diff --git a/docs/tutorials/rb_example.ipynb b/docs/tutorials/rb_example.ipynb index 1196fda898..49215a92b8 100644 --- a/docs/tutorials/rb_example.ipynb +++ b/docs/tutorials/rb_example.ipynb @@ -45,31 +45,28 @@ "text": [ "---------------------------------------------------\n", "Experiment: RBExperiment\n", - "Experiment ID: 703b5fd1-80a1-4e52-ab82-48e8f75ecbd9\n", + "Experiment ID: 0c479633-2e4c-43d0-a5b2-3e5fd8f1be2b\n", "Status: DONE\n", "Circuits: 140\n", "Analysis Results: 1\n", "---------------------------------------------------\n", "Last Analysis Result\n", - "- popt: [0.43230292 0.99856134 0.55623197]\n", - "- popt_keys: ['a', 'alpha', 'b']\n", - "- popt_err: [0.12348736 0.00055429 0.12494436]\n", - "- pcov: [[ 1.52491284e-02 6.81301612e-05 -1.54265489e-02]\n", - " [ 6.81301612e-05 3.07233728e-07 -6.89998149e-05]\n", - " [-1.54265489e-02 -6.89998149e-05 1.56110931e-02]]\n", - "- reduced_chisq: 0.1438533698176071\n", + "- a: 0.5057410953300154 ± 0.10138262700893501\n", + "- alpha: 0.9984200402977647 ± 0.0004323251144779414\n", + "- b: 0.48151217431017457 ± 0.10256902101118483\n", + "- reduced_chisq: 0.15614332846029255\n", "- dof: 11\n", "- xrange: [1.0, 500.0]\n", - "- EPC: 0.0007193320210475695\n", - "- EPC_err: 0.00027754263239147705\n", + "- EPC: 0.0007899798511176725\n", + "- EPC_err: 0.00021650462582311876\n", "- success: True\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY0AAAEPCAYAAAC+35gCAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/d3fzzAAAACXBIWXMAAAsTAAALEwEAmpwYAABacklEQVR4nO2dd3xUVfbAv2cmvVACUkWKIFWkQ0AhFgQV7BV+ir0rrrvWteuubXXFFddFVrGw9oqiAiqISpOiEDqCCNJ7ejJzfn+8mWRmMgkTmJCQnO/n8z6Tue++d+99SebMuaeJqmIYhmEYkeCq6gkYhmEYhw8mNAzDMIyIMaFhGIZhRIwJDcMwDCNiTGgYhmEYERNT1ROoTBo2bKitWrU6oGuzs7NJTk6O7oSqObbm2oGtuXZwMGueP3/+dlU9Ity5Gi00WrVqxU8//XRA106fPp2MjIzoTqiaY2uuHdiaawcHs2YR+a2sc7Y9ZRiGYURMjdY0jJpNq1at+O23Mr8QGcYho2XLlqxbt66qp3FIMKFhHLb89ttvWEYDozogIlU9hUOGbU8ZhmEYEWNCwzAMw4gYExqGYRhGxJjQMAzDMCLGhIZhHAAvvvgirVu3JiEhgZ49ezJz5sz9XvPuu+/SrVs3kpKSaNmyJU8//XSpPmPHjqVjx44kJibSvn17Xn/99VJ9xowZQ4cOHUhMTOTII4/kpptuIisrK6jPpk2bGDVqFEcccQQJCQl06tSJGTNmHPiCI2DXrl1ceuml1K1bl7p163LppZeye/fu/V63v2epqjz00EM0a9aMxMREMjIyyMzMDOqTn5/PLbfcQsOGDUlOTubMM89kw4YNpcb66quvSE9PJykpiXr16nHyyScf1JprJapaY4+ePXvqgfLNN9/q1q2q+/ap5uerer0HfKvDhm+//baqp1AhnD/fQ8/bb7+tMTExOm7cOF26dKnefPPNmpycrL/99luZ10yePFndbreOHTtW16xZo5999pk2bdpU//WvfxX3efHFFzU5OVn/97//6Zo1a/Stt97SlJQU/fTTT4v7TJw4UePi4vT111/XtWvX6tdff62tWrXSK6+8srjPrl27tHXr1nrppZfqnDlz9Ndff9Vp06bp0qVLI17jt99+qy1btqzQcxk6dKh26tRJf/jhB/3xxx+1U6dOOmzYsHKvieRZPvHEE5qSkqLvv/++Ll68WC+44AJt2rSp7t27t7jP9ddfr02bNtUpU6bo/PnzddCgQXrcccdpUVFRcZ+PPvpI69Wrp2PHjtXly5fr0qVL9c0336zQGsuiqv4Wy+Ng/p+Bn7SMz9Uq/2CvzONghUZmpuqKFarLl6uuXKm6YYPq7t2qubmqHs8B37raUtuERnZ2tl5zzTVap04dbdCggd577726b98+TUxM1HXr1pV5XZ8+ffTqq68Oamvbtq3efffdZV5zySWX6Nlnnx3U9vzzz+uRRx6pXt83kvT0dL3tttuC+tx+++06YMCA4vc33XSTDhw4MKjPAw88oJ07dy5+f88992j//v3LnEskVFRoLF26VAH9/vvvi9tmzpypgC5fvrzM6/b3LL1erzZp0kQfe+yx4vM5OTmakpKiL730kqqq7t69W2NjY4MEwPr161VE9Msvv1RV1aKiIm3RooWOGzcu4jVVhNokNGx7qhxiYiAlBVJTISkJCgpg61ZYvx5Wr4Z162D7dsjOhsLCqp6tUVGuuOIKvvnmG6ZNm8Zbb73FmDFjuPnmm+nYsSMtW7YEYN26dYgIEyZMAKCgoID58+dz6qmnBt3r1FNP5ccffyxzrPz8fBISEoLaEhMT2bBhQ3GAYll95s6dS6HvD+z4449n0aJFzJ49G4D169fz6aefcvrppxdf8/HHH9O3b18uuugiGjVqRLdu3XjhhRecb4mVxKxZs0hJSaF///7FbQMGDCA5ObnM5xLJs1y7di2bN28O6pOYmMjAgQOL+8yfP5/CwsKgPi1atKBjx45BfX7//Xfi4+Pp0aMHTZo04dRTT2XhwoXReQC1CBMaESIC8fGQnOwIkpQUcLlgzx7YuBHWroU1a2DTJti7F/Lzweut6lkbZbF9+3bee+89HnzwQXr37s3gwYO58MILee211zjnnHOK+8XGxtK+fXvq1q1bfJ3H46Fx48ZB92vcuDGbN28uc7whQ4bw8ccfM2XKFLxeLytXruSZZ54BHPuDv88rr7zCvHnzUFV++uknxo8fT2FhIdu3bwfg4osv5u9//zsDBw4kNjaWli1bcuyxx/Lkk08Wj/Xrr7/y4osv0qZNG7766itGjx7N3XffzdixY8uc3/r160lJSSk+TjvttFJt119/fZnXb968mSOOOCIoyE1EaNSoUZnPJZJn6X/dXx+3203Dhg3L7PPrr78CcP/993Pvvffy+eefc+SRRzJo0CD++OOPMtdllCbiiHARGQVcAhwFJIScVlU9OpoTOxyIiXEOP14v5ObCvn2g6giahARHwCQkQFxccH+j6li9ejWqSnp6enFb3759efXVVzn33HOL25o3b87y5ctLXR8aAayq5UYFX3PNNaxZs4azzjqLwsJC6tSpw+jRo3nooYdwu92A84G2efNm+vfvj6rSuHFjRo0axVNPPVXcZ8aMGTz66KO8+OKL9O3bl9WrVzN69GgefPBBHnnkEQC8Xi+9evXi8ccfB6B79+6sWrWKsWPHcvPNN4edX7NmzVi0aFHx+zlz5nDXXXcxffr04rY6deqUub5wzySS5xLuunDXVPR5h/bx+r7B/fWvf+X8888HYNy4cUybNo033niDu+66q9x7GSVEpGmIyP3Aq0AzYBEwI+T4rpLmd1jhcpUIidRURytRhZ074fffHU3k119h82ZHsOTnO+eNQ098fDwAcXFxxW2NGzemfv36dOrUqczrGjZsiNvtLvXteevWraW+DQciIjz55JNkZWXx22+/sXnzZvr06QM4ObTA2XZ55ZVXyMnJYd26daxfv55WrVqRmppa/C36vvvu45JLLuHqq6/m2GOP5ZxzzuHvf/87Tz31FEVFRQA0bdq01Bo6duzI+vXry5xfTEwMbdu2LT6aN29eqq1Ro0ZlXt+kSRO2bt0atAWmqmzbtq3M5xLJs2zSpAnAfvt4PJ5ibSxcn6ZNmwIEPZeYmBjatWtX7nMxShPp9tRVwBhV7aqqI1T1itCjMid5uCICsbGOPSQ11TliYyEnx9nGWrcOVq1yBMrOnU677//eqGRat26Ny+Vi1apVxW2ffvopu3btYs+ePWVeFxcXR8+ePZk6dWpQ+9SpU4P288vC7XbTvHlz4uLieOutt0hPTy/1YRwbG8uRRx6J2+3m7bffZtiwYbhczr9qTk5OsdYReM/AD+sBAwawYsWKoD4rV64sttNUBunp6WRlZTFr1qzitlmzZpGdnV3mc4nkWbZu3ZomTZoE9cnLy2PmzJnFfXr27ElsbGxQnw0bNrBs2bKgPvHx8UHPxev1smbNmkp9LjWSsizkgQewDzgpkr4R3Gsg8CmwEVDg8v30zwA+ATYBOcAvwJWRjHWw3lMrVqhu3Fi5x4YNquvWqa5a5XhpLV+uumaN6qZNqnv2qOblHTpPrdrmPXX++efrSSedpNnZ2bp8+XJNTU3VZs2a6RtvvFHcZ8OGDdq+fXv98MMPi9vefvttjY2N1ZdfflmXLl2qt956qyYnJwd5XN1999160kknFb/ftm2bvvjii7p06VJduHCh3nrrrZqQkKBz5swp7rNixQp9/fXXdeXKlTpnzhy96KKLNC0tTdeuXVvc58EHH9TU1FR966239Ndff9UpU6bo0Ucfreeee25xn7lz52pMTIw+9thjumrVKn333Xe1Tp06+sILL5T5LIqKinTTpk3lHrt37y73eQ4dOlS7dOmis2bN0h9//FG7dOlSyuW2ffv2QW7GkTzLJ554QlNTU/WDDz7QxYsX60UXXRTW5bZZs2Y6depUXbBggWZkZJRyuR09erQ2b95cv/zyS12+fLnefPPNWqdOHd24cWO564qEg/1brAyq1OUW+Az4UyR9I7jX6cDfgfN9QmB/QuNe4DFgANAGuAEoAkbsb6zDQWiEO37/3REcfnffFStUf/tNdft21aws1YKCA15WudQ2obFlyxY9++yzNS0tTdPS0vSZZ57RyZMna7NmzfTBBx9UVdW1a9cqoK+++mrQtWPHjtWWLVtqXFyc9ujRQ2fMmBF0ftSoUUEuq9u2bdN+/fppcnKyJiUl6cknn6yzZ88Oumbp0qXarVs3TUxM1Dp16uhZZ51Vyl21sLBQH3roIW3btq0mJCTokUceqTfccIPu3LkzqN9nn32mXbt21fj4eG3Xrp2OGTOm2LU3HP51lneMGjWq3Oe5Y8cOHTlypKampmpqaqqOHDlSd+3aFdQHKH62kT5Lr9erDz74oDZp0kTj4+N14MCBunjx4qA+ubm5evPNN2taWpomJibqsGHDdP369UF9CgoK9I477tDGjRtramqqDho0SOfPn1/umiKlNgkN0Qg21UWkLfAh8A9gMrAzjMZSYV8hEckCblbVCRW87l3ArarnldevV69eeqCV+779djrNm2eQknJAl0edwkLn8HtkuVyOzSQpyfHqio2FkF2LCnO4VTcTkUp1IzWMSKmOf4sHWblvvqr2CncuUl+elb7XV8s4rxW4VzSoA5TOEVCDiY11Dj9eL+TlBXtqxcY6RvjERMdTKzbWaTcMw4gWkX7QP4IjGKocERkGnIyzXRXu/LXAteB4wwS6DFaErKws1q6djuswimRxthuD21wu5xBhv2vJyso64OdlGLWd6va/U1n/zxFtT1UWFd2eEpEBwBfAXar67/31r0nbUweCqrOlVVQEHo/TFhvraCLhtrVse8owDozq+LdY1dtTgTdLAeoDO1U1+4BmdACIyPE49pQHIhEYhqNdxMU5hx9/AGJWlvOzf1srOdl5n5/v9LdtLcMwwlGRiPAhwN+AboAAKiILgL+q6tTyrj1YRGQg8DnwkKo+V5lj1XT8AYiBFBU5tpHCQvClQSIhwREkgZHsJkgMw4g0InwIzod2CvAocCOOG2wqMFlEBkc6oIikiEg3EenmG/8o3/ujfOcfF5GvA/pn4GxJvQRMFJEmvuOISMc0yicmxtmycrkcQ7o/kn3XrpK8WqtXOz/v2lW9gxAvv/xyRKTU0a9fv+I+rVq1Km5PSkqiS5cu/Oc//wm6T0FBAU8//TTdu3cnOTmZtLQ0+vXrx3/+8x/y8/MrNKcZM2bQs2dPEhISaNOmDS+99NJ+r4mkNsX69esZPnw4ycnJNGzYkFtvvZWCgoKgPosXL2bQoEEkJibSvHlzHnnkkaBtlLKeV3JycoXWWFFU918jIxyRPMsPPviATp06ER8fT6dOnfjoo49K9dlfDY/777+fDh06kJycTP369Tn55JPLTUhZm4jUzPsQMAXopKoPq+p/VPUhoDMwFXi4AmP2Ahb6jkTftQtxjO0ATYHAPFaXA0nAX3AC/PzHvAqMaVSAwEh2f3LGpCRHE9m+HTZscNKhrF7tRLbv2eNsefntJlXNKaecwqZNm4KOyZMnB/V54IEH2LRpE7/88gtnn302119/Pe+88w7gCIwhQ4bwt7/9jSuuuILvv/+e+fPnc/vtt/Pqq68GRT3vj7Vr13L66afTv39/Fi5cyD333MMtt9zCBx98UO51I0aMYMGCBXzxxRd8+eWXLFiwgEsvvbT4vMfj4YwzzmDfvn3MnDmTt956i/fff58///nPxX327t3L4MGDady4MfPmzeP555/n6aef5tlnny3uM2bMmFLPqk2bNlx44YURrxGcPf1169ZF3P+pp57imWee4V//+hfz5s2jUaNGDB48mH379pV5TSTPctasWVx00UWMHDmSRYsWMXLkSC644ALmzJlT3Oedd95h9OjR3HvvvSxcuJD+/fsXJ2j00759e8aOHcvixYv5/vvvad26NUOHDmXLli0Vei41krICOAIPnCC8M8o4NwzIieQ+h/o4XIP7quqYMuXbCgch/vqrE3zoPwKj2XNzVQMCcqMOYQKqRo0apWeccUa517Vs2VKffvrpoLZ27drpxRdfrKqqTz75pIqIzps3r9S1Ho9H9+zZE/Ec77zzTm3btm1Q21VXXaX9+vUr85pIalNMnjxZRSQogO2NN97Q+Pj44vm9+OKLmpqaqjk5OcV9Hn30UW3WrFmZgX7ff/+9AvrDDz9EvEZV53cRGLleHpHUyAhHJM/ywgsv1FNOOSWoz8knn1z8u1U9sHooe/bsUaC4Pkco4f4Wq5qqrqeRjxMbEY5U33mjluFyOR5Yfm0kJaUkt9aWLY59ZM0aZ3try5aSJI3VMWV8QkJCcc2KiRMncsopp9CrV2nnEZfLVZztdcKECfv9hj1r1qxS9SKGDBnCTz/9VDxeuGv2V5ti1qxZdOzYkRYtWgTdNz8/n/nz5xf3OeGEE0hMTAzq88cff5Q555dffpnOnTtHlEfrQImkRkY4InmWZfXx3/dA6qEUFBQwbtw46tSpQ7du3SJeZ00lUqExHXhURFoHNvrsEA8B30Z3WsbhittdYkRPTXUESUyM4621aZMjSPwFrLZuddqjLUi+/PLLoDoQKSkpZaa+LioqYsKECSxevLi4XvSqVavo2LHjfsepW7cu7du3JzYw6jKEzZs3h60FUVRUVCora+A1+6tNEe6+oVljyxrbfy6UPXv28N5773HNNdeUuR4/nTt3Dnq+oW2dO3cu89pIamSUdd3+nmVZffz3rUg9lM8++4yUlBQSEhL45z//ydSpU8vNZFxbiNR76i7gB2CFiMzGsSk0AfoBu33nDSMsbrdjaA/E77G1e3dJRHtcnCNsEhNLIuAPJLhy4MCBjBs3LqitXr16Qe//+te/8tBDD5Gfn09cXBx33HEH1113HUDE/vbnnHNOUMGmsghXCyJce3nX+K8LFST7u7YiY7/55pt4PJ4g20lZTJ48OUhTateuHZMnT6Z58+YA5QrS8uZ2ILU3QtujVZ/jxBNPZNGiRWzfvp2XX36ZCy+8kFmzZhWnWa+tRCQ0VHWliHQF/gycAPTAyT81Bvinqm6qvCkaNZHQAlbgCJK9e5008XDggiQpKYm2bduW2+f222/nqquuIikpiaZNmwZ9YBxzzDEsW7bsQJZViiZNmoStBRETE0ODBg3KvMZfm8I/L9Xg2hRNmjThhx9+CLou9Ft0WWND6W/54GxNnXfeeaSlpe13XeHSibds2bK4Nkh5BNbICNxe219NkkieZVl9/PetSD2U5OTk4loi/fr1o127dowfP577779/v2usyUT8PU5VN6nqX1S1r6q2873eaQLDiBZ+119/7RF/Sd29ex1333XrSra2tm07uLEaNGhA27ZtadasWalvmCNGjGDatGmEyybg9XrZu3dvxOOkp6czbdq0oLapU6fSq1evMr+NR1KbIj09nWXLlrFhQ0kKtqlTpxIfH0/Pnj2L+8ycOZO8vLygPs2aNSv14T537lx+/vnniLamDpZIamSEI5JnmZ6eXm59joOph+L1eivsbl0TOYwyKxm1kfIESVnk5+ezefPmoGNbBaTMbbfdxgknnMDgwYN5/vnnWbRoEWvXruXDDz/k+OOPZ8GCBQB89NFHdOjQgY0bN5Z5r+uvv54NGzZw2223sWzZMsaPH8+ECRP4y1/+Utwn9D4dO3Zk6NChXHfddcyePZtZs2Zx3XXXMWzYMNq3bw84htvOnTtz2WWXsXDhQqZNm8Ydd9zBNddcU2yoHzFiBElJSVx++eUsWbKEDz/8kCeeeILbb7+9lKAcN24c7dq1Y9CgQRE9o23btgU9302bNpGQkBDR8xYRbrvtNp544gk+/PBDlixZwuWXX05KSgojRowo7nfZZZdx2WWXVehZjh49mm+++YbHH3+c5cuX8/jjj/Ptt99y2223Ffe5/fbbmTBhAuPHj2fZsmWMHj2aP/74o7gG+t69e7nvvvuYM2cO69evZ/78+Vx55ZVs2LChwq7INZEyt6dE5BvgRlVd7vu5PFRVT47u1AwjPOG2tgKZNm1aqX3n5s2bB30rL4/4+HimTJnCc889x3//+1/uuusuEhISaN++PVdccUXxN9I9e/awYsWKMr2gwPlWPXnyZP70pz/x73//m2bNmvH8889z3nklWf3D3WfixInceuutxV4+Z555Ji+88ELxebfbzeeff86NN97IgAEDSExMZMSIEfzjH/8o7lO3bl2mTp3KTTfdRK9evahfvz5//vOfuf3224PmuG/fPt5++20eeOCB/doU/PTu3Zvf/OkDwtCyZctyvcruvPNOcnNzuemmm9i1axd9+/ZlypQppKamFvcJLcMaybPs378/b7/9Nvfddx8PPvggRx99NO+88w59+/Yt7nPRRRexY8cOHnvsMTZt2kSXLl2YPHly8ZZbTEwMmZmZvPLKK+zYsYMGDRrQu3dvvvvuO7p27RrR86nJlJmwUES+BW7wCY3p7CfLraqeGP3pHRy1PWFhRcnMnE7nzhlVPY2Iad68+iWJM2onlrCQYCGgqgc2smEYhlGjiDT31GUiEtbVQ0TSROSycOcMwzCMmkWkhvBXCc4HFUhryq7oZxiGYdQgIhUa5VnHkoFqmvPUMAzDiCbleU91wwni8zNcRLqEdEsELgZWRX9qhmEYRnWjvIjws4AHfT8r8Ncy+u0ArormpAwjElq0aBmxi6hhVCbhIuRrKuUJjeeACThbU78C5+LUvQgkH9ii1c3XzKgVzJ697qDvcSjdjFWdVCmBNduhJIAxKakkVUplVko83GrBR4PauObKojyX2z3AHgBfdttNqlpQVn/DMMrHX9wqNHuIxwN5eU7GX1Xn8JflTUx0Xg8mgaNhRJNIExaWHfppGMZB4XY7R3x8SZtfK9mzx0ng6M8EfKi1EsMIJdLU6IjItcANQHsgPvS8qrqjOC/DqNWUp5Xk5pbWSuLjHUHi10piYhxBZBjRJiKh4Qve+xfwGnAc8AoQC5wJbAMmVtYEDcMowa+VBBKqlfiJiSnZ4oqPd95HUObCMMolUk3jNuBx4FHgauBFVV0gIvVxqvrtqJTZGYaxX8rSSrxepypidnaJViICBQVO+d3AGiXlJYA0jEAi/VNpB3wHeH1HHICq7hKRvwF/A14o+3LDMA41/m2r+FKbyc721t69jmARKekbaHi3LS4jHJEKjVzApaoqIpuBNsBs37ksoFllTM4wjOgjUrr8buAW144dTh9VR3j47SVxcSXCxLy4ai+RCo3FQFtgGjATuFdE1uKkD3kIWF4pszMM45BQ3hZXQYFjfPd4SoRJXJyjkZgXV+0jUqExDke7ALgfR3h873u/Dzg7utMyDKM64N+2CiXQi8u/xQWOMPFvccXFlRTMMmFSc4g0TuOdgJ9Xi0hnIB1IAn5U1e2VND/DMKoh4by4wNniys52trmgxCU4UJj4NRO324TJ4cgB+UyoajaOtmEYhlFMuFK8qo5msm+fI0z8molIsPHd7xJswqR6U16W26MqciNVXb//XoZh1Db8kezhhElRkePFtWtXcH8TJtWX8jSNdeynLngI5pxnGEbElGV8N2FSvSlPaFxJxYSGYRjGQROJMNm9O3iby28ziY83A3xlU16W2wmHcB6GYRjlUp4w8dtMdu8uaQsUJh4P5OSUCBOLMzlwLHmAYRiHNWXZTKDEm6uoCH7/vaR/bKyzxRXqGmwR8Psn0oSFr+yni6qqVe8zDKNaEahZpKaWtAfWMAmMM4mJcba4EhJKkjyWJZBqK5E+ipMobd9IA1KB3b7DMAzjsCBcDRNwBEhhoSNQPJ6Sba7AWJP4+JII+NpoN4k0uK9VuHYRGQi8BIyM4pwMwzCqBL9wCCXQCB9Yqhdq31bXQSldqvqdiPwTp9bG8dGZkmEYRvWiLCM8lJ1Sxa/JhNvqOpy1k2js1P0KdI/CfQzDMA47ykqp4vWWZA4O1E5CDfGBW12Hg3ZyUEJDRGKAy4ENUZmNYRhGDaG8rS6/C/C+fc77wGv82ok/gLG6aSeRek99E6Y5DjgGaABcH81JGYZh1FTKcxH2ayf+aHi/QCnLTdjtPvSeXZEO56K099Q+4EPgbVWdHs1JGYZh1EbK0k6gxE04O9sRLoHXhNvuqiwi9Z7KqLwpGIZhGPujLNuJ37MrO9vRUPzaSUFBictwNLGQFcMwjMOY8tKrVAYRZ2ARkXYi8pqIrBSRbN/rBBFpWzlTMwzDMKobkRrCM4DJQC7wObAFaAwMBy4SkaGqOqOS5mgYhmFUEyLdnnoGWAgMUdUsf6OIpAJTfOd7RX96hmEYRnUi0u2pTsCTgQIDQFX3AU8CnaM9McMwDKP6EanQ2IATlxGOOGBjdKZjGIZhVGciFRpPAg+LSPPARt/7B4G/RzqgiAwUkU9FZKOIqIhcHsE1x4rIDBHJ9V33gEh1iY80DMOoPURq0xiEkwZ9jYjMpsQQ3s/3c4bPWA5ObY1R5dwrBVgCvO47ykVE6gBTge+A3kB7YAKQjWNLMQzDMA4RkQqN4wEPsAlo6TvwvQc4IaBvud7BqjoZxxMLEZkQwdgjgSRglKrmAktEpCNwu4g8qxp9b+TQW6oqptgYhmFEHhHeurInUg7pwEyfwPDzFfAo0ApYG83Bpk+fTnZ2NomJyYAjMH74YTKJicn07JkRzaEMwzAOOw6HiPAmlM6iuyXgXJDQEJFrgWsBGjduzPTp0ys02KZNjvJUVFTE2rXTycnZg8eTQ1bWXjIzK3avw428vKwav8ZQbM21g9q45vz8LGbMmB71+0YsNEQkCbgSx76RBuwApgMTVDUn6jMLJnQLSspoR1XHAeMAevXqpRkZGREPUlRUxN/+9jcAujZqxIb5k9hVrx7ZvuLCAwZcQExIJjCPx4M7ICFM6PvDiczM6XTunFHV0zik2JprB7VxzYsXT2fQoIyqyT0lIk1wBMQxwG/AZqANcD5wi4hkqOqWsu9wUGzG0SgCaeR7jeqYIoLb7abldysYOu0JPC43cRTw2fBhZPboUcqu8b//PUdBQR6XXnoHbrcbj8fDG288TVxcAiNG3BbNqRmGYVQLInW5fQqoD5ygqq1VNd1n5zgeqIfjkltZzAJOEJGEgLbBwB/AumgO5HK56NeqFRd+/S6JmkeKJ5s4TyHDPv6M7R+258vPlb17nb4ej4fs7D0UFubz4YsP4J77PR+++ACFhflkZ+/BE1pI2DAMowYQ6fbUacBdqvpDYKOq/igi9wFPRDqgiKQA/iSHLuAoEekG7FTV9SLyONBHVU/29fkfTizIBBF5DEfbuRt4uDI8p7IWL0ZjBApK2uIoZMyiC8m6IZm+7vnU7dOes45bh+5WuuYuYvjnn+NxP8ONHg+Thg9n8XHHlfLA8hPqiWWeWYZhHE5EKjRScL7Zh2OD73yk9AK+DXj/sO94Dad0bFPgaP9JVd0jIoOBscBPwC6c+IxnKzBmRBQVFbHa48HtDdYSCt0x/Ofoazlij5tft7UmbxZcMOsF7uI5FMfAEltUBMDwSZPY0KEzLldpJW7+/OkUFOTRr98QRARVZfbsr4iLSzDPLMMwDgsi3Z5aAVxaxrn/A5ZHOqCqTldVCXNc7jt/uaq2CrlmsaoOVNUEVW2qqpWiZbhcLrJTU5k0fDhFcXHkxcdTGBPDpDOHs2NEI/rP+yfzF8fx0kvw2+k38I+4OykIya6S60lk29xOLFkiQdW1VJWCgjyWLJnD7NlfFQuMJUvmUFCQV6Zm4r+2vPeGYRiHikg1jX8Ar4tIY5ztok04xumLgVMoW6AcVrhcLuLi4lh83HHI4MHsnD+/2HsqJiYOl8tFvXowfDicfvrRvP9CDPKMOmGPPmK0iP9+PZABX5/GC8nD+P2kUaSfmsrAgcLatctwu2NYsmQOS5bMAcDtjmHt2mWkpw8NO6f586eTn59HenqJdjJr1lfEx5t2YhjGoSfS4L43fS63jwDjA05tAa5X1f9VxuQONSJCv379WLFiBXl167KhRQsA6tdvTKtW7UvZIvYmxfHZmcMYPmkSHrcbl8fLf3tcwbE5S2i0YhdPZN/C3kn38tqkUVzAzWQ3v4TWrVfRo9kCOictYW+DumSnpuLxFIV11VVVfv99Ndu2Ofkg09OHMGvWV2RmzuGII5rTo8cgs4cYhnFIiThOQ1XHich4nNxPacBOYIWqesu/8vBBVcnPz2fLli00bdqMiy9+gCVLnC2k5s1bBRmt/TaLxccdx69t2lB/9+5iraQ/szniylnM/+wn3C+9wHWLx3GLvsCAjd/TauM6HuceCoklTvIZe+xNbB7cHJcrfGxHVtYeADIz55CZOadUe1nrMGO7YRiVQblCw5eB9jYcb6fdwDvAPaq6rLInVhWICAkJCfTt25e4uASf5jEEoPh9YN+kpFRycvbRsu9J9O9/Gj/++AVLl84jKSkVl0toelYfOOt1dm7/B66336DH8vk8/cmdJHjzgVxQuPGXf9Pml1955x1l0CBh4EAYMADq1/fbLsqyX2hYYWDGdsMwKpMyhYaIXAK8AqzGKfHaBvgTzqfYXw7J7KqAjIwMVJXp053qtX7BEfrhLCJ06NCDvLwc+vc/DRGhf//TAEhISArq723YiKIb/0T3h2+AWCC/5D6J5DKPXry94RLunPg0EydCA9nJUcfV54SBArSnTp1FXDthHDFFRUwcOZLs1FSSkuqUmlOgsR2gX78hxcb2Ll36lqlxmGZiGEaklKdp3AZ8BFyoqh4AEXkQuFtE7vK31UTCCYhw9OyZEfQB6xcc4fp7vV72pNXHHRL053W5yGmbzDmdvew4Br6boXwyuz26SFi0qBuL6EYd2UMj3Yoi3Prc83w2fBir+iWX+nAXEWJj46lX74ggY3u9ekcQGxsfdl6BmglgmolhGOVSnsvtMcDLIcLhRSAeOKpSZ3UYEamAiYmJoahhIyYNH05hTEyxO+8nZ53Fp1dfR9ILz3DrrfD+Ox70/gfZM+hM2jfYwWie43odRzwFJJBPnKeQMz7+nGmvHMu778LGgJqJqsrixbPZvXtb0Ni7d29j8eLZYV13A92AgYjdgA3DqJ2Up2nUxTF2B+J/X58opySv6Xg8HoqKisIazuOKArynYmIouv5mkq93gg0nPnQtI9+cSHxhSYh6PAV8tPJcPv3zWTzN2axoNZRuA+vQv7+X/PwU3O6dJO/bFzSG2x2D1+sN8tDyayZpaY1ZsmQOxxxzDCtXriQtrXGZmolhGLWb/XlPuUQkUBtxl9FOTfKiqgxEhIKCPACyU1OLM+cCFBTkhf2Adrlc7G54BK6QR1vkcjOvcR9O2z6NEYVvkb8ujr7r5vD6691wcSM31h3LPXv+BgLiViYNH84fJw0pFaWuqmzYsIadO4PzPu7cuQW3O4aePTNMcBiGEcT+IsJ/AAoDDn8hpDkh7QVhrzaKcbytnGwrnTv34eqrH6Bz5z4AJCWlhP1wFhESWrUrtaX16Vlnsuy+keSs/oMt789k/Xm3M/T2zqSnK//iFp7bcxtxFBKnhcQWFXHax1/w3bvNmTUL8vNDRynbO8swDCOU8jSNhw/ZLGoBfm+r/Pxc0tOHIiLFUeDx8YllfqNX9Ybd0mqoXnC78aQfT3L68dwK3Oz1suaipU5e4IDP/Fgt5PeZDbhgpnBK3Ayad6lP8xPb0+eEWLZt2wHAlePHk+x2s/H888lOTWXnzm3mRWUYRinKFBqqakIjyoTztvILkHCoKtnZTi720C2t7Oy9pT7UPR4P89J70X/uD7h9CRSdgaB+t110yFVeWn4lRy/4lcIFMax85hgKXJ0oSnbReN9mRGD0mDFMGj6cJd26V8ITCL9Gc/c1jMOHSBMWGlEiUm8r/zm/6ahTp95cffUDdOrU23fOVera2NhY8uqlMWn4cLwieESc7ayzz6T/uYv4+muh6INPmXrlW3zR5U42JR1NH+8cLtj3AXEUEatFxBYVceZHn5L0zm4yf9hJZZYFmT9/enHyRihx950/f3rlDWoYxkFxONQIr7VUJIAQnFiQunXTwm5npdVNw+v1ktqvM537dQYuxuPx8NGdt3PV+y8TU5RbfB83Hv6y9Fk8Fz/Hz64evNf1UWKHDyU9HTp3hpgo/NUcaCCiYRhViwmNak5FAggDNZPQ7axwmonL5SLl2COJe78wqL3AFcd9bf9Jsy1b6bXna+YsiuPbRTCA73nU/RBrWp5M4aBTOPLMHnTt7iY2tuLr8kfaqxIUiNi5c9+wEfiGYVQPbHvqMCDSLS1VJSdnb9hzOTl7wwb3bXVR7J1VkJhIYUwMn591Bg2uyOaCJQ+QMHcmZ485iYsvhraN9pHm2cbVv97LDa/24fhzGvLz0edww3lbee45mDMH8vIiX9eCBTNKlcX1eDwsWDAj8psYhnFIMU2jBuFyuahbtwFer5Kfn1PcHh+fRN26DcJWE/R4Cou3s7qmpvLLvn1O/RCPo300bw7nn+8ccBp//HEa/526ldzPv+GIX76m4745fD47jU9nwz38nWzXCta0PgVPxsl0PLkZPXtCSpi6jqrKwoUzCQ3vWb78J0RclZ723QzwhnFgmNCoQagqDRs2ZfPm9XTp0jfITtCwYdNyPxjjjjoa6diRuGXLyN61tcwxmjWDZqMawaiLgYvZtg3Gzna0jNaf7mXojs9puOZ1WANL/9uRd+QCPuj6MH36QN++0KcPNGjgRLv7/YJHvfoqAK9dcYV/JRQVFRF7IPteEWD5tgzjwIlYaIhIc+DPwECcehpnquoSEbkNmKWqc8q73qh8RIS4uIRigVFeandwNJOGDZuRn5/Luedex7Jl33Huudfx4Yf/IT4+MaxmEsoRRziVDIcPBx57gi07/s6PH/5M4Zdf0yTza5pnbeDnn+Hnn2HIy+fxKR1Y3vwUYk5IR+MHUa/eIlxFHmI9RST7tJwjjmheaQIj1ABfp06CGeANowJEJDREpDMwE6ew6SygOxQXx24J9AFGVMYEjYoRznBenmF5+PDL8Xq9xQLC5XJx7rnXRSQwwlG/gYte13SHa7oDf6FRNrw1H37+fh/HvLaJs7I+IWbj38l9O4GZnMDPdOUItuPFxS3//BcTB11C8nV9Ku3D259vq0GDJkH5tho0aGL5tgwjAiLVNJ4BlgFDgDyC04b8CDwZ5XkZB0FFYkGAUgLiQAVGOJKTYeBAGDgwFe79kY079rL5nRl4pkyj7c+fkVEwnTh83lteuOzbN3nkuzZ8f2wKdQd2o+uAVHr0gKSk6MxHVSkszGfHjs1B7Tt2bKZp05amaRjGfohUaBwPXKKqWSISWpd0C9AkutMyaiqxDerQ4sbhFF4zlGmPZjPyzTeDilK58PKI50FY9CDeRcKg52cwy30Cp7VdxUmt1pB2Une6nNyYpk0PbHwRISYmjvj4RPLzS2JT4uMTiYmJM4FhGPshUqFRXgbbhpQkMjSMiIiJiWF3/bRSRak8MW7+efFoOtYZRMHsRZDXGVbAcSve4U8r7oev4A+asiy+OztadmfthXfT7fgUOnaMLOjQ6/WyYsUC8vNzGfXqqyQmJbHyoovIz89lxYoF9OyZEVVNyzBqGpEKjbnAFcCkMOcuxMmGaxgVomXfk5g0fDVnf/wxCnjdbiYNH07Ls07huPQhiAznHSA7G5b8cAv//uJ4vPMXkvbbQjrnL6L3ypmkPfYQHuCpmHs4JfFH9rTpRkyv7jQ5rTtJvToRGnkoIhQWOtthbo+H2JycYgN8YWGhaRqGsR8iFRqPAtNEZArwPxxfyVNEZDRwDo5HlWFEjOPpFc9vJw7h2YCUJ/Et29EyLtggnZwMfU+tC6dmABl4PLByJXw1p5BzFsbw00/wx7pG5O4rpPfP40n+OQf+C+ti2nLnOavo2RNOLZpMs451KezYGa/Xw7E//0zzjRtBpDhJY2b3HqUKVVUGFiNiHM5EJDRUdYaInA08B7zia34CWAecbe62RkVxXF/z2blzMwSkPMneuX+DtNsNHTtCx46xjLzcadu+/U8sWPAn3prrYesPq0hYthApzOe99+C99+BCbqIx6/AiXJnQhCb5m3Gpgiour5fhkybxW7tjKn1rKjBGREQsRsQ47Ig4TkNVPwc+F5G2QCNgh6quqLSZGTWetWuXAk4G3/79T+PHH79g6dJ5rF27lPT0IRW6V8OGcOqpcOqpbqADhYUdWLoU2s6H+fPhojkzabRpEd1ZyMl502hCsPeUeLz0++R7pNNXyIAT0KTkaC2zGEvSaNQEIo3TeAAYr6p/qOpqYHXAuabANar6SCXN0aihJCfXISdnX3GSRf9rcnKdg753bCwcd5xzXHklwJFs3Xok8+efwb9fT6fvzOEkakmiLFHovWIWMZefRhExrGvUm+UXPkjDkUNo0QKi8VkeGGwZmKQxMBjTMKo7keriDwJHlnGume+8YUSMiHDWWVfRuXNfMjPnMH78I2RmzqFz576cddZVlfIB2qgRDBmi9Dh9EV+cfRpeEQolhnxXHA+0eJh2DdYwhC95ijvYuhWee8FNejrc0Pk79nTsx4pz7mbV81+wb2P4pJCRICL06TM4qK1Pn8EmMIzDhki3p8r7i65PkKe9YUSGU7lwCJmZJSax9PTK/cbtpI8XFh93HL3nzSPZ7eaV888nLtXDDYkfcMYZt/Pzz0P4aCHoAqi/ELJ3FbITNwPmPkvc3CcpetJNZnwPxp74AUcNaEG345ROnYWEhP2P/+mnr7J79/agtokTn6VevYaceeYVZVwVHcwAb0SDMoWGiGQAJwU0XSciw0K6JQJnAJlRn5lR4/EbgQOZPfurSt2qcdLDO4kSJSERkpKIb9mW7J1bAKVuXSUjQ8jI8PeH3347mYULT2bi3GyYNYsWv86gd/4sXv2yCUVfwtPcQVOZzpIGGezoMoiEwSfQoV892rVzjPZ+PB4P27f/gcdTRHx8EiNH3s7Eic+Sn5/ja/dUmueWJWk0okV5msYg4D7fz4oTpxFKAbAUuDXK8zJqOP4PLb8RONAoDFSa4HDSxzckMTEFvl3O/GXfcU7HgXz00Tji4hJKeU+JQKtWznHOOcnAKRQUnMLy5fDIQli4EHbPaM++rT9x8fZ/ET/9GbzThSmcSoekLzn2WOjZJZ/OPeLp2tVFbGwCHk8WI8c+T8yYZ4kZOZL81NSwY0cLS9JoRJMyhYaqPgw8DCAiXqCfqs49VBMzajYVzcgbTcIlaTznnGsj/tCOi4OuXZ1j1CiAa8jKuobP5uWx68s5JM6ZzqYtQs5eJ2X8G3O6kP3fZKaTwcK4dNqlLqfxji2owK1jnuezYcNY0//4Sluv/9l6vRqUpLFTpz5mgDcqTKRxGpZXwYg6Fc3IG00qmtRxf6SkQPqJCXDiIBwlHYbsgJ8XeFgz7jIaLZvBtbvGcVvBGNjhu0iBIhj28WfcNPs0xq7cRtt+R3BsV6FZs+h4bPn57LPXgnJtAWzatI7PPnuN4cMvj95ARo2nwkWYRKQRUMrkp6rrozIjo1YR7Q/vSDhU+/sNGsBJg90w+H7gfrZlZTPvpis485uPifOW1GWPo5CXN18L469l9/i6rKYtd9R5iM09h9HrmL0cn7aUI09sR+NODQ5IkHi9Xnbv3k5eXnZQ+65dW0lISA7Sugxjf0Qap+ECHgOuA+qV0a1ycy8YRhSoyv39mOQkfu/RBpmuQSlAC90xjOt9PY1j2uBes5q621axZW8i334LMd/O5imGwOOwS+qzKaUd2U3bsu6Se2kxtDNH1d+HFBWi9dMimkPyvn00WLmyON+WYVSUSDWN24CbcOpmPAb8DefPfqTv9YnKmJxhRJvQADv//v6hCLBTVQrSGjJp+PBSSRqz+rbkrJGjcblcqMLffodffoE1c3tyz+xPca1ZRfO81bTbt4p2+37g2ocLWPQw3JT4Hi/kXkVWfBpZTdsh7dqRcGw7cq64CU1rAF5vsZvxsT//zNkffwwinOhyMWn4cFb3G2A2DaNCRCo0rgAewck99RjwkaouEJHHgCnAUZUzPcOIPn7B4dc2oPK8tUJRVRYfdxy/BiRpzE5NJV41YH5w1FHOwbAGwHBUYcMGR5B8tgTSlkDDX+Cb7f34C0/TNn817datot26GTSe+ibnTbuBI7vDNX88Su85L3BZnWQabVxfKt/WG73SK33N/nVbjEjNIFKh0Qb4SVU9IlKEE5+BqhaKyHPAv4CHKmWGhhFlqiI+xI/H49gysgOSNAa2l4UItGjhHGec4bSpwpYtnVi8uBNLlsAnS2DxYtixMZe8XxLgF9hGL87iHHrs/YlGBJsdi1xuWk/5nMTYehT1PYGio9tH1/ruY/786eTn55KePrQ4SeOsWV8SH59oMSKHIZEKjT2UGL//ANpTUkMjBohsQ9UwqpjQ+JA6dRKIi6tf6fEh4Lj2NmzYlF27tpOfn1PcHh+fRP36DStsjBaBJk2cY3BAZpKdOxNZsgQyM2Hx4jN4OvN0slZvZg1HkxRQL00LXMR/n0/ajGsByEtpSG73/nDGGeReeu3BLdY/hiq//76abds2ApCePpRZs74kM3MuRxzRnB49BpnGcZgRqdBYCHQCvvIdD4tILlCEY99YUDnTM4zoEhofsnTpjEMWH6KqNGzYlM2b15cKaGzYsGnUtmzS0vx12f3jwquvvsv/po5g1HevUUgcgpcbZCyvey7nGFZyPN8zIOsHjp/5PZmz43n6k2vp1AnunHcBMce0IWnwAOjfH29awwrPJzvbydWVmTmXzMy5pdqNw4tIhcZzOFtU4CQn7AFM9L3/Dbg5utMyjMqjquJDqiqgUVWJiytk40ktGNN7NF1TU/ll3z5aJv3O7dkTaNVqFEuXtue1pVdxxxLYu7OQolmwaFYOV7KRXr98Qtz7TwGwIaUDs068l/wLL6VTR6VxYxBX2fNWVRISksjJ2VfqXEJCUqXbNsyWEn0iDe6bGvDzZhHpAxwNJAHLVLX8DVnDqGZURXwIVI3AEhGSkuqQm5tNdmoqO445huyVK3GjtG5dyDnnCOed5/R17CSxLF0KS5cm8WTmj6xZkkuDtT+Rrj9wfNb3vDMpkQ8mQWcy+UZOZln9AWxpOwBPvwGkndKDtp3iSEx07udyuWjRoh27dm0jae+eYuN/Tp26tGjRrlLjQyzfVuUQaZzGZcDnqroDQJ2sb6t959JEZJiqvl550zSMmsOhFliqSk5O+K2gnJy9IUKsxE5yUnG60kRyc09gxYoTWLYM6i6FfkvBs8TNF1lDGbDzBwbN/QjmQu7zCQyWr9ncpj+9j95Ju2OUNTt3MnT7CkZO/R8AHp+b8RKXi169TqwUwWH5tiqPSLenXgXSKUmAEEhr33kTGoZRDXGSNDbA69VSBvi6dRtE9KGdmAjdujmHH9WO/PHHa/ywFN75aTPu2T/QePUPrNjbge1r4MI1L/HIlL+ynGNoyxpcvuzCrqIizvjkc76LO4kdO5QjjojygnEEcWxsPGlpjYPicdLSGhMbG28C4yCIRj2NZByDuGEY1ZBQA3ygx9jBGOBFoHlz52BwE+A84DwG5cHq1bB16hl8Mt3DUb98iKvAE3RtrjeRtu8sZ8E7V7MpuR15LdoR0+kY6vVqy9Fdk2nfHpKSDm7NGzasYefOLUHtO3duwe2OoWfPDBMcB0h59TS64Ri8/QwXkS4h3RKBi4FVFRlURG4E7gCa4tTiuE1VZ5bTfwhOHEgXnIJPPwB3qOrKioxrGLWRQ+0xlpAAXboAXY7DO/pY3n8hhy7PLMFVVPLdMkHyqJ+4ixNzp9MsewIsB5bDmg/b0JY1ADxUfwzNGhZAu3Ykd2tH4/5H07pjQkTFrgCOOKJ5satvaPuhoKYa4cvTNM6ipIyrAn8to98O4KpIBxSRi4AxwI3A977XL0SkU7ikhyLSGvgEeB64FEgBngImA20jHdcwajNV6THWtPsAJg1fEZQ6ZfLw04m56BI8/d9k7qpsNn+/mr3zV7F1YyEdcxxNZeiu/9F311znK+lk8CK8Lxdwb5t3aN8eRha9Rt2jG5LWtx1N+7cmLjk2aOyVKxcCcOX48SS73Ww8/3yyU1NZuXIh/fsPrdR1OwGNecWVKJ2Axq+Ijz/8jfDlCY3ngAk4W1O/AufixGsEkg9s8RnGI+V2YIKqvux7f4uIDAVuAO4J078nEAvco6oeABF5HPhGRBqq6vYw1xiGEUJVeIypKqtX/0JRmNQpMat/YcCA0zmyQwpHdugGV3cDnK2LwkJYu3YOryzYzZ6fVlG4dBVx61exdHdz1qyBX9d4eZ/rSSQP/g1FuNkQ25qvj76WJUPvoO3RXlLmbKFd7kqab9wIIoweM4ZJw4ez+Ljj8Hq9lVYlsXRA4xBmzfqKzMw5NSKgsbwiTHtwIsH93/b/OFjXWhGJwxEC/wg5NQXoX8ZlPwGFwNUiMh7HzXcUMM8EhmFUb/wG6aKiwlKpU8ozSMfGwjHHwDHH1IOLewO9AcjLgwvWwMoVwsOLfidv8Srcv64kbfsq2hauYvbyeoxfDg3ZyTaeL7mhP9/WJ5OYW6c/uTlKSopWStoU34AAZGbOITNzTqn2wxmpmJIAIhKPsx3VCSelyARV/SPCa5sBG4FBqvpdQPsDwEhVbV/GdScA7wENAReOxnOaqm4N0/da4FqAxo0b93z77bcrsLoS9u3LIi4uhdpUZiAvL4uEhJSqnsYhxdZc+ezatT1sbi23O5b69SseYR6OvDwXv/+exPr1Sfz2WzJ/rI0hfek7PLDvrySRV9wvh0RO5mvySGC6nMi65A5sadSOfa1a4+3Skvh+R5HYMLackSIjK2tvqfolAAkJyaSk1Dno+0dCbm4Wdeoc2O/5xBNPnK+qvcKdK88Q/ghwnqp2DmiLB+YAx1LiUTVaRPqp6toKzClUUkmYNv+YTYD/4rj0vgWk4mTcfVdETlJVb2B/VR0HjAPo1auXZmRkVGBaJXz77XSaN88gpRZ9nmRmTqdz54yqnsYhxdZc+UyaNIGCgnx27txc3JaW1oS4uHiOP/78qI3Ts2fw+ymvQ+z9RUG+nSJeshvWp2inizc9I+ma9Qt9siZR79c98A2c+vxX/Nwog2GN53GOfkhhh2NJ6H0sjU5oT5Oj4iJWTLxeLx999HKpNZ9zzkWVXvDKb7tavHg6gwZlANE1wJdn0zgFx9gcyE1AVxxD9N+AjsCHwH1EZgzfDniAJiHtjYAtpbsXj5mtqnf6G0Tk/4Dfcba0vo9gXMMwqohhw0bx449fBH2ANmnSgv79T6u0MYuKivi9MIdJw4czfNIkNDYWKSzki+Gnc0H397nkkrvZsGEsy1fBpJXKzl82ELt8MT9v6cvWreDauohTeYa4JYXwPhQQyypXe/7U4UvqdGxOz0a/06ql0qR3C1q1FuLjS8Z2Is+nsHPnZq4cP56YoiImjhzJTmD27CnFxvHKINAA75/LlClfkZCQwIF+gQ6lPKFxNPDPkLazgU04RmkF5orI08CfIhlMVQtEZD4wGGe7yc9g4IMyLkvCETSB+N/Xos0jwzj88KfuWLp0XqkkjS6Xq9I8uJxiViW1S/z5trJTUxFVEhJcPpsJcIYALYAW/NXr1C1Zvfoanlg+iuyFK4lb/gsN/lhMm7xMvl3aiKKlMIinuIQX2E1dFnMs61KPZUezriwfdB1tjoaVK7dx8h/LHCM8FBvhl7pjiz/Qo02oAT41NYGvvvqKuXPn0Lx5cwYNio4BvjyhUZeAb/8+I3Yf4P0Qb6mfceItIuVZ4A0RmYsTb3E90Ax4yTfO40AfVT3Z1/9z4E8i8iDwP5ztqb/jaBrzKzCuYRiHmKpK0igiJCYmk5OzLyjfFkBiYnKZ47pcJQWwTjopDic0zAlP27kT3l8Dq1bBrtnXMGZJJ9L+WEyrfYs5c99E9q6YxFErrgfgFb7hQt4rFQX/RdFQlvb1cvTR7ojjTSpCo0ZObEpmZkkUPEDz5tGLTSlPaGwEWgF+g3VfIA74MaRfLFDa4lMGqvqOiDTA2dJqCiwBTlfV33xdmuJoOf7+34jICOBOnIDAXGA2MFRVIx7XMIyqoaqSNLZv351161awa1fJznf9+o1p1ar9AY2dluYcvXsDI7ri7NQ7Hl0L1im/L9rBXVth1Sov9b7YRUDpEgDcXg9LJh3L+EluruclXGn1yGndmZjO7WnZLo6jj4Y2baBZMzgQb2C/gK5fvxG7dpX4CDVq1IiEhOgJ6PKExkzgNhH5FMf19laceuCfh/TrDmyoyKCq+iLwYhnnLg/T9jZwYG5QhmFUOVWRpLGwMJ9du7aUSp3SvHmrqEZnJyRA+w5C+w4NOQVQFeZPPh/vjZ/jLirx0/GKi9QuKbTJ8vL42rupt3MP7ISi+W5W0Y7/chUj+AtxcXBisxXEHNOGlm1jad3aESatW0OjRmV7Cfu3pwIFBsDWrVuJiYkhIyM6qVPKExoP42z/bAHycLaFXgrQCPxcDkw/6JkYhmFEiaostiUiaKNmfH7mWZz50YclUfBnnslNl22jd28Xe7K2sObHFWTNzoTMTJLXZdI0JoFGOZC/dTdfrutAwbpYVk45hkw6s4jOPMKZrE7uRqtWjgDxH36BUr++kpW1BygdBb9nz56oCcrygvvW+vJPXQ3UB+aq6hshD6cZ8DWW4dYwjGpGVaVO8Xg8LF36EwVdj6Xn3DnF3lPZqanELf2JHj0GEZsST9NTu8KpXYuvu8R3ZG+NZfFbb1C4aAkJqzPJ2DyPi3LeZV9iY37O7oYncxmPZV5MJp3JpDMzfK/bUlqTXGcEl8kEGm/cggZEwWd27x619ZWb5daXC+qBcs7/AdwStdkYhmFEkaoqtlVY6AQUvnL11WHbyyO5UTLJo/+v+L0H2JSTzZ2qXJUP278ppM5/jmTo7z8wYt9bxf2GZU3ip6xePMgjxFHoRL4VwfBJk/i9fdi46QMi0tTohmEYRgS4XC7c7liKigpKnXO7Yw8ouE+TkgFIS4a087vC+Z+TB2zK2kfMyqXErMjk8e69+fo/ryDvex3rsw+P202LouhVrzChYRiGEUVEhGOP7ce6dcuDjNL16zeiVasOUdV2NCWVwh59KezRlzRVYo/Jw+XSIKHh9njYkpQUtXEtOM4wDCOKlHhubaVLl75cffUDdOnSl127tlJYmE9F8/1VZNyslBQmDR+OVwSvy0VhTAyThg8nKyUlauOapmEYhhFFqiqg0c/i446j97x5JLvdvOLznjqIIoilMKFhGIYRZaoqoNHlcqICX7n6ao4JiIJ3u922PWUYhlGdOdSeW/4o+Pr1GwW1N2rUiO7du1d+RLiIfFOB+2hArijDMAzjEKOqbNiwhl27ttK5c19SUxPo06c+c+fOITY29pBEhLsIrnHRHiel+TqcKPHGOLmpNgErDnom1ZCiIsjPh7i4SizwZRiGEXU05DV6lBcRnuH/WUTOBsYA/VR1bkB7X+Ad37kahYiT6XLvXsjKAlUniVhcHMSYJcgwjGqGiHDWWVcxa9aXZGbOLc5y26dPH4YOHXrIbRqPAvcHCgwAVZ0DPAQ8FpXZVDNSUpyMk23bOgKkfn3weBwhkpXlZLesJO85wzCMCiMipKcPDWqLpsCAyIVGO2BbGee2Am2jM53qicsFiYnQoEFJkrBmzZy2nBxHgGRnQ2HpMsiGYRiHDH/Rq0C++uqrqMaGRLrRsha4DvgizLnrcOwctYbYWOdISXE0jfx8yM11trL27XO2ttxuiI93BI5hGEZl4xcYS5bMoUuXvqSkJNC3b33mzJkDwJAh0XH5jVRoPAxMFJElwPuUGMLPBzoAIw96JocpIk4+/YQEZ/vKbzzPznY0kMJCp09srBnUDcOoPEKDCpcsmcGppzpBhYeqCFMxqvq2iGzHER734FTrKwTmAUNU9euozKYGEBPjHMnJTsGUggLH9rFvnyNIVB3tIy7OESSGYRjRIlxQYbQ0DD8R+wGp6jRgmoi4gIbAdlX17ueyWk9cnHPUqQNeryNE/FtZWVlOH79X1oGUeDQMwwiksoMKK+w86hMUW/fb0SiFyxW8leXxOFtZOTmOEMnJcfrFxJg9xDCM6knEQkNE2gAXAkcBCSGnVVWviubEagNuNyQlOUfDhiX2kEBvLBFHiMTFmRAxDKPqiUhoiMhZwHs4LrpbgfyQLhatEAUC7SHgbGUVFJTYQzweM6obhlG1RKppPAZMB0aqalnxGkaU8dtD/K69hYWOUd2vifhdr02IGIZxqIhUaLQB/mwCo+oQCTaqqzpaSH6+o4nk5DiGdtNEDMOoTCIVGsuBBpU5EaNiiDjG8vj40kIkVBPxG9ZNiBiGcbBEKjTuBJ4TkTmq+mtlTsg4MMoTItnZwTYRM6wbhnGgRCo0HsLRNJaJyCpgZ8h5VdVB0ZyYcXCEEyKFhY4g8Sdc9AsRf5yIYRjG/ohUaHiooTUzaguBNpGUFKfNL0T8KU+8Xsc+YingDcMoi0jTiGRU8jyMKsCfeNGf8mT9emjRwolY92sjUGJcj401u4hh1Hbsu6QRhD/YsEGDkrQngR5agcZ1s4sYRu0j0uC+gfvro6rfHfx0jOpEYNqTunWD7SJ+47q/hojbXaKNGIZRc4lU05jO/qO+Ld1eDSecXaSoqCQJo9824se0EcOoeUQqNE4M09YAGAYMAm6O2oyMwwp/6pPALa3CwhJX35wcx0vLX2M9Ntbpb7YRwzg8idQQPqOMUx+KyD+B4YSv6mfUMlyuYFdfKK2NZGeX9Le08IZxeBENQ/jnwNvAjVG4l1EDCdVG/IGHBQWOJuLXSMAROjExjkZi21qGUf2IhtBoD1gxJiNiAgMPU1OdNo+nRJBkZTlaicfjnHO7SwSJbWsZRtUSqffUZWGa44AuwFXAh9GclFH7cLshMdE56tZ12goLSzL7+rURf1LGQEFiGMahI1JNY0IZ7fnAO8DoqMzGMALwu/AmJUFaWonLb2FheG+tQEO7YRiVQ6T/Xq3DtOWp6pZoTsYwyiPQ5Tc52al26LeP+AVJTk6JIFEt0UZMkBhGdIjUe+q3yp6IYRwIgfYRf+yI3+03nCCBkq0tEySGUXEq9G8jIv64jDRgBzBDVT+vjIkZxoES6PZbniDJznbas7KCvbbM2G4YZROpITwV+Aw4ASjCERgNgD+LyExgmKpmlXMLw6hSwgkSVdi4EZo3d4ztOTklxnb/Neb+axjBRKpp/B3oAVwKvK2qHhFxAxcD//adv7VypmgYlYOIcyQnO4c/hqSoqCSqPSfH0Uz8giTQc8u2t4zaSKR/9ucB96nqRH+DqnqAiSLSEKeynwkN47AnMA18UhLUr++0+wVJ4PZWXl7Jdba9ZdQWIhUaDYClZZxbitUPN2o4fs0iMbEkPYrfTlJUVLK95ddKVEtK68bGWpoUo+YQqdBYi5OccGqYc6f7zhtGrSLQTuLf3oISraSgIFiYQEniRn9MidlKjMONSIXGf4BnRCQFmAhsAprg2DSuBm6vnOkZxuFHoFbij273eoOFiX97y58qBYJtJbbFZVRXIo3T+KeIHAH8Cbjc1yw4EeFPqOqYypmeYdQMXK7gwES/rcTjCd7iys0tybvlFxwmTIzqRKQut3WBR4CngX44cRo7gdmququig4rIjcAdQFMgE7hNVWeW019wUpVcjxOdvhN4TVXvrujYhlGd8G9VQYkrMJRoJYHCxF9uV9URQn7juwkT41CyX6EhIjE4cRnnqOokDrJuhohcBIzBSaX+ve/1CxHppKrry7jsGRybyh3AYqAujsAxjBpJoEuvPxOwaolm4k/kGCpMQl2CTZgY0Wa/QkNVi0RkC+DZX98IuR2YoKov+97fIiJDgRuAe0I7i0h74Bagq6ouCzi1MErzMYzDAr83VqgXV6AwCbfN5b82UKsxjANFVPdX+htE5Emgnaqee1CDicQBOcAlqvpeQPtYoIuqDgpzzZ046ddfwhEeLmAGcIeqbg3T/1rgWoDGjRv3fPvttw9orllZWaQE7hfUAmzNNRO/FqLqGORzc7OIjw9esz/QsaaSl5dFQkLN/j2HkpubRZ06B7bmE088cb6q9gp3LlLvqXXACBGZB3yC4z0VJG1U9ZUI7tMQcAOh2XG3AKeUcU0boCWOp9blvnH/AUwSkXRVDSoAparjgHEAvXr10oyMjAimVZrp06dzoNcertiaawfTp0/nhBMyKCoqKcWbl+cchYXBfWvKVldm5nQ6d86o6mkcUhYvns6gQRlR/71FKjTG+l6bAz3DnFcgEqER2D8QCdPmxwXEA5eq6koAEbkUWAH0BuZUYFzDMCjZqvLHmPjxp1EJTKXi3+7yBnw9s3QqtZeDqadxIGzHsY00CWlvRGntw88moMgvMHyswkmceBQmNAwjagSmUUlMDD7n8VBKO8nPd7IFB+5yu1wlAsVsKDWPQ1pPQ1ULRGQ+MBh4L+DUYOCDMi77AYgRkaNVdY2vrQ3O3K3Oh2EcIsrTTgIFil87yc8PjoQPNMabUf7wpcKKpYiEJj5QjcSaXsKzwBsiMhdHIFwPNMMxdCMijwN9VPVkX/9pwALgFRG5zdf2HI6G8VNF528YRnQJ9OqC4HiTwO2uUA0lnEDxx56YQKm+lCk0RKQJ8F/gHVV93dfmBgpCumaJyDGRln5V1XdEpAFwH06sxRLg9ABtpilwdEB/r6/40/PAd0AuTg6s20ON4IZhVC8Ct7tC8XpLNBSPp0RDKSgoESgQnK/LfxzORvnDnfI0jRtxamicH9IuwMvAH76fL8LRFh6OdFBVfRF4sYxzl4dp2wRcEOn9DcOo/vij2v0CJZyG4hcq/mDG/HznCNzbEAnWUCwJZOVSntAYCrysqrkh7Qr8R1UXAIjINuAyKiA0DMMwyqM8DcUfbxJu26ugwBEwIiXbXi5XiRAyLeXgKU9otAceCNMe+shX+voahmFUOoEG9fj40udDt70KC2HtWkdwhCaD9AsVv6bicplQ2R/lCY0EIKjut6/Ma1Mc11k/eb6+hmEYVU7othc4P7ds6fzs8QQLlYKCkm2voqKS6HkINtCbPcWhPKGxFce19fvAxjAG79bAtijPyzAMo1Lwf/jHxZU+F7j15RcugUIl1J4CwQKlNgiV8oTG98ClwOv7ucdlOK6zhmEYhzWRJHb0CxO/tlJQUHKERs777xkqWA5nyhMazwPfi8g/gLtVtSjwpC9l+lNABnBCpc3QMAyjGrG/D36/TSU0gj4/37Gv5OaG9/4KFCzV2QOsTKGhqrN8GWafAv5PRKYC/noXR+FEcTcE7lHVWZU+U8MwjMOAcDaVQPwR9IGHvwywX7gElgH24xcmfuFSVYKl3IhwVX1GRBYAdwHnUWLwzsMJtHtKVb+p3CkahmHUHEIj6MMRTrD4hYo/kWQ4wRIoVCqLSIowfQt864sGb4DjcrtdVaNVlMkwDMMI4EAFi7+qY0FB5bkPR5x7yickShU9MgzDMA49+xMsa9aEbz9YqrG5xTAMw6humNAwDMMwIsaEhmEYhhExJjQMwzCMiDGhYRiGYUSMCQ3DMAwjYkxoGIZhGBFjQsMwDMOIGNHQPL81CF9Vwd/22zE8DQmuG1IbsDXXDmzNtYODWXNLVT0i3IkaLTQOBhH5SVV7VfU8DiW25tqBrbl2UFlrtu0pwzAMI2JMaBiGYRgRY0KjbMZV9QSqAFtz7cDWXDuolDWbTcMwDMOIGNM0DMMwjIgxoWEYhmFEjAkNwzAMI2JMaIQgIjeKyFoRyROR+SJyQlXP6UARkYEi8qmIbBQRFZHLQ86LiDwkIn+ISK6ITBeRziF94kXkXyKyXUSyffc78pAupAKIyD0iMk9E9orINhGZJCJdQvrUqHWLyE0i8otvzXtFZJaInBFwvkatNxQRudf39/1CQFuNW7NvPRpybA44f0jWbEIjABG5CBgD/B3oDvwIfCEiR1XpxA6cFGAJMBrIDXP+TuDPwC1Ab5xyvlNFJDWgz3PAecAlwAlAHeAzX8346kgG8CLQHzgJKAKmiUhaQJ+atu4NwF1AD6AX8A3wsYh09Z2vaestRkT6AdcAv4ScqqlrXgE0DTiODTh3aNasqnb4DmAO8HJI2yrg8aqeWxTWlgVcHvBegE3AXwPaEoF9wHW+93WBAmBkQJ8WgBcYUtVrinDdKYAHGF7L1r0TuK4mr9c37zU4Xw6mAy/U5N8x8BCwpIxzh2zNpmn4EJE4oCcwJeTUFJxvrTWN1kATAtarqrnAd5SstycQG9Lnd2AZh88zScXRqHf53tfodYuIW0QuxhGWP1Kz1zsOeF9Vvwlpr8lrbuPbbl4rIm+LSBtf+yFbswmNEhoCbmBLSPsWnF9GTcO/pvLW2wTnW3po0rPD6ZmMARYBs3zva+S6ReRYEckC8oGXgHNUdTE1d73XAG2B+8OcrpFrxtkJuRw4DWdLrgnwo4g04BCuOaZCU64dhEY7Spi2msSBrPeweCYi8ixwPHC8qnpCTte0da8AugH1cPasXxORjIDzNWa9ItIex+54gqoWlNO1xqwZQFW/CHwvIrOBX4FRwGx/t5DLor5m0zRK2I4jhUMlbiNKS++agN/rorz1bsbRvhqW06daIiL/xDH2naSqvwacqpHrVtUCVV2tqj+p6j042tWfqJnrTceZ6xIRKRKRImAQcKPv5x2+fjVpzaVQ1SwgE2jHIfw9m9Dw4fvGMh8YHHJqMM7ecE1jLc4fUfF6RSQBx6PCv975QGFInyOBjlTjZyIiY4AROAJjecjpGrvuEFxAPDVzvR/jeA11Czh+At72/bySmrfmUvjW1AHHAH7ofs9V7RFQnQ7gIhzvgqt9D3IMjtdRy6qe2wGuJ4WSf6oc4AHfz0f5zt8F7AXOBbrg/NP9AaQG3OPfwEbgFBw35G9xvsW6q3p9Zax5rG9NJ+F86/IfKQF9atS6gSd8Hw6tcD5MH8fxiDmtJq63jGcwHZ/3VE1dM/APHI2qNdAX+My3xpaHcs1V/iCq2wHcCKzDMSjOBwZW9ZwOYi0ZOHuVoccE33nBcePbBOQBM4AuIfdIAP6Fo/LnAJOAFlW9tnLWHG69CjwU0KdGrRuYgFOhMh/HN38aAS6UNW29ZTyDUKFR49YcIAQKfB/8HwCdDvWaLcutYRiGETFm0zAMwzAixoSGYRiGETEmNAzDMIyIMaFhGIZhRIwJDcMwDCNiTGgYhmEYEWNCw6i2iEi6iLzrKypTICI7RGSqiIzy5/8Xkct9xWhaBVy3TkQmhNxruIgsFqe4lopIPRFxichzIrJJRLwi8nElrqWVhCmEFaaffz1tK2suB4qInC0it4dpz/DN+ZSqmJdxaLGEhUa1RERuA57FKSh0F07wWn3gVJyo1t3AJ2Vcfg5OZKz/XjHARJxUCTfhBEftA87HKVD1Z5wsuDtK3ckI5GycSOJnq3geRhViQsOodojIQJwPphdU9daQ05/4stcml3W9qi4MaWqOU1fjXVX9LmCcjr4fn1NVbxTmHa+q+Qd7H8Ooztj2lFEduRun8tyd4U6q6hpVDS3vWUzg9pSIPISTFgbgv75tlOkisg4n5QKAJ3DrSESaisjrvjrK+eLU3/6/kDH820gDReQ9EdmNU+8AEUkSkRd922lZIvIpENXa0yJyjYj87Ntu2y4i/w0paYtvfo+JyK2+oj37RGSGlK4b7fb12yQiOSLyjYh08F3/kK/PBJwU3M2lpD71upBpJYnIC775bBORN0WkXjTXbVQ9pmkY1QqfrSID+FhV86Jwy/E4ddLfAx4DPsfZuooHbsUpapPu67tGRJJxcvbUB+4Ffgf+D3hDRJJUdVzI/ScCb+Fsdfn/n/6Dk/zyYWAeTlbR/0VhLQCIyBM4W2rPA3fgaFKPAV1EpL8G1w75P5xaG6OBOOBpHG2tg6oW+fo87Fvr0zh5q3oAn4YM+yhwBE7t6TN9baFa1RicJHojgPbAUzjlBkYdzHqN6oUJDaO60RCntvFv0biZqm4QkUW+t2tU1V+sBhHZ6OsT2HYzTn2CE1V1uq/5CxFpDDwmIv8N+VB+X1XvDLi+Pc6H5l9V9Qlf8xQRSQGuP9j1+Az+dwAPq+ojAe0rge+B4Tipw/0UAsNUtdDXDxwB2gen6lt94DbgJVW9y3fNVBEpBJ7x30RV14jINqAg8HmF8J2q3uL7eYrvWVwtIperJbmrMdj2lGEEMxDYGCAw/LyJ8027U0j7RyHv++L8X70b0v52lOY32Hf/iSIS4z9wtsb24sw/kKl+geFjse/1KN/rsTj2ofdCrnv/AOb2ecj7xTgaXeMDuJdRTTFNw6hu7ABygZZVNH4aTmrpUDYHnA8ktG9T32u4Ws3RoJHvdXUZ5xuEvN8Z8t6/pZTge/XPd2tIvwOZ7/7GMmoAJjSMaoWqFonIdGBwFXkj7cTZjw/FX0Yz1C03dNvFL0Qa49RvJuB9NPCPfyqwq5zzkeKfbyOc0qF+TDswwmLbU0Z15Amcb8xPhzspIq1FpGsljT0DOFJEBoS0j8D5Nr5sP9fPwamad2FI+8XRmR5Tffc/Sp164KHH2grebzGQDVwQ0h76HhzNIbHiUzZqEqZpGNUOVf3OF3n8rC+WYgKwHsej6WSccrwjgDLdbg+CCTieRh+KyF+BDcBIHFvCdSFG8HBzXyEi/wMeEREXJd5Tp1dwHkNFZHNI2x5VnSoiTwIv+AzNM3CqtLXwjTNeVb+NdBBV3SUizwH3isg+SrynrvJ1CYxfWQqkicgNODW581R1MUatwoSGUS1R1edEZC7wJ5zayA1xorh/Aq7DKVNZGeNmi8ggHHfRJ3CCAlcAl6rqmxHe5jqc2vJ/wXFz/QZHyH1fgan8K0xbJk75zntFZBlOdPtNOFtkvwNfA6sqMIafB3FKhV6F44Y8B8cV+QdgT0C/8UA/4O9APRwPt1YHMJ5xGGPlXg3DKIWIXIDjATZQVWdW9XyM6oMJDcOo5YhIX+AMHA0jD+iJE5W/AuhvMRZGILY9ZRhGFk58x01AHRyD/7vAPSYwjFBM0zAMwzAixlxuDcMwjIgxoWEYhmFEjAkNwzAMI2JMaBiGYRgRY0LDMAzDiJj/B3THRbHSLSJ1AAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgUAAAFGCAYAAAD6uOxSAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAACFYklEQVR4nO3deZzM9R/A8dd79pi9rHvXkXUUS1jXRuigQpF0/vRLh0opKh1KKem+HKVT6dBBKvUjoqTaIufuykq1FSK5U9hdO3vM5/fHZ2fM3sses3g/H495MN9rPvO1a97zOd5vMcaglFJKKeXwdwOUUkopVT1oUKCUUkopQIMCpZRSSuXRoEAppZRSgAYFSimllMqjQYFSSimlAAj0dwP8rV69eqZZs2YVdr0DB9JxOsMRqbBLHncyM9MJCQn3dzOOanoPD3G7wRhwOCAw0P5ZVunp6YSH630sD72H5VcZ9zApKWmPMaZ+we3HfVDQrFkzEhMTK+x6ixYl0KZNLwICKuySx5316xNo27aXv5txVNN7WFhWFmRmQnAw1K0LERGU+nuakJBAr169qqR9xyq9h+VXGfdQRDYXtf24DwqUUseH4GD7yM2FnTth1y6oXRsiI+12pZQGBUqp40xAgO0lMAb+/Rf+/htq1LABQmiov1unlH9pUKCUOi6JQFiY/XtmJmzZAk6nHVoIDz+8uQdKHSs0KFBKHfdCQuwjOxu2bbMTEuvU8XerlKp6GgsrpVSeoCA7lBAcDHv2gMtl5x+4XP5umVJVQ3sKlFKqgICAQ0MIaWl27kFoqB1aCAtDlxyrY5YGBUopVQLP5MOsLNi61fYmlHVJo1JHGw0KlPKTa68dyK5d2yvl2tnZmQQFhVTKtY8nRd1HY+wDbE+Cw6E9ByXJzMwkJMS/P4sNGzZk3rx5fm3D0UKDAqX8ZNeu7axcWXGJs3xlZh4gJKRGpVz7eFLafXS77Z8Oh+010AChsAMHDlCjhn9/FuPj4/36+kcTDQqUUuoIeZYtGmNXLojY4CAgQIMDdXSq8tUHInKGiHwqIn+JiBGRoWU4p72IfCsiB/POe1Ak/6+ciFwiIj+JiCvvz4sq7U0opZQPkUMBQk6OXa2QnX2oJ0Gpo4U/liRGAD8Co4CDpR0sIpHAl8BO4JS88+4G7vQ5pjvwATAD6Jj350ci0q2C266UUsXyBAcOh02nnJVlH7m5h+YhKFWdVfnwgTFmAbAAQESml+GUIUAYcI0x5iDwo4i0Bu4UkcnGGAPcDnxjjHk875zHRaR33vb/Vuw7UEqp0unQgjoaHQ3Ji7oDS/ICAo8vgEZAM59jFhU47wugR6W3Tqnj2Ndff8WZZ/agbt0axMQ0YOzYMeTk5JR4zs6dOxk2bCjNmjWiVq0wzj//XH777bd8x+zYsYNrr72KmJgG1KoVRnx8B95/f0aR18vMzCQ+vgNOp5CUVDETN6dOfZlWrZoTFVWfU0/twtKlS/Ltf/311+jbtzdRUbVwOoU//vij2Gt5eg9EjnxoYfjw4YgIEydOLPG4b7/9lh49elC3bl1CQ0Np3bp1oXOmTZvG6aefTu3atalVqxa9e/dm6dKl+Y556aWXiIuLIzIyksjISLp3785nn31W9gaXYN26dZx55pmEhobSuHFjHnnkEUwx3Sjvv/8+IsL5559fIa+tSnc0TDRsAGwtsG2nz75NeX/uLOKYBkVdUERuBG4EiI6OJiEhoaLaSmZmGr/8UnHXOx5lZqaxfn2Cv5tR6bKzM8nMPFAp13a7cyvt2h7r1q1j0KD+3HHHHbz88sts376dO+64HZfrII8//niR5xhjuOSSgTgcDmbMmEFkZE1efPFFzjvvbFauXOWtGT906BX888+/zJw5k7p16zF//nyuvfYqoqLq0rNnz3zXHD36Lho2bMC6dSm4XOnlft8ff/wxd901ikmTJtOtW1fefPNNLrjgPFauXEWTJk0A2L9/L2eeeSbnntuP++67D5crrdTXrVkzkpSUdTRt2jTfUIJIyT0Hc+bMYcWKFTRs2BCXy8WBA8W/johwww030LZtW0JDQ1mxYgW33347DoeDG264AYAvv/ySQYMG8eSTTxIWFsZLL71Ev379WLp0KSeddBIAdevWZfz48Zx44om43W7ef/99LrzwQr777jvatWtXxjtp5ebmetu8f/9+zjnnHHr27ElCQgK//vorI0aMIDAwkFtvvTXfeZs2bWL06NH06NGDnJycEt93aTIzMyv0//mqlpaWVmXtl+IitCp5cZE04BZjzPQSjlkEbDXGXOezLQbYDPQwxiwXkSxgmDHmHZ9jrgamGWOcJbUhPj7eJCZW3LKwRYsSaNOmlyY1KYf16xNo27aXv5tR6QYMiD+iJYnp6emMHn0Hs2d/QFBQEMOGDeeee+6jSZNofvjhJ5o2bVolSxLHjRvLF18sZNWqNd5t8+fPY8iQ/7B1664il6H9+uuvtG8fy+rVPxAX1wEAt9tNTEwDHnnkCa67bhgAdepE8OyzL3DNNdd6z23Zsik333wrd9452rvt00/n8uCDY3n//dl07Hgyy5atpkuXQ8vPfv75J+69926WLv2O0NBQevc+mwkTnqVBgyK/LwBw2mndaN8+jldemea9jyef3JKLL76Uxx57Mt+xSUmJ9OhxCqmpm2jWrFmJ98vplELH+eY8CAw8NB/BY/PmzfTo0YPFixdz3nnnccsttzB69GgOx8UXX4zT6eT9998vcr8xhoYNG3L//fcX+mD2VadOHZ588kmGDx8OQFZWFuPGjWPGjBns3buXtm3b8thjj9GvX7985/kuSXzllVcYM2YMO3fuJDQvK9Rjjz3GK6+8wtatW/HMH8/Ozua0005jxIgRfPPNN+zZs4f58+cf1vv2FR8fT0X+P1/VEhIS6NWrV4VeU0SSjDGF1moeDcMHO4DoAtuiffaVdMwOlDrG3HjjdSQkfM3ChYt55533efHFKdx++y3ExramadOmxZ43cOB51KkTUeLjcLhcrkJJaUJDQ8nMzCQ5OanIc7KybBEBp/PQeQ6HA6fTybJlh7qwe/Q4jdmzP+Tvv//G7Xbz6adz2b17N2effY73mK1bt3LbbTfzzjszvR8wvrZv387ZZ59B27btWLp0FQsXLiYtLY1LLx2Eu5i++6ysLJKTkzjnnL75tp9zTl9WrFhWyh05fL4TE3NyDk1MdLshOzuH//73vzzwwAO0adPmiK6/Zs0ali1bxplnnlnsMVlZWWRmZlK7du0i9+fm5jJr1izS0tLo0ePQiOy1117Lt99+y8yZM/nxxx+55pprGDhwIGvXri32tZYvX87pp5+e79+rX79+bNu2Ld8QzP3330+zZs245pprDuPdqopwNAwfLAeeFpEQY0xm3rY+wDbgD59