the RC systems without and with interconnection be-

ween neurons is varied from 0.01 W to 10 W. When the power of

he input optical signals is increasing from 0.01 W to 0.1 W where

he EDFA is checked to operate in the linear regime, the NRMSE

ecreases. The NRMSE of the RC systems without and with inter-
onnection between optical neurons decreases from 0.89 to 0.19

blue solid line) and 0.48 to 0.139 (red solid line), respectively.

s the operation power is above 0.1 W where the EDFA is oper-

ting in the non-linear regime, the NRMSE reaches the minimum.

he NRMSE of the RC systems without and with interconnection

etween optical neurons are 0.134 and 0.133, respectively. As the

ower of the input optical signals is higher than 1 W, the NRMSE

s almost constant where the EDFA is operating in the saturated

egime. The results show the fact that the non-linear function of

he neurons is required to obtain the capability of the signal recog-

ition in the optical RC system. This result shows that we can ob-

ain the low NRMSE with the optical input power of 0.05 W in

he system with the interconnection between neurons indicating

hat the nonlinear effect of optical fiber (or waveguide) might not

e significant in the further development of the miniature system

ith integrated optics or nano-optics components. 

In Fig. 7 (b), we show the rising time of the output signal is

round 0.9 μs which corresponds to the longest calculation time.

he minimum calculation time of the optical RC system corre-

ponds to the delay of the 53 m-long optical fiber in the neurons to

e 0.27 μs. We compare with the RC program using Matlab 2019a

n a personal computer with 3.6 GHz CPU (Intel core i7-4790). The

ize of W of Eq. (1) is set to be 10 × 10. The input signals are trian-

ular and rectangular waves as those of the optical RC system used

n this study. The longest and shortest time and the mean time to

btain each network output y(n) using Matlab and Eqs. (1) –( 3 ) is

64 μs, 0.9 μs and 1.6 μs, respectively. The present study has shown

 shorter calculation time for the optical RC system than personal

omputer. In this study, the period of each triangular or rectangu-

ar signals is modulated to be 0.5μs corresponding to the bit rate

f 2 GHz. By using the modern LiNbO 3 modulator and detector of

0 GHz, the performance of the optical RC system could be signifi-

antly enhanced. 

. Conclusion 

We have proposed an all-optical reservoir computing system

ased on optical fiber-based system. The optical neuron in reser-

oir consists of optical fibers, directional couplers, and an erbium-

oped optical fiber amplifier. The NRMSE of the RC system with in-

erconnection between optical neurons is lower than that without

nterconnection between optical neurons. The fact that the optical
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[  
neurons in the reservoir should be randomly connected and the

optical neurons should be activated by a nonlinear activation func-

tion have been demonstrated. The components simulated in this

study could be further replaced by the integrated optics or nano-

optics components. The lowest NRMSE is obtained as the optical

input power lower than 1 W. This indicates that nonlinear effect

of optical fiber or waveguide in the development of the minia-

ture system using the integrated optics and nano-optics might be

avoided. The size and the power consumption of the system could

be significantly reduced. 
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