j+gATfM7rA1T8b3EJCva6GGMQnVGkKtCePXv4+OOPeOONt4mPPwWASy/9D2+//RYPPfRoiedOnfo6Bw+WuuCnzPr06cfzzz/LzJnv8Z//XM7OnTt54olHANixo+hMjbGxrYmJieHBB8fyyivTiIiI4Pnnn2Xr1q1s337onJkzP+TKKy+nUaN6BAYG4nQ6eeed9+nQoSNgP6iGDh3CqFF3ERfXocgx/ddee4X27TvwxBNPe7e9+eY7NGhQh6SkRE45pWuhc/bs2UNubi5RUfm/Y0RHR/P114sP6/507NiWLVs259vWqVNb7/8JMTFN+eGH9d59vhMTs7Jg/Pjx1K1bj5tuuvmwXhfghBNOYPfu3eTk5DB+/HhuuummYo994IEHiIiI4IILLsi3fd26dXTv3p3MzEwiIiL43//+R/v27QHYsGED77//Pn/88QcxMTEA3HLLLSxevJhXX32Vl19+ucjX2rFjByeccEK+bdHR0d59zZs3Z9GiRXz44Yf88MMPh/2+VflVeVAgIhHASXlPHUCMiHQE9hpjtojIk0BXY8zZecfMBMYD00XkMaAVcC/wsDn0KTwF+E5E7gXmABcBvYHTquAtAZCUlITLp5SaMYbExEScTidxcXFV1Qx1jNuw4XeMMXTr1t277ZRTuvH2229x4YUXl3hu48aNK7Qtffr05amnJjJq1EiGDRuK0+lk7NhxLF26BIej6E7IoKAgPvjgE4YPv56GDesSEBDAWWedQ79+5+ULqsePf4C//97DwoWLqVevHp9+Oofrr7+ar776jri4Djz99BMEBQVz++13Fvk6AMnJSSxd+l2RPSAbN27A5XJxwQXnebe99NKrnHlm73Lckfzmzl1Adna293nbti2ZO3cBjRrZf4egoKAizxOB775L4L33prNixQ+4XIdfY2HJkiWkpaWxYsUKxowZQ/PmzbnqqqsKHTdlyhReffVVFi9eTGRkZL59sbGx/PDDD+zbt4/Zs2dzzTXXkJCQQLt27UhOTsYYw8knn5zvHJfLxVlnnZX3ftuyebMNik4//XQWLlxYart3797N0KFDef/996lVq9bhvWlVIfzRUxAPfOPz/OG8x9vAUKAhcKJnpzFmn4j0AV4CEoF/gEnAZJ9jlonI5cBjwCPABmCwMWZlpb6TQ6/Phg0b2Lp1K82bt/YGBMnJyTRs2JD27dtrj4GqEE6nnSITHBzs3RYVFU3t2rVp0+bk4k4D7PDB998vKfGYvXvTDqs9t99+J6NG3cH27dupXbs2f/zxBw88cB/Nm7co9pzOnbuwerX9sMnKyqJ+/fqcdlo3One2w5sbNmzg5ZdfyDfvIC6uA0uXLuHll19g6tTX+eabr1i6dAnh4fk/WE8//VQuu2wwb789A7fbzXnnDeCppwrP2I+OjiYwMJBVq37It83pdBIQEMCuXfnnLe/cubPEeQhFKWooJyamaalzD8AGBdu3b6d584bebbm5uYwZM4bnnnuOP//cWuLkxObNmwPQvn17du7cyUMPPVQoKHjuuecYN24cCxcupGvXwr0mwcHB3omHXbp0YfXq1Tz77LO88cYbuN1uRITVq1cXCm48QwMLFtigKC0tjfr16wPQoEEDdu4sfG89+9avX5837HO2d79nqCcwMJD169cTGxtb/BtX5eaPPAUJQLE/zsaYoUVsWwecUcp1ZwOzy9m8I7Z3717+/ttNZKSb669PISQkg+bN3YSG/uuvJqljULNmzXE4HPz++2/ebtvPPvuUf/75h3379lGzZs1iz63o4QMPEaFRo0YAfPjh+zRp0oROnTqXep6nrb/99htJSYmMH2+HPw4ezAAgoMDX44CAAO8HxGuvvUVGRrp337Zt2zj//H68/fYMune3qxM6derM7Nkf0rRp02K/lXs+9Hx17tyFxYu/5JJLLvNu++qrL7nooktKfU8VZfjwEVx88aX5tp1/fj/+85//cu21N+ByFT0xsShutztfLybA5MmTGT9+PJ999hmnnVa2DlXf63Tq1AljDDt27KB376J7VzxBke9Ew+7duzNmzJh8RZK+/PJLGjVqRLNmzYiKimLdunX5rvPAAw/wzz//8NJLL3mDHVV5joY5BdWe22344ouezJ/fmqefXsrixXEEBWXjdvekT5/fGTLEEBCgPQWq/GrVqsWFF17M008/wamndufPP//kk09m06hRIz77bB5XXHFlsedW9PABwKRJE+jX71wcDgdz5nzChAlPMWPGh94P9L/++otzzz2bxx57kkGDbObxjz/+iLp16xET05Qff1zH6NGjuOCCC+nTx07ui41tzYknnsRtt43gqacmUqdOXT79dA5fffUls2fPBSj04RAebocIWrQ40TtmfdNNI3nzzWkMGTKY0aPHUK9efTZt2sjs2R/yzDOTii3SM2rUnVx77VWcckpXunTpyNtvv8v27du44YZD4/I7duxg584d/Pbbr4Bd5bBv3780aRJDnTp1ANsVnpub6z1n8+bt3nPBBjmeb9AFRUVFERUVlW9bUFAQ0dENaN3aflPOyYHrr78aEXj77XdwOODFF1+gefPm3m/T3333HRMnTmTEiBHe60yYMIH777+f9957j1atWnnbExoa6g3U7r33XgYMGECTJk04cOAAM2fOJCEhwZuroFWrVgwZMoShQ4cyadIkOnfuzN69e0lISKBFixZcfHHRQ1lXXHEFDz/8MEOHDuWBBx7g119/5amnnmL8+PGICOHh4YWWPNaqVYucnJzDXgqpjowGBRXgoYccLFrUjpwcYe/eEEDIzrbdu99+G8ukScI99/i3jerYMWXKS4wcOZwTT7Rr5h944CFat27DzTcPY8OG3xk37qEqa8uiRQt5+unHcblcxMV1YPbsuZx77qFx+uzsbH79NZV9+/Z5t23fvp177rmTnTt30rBhQ4YMuZqxY8d59wcFBTF37gIeeOBeLr54IGlpaZx44klMm/YW558/sMxta9SoEd988z3jxt3HwIHnkpmZSZMmMZxzTl/vMExRLrtsMH///TdPPfUY27dvp23bdsyduyDfcMC0aVN57LGHvc8vvHBA3va3uPrqoQD07HmKd0y9KE2bNuXXX/8o8/spyOGArVu35MuYmJVlhxj++OMPAgMDOfHEE3nqqafyTTR86aWXyM7OZvDgwfmud8011zB9+nTABi5XXnklO3bsoGbNmsTFxbFw4cJ8yw3feustHn/8ce655x62bt1KnTp16Nq1a7E9B2B7h7788ktGjhxJfHw8tWvX5q677uLOO4ufG6Kqll/zFFQH5c1T8M8/0KiRITPT9gQ4HG7c7vz9eU6nYc0aoYSeXeVD8xSUn5ZOrhhH2330rLT0Tafs7+lM1aV0suYpyO9ozlNQrc2enX9msDGFfwMdDihH3g2llCoTLcakykuDgnLasQMyMg49HzlyTaFjDh6EXbtKvk5ROQ6UUupI+E5AzM7WUs6q7DQoKKcGDSAs7NDzZs32FzrG4YAShjBJSUlh9erV3kDAGMPq1atJSUmp6OYqpY4jRZVydrm090AVT4OCcrr0UsjNLXnQzu0WXngBPv208D5jDGvXrmXVqlXewGD16tWsWrWKtWvXao+BUqpCaO+BKgsNCsqpdm246y43wcHZRe4PDMymWTPD/v1w881w663gMxEbYwwRERFkZ2ezatUq3n33XVatWkV2djYREREaFCilKpT2HqiSaFBQAR5+GHr2XEVgYDYiBjAEBWUREJBD165r+PZbw5NPQmgofPIJnHMOLMlLLOdwOBg0aBDNmjUjKyuLPXv2kJWVRbNmzRg0aFCx6WLVscmmC5ZCj9NPP9V7TKtWzbzba9UKo1Ondrz++mv5rpOVlcWkSRPo2rUTtWqF0aBBHU4//VSmTXu1UCIbf7yf2rXDSzxvw4YNXHbZRTRuXJ969SK54or/FMqE988//3DttVdRv35N6tevybXXXsW///6b75gff1zHOeecSc2aoTRv3pjHH3+kQgLtsry2x2+//UbdujUOu+BUaVJS1nLVVf/lxBObULNmKO3axTJx4jPFFnvymDPnEwYM6EfjxvUJDRWWLEkACvcerFq1ij59+hAREUGNGjXo0aMHe/bs8V6nWbNmiEi+x7333lsh7+3ll1+mefPmhISE0KVLF5YsKToTpzGG8847DxFh9my/5a47pugnTgVwOITBg39k7NgXqVcvmzvvhBtu+IvbbnuTCy5IJSBAuPpq+OIL6NQJtm2Dyy+HBx+0kxA///xztm1LZ+3adixf3o21a9uxbVs6n3/+ub/fmvKDs846h82bt+d7zJ27IN8x99//IJs3bycxMYULLriQkSOH89FHHwA2ILj44ot4+unHufrqa0lI+J7ly5MYNepO3nnnLVasWF5l72XSpCmF3kvz5i249NL/FHtOeno6Awb0xRjDF198TULC93nvaWC+D7yrr76CNWuSmTfvc+bN+5w1a5K59tpDqXz3799P//59iIqKZtmy1UyaNIXJkyfw3HOTi3rZw1Laa3tkZWVx1VWXc9ppJSZkBeCdd6bTp0+vMrchOTmJevXq8+ab77JmzXoefPBhnnzyUSZMeKrE89LT0+nevQfPPHPoPhTsPVi6dCV9+/bljDN6sXz5CpKSkhg9enShzJAPPvgg27dv9z4eeOCBMre/OB988AGjRo1i7NixrFmzhh49enDeeeexZcuWQsdOmjRJvzhVME1eVAFEhPj4eDIzM0lPz6Z3b8HhaEZiYiecTqe37sGJJ8KcOfDCC/Dcc/DGG/Dtt4bIyBasXdsXt9uBMUJQUDbffOPgtNPW0bdvLoGBh1kNRR3VnE5nqXn2IyJqeI95+OHHmD37Qz79dA6XXTaY559/jqVLl/L996vo0uXQMuTmzZtz8cWXkpZ2ePUNyqNmzZr5Ui8vW/Y9mzZt5K233i32nGXLvuePPzaxfHmit5zvG2+8TXR0bb755mvOPvscfv75ZxYt+pxvvlnKqafa4lAvvfQqZ511OqmpqcTGxvL++zPIyMjgjTfeJjQ0lLZt25Ga+gvPPz+Z22+/0/t7+fbbbzF58gQ2bdpIkyYx3Hjjzdx666hiP2zK8toeY8eOoX37OE4//UyWLPm2fDezgKFDr8v3vEWLFqxZk8z//vcxY8aMLfa8IUNs8OL7rd+XwwFjxtzB8OEjufvu+wG77Pqkk1oVSqlco0aNEn9Wf/rpJ+644w6WLVtGaGgoZ599Ns8++2yJ50yePJmhQ4dyww03APDCCy/w+eef88orr/Dkk096j1u9ejVTpkwhKSnJW2lRlZ+GWBWkS5cu+WqNewKFghUSAwPhjjvspMOTToLffxeSk2PJzQ3EGAeebIi5uYEsW9aOSZM0PbIqXUhIiLci36xZM+jVq1e+gMDD4XAUqobnq06diBIfAweeV+y5ZfHmm9M4+eS2dO/eo9hjXC4XIuLNjQ/2/TkcDpYtWwrAypXLiYiIyHedHj16Eh4ezooVy7zH9Ox5urdAD9hyz9u2bfOWWn7jjWk8+OBYxo9/hLVrf+bppycxadLTTJ1adOnfsr42wIIFn7FgwXyeffaFMt6d8tu/fz+1atUu1zV27drFihXLadiwIWeffRoxMVH06nU6X3zxVaG5BxMnTqRu3bp07NiRxx9/nKysLO91tm/fzhlnnMHJJ5/MqlWrWLx4MWlpaQwaNKjYIY6srCySkpLo27dvvu19+/Zl2bJD9/bAgQNcccUVvPbaa4XSQavy0Z6CClSwEmJJlRE7dIAPPoCuXU2xqxeys4N49VXDTTeh2RCPI4sWfV5o/Pmmm0byxBNPFzo2JyeHmTPf48cf13HjjTcD8Pvvv9GzZ/EfuiXxrRpYFN8P2MNlS/B+yKOPPlnicd26nUpERAT33nu39z3ff/+95Obmsn27rR+wc+cO6tWrn+93TESoXz+KnTttLv8dO3Z46yB4REVFe89v3rw5Tz75KE888Yy3+FDz5s3ZuPFeXn31ZUaMuKXI9pXltbdt28aIETfw4Yf/IyKi6LkES5cuyVe6OScnh+zs7Hz/9mPGjC3xW7+vNWuSeffd6bz99owyHV+cTZs2AvDoo+N58skJdOzYiY8//oiBA/uxfHkS7dvbypUjR95G586dqF+/LqtWreLee+9l06ZNvP766wC88sordOjQgUceecSb0fCdd96hTp06JCYmFlmZcc+ePeTm5hb65h8dHc3ixYu9z2+66SbOPfdczjuvfEGqKkyDAj/66itwOiVf8qOCAgKE+fNhyJCqa5fyr9NPP4OXXso/cbBgbfnx4+/nsccewuVyERwczJ133s0NNwwHypf4qqiqgRVl5sz3cLvd3u7r4tSvX5+ZMz/i1ltv5tVXX8bhcDB48H/p1KlzhY4f7969mz///JORI4dz6603e7fn5OR47+Htt9/Ohx9+4N1X1tLS1157FTfeeDNdu3Yr9pguXeLzBWFz5nzCnDkfM336oQ91T3Gl0qSmpnLhhQO49dbby13N0fMtftiw4d4hio4dO/Htt98wbdpUXnzxFQBuvdXWKxCBk0+Oo0aNSC6/fDBPP/00devWJSkpie+++46GDRsWeo0NGzbgcrnyfai/+uqrJdZN8Hj33XdZu3btUZ22uDrToMCPdu2CgwcNJVSS5uBBw65dOoRwPAkNDSv1w3nUqDsZOvR6wsLCaNiwYb5vrS1btiI1NfWIXru0GfI9e57OvHkLj+jab745jYsuuqRMH3R9+vTll182sGfPHgIDA6lVqxYxMQ1o3rwFANHRDdizZzfGGO97N8awe/cuoqPteHWDBg0KrVjYtWun93zPh9+LL07l1FOL7lm5//77GT36vnzbyvLaCQlfs2TJt96iScYY3G43YWGBPP/8ywwbdiOhoaH5/p2joqIKbSuLX375hX79enPZZZfz+OMlTzIsiwYN7Id4mzYn59veps3J/Pnnocl+nvjMGFuxsWNHGwD9+uvvnHpqXdxuNwMGDOChhx4q1FsSHR1NYGAgP/zwQ75tTqeTgICAQv9uO3fu9M5D+Oqrr/jpp58KXXPw4MF0796dpUuXHvmbVxoU+FNUFISGltxTEBQkFFNdNR+3253vW1TB5+rYUqdO3WI/PC6//AoeeOA+kpISC80rcLvdpKWlFTuvoLKGD1avXkVKylomTnzusM6rV68eAN988zW7du3i/PMvAKBbt+6kpaWxYsVy79j+ihXLSU9P937Ad+vWnfvvH0NmZqZ3fsJXX31Jo0aNvMvpGjVqxMaNG7jyyquLfP369esXKohUltdOTl6X75x58+by1FOP8/33q2jUqOJKWP/880/063cWl1zyHyZOfLZCrtmsWTMaNWrEr7/mDyx/++1X2rZtX+h4T9Gldet+AKBu3YZkZUHHjp2ZPftDYmJiig0Ei/oZ7tKlC19++SWXXXaZd9uXX37JJZfYHpDHH3+c0aNH5zunffv2TJw4kUGDBh3We1WFaVDgRwMGwLhxJfcUZGXBvHlw9tlQRC8cAAsWLMDlcnnzGrjdbubOnYvT6aR///6V03hVaVwul7fGvUdAQAD1yxIdArfeejufffYp/fv3Ydy4hzn99DOIjKzJ2rVrePbZiTzyyBOceWavIs+trOGDN954jZNOalnk665evYrrrruaN998h1NOsePMb7/9FrGxralfP4qVK5dz112juO22O7wz+9u0aUPfvucycuRwXn7ZDrWMHDmc/v3P9x5z+eVX8PjjDzNs2FDuu+8BfvvtVyZMeIr77x/v/YY/btzD3HHHrdSsWYtzz+1PTk42a9Yks23bX9xzz32F2lrW127btl2+c5KSEnE4HPm2Z2VlsXfvXu/zvn3PpW/fc/P920dERBQ7J+Gnn9bTr99ZnHlmb8aMGZvvPM+36r/++otzzz2bxx57kkGDLgJg7969/PnnFm9ehQ0bfqdWrVpERzegQYMGiAh33HE3jz46nvbt4+jQoRMff/whK1eu4LnnXgRsELRy5Qp69epNZGRNkpJWc/fdd3D++RfQrFkMADfcMJI33pjGNdcM5b777ic6uj6bNm3kww8/ZNKkScVWTrzzzju56qqr6Nq1Kz179mTq1Kls27bNW/65cePGNG5cOLBq0qQJLVq0KPKaquw0KPCjWrXgppvg5ZdzyM4u/E8REJBDYGAAS5cKZ58NjzwCl1ySvxSq2+3G5XKxZcsW5s6dy6BBg5g7dy5btmwhJibmsHoMfLtDi3quqsbXXy+madP8EWDjxo3ZuHFrmc53Op3MmTOXadPeYPr0N7j//jGEhITQqlUsV199bYkz/yvDgQMH+PDDWYwd+2CR+zMyMvj111QyfLrMfv01lXHj7mPv3r00bdqMMWPuZ9SoO/Kd9847M7njjls5//x+AJx//gXeDy2wyyEXLPiSUaNG0r17PLVr1+b22+/i9tvv9B5z3XXDCA8PZ/LkCYwbdx+hoaGcfHJbbr656EmGZX3tsli+fBl9+5Y8hv7AA+MZN+6hIvd9/PFH7Nq1i48++sCbo8LD5bJzIrKzs/n111T2+aRRnT//U2644Vrv85tvvqHQa9122+1kZbkYM+Yu/v77b04+uS2ffrqQuDg7ydDpdDJ79gc8/vjDuFwuYmKact11N3DXXfd4r3vCCY345pvvGTv2bgYMOJfMzExiYmLo06cvzhKKwQwePJi///6bxx57jO3bt9OuXTsWLFhA06ZNS7xXqmLI8Z5GNz4+3lTkhJVFixJo06ZXvnLKJcnJyeWaa9axZEk7HA432dlBBAVl43Y7OP30H3nmmfaMHRuAZ+Jtv37w1FN26MHjhx9+YM2aNezfvx8RwRhDZGQknTp1omPHjmVqR0pKCi6Xi/j4eO81EhMTcTqdhZZVVrb16xNo27ZXlb6mPwwYEM/KlZUzWSoz80Chbm91+PQ+lp/vPfSsRBSxy7MdjvxfcipLfHz8UT0xMSEhgV69elXoNUUkyRhTaN2y9hT4WWBgAFdc8Rc9e64nMbEB6elhhIdnEB+/g6ZNa9G4cUemT4ePPoLx421WxJUr4fHHwQ6fGbKzs3G5QvjhhxPIyIggLCyNbt32kJ2dXaZv+8YYXC6Xd3Ka5xfIk4hFewyUUhXBd3JiXloNAgLswzM3QfmXBgXVQP/+/UlMTCQn51D62VNO6U58vA3iROA//4HTToO774aEBBg5Ej77DB5/XJg2rRaff35ZvoyIX33l4NxzNxEfX/pvmSfREtilTZ7gIDY21ttzoJRSFcU3AMjNtQ+R/AGC8g+dnu5nnm765ORknE4ntWvXxul0kpycTGJiYr41540awXvvwYQJEBEBCxZA9+6GhQubF5kR8YsvmvH007llaodvYOChAYFSqrL5lnTOybFFmbKytGqjv2hQUA14srR17tyZK6+8ks6dO+fb7ksErrgCvv4auneHzEzB7S66wycnJ4jXXnPkK9VcHE9w4qtgUKKUUpXFtyiTZ3jBt2qjqhoaFPiZiNCsWTM6d+7s/WYeHx9P586dvWupi9K4MVx4IQQFlfyhHRAA8+eX3AZPQOCZQzBkyBBiY2NJTU3VwOA4MWzYUC688Hx/N+Oo1alTOx599CF/N+OYUbBqY1YWheouqMqhQUE1EBcXl6+rvrhiSgXt3g05OSV37x88KOzaVfLriwhOpzPfHIL4+HhiY2PzVXlUR7dhw4bidEqhx9q1PzBp0hSmT3/Pe2yfPr0YNarkZXnK/6ZOfZlWrZoTGRnCqad2YenSJSUev337dq6++grat29NaGgAw4YNLXTMO+9ML/LnJDMzs9C1rr/+Gho3rk9kZAgdOpzMd98dqgQ5Z84nDBjQjxYtmuN0Ct9+m3BE79F3eMHTe6DDC5XHL0GBiIwQkU0ikikiSSJyeinHjxSRn0XkoIikisjVBfYPFRFTxCOkuGtWN4dTTMkjKgpCQkr+rXA6DVpETHmcddY5bN68Pd+jbdt21KxZs1B9heONb4W/o8FHH33AXXeNYsyYsaxcuYZTT+3BBRecx5YtW4o9x+VyUbduPe6++94S6zKEhYUV+jnxrVr577//0qtXT4wxzJnzGWvX/syzz75A/fqH/rNJT0+ne/cePPHEExXyfosbXsjJ0eGFilTlQYGIDAamAE8AnYBlwEIRiSnm+JuBp4FHgLbAeOAlERlY4NAMoKHvwxiTyTFswIDSfxmysuCUU0o+xrMkMTl5I0888QfPPmt44ok/SE7eiMvl0uGDY4jT6aRBgwb5HoGBgfmGD4YNG8p3333L1Kkveb8lekoN+7rhhmtp3Lg+Tz996D/9TZs2ERERzMyZ7xU63mPOnE/o0iWOmjVDadCgDuecc2a+XPcTJz5DTEwD6tSJ4LrrrubRRx+iVatm3v1FDXU8+uhDdOp0KFtgYuJq+vfvS6NG9ahXL5LevU9jxYrl+c5xOoVXXnmJ//znYmrXDmfcOFuNcP78eZx6ahciI0No3749Dz54f76AYdeuXVxyySBq1gylZcumTJ/+Zgl3vPJMmTKZq68eyvXX30CbNm147rkXaNCgIa+99kqx5zRr1oxnn32eq68eSu3axdegEJFCPye+Jk16hoYNG3qzUDZv3pyzzjqbNm3aeI8ZMuQqHnhgPH369C14+XLzDRBycnR4oSL5o6fgTmC6MWaaMeZnY8ytwHbg5mKOvwqYZox53xiz0RgzC3gNGFPgOGOM2eH7qLy3UD3YjIhCcHBOMUcY3G5h0CB4//2SflmEWbNieOKJS3nllaZMnAivv34CTzxxKbNmxVBSGmZ17Jk0aQqnntqda6651vstsUmTJoWOe+aZyTz66JM89NA47zLWRx55kFatYrn88iuKvPaOHTu48srLufLKa1i79me++uo7rrjiUNXE2bM/5KGHHmDcuIdZsSKZVq1imTJl8mG/hwMHDjBkyFV89dUSli5dRVxcRwYN6s/ff/+d77jHH3+Yc8/tT1LSOm66aSSLFn3B0KFDuPnmW1izZj0vvfQSn3wy2xswgA1KNmz4nYULF/PRR3OYMeMdNm/+o8T2LF26hDp1Ikp8+AZXpcnKyiI5OYlzzsn/gXvOOX1ZsWJZma9TnIMHD9KyZVNatDiBCy88nx9+WJNv/6efzuGUU7oxZMhgTjghilNO6cjLL7/oly8QOrxQsao0T4GIBANdgIkFdi0Cisu96gQKfuM/CHQVkSBjTF4KDEJFZDMQAPwAjDPGrOEYd/fdsHPn38yeXQ+RXLKzAwkKysGYAPr330tGRn0WL4bRo2HuXLucseD/7xMmGD7+uA45OYfSMGZlBQHw8cd1iI423HOPBgbHgkWLPs9XCbGoqoc1a9YkODiY0NCwQt8QfdWuXZvrrhvGJ5/MZsaMdxg8+L/MmjWTDz74pNjU2tu3byM7O5uLL77Um7bWtx7ACy88x1VXXeMtA33vvfeTkPANGzf+fljvs3fvs/I9f+65F5gz52O++GIhV1xxpXf7pZcO5rrrhnmfDxt2DXfeeTfXXGPTADduHMXjjz/NtddeyVNPTeC3337jiy8W8s03S+nRoycAr7/+Nq1bl5xzv2CZ5KKUtUwywJ49e8jNzSUqKjrf9ujoaL7+enGZr1OUVq1iee21N4mL68CBAwd48cUp9OrVk9Wr19KyZUsANm3ayKuvvsxtt93B3Xffy9q1P3DHHbcCMGKEf+ai+OY+8E2OFBiowcHhqOrkRfWwH9o7C2zfCZxTzDlfANeLyCdAIjaoGAYE5V1vO5AKXAesBWoAo4DvRaSDMea3ghcUkRuBG8H+EiUkJJTvXfnIzEzjl18q7nplcfHF/9K/v81qaEwgIjk4nZmEhARRs2Yt4uOjePnllixZEkSvXrlcd91GLrjgL+/M3pgYePLJ4q8vAikplDl1c3llZqaxfn1C1byYH2VnZ5KZeaBSru125xa6dm5uNj169GTKlCnebaGhoWRmHiA3Nxu3O8d7jtudS25uVpnaN3jwZTz88MOkpKyhc+fO9O17FpmZB/jwww+4/fbbvcfNnv0x3bp1o1ev3nTu3I7evc+iV69eXHjhhd5qiD///DNXXnllvteNj+/Mhg2/ebcVbCtATo4LY9zebbt37+axxx5jyZLv2L17N7m5uRw8eJCNG3/Ld15cXNt8z5OTk1i9ehUTJz7tcy/dHDx4kM2bf2fdumQcDgft27fxnhcdXYeGDRuSk+Mq9n6JwAknRBe5z1dZfx5crjQAsrIySrwPJXG7c8jNzS50bMeO7ejY8VCg9sYbr3PaaT154YVJPPPMhLxz3XTq1IkHHrA9KK1bn8Qvv6znlVde4LrrrinwOrlFtrWquFyQmZnJokUJ3tTKR5u0tLQK/ZwqydGQ0fBRoAF27oFgA4i3gXsAN4AxZjngHTAUkWXY3oJbgdsKXtAY8xp2CIL4+HhTkTmlFy1KoHXrstc+KC9jDPPmzWPLlp0EBgYSHh5Oeno6OTk5xMTE0KPHmbRrJ/z3v/DAAzBvXgAvv9yS1atbMnGiTZn80EOGjIziewLCwgwPPSQMGVI17+l4qX0QFBRSaXn1i8rZHxAQREREDdq27Vjo+ICAIByOQO85DkcAAQHBZWrfJZf8lzvuuIOFCxeycOFi7zkXXTSYHj16eY9r3LgxoaGhfP75V6xcuYLFixcxY8YMHnnkYRYv/pa4uA6IFL4vgYF2BYxnW1CQE5GAfMcY40DE4d02YsR/2LVrJxMnTqFZs2YEBzs577yzMUbynVerVr18z91uNw88MJ6LL7Zle12uNJxO27NywgnNSEn5CYDQ0EgCAw/99ykiBAY6i71fS5cu4YILzivxPo4ZM5YxY8aWeIxH48ZOAgIC+Pff/P/Of//9Lw0bNirTv5vDEUhAQFCZjo2P78qmTZu9xzZs2JC2bdvnO7dduw5MnfpKoes5HHbIJjg4zG91JIKDQ4iN7YXLZXsNatSAmjUhNPToCBIqo/ZBcao6KNgD5AIFQ+ZooMg5AMaYg8B1IjI877jt2G/5B4DdxZyTKyKJQMsKane15clz0LBhQ3755RdEhPDwcFq3bp1vOWG9ejB1qs1tcN99sHo19OkDXbtSYkAAZVvWqI4tQUHB5OaWLRtmWFgYJ53UEhHhrLPO9m6vUaNGkeVxRYRTT+3Oqad25/77H6Rjx7Z89NEHxMV1oHXrNqxcuYKhQ6/zHr9y5Yp859erV5+1a3/It63g82XLljJ58vP07z8AgJ07dxaZDKygTp06k5r6i7eEdMHgKja2NW63m9WrV3mrTW7ZsoVt27aVeN2KHj4IDg6mc+cuLF78JZdccpl3+1dffclFF11S5uuUhTGGdetSvBUSAbp378mvv6bmO+63334lJqb6VjIMCrIPgMxMOHDA9n7WrGmDBKdT0ytDFQcFxpgsEUkC+gAf+ezqA3xcyrnZwFYAEbkcmG+MKXLuvdhPwjjscMIxr3379iQmJubLc+DZXtC558Kpp8Jjj9nJh0uXgojBmOJ/G0JDDVFR+ttyPGnatBmJiav4448/iIiIoE6dOsXOE1i8+EvWrEkmIiKCjIwMwsLCir3uypUr+PrrxfTp04+oqGh++GENW7f+SZs2JwNwyy2juO66q4mPP4UzzujF//43m9WrV+b7wOzV6ywmTXqG6dPf5LTTzmDOnE9Yvvx7Gjc+wXtMy5atmDnzPbp27UZ6ejpjx95DcHBwqe977NgHueii84mJacqll/6H3FwXv/++idWrV/Hkk88QGxtL377nMnLkcF5++TVCQ0O55547CQ0NLfG6oaGh3kCjoowadSfXXnsVp5zSle7dezJt2lS2b9/GDTfc5D3muuvs6u0333zHu80TQB04sB+Hw8HatT8QHBzs/Td47LGH6dr1VE46qSUHDuznpZeeZ926FF544dCqhttuu4Mzz+zBU089zqWXDmbt2jW89NLzPPLIocmSe/fu5c8/t7Brlw2YNmz4nVq1ahEdXXg1Q1ULCbEPtxv274e9e23AULu2TSHvCR6OR/7oOJkMDBWRYSLSRkSmAI2AqQAi8o6IeH+CRaSViFwlIi1FpKuIzALaAWN9jhkvIv1EpIWIdATewAYFU6vwffnFkWQjrFULJk60QUHjxpQYEICdd3B+GZLdFXwtXcp49LrjjtEEBwfTsePJNG5cv8S17+PH38/AgYOoU6cOc+Z8UuJ1IyNrsmzZ91x00fm0bduSMWPu4r77xnkn/1122WDGjXuI8ePvp1u3Tvz44zpGjboz3zX69u3HAw+MZ/z4++nevQubN//B8OEj8h3z2mtvkp6exqmnduHKKy/nmmuuo2nTZqW+7759+zFnzmd8++039OzZlbPO6s2ECU/RpMmhFdOvvz6dZs2a06/fWVx88UAGD76iTNeuaJddNpiJE5/jqaceo2vXjixbtpS5cxd4J3AC/PnnFv78M/+/XdeunejatRNLly7hs8/m0bVrJwYN6u/d/++//zJy5I106NCGAQP68tdff/HVV99xyildvcfEx5/CRx/NYfbsD+ncuR0PPng/48c/yk03Hfp3mD//U7p27cT559vemptvvoGuXTsxbVr1+W/Z4bBDCDVq2EBgzx7YuBG2bLE9CWXsLDumiD/+4xaREdg5AQ2BH4E7jDHf5e1LADDG9Mp73gaYCcQC2cA3wBhjTKrP9Z4FLsbOPdgHrAEeyptrUKL4+HhTkXW2Fy1KoE2bqptTAJCSkoLL5fJmI/QECk6ns9SsiBkZcNllhh9+gKKWHgYGZjNyZGCpqw/K04aCjpc5BQMGxLNyZeXUeC9qTkFlmDv3f1x++aUkJaUwa9ZMEhNXs2DBogp9jcmTJzJ16ov8+usfFXrdsqiq+3gsqw73sFu3eD77rOy/a1lZ9gG256BWLduz4K/5B5Uxp0BEkowx8QW3+2WioTHmZeDlYvb1KvD8Z2ySo5KudwdwR0W172gTFxeHMaZQmuSyZEUMC4NPPzVceOEGkpNPwhMYiOQiYjjttJ+46672lJSrwJP8yLNWPT4+Pl/vhW/b1LHD7Xbz0EPjGDz4v5x8cluGDLmaCROe4tVXX+GSSy7zrihQ6mgTHGwfxtj5B3/+aQMCz/DCsTz/4GhYfaDK4EjSJHs4HMKDD/7LV1+9ycKFZ7JhQwuMCSA0NIP4+PBSryUiBAcHEx4eTmpqqjc4CA8PJzg4WAOCY9T778/g119TmT17LgCxsbE89NCjPPzwOBITVzFt2lt+bqFS5SOSf/7Bv//C338fmn8QHm6Dh2PJUbAYQ1U2T0Gks8+O4+KLP+P662dwwgl/kZERxsSJJ3HttcJffxV/vjGGrKws0tLSSE9PB2ze87S0NLKysnRuwTFqyJCrSE/P5sQTT/RuGzNmLNu27anQgODOO0f7ZehAKV8Oh+1Z9Z1/sGmTnX+wf79Nt3ws0KBAAdCuXTv+/PNPRIS6df/hiis+ZvDgNdSoYVi8GHr3hjffLHrijYjQpUsXIiIicLlc7N27F5fLRUREBF26dNGeAqXUMSUgwPYS1Khhhxh27IANG+CvvyA9/egu0KRBgcLtdjN37ly2bt1KkyZNuOWWW4iJaUKzZksYM+Zz+vUzpKfDuHEwaBD89FP+840xJCUlkZ6ejtPppHbt2jidTtLT00lKSipzT4GuXlBKHW2Cguw8gxo17OTErVttgLBjBxw8ePSlWNagQOFwOHA6nTRp0oRBgwbhcDgYNGgQTZo0ITra8OabwuuvQ4MGsGYNnHeeTYt88KA933dOQVhYGCJCWFjYYc0pSElJybeE0rN6ISUlpTLfulJKVRin0wYHYWG2x2DLFrvEcc8eO2HxaAgQdKKhAqB///643W5vghpPYOB5ft55cNpp8NRT8Pbb8OKLMG+efX766YfmFLRu3dq7+uCXX37xzikoKTAouHohLIzjYvVCVFRDunUrtCKoQmRnZxIUFFIp1z6e6H0sv+pwD6OiGlbp64nY/Adw9E1Q1KBAeRXMWFfweY0a8PjjcPHFMGYM/Pwz/Pe/cPHFwmWXhdG6dWueeioeEGbPth92vqmWi+NZQgmQmppK06ZhbN68ldjY2DIvrTwavfXWvEq79vGS66Gy6X0sv+P9HnomKIKdk7VnD+zaZXsVate2+6pTBkUdPlCHrUsXWLgQxo61S3U++QRuuCGWL7+sd8TdY57JivlfRycpKqWOHb4TFEVg587ql0FRgwJ1RIKCYORI+PprOPNMQ1paIC+91Jw1a9xs2mR44ok/WLNmEy6Xq0wTBteuXcvcuXPzzSmYO3cua9ceF+UrlFLHGd8Jim43bN9uJyhu2+bfFQwaFKhyadoU3ntPOPdcAxiysgLYuROmTo3h8ccv5Ztv7HBCSdxuNxs3bmTLli3e4jsRERFs2bKFjRs34j6a1/copVQpgoNtgBAeDi5X/hUMGRlV2xadU6DKbeJE+PrrXA79OAludwBuN7z0Ui4QwD33FH++w+EgODiYyMhI0tPT2bvXkJ6eQWRkJMHBwcVW51NKqWOJiJ1r4HTalQrp6bBvH2RnV10b9H9bVS7//gtTpxqysoqOL3NyAnjhBcNvvxV/DWMMUVFRBAYG5suIGBgYSFRUlOYrUEoddzwrGMLDq3YpowYFqlw++4xSK0K63UK/fvD660WnAvXNiPjWWwPYtauGZkRUSik/0KBAlcuuXYeSGBXP4HLB+PEwYAAkJxfY65MR0eEQby2Gw82IqJRSqnw0KFDlEhV1KElHccLC4JproHFj+PFHuOACm+fg33/tft+MiA5HQN45h5cRUSmlVPlpUKDKZcCA0tfW5ubaICAhwS5jDAiA996DM86ADz4At9uQkpLC77/vJjOzJsYEsmXLafz++25SUlK0p0AppaqIBgWqXGrVgptugqCgouuGBgVlc9NNULOm7TEYOxYWLYLu3W3azzvvtBkSP/64Ky+8cB07djjJyoLXX2/CCy9cxxdfxOF2a1CglFJVQYMCVW6jR8M552wgICAHETdgCArKIiAgh3PO2cjo0fmPj42Fjz6CKVOgXj1YvVpYvboVubmBGGN/JLOyAsnNDWTZsnZMmqQ/pkopVRU0T4GqAIbTT19BixaLmTnzCiCQU09dTYsWP9O4cQTQkoIJjETg0kuha1fo2dPgdh/av2ZNlPfvLlcAU6cahg8XatasmnejlFLHK/0KpsrN4XDQoUMHGjYMIyIinYiIfcTF/UjDhmF06NChxORDS5ZASEj+gGHGjJPzPQ8IEObPr5SmK6WU8qE9BarcjDFkZ2cTFBTEtdd+RlhYGBkZToKCgsjOzi6x9LFd0mjw7UkIC8smI+NQ2bCMDMOuXboCQSmlKpv2FKhyExF2795NdnY2YWFhiAhhYWFkZ2eze/fuEpcUFrWkccyYlQWub4uE6CIEpZSqXBoUqHJzu924XC72799PREQEV1xxBREREezfvx+Xy1ViQaOiljSGh+dfyWCMMHMmXHYZ/PJLZbwDpZRSoEGBqgAOh4MWLVoQExNDWloaM2fOJC0tjZiYGFq0aFHinAK7pFFwOosOHIKDczn7bKhdG5Yvh7594aGHYP/+ynkvSil1PNOgQFWIDh06MGjQIO9QgYgwaNAgOnToUOq5d98Nw4dDUFBu3pJGCArKIigol5tuEt5+205IvOYaO4QwbZpNfPThh/6rOa6UUscivwQFIjJCRDaJSKaIJInI6aUcP1JEfhaRgyKSKiJXF3HMJSLyk4i48v68qPLegSrIU7/AV1nrFhjjplWruYwY8Tr16qUTHAyXXrqeESOm0arVXIxxU7s2PPEELFwI8fGwezfccQdceCGkpFTSm1JKqeNMlQcFIjIYmAI8AXQClgELRSSmmONvBp4GHgHaAuOBl0RkoM8x3YEPgBlAx7w/PxKRbpX3TpSHMYbExERSU1OJjY1lyJAhxMbGkpqaSmJiYqmBgcPhwOl00rJlFCeeGEFQEDzzTAdatozG6XTmG35o1w7mzLGJj6KiICkJ+veHe+6xGRKVUkodOX/0FNwJTDfGTDPG/GyMuRXYDtxczPFXAdOMMe8bYzYaY2YBrwFjfI65HfjGGPN43jUfBxLytqtK5qlqGBsbS3x8PCJCfHw8sbGxOJ3OMhU06t+/PxdccAGepYkOh4MLLriA/v37F/F6NvHRd9/ZFMsBATBjBpx+Orz5ZtHlmZVSSpWuSoMCEQkGugCLCuxaBPQo5jQnkFlg20Ggq4h4FrN3L+KaX5RwTVXB4uLivAEB4A0M4uLiynR+SkoKycnJzJ5tOPFE2/uQnJxMSgljAzVqwLhx8NVXcOaZsG+ffd63r52DoJRS6vBIVVagE5FGwF/AmcaY73y2PwgMMcbEFnHOE8D1wPlAIjaomA9EA42MMdtFJAsYZox5x+e8q7E9DM4irnkjcCNAdHR0l1mzZlXYe9y/P43Q0IgKu97xIiMjg8zMTEJCQnA43LjdDu/zsLCwUs83BlasqMvUqSexfbtNfNCz525uvHEDDRsWjCmPfZmZaYSE6M9heel9LD+9h+V38GAakZEVew979+6dZIyJL7j9aMho+CjQADv3QICdwNvAPcARzT03xryGHYIgPj7e9OrVq0IaCrBoUQKtW/ciIKDCLnlcWLt2LVu3biQ9fS9Nm4axeXMG4eHhtGjRmLZtS1/BAHa+wZVX2tUJU6bA99/XJzGxPsOHw6232iqNx4v16xNo27aXv5tx1NP7WH56D8vH7YaffkqgIj+nSlLVcwr2ALnYb/m+ooEdRZ1gjDlojLkOCAOaATHAH8ABYHfeYTsO55qqejHGkJWVRVpaGunp6QCkp6eTlpZGVlZWmVYweISE2ABgyRJbktnlgueft/MNPvlEsyIqpVRJqjQoMMZkAUlAnwK7+mB7Ako6N9sYs9UYkwtcDsw3xnh6CpYfyTVV9SAidOnShYiICFwuFzk5ObhcLiIiIujSpUuZJioW1LAhvPCCXanQoQPs2GGDhUGD4IcfKvwtKKXUMcEfqw8mA0NFZJiItBGRKUAjYCqAiLwjIr5zA1qJyFUi0lJEuorILKAdMNbnmlOAs0TkXhFpLSL3Ab2B56rqTakj58lxkJ6ejtPpJCAgEKfTSXp6eplzHRTnlFNg/nyYPBnq17dLGAcMgFGjbKBwJG0t6blSSh3NqjwoMMZ8gF0q+ADwA3Aa0N8YsznvkJi8h0cAdhnjWuBLIAToYYz5w+eay7C9B0OBFOBqYLAxJn9lHVUtiQjBwcGEh4fnFVSCsLAwwsPDCQ4OPqKeAl8OBwwebIcURo6E4GCYPdsOKUyZAgcPlu06KSkp+fIuePIzlLRCQimljiZ+yWhojHnZGNPMGOM0xnTxXYlgjOlljOnl8/xnY0wnY0yYMaamMeZCY0xqEdecbYxpbYwJNsa0McZ8UkVvR5WT75yC1q1bU6dOHVq3bn1EcwpKUqMGjB0L33wD550HGRnwzDN2OePcuSXPNzDG4HK58iVk8iRscrlc2mOglDomaO0D5Xee5EetW7cmPt6ukImPj6d169ZlTn50OJo1g9dft7UTTj4Z/voLRoywKZPXrCm+jZ7ejNTUVGbMmEFqamqF9WYopVR1oEGBqhbKm/zoSPTsCZ9/bnsL6taFxEQ4/3w7IfGvv/Ifa4xh8+bN7Ny5M98KiZ07d7J582btKVBKHRM0KFDVRsFv21Xx7TsgAIYMge+/PzTf4JNPbBXGCRMg7/MfgAYNGpCTk0NGRgZ79+4lIyODnJwcGjRoUOntVEqpqqBBgVIcmm/w7be2tyAzE557zk5G/OADyM21QUpQkM2s7ekZCAoK0qEDpdQxQ4MCpXzExMCrr8L//gcdO8LOnXDnndC/v/DTT3WoX78+s2ZdxvvvX4LD4aB+/fo6p0Apdcw4GtIcK1XlunaFefNs8qMnnoD162Hs2BNp3jyQAwdqIOJg/fqOZGWlEhgYSFxcnAYGSqmjnvYUKFUMh8OmSl6yBO65x01AQC6bNjVl375I/v03gkWLevLCC9cxc2Zj3G6daKiUOvppUKBUKUJDweUSRDxZtQUQsrMDyc0NZPnyOCZN0l4CpdTRT4MCpUrx778wdSrk5AQVuT8nJ4iXXoJ//qnadimlVEXToECpUnz2GaWWws7JEfr2tUMN/qS1GZRS5aFBgVKl2LWrLPURDNu2weWXw1VXwc8/V0XL8tPaDEqp8tKgQKlSREXZeQUlCQ2Fc8+FiAj4+mvo2xfuugu2b6+aNhaszQBobQal1GHToECpUgwYYJMXlcTttuWZly2Da6+1KxdmzYLTToMnn4T9+yu3jZ600LGxsaSmprJ3715SU1OJjY3Nlz5aKaVKokGBUqWoVQuGDzcEBWUXuT8oKJvhww01a9oaCo89Zisx9u9vMyO++CL06GGLMGVlVV47161bB5Bv+MB3u1JKlUaDAqXK4O67hXPO2UhgYE7e0kQbJAQG5nDOORu5++7838RbtIBp0+DTT6FbN7syYfx4W6Z5zhzbs1CRPMMHycnJZGRkYAxkZGSQnJyswwdKqTLToECpMnA4hGnTWvHWW2upVWsfkZH7Oeus75g+fS3TprXC4Si6e75LF/j4Y3jrLWjVCrZssYWXzjsPvvuu8tqrowVKqSOhaY6VOgw1ari58cZ3vc8jIrqXeo6InXh41lkwe7atvvjjj/Df/9qCS2PHQnkrRIsITqeTzp07k5qaCkB4eDixsbE4nU6dU6CUKhPtKVCqDIwxzJs3j5UrV+J0OqlduzZOp5OVK1cyb968MnXPBwbaJYtLl8L990NkpM1rcN55cNNNsHFj+drYvn37w9qulFIFaVCgVBkYY/jnn3/Izs6mfv36DBkyhPr165Odnc0///xzWGP2oaEwYoRdqXDzzeB02uJLvXvDvffayoxH0j7PEsTY2Fjq1KnjXYngm7tAKaVKokGBUmXgcDjo2LEjTZs2JT09nZkzZ5Kenk7Tpk3p2LEjDsfh/yrVrg0PPGB7Dv77Xzv58N137UqFJ5+EffvKfi3P8IFnCSLgXaKowwdKqbLSoECpMurQoQMXXnih9wNWRLjwwgvp0KFDua7bqBFMnGiTHhVcxvjSS2XJpmjFxcXly0ngyV0QV94JC0qp44YGBUqVkTGGpKSkfNuSkpIqrGu+ZUu7jHHePBsQ/PsvPPEE9OwJb78N2UWnSchHRLjkEtiw4dBzpZQqKw0KlCqDgmP2Q4YMqbQx+86d4cMPYeZMuyph5067QuHMM+GTT0rPrqiUUkdKgwKlyqDgmL1vWuHKGLMXsUHAggXw6qtw4omweTPceqtd3vjFF1BUHKJVEpVS5aF5CpQqo7i4OIwxhcbsK7OLXgTOP98WW5o9GyZNgl9+geuug06dYMwYm+sAbJVEl8sF2ImGnt4Np9Op8wqUUmXil54CERkhIptEJFNEkkTk9FKOv0JEfhCRDBHZISLviUgDn/1DRcQU8Qip/HejjicFA4CqGrP3zXHwyCNQrx6sWWO3XXYZJCZ60hxvZMuWTLKz4Ykn/iA5eaOmOVZKlVmV9xSIyGBgCjACWJr350IROdkYs6WI43sC7wKjgTlANPAyMAM42+fQDOBE33ONMZmV8BaU8hunE66/3gYDb7wBU6fafAeDBgkNG8axe3dncnOFrCx4/fUTMCaGSy7ZQ3y8TjhUSpXOHz0FdwLTjTHTjDE/G2NuBbYDNxdzfHdgqzHmWWPMJmPMCuAFoFuB44wxZofvo/LeglL+FR4Ot90Gy5fDqFEQFGTYvt1JTk4AxjjYsSOMrKwgsrMD+OSTukyYoD0FSqnSVWlQICLBQBdgUYFdi4AexZz2PdBQRAaKVQ+4HFhQ4LhQEdksIltFZL6IdKrQxitVDdWsCTfeWLgA0qRJp3j/npUVyNSph5cMSSl1fJLDGWsUkVOBc4FTgUZAKLAHSAW+BeYYY/4p4fxGwF/AmcaY73y2PwgMMcbEFnPexcD0vNcLBL4EBhljDubt7w60AtYCNYBRQH+ggzHmtyKudyNwI0B0dHSXWbNmlfkelGb//jRCQyMq7HrHo8zMNEJC9B6W1d69sG2bzYi4b18wX33VlJUrG5Kb68DhMHTpsoO+fTfTvn0mder4u7VHF/1ZLD+9h+V38GAakZEVew979+6dZIyJL7i9TEGBiFyDHdNvCxzAfvjuBg4CdYDm2A9lF/Ah8LAxZlMR1znsoEBETsYGAc8BXwANgQnAD8aYq4tpbwDwA/CNMea2kt5bfHy8SUxMLOmQw7JoUQJt2vQiIKDCLnncWb8+gbZte/m7GUeNZ5+1qxJ8f5XHjl3OE0/kr+DYoYNNjtS4cRU38CimP4vlp/ewfNxu+OmnBPr27VWh1xWRIoOCUicaikgKUB94B7ga+2FcKJIQkZrA+cAQ4CcRGWqM+aDAYXuAXOxkQV/RQHFzAO4DVhljJuQ9TxGRdGCJiIw1xmwteIIxJldEEoGWpb0/pY52UVEQGmrIyDg0hlCnjqvAUYa1a4XTToMhQ+CWW6BBA5RSKp+yzCl4A2hujBljjFlTVEAAYIzZZ4yZYYzpjx1e+LeIY7KAJKBPgV19gGXFvH4YNpDw5XleZPvFrhOLw05gVOqYNmBA6VkOg4JsiebsbHjrLZtG+cEHYdeuqmmjUuroUGpQYIyZcrhL+4wxa40xXxSzezIwVESGiUgbEZmCnZ8wFUBE3hGRd3yOnwcMEpGbRaRF3hLF54FkzxJGERkvIv3y9nfEBjJxnmsqdSyrVQtuugmCg3OK3B8cnMOIEfD667B4sQ0iXC67pLF7d3j4Ydi9u2rbrJSqnqp8SWLekMLtwAPYcf/TgP7GmM15h8TkPTzHT8cuY7wF+BGYDfwKDPK5bC3gNeBn7EqGxsAZxphVlfZGlKpG7r5buOSSvwkKciPiBiAoKIugIDeXXPI3d99thxZat4bXXoNFi2yWxMxM+/zUU21SpD17/PkulFL+VubkRSJyIfaD+GTs5EKAvcBPwFxjzJyyXssY8zI2AVFR+3oVse0FbG6C4q53B3BHWV9fqWONCDzzTH06dVrAk0/2JCAgl7POWsLZZx/kv//tX2jJYtu2tqdg3TqYPNkGCa++Cu+8A0OH2p6HevX88laUUn5Uak+BiNQWkaXAJ0Bv7GTBFXmPPUAv4BMR+V5EaldiW5VSxXC73cydO5c9ezZQt24OISEBDBy4nz17NjB37lzcbneR57Vvb+cYLFwIffrAwYPwyiu25+DRR7XnQKnjTVmGDyZhu/PPNMY0M8YMMMZclfcYYIxpDpyB7bKfWJmNVUoVzeFwcPDgQSIjI6lb137Fv+CCC4iMjOTgwYM4HCX/qsfFwfTptiqjJziYOhW6dbPDChU556BggFJcwKKUqnplCQouAEYbY5YUd4AxZikwBriwgtqllDoMxhhatmxJYGAg992XyIknQnJyMoGBgbRs2bLMBZE6dLDBgafnIDPTDiuceio89BDs3Fm+di5YsCBfz4Wnh2PBgoIJSpVS/lCWoMAJFJul0Me/QHC5WqOUOiIiQnBwMBEREaSmprJ3715SU1OJiIggODj4sKs5enoOFi6Efv1scDBt2qGljNuPYLGv2+3G5XKxZcsWb2Awd+5ctmzZgsvl0h4DpaqBsgQFy4H7RaRGcQfk7buP4nMNKKUqkTGGrKws0tLSSE9PByA9PZ20tDSysrKOuHRyXBy8+SZ88QX072+DgzfesMHBfffB1kKpw4rncDgIDg4mKCiILVu28OKLL7JlyxaCgoIIDg4udYhDKVX5yrL64HYgAdgsIp9hlwV6eg5qY1MfD8AmFOpd8U1USpVGROjSpQtbt27ln3/+IScnB5fLRVRUFF26dDnsnoKC2rWzPQU//QTPPw/z59uVCjNnwmWX2QyJzZqVfA23201WVhbZ2dnMnHkxIAwe/CEAWVlZuN1uDQyU8rOyJC/6CegAvI0tY/wENinQ1Ly/98SmQO5ojFlfeU1VShXHGENSUhLp6ek4nU4CAgJxOp2kp6eTlJR0xD0FBZ18sp2A+PXXcNFFNi/7++/DGWfYUs6//178uQ6Hg4EDBxIUFIQxts3GGIKCghg4cKAGBEpVA2X6LTTGbDfG3GGMOQkIx640aAxEGGNOzNu3rTIbqpQqnmdOQXh4OGFhYYhAWFgY4eHhRzSnoDStWsGLL0JCAvznP3bbxx9Dr142x8FPPxU+x+12M2PGDDIzMxGxbRYRMjMzmTFjhs4pUKoaOOzQ3BiTmRckbPeULlZK+ZfvnILWrVtTp04dWrduXe45BaU58URbpXHpUrjySggMhHnz7MqFa6+FNWsOHesJAHx5ghUbKFRs4KKUOnxlSV508eFeVEQaisipR9YkpdThEhGcTietW7cmPt5WQ42Pj6d169Y4nc5K/8CNiYGnn4Zly+D66yEkxGZJPP98+O9/YflyyM11ExwczMGDwaSlRZCWVpOUlPYcPBhMcHCw9hQoVQ2UZaLhCyLyIHYOwYfGmL3FHSgipwNXYcsn34HNeqiUqgJxcXEYY7wBgIgQHx9fpd/AGzWyyY5uvdVOTJw+Hb77zj5OOSUA6EtycjRutwNjhG++OYOvv+5Fv36bGDo0oMraWRrf+1jUc6WOVWUZPmiJTXH8CLBTRFJE5F0RmSwiT4rIVBFZJCJ7sasUWgJ9jDGvVV6zlVJFKfjB5a8Psvr1YexYWLkSRo+2lRxXr4bVqxuTmxuIMQ5AyM4OJicnkMWLWzBhgl+aWkhKSgqJiYneIRdjDImJiaSkpPi5ZUpVvrKsPsgwxjwCnABcCSQBXYDrsL0BA4EAYArQ1hjT2xij+QqUUtSuDXfcYYcSAgKKn9fgcgUwdaph374qbFwRjDG4XC5SU1NJTEwEIDExkdTUVFwuV6XNzVCquihzlURjTJaIfIWtiJhZ6glKKZUnIQGcTsjIKP4Yh8PmPxgypMqaVYhnyAUgNTWVpk3D2Lx5K7GxsVU+FKOUP5RlomGAiDwkIv8AO4H9IvKxiNSq9NYppY4Ju3bBwYMlf6AePCjMmQP/lCWpeiXyDQw8NCBQx4uyzCm4CXgQWIOtgjgXGAQ8W4ntUkodQ6KiIDS09OOWLYOuXeHhh2GbnzKfeOYQ+PKdY6DUsawsQcENwDRjzFnGmDHGmMuAkcCVIqIFkJRSpRowAHJzS/5QDQoy9Oxphxhee83WV7jrrpKzJFY0T0CQmppKbGwsderUITY21jvHQAMDdawrS1DQAviowLYPsJMLm1Z4i5RSx5xateCmmwSns+hcBE5nLiNGCB9+CJ9/DhdcALm5MGuWzZJ4/fWQlFT57fTke/DMIQA7dBAbG1sl+R6U8reyBAURwP4C2w7k/Vls5USllPJ1991w000OnE6Dp8xBWBg4nYabbgrg7rvttvbt4ZVXbG6DK6+E4OBDgcIll8DixVCZX9jj4uLyzSHwzDGIi4urvBdVqpooa5rjxiLSwvPA9h4U2p63TymlChGBe+6x3/ibNoUTToCHHoLkZLu94Jfw5s1tlsQVK2wVxshI+/drroFzzoGPPoKsrMpqa/XI96BUVStrUDAb+M3n8Uve9jkFtv9Wwe1TSh1DUlJS+P33RKKjDSecAFdcYfjtt5ITA0VFwX33wapVMG4cNGgAv/wCt99u5x28+iqkpVXde1DqWFaWPAXXVnorlFLHPN/EQGlpsURE1Mg3qa+0VMI1atgKjNddB//7ny3h/OuvNq3yc8/BVVfZfQ0aVN17UupYU2pQYIx5uyoaopQ6tvmu/8/IyCAjI8MbEBxOHoDgYBg8GC67DL76ys4/WLkSXnrJrlq4+GIbPLRqdeRtdbvdOByOYp8rdazSn3KlVJVZt24dADfe+CXDhy/2LvHzbD8cDoct0fzJJ7Zcc//+kJMDH3wAvXvbnoPvvz/8SYkLFixg7ty53qqNbrebuXPnsmDBgsNuo1JHGw0KlFJVwjN8kJycTEZGBsYYMjIySE5OLnddgc6dbVXGJUvg6qtt6eavv4b//AfOOw/mzIHs7NKv43a7cblcbNmyhd69/2bDBpg7dy5btmzB5XJpeWd1zPNLUCAiI0Rkk4hkikhSXsnlko6/QkR+EJEMEdkhIu+JSIMCx1wiIj+JiCvvz4sq910opcqjMmb0N28OTz5pKzKOHg1168K6dTBypJ2UOHUq7C+4wNqHw+GgefPmREZGkpnpIjs7my1bthAZGUnz5s11CEEd86r8J1xEBmMrKj4BdAKWAQtFJKaY43sC7wJvA22BC4GTgRk+x3THJlSaAXTM+/MjEelWWe9DKXV4PImBOnfuTHh4OADh4eF07ty5whMD1aljqzOuXGmXNZ54ok2b/OijcMopNo3yX38VPs8YQ3Z2NoGBgYDtuXC73QQGBpKdnV1tMhoWbEd1aZc6+vkj7L0TmG6MmWaM+dkYcyuwHbi5mOO7A1uNMc8aYzYZY1YALwC+H/i3A98YYx7Pu+bjQELedqVUNdG+ffvD2l5eoaE2AVJCAkyfDt272+WLr71m/37zzbBmzaHjRYTOnTuTk5Pj3WaMIScnh86dO1eLfAUpKSn5Ui57UjOXtKxTqbKq0qAgr1ZCF2BRgV2LgB7FnPY90FBEBopVD7gc8J31072Ia35RwjWVUlXM8+H1yy+/EBsby5AhQ4iNjeWXX36p9LoCnkmJs2fDwoV2hYIIfPopnH8+XHghfPYZZGe7+fTTT9m/fz8iDkSE4OBg9u/fz6effur3OQW+yzo998yzrLO88zKUApCq/CESkUbAX8CZxpjvfLY/CAwxxsQWc97FwHQgFLuM8ktgkDHmYN7+LGCYMeYdn3OuxhZychZxvRuBGwGio6O7zJo1q2LeILB/fxqhoREVdr3jUWZmGiEheg/Lo7rew3379mOMm1q1anm3/fvvv4g4qFkzskrbsnu3k7lzG/PZZ41IT7ers6OjD3LuuRs47bSNpKeH07BhBgcOOAgNdREcHFjlbSxORkYGmZmZ3uchISGEhYX5sUXFq64/i0eTgwfTiIys2HvYu3fvJGNMfMHt1T4oEJGTsUHAc9hv/w2BCcAPxpir8445rKDAV3x8vClYJrU8Fi1KoE2bXgQEVNgljzvr1yfQtm0vfzfjqFYd72HBCoTx8fGFnvujez4tDT78EN54A/74w9taAO67byWTJ59Cbq7hoot2MnlyIxwO/w8hGGOYMcM7rYohQ4ZUi6GNolTHn8WjidsNP/2UQN++vSr0uiJSZFBQloyGFWkPkAtEF9geDewo5pz7gFXGmAl5z1NEJB1YIiJjjTFb8849nGsqpaqYb/Ki1NRUUlNTAfwaEABERNhMiNdcAyNGwGefGYyxbXnqqW7ev8+ZE02jRsI99/ilmV6e4MpXYmKiX++hOnZU6ZwCY0wWkAT0KbCrD3YVQlHCsIGEL89zT/uXH+Y1lVJ+4BsYeFSXD7MDB+DLLw8FBAAOx6Ge1OzsQF56ybB7tz9aZxljmDdvHsnJyfnmZSQnJzNv3jydU6DKzR+rDyYDQ0VkmIi0EZEpQCNgKoCIvCMi7/gcPw8YJCI351Vi7Ak8DyQbY7bkHTMFOEtE7hWR1iJyH9AbO+SglKomivuWWx0+zD77jELDfvffvyLf85wc4bTTYPJk/BocKFVZqnr4AGPMByJSF3gAOz/gR6C/MWZz3iExBY6fLiI1gFuAScA+4GtgjM8xy0TkcuAx4BFgAzDYGLOyst+PUqpsSppTAP7vMdi1Cw4ezP/6kZGFazOnpcGkSfDCCzBwIAwbBnFxVdNGEWHgwIHe++a5d507d/b7/VPHhioPCgCMMS8DLxezr1cR217A5iYo6ZqzsSWelVLVkCd5ke8cAs9QQkUnLzoSUVE2r0FGRvHHhIbaNMp//AGLFsHHH9tHfDxcf71NqRwUVLntLK5OxLp164irquhEHbP8EhQopY5PcXFx+UokewIDfwcEAAMGwLhxBii+LW63YdQooWZN2LLFJkR6/31ITLSPBg1s0HDllTbFckXzrR8BNiNkeno6ycnJdO7cudTy00qVRhN5K6WqVMEPreryIVarFgwfbggKKrpyUlBQNsOHG2rWtM9jYuDBB20w8Pjj0LIl7NgBzzxjew5GjYK1ayu3zdVhLoY6tmhQoJRSee6+WzjnnI0EBuYgYrMXBgVlExiYwznnbOTuuwsHMOHhMHQofPON7TXo08dWZJw925ZzHjgQ/vc/yCo8PeGw+daPePfdQbz2Wh/CwsIqpX6EOj5pUKCUUnkcDmHatFa89dZaatXaR0BALmed9R3Tp69l2rRWJSYuEoEzzrBDCkuXwo03Qs2akJwMt9wC3brBxIm2N6E8PHUiPJ//nkCgsupHqOOLBgVKKVVAjRpuIiLSCQhw07HjeiIiDq/mQbNmMH68HVp4+mlo3dqubnj2WRsc3HSTreB4uL3/vis4wsLCiIqKJjY2Nl8tBKXKQ4OCCiYCPinJlVJHEc+HbnJyMg6HeLvrk5OTj+hDNyzMTjpcvNgOJwwYYAOBefNsUaY+feDddyE9vWzX87SnceOTSU+vwdatQmpqPI0bn1zthg+0vPPRSYOCChYUZNOm7t8PuQXzMCqlqr3t27cDEBFRg8DAQDp37pxv+5EQsaWaX3sNVqywkxDr1YOff4Z774UuXeykxd9/L/k6xsDnn8dx/fWd2LxZ2LoVHn5YuP76Tnz+edxh9zxUFi3vfPTSoKASNGwIjRrBwYPaa6DU0UREaNasGZ06daJGjRqATarUqVMnmjVrViHfxBs1gnvugdWr4aWX7EqFAwdsQaYzz4TBg2HBAsjJKXzuhAkwdaobl0vwVHHOyACXS5g61c2ECYXPqWoFyzsDWt75KKJBQSWJjLTjigEB9hdefw+UOnqICLNnw4knHnpe0YKD4cILYe5c+OILGDLEJkdauhRuuMHOPXj22UMTE//9F6ZONbhcRf+37XI5mDrVsG9fhTf1sHhyT3jmOuzdu9fvlTBV2WlQUImCg+1a5vr1bWBQEUuSlFKVx1/fctu1s/kNkpLgkUdsMLJjh12t0LWrDRKee45SyzYHBAjz51dKEw9LdS58pUqmQUElE4E6daBpU1sXu6wTipRSVU9ECA4OJjw8PN+33PDwcIKDgyv9Q61mTZsu+dtv4YMPbJ4DsMMJ06bZIcmSHDxoVzn4W3UufKVKpmmOq0hoqA0M9uyBf/6xCU8KVmRTSvmXMYasrCzS0tLIyMgAwkhPT/dur6o0wiJw2mn2sWMHzJwJr79OqUMDoaGGqCj/fhsvWPgqLCydkJAm1abwlSqZ9hRUoYAAiI6Gxo3tBMTSon6lVNUSEbp06UJERAQul4ucnBxcLhcRERF06dLFLx9mDRrAnXfCd99BYGDJ37Rzc+H886uoYcUoWPgK8M4xqG7LJlVhGhT4QY0a0Lw5hITYpYvuw8uLopSqJMYYkpKSSE9Px+l0EhAQiNPpJD09naSkJL92f9erByNHCsHBRSxLAMDQsqWweXMxu6tQXFxcvh4BzxwDreJY/WlQ4CeBgXZpUsOGdkmRLl1Uyv985xSEhYUhAmFhYVU2p6A0o0cbBg3a6VObwRAQkAPY6o4//mjLN593HsyY4d85TJq86Oikcwr8SMROLAoNhe3b7QqFiIhDOc2VUlXLd05B69atvePhv/zyS5XOKSiOCHTp8jXR0Qd4773LcbsD6NZtFbGxvxEc3Jj9+y9g9mwhJcXmQnj4YbjoIptVsSpLIyxYsACXy8WgQYMAcLvdzJ07F6fTSX/P7ElVLWlPQTXgu3QxLU2XLirlL57x8NatW+cbD2/dunW1GA93u92kp6cTHHyQiIh06tbNoEOHHwkOPkh4+HYefNBNUhI8/7xdypieDu+9B+eea3sP3n3Xfvmo7Da6XC7+/PNP5s6dC8DcuXP5888/cblcuHW8tFrToKCaKLh0MS1NEx4p5Q/VeTw8ICCAbt26ERoaijGQnZ2D2+0mNDSUbt26ERAQQEgIXHKJLdf8zTcwbBjUqgUpKTalcufOMHq0rd5YGf/HOBwOBg0aRJMmTfjzzz/ZtWsXf/75J02aNGHQoEE4HPqxU53pv041ExJiMyHWrm0j+uxsf7dIqeNPwR4Bf/cQeBhjyMnJ8c53EBEcDgdhYWHk5OQUGrdv1coOIXh6D0491c5hev99GDjQFmR68027TLoieQKDmTMvZu/e2gAaEBwl9F+oGnI47FBCTIzNf56R4e8WKaWqAxFh165dZGRkcMUVn3DFFZ/gcDjIyMhg165dxQYvnt6Djz+2iZFuusn2TP78M4wbZwsy3XorLFtWMb0HnjkEvubOnatDB0cBDQqqsbAw22tQo4ZdulhUgRSl1PEjNzeXXbt2kZmZSWRkJCNHjiQyMpLMzEx27dpFbhlKs550kg0EkpJg6lRbhCkrCz75BC67zCZMevFF2LnzyNroCQj+/PNPnE4nQUFB3qEEDQyqPw0KqjlPwqMmTewvriY8Uur4FRAQQFRUFLVr1yYoKIj333+foKAgateuTVRUFAGHkSY1ONgOIcycaXsIRo2yiZL++AOefBJOOQWuvdYWazqcYUyHw4HT6aRJkybUq1cPwDvHwOl06hBCNadLEo8S4eG212D3bpvqVNMkK3V8GjBgALm5ubz//vvebVdfffVhBQQFxcTYJYx33QUJCTBrFixadOgRFQWXXmrLOp90UunX69+/P263m/fes8MZnjkGGhBUf/ovdBQJDLTJjjxpknWugVLHH2MMycnJ+bYlJydXSHKggAA4+2xbfCkx0Q4znHSSLbL08st2qOGii2yxptISIxUMADQgODrov9JRyJMmOTzczjUowzCiUuoYULDY0JAhQ4iNjfWWeq7IrIH169sJiQkJMGcOXH65nee0apWtxdCxo+1ZWLVKl08fS/wSFIjICBHZJCKZIpIkIqeXcOx0ETFFPNJ9julVzDGtq+YdVT3tNVDq+FOw2JAnh0JlFhsSsfMLJk2CH36AyZNtYqSMDDvMcNFFcPrpdsnjtm2HzvvnH8POnXY+wowZ9rmq/qo8KBCRwcAU4AmgE7AMWCgiMcWcMgpoWOCxEfiwiGPbFjjutwptfDXk6TUIDdVeA6WOB/5MrhQebucV/O9/dmnjLbfYyYmbNsHTT0O3bnDFFXDZZf/SsaNh82ZDVhY89JChUyfD6NE7q1WvgtZnKMwfPQV3AtONMdOMMT8bY24FtgM3F3WwMWafMWaH5wGcCLQAphVx+C7fY40xx8VHZGCg7THQXgOljg/VIbnSSSfBfffBypXwzjswYID9v+jbb2HZslrk5Dhwu4UtW2qQkSFkZzv45JN6TJhQPT54U1JS8g25eIZmUlJS/Nwy/6rSoEBEgoEuwKICuxYBPcp4mRuA9caYZUXsSxSR7SLylYj0LkdTj0o610ApVdUCA+3kxNdes2mVAwusaXv++S7ev7tcAUydKuzbV8WNLMAYg8vlyjcXwzNXw+VyHdc9BlKVb15EGgF/AWcaY77z2f4gMMQYE1vK+TWxvQr3GWOm+GyPBXoDq4Fg4CrgprzXWVLEdW4EbgSIjo7uMmvWrPK+Na+0tDQiIiIq7HpHyu0+tLb4aJv0m5mZRkiI/+/h0UzvYcXQ+3h49u618wrcbti2LZzExAasXRvFvn1OAEQMrVr9Q79+O+jTZw9Op38TGWVkZJDpU7c+JCSEsLAwP7aoaAcPphEZWbE/h717904yxsQX3H60BQUjgUlAI2PM3lKOXQDkGGMuKOm4+Ph4k5iYWNa3UKqEhAR69epVYdcrj5ycQ3kNwsIKR/DV1fr1CbRt28vfzTiq6T2sGHofD8+zz8KkSQZjDg1nPP30t4wZc2ahYyMjbfKkyy6D+Hj/lIw3xjBjxgzv8yFDhlSbOhcebjf89FMCffv2qtDrikiRQUFVf4fcA+QC0QW2RwM7ynD+DcDHpQUEeVYCLQ+veccWzwqFJk1sr4HONVBKVaaoKDvp2VdAQP4vnkFBhhNOsEOcM2bAhRfa1MqTJ8PmzVXXVs+Qga+KXtZ5NKrSoMAYkwUkAX0K7OqDXYVQLBHpCnSg6AmGRemIHWo47nmyIXpqKGjlRaVUZRgwoPS5TA6HzZL4zTcwYsSh1MqTJkGPHnaJ44wZVOq8A2MM8+bNIzk5OV++h+TkZObNm3dcBwb+GG2eDAwVkWEi0kZEpgCNgKkAIvKOiLxTxHk3Ar8ZYxIK7hCR20XkQhFpKSJtReRJ4ELgxUp7F0cZTw2FmBj7S5uerglHlFIVq1Ytm/DI6Sw6MnA6c7npJqhZ05Z1vv9+m/zo/ffh4ottL8OqVTblcqdOMHy4DSD0i0zVqfJRZmPMByJSF3gAm0vgR6C/McbTcVQoX4GI1AAuBx4p5rLBwATgBOAgsB4YYIxZUMHNP+qFhUHTpnZC0N9/25KqwcH+bpVS6lhx112GlJQf+e67trjd9ntnUFAWbreDHj3Wc9dd7YFD4/YBAXDGGfaRlgYLFtgSz99/D/Pn20edOjBokC3/3LFj+ecfiAgDBw70rjhITU0FoHPnzvlyQByP/DL1zBjzMvByMft6FbHtAFDs1EtjzDPAMxXVvmNdQIBNYVqjBmzfbn8Rw8P9M9FHKXVsCQhwcMUVf9Gjx49MnXo+AQFuBg5Mok2bjTRrVpuAgA7FnhsRAf/5j3389ZdNkvTxx/Drr/DWW/bRvLkNDi66yA6LHilP0qc772wCwPDhi4/7gAC09sFxLSTE9hrUq2cDA5+VOUopdUSMMdSvX58aNdw0bCiEhDi4+upAatRwU79+/TKP1zdubDMmfv21Ld984412IuOmTTBxIvTsCRdcANOn257PI2nn6tWr821bvXr1cT2fADQoOO45HLZrrlkzu1rhwAG7BEYppY6Epz5D69atiYioAUB8fDytW7c+ovoMItCuHYwfD6tXw8yZtqcgLAySkuy8hE6d4JprYO5cOHiw9GsaY3jvvfdYtWoVoaFhREVF06pVK1atWsV77713XAcGR8nKdVXZnE67dHH/fti50w4xFFxapJRSZREXF4fb7cYzd0BE6NKlS7nLJwcG2vLNZ55pl1h//vmhOgyLF9tHeDice+6hQk1F5WcxxuB2uzlwwMGuXTbD4ocfBlG3roMaNdwYY47bYQQNCpSXiJ0VHBZm66fv3390JT1SSlUPKSkpuFwuwObGMcaQlJSE0+mssMJNYWF2xcLFF8OePfDpp/DJJ7BmjZ2H8PHHULeuHWK46CLo3PnQvCkRBykp/Zg9ux65uQ6Mgdmz22JMey69dA8ix28n+vH7zlWxgoLseJ4n6ZEuX1RKlZVvXYG0tAMAlV5XoF49uO46u1Jh6VIYPRpOPNGusHrrLRsY9OgBTz0FqakwYYLhf/+rT05OIMY4ACE7O5icnED+97/61aZokz9oUKCK5Ul6VLOmnWuQleXvFimlqjvPrP7Y2FiuuupTatfeS2pqKrGxsVUyu795c7jjDjuksHChnaDYoAFs2QIvvABnnQXPPy+4XAFFnl9dijb5iwYFqkQBAXbGr2fpj05EVEqVxhMY+Krq5X4iEBdnJyiuWgUffQRDhti5UqV1Vjgchvnzq6adJSnYq1IVEyA1KFBl4lm+GBVlhxPKMsNXKXV8qm51BQIC7PDBM8/YjItQcjsOHrTzqvwpJSUl3z0zxrB8+XKSkpIq9XV1CpkqMxGoXdsOK+zerRMRlVKFeQICz5BBWFg6ISFNvFkD/Z0gqGFD+/9WaQXi5s+386r69bOJ3qqS77wMt9u2d/ny5fz444+0a9euUldHaE+BOmzBwXYi4gkn6EREpVR+njwFnjkEgHeOwZHkKahotmhTaW0QfvkFRo2CDh1g2DCbA6GqKs2KCMHBwYSHh5Oamso//+zlxx9/JCIiguDg4Eq9hxoUqCMWEWHnGtSqZTMiulz+bpFSqjqIi4vL1yPgmWNQUcsRy8MWbTIlFm264QbDE0/AqafaCdYLF9qKjnFxdvhhwYLKHUI1xrB582Z27NjBK6/0ZvfuSNLS0ti2bRsbN26s1GEY7fhV5eJbR2HnTjsRMSzMbldKqeqoYNEmY4SgoGxv0aZx49oTECBcc42tDzN/vs2DkJwM8+bZR3g49O0LAwfaZEohIRXbRs8QQm6uTaaUnp6OiFT6vAwNClSFCAmxZZn377cTdERscKCUOv54khd5hg888wwqMnlReTgcQr9+KXTosIoPPriSgIAQBg78i5CQL4mODsXhONTGhg3hhhvsY+vWQ0HB2rU2m+L//md7TX0DBKezfO0zxvDvv//mZYU8tM0Yw969eyt1ToEGBarCeDIihofbpCH//KOlmZU63vhOkgP75cB34mF1SCEsInTo0IHY2ExWrAgBhPvvb8bq1R0JCQkptn0nnAA332wfmzfb4ODTT2H9eptN8ZNPbK9pnz42QDjjjCPrQRARbxs8HQOe++a7rzJoUKAqXGAgREdDZCTs2GGHFMLDbfElpdSxzTdHQWpqKk2bhrF589YqS15UVnFxcXld8YfmPZxyyillbl/TpraK4y232MqN8+fbIME3QPD0IJx//uENMRhjqFGjBrt37y60PTIyUnsK1NEpNNT+4uzbZ5cwOhw6pKDU8cATGHh6C8D/SxGLIiJ8/HH+50eieXO49Vb72LjRBgjz5+cPEMLDbQ/CgAHQu3fJBedEhP379xdqj4iwb98+XX2gjl4Oh81t0Ly5/aXYv98uY1RKHbuqW/KiqtSiBdx2GyxaBEuWwL33Qvv2dun2nDl2bkJcHAwfbpc5pqcXvobnPmVmOsnICCc310FSUmcOHgzJt78yaE+BqhJBQXbCTs2adkghM1OHFJQ6FlX35EVVqUWLQz0ImzfbpYzz58MPPxzqTQgJsUML/fvbnoSaNQGEJUtOZdGiE3G7HbjdAXz+eT8WLjyXgQN/ZfhwnVOgjhFhYTa3gQ4pKHVsKpi86KefvvXOMagOyYv8pWnTQ5MUt261AcJnn0FiInzxhX0EBcFpp9n/F7/77kRycw99RGdn2xnbCxbEMn48PPpo5bRTgwJV5TxDChERtg76vn26SkGpY4lnEl/B5EXHa0BQ0Akn2OqNN95o8yB8/rkNEFauhG++ATv58dDH8759h/5zdLkCmTgR7rrLJmKqaNp5q/zGM6TQtKl9npamFRiVOlYUNUlOFdawIVx7LcyeDWvWwCWX2CqNvh59tEe+5wEBho8+qpz2aFCg/M6zSiE62qYOdbu1loJSqvL5ozRxSerVs5OyjckfQAUF5U/JnJEh7NhROW3QoEBVC57ER82b2xTJBw5oLQWlVOUpqjRxYmIiKSkpfm1XVFTh5YoPPfR9vudhYdCgQeW8vgYFqloJDLSPZs0OBQc5Of5ulVLqWOKbddETGHhWTLhcLr/2GNgqjvm3OZ35x1Vzc+Gyyyrn9f0SFIjICBHZJCKZIpIkIqeXcOx0ETFFPNILHHdm3rUyRWSjiNxU+e9EVZaQEFvLvFEjm9cgLU2HFJRSFcMz8TE2NpbU1FRmzJjhXULp7wmRtopj4UDAIyQkl9GjK2eSIfghKBCRwcAU4AmgE7AMWCgiMcWcMgpoWOCxEfjQ55rNgQV51+oEPAm8ICKXVNLbUFVAxOYRb9YM6tSxST4qs1ypUur44ZuO2cPfAYHH6NGGCy7YTmBgDiL221BISC5BQTlcfvk2Hn648r4h+aOn4E5gujFmmjHmZ2PMrcB24OaiDjbG7DPG7PA8gBOBFsA0n8NuArYZY27Nu+Y04G1gdOW+FVUVAgLsBJxmzexY2/79tsa5UkodqeqcddHhEJ59thHTp6dQp85+AgLcXHrp98ybl8Sbb56Aw3GMpDkWkWCgC7CowK5FQI/CZxTpBmC9MWaZz7buRVzzCyBeRIKOpK2q+gkOtsMJniWMBw4UHntTSqnSFMy6OGTIEO9QQnUJDESEXr06ERl5kIAAN6ef/gt9+3at9J6Mqu4pqAcEADsLbN8JlDqXUkRqAv8hfy8BeecWdc3AvNdUxxDPEsaGDe0KhfR0nW+glCq7glkXfecYVJesi0X1ZCxfvrzSAxapyohIRBoBfwFnGmO+89n+IDDEGBNbyvkjgUlAI2PMXp/tvwLvGWMe8dl2BvBt3rHbC1znRuBGgOjo6C6zZs0q93vzSEtLIyIiosKudzw63HuYk3Oox0BrKViZmWmEhOjPYXnpfSw/vYdHJiMjg8zMTP7+uxb162cQFiYcPHiQ0NBQwsPDy3393r17Jxlj4gtur+o0x3uAXCC6wPZooCypGG4APvYNCPLsKOaaOXmvmY8x5jXgNYD4+HjTq1evMrx02SQkJFCR1zseHck9zMqytRQOHNCUyQDr1yfQtm0vfzfjqKf3sfz0Hh4Zmy/BxTvvxDN06LdceumZLF++HKfTSZcuXSrtdas0KDDGZIlIEtAH8E3S2Af4uOizLBHpCnQAbi9i93LgogLb+gCJxhgt1HscCA6Gxo3t6oSdO21wEBZmJykqpdTRxlM/wtZBsEMe3bt3P+bmFABMBoaKyDARaSMiU4BGwFQAEXlHRN4p4rwbgd+MMQlF7JsKNBaR5/KuOQwYCkyslHegqi3f+QZZWVpPQSl1dJs925ZgripVXiXRGPOBiNQFHsDmHPgR6G+M2Zx3SKF8BSJSA7gceKTgvrxrbhKR/sCz2KWN24DbjDEl9j6oY5MIREZCeLitwLhnj51rEBpq9ymlVHWXkpKCy+Wic2c77G+MOfaGDzyMMS8DLxezr1cR2w4AJc5UMcZ8C3SuiPapY0NAgE16VKMG7N0L//5rKzOGhPi7ZUopVTzfNMxutx0KXb58OT/++CPt2rXLV5a6ovklKFCqKgUF2QqMtWrBrl02+VFoqN2ulFLVjW+2xZ9/TqVZszA2b95Du3btKn1egS7gUscNp9PWU4iJsfMMNPmRUqq6KioN87E60VApvwoLsymTdTKiUqq68lfyIh0+UMclz2TEiAg7GXH3bp2MqJSqHgqmYQ4LSycmpgE//vgjULk9BhoUqOOawwG1ax+ajPjPPxAYaIMDpZTyB980zJ07x/Pzz9/SvXt3gEpPw6xBgVLYQCAqyk5G/PtvOxkxONjOQ1BKqarmSV5kzLGfvEipais42M41aNrUBgoHDmiZZqWUfxQMAKqiUJMGBUoVISTErlRo0sQ+P3DAFl5SSqmqUnBSYVUUMNSgQKkShIXZXoNGjWxQoMsYlVJVISUlhcTERG8g4MlomJSUVKmvq3MKlCqFiJ2IGB5ug4Ldu/FmGdNSzUqpiqYZDZU6CjgcULPmoWWMWlNBKVUZNKOhUkcRT02FFi3saoX0dMjIgCoY7lNKHSc0o6FSR5nAQKhXD5o3t8MLaWlw8KC/W6WUOhZoRkOljlKegku1a9scB/v22W2aAEkpdST8mdFQewqUqiCeHAfNm9sljfv3Q2amv1ullDra+GY0jI+PR8QGAu3atdOMhkodbZxOaNzYBgS7d9vgwOnU7IhKqbLTjIZKHWM8CZCaNrWTEzU7olLqcGhGQ6WOQaGhEBNzKDvi/v0aHCilqicNCpSqIp7siL6pk7Oz/dsmpZTypXMKlKpCIjYzYliYzW2wa5ftOQgNtSsWlFLKn7SnQCk/8AQHzZrBCSfYegpadEkp5W/aU6CUH4nYtMnh4Tb50e7dNgFSaKhNjqSUUlVJ/9tRqhrwFF2KiNDgQCnlP/rfjVLVSHHBQUiIzjlQSlU+DQqUqoZK6jnQ4EApVVn8MtFQREaIyCYRyRSRJBE5vZTjg0XkkbxzXCKyRURu89k/VERMEY+Qyn83SlUeT3DQvHn+CYm6lFEpVRmqvKdARAYDU4ARwNK8PxeKyMnGmC3FnDYLOAG4EfgNiAYKlpvJAE703WCM0czz6pjgOyExI+NQ+uSQEFtzQSmlKoI/hg/uBKYbY6blPb9VRM4FbgbuK3iwiPQFzgZONMbsydv8RxHXNcaYHZXQXqWqjYJ5Dnbvtj0HTqcGB0qp8qvS4QMRCQa6AIsK7FoE9CjmtAuB1cCdIrJVRH4TkedFJKLAcaEisjnvmPki0qlCG69UNeIJDjwZEh0O23Pgcvm7ZUqpo1lV9xTUAwKAnQW27wTOKeacFsBpgAu4BKgFvAA0Ai7NOyYVuA5YC9QARgHfi0gHY8xvFdh+paoVEdtrEBNjJyLu2WODA2P83TKl1NFITBX+7yEijYC/gDONMd/5bH8QGGKMiS3inEXA6UADY8y+vG19gS/ythUMMBCRAOAH4BtjzG1F7L8ROz+B6OjoLrNmzaqAd2elpaUREVGwE0MdDr2H5WOMvYdBQRGI2F4EdWQyM9MICdGfxfLQe1h+Bw+mERlZsfewd+/eScaY+ILbq7qnYA+Qi50o6CsaKG4+wHbgL09AkOfnvD9jKNzrgDEmV0QSgZZFXdAY8xrwGkB8fLzp1atXWdtfqoSEBCryescjvYfll5CQQPfuvdi7F/bts8sYQ0Jsz4Iqu/XrE2jbtpe/m3FU03tYPm43/PRT1f2fWKXfIYwxWUAS0KfArj7AsmJO+x5oVGAOQau8PzcXdYLYotNx2IBCqeOS0wkNG0KLFnZZY1oapKfr0IJSqnj+6FicDAwVkWEi0kZEpmDnB0wFEJF3ROQdn+NnAn8Db4lIWxHpiV3SONsYsyvvnPEi0k9EWohIR+ANbFAwterellLVU3AwREXZ4KB2bRsYpKfbbyBKKeWrypckGmM+EJG6wANAQ+BHoL8xxvOtP6bA8Wkicg52cuFq4B9gDnCvz2G1sMMBDYB9wBrgDGPMqtLak5SUtEdEiuxxOEL1sMMk6sjpPSw/vYcVQ+9j+ek9LL/KuIdNi9pYpRMNjwcikljU5A1VdnoPy0/vYcXQ+1h+eg/Lryrvoc5LVkoppRSgQYFSSiml8mhQUPFe83cDjgF6D8tP72HF0PtYfnoPy6/K7qHOKVBKKaUUoD0FSimllMqjQYFSSimlAA0KKoyIjBCRTSKSKSJJInK6v9tUnYjIGSLyqYj8JSJGRIYW2C8i8pCIbBORgyKSICJtCxxTW0TeFZF9eY93RaRWVb4PfxGR+0RktYjsF5HdIjJPRNoVOEbvYSlEZKSIpOTdx/0islxEBvjs13t4mPJ+No2IvOizTe9jCfLujSnw2OGz32/3T4OCCiAig7FZFp8AOmFTNi8UkZgSTzy+RGATVY0CDhax/x7gLuBW4BRgF/CliNTwOWYm0Bk4N+/RGXi3EttcnfQCXsaWGD8LyAEWi0gdn2P0HpZuKzAG+77jga+BOSISl7df7+FhEJFTscXlUgrs0vtYulRsAj/Po73PPv/dP2OMPsr5AFYC0wps+w140t9tq44PIA0Y6vNcsHUq7vfZFgocAIbnPW8DGKCnzzGn5W2L9fd78sM9jMAWFxuo97Dc93IvMFzv4WHft5rABqA3kAC8mLdd72Pp9+4h4Mdi9vn1/mlPQTmJSDDQBVhUYNci7Lc6Vbrm2BTV3ntojDkIfMehe9gdG0z4Fs76Hkjn+LzPNbA9ff/kPdd7eJhEJEBELscGWMvQe3i4XsPWoPmmwHa9j2XTIm94YJOIzBKRFnnb/Xr/NCgov3pAAIVLOO/E/sOq0nnuU0n3sAGw2+SFxAB5f9/F8XmfpwA/AMvznus9LCMRaS8iaYALWzTtImPMOvQelpmI3ACchK1hU5Dex9KtBIZiu/1vwL7nZWLrAvn1/lV5QSSlVPmIyGRsV+Fpxphcf7fnKJQKdMR2f18KvC0ivfzYnqOKiMRi50+dZozJ9nd7jkbGmIW+z0VkBbARuAZY4ZdG5dGegvLbgx3bjS6wPRrYUfhwVQTPfSrpHu4A6ouIeHbm/T2K4+g+i8izwH+Bs4wxG3126T0sI2NMljHmd2NMkjHmPmyPyx3oPSyr7tge0vUikiMiOcCZwIi8v/+dd5zexzIyxqQB64GW+PnnUIOCcjLGZAFJQJ8Cu/qQf7xHFW8T9gfZew9FJAQ4nUP3cDl27Le7z3ndgXCOk/ssIlM4FBD8UmC33sMj5wCc6D0sqznYmfIdfR6JwKy8v/+K3sfDknd/WmMnGPr359DfszCPhQcwGMgChmFnhU7BTgJp6u+2VZdH3g9wx7xHBvBg3t9j8vaPAfYBFwPtsP/BbANq+FxjIbAu74e/e97f5/n7vVXR/XsJ2I9djtjA5xHhc4zew9Lv41PY/1ybYT/YngTcwHl6D8t1XxPIW32g97FM92sitnelOdANmJ/3+93U3/fP7zfnWHkAI4A/sJOXkoAz/N2m6vTArrM3RTym5+0X7DKd7UAm8C3QrsA1agPv5f3y7M/7ey1/v7cqun9F3TsDPORzjN7D0u/jdGBz3u/pLmAx0E/vYbnva8GgQO9jyffL8yGfBfwFfAycXB3unxZEUkoppRSgcwqUUkoplUeDAqWUUkoBGhQopZRSKo8GBUoppZQCNChQSimlVB4NCpRSSikFaFCgVLUlIt1F5MO8SmpZIvK3iHwpIteISEDeMUNFxIhIM5/z/hCR6QWuNVBE1olIZt7xtUTEISLPich2EXGLyJxKfC/N8l53aCnHed7PSZXVliMlIheKyJ1FbO+V1+Zz/NEupSqSFkRSqhoSkduBycDX2Oxmm7HJSvoCrwD/AnOLOf0ibDITz7UCgRnY9KcjsQlTDmCLAY0C7sKmTf270JWUrwuBc7D/LkodkzQoUKqaEZEzsB88Lxpjbiuwe25elcTw4s43xqwpsKkxUAP40Bjznc/rtMn763PGGHcFtNtpjHGV9zpKKf/R4QOlqp8xwF7gnqJ2GmM2GGNSijvZd/hARB7Cpt8GeCOvmztBRP7AplEFyPXt2heRhiLyjojsERGXiKSIyJUFXsPTzX+GiHwkIv9ia8QjImEi8nLecEeaiHwKnHAE96FYInKjiKzNGw7ZIyJviEidAscYEXlMRG4TkU0ickBEvhWRtgWOC8g7bruIZIjI1yLSOu/8h/KOmY4ta9s4b7vJu4e+wkTkxbz27BGR90SkVkW+b6Uqm/YUKFWN5M0V6A3MMcZkVsAlXwd+BD4CHgM+ww4tOIHbgKEcqrS2QUTCsXnWawNjgT+BK4F3RSTMGPNagevPAN7HDkV4/j95FVsk7GFgNbba28wKeC8AiMhT2CGP54G7sT0hjwHtRKSHMSbX5/ArgVTsMEkwMAHb29LaGJOTd8zDee91ArYWQhfg0wIv+yhQHzgFuCBvW8FekSnYwjZXALHAM9iy6teU5/0qVZU0KFCqeqkHhGLnEJSbMWariPyQ93SDMWaFZ5+I/JV3jO+2W7A13XsbYxLyNi8UkWjgMRF5o8CH7mxjzD0+58diPxTvN8Y8lbd5kYhEADeV9/3kTai8G3jYGPOIz/ZfgaXAQGxpX49s4HxjTHbecWADpK7AMhGpDdwOTDXGjMk750sRyQImeS5ijNkgIruBLN/7VcB3xphb8/6+KO9eDBORoUaLzKijhA4fKKV8nQH85RMQeLyH/aZ8coHt/yvwvBv2/5UPC2yfVUHt65N3/RkiEuh5YIcuDmDb7+tLT0CQZ13enzF5f7bHzs/4qMB5s4+gbZ8VeL4O2yMTfQTXUsovtKdAqerlb+Ag0NRPr18HW661oB0++30VPLZh3p87C2wv+PxIReX9+Xsx++sWeL63wHNPl39I3p+e9u4qcNyRtLe011Kq2tOgQKlqxBiTIyIJQB8/zebfix0PL6iBz35fBbvFPUFCNLDRZ3tFfVv2LJvsC/xTwv6y8rQ3Cljvs12/3avjkg4fKFX9PIX9xvtMUTtFpLmIxFXSa38LnCAiPQtsvwL7bfqnUs5fCbiB/xTYfnnFNI8v864fY4xJLOKx6TCvtw5IBy4rsL3gc7Df/EMPv8lKHT20p0CpasYY811e5rzJInIyMB3Ygl0RcDYwDPshXeyyxHKYjp2p/4mI3A9sBYZgx/KHF5hkWFTbU0VkJvCIiDiwqw/6Av0Psx3nisiOAtv2GWO+FJGngRfzJvJ9C2QCTfLa+Lox5puyvogx5h8ReQ4YKyIHsKsPOgPX5x3im7/hJ6COiNwMJAKZxph1KHUM0aBAqWrIGPOciKwC7gAmYlclHMB+GA0H5lXS66aLyJnYXoqnsEmPUoGrjDHvlfEyw4E0YDR2GeDX2CBm6WE05YUitq0H2hljxorIz9jsjCOxQxh/Al8Bvx3Ga3iMBwQbCNyG7e0YCnwP7PM57nXgVOAJoBZ2hUizI3g9paot0ZUySimVn4hcil2RcIYxZom/26NUVdGgQCl1XBORbsAAbA9BJjZ50b3YHpIemmNAHU90+EApdbxLw+Y3GAlEYidUfgjcpwGBOt5oT4FSSimlAF2SqJRSSqk8GhQopZRSCtCgQCmllFJ5NChQSimlFKBBgVJKKaXyaFCglFJKKQD+D+KiOUHKCOh1AAAAAElFTkSuQmCC\n", "text/plain": [ - "
" + "
" ] }, "metadata": { @@ -109,31 +106,28 @@ "text": [ "---------------------------------------------------\n", "Experiment: RBExperiment\n", - "Experiment ID: ff2c526a-a888-45e1-a9bc-3c20c70176ce\n", + "Experiment ID: 86835545-046c-4a52-9441-f50c8539a872\n", "Status: DONE\n", "Circuits: 100\n", "Analysis Results: 1\n", "---------------------------------------------------\n", "Last Analysis Result\n", - "- popt: [0.70646921 0.97206894 0.26277466]\n", - "- popt_keys: ['a', 'alpha', 'b']\n", - "- popt_err: [0.01547605 0.00166093 0.00968495]\n", - "- pcov: [[ 2.39508071e-04 2.78505493e-07 -7.36601626e-05]\n", - " [ 2.78505493e-07 2.75867255e-06 -1.05750604e-05]\n", - " [-7.36601626e-05 -1.05750604e-05 9.37981598e-05]]\n", - "- reduced_chisq: 0.040350819405537176\n", + "- a: 0.7086785173869685 ± 0.019061217750847376\n", + "- alpha: 0.9682547761398389 ± 0.0016464974131622863\n", + "- b: 0.2657588864201139 ± 0.011056874144239694\n", + "- reduced_chisq: 0.05584519630538138\n", "- dof: 7\n", "- xrange: [1.0, 200.0]\n", - "- EPC: 0.02094829359579109\n", - "- EPC_err: 0.0012814872009544206\n", + "- EPC: 0.023808917895120824\n", + "- EPC_err: 0.001275359637052149\n", "- success: True\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY0AAAESCAYAAAABl4lHAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/d3fzzAAAACXBIWXMAAAsTAAALEwEAmpwYAABgj0lEQVR4nO2dd3xUVfbAv2cmvRFqCJGOdBUBCbhKESW4iljW/kNRLKu7irrFtWPHhrKWVbCgqyv2goWISqwYQIoIAgLShCTU9Dpzfn/cmWRmmIQJJCQk9/v53E/m3Xfve+ddhnfm3nPPOaKqWCwWi8USCo6GFsBisVgshw9WaVgsFoslZKzSsFgsFkvIWKVhsVgslpCxSsNisVgsIWOVhsVisVhCxioNi8VisYTMIVcaIjJcRD4Ukd9FREVkYgh9jhKRr0Sk2NPvThGRQyCuxWKxWHwIa4B7xgE/A694So2ISAIwD/gaOA7oBcwCCoHHaurbpk0b7dKlS60FLCwsJDY2ttb9mjN2zGqHHa/aY8esdhzMeP344487VbVtsHOHXGmo6ifAJwAiMiuELhcDMcClqloM/CwifYCbRGSa1uDS3qVLFxYvXlxrGTMyMhg5cmSt+zVn7JjVDjtetceOWe04mPESkU3VnTscbBrDgG88CsNLOtAB6NIgElksFkszpSGWp2pLe2BrQF22z7nfDq04lsZCly5d2LSp2h9EFssho3PnzmzcuLGhxTgkHA5KAyBwCUqqqUdErgKuAkhKSiIjI6PWNysoKDigfs2ZhhizTZs2YQNuWhoDItLo3hn19X/ycFAaWZgZhS/tPH+zA+pR1RnADIDBgwfrgazp2bXT2mPHzNLcaWzf//r6P3k42DQWACeKSJRP3SnANmBjg0hksVgszZSG8NOIE5EBIjLAc/9OnuNOnvMPisgXPl3+BxQBs0Skv4icDfwLqHHnVF1il0AsFovF0BAzjcHAUk+JBu72fL7Hcz4Z6O5trKq5mJlFB2Ax8DTGP2NafQiXkZFBXl5epaJQVdLT0xvdeqWlYXnmmWfo2rUrUVFRDBo0iG+++Wa/fd58800GDBhATEwMnTt35pFHHvE7P3HiRERkn+K7137mzJmceOKJtGrVisTEREaNGsW3337rd52vv/6aM844g5SUFESEWbNm1ckz7489e/YwYcIEWrRoQYsWLZgwYQJ79+7db7/9jaWqMmXKFDp06EB0dDQjR45k5cqVfm1mzJjBqFGjSExMRET2MUpnZGQEHVsR4a233jrYR29WHHKloaoZqipBykTP+Ymq2iWgzwpVHa6qUaqarKp318csQ1UpKSmhsLCQ9PT0SoWRmZlJSUmJnXFYAHjjjTeYPHkyt956K0uXLuX444/n1FNPZfPmzdX2+fTTT7nooou46qqr+Pnnn3nmmWd4/PHHeeqppyrbTJ8+ne3bt/uVbt26cd5551W2ycjI4Pzzz+eLL74gMzOTXr16kZaWxq+//lrZpqCggP79+zN9+nSio6MP6BkzMjKorWPsRRddxJIlS/j000+ZO3cuS5YsYcKECTX2CWUsH374YR577DGefPJJFi1aRLt27TjllFPIz8+vbFNUVMSYMWOYMmVK0Pscf/zx+4ztLbfcQlxcHKeeemqtnrPZo6pNtgwaNEhri9vt1g8++ECnTJlSWT7++GN1u921vlZzYv78+Yf8nubre+AUFhbqlVdeqQkJCdq6dWu99dZbNT8/X6Ojo3Xjxo3V9hsyZIheccUVfnU9evTQf/3rX9X2ufDCC/XMM8/0q/v3v/+tRxxxRLXfrW+//VYB/e6776q9rtvt1qSkJP33v/8d9HxsbKy+9NJL1favjvnz52vnzp1Dbr9q1SoF9Ntvv62s++abbxTQ1atXV9tvf2Ppdru1ffv2et9991WeLyoq0ri4OH322Wf3ud6iRYsU0N9++22/Mvfs2VOvvPLK/bYLhYP9LtYHB/N/Elis1bxXDwdD+CHl5ZdfprS01K9u8+bNvPzyyw0kkaW+uOyyy/jyyy/5/PPPef3115k+fTp//etf6dOnD507dwZg48aNfks8ZWVl/Pjjj4wZM8bvWmPGjOH777+v9l6lpaVERUX51UVHR7N169ZqfU1mzpxJv379OP7446u9bllZGSUlJbRs2TKUR643FixYQFxcnJ+sf/jDH4iNja12XEIZy99++42srCy/NtHR0QwfPrzG8d4fGRkZrF27lquuuuqAr9FcsUrDB7fbzbZt26ioqPCrz87OZtu2bbjd7gaSzFLX7Ny5k7feeou77rqL4447jlNOOYXzzjuPl19+mbPOOquyXXh4OL169aJFixaV/VwuF0lJSX7XS0pKIisrq9r7paWl8f777/PZZ5/hdrtZu3Ytjz1mQqdt3759n/a5ubm89dZbXHnllTU+x+23305cXBxnnHFGyM8ejM2bNxMXF1dZvEtEvnV//vOfq+2flZVF27Zt8Y0jKiK0a9eu2nEJZSy9f2s73vtjxowZHHPMMQwePPiAr9FcCdlPQ0QuBS4EOgFRAadVVbvv2+vwQlVxOp0AXPrSSwC8fNllADidTmvTaEKsW7cOVWXYsGGVdampqbz00kucffbZlXUpKSmsXr16n/6BQZZVdZ86X6688krWr1/P+PHjKS8vJyEhgcmTJzNlypTK75wvr776Ki6Xq0abwPTp03nuuef4/PPPSUhIqPF590eHDh1YtmxZ5XFmZiY333yz3waQ/d0j2PPvb1yC9QvWp7bjXRO7d+/m3XffZdq0etlL0+QJSWmIyB2YXU4/A8uA0ho7HKY4nU6OO+44cnJycLpchFVUEJufj6ttW4477rig/7kthyeRkZEAREREVNYlJSXRsmVL+vbtW22/Nm3a4HQ69/mVm5OTs8+vYV9EhIceeogHHnig8lf5F1+YneXBDM4zZ87knHPOoVWrVkGvN336dG6//XY+/fRThgwZUu19QyUsLIwePXpUHm/dunWfuppo3749OTk5fi9zVWXHjh3VjksoY9m+vfHrzcrKomPHjkHb1JaXX34Zh8PBxRdffED9mzuhLk9NAqar6tGqepGqXhZY6lPIQ02Xb74h5fffaZedzeTp0+m3ZGlDi2SpY7p27YrD4fDbdfThhx+yZ88ecnNzq+0XERHBoEGDmDdvnl/9vHnzarQ9eHE6naSkpBAREcHrr7/OsGHDaNeunV+bhQsXsnz58mqXpqZNm8Ztt93Gxx9/zAknnLDfex4Khg0bRkFBAQsWLKisW7BgAYWFhdWOSyhj2bVrV9q3b+/XpqSkhG+++Sak8Q7G888/z3nnnVe55GipJdVZyH0LkA+cFErbxlRqu3uqoqJCn77jDi0Ni1SFylIWFqZP33GHVlRU1Op6zYnDcffUn/70Jz3ppJO0sLBQV69erfHx8dqhQwf973//W9lm69at2qtXL3333Xcr62bPnq3h4eE6c+ZMXbVqlV5//fUaGxvrt+PqX//6l5500kmVxzt27NBnnnlGV61apUuXLtXrr79eo6KiNDMzcx+5Jk2apEceeWTQXVUPP/ywhoeH6xtvvKHbt2+vLHv37q1sk5+fr0uXLtWlS5dqdHS03n333bp06VLdtGlTtWNRUVHhd71gxfcewRg7dqz2799fFyxYoN9//732799fTz/9dL82vXr10ieffLJWYzl16lSNj4/Xd955R1esWKHnn3++Jicna15eXmWb7du369KlS/W1115TQD/++GNdunSp7tq1y+/+3h1dvru86oKD/S7WB/W1eypUpfERcGMobRtTqa3ScLlc+sIVV2hRRKyf0iiOjNQXrrhCXS5Xra7XnDgclUZ2draeeeaZ2qpVK23VqpU+9thj+sknn2iHDh30rrvuUlXV3377TYF9tq0+/fTT2rlzZ42IiNCBAwfqV1995Xf+0ksv9duyumPHDh06dKjGxsZqTEyMjh49Wn/44Yd9ZMrLy9PY2Fh96KGHgsrcuXNnxQTq9CuXXnppZZv58+fvt00g3uesqdTUX1V1165devHFF2t8fLzGx8frxRdfrHv27PFrA1SOrZf9jaXb7da77rpL27dvr5GRkTp8+HBdsWKFX5u77rorqMyB/26XXHKJ9unTp8bnOBCak9IQc75mRKQH8C7wKCaB0u4gM5ZGt7Vo8ODBWpskTKrKE//6F9c9/gRh5WWV9eVhYTx5403c+NDUAza+NXUaImChiBDK99diqW8a43fxIJMw/aiqQbeWhWrTWAv0B17CRJYtDyhl1Xc9fFBVKtq0YdEVkyj37BEod4QxZ9w4Ktq0aXRfCovFYjnUhLrl9h6C5K5oisTHx7PxxBNZ8j+4PPdFPok7lZ+POYZW0fENLZrFYrE0OCEpDVWdUs9yNAocDgc9e/Zkx44dbJjUg4+nnc7xed+zihNo374n1hfSYrE0d2r9FvSENu8oIrH7b314oaqUlpbidrtJSMhnRpurGM8HrF7TnvLyUoqLm8Vky2KxWKolZKUhImkishjYi0l+lCsiC0XklHqS7ZCjqn4hl8v6RbCY41izthebN68kN9cqDYvF0rwJSWmISBrwMRAH3AtcC9wHxAOfNBXFISI4HGZIBg4cwnXXjWAQi7lwxf9wiFBQINjwU42b6nJSDB06tLJNly5dKutjYmLo378/zz33nN91ysrKeOSRRzj22GOJjY2lVatWDB06lOeee26fgJb746uvvmLQoEFERUXRrVs3nn322f322V9uiuXLl3PhhRfSsWNHoqOj6dWrF4888sg+8dFWrFjBiBEjiI6OJiUlhXvuuWefDR1PP/00ffr0qbzOK6+8UqvnOxBU958jIxihjOU777xD3759iYyMpG/fvrz33nt+50PJN3LHHXfQu3dvYmNjadmyJaNHjz6oAIlNiur24voWTMrVTwBHQL3DU/99KNc51OVAQqPPnz9fP/jgAy0vd+uqVao3xT+nCvrfv7+mq1erFhbW+pLNgsbip3HppZfqySefvI9jmq+TV+fOnfXOO+/U7du366+//qq33XabAjp79mxVVS0tLdWRI0dqixYtdPr06bpkyRLdsGGDvvHGG5qamlqrZ92wYYPGxMToX//6V121apXOmDFDw8LC9O23366x39ixY7Vv37763Xff6ffff699+/b1c5R74YUX9LrrrtP58+fr+vXr9fXXX9e4uDi9//77K9vk5uZqUlKSnnvuubpixQp9++23NS4uTh999NHKNs8884zGxsbq//73P7/rfPjhhyE/o6qGHI7cy9SpUzUuLk7ffvttXbFihZ577rn7OOwFEspYfv/99+p0OvW+++7TVatW6X333adOp9PPJ+bjjz/WW265Rd966y2Njo4OGjr+v//9r37++ee6fv16/fnnn3XSpEkaHx+vWVlZ1T5/Y6OhnfuKgNOqOXc6UBTKdQ51ORCloVo12Js2qV59Vra6EE0fdpeuW6eanX1Al2zyNCalcdppp9XYr3PnzvrII4/41R155JF6wQUXqKrqQw89pCKiixYt2qevy+XS3NzckGX85z//qT169PCrmzRpkg4dOrTaPgeam+If//iHDhw4sPL4mWee0fj4eC0qKqqsu/fee7VDhw6V3ubDhg3TG264we86N910k/7hD38I7QE91EZp1DZHhpdQxvK8887Tk08+2a/N6NGjK/9tAwk130iuWZvWuXPnBj3fnJRGqDaNUqC6EJfxNNEAhi1awLFp7fiWE+iy9F2ioiA3F7tE1QSJioqivLwcgNdee42TTz45aNhsh8NRGe111qxZQVOL+rJgwYJ98kWkpaWxePHiyvsF61Pb3BQAeXl5fnk1FixYwIknnuiXvS8tLY1t27ZVylxdno+FCxdWK9/BcqA5MkIZy+raHMzSUllZGTNmzCAhIYEBAwYc8HWaCqEqjQzgXhHp6lspIp2AKcD8uhWrcRAVBUOHwkfhZ9OzZAW7MtfhdkMtl7Qth5i5c+f65YGIi4vj5ptvDtq2oqKCWbNmsWLFCkaPHg3Ar7/+Sp8+ffZ7nxYtWtCrVy/Cw8OrbZOVlRU0F0RFRQU7d+6stk9tc1MsWbKEWbNmcc011+z33t5zYF6oL774IosWLUJVWbx4Mc8//zzl5eXVygfQr18/v/ENrOvXr1+1fQ80R0YoY1ldmwPJvfHRRx8RFxdHVFQUjz/+OPPmzTvgyLpNiVCd+24GvgPWiMgPwHagPTAUs5sq+P/Iw5yICIiLg5wTziJr/lRWvL+eocf0ID8fDjD1suUQMHz4cGbMmOFXl5iY6Hd82223MWXKFEpLS4mIiOAf//gHV199NUDInv9nnXWWX8Km6giWCyJYfU19vP2C1a9Zs4bTTjuNG264gXPOOadW977jjjvIysri+OOPR1VJSkri0ksv5eGHH64xFcAnn3ziNxM58sgj+eSTT0hJSQGoUZHWJNuB5N4IrK+r3BujRo1i2bJl7Ny5k5kzZ3LeeeexYMECkpOTa32tpkSozn1rReRo4G/AicBATPyp6cDjqrpv6rEmgAjEx8Mx4zrTYf42hq5zMCLSLFG1aQMO6+vXKImJidlvHoibbrqJSZMmERMTQ3Jyst9LpWfPnvzyyy91Ikv79u2D5osICwujdevW1fYJNTfF6tWrGTVqFBdccAFTp04N6d5Q9Ss/OjqaF198keeee47s7GySk5OZMWMG8fHxtGnTptrn8qbDDawLlhsk2PNB7XNkhDKW1bU5kBlCbGwsPXr0oEePHgwdOpQjjzyS559/njvuuKPW12pKhPzaU9Xtqvp3VU1V1SM9f//ZVBWGl7g4GD4cwsIdZP6g7Mkpx+2GkpKGlsxyMLRu3ZoePXrQoUOHfX6FXnTRRXz++ecEC3bpdrvJy8sL+T7Dhg3j888/96ubN28egwcPrvbXeKi5KVatWsXIkSM599xzefzxx4Ne55tvvqHE58s6b948OnTosM/LPTw8nCOOOAKn08ns2bM5/fTTK7ef1zUHmiMjlLEcNmzYAec62R9ut7vW262bJNVZyJtCOdjdU6qqFRWqa9aojv/DDt1ER/38rKd03TrV7dsP6NJNlsa0eyrYltucnJzKNsF2T/lSUlKiw4cP18TERJ0+fbouXbpUN2zYoO+8844OGzas8lnfffdd7dWrl27durXaa3m3iU6ePFlXrVqlM2fO1PDwcL9tosGus7/cFD///LO2a9dOzz///H2e1cvevXs1KSlJzz//fF2xYoW+8847Gh8f77flds2aNfrKK6/o2rVrNTMzU88//3xt1arVfndC5eTk1Jh7w3e8gxFKjowJEybohAkTajWW3333nTqdTn3ggQf0l19+0QceeEDDwsL8ttzuL99Ibm6u3nbbbfrDDz/opk2bdPHixXrZZZdpRESELl++POjzBPsuNjSHfMst8CXQ2+dzTeWL6q7TkKUulIaq6pYtqvffr7qK3vpjy5N061bVtWtVbXqNKhqT0iBIXoWUlJTKNvtTGqpGcUydOlWPPvpojYqK0sTERE1NTdVnn31WS0tLVVX1pZdeCmmraUZGhh577LEaERGhXbp00f/85z9+54NdZ3+5KarLHxE4Jj/99JOeeOKJGhkZqe3bt9cpU6b4JXdatWqVDhgwQKOjozUhIUHHjx9f47ZeL9Xl9fAW31wiwQglR8aIESN0xIgRtRpLVdW33npLe/XqpeHh4dq7d2995513/M7vL99IYWGhnnnmmZqcnKwRERGanJysZ5xxRtD8J16ak9KoNp+GiMwHrlHV1SKSwX6i3KrqqNDmNoeO2ubT8BIYhz4vD37+GTL+cBv/5CE2LsjC1bINRxwBsU0uAteBYfNpWJozjfG7WF/5NKo1hPsqAVU9sDs3EaKioHVrWNPvbMJWPsCWZ+bQecpl5OZapWGxWJoXocaeukREgm71EJFWInJJ3YrVuIiIgPBw6HTmQDbRidjP3iMyEgoKwOVqaOksFovl0BHq9oiXgO7VnOvqOd+kSUyEUScJ/2IqD+69hpISk0C8uLihJbNYLJZDR6hKoybPmFigog5kadTExEBKCqwecCHvl55KRoaZgfgEHrVYLJYmT7U2DREZgHHi8zJORPoHNIsGLgB+rXvRGheRkeB0wmmnQemyVex8diWRp55LQQFUVEBYqL71FovFchhT06tuPHCX57MCt1XTbhcwqS6FaoyIQEICjBkDne5/ggsXv86OveMgLIrCQhPc0GKxWJo6NSmNJ4BZmKWpDcDZwNKANqVAtja2vWb1RFwcJCXBm93P5qr1M/n2P1/Q9++nsWePVRoNQefOnQ8oppDFUtcEC6vSVKlpy20ukAvgiW67XVXLDpVgjZGoKDPjaHfBSeTen4Dzg3cJv+U08vNN5NvIyIaWsHlRU0jyxk5D+LUc7tgxaxyEZAhX1U3NXWGACVAYFwcnjY3gI05n4JYPKMqrwOEw228tFoulqRNyRDIRuUpElopIkYi4Akt9CtmYSEiAtm1hebeziaOAJa+uIjra7KJqHot0FoulOROycx/wJLAIiML4ZbwK5AHrgXvqS8DGhjfJWcJFp9OGnby89GgcDrODyka+tVgsTZ1QZxo3AA8C3rRgz6jqpUA3oBizg6pZEBZmQoeM/mMkRRLHl19Cfj44nUpublW7ZrI3wGKxNDNCVRpHAl8Dbk+JAFDVPcD9wOR6ka6RkpBgYlFddPTPfF1yHB/f9SbLlqWTl6e4XEZhpKenk5GR0dCiWiwWS50SqtIoBhyerbVZmBmGlwKgQ10L1piJiTF/U8/qwACW0eLLb1m5MpMff0ynsNAojMzMTEpKSuyMw2KxNClC9WNeAfQAPge+AW4Vkd8w4UOmAKvrRbpGSliYsW0MP7MVX909iuE7PiUj+TnWrv2GtWszAUhNTSUtLc36EVgsliZFqDONGUBLz+c7gDjgW+AHoCcmd3izIjERoqNhdd+zOZJ1lC7xz6d8yimnWIVhsViaHKH6abyhqg96Pq8D+gFpwFlAD1XNqDcJGykxMWaLbeKl43EjFP/vVb/z06ZN46WXmnzwX4vF0sw4oMzxqlqoqp+r6oequrOuhTocCAszM41Bp7fjSed1fJ8/jLy8I5g48XYiI2MoKipi586duGzCDYvF0oSoVmmISKfalNrcVESuFZHfRKRERH4UkRP30z5NRBaISL6I7BSRD0SkZ23uWR8kJoLT6eSNIX/hfc5i8eIjmTXrPkpLi3A6w2jdujVOp7OhxbRYLJY6o6aZxkbgt1qUkBCR84HpwAPAscD3wKfVKR5P3KsPMAb4Y4GTMSHZPwn1nvVFdDS43cqYMXtJIouIb0uY8OIsAFyuCjp06GB3T1ksliZFTbunLseERK9rbgJmqepMz/F1IjIW4zh4S5D2g4Bw4BZVdQGIyIPAlyLSpiGXx8LDISZGuOiiQZx57yAK3bEsKj0OgIiIGEaOtMZwi8XStKgpyu2sur6ZiERglMCjAac+A46vpttioBy4QkSeB2KAS4FFjcGekpDg5r33nie242Au3/QiV+c9yxFsp6ysiBdeeJ5rrrkSh+OATEcWi8XS6DjUb7M2gBPIDqjPBtoH66CqG4FTgLsx+TtygaOA0+tNyloQF+cgPDyCPSM74kDpU7yK8F0lRERE43BEIGIVhsViaTpIKGvuIvLifpqoqu43e5+IdAB+B4ar6jc+9XcBF6pq7yB92mNCmLwPvA7EUxUg8SRVdQe0vwq4CiApKWnQ7Nmz9yfWPhQUFBAXFxdy+x07dnLEl1+Q+uxzuHCgzjB+vOpytow8iTZt2tAcJhq1HbPmjh2v2mPHrHYczHiNGjXqR1UdHPSkqu63ENwonouJQ7Ub2BDidSIwXuTnBtQ/DXxVTZ97gaUBdUdg7C0n1HS/QYMG6YEwf/78kNu63W595s67tCwsTNW4bqiCloWF6VO336WbN7sPSIbDjdqMmcWO14Fgx6x2HMx4AYu1mvdqqM59XVS1a0BpAYzExKI6J8TrlAE/YpabfDkFs4sqGDFAoLOD97hR/IaPyc7CFbC1tsIRRkx2FoWFUNbs01dZLJamwkG9dFX1a+BxTK6NUJkGTBSRK0Skj4hMxwQ8fBbMzigR+cKn/cfAQBG5S0SOFJGBmHweWzAKqEFxu90UtG2LM8CJTyqUgrZtATf5+Q0jm8VisdQ1dfFLfQPGfyIkVPUNTH6O24FlwAnAH1V1k6dJMtDdp/2XwEXAeGApkI7ZTTVWVQsPXvyDw+l0cvVdd/Hx+PG4RSiTMFw4eN15AeOuvIu4OCd79oDbvf9rWSwWS2PnoJSGiIQBE4Gttemnqs94lrwiVXWQZ8biPTdRVbsEtJ+tqgNVNU5V26rqOFVddTCy1xWqyueff87yo47i95QUdrRtwzrpwXHli3nh+SWIKG43FDa4erNYLJaDJ9R0r18GKd8C2zCzgEC/i2bFli1bAHA5nZRHR/Je77Poz0r2vP4zAJGRsKvZ5Da0WCxNmVBnGg5AAko+8C4wWqu8u5sdbrebnJwcABwOJ23bdaZwXAe2ksJZG14lK8tNeDiUltoc4haL5fAnpCRMqjqynuU4bHE6ncTGxlJWVkaHtWvZvNnJJIeL2bO28vecR3jq6eWcfd9AwsJg715oH9SF0WKxWA4PQs3cZ6mBG264AZfLhdPppGVL2LXLScrd/+Lma1rz6efdOPMek+kvN9fkFg8Pb2iJLRaL5cAI2RDu2e76soisFZFCz99ZItKjPgU8XPCGQI+NBZcLTjitFa+l3MyKLYl8+y2IgMOB3X5rsVgOa0I1hI8ElmPiPf0APOP5Ow5YISIj6km+wwb1hGOJiDAh0ysqlAsvhHN5k7x7pwOmfvduu/3WYrEcvoS6PPUYxkciTVULvJUiEo+JUPsYEDxOSTMgIyODkpIS0tLSEBFatFA++SSdfv0SOIY5nLnqPX5bdwmte7TE5YKCAkhIaGipLRaLpfaEujzVF3jIV2EAqGo+8BAmZ3izRFUpKSkhMzOT9PR0VJXvv09n7dpM4uLy+G7Y34ijkC23PweY2cbOnSZAlcVisRxuhDrT2IoJNhiMCEzk2maJiJCWlgZAZmYmmZmZAPTvn8oxx6Thmix8tuAUBn03nZKCGwmPi6SoCIqLISamISW3WCyW2hPqTOMh4G4RSfGt9BzfhUnd2mzxVRxeTj01DZdLOOEE+F+Hf5DkzuK3+/8HGGe/nQ2ePspisVhqT6hKYwQmj8V6EckQkTdEJANYD8QBI0XkFU95uZ5kbbSoKunp6X51X3+dTliY4nJBz2tPZjbn88kPrQCjNIqLrbOfxWI5/Ah1eeoETDjy7UBnT8FzDHCiT9tmtVrvVRiZmZmkpqaSlpZWeVxaCr17p/Gnc4VBU2dTsBbGrIK+fdnH2U9V/fKJBx5bLBZLYyBUj/Cu9S3I4YqIEBUVVakwfJeqIiKiEBHi4uC88+CNFwv45e5P6PvGeX7Oft9957/7yquIoqKiGDlyZMM+oMVisfhgPcLrgJEjR/rNDLyKQ0TYts0sQ116KSS8OJPrvr2JDd92I+qEwTidsGdP1e4rwG+mkpqaamccFoulURGy0hCRGOByjH2jFbALyABmqWpRvUh3GBH4YvceJybCli3Qowes+cMkcr+bQsGUR4n6fDbR0bBnjzB69L67r3xnLhaLxdJYCNUjvD2wBPg3xokvBjgOeAr4UUSS6k3Cw5zoaGO/cLng/65NYAZX0e+Xt3Bv2IgIOJ2Qm7vv7iurMCwWS2Mk1N1TDwMtgRM9+cGHeewcJwCJmC25liCIQKtWZolqxAiY03UybhzsvP0JwAQy3L1b+fTTuX795s6dWxmaxGKxWBoLoSqNU4FbVPU730pV/R6TtvW0uhasKREfXxVvavxfjuB1LiTvx19RtyKipKe/wKJFCxkyZAh33nknQ4YMYeHChbzwwgtWcVgslkZFqEojDpOlLxhbPect1RAWBi1amNnGWWfBLa1nMqLgY75fYJafPAFyUa0ypFssFktjJFSlsQaYUM25/wNW1404TZfERKioMMtRF10WCcDbT25HysoYP34SPXumsmhRJvfcc0/lzqlJkyZZBWKxWBoVoSqNR4ELReRzEblcRE4VkctEJB2TI/yR+hOxaRAVZTzBy8vhkkvgmIhfeOWbLuQ/+xoiwvHHj/FrP2bMGKswLBZLoyNU575XPVtu7wGe9zmVDfxZVf9XH8I1NVq1gu3bjUPfUef2ZtVrfWn77KMsHtaZzVvXcelLLwHw8mWXMXPmTHr27MmoUaMaWGqLxWKpIuTMfao6A+iACYN+oudviqrOrCfZmhyxsSZ7n9sN11wrTJO/c0TeLxS+/Sm7dmURFh5Bu6QuJCW1Jysri7Vr1+K2GZssFksjokalISITRWSZiBSIyFbMMtR6Vf1OVX9RVftGqwVOJ7RsaYIVdukCRaefx2Y60v/T72jVKomK8jJysjeSnZ1FUlISPXv2xOEIWa9bLBZLvVPtG0lELgRexDjyfYwJTngjzTwM+sHSokXV9ts/XxfOE9xA390LSSqI9WvXsWNna9OwWCyNjpp+xt4AvAf0UdXzVfU44G7gLyLiPBTCNUXCw43fRnEx9OsHa4dfQU/W8vTczn7tFi9eSElJifXTsFgsjYqalEZPYKaqunzqngEigU71KlUTp1Urs/0WYNIN8WygOwsXHke+y3+24XJZhWGxWBoXNSmNFsDugDrvccv6Ead54N1+W1YGqalCj+5Z/LdkAoXZsUSWlhKbn09iYhLbtmXbJSqLxdKo2J+V1SEilQVwBqv3nLPUgrZtobTUJFu64MIttCOL1PJFtMvOYfL06XT86jPi4tpTVmZnGxaLpfGwv5f9d0C5Tyn21GcG1JfVl4BNlZiYqui3x3VayxAWIYBT3YRXVDBuzhyi9u5id+Bcz2KxWBqQmpz77j5kUjRDRKBNG8jOFvKXL8Id7jTq14PL6aRo5SJyT7qYli3NcpbFYrE0NNUqDVW1SqOeiYuD7Gw3O+KiCddyv3NOl4sdcdE4HG527nSQktJAQlosFosP1hbRgBhnP6UoIZE548ZRgZNCYigmivfGnklxi0SiopT8fChq9rkRLRZLY8AqjQamZUsnPXsOYfXgVLalJHNd+L/pym88X/xX+vUbgtPpJCoKcnLAumxYLJaGxiqNBiYsDIYPH0FsbAvcYU7GtJpHNMU8+uV1HJVl9hdERJidVvn5DSysxWJp9lil0cC43W7eeWcGe/dmAzA06geiuxURr/m4/3Yd7nJj64iJgR07zG4ri8ViaSis0mgE7Nlj9tWGhUWQnNyF085exb+YSveCXyl78b+AsX+4XJCb25CSWiyW5o5VGg2Mw+GgQ4cOtGnTjpatOgAwefI5/DpgIJkMIfGRO5BiYwWPjYWdO40nucVisTQEISsNEUkRkWkislhENohIf0/9DSKSWn8iNn0mTpzINddcTcGcDLa+moHD4eCJ6d252fEorYq3UTjd5L0SMTOOHTsaVl6LxdJ8CUlpiEg/YAUmT/g2oDMQ4TndGZhcL9I1IxwOBy1bmkCGqtCjh4MjLjyR0/iIG9ZcU9kuOhq7BddisTQYoc40HgN+AboCZwO+UfS+B4bWsVzNkogISEyEkhJz/Le/QUbMaXz8WTg/fFtR2S46GrKyqvJyWCwWy6EiVKVxAjBVVQuAQG+BbKB9nUrVjPGdbSQlwbXXwvF8x/H/1xXHml8Ak5OjosIaxS0Wy6EnVKVR02/aNlQFMrQcJN7ZRrFnRP/8Z8ht15Po8jyKrru5sl1MjHH4Kytjn0RNNnGTxWKpL0JVGguBy6o5dx4mGm7IiMi1IvKbiJSIyI8icuJ+2ovH4L5aREpFZLuITK3NPRs7vi96k6RJUTVLUVfe2pYHuJVuK+egX84HwOEwjoFz52aQnp5e2V9VSU9PJyMjoyEew2KxNHFCVRr3AuNE5DOMMVyBk0XkZeAs4P5Qbygi5wPTMbnGj8XYRD4VkZqyAT4GXAvcDPQB/gh8Heo9GzsZGf4v/rAw5Zdf0snMzADgnHPgy37Xs5mO6N/+XmnMiIpSCgpKyMzMrOyfnp5OZmamTRVrsVjqhZpCo1eiql+JyJnAE8CLnuqpwEbgTFXNrMU9bwJmqepMz/F1IjIWuAa4JbCxiPQCrgOOVtVffE4trcU9Gy2qSkmJefEDpKWlkZ6ezk8/ZdKzZyoul+J0CrfeG82tZz/AqzkTWP32ZyScNxYR4Q9/SMPhgMzMzMprpKamkpaWZrP+WSyWOickpQGgqh8DH4tID6AdsEtV19TmZiISAQwCHg049RlwfDXdxgMbgLEi8jFmdvQV8A9VzanN/RsjIkJaWhqw74v/uOPS2LVLiIuD1FR49cyLGPV+CtHpI3n+PNM/PFwYODCNNWuq9LZVGBaLpb6QUJYwRORO4HlV3RbkXDJwpareE8J1OgC/AyNU9Wuf+juBi1W1V5A+zwITgeXAPzBLY16lM0xV3QHtrwKuAkhKSho0e/bs/T5fIAUFBcTFxdW638Gyffv2ys/JycmACVTo8Cwi7toVweWXD6G4OIyH7l7IscOKPPLmUVJSWNk3NjaWhISEQyc4DTdmhyt2vGqPHbPacTDjNWrUqB9VdXCwc6HONO4C5mIc+wLp4Dm/X6XhQ6CmkiB1XhxAJDBBVdcCiMgEYA1wHCb1bNWFVWcAMwAGDx6sI0eOrIVYhoyMDA6k34HitUWsXbu2sq5ly5akpaWRlydkZUF8vKn/299gw32vcdk9f6Poh594c/6rFBXl07v3EAYPHsuaNXNZtGgh8fHx3HjjjYdsxnGox+xwx45X7bFjVjvqa7xCNYTX9OZpCZSGeJ2dgIt9/TraYfw9grEdqPAqDA+/AhVATcbzwwJf43Vqaip33nknqamplcbtuDit9MsAmDQJdnYcSEvXTn6/+h68E62cnE2UlysbNmwCTPRcawi3WCx1TbUzDREZCZzkU3W1iJwe0CwaOA1YGcrNVLVMRH4ETgHe8jl1CvBONd2+A8JEpLuqrvfUdfPIvimU+zZmRISoqCg/47XXxhEVFYXTKSQlwZYtkJBg/Dgue7gPMy+8kiuWPMeWM1/lt8jNjHtsKjw2lV2XXUZ0dAyDBg3C4bDxKC0WS91S0/LUCOB2z2cluJ9GGbAKuL4W95wG/FdEFmIUwp8xS1zPAojIg8AQVR3taf85sAR4UURu8NQ9gVmWWlyL+zZaRo4ciapWLiV5FYf3OCbGRLgtLYXISBg+HG47dQr/9+mrtHnsv/xyw3F+1ysuLqKkpNTvmhaLxVIXVPtTVFXvVlWHqjowy1NDvcc+JUpVB6rqglBvqKpvADdgFNIyTIiSP6qqd9aQDHT3ae8GTgdyML4Z6cBWYHygEfxwJvDl7nssAm3bGqXhXXG6cWoS06P+xcjcT9mV2c6vr8MRRnl5uFUYFoulzglp/cKjIBbW1U1V9RlV7aKqkao6yHcnlapOVNUuAe23q+q5qhqvqu1U9WJVrc4G0iSJijJxqbzhRdq0gdjbJzOAZbz49SXsdbWobOt2V/DTTz+Qn2/T/Fkslrql1oveItJORDoFlvoQzuJPq1bGGdwb3fbcS2Mp7JpIUVEsL+y6nMjSUmI9icTDw6PIynJUGtAtFoulLgg1n4ZDRB4QkV2Y3Uy/BSmWeiY83CxTFXpcMkRg8uSNvMd4phffSOvsXUyePp2jli+ne/d+iJiETXYTlcViqStCnWncAPwFEwNKMHGj7sMoi/XAlfUhnGVfWrQwO6jKyozdo3diDqc5PsWBEqHlhFdUMO6jj4gvLCQmRsjNhby8hpbaYrE0FUJVGpdhnPce8hy/p6p3YYIH/k4T8Jc4XHA4oH17k6hJVQnfuglXuP8/o8vhIHzrJlSVuDiTsKk0VE8ai8ViqYFQlUY3YLGqujBOddEAqlqO2f56eb1IZwlKdLSZcRQVwSaH4nT5G7wdFW42OcyalMNhZibbttlMfxaL5eAJVWnkAlGez9sA3xhRYUCruhTKsn/atAFVoVXfQSz582TU4aBMIlHg32E3Etk5tXLLbWQklJcb+4bFYrEcDKHGnloK9MX4SKQDd4tIMWbWcT/G+c5yCAkPN+lgf/oJtowYzYDvv8ddWsaf5E3m/NyN45/OYcQIYywH4xy4Z4+ZpRziWIYWi6UJEepM4wmgyPP5LiALeA14AwgH/lrnkln2S3y8kp29jpUrF5JXUoAjPo60P28hIryEQd/PZvmtVRF+RYzisPYNi8VyMISahGmez+csERmC8dqOAX7x2DYshxgRk+UPoLAwj8LCPHbuzOC0sTs5b86bHPvKUtad3Je2o48GwOk09o3ff4fOnc2xxWKx1IZQ/TQuEZHW3mM1rFPVn4B4Ebmk3iS01EinTkfsU3f0wJ954NhnyKUFra84C9eO3ZXnIiKMQTw72/hvBEbCtZFxLRZLTYS6PPUSPvGgAujqOW85xHgDGyYlJfnVt26dxEMv9+eqVu/QrmwLeWdcDD47rGJiID8f5s7NYO7cuZWKQlWZO3cuGRkZh/IxLBbLYURd5NOIxRjELYcYVeWzzz4jOzubly+7jJcvM4GId+/OZs2az7h85lAmy5P02ZzOz//5xq9vbKyybt06Fi5cWKk45s6dy8KFC1m3bp2dcVgslqDUlE9jADDQp2qciPQPaBYNXIBJimRpALZu3Rq0PidnK+PHw6J/XsWAh4ax9dmj+exs6NDBnBepSiO7cOFCFi6ss3iUFoulCVOTIXw8ZqcUmHwat1XTbhcwqS6FsoROnidGyHHHHcfYsafy5pufsmbNIgoLTf1f/ir8kHk0KzLgxQlfcttTyUifPgAkJaWwc+fv+1wzJSXlUIlvsVgOM2pannoCY6/ohlmeOttz7Fs6AO1U9cP6FdNSHQkepwuHw4EIxMWZf9LYWG89TJ8OXZKKuW31BBznnIXk5SIiDB2aRsuW/rk42rVr55cAymKxWHypdqahqrkYT3BEpCuwzW6tbVyICJMmTarMMZ6ZmQnAgAGp9OxZ9eJv0wamz4hmwtmvk547mi3nXULkx+/y4ZwX2bMnh0tfMvsYXr7sMnJycnjhhRe44oorrOKwWCz7EGoSpk1ehSEikSJyrYg8JSK3ikiH+hXRUhO+OcW9jBuXRkKCUFRUVTd4MIy5bzg3MY1uKz6k+Pb7KSjIDXrN3Nxcawi3WCxBqVZpiMg9IrIyoC4Sk5v7SeBaTHj0pZ6ZiKUBUFXS09P96j77LJ127cxL3zcJ04QJsOO8v/IKE+j2yhRarA0ejEpV7CzDYrEEpaaZxsnAJwF1fwGOBh4BWgBDgXJMvm/LIcarMDIzM0lNTeXOO+8kNTWVzMxMvvgineRkpaioKgmTCDzwoPD0Uc9xJTN5ZP5kKir2/QpERbXAkwDQYrFY/KhJaXQHAvdhnonJ3HeLquZ78oY/AoyuH/EsNSEiREVFkZqaWmm8TktLIzU1laioKGJjhTZtoKCgqk9UFDzzUjSftJ/E+g0dWDlnKLiqYqa3apXEGWdczrZt/stbFovFAjVvuW0BZHsPRCQCGAK8rf4L3suB5PoRz7I/Ro4ciapWLid5FYf3uHVrKC42JTra9ElOhhdfVC4Zv4fnll/EzrBWJLbOJTY/n93A4sWfMXhwGlu3Cp06GUVjsVgsUPNM43egi89xKhABfB/QLhworFuxLLUh0P7geyxilISqyanh5ZhjhMtv3MY8TqZPxVraZu9k8vTpDFv3G+HhkYSHCxERsGWLjYprsViqqElpfAPcICKJYt5C1wNu4OOAdscCwd2SLY2CsDBISTGzDW/2PlWld2I6ZzveNW1wEV5RwajZr7Fr5RJUlYgIk7djyxaTk9xisVhqUhp3Y2Ya2cBe4BxghqpuCmg3Efi2HmSz1CHR0SZpU6HPnDDi900Q7j9LceMw9d42ESaEulUcFosFalAaqvobMAB4CHgFuFRVr/Vt4/HR+AIb5fawIDHR5Bb3GsYTjkndJ7+4u8KBq9Nwv7rISLPMZRWHxWKp0blPVTer6p2qep2q/jfI+W2ec4vqT0RLXSEC7doZJVBSIgz840Us+fNk3CK4xEGxRHEVM3hqxiiKv1/m1zcqyoQksYrDYmnehBoa3dJEcDhMpFuvYXzLiNH8npJCTlI7Hr3mb3zV8UxuWX8FbS8cTdnin/z6RkZaxWGxNHes0miGhIdDSooyZ84LrFy5EJfTSWlkJO524Zx33gzubXkP+a4Y4v80hopVa/36ehXH5s1mV5XN/GexNC+s0mimREYqJSV7AQgLjyA5uQutWiURH1/AmKt+4ILW83CVu4k8/WTK128O6Gt2ZH30UQYffWQz/1kszQmrNJopDoeDNm1aExkZTUV5Gdu3b2T37mwiIqLp2jWMB97twwUtPyOyNI+s8VdRXOzfPzxcycpax5IlC/noo7kANvOfxdIMqMkj3NKEUVVcLhelpcWVaWIBysqKcblcdO+u3PXeAM4b/xkr96TQ8wp4/vkqr3KApKQj2Lnzd5YsWUjPnj1Zu9YsZR1xxBGH+nEsFsshws40mjEdOgSPat+2rak/8ki49f0hlLZO4esMF/NOepCibBPJUEQYNiyNfv1S/foOGZJqkzhZLE2YmnKEf1mL66iq2qCFhxkOR/DfDCJV9T17wttvw0PnLOaKzXewdMQ8Kr76mIQkM+VQdfv1LSx043Ybh0CLxdL0qGmm4cCkefWW3sBIjJd4tOfvSKCX57zlMEJEiIyMpH379n71LVu2RyTSb6bQsyfc/mEqN7Z8mUH5GWQNP48d28r44IPnWbXK30Vn5cpFPPvs81RUWJuGxdIUqckjfKSqjlLVUcB0TN6MoaraTVWHqWo3YJinfvqhEddSV6gqpaWlZGVl+dXv2ZOFy1VKUZH/S79rV7gk/WLuaP0fRhZ8xKaRl7L5NzPLmPTqa6RNfYhWrYwCKijIZeNGtb4cFksTJFSbxr3AHZ78GZWoaiYwBZPBz3KYsXWriTM5ZMgQ7rzzToYMGQJAbu5WnE722TGVkgLnfXE1jyU9zOjCD/ny6WPZvj2ZivIyysvL2L07CxGhoqIcp9PBxo3+sa4sFsvhT6i7p44EgucGhRygR92IYzlUiAg9evQgJSWFsWPHIiKMHTsWgOjoaDp2FDZv9s/DAdC2LZz+1T+45P/OY9Hizix/6RhGxc/jFBYRm59PYXw8YWFhhIW5cDqdbN5sAiW2bGnCmFgslsObUJXGb8DVwKdBzl0NbKwrgSyHjmAJnLwKBKBTJ9i6dV/FER8Pj73VmYrJbs768CrO3vU+rt1OJk+fzsdnjGfg47NxeizhCQmwYweUlBjlYQ3kFsvhTajLU3cD40TkZxGZIiLXeP7+DJyGWaKyHIbUlMApLAyOOMK86ANTv4aHK+OHTGMCrxJOBVFaSnhFBad9+AFfvDa90rlPxCiZoiLYtMkoD4vFcvgSktJQ1dlAGpAL3AI87fm7F0hT1TfqS0BLwxIWBh07mnhVgYojYfdOyiPD/ercFULshu37XCcmxsSs2rQJcnNNwESLxXL4EbJzn6p+rqp/wGy3bQ9Eq+oJqvpFvUlnaRQ4nWbGERlZlYvD7Xaz2an75OOIoJzXZp/AL7+497lORATExsL27bBtG1RUHArpLRZLXVJrj3BVdatqjgZ6dVmaNE6n2T0VHw/5+cYxsCAujjnjxuEWwe1wUBYWzh1xd/NhwZmMH+8g6/JbifzsQ79phcNh7BzFxbBx476zF4vF0rgJOfaUiHQDzgM6AVEBp1VVJ9WlYJbGh8MB7dsbBbJrF7RqlcSKY47huEWLiHU6efFPf0IjnQz+7FdWLe5AVPr7tE5/kOKhIymY8hjlRw2svFZMjJlpbN4MrVpB69bWSG6xHA6ENNMQkfHAaow/xpnAqCAlZETkWhH5TURKRORHETkxxH5Hiki+iBTU5n6WusOb/a9dO8XlMjOIF6+4gvQHH6QwPp6IiAomTPiSW+6NZnDYcq7laUoW/UybUweTOPlSHDuyK68VFmZmLrm5xtYR6BdisVgaH6EuT90HZADJqtpBVbsGlG6h3lBEzsd4kD8AHAt8D3wqIp320y8CmA18Heq9LPVH69YOevXqSUREjF99ZGQMXbr05PLLHbz1fjhzjriWLq51PB7+T2TuJ/tcR8TYOZxOozh27IAAM4nFYmlEhKo0ugGPqmp1Dn614SZglqrOVNVfVPU6YDtwzX76PQT8BLxVBzJYDhKzpbaUsjJ/o0RpaRFlZaWoKsceC3PnwvFjW/C3sqm0LtjEX+5JIj9PaXnF2cS8OqPSGh4ebmYde/daW4fF0pgJVWmsBlof7M08s4VBwGcBpz4Djq+h32nA6cD1ByuDpe7YsmVL0Prs7Kr6li1NHo6HHgKNiuHdd+FPo/dQuCGHxJuvpm3asURmpANVs47wcGPr2L7d5DG3WCyNBwklw5qIjAaeAMar6oYDvplIB+B3YISqfu1Tfydwsar2CtInGfgROFtVfxCRicBTqhpXzT2uAq4CSEpKGjR79uxay1lQUEBcXNDLW3zYuXMn5eXlxMbG4nA4qKhwU1xcSFhYOImJbfZpv3lzDFOn9mHdunhAmXrcTP665R5is35n5+DjWPm3mylrXfXbxO3ZnxcW1vSM5PY7VnvsmNWOgxmvUaNG/aiqg4OdC1VpfAN0x8w2fgV2BzRRVR0RwnW8SmO4qn7jU38XcKGq9g7S5wsgQ1Xv9RxPpAal4cvgwYN18eLF+2u2DxkZGYwcObLW/ZobGRkZlJSUkJaWxldffcWIESP48MN0ysujGDx4JBER+/YpL4cnn4Tp083KVI9OZbw54mn6L3mFHR8ugKgoY9TwaAm32wQ9DA83O7diYva95uGI/Y7VHjtmteNgxktEqlUaoS5PuYA1GKP1Ds+xbwnVZ2Onp337gPp2QPa+zQE4CbhLRCpEpAJ4AYj1HF8V4n0t9cDIkSP9svSJCGeckca4cSNxu4PbJcLD4aab4KOPoE8fWLc5goH/vZEJ/ZawpzgKSkpoe8oxxD1+L1JchMNhbB1Op1my+v13KC09xA9qsVgqCTWMSGVujepKiNcpwyw1nRJw6hSMQgrGUcAAn3InUOz5bI3iDUyw2FWRkdC5s7FP5OUF3w111FHw6adw883G0/yNN4URI+DD1/Ip796bhEfvpN0JPYl+82VwuwkPN06BJSXw22+Qk2M9yi2WhqAhcoRPAyaKyBUi0kdEpgMdgGcBRORBz5IUAKr6s2/BLG+5Pcd7GkB+Swg4nZCcDB06GP+LYIEKw8Ph+uvhs89g2DDjMHjNnW0ZkfM2Cx/7BldyCi1vnEjbsYNw7MwBTLTd+HijjDZsgN277RZdi+VQEpJHuIgM318bX8P2ftq9ISKtgduBZOBn4I+qusnTJBljP7E0ARISjJkiK8uEH4mNNZ7lvvToAW+9Be+9B/fcA4sXw7AlJ3DRBQu4//w3aPvd+7hbtwVA8vMgPoGYGGPv2LXLlDZtzL1CMZj7hoMPdmyxWKon1JlGBjB/PyVkVPUZVe2iqpGqOshX4ajqRFXtUkPfWaEYwS2Nh4gIEym3XTtj1A426xCBs8+Gr7+GK64wiuXV/znod9+F3H/0GxSXCI4d2SQN7UKLW/+CY9cOHA6jhKKjYedOs2y1Z0/NM4+MjAzS09MrQ7erKunp6WRkZNTPw1ssTYxQlcYojEHat5wLvIxJwHR6fQhnaTqIGJ+NLl3MFtr8/Kottb4kJMDdd8MXX8Do0Saq7v33w4knwrtzwik840JiXn2Odn/oQdzTD0FJSaXyiIoyHuXeZatAm4eqUlJSQmZmZqXiSE9PJzMzk5KSkkpFYrFYqiek5SlV/aqaU++KyOPAOIJn9bNY/IiMNLOOvDzIzjbLSb5ZAb306AGvvAJffWWUxsqV8Jc7WjG959Pce8dfGfftzSQ88C9i/vssO+YtR+MTcDggLq5q2WrnThMMsUULYz8REdLS0gDIzMwkMzMTgNTUVL9dYBaLpXrqwhD+MSb6rcUSEiLmRd61q/G7yMur3vN7xAgTiuSpp0z62bVr4fwpfRj0+4d8+vcvKDrnEjQ+AQDnJuN36p15xMaa5aoNG4x3eUmJURxjxozxu8eYMWOswrBYQqQulEYvQvfTsFgqCQ83O6w6dTJ2iIKC4EtWDgecdZaZdTz4oHHy++UX+OOjJ5E6927efx8cq36m3QlH0vLKc3D+tg6oCkvim272vffm8+yzM/2uP3PmTObPr5VZzmJptoQaGv2SIOUKEXkCmIpdmrIcBDExxtbRtq3ZnltUFDwdbEQEXHIJfPcd3HuvUR6rV8Nf/gInTerKtyfdRWRGOu1G9SVhyk3InqrABdHREBvrZu3aH9mxI4uWLdtz7bV30K5de7Kysvjxxx9xB9NYFovFj1CTMM2qpr4UeAOYXCfSWJotDocxlMfHGyP27t1mJhLM3hEVBZdfDhdfDG+/DU8/Db9simX45jvpk3glL3a7k9QXphM95w2yv1tvOmCWprzLUHv2ZPHMM/f6XFVQtUtUFsv+CHV5qmuQkqyq0Z4tsrn1JaCleREWZrbmdu1qFEZ+fvAtumCM6hdfbLbp/uc/cMwx8MveZIb9PJPBjqU8c8QDLF8TBapEfJ8BqnTr1heAS196iUtfeqnyWh069GX9euNpXlISfKZjsVhC3z21af+tLJa6IzLSeJOXlJhttHl5ZnkqKjDRMEbRnHEGjBsHP/xgQrGnpx/NksVHwx/hqu5f8tz6kykefAKO0SNwxkXjdLkIq6ggNj+fksSW5OVtJyZGyM83xvPwcDPziY0laOBFi6W5EnKOcAAROR0YAbQCdgFfqerH9SGYxQJGSXTsaGwdO3fWrDxETDiSYcNMcMOXX4bZs+GF9SNQnuO+H+/g7MXfcnTbbqTs2AoiTJ4+nTnjxrF2yDBUXURHG5dyl8ts283JMQqsZUsz87EKxNLcCdUQHi8iXwEfYuwXfwRuAD4UkQwRsR7alnolOtoojy5dzEs8L88okuqWkTp1gjvuMCFJHnsijCWDrqK7ruNxJtN9xwYcgEOV8IoKxs2ZQ5IKDp/4Jk6nMdDHxxt7S06O8TjfuNHMRMrKDsVTWyyNj1BtGg8AA4EJQLSqJgPRwCWe+gfqRzyLxZ+oKEhJMTaP2FgTlqSoKPhWXTDK5txz4cMP4f3P41h7zNHk4/8bJ6yigvF3P0D8pWcTN+1uotI/wJGTVXU+rGrrrsNRFbJkwwbzubi4+vtbLE2NUJenzgFuV9XXvBWq6gJeE5E2wD+xqVgth5DISLPltnVrYyz3RruNijL2iGD07g39x20iemUJ+IQYKSecr0tPpM8Xv3DkFx/gQMmZfD/uf96KY/dO4qbfT3m/AZT3PxaO7ENYrLmBy2Vymu/aRaU3eny8ka06GSyWw51QlUZrYFU151ZRB/nDLZYDITzchApJTDTOgbt3GyUSFmYUiK+jt9vtZk9kBHPGjePM999HAZczjKf6/4Wn865n48YuRLmLOIoV7HgqmU7L4fK+67j4v8/hKC0GQCMiKO/Zj7x7/03ZkBOI1QJQF+6YFhQXm3uDuX9CglniioxsHOlqXS4XTh9BAo8tllAIVWn8hglKOC/IuT96zlssDYbDYV7S3kRNeXlmFgBVv/wdDgeRkdGsOOYYjlu0iLCKCl67+GIK4+P5c8x7nHzyjXz6aSyffDKUjQtgQwZkZAzlMvI4o/evnNN9GcOil9EhZxnuhEQAoj56m5Y3XUZFp66U9z+W8r4DKO83gOLjR7N3bwy7d1fJEB/fcMb0J554gvLycm666SacTicul4tp06YRHh7ODTfccOgFshy2hKo0ngMe8xi8XwO2Y1K2XgBcAdxUP+JZLLUnKsqU1q2NzcM7+3A4hB49BrBmzWJcTicup5PC+HgiI6Pp2XMASUnCxIkwcaLp89lnkJ4OX38dxnur+/De6j7AhbRpA8OfNnGxxnQ6DufN9xO+chnhK5cR9el7iCpZy7KIaRtD1AdvELF8ESW9B1DQcwA7OvVCIsIpKzP2kJgYo0TCarWPsXa4XC4KCwupqKhg2rRp3HTTTUybNo2ioiLCwsLsjMNSK0L103hcRNoCNwITPdWC8QifqqrT60c8i+XAcTqrZh9lZZCX52bz5rWUlhbz8mWXVbYrLS1m8+a1DBo0snIHVatWcMEFphQXwzffwJdfmvL77/Duu6ZAP3r37scf/gAnnAPD+ufTavtK3G2TAAhftZzYl58mzuOhqJGRlB81iI333UduLuT9tBFXYmskIb4yyGJEhJkZ1dV73OFwcOyxx7Jo0SKKioq47777Ks8de+yxfrvGLJb9EWrmvhbAPcAjwFCMn8Zu4AebctVyOBARAa1bCzExzsplK19EnNVGuo2OhjFjTFGFX381wRO//hq+/97Ev1q9Gl54AUTi6dt3KEOHwpAhcNzlD5D0j3sIW7+mcjYihQWIQ4iOhta3XkJk5jeUd+lBaZ8BlPQewN5jjqdk2CjCw81MJCbGKJEDVSQiwqmnnoqqsnjx4sr6wYMHc+qpp9oIv5ZasV+lISJhGEe+s1R1DjY4oeUwproXpIhQUGBsI5GR1S8XiUDPnqZceSWUlsKSJSaI4nffwdKlJvfHypVGiQB06hTG4MH9GDiwHwPPuJg+fYBfMwAouOEOSpdkmqWtVUuJ+/RtSkafxu5TRuFyQfS1Eylv2Y4Cj0LRI3sSHR/mp0jCwvwN/sH48ssvWbZsWWXolJcvu4xly5YRFRXF6NGjD2AkLc2V/SoNVa0QkWyghiSaFkvjR0To3r07FRUVZGdnV9YnJSXRq1d3unQRioogN9fYQETMCzkysvqXcmRklRf63/9ulrKWLjXhTBYuNApl82ZTzHKW6dO160CGDoWjjz6Fo8acwpF/8SSKys/DkbcXAKe7nKj1Kwn/5XXE403ojoxi719vJ+fq23BXuIn+KZPSnkcR0Squ0pbjVSRhYUYJVlRU8MMPP1ARkMrQWz9ixAjC6tOoYmlShPpNeRVj8P6kHmWxWOoVVaW0tJTs7OzKbH3edK9dunQhIkKJjBRatjSpYktKjPLw5vkQqbI3VKdEoqPh+ONNAXOd1auNZ/rSpaasXw+rVyewenVVv8hI40fSt28Cffsm0KcP9O4dDp8sgvJywtatrlze0v5HERsLzg3rSbrgeFSEim49Ke09gOLeA9h18tlUdOsJeJWeE2OCxC/mVmF8PCJijeCWWhGq0tgIXCQii4APMLun/AI4qOqLdSuaxVK3iAhRUVF+6V296V+joqL8lq7CwoyzXlycsWOUlVVt5S0sNHUOR9USUXVKJCwM+vc3ZeJEU5ebC3PmLCM3dwDLl5ulrI0bYflyU3xp3x569QqnZ8+jOPLIo+j5xwl0726Miu6kZHa99EHVzq0VC4n7+A2cfXpRcnRPwpdkEvfoXZT2HsCQ8lwis7eT8vvvAEyePp3Pz7uIzcNHsXOn+BnfvaUpmDpU1e/fNfC4KVLfzxyq0nja8zcFGBTkvAJWaVgaPSNHjvT7T+RVHDX9pxIxM4HISJOm1u02SqS42MxCvErEu5wVEWEUSnW0aAHHHruXfv2q6vLyYNUqU1auNJkJ16yBrCxTvvrK/xqtWkH37nF063YGXbueQbezoMuN0K3VXqITIwFwFOQRtjObqBencUpAPl1HRQWnvPEav+YX4s6FvPadqUjuSEX7I9BIEw0yLMwokogI/x1dDsfhoVgyMjIoLi5m7NixiAiqyty5c4mOjmbkyJENLV69kJGRQUlJSeWPIVUlPT2dqKioOnvmUJVG1zq5m8XSCAhUELX9FeZwVPmCtGxplEh5uTGKFxYaZVJebl6ovoqkptskJMDQoaZ4cbuNLWTNGpMb/ddfTVm/vipR1aJFgVdKpE0bE7CxU6dT6HjSUjpfXErnHx7kjI8fIMJVpTwU6DPnHZjzjt8Vtq/YibZqTeR7swn/8QfKkztR0r4j+UkdKU/uREXbZMQhlWPhnW15bSnGkbJKuXg/H0oFo6qsW7eO3z0zq7FjxzJ37lwWLlxISkoKI0aMaHIzDlWlpKSEzMxMwMyevcuvqampdTbjsPk0LJaDxLvjKjLSvPzB2DLKyowiKSryD2ooYmYmLlfNW2gdDhPVt0sX8PxwBEzfrCxYt84ETvQGT9y0ySiZnTtNWbLE2yOSJP7MH3mYCKqUhssdziVDP2HIwK50dW7hCPdm2pZupTyyFTFAxOrlxL75Ao7Cgqp7R0WxfV0RCMQ9/RDOX1ZQ0aET5e07Ud6+I0UdulDao1+lnL7vKK8S8SqWsLCqY69i8VUw3s8HSl5eHgALFy5k4cKF+9Q3NUSE7du3ExMTQ2ZmJj179mTt2rXExMSwffv2OlOStd4yISKB/4yqavOcWSy+eHcvxcSY2QgYRVJebpTJxo3mc3FxVR/fl2pNykQEkpNNOfFE/3Nut1Eo3h1bW7bAli3KsmXKjVun8XjxTZQRQQRlXK3PMfuHMcz+AeDIqos8b2w57do9SNJRD9AlcS89o7fQ1bmZtuF7yZkntGkDA9dn0XbRd8RkvYF4dmZVdD2SnG/XAtDiH1fi3LYFV0onXB064erQkbJuvSk+OpXycqNU3O6qTQa++Coc75bi8nLYts1f0XjPeRWN97Oq4nIF3/DpcrmapG3D7Xaza9cuioqK/OqLiorYtWsXbre7Thw5q1UaItIeeAF4Q1Vf8dQ5gcBMAgUi0lNVswOvYbFYqvAqkuho80u7W7eqpS3vzKS42Bjcff/fi/grk5r+3zscJuNhhw5VS11ut/Laa69SUlJEzsw2FJTG8eIpV1BSHs1pxfNJTh5JVpaQk2MUTna2sdUUFMCGDcICWgItgaPNBV/33u1x4HFiIl30bJVNn9jNtIkrYdM1RlFevjKa7jt20XLxUhIKcgDYM2AUv7/wJS1awBEXnoCUleLq0LFSqZQfM5iyYSO8goPDgdttlIiqmbl5P3uVTjBUhZSU/vz660I/3xSATp36s3Wr+C2deW00vjOdwOL9t6iueM83FCJCnz59/Bw4vfTp0+eQzDSuxeTK+FOgbMBMYJvn8/nAn4G760Qii6UZ4bu0FRtbNStxu40i8c5OSktNKSmh8iXqfQf4vvSCGadFBIfDM3UJcxAXVkSLXvm0YCUxMfFcdNFIvz6qZodXTo5RIDt3ms87dpjPu3aZz7t2GbtKUYmTZTkdWEYHc4EV5s/L/LvympGUcARbCV9WzmrPVponHQPp41xLx1VrSHHNo4W7gHkplzLz+BHExylPvtaKkuiWFLTsSFGbTkRHRrFxlJuioScRG6MkuPcSmZRITKzsYzNShfBwswASuM0YtHKG46uAfEt1BC65Vfdv6lXsgctsoX72/RtMKQX7qwq//74dgEtfeonomBjWnn8+ANu3b69Z6FpQk9IYC8xU1eKAegWeU9UlRljZgUnGZJWGxVJHOBxVu5YC8SoUl6tqhuIt1SWEOuKI3qxdu8gv5hZAly6992krYkLNJyYaz/eaUDWzoj17jALZtctEF96zx5S9e70litzcHuTmQluP8+R1Jf+GSlmVFuQS8XsZO96CMCrozrV0KttMp9zNdNz4HUPZytTvkrmTk2jFbnbRhnzi2EJH1tKJ7eEdmRN3EUtajCIhspQWeS0YWhZJ2105uAjjr9Oe4oHOt/B0x3Z8913VZgZv8SrvwOL9d/D97D0ONusLVD7eGZHXjhV4zrefb//aogolJVWKMryoqFJR1qUFoSal0Qu4M0h9oJ5d62lrsVgOAV6FUh1ut3k5eUt5OURGBv95XF5uwqf4zlq8v459l2uqQ4TKQItHHFG75/D6veTlQX6+kJ+fWOlMmZ8fzp78B9hSAOmepbKc7dlEkMAxJeDID+OenY/StmQLyeWbSdEtDChfyvd7jmPjnlEcw2q+5gSfu5WBwm0bH2DGxqsp+GYpj3Mj5YRTTjhlRFBOOA9wK0sZyNEs5888W3neW15gEpvoQi9WcwrzcEk4GmaKOyycb2LGUhzVko5soaeuwe2s2lqm4RFsb9EbjYgkgTziya/c0+yINNdwRIbjDJPKpUzfzQK+n72zSq9tx/xbKcuWdWbgymUkb92OWxxMnj6dOePGkZOUdEh2T0UBBb4VquoSkWRgp++/vaetxWJpBHhf9N7sgaqwa9fWoG0LCrbSqVOVQdq7HOZrZwmIPlJ5zUBF47sU42ucrg7vL/x27UJ7rpUrf6Ffv5GeoxbA3yrPlZXBriK4uki5pATKtnVgzoOnk/bTXCLcVQ/gdjq4YNAbdO55PB2+FMRVjKMiD4erDIernNF9CmgRA8dmbeP8de8Q5i7HqeWEqVEbC+LT2E0X/lC8kCcrrjfrLuWeAhyTv4zVtOSPzOEZ/rLPM3RnHRvozj/5Dw/xr33OJ5FFDkncwT38nUcrlZm39OdnSojmJh7jXN7yO1dCFPfwHE9xJmG4QF1QAePmzOE/vXsfEptGDtAN+Na3MojBuyuwo06ksVgs9UJ1LwyHQ/bJcBgMr1IJLKpVthdfO4x3lrO/3Ole5RNK8W0fiHfJKDHRnNSubflg3CDk57k+S2AQJhX0TNvD+KsHI5Kxz3VurPx0KiXk7HP+eVWz1lJ2AdsLTqOiuBxXSTllBWW4S8t5oU0XSgUc2WexaONRuEvLcZWWo6XlaGkZ9/VtT4kT4jeMJWN9SygvR8vLTWyx8nKuHxJPqRO6rR7Msg2TcFaUIRXliKscR0U5l5wYRpnCUatiiNncAoerHIe7HKe7CNVcTkqcj2uz0++ZXU4nLbzZwOqAmpTGt8AE4JX9XOMS4Ls6k8hisdQbQ4YM8XN0C5UD9ZkI3Onk+zewzndZLVA5eW0B1dlsAnG7IbF3ql9qX7fTyZxx42jZJ5Wiov0bmIPXCShIeATasjXOVuAEvKuFCV4BuibD0OR95OpW+ekYT/GnyoT0R0/x567KT9d4ShUul4thz95N1MMlfkrD6XJR2K4dbre7TuKM1aQ0/g18KyKPAv9SVb9Jqidk+sPASODEfbtbLJbGgIjQo0cPUlJSKkNqjB07FoDo6Oh69Vfwffke7Ptq0ybo0cN8rm7Xk68y+uqrrfx6zDFs6NaNlnv3sicxkcL4eJJyt9K6ddV1vIoJ9v3s/Rto3A5sE4h3RhRsZhTKDqwDQdWJo0NXPj5jPGe89y6I4HI4+GT8eKK7dq2zwJTVKg1VXSAi/8Qohv8TkXnAZs/pTsApQBvgFlVdUCfSWCyWeiFYzC2vAjkc8VVGwXC7lTxPiPnC+HjPVltDfv5eEhMVh6Punj1wN9T+dkcF1h3sZzDPHBbmYvnRRzFoYSaxTicv/ulPFMbHk1KHDo01eoSr6mMisgS4GTiHKoN3CfA18LCqfnnQUlgslnrnYGNuHU6ICImJift4RwMkJibW+bM3Buc+t1txuYzv9YtXXEHPnj0pXGu888vKyg5d7ClVnQ/M93iDt8aYgXaqqk3KZLFYGi01ZWlsqgRTkjXVHwghx57yKIl9txNYLBZLI6OmLI3du3dvkorD4XDQunVrVNVPScTExNC6des6iTsFUDdXsVgslkZEYJbGO++8k9TUVLKzsyktLa1TD+nGgqqSnJwcNGBhcnJynT2zTQxssViaHLXJ0tiU2LrVOHEOGTKE6OhoEhMTWbhwYWV9XWCVhsViaZIcSJbGw5nArdVfffVVvWyttkrDYrE0WZrTjjE4NFurrU3DYrFYmhD1rSit0rBYLBZLyFilYbFYLJaQsUrDYrFYLCFjlYbFYrFYQkaaopOLF08q2k0H0LUN/ommLPvHjlntsONVe+yY1Y6DGa/Oqto22IkmrTQOFBFZrKqDG1qOwwk7ZrXDjlftsWNWO+prvOzylMVisVhCxioNi8VisYSMVRrBmdHQAhyG2DGrHXa8ao8ds9pRL+NlbRoWi8ViCRk707BYLBZLyFilYbFYLJaQsUojABG5VkR+E5ESEflRRE5saJkaAyIyRUQ0oGT5nBdPm20iUiwiGSLSryFlPpSIyHAR+VBEfveMzcSA8/sdHxGJFJEnRWSniBR6rnfEIX2QQ0gIYzYryHfuh4A2zWbMROQWEVkkInkiskNE5ohI/4A29f49s0rDBxE5H5gOPAAcC3wPfCoinRpUsMbDGiDZpxzlc+6fwN+A64DjMKmB54lI/KEWsoGIA34GJgPFQc6HMj5PAOcAFwInAgnARyLirD+xG5T9jRnA5/h/5/4YcP4Jms+YjQSeAY4HTgIqgM9FpJVPm/r/nqmqLZ4CZAIzA+p+BR5saNkaugBTgJ+rOSfAduA2n7poIB+4uqFlb4CxKgAm1mZ8gBZAGXCxT5uOgBtIa+hnOtRj5qmbBXxUQ5/mPmZxgAsY5zk+JN8zO9PwICIRwCDgs4BTn2E0uwW6eZYSfhOR2SLSzVPfFWiPz9ipajHwNXbsILTxGQSEB7TZAvxC8x7DE0QkR0TWishMEWnnc665j1k8ZrVoj+f4kHzPrNKoog3gBLID6rMx/xDNnUxgInAqcCVmTL4XkdZUjY8du+CEMj7tMb8aA2MFNecxnAtcAozGLLkMAb4UkUjP+eY+ZtOBZcACz/Eh+Z7ZdK/7Eui4IkHqmh2q+qnvsccguQG4FPAaJ+3Y1cyBjE+zHUNVne1zuEJEfsQEID0NeLeGrk1+zERkGnACcIKqugJO1+v3zM40qtiJ0cCB2rYd+2ruZo+qFgArgSMB7y4qO3bBCWV8sjAz3TY1tGnWqOo2YCvmOwfNdMxE5HGMEfskVd3gc+qQfM+s0vCgqmXAj8ApAadOweyisvggIlFAb4zh7TfMl/GUgPMnYscOQhufH4HygDZHAH2wYwiAiLQBUjDfOWiGYyYi04GLMApjdcDpQ/M9a+gdAI2pAOdjdhZc4RnE6ZhdHZ0bWraGLsCjwAiMsS0V+AjI844NcLPn+GygPzAb2AbEN7Tsh2h84oABnlIE3On53CnU8QH+A/wOnIzZ8j0fs2btbOjnO9Rj5jn3KDAM6ILZbroAM9NolmMGPO35Dp2EmU14S5xPm3r/njX4QDS2AlwLbARKMVp5eEPL1BiKz5evzPOFewfo63NeMNtytwMlwFdA/4aW+xCOz0jMmnBgmRXq+ABRwJPALs9LdA7QsaGfrSHGDLNVNB3jZ1CGsWXMChyP5jRm1YyVAlN82tT798wGLLRYLBZLyFibhsVisVhCxioNi8VisYSMVRoWi8ViCRmrNCwWi8USMlZpWCwWiyVkrNKwWCwWS8hYpWFptIjIMBF505NQpkxEdonIPBG51Bv7X0QmepLzdPHpt1FEZgVca5yIrPAk11IRSRQRh4g8ISLbRcQtIu/X47N0CZZoKEg77/P0qC9ZDhQROVNEbgpSP9Ij88kNIZfl0GIDFloaJSJyAzAN+BLj5boJaAmMwXi07gU+qKb7WRivWO+1woDXMGES/oJxFssH/oRJAPQ3jLfxrjp/kKbFmRgv4mkNLIelAbFKw9LoEJHhmBfTU6p6fcDpDzwRPmOr66+qSwOqUjC5B95U1a997tPH8/EJVXXXgdyRqlp6sNexWBozdnnK0hj5F7Abk7pyH1R1var+VF1n3+UpEZmCCQsD8IJnGSVDRDZiwi0AuHyXjkQkWURe8eRQLhWRn0Tk/wLu4V1GGi4ib4nIXkzOEUQkRkSe8SynFYjIh0Cd5q0WkStFZLlnuW2niLwQkPYTj3z3icj1nsRZ+SLyVZCc0U5Pu+0iUiQiX4pIb0//KZ42szBh8FOkKl/3xgCxYkTkKY88O0TkVRFJrMvntjQ8dqZhaVR4bBUjgfdVtaQOLvk8Jg/1W8B9wMeYpatI4HpMYqlhnrbrRSQWE6+nJXArsAX4P+C/IhKjqjMCrv8a8Dpmqcv7/+k5TPDLu4FFmIii/6uDZwFARKZiltT+DfwDM5O6D+gvIserf36F/8Pkdp8MRACPYGZrvVW1wtPmbs+zPoLJyT0Q+DDgtvcCbTF5p8/w1AXOqqZjAlleBPQCHsakG7j0YJ7X0riwSsPS2GiDCVa3qS4upqpbRWSZ53C9qnoTRiEiv3va+Nb9FZOvYZSqZniqPxWRJOA+EXkh4KX8tqr+06d/L8xL8zZVneqp/kxE4oA/H+zzeAz+/wDuVtV7fOrXAt8C44D3fbqUA6erarmnHRgFOgSTebElcAPwrKre7OkzT0TKgce8F1HV9SKyAyjzHa8AvlbV6zyfP/OMxRUiMlFtkLsmg12eslj8GQ787qMwvLyK+aXdN6D+vYDjVMz/qzcD6mdTN5ziuf5rIhLmLZilsTyM/L7M8yoMDys8fzt5/h6FsQ+9FdDv7QOQ7eOA4xWYGV3SAVzL0kixMw1LY2MXUAx0bqD7t6IqyY8vWT7nfQlsm+z5GyxPc13QzvN3XTXnWwcc7w449i4pRXn+euXNCWh3IPLu716WJoBVGpZGhapWiEgGcEoD7UbajVmPD8SbQjNwW27gsotXiSRhcqjjc1wXeO8/BthTw/lQ8crbDpO+14udHViCYpenLI2RqZhfzI8EOykiXUXk6Hq691fAESLyh4D6izC/xn/ZT/9MwA2cF1B/Qd2IxzzP9Tup6uIg5bdaXm8FUAicG1AfeAxm5hBde5EtTQk707A0OlT1a4/n8TSPL8UsYDNmR9NoTDrei4Bqt90eBLMwO43eFZHbMOlFL8bYEq4OMIIHk32NiPwPuEdEHFTtnvpjLeUYKyJZAXW5qjpPRB4CnvIYmr/CZGjr6LnP86o6P9SbqOoeEXkCuFVE8qnaPTXJ08TXf2UV0EpErgEWAyWqugJLs8IqDUujRFWfEJGFwI2YXNFtMF7ci4GrMSkq6+O+hSIyArNddCrGKXANMEFVXw3xMldjcsv/HbPN9UuMkvu2FqI8GaRuJSZ1560i8gvGu/0vmCWyLcAXwK+1uIeXuzBpQidhtiFnYrYifwfk+rR7HhgKPAAkYna4dTmA+1kOY2y6V4vFsg8ici5mB9hwVf2moeWxNB6s0rBYmjkikgqchplhlACDMF75a4DjrY+FxRe7PGWxWAow/h1/ARIwBv83gVuswrAEYmcaFovFYgkZu+XWYrFYLCFjlYbFYrFYQsYqDYvFYrGEjFUaFovFYgkZqzQsFovFEjJWaVgsFoslZP4fdQK4Q91ssicAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAf0AAAFGCAYAAABgwUY+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAAB9DElEQVR4nO3dd3hUVfrA8e87k17oEJoQRAEBG0HpVcG+IuqKFVwXK9Zd3bWiq+uuylp+NiyrLK5KsaNYwAVF6QGUJiJFBOkgENIz7++Pk0lmJpkkQDIJ5P08z30mc++5d86Zmcx777mniKpijDHGmCOfp7ozYIwxxpjIsKBvjDHG1BIW9I0xxphawoK+McYYU0tY0DfGGGNqCQv6xhhjTC0RVd0ZqEqNGjXS1NTUSjnW/v37SUxMrJRjVTcrS81kZamZrCw1k5UlvPT09B2q2ri0bUd00E9NTWXhwoWVcqyZM2fSv3//SjlWdbOy1ExWlprJylIzWVnCE5Gfw22z6n1jjDGmlrCgb4wxxtQSFvSNMcaYWsKCvjHGGFNLWNA3xhhjagkL+sYYY0wtYUHfGGOMqSWO6H76xlSX8847j82bNx/QPtnZ2cTFxVVRjiLLylIzHYlladasGVOmTKnu7Bw2LOgbUwU2b958wAND7du3j+Tk5CrKUWRZWWqmI7EsXbt2re6sHFYiXr0vIn1F5CMR2SQiKiIjKrDP8SLylYhkFe73gIhIBLJrjDHGHDGq455+ErAMuBXIKi+xiNQBpgFbgVMK97sTuKMK82iMMcYccSJeva+qU4GpACIyrgK7XA4kAMNVNQtYJiIdgDtE5ElV1SrLrDHGGHMEORxa7/cAZhUGfL/PgeZAarXkyBhjjDkMHQ4N+ZoCG0PWbQ3Yti5wg4hcC1wLkJKSwsyZMyslExkZGZV2rOpmZal62dnZ7Nu374D2KSgoOOB9qtLMmTN55JFHWLFiBQkJCVx22WU88MADREWV/bOxevVqRo8ezaxZs8jNzaVdu3a8+uqrtG/fHoCtW7dy3333MWPGDPbt20fbtm259dZbueSSSwDw+XxceumlLF26lO3bt1OvXj369evH3/72N5o3b37I5XrllVf4v//7P7Zs2cJxxx3HP//5T3r27Fm0/fXXX+edd97h+++/Z8+ePXz33Xe0adPmkF830EcffcRrr73Gd999x86dO/nkk0/o06dPufvl5uby+OOPM3HiRDZv3kyTJk24+eabueGGG0qknTx5Mtdccw1nnHEGkydPBoq/Y1u2bGH06NF88cUXZGRkkJqaylNPPUXv3r0PqVzLly/nz3/+M+np6dSvX5+rr76av/zlL/ibYL3//vs8/fTTrF27lry8PNq2bcuNN97I5ZdffsCv5S9LdnZ2jfwNOBAR/R1T1WpbgAxgRDlpvgBeC1nXClCgR1n7pqWlaWWZMWNGpR2rullZqt7BfPf27t1bBTk5OEuWLNGYmBh94IEHdPXq1Tpz5kzt0KGD/ulPfypzv7Vr12qjRo101KhRmp6ermvWrNFPPvlEN2zYUJRm0KBBmpaWpnPnztU1a9bomDFjVET0q6++UlXVgoICfeqpp3TOnDm6fv16/fbbb7VHjx56yimnHHK5JkyYoFFRUfryyy/rihUrdNSoUZqYmKg///xzUZqnnnpKH330UX3qqacU0KVLl5Z7XEDXrVtX4XyMHz9eH3zwQR0/frwCFf4eX3DBBXrKKafoF198oevWrdO5c+eWuu+aNWu0RYsW2qdPHz3nnHOK1u/du1d3796tbdq00SuvvFLnzZuna9eu1enTp+uKFSsqnP/S7NmzR1NSUvTiiy/WpUuX6uTJkzUpKUnHjBlTlObLL7/U999/X1euXKk//fSTPv300+r1evWTTz454Nfz/79U5u98dans3zFgoYaLqeE2RGKpYNAfD3wSsu6UwqDfpqx9LeiXzspS9Q426GdkZOjIkSO1Tp062rBhQ73nnnt03759mpCQoOvXr6+CnJbu7rvv1pNOOilo3UcffaRxcXFlnpxceumletlll5WZJjExUV977bWgda1atdInnngi7D4ffvihApqVlVW0bvny5Xr22WdrUlKSNm7cWIcNG6abN28us1ynnnqq/vGPfwxad8wxx+hf//rXEmkXLFhQZUHfb/v27RUO+p9//rnWqVNHt2/fXma63NxcPfXUU3XcuHE6fPjwEkH/7rvv1p49e5Z5jJycHL3rrru0RYsWGh8fr127dtXPPvuszH1eeOEFTU5O1szMzKJ1Dz/8sDZv3lx9Pl/Y/U4++eRS3//yWNAPr6ygfzjc058D9BGRwBElBgG/AuurJUfGVJE//OEP/O9//2P69Om8/fbbPPPMM4waNYoOHTrQunXrsPudddZZJCUllbkciJycnBKDuMTHx5OdnU16enqp+/h8PqZMmULHjh254IILaNy4MaeccgoTJ04MSte7d28mTZrEzp078fl8fPjhh2zfvp3TTz+91OPu2rWLN998k27duhXlafPmzfTt25fOnTszf/58pk+fTkZGBueffz4+n6/U4+Tm5pKens7gwYOD1g8ePJjZs2dX6H2pTh988AGnnHIKTz75JC1btuTYY4/llltuISMjIyjdvffeS2pqKsOHDw97nG7dunHJJZfQpEkTTjrpJJ577jn/BRUAV199NV999RVvvfUWy5YtY/jw4Zx33nl89913YfM3Z84c+vTpQ3x8fNG6M844g19//ZX169eXSK+qfPnll6xatYq+ffse4LthDlq4s4GqWnBd9k4qXDKBBwr/blW4/R/AlwHp6wJbgAlAZ2AosBf4U3mvVZVX+gUFBZV27EirqVfHB6OmluVgvnvr1q1TEdHx48cXrbv66qsV0IcffrjMfTdu3KirV68uczkQn3/+uYqIvvHGG5qXl6cbN27UPn36KKBvvfVWqfts3rxZAU1ISNBHH31UFy9erP/617/U6/Xqxx9/XJRuz549etZZZymgUVFRmpiYqB988EGJ4911112akJCggHbv3j3oCvf+++/XgQMHBqXftWuXAjpv3rxS87dp0yYFim4j+D300EParl27EunLutLv2LGjJiYmFi3+cvufd+zYsdQ8hDqQK/0zzjhDY2Nj9eyzz9a5c+fqZ599pscee6xeeOGFRWk+//xzbd26te7evVtVtdQr/djYWI2NjdW//vWvumjRIn3ttdc0MTFRn332WVVV/emnn1REgm55qKqef/75esMNN4TN36BBg/Tqq68OWvfzzz8roLNnzy5a99tvv2liYqJGRUVpbGysvvrqq+WWvTR2pR8eZVzpV0dDvq7AjIDnDxUu/wFGAM2Atv6NqrpHRAYBzwMLgd3Av4AnI5Rf3nvvPcBdyah6EPExYcIE4uLiGDp0aKSyYY5wa9asQVXp0aNH0bpu3brx+uuvl/s9a9GiRaXmZfDgwYwZM4abbrqJESNGEBsby/3338+sWbPweEqvIPRfYZ9//vmMGjWK5ORkTjrpJBYuXMhzzz3HOeecA8B9993Hjh07mD59Oo0aNeKDDz7gqquu4uuvv+bEE08sOt6dd97JNddcw88//8xDDz3EFVdcwaeffoqIkJ6eztdff11qDcaaNWvIycnhrLPOKlr30ksvMWDAgEp7f6ZOnUpeXl7R82OPPZapU6cWfQ7R0dGV9lp+Pp8PEeGtt96ibt26ADz33HOcccYZbN26FY/Hw4gRI3j77bepV69emcfp2rUr//jHPwA4+eSTWb16Nc8//zyjRo1i0aJFqCodO3YM2i8nJ4eBAwcC0KlTJ37++WcA+vTpw6efflrhciQnJ7NkyRIyMjL48ssvueOOO0hNTeW00047kLfDHKTq6Kc/Ewg7mp6qjihl3VKgWup/fD4f2dnZeDwe/vvfSZx++u+ZOXMC69evJzU1FZ/PF/ZH0JgDERsbC0BMTEzRupSUFOrXr1/iBzjUWWedxaxZs8pME1oNXJ477riD22+/nc2bN1O/fn3Wr1/P3XffzdFHH11q+kaNGhEVFVUir8cddxwTJkwAXEB+9tlnWbJkSVGAP/HEE5k1axbPPvssr776atDxGjVqRLt27TjuuOM46qij+Oabb+jTpw8+n49zzjmHMWPGlMhHSkoKUVFRLFmyJGhdbGwsXq+XrVu3BqXfunUrTZs2PaD3prRbLa1btyY1NfWAjnMgmjVrRosWLYoCPrj3FmDDhg3s37+fzZs3BwVP/4lYVFQUy5cvp3nz5jRr1qzUz+iZZ54p2kdEWLBgQYmTF3/VfeBJj39d06ZNS31v/dv8PB4PxxxzDAAnnXQSK1eu5NFHH7WgHyGHQ5e9auXxeBg2bBgffPABP/64mn/9ayz16u2hbdtUhg0bZgHfVJrWrVvj8XhYvXo1rVq1AlzXrt27d7Nnz56gH/tQr776KllZ5Q5wecBEpKib3Ntvv81RRx1Fly5dSk0bExPDKaecwqpVq4LW//jjj0VBMjMzEwCv1xuUxuv1hr0XD8XBKycnB4AuXbowadIkWrduHfaq2h9YAqWlpTFt2jQuvvjionXTpk3jwgsvDPvaNUWvXr2YPHkyGRkZRTUcP/74I+C+O4mJiSxdujRon/vuu4/du3fz/PPP06ZNG3JycujVq1eZn9HJJ5+MqrJly5awtSOlnfT06NGDv/zlL0GT+kybNo3mzZuXeTLk8/mKPlcTAeHq/Y+EpbLu9SxcuFCnTJmiDz30T73llrH6wAOP66xZs3ThwoWVcvxIq6n3wQ9GTS3Lwbbev+iii3TgwIG6f/9+/eGHHzQ5OVmbN2+ub7zxRhXksmyPP/64fv/997ps2TL929/+ptHR0fr+++8Xbd+4caO2b99e33vvvaJ177//vkZHR+szzzyjq1ev1pdfflmjoqKK7unn5ubqMccco3369NF58+bpTz/9VNRl76OPPlJV1dmzZ+tzzz2nS5Ys0fXr1+uXX36pPXv21NTU1KLW+5s2bdLGjRvrBRdcUNT1b9q0aTpy5Mgyew5MmDBBo6Oj9ZVXXtEVK1boLbfcoomJiUE9IzZv3qyLFy/WN998UwGdPHmyLl68WHfu3FmUZtu2bbp58+awy7Zt28p8b3fu3KmLFy/WGTNmKKCvvPKKLl68OKj3wZVXXqlXXnll0fN9+/Zpy5Yt9aKLLtJly5bpN998o506ddKLLroo7OuUdk9//vz5GhUVpY888oiuXr1aJ02apHXq1NHnnnuuKN3ll1+urVq10smTJ+uaNWt0wYIF+sQTT+i7774b9rV+++03TUlJ0UsuuUSXLl2q7777riYnJwd12XvkkUd02rRpumbNGl2xYoWOGTNGo6Ki9MUXXyzz/SqN3dMPj5raZa+ql8r4Mvh8Pp01a5a+/fbb+sADf9dbbnlJ//znJ/XRRx/VWbNmldkVpaaqqYHyYNTUshxs0N+6dasOGTJEGzRooA0aNNB//etfOnXqVG3evLmOHj268jNahgEDBmjdunU1Li5Ou3XrplOnTg3avm7dOgX09ddfD1r/+uuva9u2bTUuLk6PP/74Eg3/fvzxRx06dKg2adJEExIS9IQTTtBx48YVbV+8eLH2799fGzRooLGxsZqamqrXX3+9/vLLLyWOc+GFF2q9evU0Li5O27Vrp6NGjdKcnJwyy/X8889r69atNSYmRrt06VKiYd/o0aMV1yU4aAksZ+vWrUtN419at25dZh5ef/31UvcL/Iz79eun/fr1C9rvhx9+0EGDBml8fLw2b95cb7zxxjJPckoL+qqqH3/8sZ5wwgkaGxurxx57rD7zzDNBv2W5ubk6evRobdOmjUZHR2tKSoqed9555V7ofP/999qnTx+NjY3Vpk2b6oMPPhh03L/+9a96zDHHaFxcnNavX1979OgRtmFoeSzoh1dW0Be3/cjUtWtXPdDpTUP5fD6efvppUlKac+utg8jPj+WUU9I5+eR5NG0axW233XbYVfHPnDmT/v37V3c2KkVNLUvXrl1tal0rS41zJJblYP7XaprK/h0TkXRVLXXO4cMrWlUDVfj4425s3ZrCrl312bMnkZkze/LUU7fz8cfdOILPmYwxxhxhLOiX48EHhW+/7YaqoOoBhPz8aPLzo/n22248+GDYjgjGGGNMjWJBvwy7d8OYMZCbW3onh9zcKMaMgd9+i2y+jDHGmINhQb8M77wDXq+7kt+wofT7YF6vUDiBlTHGGFOjWdAvw5YtkJnpbtrn5ZX+VmVmKlu2RDJXxhhjzMGxoF+Gpk0hIcH9nZq6t9Q0CQkunTHlGTFiBCJSYunevXtRmtTU1KL1CQkJdO7cmZdffjnoOLm5uTzxxBOcfPLJJCQk0KBBA7p3785LL70U0UFO3nvvPQYPHkzjxo1JTk6mW7dufPTRR2Xu4/P5+N3vfkerVq2Ii4ujWbNmXHHFFWzatCko3YIFCzj99NOpV68e9erV47TTTmP+/PlF27OzsxkxYgQnnHAC0dHRldryOScnh5tvvplGjRqRmJjIJZdcwsaNG4u2f/fdd1x66aUcddRRxMfH0759ex5//PEyBxc6GH//+9/p1asXiYmJRfPRl+cf//gHp5xyCnXq1KFx48acd955LFu2LChNad9BEeGmm24qSlPadzXwe3oovvrqK9LS0oiLi+Poo49m7NixQduff/55TjjhBOrUqUOdOnXo0aMHn3zySaW8trGgX6aLLoKCAve311t6M/2CAggY3MuYMp1++uls3rw5aJk6dWpQmgceeIDNmzfz/fffM2TIEK677rqimepyc3M544wz+Pvf/87VV1/Nt99+S3p6OnfccQevv/46c+bMiVhZvvrqKwYOHMgnn3zC4sWLOfvss7ngggvKHQ544MCBTJo0iVWrVvHuu++ydu1aLrjggqLtGRkZnHnmmTRv3py5c+cyZ84cmjVrxhlnnMG+ffsAKCgoIC4ujlGjRhWN6V9ZbrvtNt59913efvttZs2axb59+zj33HMpKPwxSE9Pp3HjxrzxxhssX76chx56iIcffph//vOfYY85c+bMAx6iNycnh6FDh3LbbbdVeJ+ZM2dy4403Mnv2bP73v/8RFRXF6aefzq5du4rShH7/pkyZAsDvf//7oGOFfldDv6cHY926dZx99tn07NmTxYsXc/fdd3PzzTfz7rvvFqVp2bIljz32GIsWLWLhwoUMHDiQIUOG8P333x/y6xtscJ7y3Hefalxcvo4ZM0NdB77iJTa2QP/0p0N+iYirqQPaHIyaWpbSvnuhA6WE2rt3r7Zu3brEvPLHHnusDhs2TFVVH3vsMRURXbBgQYn9CwoKdM+ePYeY80Nzyimn6B133FHmgDGhPvzwQwWKRtvzz263du3aojRr165VoNRy33TTTSUGsfH76KOPtEuXLkWD/Nxzzz1lDt7z22+/aXR0tP73v/8tWrdixQoVkTLnk7/zzju1S5cuYbfPmDGj3AF7wpk8ebK6n+oDt2/fPvV4PEWjHZb2ufzxj38sMctged9VVfdejRw5Uhs3bqxJSUnat2/fUj+fQHfddZcec8wxQeuuueYa7d69e5n71a9fX8eOHRu0zgbnCY8yBuexK/1y/O1v8Oc/e3G1az78g2fFxCjXXefhhhuqN3/myBcXF1c0ucmbb77J6aefTteuJcfd8Hg81KlTJ+xxkpKSylwCZ6U7WPv27aN+/foVTr9r1y7efPNNunXrVjRee/v27WncuDH//ve/ycnJIScnh1deeYVWrVrRqVOnCh/7888/5/LLL2fUqFEsX76c1157jXfeeYd77rkn7D7p6enk5eUxePDgonUtW7bkuOOOY/bs2WH327t37wGVO1L27duHz+cLm7eMjAwmTJjAyJEjS2z75ptvaNKkCe3atWPkyJFs27ataJuqcs4557Bp0yY+/vhjFi9eTN++fRk4cCCbN28Om585c+YEvbcAZ5xxBgsXLgyatdCvoKCACRMmkJGRQc+ePStabFMGm3CnHCJw8snvkZfnY9iwb5g27WR27kxm8OA5HH/8bvLzzyYnBwonSDOmTJ999lmJ6WBvuukmHnvssRJp8/Pz+e9//8vSpUu5ofDscvXq1Qd9/zpw1rnS+GdLO1jPP/88Gzdu5Morryw37V/+8heee+45MjMz6d69Ox9//HHRtuTkZGbOnMmQIUOKpn9NTU1l2rRpB5THv//979x5551cffXVALRt25bHHnuMK664gieeeKLU++RbtmzB6/XSqFGjoPUpKSlsCdNid9GiRYwbN44333yzaN2GDRuCZrIrKCggJycn6LO/4oorStzPrmy33norJ510UtB0zYHeeustcnNzGT58eND6M888k6FDh9KmTRvWr1/Pfffdx8CBA0lPTyc2NpYZM2awZMkStm/fXvSZPPzww0yZMoU33niDu+66q9TX27JlC6effnrQupSUFPLz89mxYwfNmjUDYOnSpfTo0YPs7GySkpJ4//33Of744w/17TBY0C9XQUEBmzdvpkGDBnTrtpx27Xrzt7/BypWN6d79B1QLyMz0WtA3FdK3b98SDfNC5z6/9957efDBB8nJySEmJoY777yT6667DnBXWAertFnnKsu7777LnXfeycSJE2ndunXRvfdw7rzzTq655hp+/vlnHnroIa644go+/fRTRISsrCz+8Ic/0L17d958800KCgoYM2YM559/PgsXLiQxMbFCeUpPT2f+/PlBJ1Q+n4+srCy2bNnC66+/zqOPPlq0bcWKFQdc7lWrVnHOOedw2223Bc3U17x586CTrHnz5vGXv/yFmTNnFq0rq1amMtxxxx188803fPPNNyVmNfR75ZVXOP/882ncuHHQ+mHDhhX9ffzxx5OWlkbr1q355JNPGDp0KOnp6WRmZpbYLzs7mzVr1gAc0glO+/btWbJkCXv27OGdd95h+PDhzJw5k86dO1f4GKZ0FvTL4fV6OfXUU1m/fj179+7l11//C1zFhg2pdOy4n8REL7t3Qw2s2TM1UEJCQrnB94477uCaa64hISGBZs2aBV2RtmvXjpUrVx7Ua4fWMITq06cPn3766QEf95133uGqq65i/PjxnHfeeRXap1GjRjRq1Ih27dpx3HHHcdRRR/HNN9/Qp08f3nrrLdasWcO3335bFKzeeust6tevz/vvv88VV1xRodfw+XyMHj06aBpdv8aNG3P99dcHNV5r3rw5TZs2paCggB07dgQFtK1bt9KnT5+gY/zwww8MGDCAYcOGlWjEFxUVFfQ5b9y4scS6qnT77bczYcIEZsyYwdFHH11qmiVLlrBw4cKgE59wmjdvTsuWLVm9ejXg3tuUlJRSG236T2YCT3r865o2bcrWrVuD0m/dupWoqKig2pWYmJii9yotLY0FCxbw1FNP8e9//7vcvJqyWdCvgFNOOYX9+/ezcuVakpL207TpVrZsSWHPnhPxeiEzE6viN5WmYcOGYYPDZZddxt13383ChQtL3Nf3+XxkZGSEvYKsiur9SZMmMXz4cP7zn/9w0UUXHfD+QFFXN393w8zMTEQkaCIrj8eDiBxQt7guXbrwww8/hH0vGzRoQIMGDYLWpaWlER0dzbRp07jssssA2LRpEytXrgy6p7xixQoGDhzI73//e5566qkK5ykSbr31ViZOnMiMGTPo0KFD2HQvv/wybdq0KVHdXpodO3awadOmour3Ll26sHXrVjweT9iTitLe9x49evD+++8HrZs2bRpdu3YlOjo67Ov7fL6Idkc9klnQrwCfzxfU5eWYY9ayZUsKX3yhDB4seDywf78FfVO+nJycEveGvV5viWrScG677TY++eQTBg0axEMPPUTfvn2pW7cuixcvZsyYMTz66KNh7/lX9lXmhAkTuPLKKxkzZgx9+/YtKldMTEzRD/j777/P3XffzZdffkmLFi2YM2cOixYtonfv3tSrV481a9Zw//33k5qaSu/evQEYNGgQd955JzfeeCO33HILPp+Pf/7zn3i9XgYOHFj0+itWrCA3N5cdO3aQkZFRdFJz0kknAa7r47nnnkvr1q35/e9/T1RUFMuWLWP+/Pk8/vjjpZapbt26XHPNNdx11100adKEhg0bcuutt3LCCScUBcfly5czcOBABgwYwD333BP0eTYtHLSjoKCA7du3F63v0KEDc+fODUobHx9P3bp1w76/GzZsYNeuXaxfvx4oPmk75phjimptOnTowKhRoxg1ahTg2oe88cYbfPDBB9SvX7/o9fyNNf0yMzN58803ueuuu0q0bcjIyODBBx/kwgsvpFmzZqxfv567776bJk2aFHWtPP300+nVqxfnn38+jz/+OB06dGDLli189tlnnH766SVqRfyuv/56nnvuOW677Tauu+46vv32W8aNG8fbb79dlOavf/0r55xzDkcddRT79u3jrbfeYubMmdZXv7KEa9Z/JCyV0ZWjoKBA33zzTX377bf1P/95S1esKNC7756uoJqcnKU//1ygGzaorllzyC8VMTW1m9vBqKllCddlj1LmUG/RooWqhu+yFyo7O1v/+c9/6gknnKBxcXFar1497datm44dO7bcueQrU79+/UotT79+/Yq6U/nnjV+3bp2qqi5evFj79++vDRo0KOpGd/311+svv/wSdOwvvvhCe/XqpXXr1tV69epp//799dtvvw1KE25O+0Cff/659u7dW+Pj4zU5OVnT0tL02WefLbNc2dnZOmrUKG3QoIHGx8frmWeeqRs2bCjaPnr06FJfN/C1161bFzaNfxk+fHiZ+Qj3fQn8zgM6evTooOelLf40/s/ltddeU6/Xq5s2bSrxupmZmTp48GBt3LixRkdHa6tWrXT48OFB74H/WLfccou2aNFCo6OjtWXLlnrJJZfoTz/9VGa5Zs6cqSeffLLGxMRoamqqvvjiiyXK3apVK42JidHGjRvraaedVmp3SeuyFx5ldNkTPYSGQTVd165dtTLmWX7vvfcAGDJkCOvXe/B4fKSlZbFrVyIffQRpabBvH6SmHh5X+zV1DvqDUVPLcjBzfB+Jc50fCawsNZO/LAfzv1bTVPbvmIikq2rJfr1U04h8InKjiKwTkWwRSReR0uuCitPfJCIrRSRLRFaJyFWRyivA0KFDadCgAR6Ph7p1IT/fw5AhbnzeL75wafxV/MYYY0xNFfGgLyKXAM8AjwInA7OBT0WkVZj0NwCPAX8DOgGjgedFpGLNhCtZQoIbenfwYHcf7PPP3fq4OJti1xhjTM1WHVf6dwDjVPUVVV2pqjcDm4FwY9tdCbyiqm+r6lpVnQC8DPwlQvkNEhfnruq7dYN69WD1avjxR/B6IS/PteI3xhhjaqKIBn0RiQHSgC9CNn0BhBtjMRbIDlmXBZwqIuH7eFQREUhOBp8PzjjDrfM3KrUqfmOMMTVZpLvsNQK8wNaQ9VuBcJ1FPweuEZH3gIW4k4Y/AtGFxwsa6FlErgWuBTe8Y+AIWIciIyOj6Fg+n7uqP/74BkyceALvvZfB4MGuIcm6dRATUykvWWUCy3K4q6llyc7OLndUulAFBQUHvE9FXH/99ezcuZPJkydX+rHDqaqyVIdTTz2VIUOGlDlm/+HiSPpc/GXJzs6ukb8BByKiv2PhmvVXxQI0x3Uh6Ruy/gFgVZh94oHXgDwgH9iEu8evQEpZr1eZXTkCu1Tk56v+8IPq2rWqdeq4GfdmzVLdtMmtL5wsrMaqqd3cDkZNLcvBfPcOZGa6UOG6dy1evFh/++033b17d1Hafv366U033XTQr1URh1KWmua4444L6hYXKc8//7ympqZqbGysdunSRb/++uty95k5c2bRrIJt2rQp0R3ur3/9a4nvSEpKSlCa0r5L3bp1C0qzefNmveKKKzQlJUXj4+P1hBNOCJqZMBKsy1541KBZ9nYABUBKyPoUoNTZLFQ1S1X/ACQAqUArYD2wD9he2j5VzeuF+HhX1e8fzMo/1bTXCxkZ1ZErU9uFzn++efNmOnfuTN26dUuM71/b5ObmVncWDsjEiRO59dZbueeee1i8eDE9e/bkrLPOYsOGDWH3qchc9eDGtQ/8jixdurTEsUK/S1P9P3CFrrrqKlauXMmHH37IsmXLuOqqq7jyyiv5+uuvK+cNMFUmokFfVXOBdGBQyKZBuFb8Ze2bp6obVbUAGAZ8rKoVH5OzktWtC7m5cO657rn/vn5cHOzZA0fw8AemhoqNjaVp06ZBS1RUFCNGjODcwi/qiBEj+Oqrr3j++ecREUSkaMS3QFdffTWNGzcOGpd93bp1xMTE8N///jdsHt577z1OOOEEmjRpQoMGDejXr1/QWOuPP/44TZs2JSkpiauuuooHH3yQ1NTUou2BefV78MEHgyZaWbBgAYMHD6ZRo0bUqVOH3r17M2fOnKB9RITnn3+eoUOHkpiYWFQ1P2XKFNLS0oiLi6NNmzbce++9QScE27Zt4/zzzyc+Pp7WrVvz2muvlfGOV50nn3ySESNGMHLkSI477jieffZZmjVrxosvvhh2n7Fjx9K8eXOeffZZjjvuOEaOHMnw4cMZM2ZMULqoqKig70hpo0GGfpdChyuePXs2N910E926dePoo4/mT3/6E0cddRTz58+vnDfAVJnqaL3/JDBCRP4oIseJyDO4av+xACIyXkTG+xOLSDsRuVJEjhWRU0VkAtAZqNYbbP5hyvv2hcRE+P57+OUX15gvPx+yQ5seGlMDPPPMM/To0YOrr7666CruqKOOKpHuySef5B//+Af3338/q1atAtywtu3bty8akz7Uli1bGDZsGMOHD2fBggV8/fXXQdPsTpo0ifvuu4+HHnqIRYsW0b59e5588skDLsO+ffu48sormTVrFvPnz+ekk07i7LPPZufOnUHpHnroIc4++2yWLl3KTTfdxOeff87ll1/OqFGjWL58Oa+99hrvvPNO0L36ESNG8NNPPzF9+nQ++OADxo8fX+bVNcCsWbOKhrkNt1RkUhu/3Nxc0tPTS8w7P3jwYGbPDn9tVNG56teuXUvz5s1p06YNw4YNY+3atSWO9c0339CkSRPatWvHyJEj2bZtW9D23r17M2nSJHbu3InP5+PDDz9k+/btFRrH31SviI+9r6oTRaQhcB/QDFgGnK2qPxcmCe2v78V182uPu68/A+ipqusjk+PSxcRAVBRER8Npp8FHH7mr/euvd+v37Ck+MTAmEj777LOg8dVLmzWvbt26xMTEkJCQUDROfGnq16/PH//4R9555x3Gjx/PpZdeyltvvcV7770XNBFOoF9//ZW8vDwuuugiGjRoQHJyctAV+tNPP83w4cOLpgm+9957mTFjBj/99NMBlTNw/H2AZ599lnfffZdPP/00aAa+Sy65hD/+8Y9Fz4cPH86dd97J1VdfDUDbtm157LHHuOKKK3jiiSdYvXo1n376Kd988w29evUC4D//+U/YCWX8unbtWu5kRqFXymXZsWMHBQUFpKQE3wVNSUlh+vTpYferyFz1Xbt2Zdy4cXTo0IFt27bxyCOP0LNnT5YvX07Dhg0BOPPMMxk6dCht2rRh/fr13HfffQwcOJD09HRiC4ccnTRpEsOGDaNRo0ZERUURGxvL22+/XTTvgam5qmXCHVV9AXghzLb+Ic9X4gbxqXHq1oXdu+Gcc4KDflycG5a3SRN35W9MJPTt25eXX3656PnBzJoX6qqrruLuu+9m6dKlnHLKKZx//vkAvPnmm0XBG+DTTz+lZ8+enH766XTu3JmBAwdy5plnctFFFxVVH69cuTIoCIObde1Ag/62bdu4//77mTFjBlu3bqWgoICsrKwSV+ShsxCmp6czf/58HnvssaJ1Pp+PrKwstmzZwsqVK/F4PJx66qlF21u3bl00s1w48fHxEZsy91ANHjw4aBje7t27c/TRR/Of//yHO+64A4Bhw4YVbT/++ONJS0ujdevWfPLJJwwdOhSA++67jx07djB9+nQaNWrEBx98wFVXXcXXX3/NiSeeGNlCmQNis+wdgsRE2LEDBg50gX7RIvj1V2je3HXry8pyaYyJhISEhEoPPkOGDOH6669nypQpQVeZv/vd7+jWrVvR8xYtWuD1evniiy+YO3cuU6ZM4d///jd33303X331VYUDgcfj8ffaKRJYNQ3uin3r1q089dRTpKamEhsby2mnnVaisV5iyD+fz+dj9OjRXHzxxSVeN/C+duisc+WZNWsWZ511Vplp7rnnngp3+WvUqBFer7fUeefLqp2p6Fz1gZKSkujUqROrV68Oe9zmzZvTsmXLojRr1qzh2WefZcmSJUWf64knnsisWbN49tlnefXVVytUTlM9LOgfgthYdyUfF+cC/9Sp8OmncM01rtp/zx4L+qbmiYmJoaCgoEJpExISOPbYYxERTjvttKL1ycnJpU7cIiL06NGDzp078/e//51OnToxceJETjzxRI477jjmzp3LH/7wh6L0c+fODdq/cePGJarKQ59/8803/N///R/nnHMO4ALb5s1Bw3WUqkuXLvzwww9hT4w6dOiAz+dj/vz59OzpxgrbsGFDuceu7Or9mJgY0tLSmDZtWtAJyrRp07jwwgvD7ncwc9VnZ2fzww8/MGDAgLDH3bFjB5s2bSqq8cjMzATclNCBvF4vPl+1ta02FWRB/xCIuCr+fftcFf/UqfDxxy7ox8a69QUFrhufMTVFamoq8+fPZ/369SQlJRVNJlWaadOmsWjRIpKSksjMzCQhISHscefOncv06dM544wzSExMZPXq1fzyyy907NgRgFtvvZWrrrqKU045hf79+/POO+8wb968oIA4cOBAHn/8cV577TX69u3Le++9x7fffkvLli2L0rRr147//ve/dOvWjf3793PXXXcRU4ERsR544AHOPfdcWrduze9//3uioqJYtmwZ8+fP5/HHH6d9+/aceeaZXHfddbz88svEx8dzxx13lHubpCqq9++44w6uvPJKTj31VHr16sXYsWP59ddfuf7664vSXHWVm3ds/HjX7rkic9Xfe++9XHjhhbRq1Ypt27bx8MMPs3//foYPHw64QWIefPBBLrzwQpo1a8b69eu5++67adKkCRdccAHgTo6OOeYYbrzxRsaMGUPDhg354IMPmDZtGh9++GGlvg+mCoTrwH8kLFU1OE+g/fvdgDw//KAaG6sqorpggRuoZ9Uq1T17Ki0LlaamDmhzMGpqWapjcJ5zzjmnQttWrVql3bt31/j4+KC57ktzyimn6Pnnn6+tWrXSN954o8w8rFixQs8880xt0qSJxsTEaNu2bfWxxx4LSvPoo49q48aNNTExUS+99FIdPXq0tm7dOijN6NGjtWnTplqnTh294YYb9O6779ZOnToVbV+yZImeeuqpGhcXp0cffbSOHz9eO3XqVGJe+cmTJ5fI4+eff669e/fW+Ph4TU5O1rS0NH322WeLtm/ZskXPO+88jYuL05YtW+orr7xSrYPztG7dWmNiYrRLly761VdfBW3v16+f9uvXL2hdeXPVDx06VJs1a6bR0dHavHlzHTp0qC5fvrxoe2Zmpg4ePFgbN26s0dHR2qpVKx0+fLhu2LAh6Dg//vijDh06VJs0aaIJCQl6wgkn6Lhx4yr3DSiHDc4THmUMzlPtgbkql0gE/YICF9w3blQ9+2z3jt5/vwv669ap/vxzpWWh0tTUQHkwampZIh30q8J7772nHo9Hly1bpvfcc48OGjSowvtWtCxPPPFEiaBf09S0z+VQHIllsaBfUllB39qWHyKPB+rUcbPrDRni1vlruGJiXGO+kHZIxtR4Pp+P+++/n0svvZROnTpx1VVX8eWXX/Liiy+yY8eO6s6eMeYgWdCvBMnJLrAPHAhJSW6gnjVr3DaPx4blNYefN998k1WrVvHQQw8BbujWhx9+mPvvv58777yzmnNnjDlYFvQrQVyca9QXFwf+njv+q/24ONeX34blNYeTK6+8kry8PNq2bVu07p577mHHjh28/vrrlfY6f/7zn0sdBtgYUzUs6FcCr9dd4efmFlfxf/CBC/Rer6sFsGF5jTHGVDcL+pWkTh0X9Hv3hoYNXfX+8uVum39YXmOMMaY6WdCvJP6uvFFRcN557m//OBlxcbB3r+uzb4wxxlQXG5ynkni9bvQ9fyv+cePcff1773WN+VQhM9M1+jNHPv/kJgciOzubuLi4KspRZFlZaqYjsSzlzY1gglnQr0R16sCWLZCWBi1awKZNsGABdOvmRujbvRuSkjRobG9VPeCxvk3NN2XKlAPeZ+bMmfTv37/yM1MNrCw1k5XFWPV+JUpIcFf0Hk9xgz5/FX9MDCxYsIyvv55bNKGIqjJnzhzS09OrJ8PGGGNqFQv6lSgqyt3bz82FwhlI+fhj91xVycvLIT19FXPmzCkK+MuWLSMnJ6foRMAYY4ypKla9X8nq1XNV/B07Qvv2sGoVzJgBZ5wh9OzZhblzYenSdJYtWwZA586d6dGjh1XxG2OMqXJ2pV/J/FX8IuCfFXPyZPcYFSWccEIX8vKKp92zgG+MMSZSLOhXsqio4lb8Q4e6+/vTp8OuXa6Kf+nSdDIzi6cBnT17tlXtG2OMiQgL+lWgXj13Hz8lBfr1cyPyffCBMmXKFJYtS6dly46MGDGSTp06MW/ePCZPnmyB3xhjTJWzoF8F4uNd9b5qySp+KJ6Ex6r1jTHGRFK1BH0RuVFE1olItoiki0ifctJfJiJLRCRTRLaIyH9FpGmk8nug/GPx5+TA4MGu//733wvt2p1Hly5dWL/+B158cQJLly6je/fuXHzxxXYCYIwxpspFPOiLyCXAM8CjwMnAbOBTEWkVJn0v4A3gP0AnYAjQEXgzEvk9WHXrumr9+PjiYXnfeUfo2rUrHo9SUCDk5XmtIZ8xxpiIqY4r/TuAcar6iqquVNWbgc3ADWHS9wA2qupTqrpOVecCzwLdIpTfgxIfXzz8rr+K/733lHnzFgLg9frIzIwp6rNvjDHGVLWIBn0RiQHSgC9CNn0B9Ayz27dAMxE5T5xGwDBgatXl9NB5PG6c/exs6NoV2rRRtm4VPv54H+3bt2fEiEs56qiOfPfdcgv8xhhjIkIiGWxEpDmwCeinql8HrH8AuFxV24fZbygwDojHDSg0DThfVbNKSXstcC1ASkpK2oQJEyol7xkZGSQlJR3QPj6fq+L3eOCtt1oxbtzR9O79Kw888GPR9pyc/URFCQkJCZWSz4o4mLLUVFaWmsnKUjNZWWqmyi7LgAED0lW19Bm/VDViC9AcUKBvyPoHgFVh9umIO1G4EzgBOAP4Hhhf3uulpaVpZZkxY8YB71NQoPrjj6obN6rOn68qohob69OuXVW7d1fdsEF19Wqf+nyVls0KOZiy1FRWlprJylIzWVlqpsouC7BQw8TFSN/T3wEUACkh61OALWH2uRuYr6pPqOr3qvo5cCNwpYi0rLqsHjqPxzXoy852s+717g05OcKOHW671wsFBUJmZvXm0xhjTO0Q0aCvqrlAOjAoZNMgXCv+0iTgThQC+Z/X+HEG6tSB/Hz392WXucdt21wDP4DoaGXXrurJmzHGmNqlOibceRJ4Q0Tm4xrpXY+r9h8LICLjAVT1qsL0U4BXROQG4HOgGfA0sEhVN0Q26wcuNhaio6GgAFq0WErduh3YsyeajAz/sLwLyc+Pp0mTzsTGVndujTHGHMkifqWsqhOB24D7gCVAb+BsVf25MEmrwsWffhyum98oYBnwDvAjcH6k8nwoRKB+fcjKUny+bE48cRUA27YpCxcuZOXKleTn5/Dbb9Z63xhjTNWqlupxVX1BVVNVNVZV0zSgJb+q9lfV/iHpn1XVTqqaoKrNVPVyVd0Y8YwfpKQkUBW2b99Ox45rAdi+HV59VcnI8LJ371b27BEKQm9iGGOMMZWoOqr3a53oaIiJ8TFp0tHMmHEMrgODMHVqFz77rAunn/4TvXv7yMjwULdudefWGGPMkarGN4Q7Urz4oodZs9qTnx8FuGF3fb4o8vOj+Oqr9rz4ooedO4sb+BljjDGVzYJ+BOzeDc8+q2Rnlz7GflaW8PLLys6dkFViuCFjjDGmcljQj4B33gGvt+xJdbxeYfp0rPueMcaYKmNBPwK2bIHMzLLr7bOyXH/9/fshNzdCGTPGGFOrWNCPgKZNISGh7Cv9+HihSRM3St9vv0UmX8YYY2oXC/oRcNFFlNsdLz8fzj3XTcn722/Fo/gZY4wxlcWCfgTUrw9//rMSFxc+8p97rlK3rhvMRwT27o1gBo0xxtQKFvQj5G9/Ey6/fCvR0fmI+AAlJiYPj8cHQGZmcfV/fLxr0OfzVVNmjTHGHJEs6EeMMnjwNzzwwEs0aLCHunX3M2jQbK6/fhJer48vvlA2Fo4x6PG4gJ+RUb05NsYYc2SxoB9BLVq0ICpqH0lJe0hK+o0OHRZRt+4OevXajc8njB9fnDYuDnbssMF6jDHGVB4L+hEWExNTeN9eycuLIjo6mrPP3grAW28VD84TFQV5eZCZWY2ZNcYYc0SxoB8hIkJsbCwpKSmAEBXlQ8RL48aNOf74PI4/3o3c99FHxfvExsLOndWWZWOMMUcYC/oRoqrk5OSwZcsWvF4PMTHRJCdHsXnzDvLycrn6aleP/9prxVX6MTHuyj87uxozbowx5ohhQT+Cli1bRl5eHsnJdWjWrBl9+x5Pdrbyww8/cN55rmvfsmWwcGHxPtHRdrVvjDGmcljQrwbPPbeMGTMgLs6HiOLzuW56l1/utr/8cnHauDjYtw9ycqonr8YYY44cFvQjqHPnzsTExDBv3jxeeeUVFiyYR506Po4+uiMAf/iDu7L/9FNYt654v+hom4jHGGPMobOgHyEiQs+ePenWrRvZ2dns2LGD7Oxs+vY9iRNP7IKIkJICF1zg7um/+mrxvvHxboQ+m4jHGGPMobCgH2EiwRPvxMRAYmJx9f1117nHCROCr+6jouxq3xhjzKGxoB8hqsqcOXOYO3cucXFxNGzYkLi4OObOncvq1fPIyXFN9jt0gAEDXIv90MF69uyxq31jjDEHr1qCvojcKCLrRCRbRNJFpE8ZaceJiJay7I9knivDxsJxdrt168a1115Lt27dANi+fQPR0cUz8fmv9seNK+6uJ2LT7hpjjDk0EQ/6InIJ8AzwKHAyMBv4VERahdnlVqBZyLIWmFT1ua08IkLbtm3p1q0bPXv2DLrHf8wxbWnYUIpG4+vdGzp2hO3b4f33i4/hn3Y3L69aimCMMeYwVx1X+ncA41T1FVVdqao3A5uBG0pLrKp7VHWLfwHaAkcDr0Quy5UjLS2tKOBDceO+tLQ0kpJcGlV3VX/99e75Sy8Vz7bnn3bXrvaNMcYcjIgGfRGJAdKAL0I2fQH0rOBhRgLLVXV2ZeYtUkIb8vmfR0VB3brF1fm/+x00bQqrV8P//lecPiHBDddrV/vGGGMOVKSv9BsBXmBryPqtQNPydhaRusDvOQyv8iuiXj3Iz3d/R0fDyJHu72efLR6aV8RNvbt7t3uuIdPwhT43xhhj/CSSQUJEmgObgH6q+nXA+geAy1W1fTn73wT8C2iuqqV2YBORa4FrAVJSUtImTJhQKXnPyMggyV8HX4X8rfNFICvLyxVXdGffvmieeGIJJ574W1E6nw/y8zMBJTExsWj9/v37ERESEhLCvkakyhIJVpaaycpSM1lZaqbKLsuAAQPSVbVraduiKu1VKmYHUACkhKxPAbZUYP+RwLvhAj6Aqr4MvAzQtWtX7d+//8HlNMTMmTOprGOVZf9+2LgRkpPd8+uugzFj4MMPT+KyywLTKT/8sIDNm5fQuXNnevTowZw5c/jxxx+LnofeSoh0WSLBylIzWVlqJitLzRTJskS0el9Vc4F0YFDIpkG4VvxhicipwIkcoVX7fgkJBHXf+8Mf3AnAN99AenpgOuGYY06hffvjWbZsGa+88grLli0rN+AbY4ypvaqj9f6TwAgR+aOIHCcizwDNgbEAIjJeRMaXst+1wGpVnRm5rEaeCDRsSFH3vbp1Yfhw9/f//V9wupgY4dhjuwftbwHfGGNMOBEP+qo6EbgNuA9YAvQGzlbVnwuTtCpciohIMjAMeJVaICnJBXV/V71rr3Uj8k2f7qbe9YuLU77+ejF5ecUf45w5c6wxnzHGmFJVy4h8qvqCqqaqaqyqpgU26lPV/qraPyT9PlVNUtXHI57ZauD1QoMGxd33GjaEK690fz/7rHtUVaZMmcL33y+iZcsTGTlyJJ07d2bu3LlMnjzZAr8xxpgSbOz9GqpOHXel74/d11/vJuf55BPXd98vOrqA/fs9ZGVZdz1jjDFls6BfQ0VHBw/W07QpXHKJOwl45hk3qM95551Hly5dWL9+Fc888xbLli2nW7duXHzxxXZf3xhjTAkW9GuwevWCR967+WZ3tf/BB7BqlQv8Xbt2JSrKR25uFLm5UUHD/BpjjDGBLOjXYLGxrlFfTo573qIFXHaZu9ofM8ZV5y9cuBCAmJh89u6N59tvrSGfMcaY0lnQr+EaNiwO+uCu9uPiYOpUmDhxBatWreKNN37HRx9dxtFHt2fhwlXWgt8YY0ypLOjXcPHxbsAe//C8TZsW99ufOPEo2rdvT1JSMiD06nUyzZqdQFRUrFXxG2OMKcGC/mGgUaPgq/2bbnInAvPn12HlyuJx971eKChQMjK81ZBLY4wxNZ0F/cNAfLy7v++/2m/YEK65xlXfv/RSEvv27QOUBQsWsHTpXGbN+oHcXKveN8YYE8yC/mFABBo3Dr7av/ZaJT4+l/XrW/Hzz8IPP2Tw8ssZZGR4qFMnge3bLegbY4wJdkCz7IlId+BMoDtuvPx43Mx5q4CvgA9UdXdlZ9K46vyYGNeFLzoa6tf30LZtDsuWxZCR4aZknD69N9Om9eWii3Zw5pkeGjRwtQTGGGMMVPBKX0SGi8hS3Ex4twMJwGpgHrAb6IYbF3+TiIwTkTZVlN9ay3+17x+s54knlB9/TPBvBYS8vBjy86N4//3GvPCCsnVr8Yh+xhhjTLlX+iLyPdAYGA9cBSzRUvqDiUhd4FzgcmCFiIwonFzHVJLERHeVv3MnjB0LubmlN9jLyfHyyivKVVe5Mfzr1IlwRo0xxtRIFane/zfwkqpml5VIVfcAbwJvisiJQNNKyJ8JIOJa8r/5pmupXxavF/73P6hf350slJfeGGPMka/c6n1Vfaa8gF/KPt+p6ucHny0TTnIy7NoFWVll98PPyhJ27HDV+7t2RShzxhhjajRrvX+YEYGjj4a4uLJv1sfHK02auAaAO3cGt/w3xhhTO1U46IvIEBF5XUTmicjqwmVe4bohVZhHE+Lyy8HnK/tKv6BAOPdcd5IQGwtbtlijPmOMqe3KDfoiUl9EvgHeAwbguujNLVx2AP2B90TkWxGpX4V5NYUaNIBbbvERHZ1f6naPx8d11/moW9c9j411rf737YtgJo0xxtQ4FWnI9y+gFdBPVWeVlkBEegP/BcYA11Re9kw4//ynh8xMeOmlAgoKBFUhKiqP/PxofD4Pp50WnD4hAbZudY/GGGNqp4pU7/8O+HO4gA+gqt8AfwGGVFK+TDk8Hnj8cQ9ffy3Uq7eHOnX2ctppsxg50m1/4AHw+YrTe72uqn/HjurJrzHGmOpXkaAfixuApzy/ATGHlBtzQOLifCxY8CGJifupW3cfJ520nA4dptC0qfLddzBpUnD6hAT47Te7t2+MMbVVRYL+HOBeEUkOl6Bw2924EfvKJSI3isg6EckWkXQR6VNO+hgR+VvhPjkiskFEbqnIax2pfD4fEyZMYPfu1URHx9KiRQuOOuootm1bz5lnLgTg0Udhz57g/eLj3VC+gbUAxhhjaoeK3NO/DZgJ/CwinwDLKL7yrw90As4BCnAN/cokIpcAzwA3At8UPn4qIh1VdUOY3SYALYFrccP/puDG/a+1PB4PcXFxHHtsS77+uiE5OUJs7Pl8+OGHtG27nRUrYP58eOopePDB4v2io4v77jdqVG3ZN8YYUw3KDfqquqJwhL27gPOAy3CDvQMosB43RO8TqvprBV7zDmCcqr5S+PxmETkTuAFXWxBERAYDpwFtVdV/R3p9BV7niNe6dWuysrJo3FhYvx5iY4UWLVoQFxfHww/DWWfB66/DZZdBu3bF+3k8ru9+UhLExVVb9o0xxkRYhfrpq+pmVb1dVY8BEoEWhUuSqrYt3FZuwBeRGCAN+CJk0xdAzzC7DQEWAHeIyMbC8QH+T0SSKpL3I5WqsmbNGubPn096+hzq11e+/XYRixcvZv369XTqpFx+OeTnw/33l7yP7++7b9X8xhhTexzwiHyqml14ErBZVbMOcPdGgBfYGrJ+K+HH6j8a6A2cCFwIjMJN7zvuAF/7iNOiRQsA5s6dy7vvvsqSJd+hCs2aNQPgrrugXj345ht4//3gfWNiIDfXNewzxhhTO0gpE+YFJxAZqqrvHdBBRZoBrVV1bsj65sAmXJ//rwPWPwBcrqrtSznWF0AfoGnhpD7+Kv/PC9dtDUl/Le7ePykpKWkTJkw4kKyHlZGRQVJSzatc2L9/P/sKR93x+YS4uGSSk4s743/+eVP+9a8O1K2by7//PZ86dfLJzs4gLs6VpaDAXfVL2QP81Vg19XM5GFaWmsnKUjNZWcIbMGBAuqp2LW1bRRryPVsYlMcCk1Q17PQtha3wr8RNr3s7btS+QDtwDf5SQtanAFvCHHYzsMkf8AutLHxsRUitgaq+DLwM0LVrV+3fv3+47B6QmTNnUlnHqiyqypw5c/juu+8AV1Xfvv0ZtGvXhehoF8U7doRvv4W5c2N4773ePPEELF8+k06d+gNuTH4RaNXK3es/3NTEz+VgWVlqJitLzWRlOTgV+Zk/FjcE79+ArSLyvYi8ISJPisg/RGSsiHwhIrtwrfyPBQYVBt8gqpoLpAODQjYNInx3v2+B5iH38P3N0n6uQP6PSP6AP3fuXOLi4mjYsCEJCXGsXj2bOXMW46/BEYHHHnOt9t96C+bNCz5ObKxV8xtjTG1Rkal1M1X1b7guc1fggnYa8Afc1fx5uPv0zwCdVHWAqpbVX/9JYISI/FFEjhORZ4DmuJoERGS8iIwPSP8WsBN4XUQ6iUivwtd6R1W3HWB5jygbN24EoFu3blx77bV069aN2Ng8du7cRHbAZMjHHAOjRrm///IXyMsLrstPTITt2wnaxxhjzJGnItX7gLtKF5EvgQ9V9aDDg6pOFJGGwH1AM1y//7NV1X/V3iokfYaInA48i2vFvxv4APjrwebhSCAitG3blhYtWtCzZ09EhJ49XQcIjyee/HxBtfhe/ahR8OGHsHo1TJrUipNOCjyWu+L/9Vdo3doN2WuMMebIU27QFxEvcD9wK1AHKBCRKcA1qvrbwbyoqr4AvBBmW/9S1q0CBh/Max3J0tLSUFWkMLL7A7+IsG0b7N1bPMFOXBz885/w+9/DW2+15uqr4dhji48VEwP797ux+VNCW1wYY4w5IlTknv71wAPAYtwseh8C5wNPVWG+TAVJSLN7//OGDd3zgoLibb16waWXQl6eh9tvd334AyUkwO7dkJER3KOjvB4exhhjDg8VCfojgVdUdaCq/kVVLwZuAq4oHGzH1EBeLzRpApmZwesfeAAaNcpm8WJ46aXgbSKwZs33fPLJIvLyXKBXVWbPnk16enqEcm6MMaaqVCToHw1MDlk3Edd4r3Wl58hUmuRkd68+J6d4XZ06cMcdqwAYMwZ+/LF4m6ryyy/r+e67JXz88UJ8Phfw582bx5o1a+yK3xhjDnMVCfpJwN6QdfsKH8POvGeqnwg0beqCfmC87tp1N5de6rrqhVbzN2vWjOjofObNW8pTT41jXmEfv5YtW0Y498YYYypbRYdjaSEiR/sX3NV/ifWF20wNEhcHDRqUXs3frBksWQJjx7p1IkLXrl3p0qULqhls3JjDvn35dO/enR49epRoP2CMMebwUtGg/w5uSlv/8kPh+g9C1q+u5PyZStCwoRttL/CKvk4dV70P8K9/wfLlwfuIQFRUPnv3JhXd3zfGGHN4q0g//aurPBemSnm9rpr/l19csPfr3x+uvBLeeMP14//kE2X58oUsWrSI2NhYEhMT2b07hy+/XIbXC7169bSrfWOMOYyVG/RV9T+RyIipWomJULduyWr+0aNh9mzXoO/vf4du3TYD0KVLF7p27crChQuZM2cpP/64jV69qiHjxhhjKs1hOMWKOViNGgX32weIj4fnn3dj848bJyxYUIeCgiRuv70r3bsLP/yQhtcby6ZN+WRl2VW+McYczio8DK85/EVHu9H21q4NXn/88W5M/kcegTfe6EVBgaCqqMIDD/goKLiE3r1XcPHFPtq29RAdXT35N8YYc2jsSr+WqVPH3ePPygpef9110LKlkpcXjc8XhaoHEHJzoygoiGLu3E4895ywaZObwtcYY8zhx4J+LeNa5btq/sCq/r17Ydu28NX3OTleXn1V2LHDzchnjDHm8GNBvxbyD9oT2Kjvk08gKqrsrnlerzJjhhuff/fuKs6kMcaYSmdBv5ZKToakpOJq/m3bSlb5h8rKcumSkmDrVjcrnzHGmMOHBf1aSsRNyOPzuWr+Jk1cS/6yxMe7dB6Pm5Fv06bgcf2NMcbUbBb0a7HoaFfNv38/nHMOFBSU3SWvoEA491z3d1SU23/TppJT9BpjjKmZLOjXcsnJbtCemBi47jof0dF5pabzevO57jofdesWr4uNdRP5bN5sLfqNMeZwYEHfFFXZ33qr0Lv3SrzefER8gOLxuMt4EeHCC0vWBMTHQ3a2u8dvM+8aY0zNZoPzGLxeaN4c1q2Diy9eT5cuC1i6tBWZmUnEx2ewfv2xrF6dyjXXKB9/7GoHAiUmui5/0dFu1D9jjDE1k13pG8BNwdu0qdCv3znUr+/h+OOX0q3bHE44YSnDhs2ifXvlp5+Em28uvSo/KQl27LCufMYYU5NVS9AXkRtFZJ2IZItIuoj0KSNtfxHRUpYOkcxzbVCnjo8vv/yInTsziYmJoXHjxsTExJCTs4thw6ZRt64ybVrxlLyBRFzg37IF9u2LfN6NMcaUL+JBX0QuAZ4BHgVOBmYDn4pIq3J27QQ0C1hWV2U+ayOv10PTppCcXIekpHqICHXr1qVOnTq0bJnP2LGCxwPPPAMffFByf4/HBf5Nm0rO5meMMab6VceV/h3AOFV9RVVXqurNwGbghnL226aqWwKWgnLSmwOkqrRokUKjRrm0adORyy67nA4dOhAVFUXjxo3p00cZPdqlvf12mD+/5DG8XteH/5dfXAM/Y4wxNUdEg76IxABpwBchm74Aepaz+0IR2SwiX4rIgCrJYC0nIsTGxpKWdhyDB5/M/v1C165d6dChA7GxsYgI11wDV18Nubnucc2akseJinJtBDZssMF7jDGmJol06/1GgBfYGrJ+K3B6mH38tQALgBjgSuBLEemnqrOqKqO1VVpaGqoKCDk5kJnpAr+I664nAg895K7kp0+Hq66Cjz6Chg2DjxMd7brw/fILtGrlxgEwxhhTvUQj2LlaRJoDm4B+qvp1wPoHgMtVtX0FjzMVyFfV35Wy7VrgWoCUlJS0CRMmVEreMzIySEpKqpRjVbcDKUturnuUkC76WVle/vSnk/jpp2Q6dtzDY499R2xsyWb9qm6JiSl5jMpQWz+Xms7KUjNZWWqmyi7LgAED0lW1a2nbIn2lvwMoAFJC1qcAWw7gOPOAYaVtUNWXgZcBunbtqv379z/wXJZi5syZVNaxqtuBlCUnB37+2Q3C4/UGb5s4Ec47D1asqMvzz/flpZdc1X4o/739o45yNQCVqbZ+LjWdlaVmsrLUTJEsS0Tv6atqLpAODArZNAjXir+iTsJV+5sqFhsLzZq58flDK4WaNoU33nDD+H72Gdx1V+mj8sXGupW//AJ5eRDJ2iVjjDHFqqP1/pPACBH5o4gcJyLPAM2BsQAiMl5ExvsTi8htIjJERI4VkU4i8g9gCPBcNeS9VkpOdkP1ltb/vkMHGD/e1QRMnAgPPxwc+L///nsWLlxYFPg3bFC+/nou6enpEcq9McYYv4gHfVWdCNwG3AcsAXoDZ6vqz4VJWhUufjHAE8D3wKzC9Oeo6nsRyrIB6td3V/T795fc1rUrvPKKq9p/6SV44QW3XlXJyclh1apVRYF/0aJ0Zs1aT0ZGrl3xG2NMhFXL2Puq+gLwQpht/UOePw48HoFsmTKIQEqKa9iXleWu7AMNGOAG7Rk1Ch591NUOXHWVa/kPsGrVKlatWgVAhw4daNEijdxcITY20iUxxpjay8beNxXm8biJeaC4VX+gIUPgkUfc33ffDW+95fr+n3zyyUHpTj31JKKihA0bbAAfY4yJJJtlzxyQ6Gho2dK16Pd4SrbWHzHCnRA89JBr2LdgwVxatlzOunUdychIICkpk61b/0OzZvFcfPFl/Pyza9WfkFAtxTHGmFrFgr45YLGxLvBv2OCm1Q3tynfttVBQ4K76J03qhsgpREUVkJ8fTVRUHj7fKXTrtoiLL84nPj6KX36BFi3cuP3GGGOqjlXvm4OSkOCq+vfvL32q3RtugJ493ch+ql7y8mJQFfLyYigoiGLhwi489ZSXqCh3rI0bYc+eiBfDGGNqFQv65qDVqeMa92VklOyf/9tvkJ4efgi+3Nwoxo4V9uxxNQVJSbB5M+zYUXpff2OMMYfOgr45JPXru3H3Q/vwf/JJyWr/UF4vfPyx+9vjcS3+d+6ELVtKrz0wxhhzaCzom0PWqJEL/nv3Fq/btg2yssq+ZM/KUrZtK34u4gL/vn2waRPk51dRho0xppayoG8OmYgbsa9eveIr/iZN3PS6ZYmNdelCJSW5HgA2Na8xxlQuC/qmUvgH76lTx93jP+ec8qvoc3Nh8ODSt8XHuyr/9evd8UKFjuZno/sZY0z5LOibSuMP/ImJrv/+9dcL8fHhgrHi8wmjRpU+pj+46Xj9Lft37Spu4Jeens6cOXOKAr2qMmfOHBvP3xhjymFB31Qqj8fNypeYCDfcoJx77q94vflER+cCPqKjc/F68zn99O00bqx88w0MHeoa75XG63X3+bdtc2ny8914/suWLWPOnDkAzJkzh2XLlpGTk2NX/MYYUwYbnMdUOn/g37TJR2rqp1x3XTZr1nTA52uMx7Odtm1/oEEDLw8+eC1XXeVlxQo491wYNw46dy55PBF322D/fsjKErp06QHAsmXLaNCgAbt27aJz58706NEDkfDdBI0xprazK31TJdw4/R4SEwuIjvZyww11ef31E7jhhrokJRXg9XpJTfXw4Ydulr7Nm93Y/Z99Fv6YCQnuBGDq1OVkZAR/dVWVRYsWVW2hjDHmMGdB31QZr1c455yuDBiQRvv2XQE3617Pnj3p3r07IkKDBjBxIlx4oZu975pr4Lnnwg/QExOjQBZffrmSX38tQBUyMjKYN28e2dnZVr1vjDFlsOp9U6W6dk2jSxdl+3Zh925ITnaBP7AaPi7OTcvbrh3885/wj3/AqlXw+OMlp/AFd58/Li6XnJxYCgo85Od7iYoqsKp9Y4wph13pmyrn8QhNmkDjxq6lvmrJ4CwCo0bBq6+6avz33oPf/c7N5hecTti+fTtNmjShbl13zpqZ2Zjk5JZs3rzFAr8xxpTBgr6JCBE3XG/Tpi7wFxSUnu7MM+GjjyA1FVasgLPPhv/9r3i7qtK4cWO2bt3K2LGnsWNHHXy+ffz0UwZRUUeRm2vV+8YYE44FfRNR9eq5aXkzMyEvr/Q0xx0HU6fCoEFu4p6rroJ//av4RGHlypX89puyb18C+fkeFi/uQFZWDt999yPr14fv92+MMbWdBX0TccnJ0KqVG5EvO7v0NHXrwmuvwV13uedPPgmXXAK//qp88cWJvPDCSHbvrktBgYfPP+/BCy+MZObMzsTEKJs2ud4ANna/McYEs6BvqkV8PLRu7ar9s7JKT+PxwK23wltvufYAc+ZAv34eZs3qTEFBFKru65uXF0NBQRSzZ3fm6ac9RX36163ztyGIYMGMMaYGq5agLyI3isg6EckWkXQR6VPB/XqLSL6ILKvqPJqqFxPjrvhjYtz4+uGCc9++MG0a9OzpThDy80ufszcnx8vYscqePa4xYFycm63v11/D30owxpjaJOJBX0QuAZ4BHgVOBmYDn4pIq3L2qw+MB76s8kyaiPF6oUWL4hn6wk3S07ixa80fHR28ftOmpJDjCR9/XHzsOnXcLYR162DPHrvqN8bUbtVxpX8HME5VX1HVlap6M7AZuKGc/f4N/AeYU9UZNJHl8bgpdps3d9Xyubmlp9uxw429H+j//q9L0POsLGXbtuD94uPdlf+WLa4LYLjbCcYYc6SLaNAXkRggDfgiZNMXQM8y9rsRSAEeqbrcmepWp467z19QUHpgbtKk5GA9BQXBX+H4eJculMfjGhCCC/xbt1pDP2NM7RPpK/1GgBfYGrJ+K9C0tB1E5HhgNHCFqobp3W2OFHFxLvDHxJRshHfOOSX7948c+V3Q85wcGDw4/PFjYlzw37fPVfn/9lv4WwrGGHOkkUiOVS4izYFNQD9V/Tpg/QPA5araPiR9LLAY+IeqvlG47kHgIlUtZT42EJFrgWsBUlJS0iZMmFApec/IyCApKan8hIeBw6UsBQWuAZ7H41r5g6ui3769+GSgZcsMVq+ux8cfH828ec0BaNMmg9tvX0WHDuV32Pf53LGjotzrVKfD5XOpCCtLzWRlqZkquywDBgxIV9WupW5U1YgtQAyQD1wcsv554KtS0qcCWriPf/EFrBtc1uulpaVpZZkxY0alHau6HU5lycxU/ekn1dWrVTdtUt24UfWWWwo0KipfRQp0zJgZGh2do1FR+XrBBQXaurUqqIqoDh+uuny526+sZf161ZUrVTdsUM3Kqr6yHk6fS3msLDWTlaVmquyyAAs1TFyM6LWNquYC6cCgkE2DcK34Q20CjgdOCljGAj8V/l3aPuYI4u/PHx/vb92vDByYzu23j2fQoC9JStrPgAFfcccd4xk+PJ3p05UbbnBX7f/5j+vuN2lS2a32o6Nde4L8fHe//9dfwzcmNMaYw1l1VGg+CYwQkT+KyHEi8gzQHBfMEZHxIjIeQFXzVHVZ4AJsA3IKn2dUQ/5NhEVFuZb9zZq51v0bNmzF682ge/e11K2bQ/fua/F4Mti8eTPx8XDfffD559CtG+zcCbffDkOHwtKlZb9ObKy735+VBWvXusZ+1r/fGHMkiXjQV9WJwG3AfcASoDdwtqr651NrVbgYU0TEXY23aQMZGb+RmxvDiSeeTMOGDTj55JMREfbs2VOU/rjj4N133ZS9jRrB/Plw1llwxx0umJclPr64sd/atbBtmwV/Y8yRoVqaLqnqC6qaqqqxqpqmAY36VLW/qvYvY98HNUwjPnPki4mBo4+OoV69PHJyvIUN8YTo6Gjq1q0blFYELroIvv4arr3W1RhMnAi9e8PTT5fdX1/E9e1PSoK9e4uDv1X7G2MOZzb2vjmsiAi///3FnHZaF3bvXszu3bv47ru1nHRSF8477zzE38w/QN26MHq0m6L3jDPcDH9PPAG9esEbb5R9FR8a/Netcz0IcnKqsJBhaEjDhNDnxhhTHgv65rAjIvTo0YOoKB9RUT7q1MmkY8euZGeXDPiBjj7azdw3aRIcf7yr5v/rX6F/f/jww7L76wcGf/9kPps2RW50v/T0dObMmVMU6FWVOXPmkJ6eHpkMGGOOCBb0zWHHH/D8EhLy2Lp1LvHxyt695d9/79ULpk6FsWNdG4H16+HGG92gPp98Un7wj4937Qtyclxr//Xr3YRBVTXIj6qSk5PDsmXLigL/nDlzWLZsGTk5OXbFb4ypsKjqzoAxByIw4HXu3Jnc3FyaN2/OsmVLiYpSTjyxB1u3Cjk57so83IA7Hg+cdx6ceaa78n/ySVi50t3779DBtfg/++yyB+yJi3NLXp676o+KggYNXCPAqEr8z/LXbAAsW7aMZcvcJJOdO3emR48epd7SMMaY0tiVvjmsiAixsbFFAQ+gR48edO7cmdjYWBIThdRUNytfZqZbyuujf/nlMHs2/P3vrlvgDz/AddfBwIGu4V95jfeio12gj4lxkwKtWePu+2dnV96sfoGB388CvjHmQFnQN4edtLS0oIDnD4hpaWmAuzqvX99V3fu73mVnl33M2FgYMQK+/Rb+8Q83LsDq1a6LX48e8NJLrgq/LF4vJCYW3/f3V/3v2XPok/uE3tIAgu7xG2NMRVjQN4el0Cvc0q54o6MhJcUF/+hoF/zLu2qPjYWrrnJX/k8/De3bu6v2v/0NunaFhx6CX34pL2/Fff29XtdgcO1ad5ysrAO/+g+9pTFy5Eg6d+4cdI/fGGMqwoK+OeLFxsJRR7kFXPAv78o7OhouvhimT4dx4+DUU91+L78MPXvCyJEwZ075ATwqyl35Jyb6RxN0JwC7dlW8z3/oLQ1/zYb/loZV8RtjKsoa8plaIyHBjeO/f78baCcry12Rl9XozuOBQYPc8t138OqrMGWKa/0/dSq0awdXXukGAapTJ/xx/Ff/4GYP3LnTzRYYG+tuRSQklJ33tLQ0fD5f0C2N7t2746nuqQGNMYcV+8UwtYqIu/Ju08bdt8/Pd1fwFRlm98QT4dlnYd48uO02aNIEfvwR7r8funSBP/0JFiwo/+rff+8/Odnlx1/9n5vrBgAqrRYiPT2duXPnBvXTnzt3rvXTN8YcEAv6plYScUHXH/wLCip2zx9cO4E773Tj+b/0kuv3n5UFEybAkCFusJ8XX3S1CeWJjnYnIcnJ7vmWLa71/4YNFI05YP30jTGVxar3Ta3mD/5JSa573/btLtjGxLg++GWJjoZzz3XLTz+57n2TJ7u/H3nE9QLo29fN8HfmmeVX4ftrIcCdfGzZ4v6OiRE6dOhBbq6wdOlS66dvjDlodqVvDC7gJiZCaqq77x8T4678y+vn73fMMXDvva56//XX3Rj/IjBjBtx8s7s1cPPNMG1axWoTYmLcCUBSkmtXsHOn0KxZd3bsSGbv3jhyc72ceqoFfGPMgbErfWNCxMdDy5ZumN09e+C334rXe71l7xsd7YbzHTzYtdD/6CN47z1IT3eP773nJgA64ww3ImDv3i7AlyUqCrxeZeHChfz73wNQhauvnsk77yymV6+TqVNHiItzx7FzAGNMWSzoGxNGbKxrrNewoRuYZ+dOd+UfHe22lRdgGzRwA/6MGOEm6PnoI9fyf+VKN/TvpEnu1sJpp7nq/2bNSj+jUHUBf/HideTkdMbjiWPr1m4UFCwgKsrHCSekAYLHU1w7EBvr8mmMMYEs6BtTDq/XXZ3XqeNG9tu9u3h0vri4io2z36YN3HqrW376yQX/Tz5xJwAffOCW6Ohe9O4Np5/uTgT84wqAMHFiK955J42CAsHnE8aNSyUvrzUXXbSdHj0EETfhT2ama5OgWtxIMCHBTgKMMY4FfWMqyN/XPj6+uKvf7t2u5X5UlDsBqEj1+jHHuAl9br/dDdP72WduWbhQmDHDtQO49143GmD//q5L39SpjcnLK26Ck5kpgPDee41p0gTuusvd+w9sfOjvkfDbb+4kwOstHigoJsZuBxhTG1nQN+YgREW5QXXq1XP3/vfudUtBQcWr/8E1HLz+erd8881sfv21F9Onw1dfwapVbnFKb3Obk+Nh7FjluuuEunWDt3m9xQMCQcmaAP9JjP92QExM5c4OaIypeexf3JhDIFI8xW6jRu6qf88eV/2vemBX1PXr59G7N/z+966F//z5rr//V18pqmUfYMoUuOKKso8fWhOg6sYB2LnTnayIFJ8o+GsDoqPtRMCUpKpBPUdCn5uay/6djakkHo8LlomJLoj6TwD273fbo6IqXgMQE+Na9i9YAF99VfYOOTnCgw/CzJlwyilu6dy5/F4BIsUnJX4+n6u52L/f/Q3FJwKBbQOiog7PWwMWrA5deno6OTk5RWNE+AeLio2NLZrp0lRMdXwfqyXoi8iNwJ1AM2A5cJuqzgqTth/wD6A9kAD8DLyqqmMilF1jDpj//nlSkjsByM4OrgHwnwCUN3R+kyYu4GZmhk8j4k4wPv3ULeCu6E88EdLS4OST3dKsWfn59nhcvmJji9f5fK7mITPT/S1SfMKQkFDcmDE62pW7psZQC1aHLnB0SIAePXoEzQBpJ1EVF/h9BCL2fYx40BeRS4BngBuBbwofPxWRjqq6oZRdMoD/A5YCmUAv4CURyVTVFyKUbWMOmn+s/cREFzSzs13w97cBEAkOsoHOOQfuv1+B8D+k0dHKlCnC8uWuZmDBAtdDYN48t/g1bQonnQQnnFC8NGxYfv5LOxFQdXnfu9c1ZvTzlyU/353k+NsJeL3ln+BUJVVlzZo1bNy4ESgOVnPnzqVly5Z06dLFglUF+Gd4BFi2bJmNDnmQQk+egIidPFXHlf4dwDhVfaXw+c0iciZwA3B3aGJVTQcCZxVZJyJDgT6ABX1zWPF43NVxQgI0buyuoLOyXPD0+Vxr+6goFyy9XtdQ8LrrlBdfzCcvr2Sfu+joPK6/3kvnzkLnznDJJW79rl1uQKDFi92yZIkb1tffU8CveXPo1MndDujUCTp2dF0FywvQIi6foff7VV3ALyhwvQ4C+Ws3/AMJ+feP1AlBixYt2LhxI3PnzmXZsmVkFPa7bNGiRdW/+BHEH/gDA5YF/AMTevLUoEEDdu3aFZGTp4gGfRGJAdKA0Kr5L4CeFTzGyYVpH6zUzBkTYf6r4thYF9zXrnUBd//+4iGAReDmmz0sXryEOXNOoKDAg6oQHZ2HqocePZZy111dShy7QYPiKYHBnVCsXeumB/7+e1i61C2//uqWadOK901MdFMGH3ccdOjg/m7Xzt1qKO+3SMRV8/sHCgpUUOAaDmZnu7/9PQig+PaA//3wnwz4Hw/1N1BE6NnT/cR89dVXZGdnA9CvXz969uxpAesAqCqzZ88OWjd79mx7Hw/QokWL8PkbzhTy+XwsWrToiKrebwR4gZBrALYCp5e1o4hsBBrj8vyQqo6tkhwaU40CawHy8lyjuowM5aabCjjuuP8wceJQfD4Pp546n44df2LgwDSg7Op/cEH4mGPccuGFbl1BgRspcPlyWLHCPS5f7mYH9NcQBKpXD4491h2jbdvipVWrig384/WGH8bY5yseV2DPHndCUNpJgb/hof/Ewn/MmtyW4EiiqkyePJmNGzfSrVs3evbsyezZs5k3bx6bNm3i4osvtsBfAarKTz/9xLp164iOjqZBgwbs27ePb775hjZt2lTp7SaJ5LScItIc2AT0U9WvA9Y/AFyuqu3L2LcNkAR0Bx4DblXVN0pJdy1wLUBKSkrahAkTKiXvGRkZJIVeuhymrCw1U1ll2b59O3l5+YDg9UaTl1dQOOBOFA0aNMDjqbygt2dPNOvWJbJuXSLr1yfy889u2b+/9GsEj0dp2jSLFi3c0rx5Fo0a7aZ1ayUlJZuYmMr5jfH/VJX1k+VvZBi6AOzevZvc3BxEBK/XS0FBAapKbGws9evXD3vM2vIdqyj3PuaSlJREYmIi+/fvJyMjg5iYmDLfx8p2uH8uu3btIifHfR9jY2OLpsmOjY2lQYMGh3TsAQMGpKtq19K2RTrox+Aa412qqpMD1j8PdFbVfhU8zn3A1aratqx0Xbt21YULFx5KlovMnDmT/v37V8qxqpuVpWYqqyyvvvoq2dnZREdHF7U8z87OJyoqgcsuu5r9+13bAH/ren/VeGV1rVN1NQCrVrnbBGvWuMaCP/3kbg+EI+IaELZq5W5d+Jfmzd2kRs2bh2/EeKB8vuIaA//f/vejoMDHxIlvs3v3b7RqdRQXXHAuH3/8Ib/8so7GjetxzTUjiInxFNUeeDzFy9df147vWEX5W5kH3tOvjoZ8h/v//rvvvsuWLVv47bffaNu2LWvWrKFevXo0bdqUC/3VcQdJRMIG/YhW76tqroikA4OAyQGbBgHvHsChPEAl/VQYU/Ndc801fPvtt6xYsQJw96jT0k6kV69eiLjRAf2D7eTluROAzEzXPsB/Xu8/EYiOPvATARFISXFL377B27Ky4Oef3a2Cdevc0MIrVuxmx476bNoEmze7JbAnQaDGjV3wb9as+LFpU/daTZu65wkJ5efRH6RLH0zIQ7dunVm27Bf+8Y8+PPLIfgYMaEbXrrG0a9eSXbs8YWsQcnLcSY7/2IFL4EmCSHEe/H8H1jQcKUSE7t27BwX97t27W7X+AVBVmjZtyrp163j11cv5059+xOdbTVZWFk2bNj3iWu8/CbwhIvOBb4HrgebAWAARGQ+gqlcVPr8ZWAf4ByTtC/wZa7lvagn/ldWKFSuKrqj8V1oej6foCitwsJ3ERP++xScC2dkuQGdlFXcV9AenQ6kViI93Df46dChet3z5d3Tq1J+8PFcTsGEDbNxY/Pjrr+5x82bYvt0t330X/jWSklxDwpQU99i4sXts1Kj4sWFDt5RWc6AKn39+ImPHnkBurhvh8JNP0pg6NYrrrxdOOSV82f1dFlWLu1z6fMXtDgJvO/iP4f/bP+dB4MlB4MlC4LbA2xGBJww17QRi4cKF/Pjjj/zrX+cC8Kc/fcyECRNo164dXbuWenFpwti3z8u+fUnk53tZuPBkTjppdZW/ZsSDvqpOFJGGwH24wXmWAWer6s+FSVqF7OLF3cNPBfKBNcBfKTxJMOZI57/nF1iF6u/uExsbW+YVQWknAuC61eXluUf/yUBmZvD9cn9Q8gepgxEdDa1bu6U0BQXutoG/F8Gvv7quhYHL1q1uXIOMDHdroTzJyS74N2hQfCKwejUsWeKjoMCDv9Fjbq5rffjiiwWAl7vuCn9Mf/nDNUQsi/9kIfCkIfCEIfDEwZ8+8CMNfR5amxC4+E8eQtf7Txh8PvdZB55AhGsDUdpJhs/nY8GCBfzySwZ79yYRF5fM/Pkn0qTJ1+zZs4cuXbrgqc4BGQ4TqvDkk/X46KObKSjwUFDg5bPPBjN16pksW7aKHj2q7gSvWkbkKxxUp9QrdVXtH/L8aeDpKs+UMTVYWlpaUJWfP/AfbBVgYB/75GT36B9wJz/fLTk5LkDl5Ljnfv6gEthy/mB5va76vlkzN3pgaVRdi/5t29xJwLZtsGOHqx3Yts097txZvOzb55b160OPVHowys318swzyoQJQv36bhpl/1TKdetCTk4qRx/tnicnFz8mJ7saiORkd/sh3Efhb2NRWUJPFnw+9/mE1jqU1vAxLw9++SX4WOV9hfwx3OMBVeGDD07jyy+Pxudzt0TGj++CahqDBq1hyBAp+l75TzhCjwHBJxaH8pifX3JdWX/XFKNHC1OndiA/v/iLkZvrxsOeOrUDo0cLDz9cNa9tY+8bc5gIDfCVfc8vdMCdwIbR/sDiPynIySlesrKK06m6H3b/0L2B97sPJV/16rmlXbuy0/p87gRh5043QNHOnTB1KkyZouTllZUJYevWkgMKOanl5jFw3gX/8Mv+54mJ7qQg9NE/n4F/8U/bHLj4hzgOfT8O9v0sbfyE8gSePDzxhDBr1rEUFBRnwD9o1MyZ7fj734Xbby9938BH/9/+WyClPZaXJ39bi7LSllZLUtrf4dKEvtehlRgH+lzEfT+feELJySn9TDA728uYMcqf/iTUq1dqkkNiQd8YUy6PJ3hiHn/tABTXEATWEvz8s6vaz80tvgr1pw28Tx3aWr4y8lm/vlv8fvghuKaidMq11woXXeR+lPfuLX786af1xMamFtUg7N3rbjXs21f8mJVVXMNQ2aKji2dyDF38Ixz6BzXy/x0TU7zOv8TEwPbtKaxeXXzLJ3DcA/9kSv7xEPx/+5f9++Gll9wET6XJyhJefRVuuokS0zxXBY8n+HtYntATjtL+Lm1b4He3oKBi+5W1bsIE8HjKPqvxeoXJk2HkyDKTHRQL+saYQxJYQ+BvRBcVBYGj2/pPCvzd6fLzi08IcnPdVVvgDyoUnyAE3r8+mBOEikxalJDgBh3q1KnktuXL19OpU2qZr5Gf74Kiv+1BRoZ7nplZ/HdWVvE6//PMzOLH7OySz7OzixtiVs4JxXGHuH/ZA0Hl5iqnnSY0blyyp0PgEjjaYuCj/+/Axd+mJHDIZq8Xtm5twYIFJdcHfkcCB24K3VZaz4vSemIENrIsra1EuB4b4dbv2AFZWWW/j5mZypYtR07rfWNMLVORe//++9P+E4PAE4TQk4TyrtwDf2zPOAPuv7/s9AUFcO65B1amQFFRxW0BKpNq8fwM/pMA/+K/vRL43H8CFfo8N9ctW7duISGhadFz/+If/dH//ublFT/6G3zm5EB5Iz+qSlEXzap3bCRepIoEv48ffnhM0POEBKFp06p5ZQv6xpgaIfBqrCICB+AJXAJrFfLzXUAeORJeeimfvLySP3nR0fn84Q9evF53VQ7BV2b+wBvajS4SDcRESs5weCiWL/+BTp0OLpq8+SaMHh3chiNUXBxcf72b8yEvL/iWT15e8Emcf3vgUtq60hafD7Zv30SdOi2CPvPSThrDrfM/959shj73V+f7t/mr+kP3CeyZEfgYmCaw4aX/PQkWfB+goAAuvvigPqZyWdA3xhyWDqSa/+mnlZ9+Wsz06SchouTlRREdnY+q0L//9zz++MmFIx2WrGUQcfe0/Q0ZA3/MyxJ6P7esbnHlra8J3DTPZadRhWuvjcw9/eXLV9Op0+E5Q+Jjj/kYO9ZHbq4Lwb/73RpmzToKgJiYfP70Jw/16lVN10cL+saYI54InHvufE488X+sWNGRzMw6JCTspWPH5Rx1VDIJCSeHPYGIjg5un+BXWl/70rrTlbautKvF0q4KK3pyUdETA5+vuDYjXDe4wPcs8DEhAf74Rx8vv1wQdprna6/1kpzsKRr+OPRYxvnzn2HVqtVMn34sPp+n8MQyF1XhrLN+4KGHSmlcUkks6BtjjngiQlRUFPXqKf37ry6aKCY3F6Kiog6q+2Mkr8LD9b8vq29+ad3lNm50YyKUdiICxY+h6/3b7roLFi1azPz5XQr76btpnn0+D2lpS7j55jRyc4OPFfp3aLlCRzEsL53/eeAJTEX2OZB15eWnLBXZT8RDWto82rWbx/jx5+P1FnD22dPo0mUNdesqXu/xB/7CFWRB3xhzxHNzFaTx448/sm/fPkSExMREmjZtSrt27Sp9zIPKFu5q/EAdaDe3UD4fXHHFQvr1m8krr/yBgoIo+vSZRadOKzjqqGTatk0r95bLwXSdKy3tr79CamrF9z+QdQezvqLbXe2Nj9TUBNauXcsNN7xESkoqXbr8CEDjxsfg8/mqbGRDC/rGmCOeqpKbm8u+ffs4/vjji+YvWLp0Kbm5uVTlBCdHEo/Hw3XXXcfYsWNJSnKX2Wlpi2jUqBHXXXddhQJVZVX7+4eYPhz5fJCQkEd8vKsWCa7FKOes4RBZ0DfGHPH88xf4A/6BzF9giqkq8+bNIzs7m6uv/k/R+uzsbObNmxfx6XUPVx6Ph/j4eNq2bcv6wvGivV4vqampxMfHV+n8BTYzgjGmVkhLSwsKSv7AnxZu0H9Tql9++YWsrCw8Hg9RUVF4PB6ysrL4JXBQf1OuIUOG4GbHLP4+ighDhgyp0te1oG+MqTWqev6CI52qsmvXLlSVtm3bcvfdd9O2bdug9aZ8Pp+PCRMmsH79elJTU2natCmpqamsX7+eCRMm4Cuvy8YhsKBvjDGmQjweDykpKbRt25Zhw4bh8XgYNmwYbdu2JSUlxabVrSCPx0NcXBypqakMGzYMgGHDhpGamkpcXFyVvo92T98YY0yFDR06NKh1uT/wW8A/MNX1PtqnZIwx5oCEBiYL+AenOt5H+6SMMcaYWsKCvjHGGFNLWNA3xhhjagkL+sYYY0wtUS1BX0RuFJF1IpItIuki0qeMtENF5AsR2S4i+0Rknoj8LpL5NcYYY44EEQ/6InIJ8AzwKHAyMBv4VERahdmlH/A/4JzC9FOB98s6UTDGGGNMSdXRT/8OYJyqvlL4/GYRORO4Abg7NLGq3hqy6iEROQcYAsyqyowaY4wxR5KIXumLSAyQBnwRsukLoOcBHCoZ2F1Z+TLGGGNqg0hX7zcCvMDWkPVbgaYVOYCI3AS0BN6o3KwZY4wxRzaJ5AQJItIc2AT0U9WvA9Y/AFyuqu3L2f9CXLC/RFWnhElzLXAtQEpKStqECRMqJe8ZGRkkJSVVyrGqm5WlZrKy1ExWlprJyhLegAED0lW1a6kbVTViCxAD5AMXh6x/HviqnH0vAjKBiyr6emlpaVpZZsyYUWnHqm5WlprJylIzWVlqJitLeMBCDRMXI1q9r6q5QDowKGTTIFwr/lKJyO9xV/gjVPWdqsuhMcYYc+Sqjtb7TwJviMh84FvgeqA5MBZARMYDqOpVhc+H4QL+n4GvRcR/7z9XVXdFOO/GGGPMYSviQV9VJ4pIQ+A+oBmwDDhbVX8uTBLaX/96XD6fLlz8vgL6V2VejTHGmCNJdVzpo6ovAC+E2da/rOfGGGOMOTg29r4xxhhTS1jQN8YYY2qJiPbTjzQR2Q78XG7CimkE7KikY1U3K0vNZGWpmawsNZOVJbzWqtq4tA1HdNCvTCKyUMMNdnCYsbLUTFaWmsnKUjNZWQ6OVe8bY4wxtYQFfWOMMaaWsKBfcS9XdwYqkZWlZrKy1ExWlprJynIQ7J6+McYYU0vYlb4xxhhTS1jQN8YYY2oJC/rlEJEbRWSdiGSLSLqI9KnuPJVHRO4WkQUisldEtovIFBHpHJJmnIhoyDK3uvIcjog8WEo+twRsl8I0v4pIlojMFJFO1ZnncERkfSllURH5pHB7mWWtTiLSV0Q+EpFNhfkaEbK93M9BROqLyBsisqdweUNE6kWyHIX5CFsWEYkWkcdE5HsR2S8im0XkLRFpFXKMmaV8VhNqUlkKt5f7fy4isSLyrIjsKCzzRyLSMqIFoUJlKe1/R0Xk+YA01f67VsHf32r7f7GgXwYRuQR4BngUOBk3/e+noT8ANVB/3NwGPYGBQD4wXUQahKSbjpv0yL+cHcE8HohVBOfz+IBtdwF/Am4GTgG2AdNEJDnSmayAUwguRxdAgUkBacoqa3VKwk2OdSuQVcr2inwOb+HKfGbh0gU3g2aklVWWBFy+/l74eD5wFPCZiITOVfI6wZ/VdVWY53DK+1yg/P/zp4ELgUuBPkAd4GMR8VZBfstSXlmahSznFa6fFJKuun/X+lP+72/1/b+oqi1hFmAe8ErIutXAP6o7bwdYjiSgADgvYN044OPqzlsF8v4gsCzMNgE2A/cGrIsH9gHXVXfeK1C2e4HfgPjyylqTFiADGHEgnwNwHO4Ep1dAmt6F69rXlLKESdOxMJ/HB6ybCTxX3Z9FeWUp7/8cqAvkApcHrDsK8AFn1KSylJLmFWDVgZS3msoS9Ptb3f8vdqUfhojEAGnAFyGbvsCdwR1OknG1OrtD1vcWkW0i8qOIvCIiTaohbxVxdGE12DoRmSAiRxeubwM0JeAzUtUs4Gtq+GckIgJcA/y3MM9+4cpak1Xkc+iB+yGfHbDft8B+avhnhbvyhZL/P8MKq8SXi8iYGlq7BGX/n6cB0QR/dr8AK6nBn4uIJAHDcIE/VE37XQv9/a3W/5dqmVr3MNEI8AJbQ9ZvBU6PfHYOyTPAEmBOwLrPgPeAdUAq8AjwPxFJU9WcSGewDPOAEcAPQBPgPmB24f2vpoVpSvuMWkQqgwdpEO6fP/BHK2xZVXVnxHNYcRX5HJoC27XwkgVAVVVEtgXsX+MUnvz/C5iiqhsDNr2Fm9fjV6AT8A/gBGBwxDNZtvL+z5virkJDx33fSg3+XIDLgBjgPyHra+LvWujvb7X+v1jQP8KJyJO4aqHeqlrgX6+qgY2OlopIOu5H7BzcP02NoKqfBj4vbJSzFhgO1LiGhwdgJLBAVb/zryinrE9GNnum8B7+f4F6wO8Ct6lq4GAqS0VkLTBPRLqo6qLI5bJsh8v/+UEYCXyoqtsDV9a08ob7/a1OVr0f3g7cGXBKyPoUoEa0qC6PiDyFa5wzUFXXlpVWVX8FNgLHRiJvB0tVM4DluHz6P4fD6jMqrG48n9KrJouElLUmq8jnsAVoXHhbAyi6xdGEGvhZFQb8t3FX76dVoKZlIe73okZ/VqX8n2/B1Wg2CklaY/+HROQkoCvl/P9A9f6ulfH7W63/Lxb0w1DVXCAdVw0baBDB91lqJBF5huIv3A8VSN8IV7W0uarzdihEJA7ogMvnOtw/wKCQ7X2o2Z/RCCAHF1TCCilrTVaRz2EOrkFTj4D9egCJ1LDPSkSigYm4gD9AVSvyI3s8LnjW6M+qlP/zdCCP4M+uJa4hWY36XAJci/vOTS8vYXX9rpXz+1u9/y/V3bKxJi/AJbiWrX/E/RM8g2tc0bq681ZOvp8H9uK6izQNWJIKtycBYwq/RKm4LiZzcGfEydWd/5CyjAH64e5/dwM+Lixb68LtfwH2AEOBzsAE3H3WGlWOgPII8CMhvUIqUtZqzncScFLhkgk8UPh3q4p+DsCnwNLC712Pwr+n1KSy4G55fgBswnWRCvz/8feyaFu4T9fC/5+zcQ3fFgHeGlSWCv2fAy8Wrjsd1zV5Bu4edI0pS0CahMLv2b1h9q/23zXK+f2t7v+XiP6zHY4LcCOwHndllg70re48VSDPGmZ5sHB7PPA5rm9oLu6e1zjgqOrOeyll8f8z5Bb+EL8LdAzYLriubpuBbOAroHN157uM8gwo/CxOPdCyVnO++4f5To2r6OcA1MfdI99buPwXqFeTylIYLML9/4wo3P+owvLtLPxd+Al3QdCghpWlQv/nQCzwbGF5MoEp1fFbUN53rDDN1bh+781L2b9G/K6V8f15MCBNtf2/2IQ7xhhjTC1h9/SNMcaYWsKCvjHGGFNLWNA3xhhjagkL+sYYY0wtYUHfGGOMqSUs6BtjjDG1hAV9Y6qBiPQQkUmFM+rlishOEZkmIsP985iLyAgRURFJDdhvvYiMCznWeSKyVESyC9PXExGPiDwtIptFxCciH1RhWVILX3dEOen85TmmqvJysERkiIjcUcr6/oV5Ptwm2TKmVDbhjjERJiK34SbQ+R9uZK6fcQNxDMaNjvYb8GGY3S/ADdThP1YU8CZuaM6bcIOS7AMuAm4F/oQblawmz9JXEwzBjUhnExuZI5oFfWMiSET64gLLc6p6S8jmDwtn5UoMt7+qLg5Z1QI3X/ckVf064HWOK/zzaVX1VUK+Y7VmTblsjDkIVr1vTGT9BdgF3FXaRlVdo6rfh9s5sHpfRB7EDREN8O/CauiZIrIeN8QnQEFg1buINBOR8SKyQ0RyROR7Ebki5DX81fB9RWSyiPwGzCvcliAiLxTejsgQkY+AlgfxPoQlIteKyHeFtyt2iMi/RaRBSBoVkUdE5BYRWSci+0TkKxHpFJLOW5hus4hkisj/RKRD4f4PFqYZh5u+uEXhei18DwMliMhzhfnZISL/FZF6lVluYyLBrvSNiZDCe/UDgA9UNbsSDvkqsAyYDDwCfIKr+o8FbsHN5uefpWuNiCTixviuD9wD/AJcAbwhIgkaPEc8uNsGb+NuFfh/K17CTUT1ELAAN1PYW5VQFgBE5J+4WxL/B9yJq8l4BOgsIj01eE7yK4BVuNsYMcATuNqSDqqaX5jmocKyPoGblS0N+CjkZR8GGgOnAL8rXBdaq/EMbgKky4D2wOO4qXSHH0p5jYk0C/rGRE4j3KQgP1fGwVR1o4gsKXy6RlXn+reJyKbCNIHrRuHmFR+gqjMLV38qIinAIyLy75Cg+o6q3hWwf3tc0LtXVf9ZuPoLEUkCrj/U8hQ2WLwTeEhV/xaw/kfgG+A83Ax4fnnAuaqaV5gO3AnQqcBsEakP3AaMVdW/FO4zTURygX/5D6Kqa0RkO5Ab+H6F+FpVby78+4vC9+KPIjJCbQITcxix6n1jao++wKaAgO/3X9yVbseQ9e+HPO+G+82YFLJ+QiXlb1Dh8d8UkSj/gru1sA+X/0DT/AG/0NLCx1aFj8fj2kdMDtnvnYPI2ychz5fialRSDuJYxlQbu9I3JnJ2AllA62p6/Qa4qTxDbQnYHig0bbPCx60h60OfH6wmhY8/hdneMOT5rpDn/ir5uMJHf363haQ7mPyW91rGHBYs6BsTIaqaLyIzgUHV1Bp+F+5+dKimAdsDhVZb+08CUoC1Aesr62rX361wMLC7jO0V5c9vE2B5wHq7Oje1llXvGxNZ/8RdsT5e2kYRaSMiJ1TRa38FtBSRXiHrL8NdDa8oZ/95gA/4fcj6YZWTPaYVHr+Vqi4sZVl3gMdbCuwHLg5ZH/oc3JV7/IFn2ZjDi13pGxNBqvp14chvT4pIR2AcsAHXov404I+4IBy2294hGIdr6f6eiNwLbAQux91Lvy6kEV9peV8lIm8BfxMRD671/mDg7APMx5kisiVk3R5VnSYijwHPFTaU+wrIBo4qzOOrqjqjoi+iqrtF5GngHhHZh2u93wW4pjBJ4PgFK4AGInIDsBDIVtWlGHOEsaBvTISp6tMiMh+4HRiDa9W/DxdsrgOmVNHr7heRfrhahn/iBvVZBVypqv+t4GGuAzKAP+O6yf0Pd5LyzQFk5dlS1i0HOqvqPSKyEje64E24Wwy/AF8Cqw/gNfxGA4IL9LfgaitGAN8CewLSvQp0Bx4F6uF6WKQexOsZU6OJ9TYxxtQmInIRrkV/X1WdVd35MSaSLOgbY45YItINOAd3hZ+NG5znr7gajp7Wx97UNla9b4w5kmXg+vffBNTBNVicBNxtAd/URnalb4wxxtQS1mXPGGOMqSUs6BtjjDG1hAV9Y4wxppawoG+MMcbUEhb0jTHGmFrCgr4xxhhTS/w/JuRObFRzZTcAAAAASUVORK5CYII=\n", "text/plain": [ - "
" + "
" ] }, "metadata": { @@ -173,34 +167,31 @@ "text": [ "---------------------------------------------------\n", "Experiment: InterleavedRBExperiment\n", - "Experiment ID: f180d9c2-4802-42c1-bfd8-ed3370105c89\n", + "Experiment ID: cec37591-f8db-4058-80ae-e73159463a49\n", "Status: DONE\n", "Circuits: 280\n", "Analysis Results: 1\n", "---------------------------------------------------\n", "Last Analysis Result\n", - "- popt: [0.45521149 0.99869098 0.99906658 0.52983366]\n", - "- popt_keys: ['a', 'alpha', 'alpha_c', 'b']\n", - "- popt_err: [0.04251155 0.00017159 0.00016453 0.04329273]\n", - "- pcov: [[ 1.80723211e-03 7.06812871e-06 6.40084436e-06 -1.83883578e-03]\n", - " [ 7.06812871e-06 2.94425710e-08 2.40670557e-08 -7.23479207e-06]\n", - " [ 6.40084436e-06 2.40670557e-08 2.70685875e-08 -6.53292038e-06]\n", - " [-1.83883578e-03 -7.23479207e-06 -6.53292038e-06 1.87426083e-03]]\n", - "- reduced_chisq: 0.11377780079833481\n", + "- a: 0.46376844067308454 ± 0.037320191722696766\n", + "- alpha: 0.9982454199503312 ± 0.00021016356120816523\n", + "- alpha_c: 0.9990950045114319 ± 0.00014254329271202085\n", + "- b: 0.521986011394672 ± 0.03798556417377216\n", + "- reduced_chisq: 0.08737266054671106\n", "- dof: 24\n", "- xrange: [1.0, 500.0]\n", - "- EPC: 0.0004667115741436856\n", - "- EPC_err: 8.226266996891632e-05\n", - "- EPC_systematic_err: 0.000842313005943951\n", - "- EPC_systematic_bounds: [0, 0.0013090245800876366]\n", + "- EPC: 0.00045249774428407497\n", + "- EPC_err: 7.127164635601042e-05\n", + "- EPC_systematic_err: 0.0013020823053846997\n", + "- EPC_systematic_bounds: [0, 0.0017545800496687747]\n", "- success: True\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY0AAAERCAYAAACHA/vpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/d3fzzAAAACXBIWXMAAAsTAAALEwEAmpwYAACg2klEQVR4nOydd3gU1frHP2e272bTA0novRfpoDSpIijYuIoFr6jY28+LXr1iwXbVawW9ooIFwasoioAUKSK9Su8JEEhI75ut5/fHZJds6gYS6n6eZx6yM2dmzgy788457/t+XyGlJEiQIEGCBAkE5Xx3IEiQIEGCXDwEjUaQIEGCBAkY7fnuQJAgZ4rJZEopKiqqe777ESSI0Wg8ZbPZYs93P84FIujTCHKxIoSQwe9vkAsBIQRSSnG++3EuCE5PBQkSJEiQgAkajSBBggQJEjBBoxEkSJAgQQLmknaER0dHy8aNG5/RvgUFBVgslprt0AXO5XjNZ8q0adN46623SE5Opl27drz33nv07du30n3+97//8dprr3HgwAFiYmJ4+OGHefrpp/3aTJ06lY8++ojExEQaNmzIc889x5133unX5v333+fjjz/m6NGjREVFcf311/Pmm28SEhICQOPGjTl69GiZ848YMYIFCxac5ZVXTFZWFo8++ii//PILANdddx0ffvgh4eHhle5X1b2UUvLSSy/x6aefkpWVRc+ePZk6dSrt2rXztbHb7fzf//0fs2fPxmazMWjQIKZNm0b9+vUBSExM5JVXXmHFihUkJycTFxfH2LFjeeGFFzCZTDVy/d26dbugHGxn83vesmVLupQyptyNUspLdunatas8U1asWHHG+16sXGzXrH59zz1z5syRWq1Wfvrpp3LPnj3y4YcflhaLRR49erTCfRYuXCg1Go2cOnWqPHz4sPz1119lXFyc/PDDD31tpk2bJi0Wi/z222/l4cOH5ezZs2VISIj85ZdffG1mzZol9Xq9/Oqrr2RCQoL8/fffZePGjeXf//53X5vU1FSZnJzsW7Zu3SqFEHLmzJkBX+OKFStko0aNqnVfhg8fLtu2bSvXrFkj165dK9u2bStHjhxZ6T6B3Ms33nhDhoSEyB9++EHu3LlT3nzzzTIuLk7m5ub62kycOFHGxcXJJUuWyC1btsj+/fvLTp06SZfLJaWUctGiRfKuu+6Sv/32m+/+x8fHy3vvvbda11gR5+u7WBln83sGNssKnqvn/cFem0vQaFSPi+2az/aHWlBQIO+9914ZGhoqo6Ki5D//+U+Zl5cnTSaTTExMrHC/Hj16yAkTJvita968uXzmmWcq3OfWW2+Vo0eP9lv3wQcfyPr160uPxyOllLJ3797y8ccf92vz5JNPyiuvvNL3+aGHHpL9+vXza/PCCy/Idu3aVXjuKVOmyLCwMFlQUFBhm9JU12js2bNHAvLPP//0rVu9erUE5L59+yrcr6p76fF4ZGxsrJwyZYpve2FhoQwJCZGffPKJlFLK7OxsqdPp5DfffONrc+zYMSmEkL/99luF5546daqMjIwM+Bor43IyGkGfRpDLlrvvvpvly5ezbNkyZs+ezfvvv8/DDz9MmzZtaNSoEaBOawghmDlzJgAOh4MtW7YwdOhQv2MNHTqUtWvXVnguu92O0Wj0W2cymUhKSvJNJVXUZuPGjTidTgCuuuoqtm/fzvr16wE4duwYv/zyCyNGjCj3vFJKPv/8c26//XbMZnOAd6b6rFu3jpCQEPr06eNbd+WVV2KxWCq8L4Hcy4SEBFJSUvzamEwm+vXr52uzZcsWnE6nX5sGDRrQpk2bSv9PcnNziYiIqP7FXuYEjUaQy5L09HS+//57Jk+eTPfu3RkyZAi33HILX375JWPGjPG10+l0tGrVirCwMN9+brebunX9cwrr1q1LSkpKhecbNmwY8+bNY8mSJXg8Hg4cOMA777wDQHJysq/NF198waZNm5BSsnnzZj777DOcTifp6ekA/O1vf+O1116jX79+6HQ6GjVqRIcOHXjzzTfLPe/SpUtJSEhgwoQJld6PY8eOERIS4luuueaaMusmTpxY4f4pKSnExMQgxOlUBSEEderUqfC+BHIvvf9W1Uaj0RAdHV1hm/Ku9+233+bBBx+s8JqClM8l7QgPEqQiDh06hJSS3r17+9b17NmTGTNmcMMNN/jW1atXj3379pXZv+TDEdQ3+tLrSnLvvfdy+PBhrr/+epxOJ6GhoTz22GO8+OKLaDQaAP71r3+RkpJCnz59kFJSt25d7rrrLv7973/72qxatYpXXnmFadOm0bNnTw4dOsRjjz3G5MmTefnll8ucd/r06XTv3p3OnTtXej/i4+PZvn277/OGDRuYNGkSK1eu9K0LDQ2t9BjlXX9V96W8/crbp7r3u7I2p06dYtiwYQwZMoQnnnii0mMEKUtwpBHkssRgMACg1+t96+rWrUtERARt27atcL/o6Gg0Gk2ZN9jU1NQyb8MlEULw5ptvkp+fz9GjR0lJSaFHjx6AGu0E6rTLF198QWFhIYmJiRw7dozGjRtjtVp9b9HPP/88t956KxMmTKBDhw6MGTOG1157jX//+9+4XK4yffr555+59957q7wfWq2W5s2b+5Z69eqVWVenTp0K94+NjSU1NVV1lBYjpSQtLa3C+xLIvYyNVZU5qmrjdrt9o7Hy2nhJSUlh4MCBtG/fnq+//rpKwxOkLEGjEeSypEmTJiiKwsGDB33rfvnlF7KyssjJyalwP71eT9euXVm6dKnf+qVLl/rN51eERqOhXr166PV6Zs+eTe/evcs8jHU6HfXr10ej0TBnzhxGjhyJoqg/1cLCQt+oo+QxSz6svcycORODwcDf/va3Kvt1tvTu3Zv8/HzWrVvnW7du3ToKCgoqvC+B3MsmTZoQGxvr16aoqIjVq1f72nTt2hWdTufXJikpib179/qdOzk5mQEDBtCmTRtmz56NVhucaDkjKvKQXwpLMHqqelxs18xZRqzcdNNN8uqrr5YFBQVy37590mq1yvj4ePn111/72iQlJclWrVrJH3/80bduzpw5UqfTyenTp8s9e/bIRx99VFosFr+Iq2eeeUZeffXVvs9paWly2rRpcs+ePXLbtm3y0UcflUajUW7YsMHXZv/+/fKrr76SBw4ckBs2bJBjx46VkZGRMiEhwddm8uTJ0mq1ytmzZ8sjR47IJUuWyGbNmskbbrjB79o8Ho9s0aJFmcikinC5XH5huuUt2dnZlR5j+PDhsn379nLdunVy7dq1sn379mVCblu1auUXZhzIvXzjjTek1WqVc+fOlTt37pRjx44tN+Q2Pj5eLl26VG7dulUOGDDAL+T2xIkTskWLFrJ///7y2LFjftflbXM2nO13sTYIhtwGjUatc7Fd89n+UE+dOiVHjx4tIyMjZWRkpHznnXfkwoULZXx8vJw8ebKUUsqEhAQJyBkzZvjtO3XqVNmoUSOp1+tlly5d5KpVq/y233XXXX4hq2lpabJXr17SYrFIs9ksBw0aJNevX++3z549e2Tnzp2lyWSSoaGh8vrrry8Trup0OuWLL74omzdvLo1Go6xfv7584IEHZGZmpl+75cuXS8DPKFWG9zorW+66665Kj5GRkSHHjRsnrVartFqtcty4cTIrK8uvDeC7t16qupcej0dOnjxZxsbGSoPBIPv16yd37tzp18Zms8mHH35YRkZGSpPJJEeOHCmPHTvm2z5jxowKr6ukUT5TLiejcUmr3Hbr1k1u3rz5jPZdsWIlzdp0p064GaPx8pj3XLlyJQMGDDjf3QiYYmXR892NIEEuyO/i2fyehRBbpJTdytsWnNSrAI+UbE84SpgxjPiwOtSN1mGxQKnp5CBBggS5rAgajUow6DRojUUk5SeQW1iXEF0oYWGCsDAwGiEYeBEkSJDLjaDRqBSBSWvCoPFQ6EzBTS6e3Lrk5OjR6SAiAkJCQKc73/0MEiRIkHNDwEZDCHEXcCvQEDCW2iyllM1qsmMXEopQsOit2N1FpLkTiDLGYNSGk56ukJoKFotqQEwmUIJBzEGCBLmECchoCCH+BbwE7AK2A/Za7NMFi0FjRKfoySxKJ1+TS4wpFovWiN0OSUmqvyM8HKxWKM4dCxIkSJBLikBHGvcA70spL/uce0UoWHQhON0OjuclEmmMItwQicGgweOB7GzIyFCNRkSEOgoJ5hAFCRLkUiHQyZQoYH5tduRiQ6fRE6KzkuPI5nheIoXOAhQFzGZ1pCEEnDoFhw/DyZNQWAgXWERekFoiKyuLO+64g7CwMMLCwrjjjjvIzs6udJ+8vDwef/xxGjVqhMlkok+fPmzatMmvzalTpxg/fjzx8fGYzWaGDx/ul9EOcPjwYcaMGUNMTAyhoaHccsstnDp1yq/Nq6++6lOgPZcyGqtWraJr164YjUaaNm3KJ598UuU+gdzLY8eOMWrUKCwWC9HR0Tz66KM4HA6/Njt37qR///6YTCbq1avHyy+/7Bci++OPPzJ06FBiYmKwWq307NnTV0wqiD+BGo1VQKfa7MjFiBACs9aCVtFxMv84pwqTcXpUCWudTnWSh4RAUREcPw5HjkB6Otgvy8m9y4fbbruNrVu3smjRIn777Te2bt3KHXfcUek+EyZMYPHixXz55Zfs3LmToUOHMnjwYE6cOAGoSbijR4/m4MGDzJs3j23bttGoUSMGDx5MQUEBoFZqGzp0KFJKfv/9d9asWYPD4WDUqFF4PB7fuex2OzfccAOPP/74GV/j+PHjefHFFwNun5CQwIgRI+jTpw/btm3j2Wef5ZFHHmHu3LmV7lfVvXS73Vx77bXk5eWxevVqZs+ezQ8//MBTTz3la5Obm8uQIUOoW7cumzZt4oMPPuCtt97iP//5j6/NqlWruPrqq1mwYAHbtm1jxIgRjBkzhtWrVwd+Uy4XKsr6K7kAzYEdwJ1ANKqx8VsCOc65Xs4mI3zZ78vlb5v2yy0HTgS8/LnnkPxjz36590i2TEryyBMnpN9y/LiUBw9KuW+flAkJUubkSOl0nnEXa5xLMSP8TAstleTXX3+VPXr0kEajUUZGRsqRI0dKm81WbtszKUZUWFgoNRqNnDdvnt/6Ll26yOeee05KqUqMAHL79u2+7W63W8bExMjp06dLKaVcvHixFEL4ZYdnZ2dLIYRcunRpmfN+//33Z5zJfNddd5XJ7K6Mf/zjH7J58+Z+6+655x7Zq1evCvcJ5F4uXLhQCiH8sr+//vpraTAYZE5OjpRSrYhotVplYWGhr80rr7wi4+PjfQWwyqN79+7yySefDOj6zvQ+1ibnuwjTAaA9MAM4BThLLY6Kd718MGlNmDRm0gpTOJF/jCJXkd/2qqavSrwMBqkhAim0VBm//fYb119/PUOGDGHLli2sWLGC/v37+97cX3zxRb8pnjMpRuRyuXC73eUWYPrzzz8BdXQA+LVRFAWDweDXRgjh18ZoNKIoiq/N+WLdunVlii0NGzaMzZs3+wpMlbdPVfdy3bp1tGnThgYNGvgd1263s2XLFl+bvn37+tUCHzZsGCdPniQxMbHCPufl5QWLNJVDoC7al1F1WoJUgTc81+G2k5R3lAhjFOGGCDSKfyq5TqcuUqrTV0lJqlEJD1entIylg5qDVBtvoaUvv/yS7t27A3DLLbcwY8YMXnnllYCO8corr3DTTTcxZcoU37qOHTv6/o6OjqZVq1a+z2dSjMhqtdK7d2+mTJlC+/btiY2NZfbs2axbt47mzZsD0Lp1axo1asQ///lPpk+fTkhICO+++y5JSUm+Ik69evUiJCSEp59+2leU6ZlnnsHtdvvanCmvvfYar732mu+z10C9/fbbvnWLFi2ib9++5e6fkpLC4MGD/dbVrVsXl8tFeno6cXFx5e5T1b1MSUkpI39eWnI9JSWF+vXrlzm3d1uTJk3KnHvq1KkkJSVVOa14ORKQ0ZBSvljL/bjk0GsM6BQ9OY4s8hw51DHHYtZZyrQT4rSBKBl9pdNBVJQ6MgkmD54ZgRZaqoxt27Yxfvz4Crc//PDDPPzww37rzqQY0ddff83f//53nyR6ly5duPXWW9m6dSugyqXPnTuXe+65h6ioKDQaDYMHD+aaa67xHSMmJobvv/+eBx54gGnTpqEoCrfeeitdunQpI6deXSZOnMgtt9zi+zxp0iTq1avHo48+6ltXr169So9RXiGl8tZXto93v9KGpKp9q3PuuXPn8vTTTzNnzpyARqOXG9UOBhVChAARQKaUsqDmu3Tp4HWUuzwuThYcx6K1EmWKQa/Rl9veO30F4HJBaqpqSMzm08mDQe2rwDnTQktnQ8liRN4HkpSVFyMCaNasGatWraKgoIDc3Fzi4uIYO3as31tw165d2b59Ozk5OTgcDmJiYujZsyfdup3WlRs6dCiHDx8mPT0drVZLeHg4sbGx5b5NV4fIyEgiIyN9n61WK5GRkb6RUFXExsaWW0hJq9USFRVV4T5V3cvY2FjWrFnjt1/pMrIVnRvKlpGdO3cud9xxB1999RXXXXddQNd2uRFw/rIQYpgQYjOQDSQCOUKIjUKIIbXUt0sGraIlRBeK3V3E8bxEsooy8cjKHRharZrjYbWC2w0nTqj+j5QUsNmC4buBcKaFlkpyxRVX8Pvvvwd8zjMpRlQSi8VCXFwcWVlZLF68mOuvv75Mm7CwMGJiYjh48CCbN28ut010dDTh4eEsX76c1NTU8/4A7N27N8uWLfNbt3TpUrp164augqF0IPeyd+/e7N27l6SkJL/jGgwGunbt6muzevVqioqK/NrEx8f7qiYC/O9//+P2229n5syZ3HTTTWd9zZcqARkNIcQwYAEQArwCPAhMAazAwqDhCAyj1oRJayazKJ2kvERsrsKA9tPrVeNhsUBBARw7FgzfDYTw8HBuuOEGXnvtNQoLC9m/fz8//PAD8fHxzJ8fWNrRc889x/fff8/zzz/Pnj172L17N++++y6Fher/3UcffUTr1q197du0acPw4cO5//77Wb9+PevWreP+++9n5MiRfr6P1q1b89FHH/k+L168mEWLFpGQkMDSpUsZOHAgrVq14u677/a1+f7771mxYgVHjhzh559/ZsiQIYwePdrPwTxjxgzWrVvH4cOH+eabb7j55pt54okn/M597Ngxtm/f7nMCb9++ne3bt5Ofn1/hfcjPzyclJcW3vPHGG0ycONFvXenciJJMnDiRpKQkHn/8cfbu3ctnn33GzJkz+b//+z9fm59++onWrVv7wowDuZdDhw6lXbt23HnnnWzbto1ly5bx9NNPc++99/pqmt92222YzWbGjx/Prl27+PHHH3njjTd48sknfSOYOXPmMG7cON544w369evnu6bMzMwKr+mypaKwqpILsA5YSKnQWlSjsxBYG8hxzvVyrkNuq7Os35co/9i9T249eFImHneUCc+taikZvnv4sJTZ2VI6HGd8uVLKSzPkNpBCS1Xx888/yy5duki9Xi+joqLkqFGjfCG3kydPLtOPMylG9N1338mmTZtKvV4vY2Nj5UMPPVSmUt77778v69evL3U6nWzYsKF8/vnnpd1u92szadIkWbduXanT6WSLFi3kO++8Uyas9K677iq3GFFl///e66xsqer7s3LlSnnFFVdIvV4vGzduLD/++GO/7d5CSSWLIgVyL48ePSqvvfZaaTKZZGRkpHz44YdlUVGRX5sdO3bIvn37SoPBIGNjY+WLL77od1/69+9f7jX179+/0mvyEsh38VxzXoswCSEKgZullAvK2TYS+J+U0nwGNqtWOZsiTL8vX4ErtB4xYSE13Ct/bC4bHtxEGWMI1YehiOorHrpc6ojD41H9HuHhnFHtj2ARpiBBzowL8bt4vosw2YHQCrZZuUwFDGsCk9aER3rIsKWSa88ixhyLSVs9+6vVnta3cjhUvweoobthYUH13SBBgtQcgT5KVgKvCCH8QjCEEA2BF4EVNdutywtVBNGKEJoyciTVRa9XjYXFcjr/49AhNRIr6EAvS7t27QgJCSl3mTVr1vnuXpAgFxyBjjQmAWuA/UKI9UAyEAv0Qo2mmlQrvbvM0Ck6dIqOQmcheY4jRBljCDOEn9GUlTf/w2hUDUVeHmRlqSOSsDDVsa7XB6sPLly4sMKM5MpCZIMEuVwJNLnvgBCiI/AU0BfoAmQC7wPvSinPLt00iB/eKavMonRy7dnEmOuWmxgYKEKoU1RQNoHQK9+uLz915JInmLwVJEj1CDi5r9gw/F+VDYPUCN66HS6Pi+SCJExaC1GmGAyas6vuVDKB0O1Ww3ZTU9X6H243OJ3BDPQgQYJUTNA9eoGjVbRYdKqW1fG8RDJs6bg97ho5tkZzOoFQCDUK68gRNQ8kN1f9fLExfvx4hBBlll69evnaNG7c2LfebDbTvn17/vvf//odx+Fw8NZbb3HFFVdgsViIjIykV69e/Pe///WJBwbKhVxHYuXKleXer3379lXrGquLlJIXX3yR+Ph4TCYTAwYMYPfu3VXuF8i9nDt3Lm3btsVgMNC2bVt++umnMm2mTZtGkyZNMBqNdO3atYwE+o8//siwYcN82lcrV64842u91KjQaAghlgshWpf4u7Il8JTZIGeEUWvCog0hx5HFsbwE8uy5NRrip9OpoxCrVZ3CSklRM9CTkiA/Xx2FXCwMHjyY5ORkv2XhwoV+bV544QWSk5PZsWMHo0ePZuLEiXz33XeAajCGDRvGq6++yt13382ff/7Jli1bePLJJ33Jc4FyodeR8LJ7926/+9WiRYuArxHUkNPKFGNL8+9//5t33nmHDz/8kE2bNlGnTh2GDBlCXl5ehfsEci/XrVvH2LFjGTduHNu3b2fcuHHcfPPNbNiwwdfmu+++47HHHuOf//wn27Zto0+fPlxzzTUcO3bM18abdV7evbrcqTBPQwixAnhASrlPCLGSKlRupZQDa757Z8fFkKdxJrg9bopchei1BqJNdTFpTVXvFAC7d6+kXbsBfuvsdjWMV4gLL4S3vNj48ePHk56ezq+//lrhfo0bN+bhhx/2y0Zu2bIlXbt2Zfbs2fz73//mmWeeYePGjX66TgAej4f8/HxftnFVTJo0iR9//NFPymTChAns3r27QuOzd+9e2rZty59//smVV14JwJ9//knfvn3Zt28frVq1YtGiRVx77bUcPXrUJwv+zTffMGHCBFJTUwkNDeXjjz9m0qRJnDp1yicLPmXKFD7++GOSkpJ8b9ADBw4kLS2N6OjogK6pPIQQJCQk+MlyVISUkvj4eB5++GGee+45AGw2G3Xq1OHtt9/m/vvvL3e/QO7l2LFjyczMZOnSpb42gwcPJiYmhtmzZwOqaGXHjh2ZPn26r02LFi246aabeP311/3OmZ6eTkxMDCtWrKg05+FyytOo8KcvpRwopdxX/PeA4s8VLtXoTD8hxC9CiBNCCCmEGB/APh2EEKuEELbi/V4Q57JO5QWGRtFg0VtBwon8o5wqTMbhrp2SJgbDaQkTbwivVwPrUqoBYjQafVFUs2bNYvDgwWUMBqg1LLwGY+bMmVW+YV8sdSS6detGXFwcgwYNYsWK2o2gT0hIICUlxe++mEwm+vXrV2HNEQjsXlbUxntch8PBli1byrQZOnRopecOcppAtafuFEKUK0UphIgUQtxZjXOGALuAxwBbAOcOBZaiFn/qDjwKPA08WY1zXpKodcpDKXQW1ri/ozTeEF6rVXWkFxaqJWwPHbrwDMhvv/1WJudi0qTyo8JdLhczZ85k586dDBo0CICDBw/Spk2bKs8TFhZGq1atKhTcg/LrPZSsI1HRPjVVR6K8c3u3AcTFxfHxxx8zd+5cfvzxR1q1asWgQYP4448/Kr320vktpde1a9eu0ntSsi8l+1ZRzZHKrqfkvayojfe4pRVwAz13kNMEGj01A+gNZJSzrUnx9q8COZCUciGqXhVCiJkB7DIOMAN3SSltwC4hRBvgSSHEf+SFNiY8D5i0JqSU5DiyyHVkE22sQ4jeWmmdgrOhdA5IQQHk5KhTVt4cEIPh/E1h9evXj08//dRvXXh4uN/n5557jhdffBG73Y5er+fpp5/2TYsE+pUaM2YMY8aMqbLdhVxHolWrVn5ihr179yYxMZG3336bfv36Vdi/0vktLVq0YOHChb6aGpUZ0sr6VtV3NpB7Gchxz+TcQVQCNRqV3U0LUJtxNr2B1cUGw8tiVLXdxkBCLZ77osFbu8PtcZNamEy2I5NoU51qS5JU/7ync0BKJhGWNCBG47lNIjSbzVXWeXjyySe55557MJvNxMXF+T0wWrZsyd69e2ukLxdLHYmS9OzZkzlz5lR6XeXltzRq1Cggn0ZsbCygjgpKTq+lpqZW2q9A7mVFbbzHLT0aC/TcQU5TodEQQnRGTeLzMkoI0b5UMxPwN+AgtUcskFRq3akS2/yMhhDiPuA+UH8YZxoqV1iQjyxKICVDUUMALrKXECklaexDERq0ihYRwAUUFeWze/fKGutDyekqjUZdLpSXuaioqAoNy2233cazzz7L5s2bz9oR3rt3b+bNm+e3rjp1JLx+jfLqSEyZMoWkpCRfKdPy6khMmjSJoqIiX93w8upIlGb79u3lll+tKZo0aUJsbCxLly71leEtKipi9erVvPXWWxXuF8i97N27N0uXLuXpp5/2a+O9b3q9nq5du7J06VJuvvlmvzY33njjWV3XhRaWm5+fXyt9qmykcT0wufhvCTxXQbsM4J6a7FQ5lJ4vEBWsR0r5KfApqNFT1Y0eeO+993A6nYRGRzPjt8V8+NJbLJv3LYpGw5DRt51B188vRS4bTo+TCGMk4YZItErF/+XlRU/VBB6PGoXlcp2bEYjdbi/zJqnRaIiJiQlo/8cff5yFCxcyZMgQXnrpJfr160dYWBjbtm3j7bff5rXXXmPAgAH89NNPPPvss/z+++8VljqdOHEiH330EY8//jj3338/a9asYebMmb5IHqDMcUrWkZg+fTpSykrrSLzzzjtkZGSUW0fipZdeYvz48Tz//PMcOHCAN954g8mTJ/tGMO+99x6NGzemXbt2OBwOvvnmG+bNm1dlSHBaWhruEnHY3hrk3vte2f0WQvD444/z6quv0rp1a1q2bMmUKVMICQnhtttO/8buvFN1lX711VcB38vHHnuMfv368frrrzNmzBh++uknVqxYwZ9//ulr8+STT3LHHXfQo0cPrrzySj755BNOnjzJxIkTfW0yMzM5duyYLzfm0KFDviqI3pFSaS40hejaUq2uzGi8B8xEfUAfAW4AtpVqYwdO1bJfIQV1RFGSOsX/nqIGcbvdOJ1OCgsLifZk81HvZayfPw2H3YjeYMTtdp91reVzjVFrwiCN5DlyyXFkn5UE+5miKP4yJuVNYdWkD2TZsmVl3pTr1avnV92tMgwGA0uWLOG9997j888/Z9KkSRiNRl9RJO9ba05ODvv3768wCgrUt+qFCxfyxBNP8PHHHxMfH88HH3zg91Zb3nFmzZrFo48+6ovyue666/yKNmk0GhYsWMCDDz7IlVdeiclk4rbbbuPtt9/2tQkLC2Pp0qU89NBDdOvWjYiICJ566imefPJ0DInD4eD//u//OHHiBCaTiXbt2rFgwQJGjBhR6T3q3r07R48erXB7o0aNKo0q+8c//oHNZuOhhx4iKyuLnj17smTJEqxWq69NybwJCOxe9unThzlz5vD8888zefJkmjVrxnfffUfPnj19bcaOHUtGRgZTpkwhOTmZ9u3bs3DhQr8pt19++cWvANa9994LwOTJk3nxxRcrvTeXOoHW02gEJEspazSuUwiRDzwspZxZSZsHgDeBOlLKouJ1/wQeAupXZrDOJE+jx0034fF4+GxYHh1DlrH6aCxPbe7NnYOGctXQi7tmsEd6KHLbUFCIMsaUcZbX1kijwv6UGoGEhp4egQRiQC7E2PgglycX4nfxnOdplERKebSmDIYQIkQI0bnYZ6IADYs/Nyze/nqpDPNvgUJgphCivRDiBuAZoMYjpzweDw6Xi2uTEuikWYYioF9cCuNte8nNysBTTkxp6S5caF+ckihCway1oFV0pBYmk5R/NOCSs7XSn+IRiDeMNz//wg3jDRIkiErAEwJCiPuEENuEEIVCCHfppRrn7IY6zbUN1ZH+UvHfLxdvjwOaeRtLKXOAIUA8sBmYCrwD1Ep+f1RREc9Z/vLNtQsdPNhnH8bssrWC9+/Ywu6t632GQkrJ7q3r2b9jS210rcbQKtrTyYF5xziRf5wiV9F57ZM3CqtkLXSvATl5Uv18MUmZBAlyqRJQyG1x8t6HwJdAJ+ALQAdcB6QBAVerkVKupJJYJCnl+HLW7QQqDhqvIdxuN/UKC9DeKFVzBqCAqAdNTibgdrtRiudNpJQ4nQ4S9u8CoF2XXuzeup6E/bto0qr9RRH3rdPo0Wn02N1FHM9LxOVx4nA70GvOr0566TDeoiLVD+KVMgkNPb09SJAg55ZA8zQeB15HzY2YAEyTUm4VQkSgVvUrL+nvokOr1RLbzIYoJTcljHB9m5+ZNrQT2Q8+yOBRToxGQU5mOopGS8L+XT7joWi05GSmX/AGoyQGjRGDxki+9HAsL4EIQyRhhohKI63OFaUTCe12OHHifPcqSJDLl0Cnp1oAfwCe4kUPIKXMAl5FlQS56JFSctsViYhy3mI1kR5u6Pkek5+L5pq+scz6v5Mc2O3A43axa8cO0teuxZKXh8ftIjMtpVz/h/cclX0+nwihYNGGkOvI4WjeEbKKMmtNluRMEOK0FlaJIJsgQYKcQwJ9lbQBipRSCiFSgKbA+uJt+aj+houfnN20jsgud5NQIHx0NvWibyDvq3d5+Zf+pBDLHlNrJhUtwaUVGJYvZ/6oUezs1NlvKsvL/h1bsNuL6NCtjy/aYufmtRgMRlp17HoOLrBqhBCYtGa1cqA9nWx7pi/S6lyG6QYJEuTCJFCjsRNoDiwDVgP/FEIkoMqHvAjUbsWWc4TY8wY6peI3f0XAIx3m8dfLK3hr4b0MXbmeUbbiOg3FIfYjfp7PsVZt0Gr9b62UkoO7tyOlOgLp0K0POzev5ejBPQih0LJDlwtqSkspHnW4PW7SbKfILEovN0z3fNKgQaMLpi9BLm8up7LBgRqNT1FHFwD/QjUe3hTLPGB0zXbrPJG9E42oOMbTrMAtYQYmReawdNz7TKtfn07fGrCE2FXt3WlQlGkhbbqZzB2fEXX/QGijSlW43W7V/S/h6ME9HD245/SBhbq9tKG5ENAoGiyKWnY2tTCZLHt6cQ0P83l/YK9fn1hlG7db9YO43aqMSWio6kz35oLUVtbshUzwmoOcDQE9paSU35X4+5AQoh2qkKAZWCulLF/j+SJDXLuDlStXYrPZ0OsNuMLqEx1qYdeWdej1Blp17Irb7WL9rgcZ7VlA+0FJaLYAbYFWwDjQf+ggMiODIQvfhYUvkmxtRu7goYgbBxEaHklOZjp//+wztC4Xs8aNo8BqJTQi6oI0GCXRKlq0eitOj5PkgiT0GsM5EUQ8WzSa0zXRS2ajC3G6SqHXoAQJEqRqzmiSWkpZIKVcJqX85VIxGF4GDBjA8OHDfaJIQgjad+3t8zloNFpadfqUFfWnUSAVdP8EORJQQF4Bnw1uysqRV3N1iwM8xEf8ldecxj99TsjdT7BuTUvabtlFvaQk6p46xWPvv0+Hv/7C43ZX6DgHymyrrG1to1N0WHSnczyS8o5hc1VZFuWCoGQyocUCNhs4nWouyPHjal30ShRBggQJQuUqtw2rcyAp5bGqW10cVKW9DxBb73rumvoL0wavoJXFjhGQeug/5ijZ6VsY+Z8u7N19C5/9bzzjf3YRW5hAynexzGCBaqmlRHG5GDV/PnMHDa9wqmfN0vm4XE76DhuNoih4PB5WL56HVqvjyiGjav7iA8Sb4+Fw2zmZfwyT1kKkMRqj1nje+lQdvKG83rroDoeahS6lGqEVFqaOUPT6C0eZN0iQC4HK5kQSqaIueCkuqwG+x+OhwKknRlEwFo/XFAGtQ/OZ4/ieQsdttGlnoc1LOdgmCRYvaMCO9//AkarDXKJgodblov177+Nq0xFPg4ZlzuFyOcnNymD14nn0HTaa1YvnkZuVQWhEFB6Pp0yE1rlGrzGg1xiwu4tIyj+KRRtCpCkag8ZwXvtVXfR6dQFVCys9XZ260mpVA2KxnN/CUkGCXChUZjT+TvWMxmWFoihcFZ9JuN5fksugwEsxu7l1eT9GdJnGFXV6YjJLrrvRRmjmGszv2aBE6oMbDS0OHeTZ5/Jofr+BHr2KUDTCdw5F0aAoGnKzMlgw5/Pi9Zri5cJ5gnkTBItcNo7lJmDVhxJhjLrojAeohsLrYvJ41KqEGRmn/SBeUcUL3A0VJEitUOHXvjLl2SAqD3VKwKwrm/ymBeZGpTB9xw1MC7udu6+YjF4YWHzqFK4e3Xh8wwacioLOI3jcOpl5Ofdwan0srIdPLY/StmEWjucextqtHrnZmXhKJdh5PO7i9ed/pFEao9aEERNFLhvHcxOxGkIJN0RelMYD/GXdpVT9ILm56meTSR2FmEynRylBglzqBN+VzhCjbT9NTOUXolcEOFG4K9TDzOPfMPbkHzzf8y2ybTbmxsWxdMgQ6hUWciokhEzTVh7o3Jjk9FH8MtdM1gkjXfb+gO722SyOuZXsPv0xtU/h/i//6xdxZbKElHtuKFvv+HzoYBm16pPW5iwkz55LqCGMcEPkede1OhtKSpqA6gdJTVWNiXcay2w+9+VtgwQ5lwQqWPhFFU2klLK2q/ddUNQ9+RFapeIoJkXoORw6iPT0BE5k72HXlrFEdWyB40g3PNpCHh2+h3d29QWnlWtv6Y+i5DPhwXw2r/8H93xzPz2Xf8S9af9l+M/f8vUv46gjT6EIyWPvv8/8UaPY36Nnuee90LLOvcajwFlAjj2bMEP4RW88vJT0g7jdaihvevpp57p3GisYzhvkUiLQkcbVlPVvRAJWILt4uaww2fagrSR7XCOLqO86xlfDF/Ld7v8wKf8DImMO8kH4EfrqFbpandzdYhP/3NCD1b/9RN/hY1AUhR59HPToYyI35x/8Z/YDNPh4CmNt32PAqf4PuODanxewJ75zmdGDlJLD+3bgdrkA/6xzjVZ7XrPOTVoTUhr9jEeYIeKinbYqTcl8ECnVWiA5Oern4DRWkEuJQJP7Gpe3XgjRD/gEGFeDfboo2Nf+dJ2oNz9+F4BJDzxRpp0OuL3DJNZnDCRr01ieinbgkW6EgL5xyTQLzcRuLyrzMA8Nkwy718TuQgvyC6CEv13ncRI7NZHXtxXS67Yo+g4oQqdXo628Aoils86llHg8nvNarlbVtTIBJgqcBeTacy56n0d5lJ7GcjrVaSyPB3Q6NSs9GI0V5GLlrHwaUso/hBDvotbauKpmunTxUZ6xKE2DqB5MXn4NuT3W8FBDNR/SoPHwbM9N7Il+otwRgBCCdIsFncflt14i+DszuHvtl3yx9u8MC/+Ea66zMXJ0IZaQcPJyMrhrxgwAviyucxxiDa/QaX4+fCCmUj6PS9F4eNHp1AXUaayS0VgWi2pEjMbTbYIEuZCpCUf4EeCKGjjOJY/JYOTmmEKKI2pRBDS3FrIu7zGO586iQWgTv/ZCCH5LOYWre3f+sW4dHiFwKQrv9eiB6DiILjtspB+sQ066hv99ZaL+Vx+zMm4EkR1OcJ3jJ2LlKSx5eRRYrUTE1C23T/t3bMHpdNCuSy/gdPVBnU5/TnwgJR3mufYcrHrVeFwsSYLVRaPxj8ZyOCA5Wf2s0512phsMQWd6kAuTszIaQggtMB5IqpHeXOKMbO0m3OCvUxGiwAPGoyzZ1pefox5kRNun0SnqK6eUEo1Gw7KmTVkaGkq9wkJsMTFkmUyMaB1DxBM3MFQoNNydxr5Pd/DKb//AnfwM25M70Za9ONHyyHsf8suIUZyIiC7Tn9LVB6MjQs9b9cGSobpJzqOYtRYijFG+EcmliLc+iKF4cOVyQWYmpKWddqZ7xRWDOSFBLhQCjZ5aXs5qPdASiAIm1mSnLlUe63IMU35ZcSOnVOhn9NC7YCpvr5xLsw6f0j6mK0IIRnTrQXZmGvMLC8kxmxnVsSOgamAJIRAC2rR30uaDNmw+sJq0J6Yw/OBiBGDAAW64dv5CRifeizlSS9ce7tP1z4WgXZdeSClJ2L8LXcuWJBw4QOOW7WjXpdd5cZp7Rx52dxEn849h0JiIMkVj1JjOu6pubVMyqbC0M90rbWIyBUchQc4vgbrhFFRh75JLHvAjMEhKOb12unfpYLTtR5eztdxtOuFB0RjZ4dTzkjUF087r+Pfm5ylw5RMTXx9reCQujwdXsVChNTySmPj6ZR+izRtzsl997AZ/v4ADPR137uTtO3K4fnAdPnnfyvGjqkN87bJfSUvxr5+alnKCtct+raErr5yKKhkaNEYsOise6eZk/nGS8o9S6Cy4oCod1iZeZ7o3dFcINZz36FFVYDElBQoK1NFJkCDnkkCjpwbUcj8ueeqe/AiNqLh0qgZoVP9OPss4zG/5q5ibMoOVxxfQ4HgHQrPqEmGw81bvTbyzS5B20MIddeLKnT7KrxuLxu1/HrOmkGeUN3jb+TQLjo/g/amPMXrqEDp0ctCoQUPatt3pCxcFKMjNxqbR1HrGeUl/ijenpLQ/xatt5XQ7iiXZ9UQaYzBrLZf8yKMkJZ3pHs/pUYgQahhvcBQS5FwRDPg7RwSS1xFZsIEuXb/hpr6/0T7qCsYZUpl6xe8UNFzMJ1evoGtMBne32Eh6fj7ZGalljqEoCtGdu7Nw9Gg8QuAWAqdWy6Ix17Nq6jucePgpBoZuYgnD2CPaEfvXKn799Rrefvsp9rzRCsuj8zBkFQIgS4Tv1gYl/Sm7t673GYyE/btwOh1lzq3T6FVJdhRS8k9wLDeBPHsuHnn+ZOLPF4pyehQSEqJ+Tk+HY8fUUUhyMuTnB2Xeg9QOAbvXhBAtgOdRiy/VA04Aa4EpUspDtdO9S4eSeR0P/espAKa+8k65bVtGtOOLIT+zf+8kmuTO5o92GXik+gbZLy6F1hE51IlrUG5yn8vlZHv79hxs1IiI7GyywsMpsFppHGIh5ZEnSJ34EBEL59Ng5ufc1t9B4rIjDD/4C28WPYu9SM/g95283uhZUoY0Rcrae2X1+lMAEvbv8jnjm7RqX6k/Rafo0Ol1aiVBWzJKkYYIYxRWXSga5fJMvS7tC7HZ1GJTUpYdhQTzQoKcLYE6wgcACwEbsAA4BdQFRgFjhRDDpZSraqmPlxwN4+tX2UajaGjb7m3+9noWb/ZaTrcQNbtPr/Hwzx5bcHXoUu5+yccTACiwWimwWv3Wt+/aG6k3kDn6JjKvv5GOwKudF3PDxKfQSA8migB47uirtP5sL/MXxDJ8pI1rRtlo0brmJ8+9hsNrMICAHfBaRYtWseL2uMkoSiOzKJ0wfQShhjBf9NnliNcX4sUbkeWt22WxqH87HMHs9CBnRqAjjXeAbcAwKWW+d6UQwgosKd7erea7d2kSSDKgl8LCMOopWrwp4YqAptY83l5/M1d2/pgoU4yvrZTSN61jDY+k3/Ax/PHbT+RlZ/q2idOhU7jdbgq2bsKl06JxnE45N2JnPb2ISz7Fl9Ot7Jh+EE2zOHqNtjB8pI24ehX7ZqqDlJKdm9b4rdu5aQ0dul8ZsL/CW8PcIz3kOrLJsmcQboggVB9+SehbnS2lRyEOhzptlZiorg8JUReDIaiRFSQwAjUabYGxJQ0GgJQyTwjxJjC7xnsWBIAeMSmElarZEaLA43IdDy/vRb3mz3NjizvQKloURaFRs9aknDjKwk0bWLhpA31btMAaHklsvUZlnNpCCDLDQlFKlY91aTRsGdad6eNS+W2+hXe+u5FGhxPZ804b/nznKtY37ol1THe6jq1DROSZ+RSklCz6fiZul4tGzdvQofuV7Ny0hqOH9pKUeJBrbh5fLUe3IhRMWjNSSvIceWQXZRGitxJmiLikcz2qgzcvRFFUQ+F2+9dM9/pJgg71IJUR6AxnEmpeRnnoUf0bQWqBu1vuxqwtOzUUqsA3dYrodfJ5nl46hL/SNgHQulM3+g0fQ3p+Pun5qo3vN3wMrTuVPxDMM5uZP2oUHiHwKApOrZZfrruOzT2607mrg3++lE3+l+/y5+h/kRfTiJv5nlcSJxD67jSGXVWXx+8NJ/Uf3yA276xW/KfH48FTHOU18F/P0OL2mzh57Ii6rYqa6ZXh1bcK0Vt9uR5Jeccuq3DdQPFmp3sd6lL6O9RPngw61IOUJdCRxpvAS0KIdVJKn4EQQtQDJgOv1UbnLneMtv00Dcsqd5siwIWO4WYng0wHeHbjaOZF3gR/xeDOdfuF6G56+xVeevqFct/cNRotOzt1YrYQjGvdmkN2OwVWKxpN8VdDCOy9emDu1QOYyK5cye5vE1m5KhS2Q/qqRIYzCeZBoSaE1Bbd0AzqRu7112Nv3LTCa1MUhQbNWnPs0F6kx0NmajJOhx2ABs1a10ior7eaoDdcVyt0RBqjsehDUETQI1yakmG9UkJRkWo0pFTXW62nhRaDU1mXL4Eajf6oMuiHhRDrOe0I71X894BiZzmotTXuquF+XpZUVbNDCA3ZMTeQkbmOt6OP0eboDxy3aInNbc0Lze10iclgfPONTFrfnd1b15dxMgshqN+0JUcP7iFBSpKbNqUgSVWEqd+0ZblGxhIq6DGxCT0mwoSMUyxbFM+wHw8SsWszV7n/5Kp9f9Jx3zvM2Nab6Hvb0M+6mZhf51LQtQf5Xbvjio7xndtgNBISGoHG7UbrcmHJy0PUa4jBaKzRHAydRo9Oo/eLuAo3RGLVh9bYOS41SjvU3W61YmFmpvrZaFSFFr1y78GorMuHQI3GVaiVrZOBRsULxZ8B+pZoG5wDqCECye0Is+0hueta1qYvp37hTI4mL+eaNru4rY46Gukff4rWETnodPoyD2IhBHNX/Y6nONtcAqsPHsRgMtOyfdW1NyKjPNxyeyG33G4m+cRAFi8YwYe/mkjZV4h9rQH7WiMTLcm8X/Q1dWeqogFFjZuQ37UHSf/3HMcO7aflhnXUO6EOXr0Fpg707E2rDl1rPHnPG3HlkR6y7BlkFKXh8riwu+2XpLpuTVJSaBHUKav0dDUSy6vWa7WqoxC9PugPuZQJNCO8SdWtgtQ0gdbsAIiIGcT7A67mlQ+H81mLXbiLbY1e4+a5bltxVhCim56TjavEpHV2YSHCZqNF++oJF8fVczP+vnzG35dPwiEtixcoLF6g5ZPE8XzObXRhK8ND/mCk5w/arFyN/TkD2rRTXP/zzyjFvgbF5WLU/Pm837QpLpcLXS1phStCway1qE5z6eZ4biJmnYUIY+RloXFVE5SeynI4VGkTOO1o90ZlBSXfLy3Oy6BSCPGgECJBCFEkhNgihOhbRftbhBDbhRCFQoijQoinz1VfLxQmPfBElaG6QggSjzclvUjvJ7/eIiyXddsfxOay+bX3eDyEGo2ElXiFjAoNJcxkYvXieWfsjG7S3MXEx/L4cXEq3/yUxq0THByN78ZL+f+g+7FfCclI4sbrmnJoWQs8pb+CUhKfmor2HMi6qoKPCiF6Ky6Ps1jjKvGyzTQ/U7xRWV5DYTSqMicnT0JCAhw5oir3BrWyLg0CNhpCCLMQ4mEhxPdCiN+FEP8rfvibq97b7zhjgfdRnedXoGaVLxJCNKyg/TXAt8CnQHvgQeAJIcTD1Tnv5UL/BjmYtf4PPKMCo2y/cMuvfVmS+JMvikhRFEb26M21PXqhCIEAXn12Ctf26IVWqztrZ7QQ0Kadk8f+kcuvK1KZ8V0at96VT3QdDyeStMz763qcHv/XUJ3bTd89+875275eY/DJlKTakjmae4SsokxcnuBTrrp4ZU68RkSnU/0hSUmqAUlMVItQ2WyqryTIxUWgGeGxwEpUKfSjQArQFLgJeEQIMUBKeSrAcz4JzCyhjPuIEGI48ADwbDnt7wDmSymnFX8+IoR4HZgkhJgqg3GUfkxsf6jcEN0ojeB6bTLXJj3MluNTCG31Fo3rXM2VQ0bh8XgYKF+gjXExB5yr6DtsdI0LFQoBHa9w0vEKJ088k8u2zTq++7KAR/94nw8cj+FAjx4Hb5ueJDW8B333a2inO0CTSY+RNm48WSNGIfW173fQKTp0is7n98gsSseqDyVUH37JFoaqbUr7Q1wuNTckPb1sfkjQqX7hE+gcwL+BCKCvlNKXwiuE6APMRQ3JHV/VQYQQeqAr8HapTUuAPhXsZoBifYvT2ID6qA75xCp7f5lgtO2nVWhGuaEIFkXyn7oGFhd4uMOcgjvxDv5IaMJPe7uTbmvIu62L0GMjb+XtvH/kumplrVcXjQa6dLeTcWIutt5FLPnvCHY7uvG5fSwJtibwO0z9HW6J2837tnwa/+Mx6r3xMhm33EbarXfgjKt31n2oqsRtSb9HobOAXEc2Ro2ZSGMURq0pGLJ7FpTMUoeyTnWzWTUiRmPQqX4hIgJ5URdCpAGTpJRflLPtHuANKWVM2T3LtI1HTQTsL6X8o8T6F4BxUspW5exzH+p01vXAMqA58DPQGugjpVxXTvv7AOrWrdt1zpw5VV5feeTl5SE1erSai+fh0CnvDeIcK1Eofz7ejZ6D+hG8n2WnvfM37g6VmBWYlNGX1yL/RCMkLqnjJ/uzWOrVfsn3/NwcpPQweMqrAKx94x02rNWybl1DNm+uT26uHpAM4neeNr3HkKJFuPUGfp8zB4/pzLO8i2yFSCkxmS247EVoDUZshQUIITCaKp5tlVIikQhAo2hRhIaL8XlWVJSP0RhyvrtRIVKqixdFUV80hDhzA5Kfn09IyIV7zbXB2VzzwIEDt0gpy80IDnSkEQKcrGBbUvH26lDaUoly1nmZDjRDNRQ6IBfViLyIGgbsf2ApP0X1f9CtWzc5YMCAanZNZcXKlUQ2aUxahgOdsGA0iAs+CiRi18kKDQaABgcNtYe5d8BvHM9L4NZtL9Aobzn5cjU2D4RoQMFJm4IPcDS5r9Zf8fbv2ILdXkTiDwsRQhAvJc2z19Luijxea2Nk8wYDyxYZWbF0IMOzB9OQo3S3b2LzkyMYNMzGc/snoO3biczRN+EJ8MdRUoK9Sav2REeEkp6V6/vcqG3bKv0pbo8bu6cIj/QQqg+76Kaudu9eSbt2A853NwKipF4WnA7v9TrcdbrAvqYrV67kTJ8FFyu1dc2BGo39qL6F38rZdjuwL8DjpKM+6GNLra+DmiRYhmKfxSQhxD+L90sDBhVvTgzwvNVGAB0aNiQtMoMTWRnY883kF2jRFDv5LsQh8772v/tCc/cfOQhAq6YtgLKhug2sTZjc72tuf30ci/qtIkRT7BwX0Coih+OZ88mOuq7W+uqtp3H04B4URaFdl17s3rqeowf30KRVe7RaSe+r7PS+ys4zL+awZaOBZYui+X3pGLITNPzwiYcHOEy3Ff8j5vU3SBw8Fvcjd+Bo3rzS8woh0Op0hIZH+pW4DQ2PRKvTBeSA1ygazIo6dVVQPHVl0BiJNEZj0pqDU1c1SOk66lKC3a5mqoM6CvEaEW9474X427yUCNRovA18JYSoixrJlIz6AP8bMBjVoFSJlNIhhNgCDAG+L7FpCKpvpLJ93RRrXAkhbgXWSSnLViKqQRShUNcaQ4jBzMm8kzgdTlxFJl/dZqPx4pdTGKB3EC0USg7adIqk0eEHyC48BvUfqpVfoe/hHRHlV08jNCKqzMNbp4NeV9rpdaVqQLZu0rPsNxPDl6ynWcYWHnZ+xC2LvsKw6DPeHjiHiAmD6NjFUe7/jZSStOQkcrMz/dbnZmeiaDTVSir06lyBCafbQUr+CRRFzTYP0Vsva4n22qI8I1KyfohGEzQitU2gyX3fFIfWvgx8VmLTKWCilPLbapzzP8DXQoiNwBpgIhAPfAJQHBnVQ0o5qPhzNHAzavSWAbi7+HP/apzzrLDoLTQOb0xKfgqFujwahlsosilkZqpfWK32wlEF9Y4oqkoG9HJfuwNYdOXHPXZJeZ1JKXsZ2uEVIoyRNdpPKSUup5PcrAy/9blZGURVUMoW1Hvdo7eDHr0dTHoB/trajAW/fcybi95kVPqXfLjiWgpWhHCvdRb9mh7Bec8ttB1k9ZtaLPS+ppaiovWB4JUq8UgP2fZMMorSCNGpKrtGTc3KogQ5TWm5E4+nfCPirSESNCJnT8AZVFLKT4UQnwGtgEggE9gvZfWyoKSU3wkholCrAMYBu4ARUsqjxU3iUH0YJbkTeAt11mgdMEBKubE65z1bdBod9UPrk12UzamCUxjNRhqG6CkqUmPQ8/LVqR2DES4W37nRtp/W0fnlepM0AvI98HHCPKYlLueDVlfTtuW/0BlLzyyeGUII2l7Rk4zUZD/DERoRRdsregY2TaSBLt0ddOnuwPMc7N4xgRsWw/LFLrolreL2v6ZT9Oir/KD7G5uvvJdGY1vTrZcNir+yd82Ygcls5sDYseoBpQePx4PmLIaPXol2wKeyqxU6IoxRWHQhl211wXOFN0fEi9eIeGuIlPSJBCVPzoxKjYYQYjzwOGrEUjbwHfCslHLv2Zy0OOdiWgXbxpf6nI5aYva8I4QgwhSBSWfiZN5JChz5WIwWTCZBVJQ6z5qTAzYX6LSnh9Dng0BCZuue/AhkxbrXRo2eaQ3qMinpOLcXzSNn+y/8GXoL9Vq9gUZzdlMvUkr2bNtQ7khjz7YNAVfw86Io0KGzkw6d1WTC/Xun8MKcCbRc+AWjc7/h9pVfMm3lAwwzf0T7DnfQsMFGCp1GQgsLseTlURgWRoNmrc/KYJTGq7Lr8rhIKzpFWtEpQnVhWLRWzPrTUVoej6fG82KCqHiNiFfapLRPxBvi63WsB41I1VT4TS32G3wBmFFLvCYDTxCUQceoNdI4vDFhxjDyHHm4PC60WggPh4YNoV68+uXLL1DlFNwXqCKFybYHpWwAmg+tdHBDeDj/7PctN2c34YDDw+iCOWg3tGF/wudnVZ9CCIFWq/o0Vh88yOqDquM+NCIKrTYwh3TFx4bWbV2Mfrk+bTe/wO8/bOf7AW/yV6Ph2AoVEjbouf2HGTQ5eRT90XQeefdDmq/dQ1LiwVqpuaFVtFi0IZg1FlYu/pGff57O0Zwj5NlzcbqczJs3nfnzZ9b4eYOUpbTkidmsTlulpqojkYMH1cz1nBxVGv4MlXQuaSobaTwO/ATcUuyERggxGXhGCDHJu+5yRREKdUPqEqIPITkvGYdwYNaZEULNbDWZ1CFxQQFkZ4PNDXrdhVWXubQg4rAunejc8+oy7XoDPWP/YFHCD8w59BLPWbNpnvoCow7P5++dJ9M+unrihlDs03CpPg2jyYLFGkqTVu1J2L+rUp/GmdCgoxk+vZ1mwMjjJznyyBtcv2f+6RwLD9z424/02/4oJ9MsXD3UTsPGNf/1llLicbvJz85m3ZJf6TpoKJt/X0J+dhYRkXWCI47zQHmOdacTTp1S/y6Zse4diVzswS9nS2VGoyUwuZRxmIZadKkhkFCbHbtYsOgtNI5ozKn8U+TZ87DoLb6QS51OHX2EhalvLVlZ6ujjYvN9gGokr216C/ZG1/He/k/Yd2Qaq3I3sWrJSP7ZqCtd2r1Nk/CWAR9PCMH3K5YiPZKktFOQpkZcF+TlBiTLfqbExrtJ7V2I45AeQ4m66AYchKbk8eHb4SS8PZ8OMSfQDLiCljc2ok1nT41IWyiKQt34hhQVFpCXncXKud8BoNMbCK0bzYmCY0QYojBpzUHfx3lCCNUwlHy5K52xrtf7y56cA23NC4rKLjcM1dldEu/nCIJGw4dW0RJvjSfPnkdKfgoaRYNJdzpjufTow+f7uABGHyXzOvq3a11l1JVBY+Tmto+T1/xuwvdMI+Xof3lVv4UNOwcySz+UQe2nEGsJTObDbLGqf6SdTtGxWENp1bHrWVxR5SiKQmFcfLl10VtcfxKto5C7f/uKG9J+gO8h93srW3U9SGrbj+xHHqJbL/sZ/395R1cOu78qjtNhR/EoSAmnCk8ihEKoPgyrPixY5+MCoKQMPPhrZ3m3e6e6Lgcp+KpspCKEX6aSpoL1VDeK6lJDCEGoMRSjzljuqMOLTgcREeoI5GIefVj1YTzS+VnSWozn/d2Pcot2LW+JJXyxbhm/hI/j5vZPE2GMOt/dLIMQgl7j7mXRvn2MnPsDCIFbUVg0egx3vzIIjSYb5xvvMfvX/yPz5x1Ytm+lk2097r9WcceEF7BYPCyw3kxEPT3GIZ1x9+6CrUWrgF43hRBotFoURYPHc3oArygaNFoteo0evUav1vlw5JFtz8KgMRCuj8Sss1wWow+320l+fhJud2m5ubMjKiqMzMyzit+pEIfjtGPdi6Kclj05X471sLAw9u6t/JqNRiP169evVu2aqr7paypYv6HUZxnAsS4L9Bq9LzQ3tSAVvUaPQVv2bbE830dODticqmE5V1EcJfM6jAZDtYUKYyxxxPT4ns1ZO3Dse4jxoUfoVfQ1PX+Zy7jW9zOu9X0XVFlVj8fDn4vnkdu+HVesX4dFo+GLm26iwGrl8OJ59B0+Bp1eodUNDeCGBkh5LXv26PhjiY6WK5wc2KcltUChTcrv1Nmi6prZdRYS/jaRwn89CYAmKxN3RNm8FrfbzaE9f4GU3DVjBgBf3n03Ho+6vmX7Lmg0mhJJg+D0OEm1pUARhOpOjz4u1byP/PwkIiKsREQ0rtFrLCrKw2i01tjxqqI8/Szvcq4MSV5eHlZrxdcspSQjI4OkpCSaNAm8zl5lD/qXqtG/ICXwhuaadWaS85LJd+Rj0Vkq/BGU9n3k5KijD8HFk3VeL6Ij9F7N4uRfWXrwYwpd25mx6132J06nU/NHGdvy774HoZfqJiLWBEII7EVqMaovJkygZcuWFBw4AIC9yFZOSVy1Jkibdk7uf6KQk0kaVi3/jLeWGsjadIIenvX0cq5n3ddd2LAuhpG9jvL+Nx0oatiYws5dyO/clYLOXbC1aoPQaBAIJNKvLnqB1YpAlPv98Eq1q5Il+eQ6stEpOsINUZh1FrRK4O9qVSn7Xgi43UU1bjDOB6UNg5T+BaiE8Dci5yP+QQhBVFQUaWlp1dqvwm+clDJoNM4Sg9ZAw/CGvlGHUWtEr6l4Qrzk6MPlUsN1s7LAVgRaTe1mnU964AlSjuw+6+PExY3kzriRdEjdQPreJ3jadJTPT77G3Qf+y+g2j3ND83HoS83THzuZdNbnrQ4mSwj2IhtNWrYjLDKMJi11JBzYjclStehhfH03t95ZwK13FpCbY2bNHyNYsHwMa/4wkn9IYdahcPT8m37J6+iTupaGv/wIQOIb/yFjzC20iapDg6++KFMXPe/m2yp9UAohMBYbXW/eh7TJ4qzz8CrL1G7ZshK7vYjevYcBqsFYt24xBoORrl0HBHrrzgnVNRjaIQMAcC1dWfOdqSHKMyJu9+kiVKWNyLkajZyJcQ5OKdUyilCINEUGPOrwotVCaKgapeFNRsrNBY8Eg/7Cd7ZdUacnInIx2w8+xXgWcGNIBs8d+hc37J3K3e0e57qmY9EVG9CpfX6v4mg1hxCCOnENiIiqQ7uuvTmVsId2XdXcUZ2+etM+oWGSa0bZuGaUDacTtm3S88cKI7N/f4K3k54Gp6QBx+mrWUvu3B60LbBw7a6t9Np4WsxAcbm47pdfmD/02oDPrVW0aJUQpJTFWefH0QgtofpwQvTWMi8mUkqOHz9EWppqqMLCjKxbt5jduzcQE1OPLl36X/Rv9jXNG2+8ypw536LRaFAUhalT/8v69euYMOE+zOZqFSstFyGgVavGrF27mejoaECNzipZybCqKa2ZM2eyefNmPvroo7PuT3UIGo1zhFFrpFF4IzILM8mwZWDQGioddXjxxokbjaoD3WY7PX2liNPZrhciUmuFNp9yoHA/1oMP8nGdffTKTWH8pmeYuWcq8Wltaexsy3ONXDQLy2PSZy+R4Qyt9WmqVh274vF4fA9KIQRtu/Q6qxwJnQ569HHQo4+Dp/6Zy5FDWv5YbmT1ilhmbxuL3CT4dROs51YW8g0WCn37at1uitasQl49HNPB/XgsITjq1a/ynEIIX9a5V/Mqsygdo9ZEmD7cz3nuTVrcvXsDLVu25EDxlNwlUfjS4YAiG6SkQOzZy9ysX7+OhQt/ZcOGrRgMBtLT03E4HHz00Vhuu+32GjEa5VHVlJbH40an0/iMyPn6r7tAHzeXJopQiLZE0yi8EVJK8h351frRajRqaF+9etCwgeoHcThUA2K3n78vUVXYza1I77iMw02nIRo9TZPQFhTYjnPUupj5punk6PMJ0bm4IXrROZmq2r9jC3u2bfDde6+kyf4dW2rk+EJAsxYu7r4/ny/mpLN03SleejOLQcMKSNA1QZQS+3IIHcsy+5GR7qHem1NoP7Anba4ZQL3XX8K65g+Ew17lORWhYNZZCNFbkdJDqi2FxLzDpBamYHPZqFu3fCNUt26DGrnm84Uy62vExg2InTvRtW6KMuvrsz5mSkoyUVHRGIoz/qKjo/nxxx84efIkQ4cOZOjQgQA8/PAD9O7djc6d2/Hyy5N9+7ds2ZiXX55Mz55d6NKlA/v2qZUjMjIyGDFiKD16XMGDD97v99u/6abR9OrVlc6d2/HZZ58C6vcoOjqEV155gX79erJ+/TpmzJhB69Yt6d+/P6tXr8HtVg2Lx3Pufv9Bo3Ee8I46Io2R5DnysLuqfiiURq+HyEho1EiVLTEYoKBQNSAl304uGIQgJ+p62jd/nO9G/M7S9v050EjwQEw+nUOcCAFXxZ3gqma1O/j11vFI2L+L3VvXA/iKMjmdjlp5846I9DByjI1/f5jD428t5usr78CBjlysFGLiHvk5XyycwDV963NXxnvM7f8aOdZ4Yr6ZSYu7b6X5hNt9x9KmVV0NQKfRY9GpsiWFzgKSC44T26Y5YRHR3DVjBle/8goAkZGx9Oo19IKemtIOGVBmUT4plq1LOIJmwniEx4NwuxE2G5oJ41E+fF/dnp7u28d87Qif76MqBg8eSlLScdq1a8kjjzzIH3+s4uGHHyU+Pp4lS1awZMkKAF5++VXWrdvMli07WL16FTt37vAdIyoqmg0btnLffQ/w3ntqdespU17iyiuvYuPGbYwceR3Hjh3ztf/00y9Yv34L69ZtZurUD8jIUDXZCgoKaNeuPX/+uYFmzZoxZcpkVq5cw6JFS9m3bw+g/t4dDvXF0W5XozHd7tozIkGjcZ7wjjoahzdGIMiz5+E5g1QXr/M8NhYaN4K6ddQvS36BOpV1IWrnaBQN5mYvI8Kv4t06EFL8LdQLD7e1+B/zD3+Hy1M7lk8IQbsuvXySJTmZ6b6qfdUVSTwTBowYSaf/Psup+nUpiLUw5e7niPzHtfTobUco8POejty06lnitq+keUQar/b9gaVdH6ewQKAUFNB+QE/aDutL/VdfwLp6JaI4EqyiazVqTZi1IRz6azs5Wel+2zMzU1i/fslFO0Uljh4tO9EvBKRXLxqoNCEhIaxfv4Vp0z4lJiaG228fy1dfzSzT7ocf/kfPnl3o0eMK9uzZzd69e3zbRo++AYAuXbqSmJgIwJ9//sGtt6ovACNGXEtERISv/dSpH9CtWyf69u1FUtJxDh1Stdg0Gg1jxtwIwMaNG+jXbwAxMTHo9XpuuklVZy7p+wDVYDidZcN+a4qgT+M8Y9QafRFWaQVp6DS6My4dqtWqjnOv89yb++H2qKq7F5KCp93UnPtWdOfTTpsJ06kPPkVAC62DjTufZPru97in3WOMaHJjjRcz8hoOb+En4JwYDIA92zeSsH8XngkTADDgwqSZxiNPtKdh855sWGNgzSoDf64ykpAayvOpN8Jq0H0quapLBo/0f5ne2UuoM2cWdb78HI/RyNHX/0PWtdefFksqh6QjB8pdv2/fFjp374tRa7ogKw5WFhElW7dRv9S2EoZTr8fzwMPq39HRvv2rm6eh0Wjo338A/fsPoH37Dnz99Zd+2xMSEnj33bdZu3YTERERTJgwnqKi0wmJ3qktjUaD2336Bai879iqVStZvnwZf/yxDrPZzJAhA3zHMhqNfsrLVX1Hz0XUVcDfEiFEPSHEf4QQm4UQR4QQ7YvXPy6E6Fl7Xbz08UZYNQ5vjFbRnvGooyQGQ9npq8JC1ZBcKNNXsc4t6IS/NHuIAjNjFVZEHcN14CkeXtibuQe/xuGu/hReRXjrhJdk99b1tf7G7XK5VIPhdqNoNFxzy90oGg0et5uE/bswGp0MGlbEC6/l8NvqU3zzUxoPPJ5Lh84OXC5YsSGaG5ZNIm7z77SITuXVAT/xV587yWrYFoDwJYtoO+RK6r/8PKErf0cUP0w9Ho8vA13j8WC0Owi3q7pbbo+bE7nHOJp7hHRbKkWuootn5BEbi3vqf5GKgtRokCYT7qn/PWtn+P79+zlYrLoM8Ndf22nYsBEhIVby8vIAyMvLxWKxEBYWxqlTp1i8eFGVx73qqn7MmTMLgN9+W0RWVhYAOTk5hIdHYDab2bdvHxs2rC93/x49evLHHyvJyMjA6XTy44/fl9uutglopCGEaAesRq0Jug64AvCG/jQCegC31UYHLycMWgMNQhuQa8/lVP6pMhpWZ4Ki+Od+2Gyq6u6FIF1yd8vdmLVlLVikVoeitfJqdDqvyGR+P/kMXx55g/BGjzGq+R2+fIUzwWswvFNSYRGhNGml9406anPEodVq0RuMOOxFeNxuFv1PzQpXNBr0BiPaElIkinI6qXDCg/lkZSqsLx6FrFtt4MgJK8+fGM3zjEb/p+SK7nbubFSXMXWaU/eH2dT5ZgYevYH8Hr04/N7HWMMjabRyOfWSkkAIHnzr38wfNYqjA64mxBCKRJUuybFnoRU6wowRmLWWgCL8zieecXegfPoxFNlw/byoRqKnCgryeeKJR8jOzkar1dKsWXOmTfuU776bzXXXXUNcXBxLlqygc+cr6Ny5HU2aNKV37yurPO7zz0/mjjtuZd68LvTt25+GDRsCMGzYcKZP/4SuXTvSsmUrevbsVe7+cXFxPP/8i/Tr15u4uDg6d+6C233uxcZFIG8VQojfACswDCgCHEA3KeVWIcTNwJtSyqa12tMzoFu3bnLz5s1ntO/KlSsZMGBAzXaoGjjdTlILUslz5GGpBd0hh0MddeTmgtOlJg9mn9xNbNN2NXqeijDa9tN0+xCM2vK/9C6NlX0tvyf76Ac0zluCGRdxCWA1xDCx5W0Ma/kAFv2ZyULs37EFp9PBgo3rGdalE516DGT31vXodPpaFUv04nK5fAYD4Jpb7vYzGFXhdsOeXTrWrjKy5g8De3bqkPK0oWscn8/dLVcwQllEs/ydJHw9h21zZzH++WfRlHByObVavnr5Va646Xb/43vcODx23B43Bq2BMH1EtbPPz5TMzL20bNmmWvsEktx3rmVELgRstjxCQ61VTlft3buXNm3877kQYouUslt57QP9FlwF3CqlzBdClH56nQJqpgZoEB86jY56ofXIs+dxKl9VgTXpKs/6rQ5e+WevcGJBAWR61BHIuVDerXvyI7RKxVNwwuMkOutnHO2mk+Jx8dfRWTTNms2+rJ3clfM+cvOH7DL2oW7LlzGFtKrWuVt17IqUkgUb1WkAr4/jXPg0pJTs+2uT37p9f22q1vk1GujQyUmHTk7ufzSPrEyFdX8aWPeHgXV/Gkg8GcLkk6OYzCg0WknHcQ4G6MKR+B9fcbtps3I5nhtu88tR0SgaTIqai+D0OEkrOgU2MGnNvuzzC0k88ULOBL8UCdRoVDbBHg1UHMIR5KywGqyYdWbSC9PJKsqqUoqkupSULjmlh/i409NXAtUXUhv1Aky2PWiVike5GllEaO6fnAQURcsVTe7im8Z3sv7k73x76EUGiQRucP+Je8/V7BINKGo8GV3MNQGdu7py8DVF6amxdl16+T7DmU+NRUR6GHGdjRHX2fB4YN9uHWtXG1j7h4Gd2/Vs22zgJNcxhcfRlvipKlJiSU/HCeB2E/+fN8jrfRX5PXoh9aoj16t9BeBw20kpOAFCYNGGEKoPC9iBfjHoXgUJjEAfBxuBu4H55Wy7hYrVcIPUABpFQ92QuoQaQknJTyHfkY9ZZ675aJfieslmc1n/h0YBvaHm/B/72v/OQ/96CgBbcdioyaj6Kqa+8k753ROC3vUGQ73BbE1dzwd73qSTfSN3Wo/z1PqJuOuO5d4WN9NYr6fQ3PHCCRUrRgiBTqf3C+9t10Wdv9bp9DXyEFUUaNvBSdsOqi8kL1ewYY2e/32VzOO73+W9oidwoEePg/v5L6tODGDg22EMb7abzl99Qez0abhNJvL69CW3/9VkD7kGV5Qqc6HXGNBrDD75kuT8PBCCMEM4Fp0Vo8ZY7jVs2bKSoiIbffoMRwiBlJK1a3/DaDRdcLpXQaomUKPxCrBMCLEE+BZVCn2wEOIxYAzQr5b6F6QEJp2JRuGNyCnKIa0wDY04e0d5RZQM33U41MirnBywuVTDYTCcvXxJw3g1S3n/kYN+nwOhS51edKnzE3szd3DP7g9YnrcId94s2md+y/AoSba+Mfl17yAz6kZcupiz62gN4p0aKylhUptTY9ZQyeBr7MTHHuXQ3lNs/rgLhxwdmB52B5tPdMd1SsdXn8FX9OIBQzoT2i9ltH4hV+z6jYa/L8FevyF5V/VHfywRffJJ8rt0R+h0PvkSVdlAdaALFJ8B8cq3SynZt28rhYVq1FGfPsNZu/Y39uzZiNlsDepeXYQEZDSklKuEEKOB94Avile/ASQCo6WUpetrBKklFKEQYYrAoreQmp9Krj0Xs85cq05Kr/8jLEzN//AaELfn7NR3vdNB3hHHmUwPtYnsyBt9PyMh5xBf7/2Yqcd+IMXlYnxoIr0drxB//FVywoeR0PxTKDUymznwD9oYl7BLdwcZznNX86Os/HrtPjQ9Hg9pKUkIJA2NSbSKzOT42FgGOZeTkdWe/KJBbFhj5OB+C+/sGs07jAYkfSJ3U2dePbpmwm07vqPpVx/gDrGSe1U/cvoPIrffQFwxdXzRbB7pIdeRS7Y9E43QYtWHYdKY8RQ73/fs2ciePRv9+hWcprr4CPhJI6VcACwQQjQH6gAZUsr9tdazIJWi1+ipF1qPfEc+qQWp2F12zDpzrf4AS4snFhVBXp6qwOuRZ55AWJ0RRkU0CWvOC73e4VTHp5i1bzqDD82ioShgfKiHRrYNJOrnc3WDa4lLnYnI3MKBnHDqtC5Cj43RkQt4Zn2Ps+7DhYqiKGi1OvQG/6RRS4iOuvGnuHJIHpBHWqrCxrUG1v9pYMNaA2vT28MvMO8XeJMp3BHfl5tDfqX7+sU0/m0BbksIf23cBTodupSTOGPq+mqmqAYkmyxPOjH163P8UNlHRdOm7Wrk+6pdOQAA14CVZ32sIFUTaJ7GC8BnUsqTUspDwKES2+KAe6WUL9dSH4NUgBDC5yjPtGWSacussFJgzZ/7tAM9Olo1ILm5ahSWpHoRWDXpgK5rjufJLpOZ0P4xvj/wJW/u/5ysjAxIepAO1npsiT3FnKEuDmRZibXYEAL6xSXTIiyzxvoQCOey8JSUkrDIaDLTUjCaLWi1Wp+MSlhktO9tP6aOh2tH27h2tA0p4dB+LevXqAZk6yYLH5+8iY+5CZB01f7FoPi9FHwWQY8+dm567k70qcnk9h1ITv+rye07AKW4emG7Lr1JP5XMre/+B63Lxaxx49DUb1xzulceByJ3DxQeB/PZCzBGRoaQmZlfaZsPPnjvjGTSJ0wYz4gRI7nhhpvOpotnREhICPml69KeAYGONCYDvwEny9kWX7w9aDTOExpFQ4wlhlBDKKcKTpFblItFf+5qSivKaQe62326+qDXgJyP+h+h+nDuaf8Y41rfx4KEH/h67yfszEukbgHcEaLl6XA7SvHzSq/x8Gqf/eRWIsNxMVPSAX9i3gS1hkgTNYu8Ige8ENCitYsWrV3ccU8Bdjv8tVXPBq8R2d2JLQc7w7sw9V3JctO/uDV8AVf+vpgm839CCsGp+x7ixJPPsOKX72i5fl2ZwlPf2AsZeePfsehDzq6Ere0EuHLQ7Pg/3L2+O9PbVC0++ui9asukn49EvNogUKNR2f9mBFBzGg9BzhhvRnmePY/UglQkstanrEqj0YDFoi7eCKzc3NoP4a0Io9bEjS3uYHSz21h1YjFf7fmYDzK28kSJEt6KgPqmDDJOvofd1Izs8GughvWuvJQM9y35+VzUEDkbB7zBAD16O+jR28Ej5JGdJdi8waBOZ60x8OXxW/nSdisCD13Zws3mXyn8qxP8aCRsx0nGzJvne4goLhej5s/nSNOmZNrSyXZkoBU6QvShxQp7ksofOSVwFyGKTiAAJXk+nqxtyIgrSjQofazAj71q1UqmTHmRqKhodu/eRZcuXZk58xumTv3QJ5MeHR3NkiUrWLp0Ca+8Mhm73U7Tps2YPn0GISEhtGzZmLvu+jvLli3hAa8mVjFbt27hH/94kvz8fKKiovnss5nExcXx+efT+fzzT3E4HDRr1pwZM77G6XTSvXsn9u07gqIoFBYW0qFDK/btO8KxY8d47LGHSE9Pw2w2M23adFq3bk1iYiITJ96Hy+Vi+PDhgd3PAKjw5yuEGABcXWLV/UKIkaWamYBrgbOvExqkRhBCEGoMxaK3+KaszkYE8WwoGYHldJYtIGUwnLv65xpFw9UNRnB1gxF88slIopXtUKKuhVHjpM7JD9DhwKGLJa3OXWTEjMOlizo3HTwH1KQDPjxCMnh4EYOHq8J6J45r2LhONSKb1ndhUmZ3WA+sh1vohYup6Cgh3CclcSdPqoWiNBrcHje5jmzM0oXDbUcRGhShQb/q6jLn9jS4BU+zB8FViHbZFSCL3+DdNrSr+uPu9D6eJndjy07EvPV2NIoWs8eNomjI6f4zQiiYzYFlh2/fvo1t23YTHx/PgAFXsnbtGh5++FE++OA/LFmygujoaNLT03njjSksWrQMi8XC22+/yfvv/4fnnnsBAIPByIoVfwKwZMlvADidTp544hF++OFnYmJi+P7775g8+Tk+/fQLRo++gXvuuReAyZOfZ8aMz3nooUfo0KETf/yxigEDBrJgwXyGDBmGTqfjwQfv46OPPqFFixZs3LiBxx57kMWLl/PMM5OYOPEB7rrrTqZOnXpG/8/lUdk7X3/g+eK/JWqeRmkcwB7g0RrrUZAaofSUVZ49D5POdE6kIMpDp1OX0NDTIby5uepUljjHBuTBxscJ0ZRNLLR7HHxXFEav0FCan3iTuJPvkRL/CCnxNTcK8I4ozqVP41xQr4GbMQ0KGXNLIR4PHD6gZcNaAxvXGVi/rg9Oh87PaGjcbpYevoH01Sb6hm7HGBuGJr4eirMIIRQ80o1butHhAQSivNGBlIjCo74tApCuAkTODkAipQeP2wO4EAjcHhc2WwEmk4VARxzduvWgfn01UKNjx84cPZrIlVde5ddmw4b17N27hwEDVP0ph8NBr169fdtvvnlsmeMeOLCf3bt3MWLEEECduoqNjQNg9+5dvPji82RnZ5Ofn8+QIcN8x/n+++8YMGAg//vfHO6//0Hy8/NZv34tt912s+/Ydrvd16+ff/4ZgDvuuINJkyZVeb2BUOETREr5EvASgBDCA/SSUm6sqH2QCxPvlJU3yqrIWYRFX3WN8tqkpISJXw5IUe2PQIy2/TQLzy53W4gCIw05NNyfQ1tTGK/Xb0SUCANAcecRlr2crIgRtTZ1damgKKf9Ibf/vQB7kWDOY3dw+4oZONCj4OERPuDLjTfx5UZYzmsMZAX74vti++4tpNON0GkQQFG/ZUjp8Y0JNUKDIhQUJCJjjfp/4Tk9Oy7woJz4EXfHt8AQTXa3n3G7nRgMBux2OxqNrvi7H+i03OmgEo1Gg6sciWgpJYMGDeHrr2eXewyLxVLuPm3btuOPP9aV2TZhwnh++GEeHTt24quvZvLHHysBGDnyOv71r2fJzMxk27YtDBx4NQUFBYSHh7Np0/Zyz10bv/OA0rOklErQYFy8eKOsGoc3JtIUSb4jH5vzwlB+8RqPRo2gQX1Vzt3lUqewCgvVXJCapO7Jj9CIih2SZo2O/8RFs6Egh6v376Drqpf519pHKDo+jSZHHqT9jl7EnnwfrTPjrPox6YEnzvkoo7Q46bmQQPd4PKxcMJvj/eP54KlH+e6ev/H+o4/iulPPgAHraN/Jzn3KdJ7nFcTJUxjzszDv30Ph/lTSUjUUFghAUQ1F8QjE6XFid9tR9r6EcJUTDeTIQEmYjsNhx+32l953u504HHbg7K69pEx6z569WLduDYcOqUGlhYWFvhrsFdGyZSvS0tJYv141Gk6nkz171Fn+/Pw8YmPjcDqdzJ49q8Q5Q+jWrQdPPfUY11wzEo1GQ2hoKI0bN2HuXFUmXUrJjh1/+fo1Z84cAGbNmkVNUe2cXiFEHSFEw9JLjfUoSK2hUTREW6JpEtEEo9ZIblEuDrfjfHfLh8FQjgFxljAgNRB8UpXmlR4nt0bH8tngHxlY/xo80s3CxB+5cu0HPJLfgiQRQfyJf9P+r+40OvI4wnPh3L/K2L9ji1/NEK8OVk3VRa8IKSUOu/qCUmC1ktSgAY5IE02bJjBgwBK+mJPK55vNxPz3AabcvZk0bSxpxFDgNJKequF4gkLh7hTSDttJT1WwFWoQKGjy9qFkbyv3nMJdgGbnswiX+lCPSk8nNDm5Rq/rnnvu47rrrmHo0IHExMQwffpM7rzzVrp27Ujfvr3Yv39fpfvr9XrmzPmB556bRLdunejevTPr1q0FYPLkV7jqqp6MGDGEVq1a++13881j+fbbb/ymvGbOnMWMGZ/TrVsnOndux/z56pTUG2+8ybRpU+nevTs5OTk1du2BSqMrwBTgfiC8vDZSyoAnFIQQDwJPA3GoTvTHpZSrK2k/DHgRaI8aqbUGeFpKWak5v5il0c8Fhc5CTuWfwul2YtKZ2LdlH+26nxtp9Opgt592ojtdNTeF9ebH7zKsSyc69yzrbPVyIv8Y/zswk3mHZ5PvzAXgSms0r9ZrQDtzCMdaq29ylvzNFJg7BTx15c2Cr0hnqyYpLZQYHRFKelbuOSlzK6Vk6U/fYi8qLLPNYDQzZMxtfufW2DJp2qwlBQWKOsrIK6Cx4yAKkiIMZBJFpoikfuo9hGV9h6D8NwmpmCiodze5zZ4jKj0dRVFIi1RD5oRQiIqqS8ARWmfMmUdu1QTnWxr9ceAh4E1U4/EqqvLtuOJ/3wjwOAghxgLvAw8Cfxb/u0gI0VZKeayc9k2An4EPgDuAEODfwEKgeaDnDVIWs85M4/DG5NpzSStIwyMvTFkHg+H0KKSkE/1c+EDqhTTkiS4vcH+Hp1iQ+ANz9n/BmtxDDNiXjk7RMTTzUe5qNoYbj9+NSxtFep07SI+5HZcuutLjTu3ze+10uBxKCiMm7N+FrmVLEg4cOCd10YUQNGreGoe9iMSDp2toN27RFr2hfIFDRQPWUA/WUCDOSIGjHZ70XHR5WcQ5TxIvT2Ir+KtCgwEgPDYM2eW/h2rOQcRFYWEeUnqwWEIpdtFTUJBbrcitC5VAjcbdqMl776EajZ+KCzBNAZYA1ZmeehKYKaWcXvz5ESHEcOAB4Nly2ncFdMCzUqqxdUKI14HlQohoKWV6Nc4dpBRCCMKMYYToQ0gUieQ78tEq2loTQjxbSjvRvYmEtqLq54FMeuAJUo4EFi1u1lm4ucVd3NT8TjakrOa7A1+w+sQyFiTOZWHiXCbWbcKTUQaan3iL2JPvkxV5Hcn1nsJh8P9peEcYH/ZSnTWPnKMRx/msi96yQxd2bSnl8BWClh26BLS/oldQ4sORhGNzOhG5+eQ03M7JAkFk9jGE20UGUWQTjkRBCInJJNFqbWiLivCg+M3Dq5kgsvyIrBpBjdyy2QoAsFhCKSjIrXbk1oVKoD6NpsDm4oe2CzU/AymlE9WQ/D2Qgwgh9KhGYEmpTUuAPhXsthlwAhOEEBohhBW4C9gUNBg1h0bRoFW0NIlogklnItd+Yfk7ykOvV0N4GzSARg0hJkYN380vULPRnc6qj1FdhBD0iuvHu/1nMu+6Ndze+n6s+nA+PpVAiz376H4ylOW0JDTrdM1orTO1jO9DKzy0Cs+hjrGg5jtZDuerLrr3vIkHdtOkVXtG3jqBJq3ak3hg9xmdX+p0eKIisIZ6iI1zY4nSEqotpBlH6Cy200yTgEUWUFiokJtrITMzigOOliTZ4yjINlNUZMDl9OBw23F67LilC1lpuaAzQeByORFCwWYrID09GZutACEUXC4nF7PBgMB9GieBu6WUi4UQicDLUsovirfdCHwppQwJ4DjxwAmgv5TyjxLrXwDGSSnLLcEmhOgLfI9a8EkBtgHXSClTy2l7H3AfQN26dbt6oweqS35+PiEhVV7SJUXJa5ZS4vQ48UgPilAuuCmrypASpEeNvPJWNxWifIUQl70IreHsEh+L3EX8kbGSX1N+4XChGkFjEtA+rCfX1h3FRM0vhLkOccw4ks0FPSgijJt4DKvIJIEerJSPEBtT96z6UBW2wgIcRTb0RhM6jQan2+37bDKXDQmtSYpshUgp/c5jKyxACIHR5C/DERsTRdOmzar5fZNoCm3o83LR5edTFBpOpjkWW4EgJD+TGPep4nGF5CiNyCQSg8GD0ejCZHZjMrrQaE+PPGriu+5yOcs1iEIItNpzE7Lt8birnIqTUnL48OEyjvKBAwdW6NMI1GgsAJZJKd8VQvwXGAH8A3XU8SqQIqWssqZGCaPRr6TjWwgxGbWcbOty9okF/gDmAbNRa5V7da6ullJW+JoQdIRXj9LXrNZKUPM73NJdO4WfahmXS3Wk5+Wd1sIqKeeecqTm6qJLKdmVsZX/HZjJ0mO/4iweXdwWGc1zMaG09RzB6dGwLrMFV0buQ6OA3a3lhX23MnZ8wG7BM8JbF71dl16cSthD3SZtz2ld9EAr9yn2HGIiIwiLiDijh7fweEBKpEaD82QS4Zn+QpQeBDvpgBN/NU293oPJLDFZPJjMHowGgUZoEEI5o2mswsJcCgsL8A/tFZjNFszmcyPDX5UjXEpJRkYGeXl5NGnSxG9bTTjC30OdogJVnLAL4A38PQo8XM4+5ZEOuClbU7wOaq3x8ngIKJBS/sO7QghxO3AcdUrrzwDPHaSaePM7LHoLOUU5pBemIxA1Wqu8ttFq1cViUUN27XZVyt0r5y6LRyNnW1AK1PvVIborHaK78mSXF/n5yBx+PPgN32Ye49vMdNoatDxuMHJn9H7fD1mnuLgzfgF2+XqtiiV6taf+/cl7DOvSidim7c6ZTwMClzBx60JIy8wiPf1sZ54lrtxcTPl5ZR75bstGPKZw3DYXboeHQpcBj/T/AiiKRK+X6PQSvQH0OoFSnBRY1S2TUmKz5ZcrUKjRaDCZQs7JfXc4ijCZKh9FG41GX8Z7oARahGlpib9ThBA9gGaAGdhb7NsI5DgOIcQWYAjqdJOXIcDcCnYzQ5kwCe/ni+u19yLFW/jJarCSbcsmw5ZxQTvLK0KjOa3GGx2tGpADqeq/bk/NRmJFGKMY3/Yh7mzzAOuSVzL34NesPrmM++z5DIuEhsXnUAS0DsskOeUTUuMeOPsTV8K5Lv50JghFg8cQdtbHkVKyZf6v3P3iC+hKZHG7FYUvJr9Ml7+Np/F7z1Nn1kwAcuKbczCiC+tcPZh86lGysv2nkMwWN+06F9HxiiJ69hT07Gog3GqoUJbn558/Jy3tBHd+odas+/Luu1X5+Zh6XH/9PWd9fYGwc+dKhg69osbfRQKtp3EnsEBKmQEg1TmtQ8XbIoUQI6WUXwV4zv8AXwshNqLmW0xElVf/pPh4rwM9pJSDitsvAJ4onsL6FnV66jXUkUbtZiYF8UOraIm2RBNqDCWjMIOcohz0Wv15EUM8WxRFrQWi1ULjxqdzQUqG8ur1Z6/IqwiFK+Ov5sr4q0kpOME3399MhHLUr41GgfpJUwjNWUVyvacosHY/u5OWQ0l13f7tWl9y2lflYQsLY/6oUYyeNw+EwK0ozB81isLICACSH32KnKuHYNm5HfPOv+i4cxUdldX02XAriUe0xLz2GrZj2SzP7cGyrJ5sX9OBTWssfP4RaDSSFm3sdO5aSM8eCr17aKkfp8q7u91ucnMzy83Az83NxO2u2tdwIRPoT2IG0BsoTzuhSfH2gIyGlPI7IUQUqhhiHLALGCGl9P6S4lBHMd72y4UQt6H6UJ4GbKj6mcOllOcm9CSIH3qNnjhrHBGmCNIK0sgtysWoM6LXBFh16QKjdEVCbyiv1w8CpwUXz+atLdZSj0971iUk/2iZbXYPKDmraZW3mqSIG0ht/uGZnygIQgiuHHIdq91uTmzahEWj4YubbkLToBF9h1ynPtwjIsnrO4C8vgN8+2lycxACmjRz0bBOCuE7FzMs+0sAXFoDaxrdyETjDA7s1WHblcL/djVgzpeqAYhv4OCKrm56dhfYC5uh1+9F43ajdbmw5OVRFB5BWFjURW0woGbqaViAsipelSClnAZMq2Db+HLWzQHOLAwqSK1h1BppENYAm9PGqXxVSdeoNaLTXNyCft5ckNDQih3pen31/SBG237MBTvK3WZQoMgNz6XDoeR5pCcXcVOTG+gfGkVR6NmXoi2prms0GC7pEQaob/V7tm0gNzsTt0aD02ymwGqF7Ez2bNtQoT/HHXp6auzY6//hmJTojx9TRyO7dtC0biyzxqdTkOOh11XtcHsU9hg784etB+uO92DN8StZMK8+cAPjNV8Q405DInj0vQ+Yd831aMZ3rTAI4GKhsnoanVEd3l5GCSHal2pmAv4GHKz5rgW5WDDpTDQKb6TKkhScoshedF5l2GuSko50j0c1IAUFqhGprh+k7smPoBL3n1mjo31YPG8eTcKdv5B2uQt5oA7sEo3IavhPLHVKl7OpPsdOJuFo3/asj3Oh4w1tDY3wr4cSGhGFVqsL/KEtBI6GjXA0bETWtdf7VoeYXJx4+TXMO/+i1c7tdN47lcf5D8v6/oO3QyeTseYQn2bff1oO3g0jf13AgL9epfXVHnp009C1KzRsWPPxDx6PB6XEG03pz2dLZb/q61EjpUB9wXqugnYZwLnx7AS5YBFCYNFbaKJrQp49j7TCNGxOG2ad+ZyVna1tvH4QkwmiotRpLJtNNSBFRadro1c0jWWy7UGpRPpCh5Prw0JZcP1G5if8j8VHZvOP9GM8HX6U9kfvZ93hcPZF3U3Lpg9h0p5ZEELD+Pro9Rf3SDAQpJS4XE5yszLK1EWPqhN31m/7Uq8nc8zNZI5R61gIhwPjoQPEhoXzanwW9rc/RjvdfwJGi4uWxzfw9Zct+Vqd8SI62kPXrtCtm0LXrtCxo/r9OlPmz5+J02ln9Gi1iJPH4+Gzz6ZjMBgYP378mR+4BJUZjfeAmahTU0eAG1CT6kpiB07Jc6GxHOSiwFs5MMQQohqPgjQ8eC7KHI/K8BaO8mpiOZ2q4cjPV7WxQB19lJzG2tf+9zLlXls1bQH4O6RjgL+3e5TxbR9ma+p6Jh7+mlYZC3kiLBt3yrsM++szhjW6juuajqV9VJeAHn6XmyNcCEFOZjqhEVEk/bSY1MS9tG3chozUZHIy02t8ekjq9djaqhMxAtjbpAnddTp0JWQJdDjpM/oQEc1yCVn8G0P3fcrq9D6sXdyHjxb3IodwtFpJ23bQrauga1fo2hXq1w9sNOLxeHA67WRkpDBv3nSaN2/FZ59NJyUlhdjY2BobcVRWhCkHyAGfaODJQENrgwRRhEKYMQyrwerL8ZBSYtZfWsbDi9dRbrWWncbyZqWXqOcTEIpQ6Fa3D93q9iHPkcvHR79nbeIcCpx7WJMwizsLZjHFXp8GDe9kROMbqGOOq/kLu0iRUhIWGU3C/l3s2baB6IhQ1ceRlUGTVu1r1a8gpSTfGsL8kSMZM28eKApujYZfRozAeXUdxg/LI6JhFrGfpDBg/6sIjwcPgkP6NvR2rmbHX5Ec/iufL76wAIKYGEmXLoIuXaBLF+jUSZ0uLY2iKDRo0IL8/FwyMlKIigolJSUFs9lMixYtamyKKtA8DV+4hxDCgDod1RY4iSo+eLJGehPkksOb4xFqCCXXnkt6oZq0ZdKZLknjARVPY+Xnw8N3PoEEJr3+FIjA3/St+lBGtriHkS3u4Z7s/Rw6/C5XOn/l+pAkFqa+xkv7XkdE9Gdkk5sZUH8YxlLTV97zPPSvp1CEcsmOMLx4BRqllH7Kvo1bnpukxvCoOuzs1InumzahdbmYNW4cBVYrjaNVuZjsa0aRfc0olPx8LDu2Ydm+heiDB5j3chG7d6ZxxesP0erw76yjD6vSrmTd4t68t7g7NswoCrRqhc+IdOkCzZuDEJITJ45gt/vL0BcWFnLkyBEGDhxYI9ddmSP8ZeBGKWW7EusMwAagA6cjqh4TQvSSUiacdW+CXLJoFI3PeOTYc0gvUKcILmXjAWWnsf4x5V08HrAVFyZ67aN3VeMx8YmAkwqbhbeiWddPSHBms+/wi1wp57HO4uTXgpWMXrsSo87KkIajGNnkJjrH9PB7UEzt8zux+m2kMKwWrvbC4sDOrWXCPkXx+tqUThFCkJKUiKJocGvUpcBqRVE0pCQl0qHbaW1WT0gIeX36ktenL6CGovbo4yT8ocG4VikM3LqZaxJ+BSAhvD3X1NvEof0GYvb+waq9TZk1qwGgjnA7dYKYmAEYDJv4x6o3aKTP4cRNN1FgtRIfH19j11fZSGMwas2KkjwEdEStZ/Eq0Ab4ETXnIugMD1IlGkVDpClSNR5FOWQUZlwWxsOLEP6RVgaDOn3ldp+Wd9dqVV9IVS+FGl045tbvkeB+lZCT04jMXEfrIju7M7ez89i3zDv8LfUsDbmmyQ2cWJeH1RPB0w3VmimXuk9DSonTYSfhgL/0fcKB3TRp2a5Wp6fcbjdulwuPxz/oweNR1weS3Jc9fCTZw9VoOU1mJpa/tiCcLr4dmklhvpvuV12HoTCXVEM91ok+rMjrw5I/h/InbbmddbTiIC60PPr+B/w6aiTbdTqGDx9euyMN1AS7d0utGw0ko9a2kMBGIcRbwKX5zQtSa2gVLVHmKMKMYZeV8XjzOfWnMunVd/0+g+pMdzj8c0I0impAKnvGeDQWchs8jbEBfNUJ0lMXM/jo31leZOCfqcf4bNd7YIVIVxxtnTaeEseI0uWS4Tw3wnnni4qic2o7akdRFOIaNuXYob18effdftviGjattm/BHRlJ7sAhvs9ms+DIN98RsnUzlm2bGb5tLdef/J41gx/i37lD+HTTvZikXW3sglHz53OkadMKjl59KjMaYZQQESyuhdED+KFUtNRfqFncQYJUm9LGI9OmqpJe6sajPLzO9JI5Id7M9OqMQupEXUWy+1n6J3/CxoZ2NnlieSo5m9WFyQijKtt+U7t5rI+bjM1lO+Pw3QsZIQR6vYHGLduRWGK00bhlO/R6Q637NHKzyhdcrGh9tVAUbO07YmvfkbQ71VJGupSTWKTk+q+no2zzqBWIinFrNETl5tZY7ZTKjMYJoDGqLDlAT0APrC3VTgcE5TyCnBUljUeuPZeMwoxLOtqq5AijPEo60yMiTo9C8vOLRyFSNRzl6WN5NBZOxT1MWp3xxJyawRUpn7CigeDD8NeZkP4sGgG9lFSe2vIQUzaaGVh/ONc0voEesX0viYRMLy07dGF3qYqBonh9bSKEIKpuPLlZmX5TVIqiIapufK0YLGdsPB6Ph7yYOiiljIPG7cYWG1tj563s17gaeFwIES7Usz2KWg98Qal2VwBJNdKbIJc9WkVLpCmSphFNibHEUOQsIt+Rj9tTcVLc5YB3BFK3LjRpAvXqQWSkajwKiisVFhWdDu8F8GhCOBX/CLs6beBwi5mMCdXjHVMYFfgm3oTNVcjCxB95ZOXtDP+pC29ueo7taZvwVFym5qLAWzEwobhiYFhktJrcd4YVA6uD2+3m+OH9eDxu9AYjI8b+Hb3BiMejri9PMr0mUBSF6C7dmT9qFB4h8CgKTq2WBdddR+sBA85JyO1LqCqyp4AiVHXZT0qG3xYzHlhZI70JEqSYktFWeY48MgozcDldl1SG+ZlSUmAxPFzVx3I4VMORn39a3kSnU0chHk0Id731Iz8Ono+muFCeArTV2DjVsQuzXM34MGkLCblH+N/Bmfzv4ExizfUY1uh6hja6nlYR7S46rSQhBDqdniat2vsKT7Xr0gsAnU5fq9ej0WhQNBr0BiODR9+GRqNh8OjbWDbvWxSNptYECz0eD0cP7sNZHOrrFWkssFoxb9nCgBoyHJUl9yUU609NACKAjVLKr0u2Ka7E9zsBKtwGCVJdNIqGcGM4oYZQ8u35pBemU+gsvGS0rWoCrz6Wt06Iw3G62FRhoer47Rx2jFCd3W8/ISDGto0n2Mr1vT9mvWjK4sQfWXzsF1IKT/Dl3ml8uXcajaxNGdroeoY2uo6mYS3Pz0WeAd7CU14D4c3dOBcGcMjo2/yipLyGozYVbqWUOJ3q//EXEybQsmVLCg4cAKCoqOic+DSQUh4DXqhk+0ngkRrpSZAglaAIxSdPUuAo8GlbGbSGi1aSvTYomRcSGnraoX5f2wNYdGWnRTyKiczI68gJH0JrjYn+9lVMM0SzwzCCz7Py+PHY7xzNO8L0Xe8yfde7NA9vw5CGIxna8DoahtZcRE5tIYTgzY/f9VUrPJcjptIGorYl0RVFwWAwYi+yldlmNpvPbUZ4kCAXCopQsBqshOhDKHQW+up5XKzFoGobRQGraz/1o3LK3a7xFBKRuYDE2BdRjODQxyOQ9M76nF5Cy1sd+rNB25FPUpNZfnwRh7L3cih7Lx/veItWEe0Z3HAkQxqOpIG1SbnHL8lD/3oKgKmvvFOj1xhERQhBo+ZtsBfZOHpor2999+7dMZvNNWYwg0YjyEWJV1XXordgc9rIKMwgz56HVtFi1Bovujn42iTk4EfoNbLCBAUFJw3S3udg1PMUGMdwoskYwtz7iMmeS2TGj/Q2uanTaxbPdn+dg8dnMefkVlaeWMr+rF3sz9rF1L/eoFVEOwY3HMngBiMrHIHYynkDrk0uN5FGKD9iTFEU+vfvX2PnCBqNIBc9Jp2J+mH1sbvsZNmyyLHnoAgFs67m3q4uZnS5exCy4ogdxVNEZNGfNGlyumphQUFrDirPISOewSizEG4wuzMYl/Yvbg5pSGqvu1nqrsfckxtYlbSE/Vm72Z+1m6l/vUmL8DYMbjiSQQ1G0iSsuW+E4SU44qgdSkeMWUJD6NGjJxs2bABg2LBhtZ4RHiTIRYVBayDWGkuUOapMouDlHHGVNuB3br5PfVAX2GzcN2oUs5YtA+D7T08/uBX8o7LcbnA4NNhs0eTnQ649nAPx71I3dy71Uz7k70huiejO4Q5zWJ6TxrJj81l1YikHs/dysHgKq2lYS/IjIDw7HiOhCMQ5H3FcLpSOGDtxaBdDhw4tjrarudF30GgEueTQaXREW6KJMEWQa88l05aJy+m6JErRnks0mtMJhpGR4HKZcDhu5ljhzTizThKR+RN1c37CQRx946/g2rBQZKvhLLFpWJq0mFVJSziScwBiITX2AB11gtmxMHFNd3Iza05AL8hpyosYq6kRhpeg0QhyyeLN9QgzhlHgKCC9MJ08ex46je6yc5p7RxQ33/cUGkXxG2EESsnQXqLjcTof4qTjIXTFyYURJ74gJm8BTTWR3BI7mrR2X7IqL5//LH6TE7pD3GgtpKUBHuyxkfEnLby28RkGNriGbnV6owtGwNUYpQ1ETU/RViaNvrwax5FSykE10J8gQWqckhFXRa4in9P8cp6yqglKamVJCQVxU3GcugVz0g/EpM+ibtoXxFpH0HXcIjSigE5bW6IRcJ0FWpsKmHvoa+Ye+poQXSh96w1mQP1h9IkbiFlXToWhIBcMlY00FPzjLVoBsUAiapZ4XVRtqmRgf+10L0iQmsOrout1mufYc/B4POTb8y8bv8f3n77D7k27q25YTYQAvVEHjQZjazQYmyMH/fFfcWDFYADr8R/QFb/wGhXB0ubNeUZew8oTizmcs59FiT+yKPFHdIqeHnWvYkCDYfStN4QYU90z7pMvSmpRZ2IN++j1QHXeg4NURGUZ4QO8fwshRgPvA72klBtLrO8JfFe8LUiQiwaD1kAdbR0MWgMxlhif3yOYLFhD6MNwNBsHQF0pqfvX+z5lXoEkynGQ9wwaDvV4m4NKOGtOLWFl0iJ2pG9hTfJy1iQvBybRLuoKBtQfSr96Q2kW1ioYDXcBEKhP4xXgXyUNBoCUcoMQ4kVgCvBzDfctSJBzgtfvYXPaSC9MJ9eei07RBfM9aoivP3icRxtlYioxkBOAxXGY8CgtzTVN6eCsz8seD6ca38lah4bv0o+w/NR6dmdsY3fGNqb+9Sbxlgb0rTeEfvWG0LVOryr9IN68jMul8NS5IlCj0QJIq2BbKtC8ZroTJMj5QRGKL1mwyFVEti3bl+9h1Bovi6mr2mJ42EpMGmeZ9VLREe7Yjr5xRwweHfo8Dc1yZtNCOrjTIshv3Yrp5kdYkbaajclLOVlwnO8OfMF3B77Aog2hV1x/+tUbwpXxVxNhjDoPV3Z5EqjRSADuBxaVs+1+VD9HkCCXBEatkVhrLNGWaPLseWTaMnE6nBi0Bgxaw/nu3kWFNm8/rSOyy92muAsJ3fsatnpjsMcNwx43DNw29Fnb0WesR8k9yKg21zPINpr4vQ+iy9/Idnc4C3Ky+SEzmd+PL+D34wsQCDpEd+Gq+EFcVW8QLcNVjSnviMK8YhbRynGe//stOA31zuHVX5oEajReAmYJIXYBP3DaEX4T0BoYVzvdCxLk/KFVtESYIgg3hlPoLCTDdjrqyqQ1BaeuAiDk4EdoqKR+hMdJyMH3yWv7vPpZY8IR3RtHdG8ALIAlBHS2vuiTbfTN3MiAsGzeCoN9SjPuzKzP9ox1ZGZvYVr6Fqbt+Dd1TLFcGT+IK+OvpkfsVdTX5aPHRr3jr5DY/JPav+hLnICMhpRyjhAiHdV4PItarc8JbAKGSSl/r70uBglyfimpc2V32cmz/3975x4eZXUt/N+amUyuBEO4BRDw9uEFpVS8cQqCPfhp1VrPOa2tl5bvaNVatV4+tWrbY1uvbb21Huv1fLZHKmprtdXjc0QtqFUQsSqIRQ6gQgSRazLJ3Gd9f+x3wvCShEmYJJPJ+j3PPJN37/3uvdckmfXuvdZeq5mtsa0oSnmw3A4MdkJZ03JCgY5DcgcyMco3vUrzbvppHfsNWsd+AzRDqHkF4c2LGCaVPDridDZvb2LSm5OJZ5RXovBCywZeWTeHP62aQ0UwxKfjU4hA7bbnqWhZSqz60MIK2QmlaEfJ+3Cfqr4AvCAiAWAosEm1n6f3Mowukt2iqqusoyXRwpboFguU2An+ECYA1ZUuf2B3DhgiAVK1B5GqPQiASmBMuJzWw24ivGkhs7Ys4qQqlyfu3tYG3mzeQMbTWYFMnPjbp3BT2deYOuqLHDHiH6guq9kzAXfDx5+UXlLTLp8I9xTFxh6Yi2H0G4KBILUVtdRW1LYZzpviTQBUlFVYgqgcssrh5G9dtNN1wQiWEx17OtGxpwMQiG0gvHkRX6mewP9542zK45+4coHDypKcFZnD796aw02xEOOHHMExDTOYOmpGmy2kEGRXGNk4W6W04sj7L1tE9gW+BowF/DEYVFXPKeTEDKO/kDWcD6seRiQRYXN0M62J1rZwJbb6cFSW944TQaZiJLHRp1K+cQFlqZ3ziAQFTh0EXxkER32c5o2Nr1PW9DqBj27mocxeVA2ZyZENMzm64ViGVAzt9hz8K4xSWnHkpTRE5FTgCdwp8Y1A3NekS3kEReRC4EqgAXgPuFRVX+mg7fXAv3XQ1QhVtVWPURQEA0EGVwymtryWeDq+Y/UhTrEM9NVHwVcYu2HTi1dSX9OyS7kGq4iM/1f+3xfPZcFHCxm66m6+qsuAbbRm/sjij//Iax/AI6mDmNIwk6NHTeNzw46kPNj1eGUPzngVgIsXztpTcYqGfP+KbwDmA2eqakfnNfJCRE7HnSC/EHjVe39ORA720sv6+QXgd3mYi1vdmMIwig4R2Wn10ZJoYXN0M9Fk1GwfvUSoeQXjqz5tty6QbqX6o99Qd8BFnHrQKXDQKaxvbWTz2mdoavxvhrGcs8LNXLvmfZZvf58DP7uHlaEAjaH9kCHHMX70aexfdwgB2X361JBk2G9wM8MrWtgY672YWrf++g6OnzypR/rOV2nsC1yxpwrD43LgYVV9wLu+WEROAL6D88zaCVWNAJHstYjsDUwDzi7AXAyjR/HbPpriTWyPbSejGQtZ0oN01dVXq0YzZML5DJlwPgCxRIRH17/Fgg8XMHbjY8wKbWV4aCXEVrLtg/t4srWc3wVP4MiR05g64khG7bXfTt2PHTUGgOGVMWrKUlw9ZQV3rf5yzwjby+SrNP4O7PGRSxEJA4fjVg+5PA9MzbObc4BtwB/2dD6G0ZtUhCqoCFVQX1lPa7KVrbGtNMebCUiAyrLKvJ5cjfzYU1ffinAN08dNZ/q46cAPWR/ZyPOrnmJ743MMalnKmkSUF7c8zUuNT7NxX/g0XcZHwfHEB02lvuF0rr7gUkTjjFh8GyJwdP3H1H1hFj2dfsqf4vbbP3RK8aEbbyzYGKK6e3OEiHwRuBM4VVVXd3swkVFAI3Csqr6cU/4j3NbXhN3cH8CdPv+DqrbrhiAi5wHnAYwYMeLwuXPndmuukUiEmpqedccrNkzm3kdRMpohlUmBuq2tnt66irXEqKgu/Xwi69a77anjMz+lLBTi2YzbyBjT0P3IueDSqq6NruXtbW+zbNtiZslbTAknOboCar1oM7dtqwXZm0tql1MmSkZhM/uyuP7X0IO/3w2fOZlj8TjDBg+mNZEAYNyoriW9mjlz5hJVndJeXb4rjetxK433RWQlsMVXr6ralczlfk0l7ZS1x4nA3sCDHXasej9wP8CUKVN0xowZXZjWDubPn0937+2vmMx9h6oSTUXZFttGJB4BoccODr63+D0OOeKQgvdbbPz2xucBOHTkZhrq63npvXcAuPXLe+72OpGJnMiJAKQyKZZ+upRbP36FxnXzqNn+Lq9Fm3iy4b22cPABgXpdzSFNlxGtO43WYaehVQ0F1x+/+W8n84rVKznvlFNYsto94z90xhkFGyNfpZGmMDkzNnl9jfSVD8eFJtkd5wGvqWrhEwIYRh8iIlSVVVFVVkW6Or3TwUELmljchAIhJjdMZnLDZDjqEmKpGImb/omho98l91k4IDA6uZzQZ8v55qonyNQez6m1gziGlcRrDic2aBKJmoPQQHHbufINIzKjEIOpakJElgCzcC68WWaxGxuFt7V1EnBuIeZiGMVKrvE8kU4QSUTYGt1KKpky76sucOt1bkVx9Y1w3LBJ3Hrdcb0ybkWogisO2ERNcNfNkwQBfrgpw9ytH5D89APCtTBzKIxp+j0AKUJEyg/k/XGPouVDqAhsh7JqkPye7/2Jpy746fsEAr2U7rUHuR34TxF5A/grcAEwCs+tVkRuBo5sJ33svwItwOO9OFfD6FPCwTBDKodQV1FHLBVje2w7zYlmMpohHAxb1N0ipDN33yrJcMPIGiZ94TZeWf8Or697nZFr3mFMMMOUCjiiPMUh5cv4/oZvMHnYMVwZXM4hiSVEKibSUjmJlupJxGonkazqPBtFQNPUy8fQshYGjS2sfPk0EpHpu2uTa9jeTbvHRKQe+AHucN8y4Euq+pHXpAHYyX9N3GPVOcAcVW3NZxzDKCWyqWoryyoZrsOJJqNsjW4lkoiAuphYFjixfW697rIeSXHbEbtz95VMipOSbzN9uvNsiiQiLG5czMJ1C3l83Wu8u+FdUpllvLdpGZuq4PgqmFbzHhOjf2PUljTNZeN4+4DXUGDk1kchXE1s0CRSFWO59d47AbjjwChhoix+5ATuW3daQb2n8l1pzGf3huq8N1xV9R7gng7qZrdTpsA++fZvGKVMbsKoVCZFa6J1J/tHeah8wJ8+z+XqG+/guEMncQi9Y/zvqrtvTbiGmfvMZOY+MwFoTbayZP0SFq5dyKLGRVy7/m/ENkUJAgeGoT74EavXHsXnRx7JbwMvMjjjQqUkg3tx2dgK/vLJGEZUxRCBw2o+ILN5SUHly/cva2Y7ZfXAycCxwEUFm5FhGHkTCoR2sn+0JFrYGttKNBk1A3of8dmMHZkirr7RnZvI2lfyoaqsimljpzFt7DQA4qk47376LosaF7GocRFvfvImTc3rWNe8jmHAxHKYVl3J8XVVjKvawtRRcdR7xg8H0lwxcRGoFszVN19D+IIOqp4UkTuAU2g/q59hGL1EOBgmXBmmrrKOeCpOS7KFbdFttCZbCQaCVIQqBtQBwuwX9tK/r+SYAw7s1hd4MVAeKueI0UdwxOgjuIiLSGfSrNi8gjca32BR4yLeaHyDX27ZwC+3uKODa8bHCHm/5oDAvrXN8Ml/weiTCjKfQqxhn8XFgrqwAH0ZhlEA2vJ+VNQRT8eJxCNsj28nlUmR0QwZzQwoBVJKBANBDh52MAcPO5jZn5uNqtLY3MjixsW88sxNDA18slP7qlAaFl8IDaugANuWhVAaEwBLxmQYRUg2eGJFqIL6qnpiqRhrZS3RZJSMZggFQpSHyktSgexwub2DyoryfrfCyBcRYUztGMbUjuELi66npr3dyMRmWPUAHPCdPR4vX++pb7ZTHAYm4ryantzjmRiG0aNkPbBCgRD7D9mfWCpGc6K5LYBiKSuQ3iZ3ayz3uicVV6h5BQfWbWu/MtUCb18D48+Esto9GyfPdg93UB4HHgO+t0ezMAyjV8l14R1WNaxNgTTFm0hn0iWlQHrb5bavqFl5N+GgduznmknAshtg8s/2aJx8lUZ77q4xVc0n9IdhGEVMewqkJdHC9vh20pp2brzBcvPC6gK5W2O51z1JWdNyRDsJB5+OwoYXO67Pk3y9pz7afSvDMPo7uQqkvqqeeDruFEhsO9FkFBGxcyBFit/V97hDJzH7jDMLHnKmS795EcmeyxgCbAYWqOqzBZ2RYRhFQa4RfUjlEBLpRFsekOw5kHAwbCfRO6G3je9+N+Nzf1D4fBr5GsIHAc/gMualcAqjHrhCRF4BTvYy7BmGUYJkVxjloXLqKutIpBNEk1G2x7fTHG9GRCgLlBEOhi2YYomT70rjJuDzuBSrc1U1LSJB4OvAr736S3pmioZhFBvhYJhwMMzgisGkMqm2YIotiRYULSlDen/C72b84A039Nn21D8DP1DVOdkCVU0Dc0RkKHAVpjQMY0ASCoSoCddQE64hoxnniRV3nliKIpgdpJTI97dYDyzvoG45BcgfbhhG/ycggbZkUsOrhxNPx2lNtrItts0Z0hHCIbdKMXqOW6+7jKVvLO2RvvNVGmtwwQnntVP3Ja/eMAyjDb8hPZlOEk1GaYo3EYlHbBurn5Kv0rgPuE1EaoA5wHpcytav4zLpXd4z0zMMo1QoC5ZRFiyjtqKWdCbtYmIlIjTFm8hkMoiIeWP1A/I9p3GHiAwDLgNme8WCOxF+i6re1TPTMwyjFAkGglQF3DbWsKphJNIJZ0z3vLEAW4UUKfm63A4GfgL8HDgad05jC7BQVbf23PQMwyh1ct15B1cMJp1Ju1PpyZadViFlwTKzhRQBu1UaIhLCncs4TVX/jOXNMAyjBwkGgm2ZCXNXIX5bSDgYttAmfcBulYaqpkTkU+gk6a1hGEYP0N4qJJ6O05popSneRGuyFRFxW1nBcjtY2Avkawh/BGfw/q8enIthGEan5NpChlYPJZlOEk/HaY43E0lE2pJLlQXLKAuUmRLpAfJVGh8CZ4jIYuBpnPfUTgF4VfU/Cjs1wzCMzsl6ZNWEa1DVnbayWpItoBAIBFDtKF640VXyVRr/7r2PBg5vp14BUxqGYfQZ/q2sjGaIp+JEU1FWs3onryyzh3SfPcmnYRiGUbQEJNAW5j0cDLP/kP3b7CHNiWZnD0EIBoKmRLqA5dMwDGNA4LeHpDIp4ikX5qQ57pQI2Epkd3Q5gpjILidtVG3D0DCMfkYoECIUDjnX3uphbUqkJdlCJB6xlUgHdKg0RGQk8BDwmKr+1isLAglf04iI/C9L/WoYRn8mV4kMrx6+80oksfNKpCxYNmCj9nYm9YW4HBr/4isX4AHgE+/n04ELgB/3xAQNwzD6gvZWIol0gtZEK5FEhOakM6wHA0HKAmUDJmZWZ0rjBOABVY36yhW4T1XfAhCRz4BvYkrDMIwSJhQIEQqE2mwi6Uy6zcW3OeHOiQAI0mYXKcVzIp0pjQnAj9op938KH3htDcMwBgzBQJDKgPPOqqusI6MZEukE8ZSL3tuabCWjLm5WUErHLtKZ0qgAdsr77aV5bQA25RTHvLaGYRgDloAE2vKHDK4YjKqSzCTdllbSbWlFU9G2tqFAqF+eWu9MaWwE9gVezS1sx+C9D/BZgedlGIbRr8nmBwkHw9SEa9qM67mrkeypdYBQ0CmRYl+NdBao/lXg7Dz6+Cbw164MKiIXisgaEYmJyBIRmbab9iIil4rI30UkLiLrReSWroxpGIbR12RtInWVdew9eG8OGHIA4/YaR8OgBqrLqkmmk0QSEadQEi0k0omiC4HS2Urjl8CrIvIL4Puqmsqt9EKm/wyYAXT6pe+773TgLpx31qve+3MicrCqftzBbbfh0s1eCSwFBgMN+Y5pGIZRjOSGPhlUPgiAVCZFMp10OUUSLbQmW1FvORKUYJ+7+3Y4sqq+LiJX4RTDWSIyD8h+qY8FZgFDgWtU9fUujHk58LCqPuBdXywiJwDfAa7xNxaRCcDFwGGq+n5O1d+6MKZhGEa/IOullTWwZ20j2RzrLckWIokIqtonhw87VVeqepuIvAVcDfwzOwzeMeBl4Geq+lK+g4lIGBfw8Be+queBqR3cdiqwGjhBRJ7FbaktAK5U1Y35jm0YhtEfybWNVIerGcpQMpohmd5hZG9NthJNRlGUgAR6VIFIvvtl3mnwepzL7SZV7XJSJhEZBTQCx6rqyznlPwLOVNVdXHdF5F5cXvJ3cNtTyg6lc4yqZnztzwPOAxgxYsThc+fO7eo0AYhEItTU1HTr3v6KyTwwMJlLF0VRVTKaIdoSZdCgQd3qZ+bMmUtUdUp7dXlvjHlKolBP9n5NJe2UZQkA5cDZqvoBgIicDawAjgAW+eZ5P3A/wJQpU3TGjBndmuD8+fPp7r39FZN5YGAyDwx6SubOvKd6gk24tLEjfeXDgY5iV60HUlmF4bESSOFsK4ZhGEYv0atKQ1UTwBKcET2XWcBrHdz2VyAkIvvllO2LWyVZyHbDMIxepLdXGgC3A7NF5FwROUhE7gJGAfcCiMjNIvJiTvsXgLeA/xCRySIyGZclcBHwZi/P3TAMY0DT686+qvqYiNQDP8CdtVgGfCkn0VMDsF9O+4yInIw7N/IyEAXmAZf7jeCGYRhGz9InJ0RU9R7gng7qZrdTth74ag9PyzAMw9gNfbE9ZRiGYfRTTGkYhmEYeWNKwzAMw8ibvE+E90e8rILddcsdys55QwYCJvPAwGQeGOyJzONUdVh7FSWtNPYEEXmzo2P0pYrJPDAwmQcGPSWzbU8ZhmEYeWNKwzAMw8gbUxodc39fT6APMJkHBibzwKBHZDabhmEYhpE3ttIwDMMw8saUhmEYhpE3pjR8iMiFIrJGRGIiskREpvX1nLqLiEwXkT+JSKOIqIjM9tWLiFwvIp+ISFRE5ovIIb425SLyKxHZJCItXn9jelWQLiAi14jIYhFpEpHPROTPIjLR16ak5BaR74rIu57MTSLyuoiclFNfUvL6EZFrvb/vu3PKSk5mTx71vTbk1PeKzKY0chCR04G7gJuAybgcH8+JSH9N9lSDiyL8PVx0YD9XAVcAF+OyIG4E5olIbo7IO3H54b8BTANqgWfEpf8tRmbggmFOBY7DJet6QUSG5LQpNbnXAVcDnwemAC8BT4nIYV59qcnbhogcDXwbeNdXVaoyr8BFAs++Ds2p6x2ZVdVe3guXo+MBX9lK4Oa+nlsBZIsAs3OuBZcV8bqcskqgGTjfux4MJHD527Nt9gYywP/ua5nylLsGly3ylAEm9xbg/FKW15v3KtzDwXzg7lL+HQPXA8s6qOs1mW2l4SEiYeBw4Hlf1fO4p9ZSYx9c2t02eVU1istZkpX3cKDM12Yt8D795zMZhFtRb/WuS1puEQmKyNdxyvI1Slve+4Hfq+pLvvJSlnlfb7t5jYjMFZF9vfJek9mUxg6GAkF2zVX+KbvmNC8FsjJ1Ju9I3FO6P35Nf/pM7gLeBl73rktSbhE5VEQiQByXBfM0VV1K6cr7bWB/4IftVJekzLidkNnAibgtuZHAa+KS2vWazH2ShKnI8R9ckXbKSonuyNsvPhMRuR34AvAFVU37qktN7hXA54C9cHvWvxGRGTn1JSOviEzA2R2nqWqik6YlIzOAqj6Xey0iC4HVwLeAhdlmvtsKLrOtNHawCaeF/Rp3OLtq71Ig63XRmbwbcKuvoZ20KUpE5A6cse84VV2dU1WScqtqQlX/R1XfVNVrcKuryyhNeY/BzXWZiKREJAUcC1zo/bzZa1dKMu+CqkaA94AD6MXfsykND++JZQkwy1c1C7c3XGqswf0RtckrIhU4j4qsvEuApK/NGOAgivgzEZG7gDNwCuPvvuqSldtHACinNOV9Cuc19Lmc15vAXO/nDyg9mXfBk+lAnAG8937Pfe0RUEwv4HScd8G53gd5F87raFxfz62b8tSw45+qFfiR9/NYr/5qoAn4J2Ai7p/uE2BQTh+/BhqBf8S5If8F9xQb7Gv5OpD53z2ZjsM9dWVfNTltSkpu4Bbvy2E87sv0ZpxHzImlKG8Hn8F8PO+pUpUZ+AVuRbUPcBTwjCfjuN6Uuc8/iGJ7ARcCH+IMikuA6X09pz2QZQZur9L/etirF5wb33ogBiwAJvr6qAB+hVvytwJ/Bvbua9k6kbk9eRW4PqdNSckNPIxLNhbH+ea/QI4LZanJ28Fn4FcaJSdzjhJIeF/8fwAO7m2ZLWChYRiGkTdm0zAMwzDyxpSGYRiGkTemNAzDMIy8MaVhGIZh5I0pDcMwDCNvTGkYhmEYeWNKwyhaROQYEXncSyqTEJHNIjJPRL6Vjf8vIrO9ZDTjc+77UEQe9vV1iogsFZdcS0VkLxEJiMidIrJeRDIi8lQPyjJe2kmE1U67rDz799RcuouIfEVELm+nfIY353/si3kZvYsFLDSKEhG5FLgdl1DoatzhtTrgeNyp1m3A0x3cfhruZGy2rxAwBxcq4bu4w1HNwL/gElRdgYuCu3mXnoxcvoI7SXx7H8/D6ENMaRhFh4hMx30x3a2ql/iqn/ai11Z3dL+q/s1XNBqXV+NxVX05Z5yDvB/vVNVMAeZdrqrxPe3HMIoZ254yipHv4zLPXdVepaquUlV/es82crenROR6XFgYgIe8bZT5IvIhLuQCQDp360hEGkTkt14e5bi4/Ntn+cbIbiNNF5EnRGQbLt8BIlIlIvd422kREfkTUNDc0yLybRF5x9tu2yQiD/lS2uLN7wYRucRL2tMsIgtk17zRQa/dehFpFZGXRORA7/7rvTYP40Jwj5Yd+ak/9E2rSkTu9ubzmYg8IiJ7FVJuo++xlYZRVHi2ihnAU6oaK0CXD+LypD8B3AA8i9u6KgcuwSW1OcZru0pEqnExe+qAa4G1wFnAf4pIlare7+t/DvAobqsr+/90Hy745Y+Bxbioor8rgCwAiMgtuC21XwJX4lZSNwATRWSq7pw75Cxcro3vAWHg57jV2oGqmvLa/NiT9ee4uFWfB/7kG/anwDBc7ukve2X+VdVduCB6ZwATgJ/h0g18a0/kNYoLUxpGsTEUl9v4o0J0pqrrRORt73KVqmaT1SAijV6b3LKLcPkJZqrqfK/4OREZAdwgIg/5vpR/r6pX5dw/AfeleZ2q3uIVPy8iNcAFeyqPZ/C/Evixqv4kp/wD4FXgFFzo8CxJ4GRVTXrtwCnQI3FZ3+qAS4F7VfVq7555IpIEbst2oqqrROQzIJH7efl4WVUv9n5+3vsszhWR2WpB7koG254yjJ2ZDjTmKIwsj+CetA/2lf/Rd30U7v/qcV/53ALNb5bX/xwRCWVfuK2xJtz8c5mXVRgeS733sd77oTj70BO++37fjbk967teilvRjehGX0aRYisNo9jYDESBcX00/hBcaGk/G3Lqc/G3bfDe28vVXAiGe+//00F9ve96i+86u6VU4b1n57vR1647893dWEYJYErDKCpUNSUi84FZfeSNtAW3H+8nm0bT75br33bJKpERuPzN5FwXguz4xwNbO6nPl+x8h+NSh2ax1YHRLrY9ZRQjt+CemH/eXqWI7CMih/XQ2AuAMSLyD77yM3BP4+/v5v5FuKx5X/OVf70w02Oe1/9YdfnA/a81XexvKdACfNVX7r8Gt3Ko7PqUjVLCVhpG0aGqL3snj2/3zlI8DHyM82j6Ii4d7xlAh263e8DDOE+jJ0XkOmAdcCbOlnC+zwje3txXiMjvgJ+ISIAd3lNf6uI8ThCRDb6y7ao6T0RuBe72DM0LcFna9vbGeVBV/5LvIKq6VUTuBK4VkWZ2eE+d4zXJPb+yHBgiIt/B5eSOqepSjAGFKQ2jKFHVO0XkDeAyXG7kobhT3G8C5+PSVPbEuC0icizOXfQW3KHAFcDZqvpInt2cj8st/39xbq4v4ZTcq12Yyq/aKXsPl77zWhF5H3e6/bu4LbK1wIvAyi6MkeXfcKlCz8G5IS/CuSL/Fdie0+5B4GjgJmAvnIfb+G6MZ/RjLN2rYRi7ICJfxXmATVfVV/p6PkbxYErDMAY4InIUcBJuhREDDsedyl8BTLUzFkYutj1lGEYEd77ju0AtzuD/OHCNKQzDj600DMMwjLwxl1vDMAwjb0xpGIZhGHljSsMwDMPIG1MahmEYRt6Y0jAMwzDyxpSGYRiGkTf/H9vQUxvYyJ4qAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgUAAAFGCAYAAAD6uOxSAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAADbSklEQVR4nOydd3gUVduH77M1m0I6KZTQeycWsIHSRFFEERQVUGyIorwqggX8xI4VUQSVJgiKqKAgRSmCIBJaqEKoIQUCBEjb3eye74+TXbLpIV3nvpwLd+bMzJlJsvPMU36PkFKioaGhoaGhoaGr6gloaGhoaGhoVA80o0BDQ0NDQ0MD0IwCDQ0NDQ0NjRw0o0BDQ0NDQ0MD0IwCDQ0NDQ0NjRw0o0BDQ0NDQ0MDAENVT6CqCQkJkQ0aNCi346WnXcRHL0FXUbfWCQgQRhCiBMOd6l+DAfT6CppT+ZKeno6Pj09VT6NGo93D8kG7j2VHu4dlpyLuYUxMTIqUMjTv+v+8UdCgQQO2bt1absdb+/tquoU4wC/fvS4/HJmAAHM46L1KMN4BGRlgNEJYGHh7l8ygqCLWrl1Lt27dqnoaNRrtHpYP2n0sO9o9LDsVcQ+FEMcKWq+FD2oiegsIPWSdhOy0EozXg5+f+jc+Ho4fh8zMip+nhoaGhkaNQjMKaio6o/ISWJPAdgZKokxpNCrjwOmEY8fg5EmwWit+rhoaGhoaNQLNKKjJCD3ofSA7VRkH0lGy/cxmqFULsrLgyBFITga7vUKnqqGhoaFR/dGMgpqOEMowcGapcIKzFG/+FovyHFy8CIcPQ0qKyj/Q0NDQ0PhPohkF/xb0FvVvVjxkp5d8PyFU4qGvL5w7p4yDc+cuVS1oaGhoaPxn0IyCfxM6E+i8wJoI9nMlyzNwIQT4+CjvwenTKqxw4ULpjqGhoaGhUaPRjIJ/G648A/vZ0uUZuNDplNfAaITERGUcpKdrxoGGhobGf4D/vE7BvxJXnoEjU+UZmMNAZy7dMQwGlW9gt8OJE8qDULu2+lejzPTr14/ExMQKO35WVhZeXiXQsNAoEu0+lp3qcA8jIiJYunRplc6hpqAZBf9m9BZw2iDzhBI6MviW/hhGo1psNqVv4O0NoaGgfVGWicTExHIVzcrLxYsX8fPzq7Dj/1fQ7mPZqQ73MDo6ukrPX5PQwgf/dnQmZRyURs+gIEymS56Do0dVaMFmK9epamhoaGhULZVuFAghrhdCLBFCnBRCSCHEsBLs01YIsU4IkZmz3ytCeOr0CiHuFELsFUJYc/69o8IuoqbhzjNIBWsCOLMv/1heXkrjICNDVSpoGgcaGhoa/xqqwlPgC+wGRgPFau0KIWoBq4Bk4Iqc/Z4DxuQa0wVYCMwDOuT8+50Q4qpynnvNRQgw+KhwQlY8OLLKdrzcGgdHjqiKhewyGBsaGhoaGlVOpecUSCmXAcsAhBCzSrDLEMAbGCqlzAR2CyFaAGOEEO9LKSXwNLBGSvl6zj6vCyG656y/p3yvoIajt4DTDlknwBQGxlqXfyyXxoGUcP680jcIDoaAgBrTkVFDQ0ND4xI1IaegC/BHjkHgYgUQCTTINWZlnv1WAF0rfHY1EZ1RhRNsp8B6GmQZhYpcxoG3N5w9e0kASVNH/Nfz22+/0bVrV/z8/AgPD2fs2LFkF+MxSk5OZtiwYURGRuLt7U2fPn04ePCgx5ikpCTuv/9+wsPD8fb2pn379sybN8+9/ejRozz00EM0atQIi8VCo0aNGDduHJnl1Ojr008/pWHDhoSGhtK5c2f++OMPj+3Tp0+ne/fuBAQEIITg6NGj5XJeF3a7nbFjx9KuXTt8fHyIiIjg3nvv5fjx40Xul5iYyL333kuLFi3Q6/UMGzaswHHff/89rVq1wmw206pVK3744Ycyn7ukrFu3js6dO+Pl5UWjRo2YNm1aoWPffPNNhBCMGjWqXM6tUTw1wSgIR4UOcpOca1tRY8LRKBihU9UIjos58sjlkDSo0+UXQDp/XlNH/Jeyc+dO+vbtS8+ePdm+fTsLFy5kyZIlvPDCC4XuI6Wkf//+HDx4kB9//JHt27cTFRVFjx49SE+/pMT5wAMPsG/fPn766Sd2797NAw88wP3338/69esB2L9/Pw6Hg88++4w9e/YwZcoU5syZw+jRo8t8XQsXLmT06NGMHz+eDRs20LVrV26++WaPh2JGRga9evVi4sSJJT5uaYyHjIwMtm3bxosvvsi2bdv46aefOHHiBH369CnS6LJarYSEhPDCCy9w1VUFR083bdrEoEGDGDJkCDt27GDIkCEMHDiQv/76q0znLglHjhyhb9++dO3ale3btzNu3DiefPJJvv/++3xjN2/ezPTp02nXrl2ZzqlROoSsQlEaIUQaMEpKOauIMSuBeCnlg7nW1QeOAV2llJuEEDZghJRyTq4xDwAzpJT5CvSFEI8AjwCEhYV1XrBgQXldEmkXL+JrkKCvQdWeUgIShFEZC+WJyyAwGpXRUALS0tLw9b2M8skaxKhRo9i0adNl7Zuens64ceNYvHgxBoOBBx98kDFjxtCkSRO2bNlC/fr1cTgc6Cs4hPPqq6+yatUqNmzY4F63fPlyhg4dSlxcXIFlaAcPHqRz585s3LiRtm3bAuB0OmnSpAkTJkxg6NChgKorf/fdd7nvvvvc+7Zu3ZpHH32Up556qsD5zJgxg0mTJnHs2KU28fv37+ell17izz//xMvLixtuuIG33nqLsLCwQq+re/futGnThilTprjvY4cOHejfv38+I2Dbtm1069aN2NhYoqKiirxftWrVKtG4wti/fz9XXnklmzZtonXr1sWOHzhwIMHBwfnexIcNG8a5c+f46aef3Otuu+02goODmTlzZonPff78eV5++WV+/vlnsrKyaN++Pa+//jqdOnXy2Df37+Irr7zCkiVL2LFjh3v7qFGj2LdvH7/99pt73fnz57nuuuv45JNPeOutt2jZsiXvvfdesddcGF26dOGTTz657P2rmor4TuzevXuMlDJfrWZNeHIlAXn/gsNybStqTBIFIKWcDkwHiI6Olt26dSuXiQKs/X013UIc4BdabsesFKRDiR0ZA8EYpEIC5YXDoaoVjEYICVEJikUcf+3atZTnz6Q64uXlddm12yNGjCAmJobVq1eTmprKHXfcwenTp2nRooX7C7ug2vCbb745nxs8L2lpaSWeh5QSb29vj/MEBQWRlZXFP//8U+DP0Gg0AhAcHOyxn5eXF1u3bnW7ia+99lqWLFnC3XffTWBgIEuXLiUlJYVbbrml0Ptms9kICgpyb09MTOTmm2/moYce4sMPP8Rut/Piiy8yZMgQNm3ahK4AI9Vms7Fjxw7Gjh2Ln5+f+z726dOHrVu35ju3j48PAL6+viX6eZZ0XEE4csJxdevWLdExDAYDRqMx39i///6bJ5980mN93759+eSTTwo9bt5zSym5+eab8ff355dffiEoKIjZs2fTr18/Dhw4QEREhHvf3L+LMTEx9OnTx+M8t956K/Pnz8fLy8v9+zFixAjuvvtubrnlFt59911MJlOZtA68vLxq9HdKZX4n1gSjYBPwthDCS0rpSpnvCSQAR3ON6Qm8m2u/nsCflTVJUG88eT8X9MVTLcldtujMAlNtlXtQHuj1yhDIzlb6BikpSgDJ17d8jY//ACkpKXz33XfMnj2bK664AoC7776bmTNn8tprrxW57xdffFFuMXeA3r1788EHH/D1118zePBgkpOT+b//+z+AQtUaW7RoQf369Rk/fjwzZszA19eXDz74gPj4eI99vv32WwYPHkxISAgGgwGz2cw333xDhw4dCjzusWPHmDx5MuPHj3ev++yzz2jfvj1vv/22e92cOXMICgpi69atXHnllfmOk5KSgsPhyOdJCAsLY/Xq1SW+N6A8G7m9Fq51rmrqqKgo9uzZU6Jj2Ww2/ve//9GvXz/q1q1bqnnkJSkpqcDrS0oq8B2qwHOvWbOGHTt2cPr0aSw5KqevvfYaS5cuZe7cuTz//POFnrtHjx75zp2dnU1KSgoRERHMmDGDQ4cO8fXXX5fpOjUuj0o3CoQQvkCTnI86oL4QogNwVkp5XAjxJnCllPKmnDHzgQnALCHEJKAZ8ALwqrwU+/gIWC+EeAH4EbgD6A5cWwmXBMDixYvJysoiMqw2oAyCFStWYDKbuenGGytrGmXDVbboyFRli+bwS90XywOXdHJ2Npw8qQSRwsJUgqJmHJSIQ4cOIaWkS5cu7nVXXXUVM2fOZMCAAUXuW6dOnXKdS69evZg8eTJPPPEEw4YNw2w28/LLL/PHH38UagwbjUYWL17MQw89RHBwMHq9nh49enDzzTeTO5T50ksvkZKSwurVqwkJCeHHH3/kgQceYP369bRv397jmMnJyfTp04eePXvyzDPPuNfHxMSwfv36At2ucXFxWK1Wbr75Zve6zz//nO7du5f1trhZtmwZ9lwaHk2bNmXZsmXun4Prrbg4srOzue+++0hNTWXJkiXlNr+ynDsmJoaMjAxCQz09ollZWcTFxQF43Pf77ruvyIRCFwcOHHDncpT0/miUL1XhKYgG1uT6/GrOMhsYBkQAjV0bpZTnhRA9ganAVuAc8B7wfq4xfwohBgOTgP8D4oBBUsq/KvRKcnA6nRw9epSLFy9iMRtxBvuyYsUKjh0/jo+3T83yGIAyBGS2MgxMIWAIKN+HtsGgBJDsdoiPB7NZeQ4046BYzGaVImMymdzrwsLCCAwMpFWrVkXuW97hA4AxY8bwzDPPkJiYSGBgIEePHmXcuHE0atSo0H06d+7Mjh07OH/+PDabjdDQUK666iq3FG1cXBxTpkxhx44dbgOgffv2/PHHH0yZMoUvvvjCfaykpCRuvPFG2rRpw9y5c8mtaeZ0OrnllluYPHlyvjmEhYVhMBg8YtthYWGYzWb0ej3JyZ55y8nJyYSHly5vuaDcgaioKBo0aFDiY2RnZ3PPPfcQGxvL2rVrCQ4OLtUcCiI8PLxE11fUuZ1OJ2FhYQX+PtWqpcqcXfc2LS2NyMjIIs9tMBgICQlhxYoVpKSkeORMOBwO1q9fz7Rp00hPT3f/DWhUDFWhU7AWKPSbX0o5rIB1scD1xRx3EbCojNO7bDIyMgCwWm0sWLCAC6jeAFlZZRQJqiqEAfS+qtuiIwtMoaAr518XV1+FvMaBRqE0bNgQnU7HwYMHqV+/PgBLlizh3LlznD9/Hn9//0L3Le/wgQshhPtL/5tvvqFevXr5ks0KwjXXgwcPsnXrVnf4w/W3lDdRUq/Xe4ToEhMT6d69O61bt+abb77BYPD8/ezUqRPffvstUVFRhb51NmnSJN+6zp07s2rVKgYOHOhet2rVKu68885ir6k8sdvtDB48mN27d7N27dpSGyWF0aVLF1atWsVzzz3nXrdq1Sq6dr1UwV3cuTt16kRycjI6na5QA9B1b3PnFHTp0sWj/NF17ujoaIxGI/3798/Xp2D48OE0bdqU8ePHexjDGhVDTcgpqPY4nU73l5XBaad7naX8fqQbZ0yhOKUTp1OWNPG+euHRbTFedVssz3CCi9xNl06cUP9mZKjSRs1z4EFAQAADBgzgjTfeoEuXLpw4cYJFixYRGRnJ0qVLPbL181Le4QOAd999lz59+qDT6Vi8eDFvvfUW3377rfuBfvLkSW666SbefPNN7rhDKY9/9913hISEEBUVRWxsLKNHj6Z///706tULUHkHTZo0YeTIkUyePJng4GB+/PFHVq1a5c6YT0hIoFu3bkRGRvLhhx+SkpLinlNoaCh6vZ4nnniCGTNmMGjQIMaOHUtoaCiHDx/m22+/5b333is0cW3MmDHcf//9XHnllXTo0IG5c+eSkJDAY4895h6TlJREUlIS//zzDwB79+4lNTWV+vXrExQUBMDp06fdCXpwKc/CFbvX6/X53O8usrOzGThwIH///TdLly5FCOHez9/f3x3Hf+CBBwCVK+HC9YZ+4cIFdDodO3bswGQyuT1Jo0eP5vrrr+ett96if//+/PDDD6xZs8ZdRVKSc/fo0YNrrrmG22+/nXfeeYcWLVqQlJTEr7/+So8ePbjuuusKvK7HHnuMTz75hKeffppHH32UjRs3MmvWLL755htA/X4HBAR47OPj40NQUBBt2rQp8Jga5YtmFJQDQgiEELTZsYNGtpMEtTjHnY4fWLO7G3FtW9T855pbBfFkTjjBv2Ie1iaTWkB1ZPTyutSuucbfxPJj6tSpPProo9SrVw+AiRMn0rJlS0aMGMGhQ4dKVTtfVpYvX87rr7+O1Wqlffv2/PTTTx5xervdzoEDBzh//rx7XWJiImPGjCE5OZmIiAgeeOABXn75Zfd2o9HIsmXLeOGFF+jXrx9paWk0adKEmTNn0q9fPwBWrlzJwYMHPTwmLo4cOUKDBg2IjIxk48aNjBs3jj59+pCVlUX9+vXp1atXkS7oQYMGcebMGSZNmkRiYiJt2rRh2bJlHuGAadOm8eqrr7o/33LLLQDMnDnTLRh0xRVX5Es0zE1UVFShugXx8fFuA6hz584e23KfoyBBoY4dO3p8Xrp0qce5unbtyoIFC3jppZd45ZVXaNy4MQsXLnTrGpTk3EIIli1bxksvvcTDDz/MqVOnCAsL45prrnEbKgXRsGFDli1bxjPPPMNnn31GZGQkH3/8caV7YTQKp0p1CqoD0dHRsqwtbO12Ox+NG8fTP76P4VkJfwDtIHu6jnk338u9Tz2J0Vi0/ZU376Ba5iFICc4M0HlXTDghh7V79tCtdWvlMbBaVVjhX2YcREdHa62TawDafSw71eEeVvTfW0VTESWJQogCdQqq2VOnZiKEIDA1FdENqAXcAqwHXUMnAWfPeSQ/FcRvv//OihUr3CEIV+XCb7//XrETLy2ucIIzK6epUvnHpz1wtWsGFVY4flyFFf7jhqyGhoZGRaEZBeWA0+nkXIA/uraSI/aeauUQ0PlDj5W/Izf/XeS+NquVhIQEt2GwYsUKEhISsFmt+bQPqgV6i9I1yIoH+7mKf0i7jAMplXFw7JhmHGhoaGhUAJpRUA7o9XrCwk6RHaDnmF9vtVICd4LPLZkYhz4BY16G02fy7avT6ejduzcREZEkJCQwc+ZMEhISiIiIpHfv3tUvhOBCZ7xUnWBNBGcltE3O7Tk4flwZB+npmnGgoaGhUU5U0ydOzcLpdHJ90HqMxlxdAQXKMOgNcqSApcugxwCY+22+7oFr1q4FcIu3uP51ra+2uMMJVtWKuaLDCS5MJqVzAJc8B5pxoKGhoVFmNKOgHNCn7SfSnJB/Q04qgegq4bUAsKbBhLfhjqGwczegDIqUlBSOnziOw+lESonD6eT4ieOkpKRUz/BBXvQW5TnIjAfbmbK3Yi4puY2D+HjNONDQ0NAoI5pRUA6IvW+hE4U/CCVAVCrMiIJGobB7HwwYBi++jjx7jvQcFbm8noL0tDRqTHWIMKhWzPZUyEoon1bMJcUVVhBCGQdHjsDFi5pxoKGhoVFKNKOgHBCpseiLMAoE5Dw0j8G7fjBqIOh18M1idL0H0mLXAZCSfkuWcHMutS+D0Vhs5UK1wtU7AYcKJ2SXTjK3zBiNyjjQ6yEhQTMOKpGLFy/y9NNPExUVhcVioWvXrvz9d+EJtiXdpyRj1q9fz2233UadOnUQQjBr1qxyu64ZM2bQsGFDvLy86Ny5cz5Z34o8d3me480330QI4e5CmXv9FVdcQa1atQgNDaVfv37s3r3bY8zEiRPdWiyupbzUFT/99NMi729JrkGjfNGMgnLAefMO5jOPSYdf45ysj7PVMpanTmLG7sdZnjoJ51V/Q8efwNIQsg5Dtw2w5APoEo04d56uS1Zz57wlmNKyMGXYsKRl4OXlxb333Ft9Ew2LQmcGnRdYk8B6WrVlrkxcxoHBcMk4uHABakIopoYyYsQIVqxYwezZs4mNjaVXr1706NGDkydPlmmfkoxJS0ujTZs2fPTRR26lv/Jg4cKFjB07lvHjx7N9+3a6du3KzTff7CEYdDnnHjZsWKkEpsp6fZs3b2b69Om0a9cu37a1a9cycuRI/vzzT37//XcMBgM9evTg7NmzHuOaN29OYmKie4mNjS31PPKycOFCRo8eXeT9Lck1aJQvNfCJU/3Q6XR4eXnRqFEjAgMC3RUFdevWwWQ2qwe7ORxafwG+bVS2/sVXYNoonB9MIsvfj9CTyYScSCXk2FmGTJtPva27WLVqZc3IKSgIoVfhBMdFpYToqIIeEK6ujAaDatl85AicP18jjYP09HQeeeQR/P39CQkJ4cUXXyQtLQ0fH58iVfMqg8zMTL7//nveeustunXrRpMmTZg4cSJNmjThs88+u+x9Snrcvn378sYbb3DXXXcVakRLKXnnnXdo3LgxFouFtm3bFtua9/3332fIkCE8/PDDtGzZkilTphAREVHqc5eVspzj/PnzDBkyhK+++orAwMB821esWMHw4cNp06YNbdu2Ze7cuZw+fZqNGzd6jDMYDISHh7uXvPLMl3t/hw0bVuT9Lck1aJQvmlFQTgwYMIDBgwe7kwtdhoFH22RjALSaBgHXQHYq7H0ccb0/Pw7uh1MIBGp3g8NJt+XrOLv3QInDB3mNh2pjTOi9AZGjaZBaNa58l3FgMkFyMhw+DOfO5asCqc48+OCD/P7776xevZpvvvmGjz76iFGjRtGiRYsCu/EVxRtvvIGvr2+RS3HdFHOTnZ2Nw+HAy8vLY73FYnHr6V/OPpdz3MJ46aWX+PLLL5k6dSp79+5l3LhxPProo/zyyy8FjrfZbMTExHBjnrbnvXr14s8//yzVuauSRx55hLvuuqvELaEvXryI0+nM9/A9fPgwkZGRNGzYkMGDB3P48GGP7Zd7f139LlwUdH9Lew0aZUPrfVCO5LXiC7Tq9RZo/h4cfg1O/wIHnqaJf3vsRgNm26Xe63qnpO+CpThu6IYhukOR5/3t99/Jyszi5ptVYxqn08ny5b/iZfHyNEqqCp1ReQ7sZ1TZYgVKJBeJXg++vspTcPo0pKRAcLCqYDBU3z+FlJQUvvvuO2bPns0VV1wBwN13383MmTPdnQVLw2OPPcbdd99d5JjSNE/y8/OjS5cuTJo0iTZt2hAeHs4333zDpk2bCuxCWNJ9Lue4BZGens7777/PypUr3Y16GjZsyJYtW5g6daq7b0FuUlJScDgc1K5d22N9WFgYq1evLvG5QRlhb7zxhvuz1WpFCOHR0nn58uWFNhG6XGbMmMGhQ4eKfWPPzejRo+nQoQNdunRxr7vqqquYNWsWLVq04NSpU0yaNImuXbuyZ88egoODi72/11+fv8Gt6/6GhYV5rM97fy/nGjTKRvX9Jvw3ozNC41fBGIJImE10+204egtYBzwJfAgyHQLPpMLdD8HA2+G5URASlO9QTqeThJMJZGRmsHz5r9x8cx+WL/+V+JPxeFu8q08PBaHL1XHxRE7HRe+qmYtOd8k4OHNGGQdBQeDvr/IRqhmHDh1CSpnvi3rmzJkMGDCg1McLCgpyd/IrL+bOncuDDz5I3bp10ev1dOrUiXvuuYeYmJgy7XM5x83L3r17ycrKok+fPh6eN7vdToMGDZg3bx6PPvqoe/3y5ctp3LhxKe9A4eQ1wsaOHUudOnV46qmn3OvKu4PlgQMHGD9+PBs2bCi0bXRexowZw4YNG9iwYYNH2+rcDa4Arr76aho1asTs2bMZM2ZMsfd34cKFPP300+71Jb2/l3MNGmVHMwqqCiEg6imkMQhx7AP0gyXyCqAhyIdg/YFrCbc5ab5hC+K7n+DX3+DpR+G+gfkeXCEhwRw/kUH8yXi+/PIrnDk6ASEhwVVwYcWgt4DMVmWLhgAwBSmDoSrQ6cDHR4U0UlOVgRAYCAEBl7o1VgNcHf1y95IPCwsjMDDQ3Q4X4NixY4waNYr4+HisViu//vprvg6CkP/NtSBK++bauHFj1q1bR3p6OhcuXCAiIoJBgwbRqFGjMu1zOcfNiyuUtnTp0nz3w2g0EhQU5O4QCOoBrdfr0ev1nDp1ymN8cnJyqTPv8xphfn5+BAUFlcrbUVo2bdpESkoKrVu3dq9zOBysX7+eadOmkZ6e7tEp8plnnmHBggWsWbOm2Hvr6+tL69atOXjwIFD8/TUajR7NfHLf3+TkZI/xue9vaa9Bo3zQjIIqRobfy/rN+7g2bCX6xuqPyxGt43RgbY6JejQbPwYx6QNYtxFeew8W/givPAtdrwQu5S6sWLGCY8eP48jJ9I+qX7/6yiQLg/IaZJ9XXRdNtUHvVfx+FTYfAd7eyji4cEHlG9SqpbwH1eBLp2HDhuh0Oo82wUuWLOHcuXOcP38ef39/bDYbffv2ZerUqXTr1o3jx48TERFR4PHKO3yQGx8fH3x8fDh37hwrVqzgnXfeKZd9Lue4Llq1aoXZbObYsWP5cgRcFNTFr3PnzqxZs8ajFfCqVatqRJvf/v37Ex3t2QBv+PDhNG3alPHjx3sYmKNHj2bhwoWsWbOGFi1aFHvsrKws9u/f747xF3d/L168SGRkZL71nTt3ZtWqVQwcONC9Lvf9Lc01aJQfmlFQxTgcTg6ebUgtfRs6hO5SysE6JzfUXceSIwNx1K+H7quP4Pc/YNJ78E8c3Pc49LkJxj8NdSPZu28fqamp9FuyBIClt91Gamoqe/fto00uK7ta4dI0cNpVOMEUCgb/qm2NnNs4yMhQlQp+fso4KMdSt9ISEBDAgAEDeOONN+jSpQsnTpxg0aJFREZGsnTpUu677z5++OEHrr76avcbWWBgYKEu14oIH7iaebVo0YJDhw7x3HPP0aJFC4YPH+4e88knn/DJJ5+wf//+Eu9TkjFpaWkcOnQIUG+tx48fZ8eOHQQFBVG/fn38/Px49tlnefbZZ5FScv3115OWlsbmzZvR6XQ88sgjBV7TmDFjuP/++7nmmmu45pprmDZtGgkJCTz22GMlPrdrTFraJc2Ot956C4CkpCT3uqCgoEIfciU5R957GxAQQEBAgMdxfHx8CAoKok2bNu51TzzxBHPnzuXHH38kMDDQPSdXwinAs88+S79+/ahfvz6nTp3itddeIz09naFDhwIUe3/vueeeIu/vlVdeWeD9Lek1aJQvmlFQxRgMevR6HY0DDrufh0JAqOUMzQMPYjDo1Yqbrodrr4Iv5sGnX6pwwpoNOEfcx3Z/E+kOB7psBwa7xJKWwXlg69attGzRwiM+WO3wSEJMV16DqkYIZQRYLJCVpZovWSwQEqL+rQLDZerUqTz66KPUq1cPUIIyLVu2ZMSIERw6dIjs7GyuvPLKSp+Xi/PnzzNu3Dji4+MJCgrizjvv5PXXX/cwTFJSUjhw4ECp9inJmK1bt3pkpk+YMIEJEyYwdOhQt9DPa6+9RlhYGJMnT+bxxx+nVq1adOjQgeeff77Qaxo0aBAnT55k0qRJJCYm0qZNG5YtW+ZR7VGSc0+ePJlXX321yPu3Zs0aDxd7bkpyjrz3tqR8+umnANx0000e6ydMmODWUoiPj+eee+4hJSWF0NBQrr76ajZv3uxxHy73/p45c6bI+6tR+YgaI6NbQURHR8utW7eW2/HW/r6abiEO8AstfjDK8l+/9F26Bi/GpPfsNOiUAtrORueX520/MRne/hiW/ApAWi1fjjauR6vt+0AncOp0rOt9HYfbteTBB4eX2CiQUnokCuX9XOE4sgAHaw9n0K1N28o7b0mwWtViNkNoqMpFKMO9iY6Opjx/76ZMmcI///zDlClTcDgcxMfHa1+u5cDFixcLDC1olJzqcA/L+++tslm7dm2hRuPlIoSIkVJG511fJQFnIcRIIcQRIUSWECJGCFFkRpMQ4gkhxD4hRKYQ4oAQ4oE824cJIWQBSxUGqktOS78N+QwCAJ2QiD0jIHWz54aIMPjwdVj4BbJ1c3wvpNFm+z50gM4pMWQ7uGHFH3inZ5Q4p2Dvvn3s3LnLo//Czp272LtvX1kvr+TovZQSorSDNbnylRCLwmxWeQY6HZw8We1UEocNG0ZcXBxt2rQhOjra7W7W0NDQKA2VbhQIIQYBHwFvAB2BP4HlQoj8adJq/OPA28D/Aa2BCcBUIUS/PEMzgIjci5SyCmT0SodMP0SwObnQ7ULaYP9TcGpJ/o1XdMT5/Sx2XRtNXn+PQ+gITM8skYiRlBKb1UZcXJzbMNi5cxdxcXHYrLbKbcok9KoawZEBmZXYjrmk5JZQTkqqNkJIfn5+LFu2jN27d7N9+/YqDSVoaGjUXKoip2AMMEtKOSPn85NCiD7A48C4AsbfD8yQUn6T8/mwEOIKYCywNNc4KaVMyrd3NUeXNAdZZIdFPUI6IO5VsCZA3Uc93NbCYODw9VfSatM2DI5LxzHZ7dQ/cgJhs4Ol6PCBEIL27ZWmeFxcHHFxcYAqB2vfvl3VNGVyly6eBGOgWqqqdLEgDAZPIaTTp6u11oGGhoZGSajUb1khhAnoDKzMs2kl0LWQ3cxA3jf+TOBKIUTub1+LEOKYECJeCPGzEKJjuUy6okk/iE4U/iYucIApDNBB/Aw4NEFl7OfinF7Huj7XIw0gjeAUSi65ze+bEDcPgpVripUXzm0YuKgyg8CFq3TRnqpkkquif0JxuISQfHyUx+DwYeVBsFqremYaGhoapaayPQUhgB7I6y9PBnoUss8K4CEhxGJgK8qoGAEYc46XCBwAHgR2An7AaGCjEKK9lPJgeV9EudJ+AStWrSLh5Ens9mx0OoHTKTEaDUTWqUOvnj3Vg/ncBvjnBUj5BWzJ0PxdMNRSyYA6HQfbNKPVDXsxpDhYln4zIafOcM2azQQcj4fHnoUuV8BLY6BlswKn4QoZ5Gbnzl3VwDDIXboYD6bgnNLFauQ1ADVPlxBSeroSQ/L1VTLKXl5VW2qpoaGhUUIqtfpACBEJnARukFKuz7X+FWCIlLJ5AftYgKmoMIJAGRBfA88D4VLKfAF5IYQe2AGskVI+VcD2R4BHAMLCwjovWLCg7BeXQ9rFi/gaJOhLbm9lZmSSkZGhYvcCkOrN3dvbG4v3pfp43+xDtL3wKmbnWdL1dYmtNZEsXQRnzp7B6ZQEmM9hEA7OWQNxSD16p4O2m/6iwdx5GNPSkEKQ2KcXR4bejz1Pw5MLFy6Qbc/GYrFg8baQmZFJZmYmBqOBWrVqldftKRFpWdn4ehVy/6QTEKqUkWr+oJVSLUKocEOupM9Ro0axadOmCju1w+Go3qWoNQTtPpad6nAPu3TpwieffFKlcygLaWlpbt2I8qJ79+4FVh9UtqcgBXAAYXnWhwEF5gNIKTOBB4UQj+aMS0Q90C8CpwvZxyGE2Ao0LWT7dGA6qJLE8iz1KG1JopSSlatWkZ6cjEAZAhkZGUgkvmFh3ODyFAAQDtY5sP9pfDIOcfXF55DN32PWn9uxWq30bj4fP1Macecbsfp4D8xmM02efRjx8CD4eDri6++IXL6CyD82wOPD4cF7wWxGSsm8eb+RlZVJdPQVtG/SgJ07d7F19994eVnoN+TeSvUWrD2YRLemRUjJOm1qMYVUveBRSbDbld6B0ag8B76+eHl5VWiZVnUoA/s3oN3HslMd7qGXl1e5l/RVJhVRklgYleqDlVLagBigZ55NPVFVCEXta5dSxkspHcBg4GcpZYEZekI9wdqhDIhqjRCCunXrEhoSgre3ahDk7e1NaEgIdevWzf8wNkdA6y/Bvwtkn4O9j9Es+Bh6kY2vKR0hoEGtYwR7pWCxWJT3IcAfXnkOli+E7tdCWjq8+wn0uBN+Xol0OnFKJ9kOB2EvvcTpAQPYvn0b2Q4HTums3OqDkqAzqWZK9jMqEdFpq+oZFY2rYsFovNS62eksMM9j2LBhCCHyLVdffbV7TIMGDdzrvb29adOmDdOnT/c4js1m491336Vjx454e3sTFBTE1Vdfzeeff461ivIdNmzYgMFgKJEaXe5rdC0vvPCCe/vOnTu55557qFevHhaLhebNm/POO+94VNscPXq0wHv566+/lvlarFYrTz75JCEhIfj4+HDbbbcRHx9f4NiUlBTq1KmDEIKUlJQyn9vF2rVrC7w+IQTfffddofvt2bOHu+66i0aNGiGEcIsU5ebNN9/kiiuuoFatWoSGhtKvXz92797tMaawcz/xxBNlvrbY2FhuuOEGLBYLderU4f/+7/88vodmzZpV4Lmzsqph3lENoyoCs+8Dw4QQI4QQLYUQHwGRwDQAIcQcIcQc12AhRDMhxP1CiKZCiCuFEAuANsD4XGMmCCF6CyEaCSE6AF+ijIJplXhdl4WUErvNTkZGJo0bN2bAgDto3LgxGRmZ2G32gh/IBl9o+SGE3YmQNq4JWcJN9X+HnMJEnXBwQ90/8r9AN24IX34Es6dC8yZwMhGeGoe4+yEan88AwCmd2G12rDb1oA0OqoZNleBS10UcqnTRfr7YZMoqx9W62WJRRoHVqrwIecpGe/ToQWJioseybNkyjzGvvPIKiYmJ7Nq1i/79+/Poo4+ycOFCQBkEd9xxB6+//jrDhw9n48aNxMTEMGbMGGbOnFmhYYvCOHfuHA888EA+5byicF2ja3nppZfc22JiYggNDWXu3Lns2bOHV199lddee80tIZybX3/91eM4hfU/KA1PP/0033//Pd988w1//PEHFy5c4NZbb8VRQGnq8OHD6dChQ7HHXLt2LQ0aNCjxHLp27Zrv92TcuHH4+vrm62yYm4yMDBo0aMCkSZNo2LBhoXMZOXIkf/75J7///jsGg4EePXpw9uxZ95i85166VBWDFddXozguXLhAz549CQsL4++//+ajjz7i3Xff5f333/cY5+3tnW8OXl41QpqmWlPpJYlSyoVCiGDgJZSewG6gr5TyWM6QvHoFelQZY3PADqwBukopj+YaE4AKB4QD54HtwPVSyi0VdBnlhhACk9nkUf7nqgIwmU2Fu+2FARqOA696yKMf0sj/qHuTTkCg1znCjAcLFi+67mr4eT589xO89xlieyzXbI8lsnVTjJk2hARLWgYyJIioBlElFkCqEkVEnRmEEewp4EhTPRR01bxRik6nQh46ndI3yM5WBkNO3NVsNhfbic/Pz889ZtKkSXz77bf8+OOPDBo0iA8//JANGzawZcsWj4YyDRs25K677vLQ4a8sHnroIYYOHYqUkkWLFpVon9zXmJcHH3zQ43OjRo3Ytm0b33//PePHj/fYFhwcXOT9XLp0KRMnTmTPnj1ERERw7733MmHChEJ7EZw/f54vv/ySmTNn0rOncnrOnTuXqKgoVq9eTe/evd1jP/roIzIyMnjxxRfzGXZlxWQy5buuRYsWcc899xQZf77iiiu44oorAArtlrlixQqPz3PnzsXf35+NGzfSr5+SiMl77p9++olmzZpxww03uNfZbDZeeeUVvvvuO86ePUvr1q2ZNGmSxz3Ky7x588jIyGD27NlYLBbatGnD/v37ef/99xkzZoz7O0UIUeqOlRrFUyUp3FLKT6WUDaSUZill59xJh1LKblLKbrk+75NSdpRSeksp/aWU/aWUB/Ic7xkpZVTO8WpLKXtLKSv/degyadWypUeWv8swaNWyZdE7CoEzfAi7zl6d7yXZqMsmOng1TkchrnW9HgYPgN9/QD4+HIfRQMM9Bwk9epaQY2cZMm0+9bfGcuL48RIJIFWpIqLLa+C0Q+ZxsF+o/l4DFzqd+llIqbwGDselBMVS4OXlhd2uSlXnzZtHt27d8nWYU6fTFZk46mqEU9hS1BtoYXz66ackJyd7vOmXhMmTJxMcHEyHDh14/fXXsdmKDhNduHCBwDwJtAADBgygdu3aXHPNNfkMkhUrVjBkyBBGjRrFnj17+Oqrr1i0aFE+wyI3MTEx2O12evXq5V5Xr149WrZsyZ9/XoqCbt++nbfffps5c+ZUSrfStWvXcvDgwUIbPJWFixcv4nQ6C7y/oBLhFixYwMMPP+yxfvjw4WzYsIH58+eze/duhg4dSr9+/di5c2eh59q0aRPXXXcdllxNyHr37k1CQgJHjx51r8vMzCQqKoq6dety6623sn379rJdpAagNUSqNuR9oy7pG7aUkgifEwXm2pn1WZD8I0QW4c7z80X+byS/6R30mDoXXc7DyOBwcsPytfzSNl9BSIFzOHHiBKeSVe/59u3bsXPnLmJjY6kdVpuWLVpUTqKi3ktVJ9hPg+NizfAauBDCnTD564oV+OZJzHriiSd4++238+2WnZ3N119/TWxsLI8//jgABw8epGvXwmQ/imbHjh1FbreUsltkbGwsr776Kps3by5VBvpTTz1Fx44dCQ4OZsuWLbzwwgscOXKEL774osDx27ZtY9asWcybN8+9ztfXl8mTJ3PNNddgMBhYsmQJgwYNYvbs2dx3330AvP766zz33HPurouNGzfm7bff5r777uPdd98t8FxJSUno9XpCQkI81oeFhbm7DKanpzN48GCmTJlCnTp1OHgwf2X08ePHadWqlfuzw+HAarV6vOXfd999TJtWsijo9OnT6dChQ4HGYFkZPXo0HTp0oEuXLgVunz9/Pjabzd05EZQQ2jfffMPu3bvd1zlq1ChWr17N559/7m7GlJekpCTq1q3rsS4sLMy9rWHDhjRv3pyvvvqK9u3bc/HiRT766COuueYadu7cSdOmBeaXa5QQzSio4eitRwk2nypwm1Fnh/ipULuvykMoAlt6OnajAbPtkjCS3im5aepcqNdQtWou6sEuJdnZdmJjY4mLiyMjI4PsbHvlv7G7vAaOLOU1MNUGg1/1r1BwIQTXX3cd06dOvXTvdDoCgj1zO1588UUmTpyI1WrFZDLx3HPP8eijjwKUKTG0SZMml71vXqxWK4MGDWLy5MmFxq4LY8yYMe7/b9euHbVq1WLQoEG8/fbbBOe5FwcOHOCWW27h6aef5s4773SvDwkJ4X//+5/7c3R0NCkpKbzzzjtuoyAmJoYtW7Z4GFxOp5PMzEySkpKYNm0a7733nnvb3r17SzT/p556imuvvdZjPnmJjIz0MML++usvxo4dy9q1a93rSloOfObMGRYvXpwv7l4ejBkzhg0bNrBhw4ZCDbsZM2Zw++23Exp6qepq27ZtSCnzSW5brVZ3Xkfr1q05dkxFjq+77jqWL19eojl16dLFw0Dp2rUrHTp0YMqUKXz88celuj4NTzSjoIYjT85EiMJ196UjCxH/BTR4utAxQgicdSPR5wkTSMDnYjo8MRY6t4dxT0OndgUe48LFi9jt2djt2dhsVhw5kssXLl4s7SWVDzXYa+BtsXg+nF0/F5tN6R2gvqgfeughvL29iYiI8PDENGvW7LLa6ALF1kKX5os7MTGRffv2MXz4cPebuNOpqlkMBgPLli3zcMEXxVVXXQXAoUOHPIyC/fv30717dwYPHlxgkmFBx5k5c6b7s9PpZMKECQwcODDf2NDQUB588EHuv/9+97rIyEjCw8NxOBzuVsIukpOTue461dvtt99+48SJE8yePRu4ZKiFh4czduxYXn/9dQwGg8fPOT4+Pt+6kjJnzhz0ej1Dhgwp9b5F8cwzz7BgwQLWrFlDo0aNChyzY8cOtm7dmi8/wel0IoRg7dq1BAQEeGxzeZyWLVvmDnu51oWHh5Oc7Ck/4/pcWA6BXq8nOjq6QI+MRunQjIKaTvpBdBQe8xdkw+mlUP+JHMGfgqnfsSOb+/Xgmh9XIIXAqdPz1y3dqR8WTt1FPyNidsJdw5XH4LlR0PBSPqiUEh9vH86cOQOAM/vSfHy8fSq/BbMLd66BVVUouNUQa4jXwIUrHi2lMgykJDgwkCaNGxd4Lffeey/jxo1j69at+VzJTqeTtLS0Qt9AyzN8UKdOHWJjYz3Wffrpp6xatYoffvihVJn2rnlFRES41+3du5cbb7yRu+++mw8++KDEx8l9jE6dOrF///5CH8RBQUH5auw7d+6M0Whk1apV3HvvvYB6oO/bt88dtlm5cqVHDsTff//Ngw8+yNq1ayvEvf3FF18wcOBA/P39y+2Yo0ePZuHChaxZs4YWLVoUOm769Ok0bNiQHj08RWk7duyIlJLk5ORCQxoFtffu0qULY8eOJSsry11NsGrVKiIjIwv9nZFSsmvXLtq3b1/Cq9MoDM0oqOHIdt/w9bz5ZGRmYDIa8fXzI+3iRWx2O61Cj3NtxG+I7FTYNwqavQ3GgHzHEEJw5uwZbD2u48z+WHR2BxvuuRtjeBj/mM3Ue2IETJ8DX34Nv/4Gq9fCvXfBqBEQEoQQgsjISBISTnLzDz8AsPS22zDo9URGRlatTDLkqlA4A9lpYA5V66opVqvVHZt2odfr1Vup6146HKqk0WBQiYq57vHTTz/NkiVL6NmzJ6+++irXX389/v7+bN++ncmTJ/PGG28UKoRSnuEDo9GYT5Ogdu3amM1mj/U//PAD48aN47fffqNOnTps2rSJzZs30717d/z9/fn777955plnuO2226hfXxmje/bs4cYbb6R79+6MHz/e43653iZnz56N0WikY8eO6HQ6li5dytSpUz1CBa+88gq33norUVFR3H333RgMBnbv3s2WLVt45513Crwuf39/HnroIZ5//nlq165NcHAwY8aMoV27du4HY7NmnnLiLn2CFi1auHMRHA4Hp09f0l9r0aIFmzdv9rgWi8VS7IN+w4YN7N27N59WhYubbrqJK6+8kjfffBNQFQGuMEhWVhZJSUns2LEDX19f98//iSeeYO7cufz4448EBga65+RKOHWRkZHBvHnzeP755/P9nTdr1owhQ4bw+OOP8/7779OpUyfOnj3L2rVradSoEQMGDChwvvfeey+vvvoqw4YN46WXXuKff/7hrbfeYsKECe5zvPrqq1x99dU0bdqUCxcu8PHHH7Nr1y4+++yzIu+VRvFoRkENR6fTEVknktOnT6PX69EJHb5+fjgcDmz+NyJaD4ID/4MLWyH2AWjxAXg39jiGlJLgoGB27NyBXS/QG02cNxhwnDpFh/YdkL4+iP+NhCF3wQfTYNESmLMQvl8Kjw6F4feSfCo5X7xRr9eTfKrwttCVSqFeg2rWQwFY/fvvROR5g6pTpw7xhw+rD66kRJ1OlTPmLmnU6TCbzfz00098+eWXfPnll4wdOxYvLy+aN2/O8OHDLzsJsaI4f/48Bw4ccLuRzWYzCxcu5NVXX8VqtRIVFcXDDz/M888/797nu+++49SpUyxcuNCtz+Aid07FpEmTOHbsGHq9nmbNmvHVV1+58wlAZbX/8ssvvPbaa0yePBmDwUCzZs0YNmxYkXP+8MMPMRgMDBo0iMzMTG666Sa3C7+knDhxothci6FDhzJr1qwix8yYMYOWLVtyzTXXFLg9Li6OevXquT8nJCTQsWNHj+2ff/45N9xwgzufwZUEmFdXYsKECR5iRwsXLiQ9Pd0dHsrLzJkzeeWVV3j++eeJj48nKCiIK6+8ku7duxd6Pf7+/qxatYonnniC6OhoAgMD+d///ueRZ5KamsojjzxCUlIS/v7+dOzYkfXr12stw8uBSu19UB2Jjo6WW7duLbfjlVbmuKy4Sv8OHjpI0yZN3Zn/uT8L2yllGKTvUw/GppMg8HqPY3z//WLOnTuHyWzC18eXtPQ0bFYbgYGB3HnnAM+3gP0H4Z0psHaj2r92CHt7XMvGuqH0++EnDDYHy/v1JdPXmwZRUfTq1atU3oJiZY7LinSCI1PlGJhCVf5BJRN9yy1s/euv8jugK+8gp8/CxYyMKpeW/TdQHSR6azrV4R5GR0dTnt/zlU1FyBwLIQrsfVD9XpM0SoVL/MhtAORoHDRt0vSS+JE5DFrPgOBe4EiH/WPg5Ex3druUkszMTJzSiTNH2tj1b2ZmZv5s9hZN4auPYf7n0K414lQKref/yJCpXxN+8BQhJ84y5PNvaBJ7gFOnTpc4Gz7vuAozWIVOdV5Eqs6LtjM5jZZqMDrdpdwDl0pidnbN0WvQ0NCoFmhGwb+AEokf6S3Q9A2o9zgg4fgncPBFcGQihKB1m9bohA6rzcbZs2ex2mzohI7WbVoX/pZ/dTT8MBv58ZukB/rjk56JAIRTordnc8OKPwjIdpTIS1Al4kc6k/Kc2FMh64TyHtR0XGEFIZRRUIiUsoaGhkZBaEbBv4QSiR8JAXVHQPP3QOcNZ1bAnofAmsTp06fR6dQ+rgezTic8EqEKOTHi1l4kPz8Kh8EzRUXnlHRMsxZrFEgpsVltxMXFsXPnLgB27txFXFwcNqutYhsyCZHjNdCp5krW0yALL/GsUbi8B66kRKv1kmKihoaGRgFoRsF/kaBu0HYWmOtC+gGIvR9T1h63toALh8PJhQsXij2clJI9GReReD5sdE4ndT74HDnmJThxstD9XZ6Nxo0bExcXR+q5VOLi4jz6QVQ4OmOO6FGaEj3Krvz+ABWGS0oZlNfAZtNCCxoaGgWiGQX/VbwbQ9s54H8VIvscN4TMp2VQLLc3/oHhrWfhY0zDKZ04HI5iex9IKdGH1WZ97+txCnDqBNl6HSca1EXq9Ygfl0OPATDxHTh9psBj7Nu/v1TrKwQhVJhFZwRrEmQlqn4K/xaKCC0MGzaMW2+9tapnWGNp06ZNgS2INTRqGppR8F/G6A8tP0ZGDEEnnFxXZyPBXucw6Wx0jdiMEAK7zV5sMxeXTsGxTq1JbhLKmXqBzHvsXlbf35/9U99E9u8L2Q5Vxtj9dnjvU7hwSelQSsmJ48fZti2GrrNn4XvmDBkZGWzbFsOJ48crNnxQ4AUZlCy0MwuyjteMtswlYNiIEQizWS0Wi1pMJnb8/TcfvfMOX8+e7b7Obt26MWrUqCqesUZxfPrppzRs2BAvLy86d+7MH3/8Uew+69ato3Pnznh5edGoUaN8vRUcDgcvv/yy+7gNGzbkpZdeIjs72z1GCFHg8sQTTxR4zkcffRQhBJMnTy7bBWtUOJpR8F9HGCDqGf46249spx6TPhshIKrWUUK8zuBlKb5cTwiB0WQkPDwcp0GPzdtMpq834eHhyLoRiPdfg1++gR43QEYmTP0Sut0On8+GnOqG5FOnsNntSKd6KNntNmx2O8mnTlW+UeBCbwGdRbVlzjqp+inUcHrceCOJx455LG3atsXf358AHx/lPcj15f9forgujNWNhQsXMnr0aMaPH8/27dvp2rUrN998M8ePHy90nyNHjtC3b1+6du3K9u3bGTduHE8++STff/+9e8zbb7/N1KlT+fjjj9m/fz8fffQRU6dOdYsfgZKwzr0sXboUgLvvzt987ccff2TLli1ERkaW49VrVBSaUaCBlJKzuqvYcbq9+4VYL5zcWG8Vvj7exT6UpZTYbXbi40/yy+39WX5Hf3RCR3z8Sew2u9q/RVOY/j589xVc1RlSz8PbH0P3/jD/e3Q5+QxSKm18W46QjaCK1RBdokc4c5Uv1txERLPZTHh4uMdiMBgY9vDD3DpgAOh0DBs+nHXr1jF16lT3G2DulrUuhg8fTmhoqIfm/ZEjRzCZTHz99deFzmHx4sW0a9cOi8VCUFAQN9xwg4fW/TvvvEN4eDi+vr488MADTJw40UPetqBQx8SJEz1UEv/++2969epFSEgItWrV4tprr2XTJs9u6kIIpk6dyoABA/Dx8XG3S166dKn7Tbpt27a8+OKLHgbDqVOnuP3227FYLERFRfHVV18VfdMriPfff59hw4bx8MMP07JlS6ZMmUJERESRqn7Tpk0jMjKSKVOm0LJlSx5++GGGDh3q8Qb/559/0q9fP/r160eDBg247bbbuO222/grl65G3t+hn376iWbNmnHDDTd4nO/YsWOMHTuW+fPnYzQWLrOuUX3QjAINhBAkJSfRLPAft1quEBBgPk9DuaDYx7KUkq1b/8bhdBBZJ5IHH3yQyDqROJwOtm7929Oo6Nxe6RvMmgJtWsCpFHSvvMWAT7+m6Z6D6OzZCKfEkpYBQGhoSNXLJMOl8sXs80oR0ZFR1TOqMD56/326XH01wx94gMQjR0g8epR6kZH5Qijvv/8+b775Ji+//LK7AdMrr7xC8+bN3T0B8pKUlMTgwYMZOnQo+/btY/369R4Nh7799lteeuklXn31VbZt20bz5s0vq/PfxYsXuf/++/njjz/YsmULHTp0oG/fvu7+HC5effVV+vbtS2xsLE888QQrVqxgyJAhjBo1ij179jB16lQWLVrkNhhAGSWHDh1i9erV/Pjjj8yZM6dAoyk3f/zxh1siuLAlb0OhorDZbMTExORrKNWrVy/+/PPPQvfbtGlTvn169+7N1q1b3YqS1157LWvWrGF/Tj7P3r17+f333+nbt2+Bx0xLS2PBggU8/PDDHuuzs7O55557eO6552iZuzxao1qjyRxr4HQ6qesbj5fe0z0uBLQI3IPz0MuIxi8XqvwnpXQ/L9LS0pBSkpaWlrOtABEiIeD6rnBdF1j+G/KDz/COO8pNP69BAmdittPt6/ms63M9J729q66hUl6EAL03yGzISlBGgimkyEZT1Y1fV67ENyjI/fm6a65heY7r14W/vz8mkwlvb2/CXcaA06lCC7nklAMDAxkxYgSLFi1izpw53HPPPcyfP5/FixcXmoeSkJCA3W7nrrvucjfDyf2G/+GHHzJ06FB3G+gXX3yRNWvWcOjQoVJdp6s1r4spU6bw/fffs3z5cg+Z40GDBjFixAj356FDh/Lcc8+5ZXtr167N22+/zX333ce7777LwYMHWb58ORs2bHDLCs+ePbvQDoIuoqOji202FZTr51IcKSkpOBwOwsLCPNaHhYWxevXqQvdLSkrK17goLCyM7OxsUlJSiIiIYOzYsVy8eJFWrVqh1+vJzs7mxRdfZOTIkQUec/78+dhsNoYOHeqxfsKECYSEhHjcX43qj2YUaKDT6egcth2TPn8sWUrQnfkVMo9A83fBq07B+0d3JmZrDKmpqXzx5ZeqIkGnp3N058ITFYWAvj1w3nQdW58ey5Ur/kAAbXLazXZbvp5FzRtVXU5BYbgSER2ZKhHRWHO6L15/3XVMnzrV/blEXQ9dvRZA6Rw4HG45ZXQ6HnjgAcaNG0dsbCxXXHEFt99+OwDz5s1zP9wBli9fTteuXenRowdt2rShV69e9OjRg7vuusvdgnjfvn35HiJdunQptVFw6tQpXn75ZdasWUNycjIOh4PMzMx88fa83ftiYmLYsmWLR9Mkp1MpeyYlJbFv3z50Op2Hxn5UVFSx8XJL3nbY1ZiFCxcyZ84c5s+fT+vWrdmxYwejR4+mYcOGPPTQQ/nGz5gxg9tvv92jjfTatWuZNWtWsYaQRvVDMwoqghqmHifTD1FLV7COgBAgEYiMA7Drvpy+CdfkGSPo2KEDUkr+/vtSuKBT50507NCh2Ld8YTRyoWF9bEYDZns2Vj8/zBcvonc66TV/KaLTldD1ivK52PJEb1HyyLYzkH1ReQ30JW8tXBV4l/XhlLuNc467uf+tt/LYY4+xdOlSj7fU2267jauuusr9uU6dOuj1elauXMnmzZtZuXIlX375JePGjWPdunUlbnur0+nyGYou17eLoUOHkpyczAcffECDBg0wm83cdNNN+ZIJfXx8PD47nU4mTJjAwIEDAeX5cnUFzP3QK63n6o8//uDmm28ucsz48eM9whRFERISohqOJXs2HEtOTnZ3iSyI8PDwAvcxGAzu7o3PPfcczz77LIMHDwagbdu2HDt2jDfffDOfUbBjxw62bt2aL/Sxdu1aEhMTPdpUOxwOxo4dy4cffkh8fHyJrlOj8tGMgvJG6MBigYup4O13STSmGqNLnA26wg0ZgRHMtcEaD/tHQ91HlDJirg6Du/fsITY2ln6NlCt66eF+xMbGYjKZaJunfW6+4wtBVmgw+pwv+r/GjeP68eORQGDSabjvMeh6JYx5HDq1K/sFlyeuPgpOu0pENASAMRB0NftPy2Q04nAUkVCZy3vgbTLRtEkThBDc1L27MhiEwM/Pr8BGOEIIunTpQpcuXXjllVdo3bo1CxcupH379rRs2ZLNmzfz4IMPusdv3rzZY//Q0NB8b6B5P2/YsIGPP/6YW265BVAPvsTExGKvu1OnTuzfv99tOOVt5tOiRQucTidbtmxxd5s8fvw4CQkJRR63vMMHJpOJzp07s2rVKrcBA7Bq1SruvPPOQvfr0qULP+S0N8+9T3R0tDsRMCMjo8COpwXplUyfPp2GDRvmC0mMHDmSu+66C4D09HR8fHzo3bs399xzT77cA43qRZV8cwkhRgLPARHAHuBpKWWhBbZCiCeAUUAD4DjwupRyTp4xdwKvAY2BOOBFKeUPVDZCB42ugNP74exFFW8uiYu2CpHp/6CjKO+GTcXP6z0OJ6ZB/OeQthuavAZGf7KzHcTExJCVpXISjAaDetBnZRETE0PLFi0xGIo2jowRYazvfT3dlq3BaTKRbdCz8aauRJjMNF27GfHnFvhzC9xwDTzzGLRrVY53oBzQGVVYwZGmFmOICjHUgJBCQTSIimLL1q0cPXoUX19fgoKCCg0Drfr9d7Zt346vry8Zqal4+/hcyj3Ic/2bN29m9erV9O7dm7CwMLZv386JEydo1Ur9PEePHs0DDzzAFVdcQbdu3Vi0aBF//fWXxwPzxhtv5J133uGrr77i+uuvZ/HixWzcuJG6deu6xzRr1oyvv/6aq666ivT0dJ5//nlMJlOx1/3KK69w6623EhUVxd13343VauXIkSNs2bKFd955h+bNm9OnTx8effRRpk+fjsViYcyYMcWGYSoifDBmzBjuv/9+rrzySq655hqmTZtGQkICjz32mHvMAw88AMCcOerr8rHHHuOTTz7h6aef5tFHH2Xjxo3MmjWLb775xr1Pv379eOutt2jYsCGtW7dm+/btvP/+++5jucjIyGDevHk8//zz+TwntWvXpnbt2sAlw8poVGXLzZs3L9f7oFG+VLpRIIQYBHwEjAQ25Py7XAjRSkqZr8BWCPE48DbwMPAXcCUwQwhxTkq5NGdMF2AhMAFYDAwAvhNCXCOlLMf+tCXE6AO1W4HXEUhNg4tp4OUFxur59ig6fMvixYu5cPEivj6+CCFUsmB6GrX8/BgwYMClwb6t4OBLkLoRYodAs3fQ+7TEoFeGgE6nSti8vLzIysrCoDeg1xdd5CKl5MLFi6S2bU6HYwfB24t1//cscRfOkxwYQJOJ4xBfzYdZ38C6jWrpeQM8/Ri0bFbBdyf/XHN/AXp8dikiSgfYklWlgjkUdOZKnWN58OwzzzB0xAhadehAZmYmRw4c8CgLzM2LEyZwe79+bN+5k8VLlnDfPfcorYPsbE/jQAj8/f3ZuHEjU6ZMITU1lXr16vHyyy+7k/8GDRrE4cOHefHFF8nIyOC2225jzJgxzJo1y32+3r17M2HCBPeYIUOGMHLkSJYsWeIe89VXX/HII4/QuXNnIiMjmThxYvF9PHKO/csvv/Daa68xefJkDAYDzZo1Y9iwYe4xs2bN4uGHH+bGG28kJCSECRMmcOrUqcu6z2Vh0KBBnDlzhkmTJpGYmEibNm1YtmyZO4ETyJdD0bBhQ5YtW8YzzzzDZ599RmRkJB9//LGHd2HKlCm8/PLLjBw5klOnThEREcHDDz/MK6+84nGshQsXkp6e7k7K1Ph3ICo7iUsI8RewS0r5cK51B4FFUspxBYz/E/hLSvlMrnXvAVdJKa/N+bwQCJJS9sw1ZjVwWkp5T1HziY6OluXZZ9uj77UjC9KPg9UBZ1LVl6S3d7V7e3R1JDx06BBNmjShfft2+T57vAlYE+HAWEjfA8IIDZ/jhz8FGRmZ9K6zkFrGFFafeoRzGUa8vb254447ip3Db7//js1qpc/ixay7ewTX33QFK1aswGQ2c5Mrk/zsOZg+RykjZlnVuptvgqcegeYVn8S1d98+bFab+3647pvJbPLsSOnCaQWnDYxBYAwAcclbEn3LLWz9q+Ls1YtZWfh5FS88VVZ++Okn7ho8mF0xMcxfsIC/t25l5bJllwY4nTnZqrpCvQfFMXnyZD755JNiy/4qgrzhA43SUx3uYXR0NOX5PV/ZeDxXygkhRIyUMjrv+krVKRBCmIDOwMo8m1YCXQvZzQzklZLLBK4UQrhqwboUcMwVRRyzctB7gU998DJAZG0ICIS0dFXaVY0QQmAymzwMgPbt29GkSRNMZlP+pCpzBLT5AsIGgrTD4Tfo4PcTWRmpmMR5jMJKC+9lpKWnY7Pbi+2dAHDTjTfSu3dvxIwZ0CAKnU5H7969LxkEAEGB8MJoWLcEht0DJhMs/w36DoanxsHBw+V8Zy6Rt5OjyyAospOjzgx63xxtg5wmS9WtkqIMOJ1OXp44kXsGDaJ1q1Y8MGQIv61Zw2eff05KSooalLsZU95Wzv+ie6Gh8W+hsv3ZIYAeSM6zPhnokX84oB7uDwkhFgNbUUbFCMCYc7xEILyQYxaYhiuEeAR4BFSN7tq1a0t7HYWSlpZWwPGkemNEgEQ9HJzOnOY05XbqsmEIBAOsO5TrNvqoGuhTB5MK2WkYtX2jaJ42hYY+u7mr9Tn2m0eSoasNFqjtH4je4M36Q6dKdZ1pWdmsLfScOdxzH6ZeN1N/wbdELv8V3c8rkb+s4tQN13NsyGAy6tcv+QlLik8Y3k1qcdRq5ejfBwAz3k06kupt8bxvhSHPqZwTYSDLbudiVsXJJjuczgo9PsA3CxZw4J9/mDdvHhezsoiMiuKlF1/kpYkT2fjXX3z26acF75jbGMhd7lgIVqsVKSUXL14sclxF4HA4quS8/yaqwz3Mysoq1+/5yqbg50rFUKnhAyFEJHASuEFKuT7X+leAIVLKfBkoQggLMBW4H/VoSQa+Bp4HwqWUyUIIGzAid/KhEOIBYIaUssiAboWGD3LjsEFGThmOzgzpaXD6tPpCrOaJiMWSEYc19mnMzgRX4jlOCRccdTgZ9CatW7cu1eHWHkyiW9PCy6rykZAEn82Eb38Ee7aaQL/e8NTD0KhBqc5dFK7wQVxcnHtd48aNCw8fFITTCk470QNHsXVLxbkzKyt8UCaUspX6/zy5B9WF6uD6rulUh3uohQ/yUy3CB0AK4ADC8qwPAwp8NZRSZkopHwS8UdUH9YGjwEXAlTmUVJpjVgl6E/jUU//vzAJfP6hfH3x8VCKivQY3ofFujLHjfLKdRvf3uU6Arz6ZluEFt0ouVyLD4bVx8PuPcO+dYNDDkl+h10B4+kWIO1LmU7jCB7GxsWRkKInjjIwMYmNjCw8fFITOnNNLIcd7JGuWpkW54mrlrNMpQSSbTS3Z2VpoQUOjiqhUo0BKaQNigJ55NvUEChfsVvvapZTxUkoHMBj4WUr3N+qmyzlmpaMzqhwDoYfsDNAbILQ21KkDTgekp9c44SNQseX1yz/FmecBZxDZZO19CaejkrrP1YmASeOVcXDPANDrLhkHo8fDobIbBy7K5GETAsh5I5Z2pXHAf/wh6DIOQMs90NCoQqqiIdL7wDAhxAghREshxEdAJDANQAgxRwiROwzQTAhxvxCiqRDiSiHEAqANkFv66yPgRiHEC0KIFkKIcUB34MPKuqgSozOAdz3QGy811bFYoF49CAqCzEyo4FhwRdDSbwMmfX6xG4s+HY68VbmTqRMBr7/o6TlYugJ6D1QJiQdKJ5kLl5Ix27Zti8ViQQiBxWKhbdu2BSdjlvjAOi55DbL5zxsHmvdAQ6NKqfTCeSnlQiFEMPASSrxoN9BXSnksZ0jeDDE9MAZoDtiBNUBXKeXRXMf8UwgxGJgE/B9KvGhQlWgUlASdHix1ITNRJR0afNXDISBQhRPOnFEhBYtFPdCqObqsI4RaUgrcJgSI0z+p/2n4fJE1+0VqAFwOLs/ByAdVzsF3P8HPK9XS5yZ4ckSpdA6klCQkJHD9PNUW+I/77ichIYGoBlHF7JmfiNBgoq/qkvcMOf/qPNQiL4csux2vf0ur2ty5By6DoZLyDrKysvCq7rkZ1ZzqcA9zyy1rFE2VqOlIKT8FCkxNllJ2y/N5H9CxBMdcBCwqj/lVCjo9eEdCZtIlwwDAaILwCMhIV4mI1qxqqW3gwcmZ6ChCEhfg1I+Qtg+avQmW/A/R3BoAQPEaAKXBlXMw8kH4fDYs+AF+/U0tPW6AUSOKVUh0Op0cP3aMxMQE9DodQUFBeHtbSEhIQAho2aJF4Y2fCmDp9PcK3iCdqtGSzgim0MvupbB2zx66lTLBs0aQlaXCCgYDBAaCr68qTa0gKiLB67+Gdg9rFlURPtBwIXRgiQCjP9gverpHvX1USKGaaht4kH4QijMKhBFcTZVOL/PYJKXkxIkTxMbGsnPnLgB27txFbGwsJ06cKL8uiRFhMPH5SzoHZjOsXgf974fhT8G2XYXuqtPpqB8VRVh4OA6Hg9MpKaSnZxAWHk79qKhSGQRF4uqlgICsk5CVmFPOqgEoZVA/P2UInD0LR47A8eOQllYj83E0NKobmlFQ1QgBXrXBFKQ67eV+AOr0Ks+gfj31ZpSWBtnFPHyrANl+ATssX/F9wotcFM2Qfp3cn3dYvkJevRWiV0Nwb3BmwKGX4dCr6o04h7DaqngkNjaWc+dSiY2N9VhfroSFwivPwvol8PD94G1R0sl3DYf7HofNWwuMX/9z4ABpaWluJ79TOklLS+OfAwfKf446o/IeOa1K+Mh2Rsknayj0euVB8/NTxsDJkxAXB6dOVW8DWkOjmlM9xfj/awgBllBlBGSdupRj4MJkhojISyEFm1T5BtUkpOBKwmvcuDG+7ecrRcSch6o7Cc/gC01fB/8r4Mi7cHoJpO2Cpm8ifJq5wwYxMVtxOLKx2ax07hydX2K5PAkNgXFPw6ND4av5Sj7Z1Xipc3sVVri+CwihBFjS0sjIyEBmWjE6wRafSJq3GW9vbxwOR77OcuWC3ksZKNnnIfsCGIPB4FdtfvbVApNJLU4nXLgA584pL1BgTo6OQfua09AoKZqnoDphDlLhBPvF/G+FQoCPr9I2qOVf7UIKrVq2pG3bNu4HuBCCtm3beOYDCAFhd0C7OWBpDJlHIXYoJC5k7969JCQkuEMFrqS+vfv2VfzkgwLh2Sfgj59VB8YAf4jZCcOfhNvvh19/R0hJcFAwTXf/Q+1Dpwg4cprBn31N093/EBwUXHGGC+Q0WvIGnQnsp1WL5lxeFo0cdLpL3gOdDpKTlfcgIQEyMrTqBQ2NEqAZBdUNkz9414XsdHAWIGik00NwcLULKfz2+++sXLnS3efA6XSycuVKfvv99/yDvZtA29lQewBIGxx9h4Dk/yM54R/0en1OZ0U9x08cZ/fu3SXqnVAu+NeCJx+G9Uth7FMQHAS798HI59Ddcg+d9hyk24o/0EnQOSWGbAfdVm6gSUBA+eUUFIXQ5wgfoeUbFIfBoJIQfX1VcuKJE3D4sMpDsGn3TEOjMDSjoDpi8lMiR87MHGGbgsbkhBTCwyHbXqVvQk6nE5vVSkJCAitWrMDpdLJixQoSEhKwWa0FP9T1Fmj8IjR7C6n3pY7lEAObfs/tUfPwNybhrb8AwIXzFyr5agBfHxVS+GOpSkyMCIODh4mYNgddHgPModPRxFzJMtUF5RsUZEBq5OTs5EpOPHPmUnLihQtKC0FDQ8ONZhRUVwze4BOlFO8chYQJXCGFevXAP0ApIlaB8JGro2FkZCQJCQnMnDmThIQEIiMj6d27d9Fv0cE9cbb5mlOZEfia0gn0Okcj+zI6h/4BgNnLXH7VB6XFywseGARrfsL5xkukBfrn6+uky85m6Y5tOKri4aL3Up6D7AuQdRzsqf9t2eTi0OtVjoErOTEpSYUXkpKUaJgWXtDQ0IyCao3eC7zrA7LoGLKrSqFePfU2dLHyQwouwyA3xRoEOei965Ec+jrbT3cCIMrxG439j9DI/zgdO3asmAS+0mAyIgb156fRw9ndqbWH5qDU6Wi0MQZdahV4NCAn38ACOi/lMcg6oUJPGkVjMqnQgo+PMqaPH9fCCxoaaEZB9UdvutQvwSWLXBiukEJkJDiyK7WXgitkkBtXKKEk+8bHJ3De6ocEsghACOhRfwUy6Sec1cDFK4TA28+X2Lv6QtfW0CQS2a4VRns27db9hbj+Vvi/yapjY5VMMEffQOjBmqTCTloyYvG4upTmDS8cO6bCCxoa/zE0o6Am4OqXoDOX7C3Q21t5DYKDVa5BBYcUcucQREZGMnz4cHcooSSGgRCCCxcv0Kl2DDoBW81jANAJSTufxYhD45WLvApxOp14eXmRnpbG2cx0ZFQ4vz56L0vvu51TrZpBZhbM+ga63QbPTSzX5kulQhhyxI+kSka0JmvJiCUld3gBVFjBatWqFzT+U2hGQU1BpwfvOmD0za9+WBBCp/IMoqLUm9DFNCUPWxFT0+kwmc0eOQSuHAOT2VxsCMHhcOIv9+GlV8ZLtvB2b5MSxNnVsHMwnP+7QuZfElzXVKdOHaxWG4mJSSQkJGDocgUhS+bBL9/Arb3BKeH7pdDrLnh0DGyPrZoJu7QhHBlaMuLlYDSq8IJO51m9kJJSrUqBNTTKG80oqEkIHXiF51I/LEFowGCE2mFQt476nJZWIRnXN914o0cOgeshetONNxY/RYOeTqExmPT5H1rZ0gDmSLAlw97H4dhHVfbmW2TeRMtm8PEb8NtiGHKXckWvWgd3DoNBI+D3PyrlTTNvUqbUacmIZcZVvWA2Q2oqHD2qQgznz1eYoa2hUVVoRkFNw6V+6BVWsMhRYXhZoE5dCAtTiVQV4A7N6xEoae2+M+0gwV6nCtxm1GUj7echciigg4Q5SvAoo/Ttj8uKK0yy/I7+LL+jP1BA3kRUPdV86Y+f4fHh4OcLf2+HEU/DzYNg8c9gq5gHyd59+9i5c5eHANTOnbvYu3+/ZzJi5vGSeZs0PMktjqTXK3Gkw4chPr7CjG0NjcpGMwpqKuZAJXLkyChcyyAvQoCvn1JFrMISxrzoEmcjKPztVchsQEKbL8BcFzL+gV33Q+L8SnvrLXXeRGgwPDcKNvwC45+G8NrwTxw8OwG63w5ffK1UKcsJV1OpXbG7PJpK7YrddamplCsZUWcE+6kcZUQtVn5ZuMSR/PyUt+DkSWUgaOWNGjUczSioyZj8VMmitBWuZVAQ7kZL9ZVLtALzDUqCTD+IThTxcJdWOL8F/NpB+2+gdv8cJcT3YO9IsCZW+BwvO2/CzxdG3A9rl8DbE6BpI0hMhjc+gGv6wtsfQ/LpcpunIzubXbG7OHculV2xu3BkF5BH4KGMmKASErVKhcvHbFbGgbe3Z3mjln+gUQPROoXUdAwW8I6CjHjIzlSfS4rRBOER6s0m5bRygVosyjVaiYgOC9m9Zw+7d+8mPS0N/1ahfLl3JD6+vrRp04Y2rVtfGqz3hsYvQ+B1EDcJLvytkhAbjoWQmyu0UdBNN96Iw+HwyJvo1atXyXQUTEYYeBvceSus2QDT56iwwuez4at5cHtf1bGxaaPLnl9Y7TBOJZ8iMzMTb0c2WZlZWCyWwjtN6oxqcdqUYaD3UfkqOvNlz+E/jau8EVQpcGqqKnE0GlVzJl9f9f8aGtUYzVPwb8ClZaA3XJ5wjcUCdetB7doVlm9QFFJKsu3ZGPQGTCazx7/Z9uyCFQ2DukGHbyHwBnCkqXbM/4wF+7kKm+feffuIjd3tEbOPjd1duqZNOh3cdD0s/AK+nwV9blJCU4uWQO+B8OBTsOnvUt9/IQQGowGjyYhEov6TGE1GDEZD0Q2bdKZcssknwHq65CEpjYLJnX9gMCivweHDl+SVC/LgaGhUAzSj4N+CS8vA4HN5SWRCgF+tKsk3EEJgNBnx8fHG21uVI3p7e+Pj443RZCz8gWYMgubvQeNXQOcNZ3+DnXfD2XXlPkcpJTarjbi4OHcy386du4iLi8NmtV2eFHPHtvDpO/DbD3DfQPAyw9qNMOQxuG0I/LS8xGEdp9PJ8WPHOX/+PLf+tAT/1FQAzp8/z/Fjx0vWVMolm+xI08oYyxODoWB55ZMnK1VgTEOjJGhGwb8JoVOtl0tTspiX3PkGXl6Vkm8gpcRus5ORkUnjxo0JCAygcePGZGRkYrfZi37gCgG1b4f2C6BWZ7CfhQNj4NBEdQ/KCSEE7du3o3HjxsTFxbF48Q/ExcXRuHFj2rdvV7bWyQ3qwf+9oJISn3kMggNhzwF45iXodjvMmAMXir4WIQR6vQ6duPQnLRDohA69Xlfy+blkk/XeOWWMx5T3paRVLhpF45JX9vVVXrn4+Ev9FzSBJI1qgGYU/NvIXbKYnXb5X+ZGE4SFX9I3qMB+CkIITGaT+wELuB/AJrOpZA80rzrQahpEjQFhgtNLYecgSP2rXOfpmp+LMhsEuQkKVK2bN/wCb74EjRuopMQ3P1JJia+9B/EJRU0QLy8vdDlGgMViwcvL6/LyLNw9FSxgO5tTxpiqaRyUF0LkT1A8cQIOHYLTp5WXTjMQNKqAKjEKhBAjhRBHhBBZQogYIcR1xYy/VwixQwiRIYRIEkJ8LYQIz7V9mBBCFrB4VfzVVFM8ShbLIPbj0jeIyGnRXEHuzlYtW3o8YF0P4FYtW5b8IEIHkUOg3XzwaaUEj/aNhMNvFt83ogS4Qga5ya0LUG6YzTDoDljxHXzxIXSJhvQMmDlfeQ5Gjc2nlCiEoG7duoSEBKPPSYS0WCyEhARTt27dyzdc3GWM5jwaB5pxUG7k7r9gsaicg+PHlUDS2bNaBYNGpVLpRoEQYhDwEfAG0BH4E1guhKhfyPhrgLnAbKA10B9oBczLMzQDiMi9SCmrvgi/KjH65rRfdpSt5MzVorl+fdVPITOzQmqx8z64LvtB5t0Q2s6EeiNVL4DkRTkyyVsve265cwgaN27MgAF3uEMJFWIYgEpWu/E6mPc5LJ0H/fuCTsCy1Uop8c5h8MtKyM52h2DS0zPwNpgwCB0tgkNJT88oPgRTEnJrHNhOqW6MmgBS+aPTKcPAValw5oxSUDx8GM6d0zo4alQ4VeEpGAPMklLOkFLuk1I+CSQCjxcyvgsQL6X8QEp5REq5GZgCXJVnnJRSJuVeKu4SahB6L1WZoLvMyoTc5O6n4OenxHeqgfhRgQgD1H0I2n4N3s3BehL2PgpH3rksr0HeEEfuHIMShzjKQusW8P5rsD5HKdG/lvIWPDkOut2O+GIuXnY7V8SfwmfHYcjIovUTL3BF/KnynZ/QX+rGaD91qVWzZhyUP7kbNLkqGI4cUUaCJrGsUUFUqk6BEMIEdAYm59m0EuhayG4bgTeEEP2An4FgYDCwLM84ixDiGKAHdgAvSym3l9PUazY6o6pMyEoG2wVVflaWh4TeAMEhUKuWepO5mKYy56tjDbZPU2g7G05+BSe/hKSFcG6Dqljwjy7VoVq1bImUMl+Io8INgtyE11ZKiU88pBovzVoAR47Bmx/RzGxC2LMRTvWAFllW6k2bzcErOpT/PIRB/R447Uo8SmcGU7DKQajM+/FfwWBQCyhjIDlZGWIWCwQEqLwEQ6V+nWv8SxEV4vYs7GRCRAIngRuklOtzrX8FGCKlbF7IfgOAWYAFZcisAm6XUmbmbO8CNAN2An7AaKAv0F5KebCA4z0CPAIQFhbWecGCBeV1iaSlpeHr61tuxyt3ZLYqMxPlKFAknaru2imV+7OMz4S0rGx8vcr/C843O44WFz/A16HaGp/0uoXDPsNxiFIIPlU3nE6C/t5KvcU/ErhjJwBSCE517EhSdDRnmzUjrXYwfmG1K3YeUgISEMor9S/JYU7LysLXqxqnJkl5yUsjhDIMSthzpLKo9t+JNYCKuIfdu3ePkVLmezOq9kaBEKIVygj4EFiByhd4F9ghpXygkPO4vAVrpJRPFTWn6OhouXXr5cea87J27Vq6detWbserEGwXIDMhJ7u8nN7upYSMdOU5sNvLpIy49mAS3ZqGFz/wcnDa4eRMOPmFyrUwR0CjlyEgbzSqkN2dTg9J47yfqwqn08mq196i55zF6HL9TUsgptd1dHrvDXQ+3oUfoNwmYlciSDozmEJUE6ZcnoNdu3ZhtVqJjo5GCIGUkq1bt2I2m2nXrl0RB64a1u7ZQ7fciprVGZtNLVKqsENAQJUolOalRnwnVnMq4h4KIQo0Cir72ywFcAB5dVfDgMJyAMYBW6SU70opd0kpVwAjgfuFEHUL2kFK6QC2Ak3LZ9r/Mky1chIQ7eAop5wAVzJivTzKiNVNmEVnhHqPqFwDn+bK9b1vJMS9VqyuwW+//86vv15qfuR0Ovn11xX89vvvlTHzYnFe2ZE1fW/ACRzp08f13k70yj8Q192q+iwkVHCqjc6owlOQr6+ClBKr1cqBAwfYunWr2yA4cOAAVqu1YpI1/0u4NBByN2lyiSRpXRw1SkilBqGklDYhRAzQE/gu16aewPeF7OaNMiRy4/pcoFEjVJC3HSqcoFEQBotqppSZoBLv9OX0Fil0ShnRx0clQ507p9yZl1svX1H4NIM2syFhLsRPh1M/wrmN0Gg8BF2fb7jT6eTMmTOknkvl119X0KdPb379dQXx8fEEBAZUucfA1YfhuwsXSP5nD3F9+7ChQSBNzl7g6v1HELv2qj4LX3wNvbrB0MFwRceK+5m4+yrYlXGgMyNMwURHqxeTAwcOcODAAQCaN2/u9hxolBNms1qkVAb6yZM5XVJ9VS5QNfAgaFRPquJb7H1gmBBihBCipRDiIyASmAYghJgjhJiTa/xS4HYhxONCiEY5JYofA9uklMdz9pkghOids70D8CXKKJhWiddV89CbVAKizlL+5WU6PQTmKCNW10oFnRHqPqh0DXzbgv00HHgG/hmvlBFzIYSgWdNmGI0G4uPj+eqrr4iPj8doNNCsabMqf6C5+jBkZmTgNOiROkG6vx/7mzdk58RnkYtmQr/eynWw/DcY/DDcei98+1PF/lx0RlWtgBOyEti34zd00ooKbFwiNja2wN01ykhukSQfH6V54PIgJCRoHgSNfFS6USClXAg8DbyEivtfC/SVUh7LGVI/Z3GNn4UqYxwF7AYWAf8At+c6bAAwHdiHqmSoA1wvpdxSYRfyb0GnB+9IMAcrWdvylrM1GFWlQlSObHJaWvWrtfZuBG2+hAb/UzHwMytgx11wepnbUHJVGnTs2AmJxOF0IpF07Nip8isQCkBKyYF/DmDNc2+tNhsH/jmA7NAGPnoD/vgFnhyhpJT3/QMv/N+lFs4nK7AFtc6E1Htjt1o5uHsdwpqAXthIT09j27ZtWvigMijIQEhI0AwEDQ+qxN8ppfxUStlASmmWUnbOnXQopewmpeyWZ/wUKWVrKaW3lDJCSjlEShmfa/szUsqonOPVllL2llJuqsRLqtkIAV4hYCkHBcTCcMsm11Vuy0roqVAqhB4i7oX234L/VZB9XnVe3P+UyjtAdUncf2A/tzZcwq0NlyClZP+B/aXrkliB2Kzq57Zr1CiMTZoQVb++x3oAwkLhmcdhwzJ47/+gbSs4d16FFm64DR77H2zcUmG6A1IYsDvNIMGiO4ev4TwGYdd0Diobl4Hg65vfg6DlIPynqfq0aY3qg8nvkgJidhkUEIvC7AWRdaBOTk+FtIrrqXBZeNWBllOh8QTQ14LUP2HHQJwnvyZm6xZSU1OVkJHRiEGvJzU1la1bt+Ko4i9QnU5HZJ1IourXp3dvFSbo3bs3UfXrE1knMn++g9kEd9wCP85RLZxv6wN6HaxcC/c/rto4z/lWGW/lhEsAqm3btpgtvjikBS8vC1e0r4Ov8TzCWf4qmRolIK8HwZWDcOiQatiUlqa1ev4PoRkFGp7ovZRhoDeqhkoVhSWnp0J4ODiyVU+F6vJmIgTUvg06LILgXuDMRHf8A/rW+5ZgrzPohQN/YzK1zBk5w0WVhw8AIiIiCA+P8BBXCg+PICIiovCdhFAtnD98XTVievpR5U04dAQmvg1db4ZX3oKDh8tljlJKEhMvNXWS6DmZmKpCB1mJkBWvKSRWJbkNBFcVgyvEcOKE6sugGQj/ajSjQCM/OoNqpmT0B/uFimt+k7eM0Z7TcKm6PA9MwdDsTWjxAZjCCPFK5s6mPxBgPotRWOkcuoH69erTuXPnKtcqkFJis9o4fPiwu2nTzp27OHz4MDarrWTx+tAQeOoRWL8UPnkLruykGjF9/Z3yHNz7iOq7cJlhH6fTyfFjx0hISMDHx5s77uiPj483CQkJHDt+EqcuR0TKmpgjn5ymNV6qalwhBj8/ZbQnJSkD4fhxTWr5X4qmi6lRMEIHljDlOchMLF+ho4LO5ZvjurxwAeIvKOPAYqke6myB10OHzsjjnyKSFmLWqy/CBn5HsHvZaF6aTo4VRO62znFxcejrmTlzIs6jV0OJMRqhb0+17DuojIKflsHmGLWE11ZdHAffobwKJUSn01E/KgqAjIxMfvjhRwAiIyOpHxWVY1jp1O+ZzFZdLoUBDEE5/Raqwe/CfxmTSS2gQgwuqWWzGQID1d+ra3sR2O124uPjyapu1UjVGH9/f/ZdZu6Sl5cXdevWxVhCGXrNKNAoGpM/6EyQeVK5+fUVKAnsarhkMkFQkGob62orW9XZ/TpvVh5sT5j1IO2DYxAC9DonDTLeZu1qO9163FnlIQSXYRAXF+deV+bKiJZN4fXxMPZJ+OEXmPstHD4GH30On3yhNA+G3AVdrijRz6h1q1a0bNGClDvvBOCP++6nd+/e+T0trt4KMlt1ZbTrwRiY07dDq6+vcnIbCHY7nDqlhMpMpku9GEymAn8n4uPj8fPzo0GDBlX+N1NTuHjxIn5+fqXeT0rJmTNniI+Pp2HDhiXaRzO9NYrHYFF5BjpDxeYZ5CYgUHVj9A9QXoOMjCqNM0spOZWcTONaBzy+57wMVq71fheZ9H2Vu7pd7Z1zU25tnWv5KcGjVd/D159Bn5vU+uW/wX2PQ8874av5cP5CsXPctctTk2DXrtjC5ygMuVo2p0DmMbCfU/07KpC889HKJYvAaLzUzVGvV90cjx1THR3PnPHszwBkZWURHBysGQSVgBCC4ODgUnllNKNAo2S4Oi1WdJ5BbvQG5TGIilIqbOnpkFk1GepCCFpGnsdLb823zajLRnf0Tdj9IKTn679VKbgMgrg4FTIICAygcePGxMXFlZ9hAOrNr+uV8Ok78MfPKgchLFR5Dya9B136wPOvws7d+X5OuedosVgIDQkp+RxdLZt1XsooyDoGtjNKMbGc2bVrl1uG2TXvrVu3smvXrmL21MBgUAaCr68yFs6dU6GGuDjlTcj5+9UMgsqjtPdaMwo0So4rz8ASoTwGFfCFXCBuAaQo9WWTXvnqiEIIOodtx6jPf81SGEHvA2mxsGsIHH0fHOmVPj+T2eTOIQAVOmjcuDEms6livoTDa6tqhfVL4dN34ZqrIMsKi5bAHUPh9vtgwWKVrJhnjr4+PojLmaPQKUlunbcS28o8DtaUctPWyNufAdD6M1wuer0KI7hkzi9eVAmK2dkq5OBwlNzA79ZNLRoVTqlyCoQQVwN9gKtR0sQWVJOjA8A64Ecp5bnynqRGNcPkD3ozZJxUf+CGSmo9bDBCSCj4+6s3kIsX1ZtJZbS2zYhDXtxbYFdoIe0gTVD7DtVDIXEenFkFDZ6FoBsrLR+iVcuWyFxvYa4cgwp/KzMaoc+NajlyXBkCi5bA7v0w/nV440Olg3DvnbRqlTPHnF0ve45CqPwWKcFxEbJTVb6BIUAlx14mQghMJhM+Pj4cOHAA76go4o8dw8fHB5Opgoyr/wI6ncoNAuU5cDovlSDrdMqA0Okq7W/l9ddfZ/78+ej1enQ6HZ9//jmbNm3ikUcewdu7fPrANGjQgK1btxISEnJZ+8+aNYutW7fyySeflMt8SkqJPAVCiKFCiFjgT+AZVJOig8BfwDngKuAL4KQQYpYQomQZDRo1F7eegan8+yYUh9EEtcNUKaPFogR2KthzIOO/Ul0lC9sus8HgB23ngk8rlRz3z/Owf7Qqr6sk8j60Kv0h1rA+jHsa/lwO778G0R1U34v536teC3c8gPhuCWRY4XwanE4p2xxdxoHBV3X8zIq/1JnxMn4npZTYbDbS0tJIT1fenvT0dNLS0rDZSljaqVE0QqhFp1OLlMpzYLWqJTs7f3dVm02VQCaVvcvnpk2b+Pnnn9m2bRu7du1i9erV1KtXjw8//JCMjIwyH/9yqWoBNBfFGgVCiF3AW8AyoDMQIKW8Xkp5p5TyPillXyllSyAIeBioDewVQgyqyIlrVANcegbmYNV2uLz7JhSHyayMg/r1ctyTaepLpSLIOIROFP5AENIK57eAb0toOwsajgW9L6RuhB13w4nPwVlBc6uOmM3Qvy98+yX8+i0MHQR+vrBzj+q3sGkPxPwD192K8/ul5XNOvZcyDqQjp21z6YWQhBB07twZX19frFYr2dnZWK1WfH196dy5s+YpqAhyGwigjAKb7ZKBMHs2/PUXxMZCo0Ywd26ZTpeYmEhISAhmsxmAkJAQFi1aREJCAt27d6d79+4APP7440RHR9O6dWsmTJjg3r9BgwZMmDCBTp060bZtW/bv3w/AmTNn6NWrF61bt2bEiBEeBmT//v3p3LkzrVu3Zvr06e71vr6+/O9//6N9+/Zs2rSJmTNn0qxZM6688ko2btxYpuu8XEriKfgSaCilHCul3C4LMZWllOellPOklH1R4YXUcpynRnXF3Tehjno7c1RB7bHJrPoq1KuryqDSyt84EB0WsjrjHRYcf54v9jzOl3tH8sWex1lw/HlWZ7wDXWKg3bycwXoIvxs6LIaQW0DaVHvmHQPh3IZynVeNoFljmPA8bP6Vnbf3vKRNJQGbHfH8RHaNHuvOPSgzOlNOZ0bAlpRTsVCyZl9SSmJiYkhPT8dsNmPQ6zGbzaSnpxMTE6N5Ciqa3AaCEEpm+fHHL4UbMjPh0UfL5DHo1asXJ06coFmzZowcOZJ169bx1FNPERkZyZo1a1izZg2gQgyuBNN169Z5JJqGhISwbds2Hn/8cSZPngzAq6++yrXXXsuePXu44447OH78uHv8V199RUxMDFu3buXjjz/mzJkzgPJCXXXVVezcuZPGjRszYcIENm7cyIYNG9i7d+9lX2NZKNYokFJ+JKUs1Te9lHKnlHLF5U9Lo8Zh8gOfBioRLLtyk+zcmL0gPEI1XTKZytVzIKUkJDgEq9WK0ymRUuJ0qqS0kOCQgh8WpmBo+n/QegZYGoP1pAon7B+jXNz/MRwmE6ciamMzeYqoCAntlq5GXt0bXnwdYsupwZQuJwFUZwTb6RKVM+bOKfD29gYh8Pb21nIKqorjx1XOSm6MRvjnn9IlKubC19eXmJgYpk+fTmhoKIMGDWLWrFn5xn377bd06tSJjh07smfPHo+H9IABAwDo3LkzR48eBWD9+vXcd999ANxyyy0EBga6x3/88ce0b9+eq6++mhMnTnDwoKpS0uv13Jmj2fHXX3/RrVs3QkNDMZlMDBpUNc52TbxIo/zQm8CnPmSdBtu5HKGZKihwcRkH1iwlgHQxDUxG5dIuA1JKnDlxP/VwUJ+LfXus1Ul5EZIWKo/BuXWQuhnqDIPIB8qUGFfQHHM/uPJ+rkr0ej11u1yJ/ouFHusdOh3WxlF4HzwC3yxWS+vmcHd/uP1mpZFQFlzljNKpjALbGTD4g7EW6Dx/J3LnFLRo0YJ0b2/qeXmxf/9+d05Bdbmf/wkaNMgvpWy3q0ok13ohPBMVS/Dz0ev1dOvWjW7dutG2bVtmz57tsf3IkSNMnjyZv//+m8DAQIYNG+ZR6+8KPej1erKL6QWxdu1aVq9ezaZNm/D29qZbt27uY3l5eaHXVy8xrhJ/Ywsh+gshZgoh/hJCHMxZ/spZ178C56hRk8hdtuhIr5g2zCXF7AURkSqsYDSWOaxw6vQpDAYjFosFf/8ALBYLBoORU6dPFb+zzgiR90GH7yHkZpBWiP8cdg6Es2vKJVFz7759HvX+Ll2A6tLaWUqJ1c+PmAG9cQpw6gTZBj1b77qZf95+Gfnrt/DgEAjwhz0HYMLbcHVvePYV2LKt7PfIVc6o9wFHmipnzErwSEoUQmA2m2nRogXR0dEAREdH06JFC8xmc7UxCP4z4krh4TB16qUKBYtFfY6IKDgPwWZTxoLTWejvy4EDB9xv6gA7duwgKioKPz8/Ll68CMCFCxfw8fHB39+f5ORkli9fXuxUr7/+eubPnw/A8uXLOXdOFeKdP3+ewMBAvL292b9/P5s3by5w/6uuuop169Zx5swZ7HY73333XYlvU3lSrKdACBEILAW6AseBPcA/OZuDgG7AUCHEJuBWrSRRA8hVtpgAjgz1ZVxVuIwDa5YqZUxLK3UpoxCCunXr4nQ4SE/PQAiBxWLBx8ebunXrlvxhYQqFppMgbAAceRsyDsGBZ8H/amj4LFgur3DH1RDJLXHsE+YhZlQd3nCFEOj1OnY3jaJ+k1AMNgfLbu1LdkAtrtTrEM0aw0tj4LlRsHINLPwR/twCi39RS8MoGHgb3Hmrat50+RO5JNfttCrDQGdSMspV+XtaQnbt2oXVaiU6OhohhFtcyWw2065du6qeXvkzZAhMn64qjH76SRkKucnrHXA4iix3TEtL48knnyQ1NRWDwUCTJk2YPn0633zzDX369HHnFnTs2JEWLVpQr149rrnmmmKnOWHCBO655x5at25N165dqV+/PgB9+vRh2rRptGzZkubNm3P11VcXuH9ERAQTJ06kS5cuBAQE0KFDh1LfqvJAFGdhCiG+AnoAQ6SUfxQy5lrga+A3KeVD5T7LCiQ6Olq6RErKg7Vr19JNE9m4hNMB1lNgO1/icMLazXvodnXripuT2zhIB2PJjAPXW/ehQ4do0qQJ7du3y/e51A9dmQ1Ji+DENFVrL/QQfi/UHaHuVSnJrRior9cKx4m9l9cQqYLIznbw9byvycrKot+SpRiMBn7s2xcpJV5eXtw35D4Mhjyu1OPx8O1P8P1SSD6t1un10P1auPt26HaNMvDKitMO0oZEx/bYI+w7eIJ+c+ez7Ykn8ImI4MCBAzRv3tz9IK4qXAZA7vnk/Vwdfta5WbtnD91aX/p73nf2LC2bNSvdQXr2VP+uWlW6/XJLLF9GmKG6cLm9D1zs27ePlnkatwkhYqSU0XnHluSv6TZgZGEGAYCUcoMQYizwKVCjjAKNCkanB69w9WaWmaTi57riO6lVKLlzDlJTS+Q5cKnx5TYAXMqBl60YKAwQMRhCesPxT+DUT5A4F1KWQf1REHprqXIyhBC0a9fWoyFSu3Ztq81DwmDQYzIasVlVSMmRrd7mdEKHyWjMbxAA1K8Lzz6hlBPX/Qnf/QS//QGr16klNBjuuBXuvg0aNbj8yemMgBEhHXRsXR8DF8gUF8jOzq5WD1whhDusceDAAQ4cOABQbeZXYZTWGHCR++EvpQozuHAZCJUomlQTKMk3jhklUFQcqUAVf9trVEuEAFMA+DZQyV6OqhMI8cDslVPKmCOClJYjglSI96xVy5Yeb90uw6BVWVsnGwOh8cvQdg74tgP7GYh7FWKHwsWS6+3v2buXFSs8i35WrFjBnioqbcqL0+l0Z2TrhHAbCQCBgYE48wrW5MZggJuuh2nvwZ/L4IXR0CgKTp+B6bOhx50w8EHlVUgrQ/WL0COMvrRtdyXC7ASDxKI7T3TH1gWqWVYFuQ0DF/9qg6C8yF3uqNOpEINLNMlmU5+L+h38j1ASo2AT8KIQolDfRc62cSjFQw2NgnGpIBp8csSOqskfoFsEqb7Sai+i8VKFKgb6toI2X0GT18AYCul7YfdwOPgSWJOL3NXpdHL82DESEhLw9rYQEBCAt7eFhIQEjh87VvQDt5LQ6XQYTSZMZhNSSrKzHTgcDkxmE0aTKX/75MIIDYFHHlAdG7/7CgbeDj7eELNTCSNd3RuemwB/xVy2quHOXbFg14ETdDiIjVmJzDyeo95Z9d0w84Y8czdw0ighuQ0El6pibtGkIpIV/82UJHzwNLAWOCaE+AXYzSXPQSDQGrgFcADdS3JSIcRI4DkgApW4+HRR4QkhxL3A80Az4AKwGnhWSpmUa8ydwGtAYyAOeFFK+UNJ5qNRibjDCd6QlaRKwqo6nODCaILQ2qof/IULSlZVCOVFqKy3MCEgtC8EdYOTMyHha0hZrioUIodC5P2XkuRyodPpqB8VhZSQnp6BNTWV7PQMIiIiqR8VVfIHbgXidDqx22zYbXZW3HUntWr5o79wHrvNjt1mw+l0lm6eQkDn9mp55VlYvhq+WwJ/b4fvf1ZL/TpwZz8YcCvUiSj2kFJKVq5axankUzT28sJgMNCwcXN2xsaSdOocPW+8DmHXg6GWWnTGYo9ZnhSVUwCax+CyKSrMUAW9GaqSkogX7QXaA7OBLsAbwLSc5Q3gGmAO0EFKuae44+XIH3+Us29HlHdhuRCifiHjrwHm5py/NdAfaAXMyzWmC7AwZ12HnH+/E0JcVdx8NKoAIVR1gk+UeuuqKrGjwjCaVFfG+vXBPwAyMtRSmW/bem+o/wR0WARBN4EzS5Uw7rgTTi8v1IsRGRnpsS4yMrLaPCR0Oh316tfHr5YfTqeT1NRzOJ1O/Gr5Ua9+/bIZLj7ecNdtsPAL+O0HGPmg6uJ4/CR8MA2u7wf3PQ4/LlNeoJKQ575J9DliSOacDo3HwJp02X0WLgdXyWTuHILo6GiaN29erUomazR5wwyF9Wb4l3oRSvRXKKVMlFI+I6VsAvgAdXIWXyll45xtCSU85xhglpRyhpRyn5TySSAReLyQ8V2AeCnlB1LKI1LKzcAUVBMmF08Da6SUr+cc83WUd+PpEs5JoypwhROMtUosQ1upGIwQFKSEUgICVL5BenrlGgdedaD5O9BqOng3B1syHHoJdg/zyDeQUnLixAm2b9/GtUGz8TWcITMzk+3bt3HixIlq4VqWUpJtz8ZoMGIymfH3D8BkMmM0GMm2Z5ffHBvWV8mJf/wMs6bArb2UTsWfW2DMy3BVbxVm2LI93xe7EIJePXvStm1bMjMzyc7OJi4ujrZt29KrZ0/10BW6S02YnFalTpkVX2mhhXbt2nl4BFyGwb+yHNHF2p5qqQqK6s1Q2hbQNYBSm+ZSyqwcIyFRSllCk1shhDChmiqtzLNpJUoHoSA2AhFCiH5CEQIMRjVoctGlgGOuKOKYGtUFnT5H7Ciy6nonFIfeAIE5xkFwsPoySE+/VAtdGfh3hnZzofErYAyGtN0q3+Cf8ZCVgJQSR7YDm92OkNnohR0zZ7HZ7TiyS6C6WAkIITCajHh7W7BYLG6tB29vC0aTsfzfcvV6uL4rfPwm/LUCXhsHHdqoRMRvf4LBI6D77fDRdDhxSXbaVcWhszsQTon5QlrhVRw686XyUdsp5T2wnVEljhVIlXfDrGycNkjdCRnl03HUNyio2DEffvxx/q6Jeb0ITmc+L8KwoUNZVEXCQ76+pS9lzktJdAoGSCkXl+qgQkQAUTlv9bnXRwIngRuklOtzrX8FpYPQvLA5ALMACyoPYhVwu8soEULYgBFSyjm59nkAmCGlzKdtK4R4BHgEICwsrPOCBQtKc3lFkpaWVi4/mP8mEpx20tKz8PXJHzevVjgdkO0ApHpzrMTvZL0zg/qZi6ib+QN6bDgxEm+5nV3W3lilmUBTChn6SIz206Rl+6PX6QkIDKi8CRZBZkYmWVYrXmYzFm9Lvs+Vgffx44St/p3w1b9jzmlMA5Datg1JPW/iRHQ02VYbljPnSKtbF9+TJ8kMCkAEBuBlKYHglctbIHRKe6L0717/KtKysvDNVe7rHxxMkyZNSnUM79Vt0GWdIDviDrI6zyrznCIiI0lMKNq53aZtW9atXUtwcHDJDiolDoeDJ0aNok+fPvTv31+tLweDzeFwlEgOOSIigsTExHzrDx06xPnz5z3Wde/e/bJ1CqbkPLSnAd9KKc8WNlAIcR1wPzAEeAYoWM+xFAghWqHCBa+h3v4jgHeBz4EHLueYUsrpwHRQ4kXlKTakiReVEelk7drf6daproqr66pxew7pVLkGZ86otwWzOX/zlgrjebDeD8c/QZfyK/UzFxHuXMbWpA5cHfEn6y2TudY6lp/i7sAc2oHro3tXi2TDvfv2YZM22rdr7lbj27lzFyaTpFXTy1NzLDVNw+GmK2HScyqk8P3PsHINAbG7CYjdTVODHuFwopOSdW+/zQ1jx5Jt0LPshcfpNWxoye+j06qaL+kMYAhUVTeieuncVwYFiRf5lUJNFEcWWNUD3HjqV4yZ+yGwQ5nn5eflxdp165g4aRIhwcHs3rOHzp068fWsWUyZOpXExET69etHSEgIa1auZOWqVUx47TWsViuNGzVi5owZ+Pr60qBZMwbddRerfvuN5//3P4wGAxaTCT+zmZiYGMaMHUtaejohISHMmjmTiMhIZnzxBdOnT8dms9GkSRPmzp2L3W6nXbt2HDlyBJ1OR3p6Oi1atODw4cPs3buXsWPHcvr0aby9vZkxYwYtWrTgyJEj3HvvvaSlpXH77ber6ypA5MjLy4uOHTuW6L6U5Le7KbAY+D8gWQixSwgxVwjxvhDiTSHENCHESiHEWVQcvynQM+fBm5cUVJVCWJ71YUBhvTDHAVuklO9KKXfldF8cCdwvhKibMyaplMfUqK4InRL18amvWg5nVxNNg4IQOvDxhXr1lYwyqOZLtkrq92COgKavQ5vZSL8OmHQZdI38EwEEO3ajEw6uq7Oe8LDwauNerjCth8tBr4frusCHr8NfK+GtV5BXdUKf7UCX40HtMmkSAFIIatuyS3cfdeZLhoDtNGQeBWuKMhY0Ss7xBZdi9o4s2PZEucbwt+/YwYeTJ7N3504OHznCxj//5KlRo5Tc8cqVrFm5kpSUFCa99Rarly9n219/Ed25M+9/9JH7GMFBQWz76y8G3323e509O5sn//c/Fi1YQMymTTx4//28OH48WK0MuPVW/t68mZ3bt9OyZUu+/PJL/P396dChA+vWrQPg559/pnfv3hiNRkaPHs2UKVOIiYlh8uTJjBw5EoDRo0fz+OOPExsbS0RE8dU1JaHY1zApZQbwf0KIt4A7gD6oJL9IwAs4A+xHVRQslFLuL+JYNiFEDNATyB106Ql8X8hu3ihDIjeuzy6jZlPOMd7Nc0xNN6GmYvBWrZgzk1USYlV1XCwJQih9A4ulTP0VLhu/NtBqBtvXfkB7r2/QCUlb+ywQEOR1hhPn/kAV5VQPqmU83M8X7r4dcfftyB2xyIEPonM4MeU0yDHas7nq+18RwgS39YGIvO8gRSAM6ndBSiVn7UgF4ZXTa8FSfX+vqwNSwr7XAVcCp4QL+yBpOUT0LZdTXBkdTd266v2yQ7t2HD12jGvz9DrY/Ndf7N23j2tyvMA2m40uuXoYDBo4MN9xD/zzD7v37KFnXzVPh8NBRHg46HTs3r2blyZOJPX8edLS0ujdqxc4HAy6+24WLlxI9+7dWbBgASNHjiQtLY2//vqLgbnOYc1p7LZx40a+/149Ou+//37Gjh1b5vtRYt9szgP9N+AnKWVZssHeB+YKIbagkggfQxkY0wCEEHNyzucKDSwFZgghHudS+OBDYJuU8njOmI+A9UKIF4AfUcZLd+DaMsxTo6rRGcA7UhkFWUkgTKrJUnVFCPCyQESOcXD+PFy8qN5IvbwqtMZZ6HRI4Y1D6tGJbOx4YyQDg85Be8t8RNZtYGlQYef/V9G+DcdHDqf+lC/Z/uSTdPzkE6TZhD7uKLz9MbwzBbpcAf1vht43KoOiJHg0YrKDLQnQgdEf9L6l0uuozi2yy5Xk1SpxMzeOdNj2FNzcq1zCi+ZcLdULa4UspaTnTTfxzdy5BR7Dx8enwH1at2rFpvXr820b9vDD/LhoEe3btWPWnDmsXbcO7HZu692b8ePHc/bUKWJiYrixe3fSMzLw9/dnx44dBZ67vH/uxZqoQgi9EGKiEOIckAxcEEJ8L4QIuJwTSikXokoFXwJ2oB7cfaWUx3KG1M9ZXONnocoYR6GEkxahujTenmvMn6iKhGHALlSuwSAp5V+XM0eNaoRb06CB+v/stJpR/mP2uqSS6OdX4VoHDoeDOnIZRp36QttsHufeZhB25I6BcOQdsFd9E9Pq3PZXSsnKlStZE2DhdPNwUps14fv/Pfz/7Z13eJzVmbfv550mjUbdarbkDm5YBksUm2aKTUkIkJAlgRQ2BQgbUthNNm032Wy+ZDebZENCEkKSXZbegwMBbEpMMcZgG2xhG7nLsi1ZxVYZlann++O8I43Gki1ZZcbWua/rXNK8bc6ckeZ95im/hwfu+Bwbbv006opLessbv/lvcNYyuP1b8PJrEBxCxYHl6tU8CLXEtXHuPObf96ZNm/ooGMYEjTZtGrwk9gnD1h/3r2MSPAS7/2dUnzrT5+tppXzO2Wezes0aduzYAUBHRwfbtm072unMOvVUGhsbWWO3Sg6FQj2S4+1+PyXFxYRCIR58+OGeqgZfVhZnVlby1a99jQ9fcQWOcJistDSmTJnC4489BsQan20E4NxzzyWWKP/ggw/2M4uhMxi/1a3AvwLvAj8DlqNvyP99vE+qlPqtUmqqUsqjlKqIr0RQSi1RSi1JOP7XSql5SimvUqpEKXWjUmpfwjFPKKVmK6XcSqk5Q62YMKQ4Do/OM3DnaYnkUS75GjFiQkhTpkBubm85Y3hkyxmt7t3kexp6HkckMZM/CvWPwrtXw74/6vLPJLBl61Y2btzU54a2ceMmtmzdmpT5JKKUoqGhkWAohNObhsPtwjdtMt3RKJtLJqB+/R/w9kr4yffgnAr9fv71Rfji12HRZfC9H2tFxcEaf2LphFqnT3fN7K7TZY2hln7/xpVSBAIBqqurab/8ctTHPtajaBgIBFLKwBo2rVug5d3+90U6oOq72os4Stz8+c9z+VVXcdGyZRQUFHDvH/7AJz/zGcorKlh0wQV8YKtIDoTb7eaJRx7hn7/7XRZUVnL6mWfy5po1APz797/P2eedx7lLljB7Vt+iu+s//nEeePhhHZKwxZP+eM89/OlPf2LBggXMmzeP5cuXA3DnnXfym9/8hvnz57N///4j5nA8DKYk8T1grVLqlrhttwB3ARlKqTHKqhodTOvk1OOYaxjugq4DgNIfqCcSKqrzDQ4f1t8s00amYkFt/x6qaQWWHXtdlfYzlnT/U+9+XIinEAL2B4crX7doLrx2zKR641s7x1o6Jz5Otgs85ik4cOAAlz/1FJtv+xYHmnYRCYeZOHEiy5Yt6zvH/XXwzAqtlLittzslk0p07sHVV8CpM4Y4iYhORlRRbSw4s8HqDT/FPANld9wBwEu33JLSXRKPu3Xy2ptg32MDi5pZ6TDzNij/8chMNIVp7+oi0+fTocjjYCitkwfjKZhO36RA0JLCDmDKcc3QYBgOznQdTnBmpKYS4tEQCzKzdMXCxLiKhcDwMtKlY3uPQdDvfkLgzNTKiL7TdCfG3f8J710HTSvGRIkvVmkwY8YMdu7cyVNP/TmlDILYHJctW8bpp5+BUvoGHAoGOf30M440CEDf/G+9CZ5/FP76sG7UVFyojYXf/S9c/ndw5Sfg7nv1tkFNwtHrPYgGdFghznswbroktlYd/X872gUNr4zdfMYJg8nS8KGbEMXTbv8csHOiwTCqWA5IL9EJWoF6UJY2Fk4UYhULXi90d0FLi/YgHGdSYrT8YVasWEFt7T4Uivz5Bfy+6hYEoayslMsui9MpOO1e3WBp713QXQPbvwP7/0/3WshZPLoJkbZhsHNn77fqVDEIYmzZupX6+ro+Nc719XVs2epm3ty5/Z8kAnNO1eObt8PbG+AvL8BzL8EH2/X46a9186aPXA5XLoX83GNPxvLooSIQOgTBJpSVzoaq3UxCEVPNWrdu3clnGCxbn+wZjEsGWwszSUSmxwbae3DEdnufwTB2uDO118CRZnsNkt8ieMikpUNxybCSEkUEy7L6Lfc7YrsI5F8Mpz8G078L7kLorIYPvgKbvwht743QCzuSWAghnvgcg2QTa0FdW7sPoXf9amv3Db4FtWXBOZXw4+9p/YN7fgEfWqpDRes3wvf/U7d3/vvb4alntafoWNjeA+XI4MWXVrDt/VfJKHFSVJrL7FOns2HDBp555pmUWcdjcaLM82RgqGs92HqOJwbY/nQ/28afZJchuViuhNJFlzYSTjRiSYk5Ob15B5GINhqcg/i3EsGT5kEQHA4n3nQvCjXwN39xQtFHYcKVcPAx2H8vtL8Lmz8POefB5Nsgo1/l8eMivi3x/Pnze3IKqqqqONhwsLfhUBIRESyHA5fL2SNd7XDqj0nL4Rj6/DxuuPRCPfwd8NKr2oPwxlvw6pt6uN1w0Xlw1TL9M/3oHq+2ti66g5ZWa8kI44oexK2a6GhzaqM4xVUT0xwOmg8fJj83N+nv98mOUorm5mbShqCXMhij4O+Pf0oGwxgRK110pGvDINRuq8mdgMIwDqdu2ZyVpSsVDh8Gf5e+ebj7r2UXEUpLS4lGInR0dCJAeno6GRleSktLj/7h60iDiZ/RSYcH7oe6h6DlDT3yl0HZLeNG40BEKCsro6iwiNWZWTjz8/F21DNz5kzcHvfwbmK+DLjmSj0OHYYXXtFJim9vgBWv6JHh1QbEh5dptUX3kUmgmVmZtLW14vd30tXZzab3dyJEKcyO6NwDV7bOR7CSq+kxkJZCqc/HvsOHaWxqSuLsTiy6g0HSPJ7eTo1DIC0trUecaTAMRtHw/4Y8C4MhWTjc4C2DYAsEGlJf8OhoiAW+TC2l3N0NLYe1q9nl1H0WEj5wQ8EQHR2dzJw5k5aMHHLcM9mxYwehYGhw4jbOTO0dKPmE9hrUPw7NK6H5JSj4EJR+UbdyPt6XY7clfu+9jUxq+QFNr8LO5k9z2mmncfrpC1LmW+Oc2bPZuHFTHynm2PYRIy8XbviYHvUNuqzx2RWwcTMsf16PrExYdhF8eKkWS7KrVIoKi2g42EA0EkVFFV1dXaSnp5NfOEUbAuE2CB8G8YAzR6uDjrH3YNOmTQQCgZ6EyFjFhMfjoby8nGnZ2WM6n4E4UUSgVlVVccZ550E/IkkjTQp3mzEYjhMR8OTqD8Mer4FvVBPoRhUR7VJOT4dgQKskxjqepaWB7dZ2e9zMnDmTBQvKeXXHQRYsKAcY+jdcVx5MvQNKbtSaBo3LofEZaHoOCq+BSZ8HzxBkfuN45W9/I9AdYFK6/vCNqih1dXUcOnyISy6++LiuOZLEch527NgRZ1zN6BGtGZWkyOJC+PyNeuzdB8+u1OOD7fDEX/TIzYbLL0E+tJTyM8/ggN3hTymlE0vz83V7Z8tCN5PFVk1sgBDgyNRGnzW6ypqxOcW0FADwenu0FGbNmpUyN954wyXWnCvecBmvGKPAcPLi8IB3MgQPQ6DxxPYaxHB7IN/Tm3fQ0gJdXeDxMHfOnD4fuLFM/+P+APYUwYzvwqTPQO0ftFFw8EloeEbnIkz6e3BPGPTlotEoB/YfoKOzg9NnRHA6HLS3tdHc3EyGN4NoNJr0To4iQvOhZjIyvJSXz+e1nQ2Ul8+nru4AzYeaR/9mNrkUbvucHjt3w7O2B2HnHnj4KXj4KSLZWcw4dSrujgAhrxtBaG5uZtOmqr7vt+XSQymtlBhutzs2ZtsdSAcvqzwU4ksmq6ur8U6Zwr6ampTSUkg0XCorK1PScEkGJ2DA1WAYAiLgyeuVSQ61nxgyyccilncweTLEuqP5/Ugg0Of1jcgHW1oZnPJDWPAY5F+qu1fWPwLvfgT2/LculRsESilcdoxcKUU4EiEY0qp9LrcrJTLSlVLk5+XT2dnFpk1VAGzaVEVnZxf5efljO8cZ0+CrN8PKJ+Cvj8Btn0NNKcPV2sasdzZRsPcQxdsbuPiF18jfuYeD9QPoIIjovBFnhk4uDR3Wsspd+7SE8CjofIgIFRUVfbZVVFSkzI02ZrjMmjWL6upqHnzwwR6DIFUMl2RhPAWG8UFMJjnYcvJ4DUDnHXgz9IhvwhRVuqRxJL95e6fDqf8JHdth3++11kHdA3DwCSj+O52s6Bq49t7hcHDaaafx/vu6rXOe5zAZLj+ujFJOO+00HMep1jaSxLwrADt37sRR5qG5NskCSyIw5xQ97vgSb/7PfZQ98Syl23ZjRaLMfG8LM9/bQvfyl2DNe1oDofL0/tXvxNG3KVOg3jYafCMaXti4cSO7du3qs2358uVMnz6dBQsWDPv6I0HMMKiOkyse7wYBGE+BYTwhVq/XwLJsr8EJqGswELEmTFOm6BtCIKBDDKEju74Ni4xTYNbPYP4DkHs+RLvhwH2w4cNQ86ujNl2aO2cOWZlZZDg7cTtCLCp5i6zMLOYmSLAmk3jDIEaqCCyJZZE/ZxaT9uwjfjYKSGttR+5/HD55Myy6Av7lJ7DmHein6x+gQwvODC0XHOnUyonde/X7Fz1+9fpoNMquXbuora0lIyODvLw8MjIyqK2tZdeuXYPTehgDYjkE8cQ3mhqvGKPAMP6I5RqkFerGKpHhdAJPQZwubRRMmQJFRYDSxkF398iGTnxzYPYvYf79ccbB/8GGq/o1DqLRKC+8sIID+3fjc3cgAlOzauhsepcXXliRUjeLVBZYmpWegSSWpvq88B//Crd8FiZPgqZmePAJuPFWWHQ5fPfH8Mba/g2Eo4UXQu1DDi9YlsX06dMpKyvD7/dz6NAh/H4/ZWVlTJ8+Pel5I9BrEMRCBjfeeGNPKGG8GwYmfGAYn/RUKGSc+LoGAxFf0hgLLfj92kuSljZyoQXfXG0c+DdD7e+hZbU2DuofhaLrdFjBnQ9Ac3MzM3N29JzqkAgXTHqNFQfKRmYuwySxaVOs+iAmy5wKHoPqrg5OCQb7egqCIbZNKmTW312tZZa3VGuJ5edegppaePhJPXKytQ7CFZfA4rO0uFI8sb4LkFC9kGE3ZvIM6n9kwYIFzJ8/n4ceekhfVoSrr746JQwC0PPxeDx9cghiyZEejyfp73EySY13yGBIFjFdg/Ri7UJNUkvhUUVEqyIWFfdt4ez3Q2gEW1D75sGcX8H8+3o9B3UPwLtXwZ6fY4WbmTiphLNKNmKJ6plaXnoL88vaUuKGESvtjOUQAD1NnIYtXjQCKKXoyvDyzrWXoyxBOSyibhfvXHs5XRle/Q1XBObNhm98GV75s05SvP0LMGMqtLTqEsfPfxXOvBS+/j0tmtTVz999T3jBqxszBeqgaw8EmrR37SjfppVSrF+/nkt//3uyGhsBWL9+fUp9Ay8vL++TQxAzDMZzOSIYT4HB0KuG6PRCV4OWS3ZmpLxc7HHhdEFOLmRn6xvBoUPaOHAeKYh03Pjm2Z6DrbDvD3D4Va2SWP8EZ2XOwxPu7DslCTE3bTmoW7T7OsmMeGnnCCIiuNwu6i44m+ZN67FCEVZ/8nqcxYVMdruOnGN8kuLXvwTbd8ELL8PzL2sdhJhQUnoaXHguXHaRllrOyux7DbGTclUUIu0Qbh2wvFEpxTPPPMOBAweY5fXidDqZNWsW69evp66ujquuuiol1hKOrM5JlXklk+T/BxoMqUJPDwW/3XlRtKFwMpJYtdDeDm12M1RbEGnY+ObA7F9AxzbY90fUoVfIDL/b76EO5UfV/xkp+fjwn3cESNWbhVKKffv20dTUTMghOFxuWpwOaGrGcjiYO2fO0ed6ynQ9bv8i7N7bK6+8cbM2Fl54WStmLj4bLr8ILl3St5ujWL3VCyqi8w+CTTqsEDMQxEFrayvhcLjHm6CUIhwO0xoT3TKkLMn31xkMqYSI3XlxGrgytNcgOoIu9lTEkwYTCnRooaBAJ6P5/TrEMBJknAqzforM+jlqgI8cBwGk9i4ID6Jj4BiQ6OZOJbd3YUEh4XCIaCRKOByhq6uLcDhEYUHh0C40bTLcehP8+T5446/wL/8IZ1dAJAqvroZv/wjOXgaf+CL8z0OwP0EHIVbe6PTpx8FG3Xuh+wBzZ03B7XLQ7vcTDod59913cblczB5JqWjDqGCMAoOhPywnpJdobQMV0TerFLoxjAoOJ2RmQdlkmDhJN1/y+3WYYQQqA1TzixxtBVUkAPv/NOznGS5btm7tU20QSz7csnVrkmemiXVyBHr+Jo+rg2M8E4vh72+Ah++Bt1bAT76nwwlOh27Y9KOfw/kfhqtugF/do0MP8f8PsfwDZwZCBK+zjalFgngDKKJ0d3dRWFiI2538vIx4Utn4SxYmfGAwHA2nF3xTIXAIAs06dnoyiB4djfheC+FQr5xyJKLzDlxHdu4b1GU7tiMMbFwIIah/AnIWQdaZSelVoZQiGAj2VBuQUdSnGiHZ8rcxGWaPx6OrD0R6MulHTIZ5Qh5cf60e7X5YtRpW/k3/3Fytxy9/r0sfly6BpRdBRXlPyEmJi737D7G/rpn50QhClKLuWprrunA5IpTPj/VoSC6m90H/JMUoEJHbgG8AJcBm4GtKqdcHOPZe4LP97OpUSmXYxywB/tbPMXOUUh+MwJQN4xmxIG0CuHzQffDkLF8ciD6Jid26jXO7X3+DHGIrV7XgEVa++CINBxtYOukxLLFYse860hwdVEysZpp3HRLpgC1f0smKE2+CvCVjus4pqWgYRzQaJRgI0NbahojgcDpwOh20tbaRnZU18v0jMn1w1WV6BAKw+m14cRW89Crs3Q9/elCP/Fy4+AJYeiFq8ZmEQ2GmvruVom2NVAciXPfbx3nj8nMJlGSjOnchLrsc2Bqh5NYhopRiz5491NXpkEis98GGDRsoKSlh/vz5SX+vk8WYGwUicj1wJ3Ab8Ib983kRmauU2tvPKV8FvpWwbTXwWj/HzgPihdgbhz9jg8HGkaZFj0Jt2jjAAc70ZM9qbBALvF49ggHwd0Briw4reNJ0ctogCYd7czQUCn/Azfbg5Uw79wdw8HFdqeDfDNu+AWlTYNJNMOEK7aIeA2KGQY+3gNTQJwA7dGBZOJ0OsAREcDp13wjLskZ3jh4PXHy+Hj/6DqzfBC+t0l6Evfvh8eXw+HIkzcNZM6aQt3U7lu2Nd4YjnPfCal4//zzEkQ6RNgi36LwEZ6bWQRhjA6GkpIS6ujomfvWrHHQ42PCpT/VsH88k46vOHcC9Sqk/KKW2KqVuB+qAL/V3sFKqVSlVHxvADGA68Id+Dm+IP1apUej0YRjfxMoXfdPA5R0fiYiJuD2QlwdTp0JxMUNRTCwqLMLhdPLi/r/j9UOfQRAcTidFhUX65lD6eVj4LEz9JriLobsGdv6bbr504P4xSURMZUVDEcHpclFcXILD9gikp6dTXFyC09VPSeJo4XDAWWfAd74Of1sOzz8Kd3wJ5s9FugMUbN6GI6rX6/Tf/AYAZVlMsZyIFUtQzNCGXrgNuvfHSSwHRj1/J6ZJsHDhQlQ0SjgUIhAIsHDhwnHf/2BMjQIRcQMVwMqEXSuBxYO8zBeBzUqpN/vZt05E6kTkZRG5aBhTNRiOjuWyExHLxk8iYiJiabXE0jIoKwOfTyclDtBvISYMVD6/HK9Xl3p6vV7K55f3FQZypEPJ9XDG0zDz3yF9hlbWq/klbPgQ7L1Ll8GNAomKhjm5OcyYoRUNU8EwiHVxbG5uJhKNglJ0dXXR3Nw89l0cY4jArJnw5S/A8vtRb/yV6msuI2q/nTm7dwPgCoYo+uldqJ/8Et5+V1e5SJyBEJNY7t7X10AwjCkyln9EIjIR2A9cqJR6LW77vwI3KqVmHeP8bLRX4dtKqTvjts8CLgLeAdzAp4Fb7ec5IldBRG4GbgYoKiqqeOSRR4b70nrw+/34fL4Ru9545IRcQxUBFQbEHsnF39GNLyMtOU8ejUIkrDs1img3dxxdnV0E4sodPR4P6d6jhGFUlLzQOiZ3PkFOeLN+CpzUey5hX/q1dDpHViK5u7sbFVWke9Pxd4fxpTnp6uxCLCEtLUlrGkdXZxddtgKhZVk9PSPS09OPvo5jhYLDLYdxtneQc7ARb1MTk15/nbytW3F39gpXhbKyaD6zkuZFZ3No4UIiGQmaID3NykQbD2Ixkv9bnZ2ddHZ0kN2sEzRb8vIA8GZk9BitqYK/q0t/Jo5gvshFF120XilVmbj9RDMK/gH4OTBRKXXUJu4i8hwQVkp95GjHVVZWqsROWcNh1apVLFmyZMSuNx45YdcwEtS5BuEOW+UtecU9q97azJJz5iXt+QGdexATRYpGUW43K1etouFgA/Pnz2fBgnI2btxEVVUVhUWFLFu69Nhu2/ZNsP//tEpirMAx90KY+GnIPH3EYtKxhL1V2+tZckrxyCfwDYMtW7f2rZCAHhnmVOk2uXnLFvbW1HDmb37Hxi99k66GXTgL8pjlDzBtZ41OVKzZ13uCy6k1Ei65QI/Sib37VMT2GERBXODMskWS3Mf9fiuleOCBB2htbeUzf/kLmZmZrPvWt1i7di3Z2dl86lOfSqkQwqqqKpacdx5kZIzYNUWkX6NgrD+1moAIUJSwvQioH8T5XwSePJZBYLMW+MTQpmcwDAOHG7yltiJiA4QD9odX6ny4jCluD+Tb+QednXC4BWcggDMUPP6W1ZnlMPvnWiSn7kFoeEYbCIdf1RULJZ+C/IuHJZccu+nGqhCUUmzaVJUyN905s2cfkfMQ254qzJs7l9mzZtF8zz0oSwhk+bjiiitwxPQVvvN12LlHGwcvvwbvVukujm+shX/7Lzh1hpZbvvh8WFje26QppqIYOqTfY2em7s1wHEmK2dnZdHR09NnmdDrJzs4egRU4cRlTo0ApFRSR9cBS4PG4XUuBJ492roicBSwAvjbIpzsdHWowGMaOmCKi0wvBw7p5jOXWlQvjFTv3QDJ8XPzpT/Pu6tXsqaqiZutWok5nj9dgSN/M0qfA9O9A2a1Q96iuWvBvhu3fhr0ToeSTUHi1zmofAqmuU5CY8xDztqRSF0fo9RRUxAlArVy5kslTpjBv7lz9fzJzmh633gSHDsOrb2oD4bU1sG2nHr//P93Z8cLF2kC4YBFkZ+knUREItYI6rL1yDt+gqxhEhKuuuop169bR+eCDdHZ1UV1dTUVFxbhPNEyGf/MXwP0i8ja6tPBWYCJwN4CI3AeglPpMwnk3A9uVUqsSLygiXwP2oDUP3MCngGuAj43C/A2GY2M5bG2DTOi2mywlOaSQCognjTMuupgt+/fjCIVxd3WyYMYMpKtLl7wNteeCKw8mf0mXLTY+q70H3bWw5+dQezcUflQnLXoGV2YWazjk9aYzqeUHNEX/iZ27D+L1puPqr+HQGJPYxTFeVyEVujiCDr1s3ryZlsMtnOVw4HQ6ycjwUlu7j3a/nzmzZx8ZisnLhWs/pEcwBOvehZdfh1de02GGWOMmh0N7Di46T49TZ2gDQEV0FUOoVT92ZGnD3Eob0ECoqqoacLsRLxpDlFKPikg+8D20eNH7wJVKqRr7kMmJ54hIJjoU8MMBLusG/gsoBbrQxsGHlFLPjfD0DYah4fAkhBS69beZFPjwTgZKKdatXweWRcTjpsvjZn1zExWzZiGtrbp6weXSEstDWSNHOhR/HIo+Cofsrozt70Ld/fr3/Eug5AbInH/M+YWCIfwdHUQ8uqK5s7OTqIoSCoaS7imA1O7iCHo+2VlZdPj9BEMhwuEwTU3NuFxOsrOyjj1PtwsWn6XH9+6A3TXwyhvwt9fhnXd7x09/DZNKYMm52kBYVAnpXruTY5vu5CiAI1P3Z7A8PUJYSikCgQAbNmxgYiSCw+Ggo6ODDRs26DLFFHifk0VSvrYopX4L/HaAfUv62dYODJiOrpT6KfDTkZqfwTCiJIYUgs06HupIgUzxMSRmEFRXVzNr1iwqKypZt34dH1RXoxwOKisqkEAAWlt1WaOIFkZyDsF7IA6dU5B/sQ4nHHgQml+C5pV6+OZr42CAvAOtA+AkEokQjSr75tGNy+3C6XKmzI0iVbs4gp7LsmXLeO+9jTwXjZKdk03wQICFCys4/fQFQ5urCEyfqscXPgVt7fDGW/C31Vp2eX8dPPiEHm63NgyWnKvHlDJdJhzp0O2eQXvrnFk6SdHGikRwBYOk+/10nWhVT6PA+PZlGgxjSU9IIQu6G+2QQvqYKfUlm5hGf8wgEBEqK3Tys8fjQcSCtHQ9JoS116ClBfxd2m08RFllfPPg1B9D4CtQ/xgc/DP4q3TeQU2R9iwUXguunJ5TotEotXv34m9vRyboOTscDvzt7dTu3cvcOXNSpgohldmydSv19X1Tuurr69iy1a1zCo6XrEy4cqke0ShUbdXGwd/egE2bdV7Cq2/qZMVpU3QuwkXnwlkLtdEQDUB3HYIiw9nGspZGivfvRwE3/PrX1Nx2Gx0eT0oZWWONMQoMhrHG4YaMSRDuhK56CHWPm14K5fPLj3B9xwyEPjic4MvUIyar3NaqmzK53XoMFk8xTPkKlH7Rzjt4WCsl7r0L9v0BJlwJJZ8A70wsy8Lt8eB0uVBKezfC4Qgutwu3x5MyBkGiezuV3N3RaJS9NTXU1u7D5XLicDixLIvaWl2C2G9OwfFgWbBgnh5fvRkam+E12yh4bY0OO+yugXsfhjQPnGN7ES5cDFPKmJOXh7r7j4hSCGCFQkz73e+Qz/bXamf8YIwCgyFZxDowhtog0AgIWOknfb7BkF3fbg/keSA3Rzdlam05vvBCT97Bx6BljTYOWtdAw5/1yDqTaNH1BANdhEMhROxwgtNBOBQiGAikhF5BfMlkrLvfxo2bUqZkMtba2eVy4nDqW0zs57BbPB+Ngnz42FV6hMO6zHHVam0kbKnWv69aDYCaUkbLxCJ8UdVH1jdiwZ4VjzDzE59CktCPIRUwRoHBkEzEAneOToQKHNI5B5ZrfJcwDkR8U6ZwSIcXDh+G7i5wOrX3YDA3bLEg91w9OndD/SPag9D2DlbbO1ySO4Etah6WCuGQEOlWK3hLKJs8OekGQWLJZHxJYiqUTII2CsrKyigqLGLHjh0I4E33MnPmzLGrkHA64cwz9PjGl6GhUXsPXn0TXn8Lqaklt6b2iNMckSjRSZOQcBuEWuxKBl9couIQq2NOQIxRYDCkApYT0gt1s6WeEsbxk28wZJwuyHTFhRf8Wj1xqOEF7zSY/m2Y/GVo+Auq/jHcgX2cnvsqSkE09CizJtXxZsunCYfCSb/pJrZ2jhkHqdLaOUZMYCk+TBTbnhQKC+C6j+gRDsPGzTQ+uZysV1bjaejto2GFwkz/xx/qaoYLFukKiMzO3kRFK11XMzjSTtr/TWMUGAypRKyEMdIJXQfHVb7BcRELIXjStHJiV7fOPYgp1bk9g2vr7MyEiTciJZ+kZtMjZLQ+zQTXTkoib0MGLPP8D21ci6i5Wmo3iYgI5eXz+8gcl5fPTxmDIFFgqSUjhxz3jNQRWHI6UQvL2dB8kIY50/no40/h7QjQWjQJT9VW0hub4bHlesTyFs5fpI2E006BSBegtOfA6dOGwkkUZjBGgcGQaohoQ2Ac5hsMi/jwQiSspZVj5Y2WBWlpxwwvKITDah6N/g/Iz93JPsf5lEZeJ8tZT1bX71AbHkUKr4WiawctiDTSxNQCY14LpRQrVqzoVQtMMokCS6/uOJhyAkug23g3HGygjTAdmS5WXHEBXHY+Z/myOfVgE/L6W7D+PZ2b8G4V/OoeXf2w+Cw4/xw4rxImTgB1SP/tOXx2O+gTO8xgjAKDIVXpk28Qp/c+zvQNjguHEzKz9AgGtOegrU27jp1OXd7Yz81JRGg+1MSirNUIsNN1NWWR14koi6DKJj10CPb/Cfb/L+SeD8XXQfY5Y+bJiWX2HzhwgGtOeY68vDxeqP0oBw4cAEYws3+YnAgCSz29LR59lHA0QjAYoKKiklNj87ztc7rq5a118PpbOiehphZeeFkPgKmT4byz9TirHDLtXCBJ094nR5qWOT9OEhNbxyLR1RgFBkOqYzkhvcDON4jpGwzvw2Zc4fbokZMLgW6de+D3a2GbmHqijVKKbLUVl/RtlOOQKKgIau7dyME/w6GXexsxeUp1RUPhVeDKHdWXYlkWk6dMAfQNoqmpic7OLiZOnMjkKVNSwiCIkcoCS4PGlwGXXqgHwN592kB4Yy28+Tbs2avHA49rLY3TT4Nzz4ZzK3Sowe3Q4SaHz5Y59wzagHzuuecIBAJcffXVgH6/H3nkEdLS0vjoRz86Wq/YGAUGwwlDj75Bl92iud2OZ5p/40EhEieONKG3vDE+/8DpYHbGG7hU6IjT3VYAOvdoQaRgMzQsh4NPQmAf7L0Tan+r5ZSLrhvRNs6JzJs7lzmzZ9P82j092y677LKUMghSnVjew6aqTSy1tECV2+1hU5XuPjmgV2NyKdx4nR7hMGzaYhsJb8F778P6jXr8Cm1QnF0B554Ji86A6WVgiW0c+I6arBiNRgkEAuzdu5fly5eTO2MGjz/+OLvr6pg2bdqoegzMp4nBcKLhTIeMKXY/hUYIdWnNgxM4jjnmDJB/IM3vk8Hefk9xEIDau6DgCnDnQ+nnYNJnoWU11D8BLW9C0wt6pE/TfRgKPqxldUeQWCvnSXHbNm2qSin3/InAjh07iITD+DIy8Pl8zJ8/n3ff3cCOHTt6QgtHxenUzZkWlmvxpHY/rF2vjYTVa2FXje76+PJr+vjiQrunQwWcswAK8+0OqhlHeBEsy2L69Om0tLSwd+9ewtnZ1NTUkF1QwKmnnjqqBqAxCgyGE5FYPwVXBoTadbMlhf5wMTeGoRGff3DgJygVYsAVjIZ0TsGUr+rH4oDcC/QI1Gkp5YanoWu37tRYcxfkX6oNhMwFw35v+mT2T0rD5/MxIyeFMvvHM5m+vqGG/XXw5jvai/DmO1DfAE89qwfAKdN1r4bFC+HMcsjy9XgRlOWmpqaGYDBINBoFtPcgGAyya9cuKioqRu19NkaBwXAiI5bONXD6epstYTwGx4tqr8YiepQDAtD6dv/7PCUw+TYtp3z4NTj4FLS+BU1/1SN9OhReAwUf6tNvYSjoRMhmvN50fD4fgi5PrKs7QPOhZmMQDIGZM2dSVVWFv6ODru5uqqqqcDpdzJw5c2SeYFIJfPwjeigF1Ttg9ds6H+GdDbB9lx73PaarYsrnwjkL4Zwz4Iy5TC6EAzXNfPyJp9haVkY0GqWzs5OJEyeOzPwGwBgFBsPJQKzZkjtbKyOqiK6nNpUKQ+Pil/jLs8+wd+9eri14iLDHw+8P/gvRri6mFRRw2TnnaC9CIDBwe2fLpXML8i+B7n3ac9DwF+jaBTW/gL2/hryLoegayKocUuWC7sUQprGpCX+uH5/Px6ZNVTQ2NVFUVJR0caUThSOrD8I91Qej4m0Rgdmn6PH5GyEY0jkIb76tQw0b39eP33sf7r4P3G5Kp06isigXj7MbkTAuK0xnJEJNTQ2LFy82ngKDwTAILBekF2kRJEe6TkYUt35sOCa614GTSZMm4QhbIODNyMBXVETU40GmT9cJiu1tOkFRqaMrKKaVarXE0lvg8OvaQGh5E5pX6OGZBIUfgYKrwFM0uEkqRSQcpquzDU+khp173yQSTtNzMZwYuF1w1hl6fO0WXfq47j1tJLz5DrKlmgnbdjNh224AlnzjOziXnMfq8y+isbHR5BQYDIahIuCdCJFuU8Y4BJRSFEwoYP2G9URydRihs7OTjo4OKhZWoBAklqAYjUB3d69Akog2Dlz9ZJRbLsi/WI9AnfYcNCyHwH6o/R3U/h5yFunwQu75R5fQtQWL0iw/Lglwes4rvFp3RcrlkqRyJ8dYbkZVVRVcfz3p6em4u7r0Y5KQm+HL0B0cl5wLQKSxmTW/+g05W7Yza3M1rkCATq+XcDiM0+kkEongcIxOmNAYBQbDyYwjDTLKdJvm7ga7jPHk1W0fEezuiM+2fJYC3wSgUd8gEu8RlgO8GXpEwrpBU2tbnIEwgMSypwTKboHSL0DrWjj4tNY7aFmthzMXCq6EwqvBO+OI0wsLCjl4oAafuwMRmJJVQ/7hJgoLFo7GahwX8Z0cgZTr5AhwsOEgAPPnz+9pLFVVVdWzPZlYE/KoXzCPLWUl5Pub2P7Z29h3YB+WZeFyuYynwGAwDBOnV5cxxvdUcBiNg0REhMbGRgoLC/H7/YDg9Xrx+Xw0NjYO/O3R4dTNmXyZfQ2Eo/VgEAfkLNYjdBiantcGQtdOqHtQj4x5UPhhmHB5T2mjiDA9a1vPZSyJsLj4b+xn2cgvyHGQ2MmRjKKU7uQY8wqkmhRzZlYmRWvWUbSjgeo0H39/z72svO46OmbNGtXnNZ8IBsN4oaenwjSjcTAA8eEDESEjLyF8MJgbWryBEGvxHN+DwRZJ6oMrF0pugOJPQscWHVpoWgEdm2H3Ztjz35C3BAo+zMGDrSzOfwdLdA6BJZDjOcTeQ68CC0ZlXYZCYidHR5mH5tqdKdfJMZWlmEWES8sXoL78L1h2qogrHGbZk09i/exnozpHI4FlMIw3YhoHvqmQXgLRIIT9umLB0BM+0OhP5H7DB4PB6dL6B6VlMHmyVlJUUW0gdHZCOGHNRcA3D6Z/BypWwMwfQfbZoELQvBL54CssyfgxXmdfGWaXFWaO+2lQ4eOY5MgTbxjESJUb7olANBrl7SefJuroe4uOWBYv//GPPdoFo0FSjAIRuU1EdotIt4isF5Hzj3LsvSKi+hkdCcddaF+rW0R2icito/9KDIYTGLHAnaU9B2lFEA2Me+NARPB4PCxcuBCv10ssfLBw4UI8Hs/wbmou99AMBEeaVk+c+1tY+AyUfQnlKcPj6MJhHXlTcFldqIN/Pv75jSCxHIJ4Nm7chEqhCoktW7f2mVNszlu2bk3yzLSiYXhiEVak7/vsiEYJlZaOak7BmBsFInI9cCfwY+AM4E3geRGZPMApXwVKEsYu4LG4a04DnrOvdQbwE+DXIvKxUXoZBsPJQ0wAyTcdPAW2cdChb1jjkPmnzQdFH7cyyt4+UhzLQAglfOP3lEDpF5BZPyM6QNTXZYWw9t4JwUMjN8/joI/q4owZ5OTmMGOGVl1MFcMgPu8hNqfYnIOBYNLnqJQic9o01n/scpSl/w4jbjev3XADuXbYY7RIRk7BHcC9Sqk/2I9vF5HLgS8B3048WCnVCrTGHovIucB04NNxh90KHFBK3W4/3ioiZwP/BDw58i/BYDgJEQs8ueDK0iWMwWZ9o3J4x6w1cLJRSrFu/Tqqt1Uza9YsOsJeygrTqK6uBoHKisqRd4G73L1GQijYT5ljXJLigXuxOMoNIdoNGz6kOzYWfAh85WNeqigiuD3unhyCV3ccTLkkvsS8h1hSZKrkPcTWkOs/CvtrwOvB2rSOtKa24XusjsGY/qeLiBuoAFYm7FoJLB7kZb4IbFZKvRm3bVE/11wBVIqIqb0yGIaC5dDGQcY023PQbYcVTn7PQSx8MGvWLCorKgFtCMyaNWvUP4yBvh6EKVOgoEBv9/t1JUPHNuAY4R0V1N0b3/8cvHs11N4NXTWjO+8TkFTPe6irq6Ou7gB4XOC0UIUF1NTUUFMzuu+ljKWbREQmAvuBC5VSr8Vt/1fgRqXUUWstRCQbqAO+rZS6M277NuABpdQP47ZdALwKTFRK1SVc52bgZoCioqKKRx55ZNivLYbfr6VHDcePWcPhM+JrqCJxSWzjw2sA4O/oxpeRluxpAAqiCiIRujo6CAQDZLlbsBwOulQhgUAAj8dDujedjPAeigKvUBRYhSfa3HOFNuepHPQsodFzPkErb1Rn29XZ1TOniOXCEQ31mWOqEJtnjJSZn4K2tjaCoSC5ra10FRQTEgiEIrjdbvLyhv/+XXTRReuVUpWJ20+0ksRPoT+R7h/ORZRS9wD3AFRWVqolS5YMf2Y2q1atYiSvNx4xazh8RmUNo5GEsEL6SV/KuOqtzSw5Z16yp9GH5599BqvDz0Xeh5BolOj0X/LiqlU4vV6WXHIJUAycA+qfoW09ND4Ph14mK7yNrPA2Tun4I2SfCROugLyLdDOtEWbzli3sPVBDZ2cXjrK5BGq34PWmM3nKFOadMm3En2+oxHIImnf2lkpu3LiJnTu2UJIiIYRotJAVK1aw58ABcrMy2btjG4WnnMY111xzUiUaNqF9X4ki30VA/SDO/yLwpFIqMZOmfoBrhu3nNBgMwyUWVvBNt6sVTCnjWKOUYkJxMa2RMO3BICrNw7t1dbQFghT6fKh2v85JUEobbNlnwczvQ8VKOOUnkHuhzg9pXQs7fwDrlkH1N6H5FZ1gOkJzDAVDdHR00tnZCcS0HjoJBUNJT+KDI/MeYqGEGTNmpEzeg2VZLFvWV5Dq+uuvH1WDAMbYU6CUCorIemAp8HjcrqUcIyFQRM5CK3N8rZ/da4BrE7YtBdYppULHPWGDwXAksWoFVyaE2iHQpL0IjjSjkDjKiAhutxufz0dnVyedXZ1s7d5LxqSJRCdPRiZNAn+7zkFQChwO3Y/BkQYTlukRaoVDL2sPQvsG/fuhl8GRoT0HEy6DrDOPWwpbpLedc2trC+GI7kA4YUI+5eXzU+KGC1q8KBqN9qkyKS+fP+o33cGyecsWqqqq+pRM3n333Zx99tlUVh7h9R8xkvHqfwHcJCJfEJE5InInMBG4G0BE7hOR+/o572Zgu1JqVT/77gYmicgv7Wt+AbgJ+NmovAKDwRBXyjgN0ot1zkGoHaLGDh8tlFIEg0H8fj+RiPbQdHR04Pf7CYbDqLQ0KCiEqVNh4kStqhgM9tVCcGVD0UfhtD/Awr/ClK9CxmyIdEDjs7D1dlh/Oez6MbSuH7InSCnFpk1VdHZ28aFpy8nxtOJ2e+js7GLTpqqU8BSA1imIn09s3qmgUxCJRKiqqqK1tRVfZiZ5eXlkZWfR3NzM2rVre9770WDMzXql1KMikg98D6058D5wpVIqllJ5hF6BiGQCnwB+mLjPvuZuEbkS+G90aeMB4CtKKVOOaDCMNjERJFemlk8ONtmNlzymK+MIIyJUVFSwb98+nqz9hL01QGFhIRUVFb3fwsWCtHQ98vIgGNByy21t0N2l5ZZdbvAUw8TP6NG1B5pWQtML0F2jKxgOPgmuCZB/qfYg+OYfs8RRRHC5XXi96Vh2KWt6ejpebzoutyslPAWJ/Rl6cgpSpD+Dw+FgwoQJALicLlpbW3E5XeTnZ1FcXDxqHRIhSYmGSqnfAr8dYN+Sfra1A0fNhlFKvQqkTpswg2G8EZNPdvl046VAk05MtDzg8CR7dicFSinWr19PR0cHHo8Hr9fb05th/fr1/esoiIAnTY+c3F4thLb23oZNLhekTYGym6H0i9C5XRsHzS9C4ADUP6KHuxjyL4H8peA7rV8DIT6nID03HafTycyZM9mxY0dPTkGyDYNU1ykAuPSSS4hEIjz99PKebbfeeuuoGgRw4lUfGAyGVCfWeMmZAeEubRyE20GcumLBcNzEcgoyMjJ6bq5er5eMjAzc7kEmyMWLJUXCEAhAe7sOL8TyENJnwpSvwOTbwb8ZmldC80sQrO/t4OgpgbxLtBchzkCIJfHNnDkTn9MHUVJOvAh6cwh6ujlCSuU8KKWoqnq/z7a33nqLxYsXj+ocjVFgMBhGD2c6OMsg0g3BwxBs7TUOUuTD90QillPQ3t7OnDlzqKyoZN36dWzdupVgMDj0b+EOJ3id4M3QZabdAejs0EZCJKLDDOlzYOppMOVr4K+Cphd1YmKgDuoe0CPBg9DTgXBz6nUgjLF5yxb2JggBrVixQpdNzp2bpFlplFKsfPFFGg42MH/+fFrSsinOz2H12rXs37+fj3/846O2lsYoMBgMo48jTXdkdOdDsAVChwHLNg5SI9v7REBEaGxsJDMzsyeHIJZj0NjYOLwbhViQnq5HXn5vHkJ7O/i7tBGXNhemLYCpd0D7Ru09aH65rwfBXQR5F+sRCYLqhkC93p4iRKNRNm/eTMvhFsrKSrnssstYsWIFtbX7aPf7mTN7dspUIcQYK4PKGAUGg2HscLghvRA8eXFCSGpcCCGNBEopCgoKqK6u7skhiOUYlJaWjly8PjEPIRzSeQjtdh6CUuCeA1MWwNR/1B6EHgPhINQ/jNQ/jMLiFMfjqO3dbAx9CXeal7lz5gx/fsN+eYIlljaympr485+fpqOzo8/2ZM9v2dKlPcmPzlInexsPcs45i1m0aJEJHxgMhpMMy6kNA1e2FkAKNEO009Y6MO1KBkJEenoyVFdX60ZN0NOrYdRuFk4X+Fy6xDEa6Q0z+P06zOA4BUpPgylfR7VvprH6ETK615DhbGVSZA20w9zo7bSHKlGHPobknKMTUJPIzJkz2bhpI5cUP4qI8GzzR/CkeZg5c2ZS5xUjFnKJz3kYbYMAxpOIucFgSD0sR6/WgXcSoLQHIdKd7JmlLPGGQYxRNQgSsRzg9cKEApgyFUpLddmjikJHJ+KYTkH5v9LsuYaoghrHJdqxYAXIj6xGqu+Ady7RSopNL+gk1DEmlmRYaDecUkqhUBQWFKRMsmFMijmeNWvWjLrOgzEKDAZD8hHRpYwZU/SwPFoIKWxnxBt6iLV3jmfd+nXJEQWKhRmyc3o7OxYXs2XnToojz2AJ7HZdgQhEcNHiOhcy5kC0Sycrbv8urLsUtnwZ6p+AYOOYTDsmVNTU1Gy/DEEQmpqaU0JgKZZoWFVVxYwZM8jOzmb2nNm89dZbPP7446M6PxM+MBgMqYOIXbEwSSepBVsg1KL3mbyDHoOgurq6J2QQewxj7DHoD6cL5XDidO2AaHufr50OQnhDW1CnLUdohcOr4NAqaHsXWtfosfsnurwxbwnkLoH0qaNWpbJjxw66u7txOCwssUhLT6O7u5sdO3Yc0VI5FRgrQ8UYBQaDITXpk5TYDsFDEA2P67wDEcHj8fTJIYiFEjweT0q4vQEmtj2G2zpS7tpBJxz6K2R/CDI/ArkfBfzQ9qY2EFreAv/7euy9C9Im6yZOeRdCZvmIGYVKKaIqSlRFcTld5OXlMaFrArX7aomqaNIFlgZKNDz77EVGp8BgMIxzLKfuzujO1uGEQJM2EqzxKYZUPr+8z00rZhikikEg7dtID+yAfqbjIAD7fwvzPgsRty559AtkXKLHlDB0rofDr8Lh16F7L9Tdr4czG3LPh9wLIOcc3cDpOLEsi3nz5lGzp4ZIJEJTUxOdnZ2UlZYxZeqUlChH7C/RcLQNAjBGgcFgOFEQS+cduHxaKTF42FZKdICVNq70DhJvDKliEACobb/GkoEb9qhoCNn2azjte7YmQp6WXo4pK6pzwHMWTPwnCHwAra/DoVchsE83bGp8FsQFWZWQd4E2FDwlQ57nvLlzmTN7Node+x1Zria8jnYuv/zalDAIYOBEQ1OSaDAYDIk40/WIhiDYpsWQeto3j8/QQsrQuhWL6IC7JdoNjW/03RiTXvZl6iqGQAA6u8BfDq45MOFmCO8H/5vQ8jq0b4rLQ/hP8M7UHoTc88E3b1Bhhliy4SmOdlwSYH72S2zadEZKKC/GDIJYg6aWtGxKJuTy3vta9ng0DQNjFBgMhhMXywVp+Tq8EPLrvINYaMFKM1LKSUBd/CL33X8/zc3NfLz4UUJuN7/Y/Y8A5Ofn8+lPf7qne2K/JHZ4DId0++d2H7jLIOfjEG2FjnXQthpa1kDnDj32/w84cyBnMeSeBzmLwJl15Bztm+7undUsmOhHgEnpO6iuWc1GSLphICI0H2rG602nvHw+r207QGVFJTsaXqG+vt54CgwGg+GoxLdvjvVZCLdjpJTHHkssbrzxRu655x5AAQqlFOnp6dx4441HNwj6w+nSw5uhy1ODAeieAO1FkHkJTAxBVxX434KWNyCwH5qe0wOHTlDMPQ9yztUeBZGepk0VUxrAzocUwiwqeoUa95KU8BTk5+WzY8cONm2qgrR81q1fR3t7O1OnTh3VREhjFBgMhpOHnpJGO7QQatcGQjSs2zdb7mTP8KQnqqI8+OCDBAIBdLahvgkHAgEefPDBY3sKjka8/HJ2jt3lMQhdBdBxNhR8CYJ7oeNtaF8D7e9B+7t67P217r+Qcy7kLqahrpOp7j8jDh3qEBSe6D6CDX+DJDdEim/tPKnlBzRn/iMf1AWZX2Fkjg0Gg+H4sFy6nNGdo6sWgods74HDdGkcRQTBsqwj6uqVUliWhfRXlnC89HR59EL+BDthsRj8c6Hz7yDcBh0bwL8W2t7SfRkanoKGp7ggzUJ7MnpxSohZrieJRr6I5UiuARkzDJpe7d02FjLHxigwGAwnN/FVC5GAbt8cbtWuaMtjEhNHGIXC5/PR2NjI8kOfZmJ2AW53HcFgEJ/Ph0KNrGEQT2LCYjAI3dOg/TLo7oTu7bYXYS3ir+p3FmmOLqT+MZj0qdGZ4yCJ5T1Mittmqg8MBoNhJHF4tCBSNB/CHSYxcRSwxMLj8TBt2jT8fj8gZGdn4/P58Hg8xx86GCpi9Q01RCMQKIOuRdC4Edn6OSB45GkqCHv/Gw69qEMNOYvAN3dM1TT7VB9MSsPhdDJ7znRTfWAwGAyjguXQiYnuLDsxsUU3YgJtHFjmo3E4XHH5Faxbt47qbVp+WUQonVRKZWXlMc4cRSyH1kVIT4ddT6EkghxNOTimrLjv9+DIgpyzIHuRFk7yFI/qVGOJkDNmzMDn9EEEzqw8k7B356grV5q/fIPBML5xpEF6MXgKets4h7qMYXCc9PRn2Kb7M3SEvZQVpun+DJIC/RkA1boFUQMLLAHgmghZZ0L7OxA8AM0v6QG6J0P22dpAyKoYlrriQMydM0dXGWzuVa48aXMKROQ24BtACbAZ+JpS6vWjHO8Gvgd8GpgIHAR+ppT6lb3/JuB/+zk1XSllerAaDIZjE2vj7MqCaEB7D4hqQ8HkHgyaxP4Mr67dknL9GeSSl3no4YcIBALcNP0ZRITIuY9x33334fF4uOETn+yrsti6A9rfBv868G+Arj161D+qwwq+csg+SxsJvrkgJ65BOeYzF5HrgTuB24A37J/Pi8hcpdTeAU57BCgFbga2A0VAouh5JzAjfoMxCAwGw5AR6fUeWB9AWnFv7oE49b4UuLGlMqnen0EpxSmnnMIHH3xAu7+DzEwfGzZswOl0csopp6AAcXvA7YHMLCgpgeDZ0N0Nba3QsgHa12kjoXNLb9njvt9rr0FWJWSfqb0J6dOO6+9ly9atBANBFjhVz5zXrFmDx+OhoqJihFekl2SYM3cA9yql/mA/vl1ELge+BHw78WARWQZcAsxQSjXZm/f0c12llKofhfkaDIbxTJ/cgzZduRCNGt2DY5DK/Rniu0t21nTS2dVJdXc1s2fP7t94SUxaLC2DwOXak3C4Dg6v1UZCxzoI1NoNnexaQtcE20A4S/8cRJ8GpRS1tbU0HGxg5swWSAuwce1zvLX5MKWlpSxcuPDkSDS0wwAVwM8Sdq0EFg9w2jXAO8AdIvIZoAt4HviOUsofd1y6iNQADuA94F+UUu+O3OwNBsO4xpEG6WmgJvTqHoTa9Q3DqCaecMQMg4M1vdsG7c2Il2LOzoHJp0Lweu1JaN4Jh9eAf70ONYSaoOl5PQA8pb0GQlYFuPP7fYqiwiIaDjagQo2QFsW39+fA55g0aVK/x48UkigwMapPJjIR2A9cqJR6LW77vwI3KqVm9XPOC8AS4GXgh0AO8Gtgk1LqOvuYRcCpwEYgE/gqcCWwQCm1vZ9r3owORVBUVFTxyCOPjNhr9Pv9+Hy+EbveeMSs4fAxazgyHHsdla6HV2H7sdBvz+BxjL+jG19GWrKn0S+dnZ24g7UAtEULSEtLw+v1jszFVRQiUbyhPeSG3iM3tJGc8Ps4VUefwzocUzjsmk+Lq5wW13zCVm+vhq7OTtKjNfitUjKi++l2TSE9s38jYqhcdNFF65VSR5SDnAhGwUrgfKBYKdVqb1sGrLC3HeznnJi34G9Kqa8cbU6VlZVq3bp1x/+iEli1ahVLliwZseuNR8waDh+zhiPDoNdRKYh06eTEsO3ANMmJAKx6azNLzpmX7Gn0oadCorq6JyEy8fGIuuejES2k1OmHhg3QslZ7ETo2gQr0PdZ7CmRVorIq2L9rAxNDD/Na+n9xQdc/0eGZg++j7yMj0N5ZRPo1CsY6p6AJiKATBeMpAgbKB6gD9scMAput9s/J6EqEPiilIiKyDjhleNM1GAyGQSACTq8e0XCCrLIJL6QaiRUS8TkGo1IhYTniOj9eBtFLtZHQ1Q4H39Y5Cf4NOmmxczt0bkfqH2aS0n9aM0PLsQQ83Tt447HvcN71Pzk5cgqUUkERWQ8sBR6P27UUeHKA01YDHxcRX1wOwan2z5r+ThC9WuXocILBYDCMHZYzLjkxoFs6h1p0iEGMcmJKkegoHyvHebyRkPthUFfanoQ2OPgWqnkNbfueI8utc+tLI7pi322FOD18DyryQ8Q5OkmuyTBdfwHcJCJfEJE5InInWnvgbgARuU9E7os7/iGgGfhfEZknIueiSxqfUEo12Od8X0QuE5HpInI68Ce0UXD32L0sg8FgSMDhgbR88E0Hbxk4MyDSoRMUo0dK7BrGBqUUgUCA6m3VrFu/ro/gUiAQOKKZ06gTq27ILYTZH0EW/z8cmQU9tuMex9KeQ72Obqzdfxq1qYx5SaJS6lERyUeLEZUA7wNXKqVi3/onJxzvF5FL0cmF7wCHgaeBb8UdlgPcAxQDrcC7wAVKqbdH75UYDAbDIIkPL3gK7PyDWHhBjLTyGBMfLqiurtZqizA6+QTHQ/t2fOHdPQ/3uC5jauRFAByqC977Nky9UQttjTBJ+StUSv0W+O0A+5b0s60aWHaU630d+PpIzc9gMBhGDcsBlt21MRqKyz/oQucfpI1p853xiohQUVHRYxAAVFRUJN8gANh2F0qFBq5jiQbh/R/BGT8d8ac2pqnBYDAkC8ulpZXd2X3zD6Jho544ymzctJFdu3b1KC8qpVi+fDnTp09nQfmCpM7tmL0ZIl1Q//KoPLdJhzUYDIZUID7/IGMyuDIh0qlDDJFuXfZoGBGiKsquXbuora3F5/Nxww034PP5qK2tZdeuXURVNKnzk0te5jnPH/gzd6HyzgFnBtHr2niIB3kq7Um4QcEV60fluY2nwGAwGFIJEXCm65E2QRsEoTZtHESV9i5YbuNBGAaWWEyfPh2Ajo4OHnroIQDKysqYPn06VpLLR5VShMNhGhoaaHf7wQ1vv/029fX1lJaW9ukrMdIYT4HBYDCkKmLp5MT0YsiYDhmTtEch0qFFkiKBY1/D0C8Lyhdw9dVX99l29dVXJz10EKOkuASlFO3+dsLhEG+/8zZKqVGXOTZGgcFgMJwIWA5d0uidCL4ZkD5Rew3C7dpAMCWOQ0Ipxfr1fV3w69evH/tyxH4QEdweN0VFRahIBKUU3V3dlJSUjHr7aRM+MBgMhhONPhUMtoJiqCVOYtltOjgehaPJHMMQGiON4vyCwSANDQ2oTEBBNBqlvr6eqVOnmvCBwWAwGAYgpqCYMVknKaYV67BDuN3OQzAehEQGkjmeNWvWqH8THywHDhygq6uLJw5+gpZwHqAbONXW1o7q8xpPgcFgMJwsxEss93gQWo0HoR/K55f3+cYdMwxSwSBQKFpaWohGo7jdbpxOBy6Xi2AgyqFDh4ynwGAwGAxDpMeDUGZ7EEq09kG4XcssRwLjvswx8caaCgYB6OqIBQsWkJuTSyQSIRyJEIlEyMvLo7KyEmsEuiQOhPEUGAwGw8mO5QR3ph7RiBa/CbVCuEMbBpZLt3pOkZvieEcpRSgUwuV2kZaWhsPhIC09DbfbTSgUGlVPgTEKDAaDYTzRJ0kxAtFuCNo6CCi7k6PHtHpOIiKC2+0mIyNDGwBAhjeDdJ8Pt9ttqg8MBoPBMApYDrAydKmjKrKFkvxaLElFdA8Gh8f0YhhjYtUHfr+f2bNn0xFKo6S4kI2bdxAMBo2nwGAwGAyjTEwoyemFtAKIBuIMhE7AshMVXcme6UlPrDpi9uzZVFZU8ura9zn77LOJWulGp8BgMBgMY4yIbsbkSLOllgNxlQx2u2cxcsujSX/VEYsWLRr1ZEhjFBgMBoPh6Dg8enhy7VLHLgi3xSUqmjyE0SAZ1RHGKDAYDAbD4EmsZOgTZohow8Dy6OMMJxzmXTMYDAbD8WE5wErIQwh39Q0zoLQ3wYQZTgiMUWAwGAyG4ROfh+DJhWjI7uJYo7s6ogBTzZDqGKPAYDAYDCOP5eodmTPtZMUOHWaIdmojwiQrphzGKDAYDAbD6CIWONP1SJsAkaCtiWAbCCqK8SKkBklJFRWR20Rkt4h0i8h6ETn/GMe7ReSH9jkBEdkrIl9JOOZjIrLF3r9FRK4d3VdhMBgMhuPC4bb7MpSCbwZ4J4M7R4ccQnZ3R9ObISmMuadARK4H7gRuA96wfz4vInOVUnsHOO0RoBS4GdgOFAHpcddcBDwKfB94Cvgo8LiInKuUWjtar8VgMBgMwyTRixAN2V6EdrvkMWpXNBjhpLEgGeGDO4B7lVJ/sB/fLiKXA18Cvp14sIgsAy4BZiilmuzNexIO+xrwN6XU/7Mf/z8Rucje/skRnb3BYDAYRo9YHoIrUxsE0WBcRYNf5ytaDqOLMEqM6YqKiBuoAFYm7FoJLB7gtGuAd4A7RGSfiGwXkV+JiC/umEX9XHPFUa5pMBgMhlRHrN5qBt9U3QI6YxI4M21jwa+HCTWMGGPtKZgAOICDCdsPApcOcM504DwgAHwMyAF+DUwErrOPKR7gmsX9XVBEbkaHIigqKmLVqlVDeAlHx+/3j+j1xiNmDYePWcORwazj8BndNbQ1EFQEiGovAtjVDCdPRYO/I8CqN9YyFt/jT4TqAwv9Vt+glGoFEJEvAytEpEgplWgMHBOl1D3APQCVlZVqyZIlIzbZVatWMZLXG4+YNRw+Zg1HBrOOw2fM1lAp7T2IVTVEuuwdVm9I4gRl1VtVLDnvbN3NcpQZa6OgCYigEwXjKQLqBzinDtgfMwhstto/J6M9AvVDvKbBYDAYTiZEens0uLN1PkIkoI2DWEUDAjhsI+FE+E489oxpToFSKgisB5Ym7FoKvDnAaauBiQk5BKfaP2vsn2uGeE2DwWAwnMzEqho8eeCbAr6Z4C3VBgMRnYsQatdJjCqS7NmmDMkwlX4B3C8ib6Nv+Lei8wPuBhCR+wCUUp+xj38I+Bfgf0XkB+icgjuBJ5RSDfYxdwKvici3gKeBa4GL0LkIBoPBYBjvxPdpYILu9hgN2i2h20B1ghItnuRwj1sRpTE3CpRSj4pIPvA9oAR4H7hSKRX71j854Xi/iFyKTi58BziMvvF/K+6YN0XkE8CPgB8CO4HrjUaBwWAwGPrFcurh9Nr6CDEjocOuaOiyGzk5x1W4ISmvUin1W+C3A+xb0s+2amDZMa75BPDESMzPYDAYDOOMeCOBgr6ehLAdZkA4GRIXj8b4MH0MBoPBYBgKfYyECRCN9LaGjukjACDaQBDXSdHYSdQ4F3wQkUZ6ExZHggnoKgvD8WPWcPiYNRwZzDoOn5N2DS1BRLAcFpZDsBBbNgGUUozYzTWqmBCNcjCqiI7UNYEpSqmCxI3j3igYaURknVKqMtnzOJExazh8zBqODGYdh49Zw+EzlmtohKMNBoPBYDAAxigwGAwGg8FgY4yCkeeeZE/gJMCs4fAxazgymHUcPmYNh8+YraHJKTAYDAaDwQAYT4HBYDAYDAYbYxQYDAaDwWAAjFEwYojIbSKyW0S6RWS9iJyf7DmlEiJygYj8RUT2i4gSkZsS9ouI/EBEDohIl4isEpF5Ccfkisj9ItJqj/tFJGcsX0eyEJFvi8g7ItImIo0i8oyInJZwjFnDYyAi/yAim+x1bBORNSLyobj9Zg2HiP23qUTkrrhtZh2Pgr02KmHUx+1P2voZo2AEEJHr0U2Zfgycge7O+LyITD7qieMLH7rPxVeBrn72fxP4R+B24EygAXhRRDLjjnkIWAhcbo+FwP2jOOdUYglaGnwxcDEQBl4Skby4Y8waHpt9wD+jX3cl8ArwtIiU2/vNGg4BETkHuBnYlLDLrOOxqUb3/4mN+XH7krd+SikzhjmAtcAfErZtB36S7Lml4gD8wE1xjwWoA74bty0daAdusR/PARRwbtwx59nbZiX7NSVhDX1ABLjKrOGw1/IQcItZwyGvWza6+dxFwCrgLnu7Wcdjr90PgPcH2JfU9TOegmEiIm6gAliZsGsl+lud4dhMA4qJW0OlVBfwGr1ruAhtTLwZd95qoIPxuc6ZaE/fYfuxWcMhIiIO0d1Vfeg1MWs4NO5Bt7D/W8J2s46DY7odHtgtIo+IyHR7e1LXzxgFw2cC4AAOJmw/iH5jDccmtk5HW8NioFHZJjGA/XsD43Od7wTeA9bYj80aDhIRmS8ifiAA3A1cq5SqwqzhoBGRLwIzge/1s9us47FZC9yEdvt/Ef2a3xSRfJK8fqZLosFwgiEiv0C7Cs9TSkWSPZ8TkGrgdLT7+zrg/0RkSRLnc0IhIrPQ+VPnKaVCyZ7PiYhS6vn4xyLyFrAL+CzwVlImZWM8BcOnCR3bLUrYXgTUH3m4oR9i63S0NawHCkR6e5PavxcyjtZZRP4b+CRwsVJqV9wus4aDRCkVVErtUEqtV0p9G+1x+TpmDQfLIrSHdLOIhEUkDFwI3Gb/3mwfZ9ZxkCil/MBm4BSS/HdojIJhopQKAuuBpQm7ltI33mMYmN3oP+SeNRSRNOB8etdwDTr2uyjuvEVABuNknUXkTnoNgg8Sdps1PH4swINZw8HyNDpT/vS4sQ54xP59G2Ydh4S9PrPRCYbJ/TtMdhbmyTCA64Eg8AV0Vuid6CSQKcmeW6oM+w/4dHt0Av9q/z7Z3v/PQCvwUeA09AfMASAz7hrPA1X2H/8i+/dnkv3axmj9fgO0ocsRi+OGL+4Ys4bHXsf/QH+4TkXf2H4CRIErzBoOa11XYVcfmHUc1Hr9DO1dmQacDTxr/39PSfb6JX1xTpYB3AbsQScvrQcuSPacUmmg6+xVP+Nee7+gy3TqgG7gVeC0hGvkAg/Y/zxt9u85yX5tY7R+/a2dAn4Qd4xZw2Ov471Ajf1/2gC8BFxm1nDY65poFJh1PPp6xW7yQWA/8CQwNxXWzzREMhgMBoPBAJicAoPBYDAYDDbGKDAYDAaDwQAYo8BgMBgMBoONMQoMBoPBYDAAxigwGAwGg8FgY4wCg8FgMBgMgDEKDIaURUQWichjdie1oIg0i8iLIvJZEXHYx9wkIkpEpsadt0dE7k241lUiUiUi3fbxOSJiicgvRaRORKIi8vQovpap9vPedIzjYq9n5mjN5XgRkWtE5I5+ti+x53xpMuZlMIwkpiGSwZCCiMjXgF8Ar6DVzWrQYiXLgN8BLcDyAU6/Fi1mEruWE3gQLX/6D2jBlHZ0M6CvAv+Ilk1tPuJKhniuAS5Fvy8Gw0mJMQoMhhRDRC5A33juUkp9JWH3crtLYsZA5yul3k3YNAnIBB5TSr0W9zxz7F9/qZSKjsC8PUqpwHCvYzAYkocJHxgMqcc/A4eAb/a3Uym1Uym1aaCT48MHIvIDtPw2wJ9sN/cqEdmDllEFiMS79kWkRETuE5EmEQmIyCYR+VTCc8Tc/BeIyOMi0oLuEY+IeEXkt3a4wy8ifwFKj2MdBkREbhaRjXY4pElE/iQieQnHKBH5kYh8RUR2i0i7iLwqIvMSjnPYx9WJSKeIvCIis+3zf2Afcy+6re0ke7uy1zAer4jcZc+nSUQeEJGckXzdBsNoYzwFBkMKYecKXAQ8rZTqHoFL/hF4H3gc+BHwV3RowQN8BbiJ3k5rO0UkA62zngt8B6gFPgXcLyJepdQ9Cdd/EHgYHYqIfZ78Ht0k7N+Ad9Dd3h4agdcCgIj8Bzrk8SvgG2hPyI+A00RksVIqEnf4p4BqdJjEDfwX2tsyWykVto/5N/u1/he6F0IF8JeEp/13oAA4E/iIvS3RK3InurHNDcAs4KfotuqfHc7rNRjGEmMUGAypxQQgHZ1DMGyUUvtE5D374U6l1FuxfSKy3z4mftuX0T3dL1JKrbI3Py8iRcCPRORPCTfdJ5RS34w7fxb6pvhdpdR/2JtXiogPuHW4r8dOqPwG8G9KqR/Gbd8GvAFchW7tGyMEfFgpFbKPA20gnQW8KSK5wNeAu5VS/2yf86KIBIGfxy6ilNopIo1AMH69EnhNKXW7/ftKey2+ICI3KdNkxnCCYMIHBoMhnguA/XEGQYwH0N+U5yZs/3PC47PRnyuPJWx/ZITmt9S+/oMi4owNdOiiHT3/eF6MGQQ2VfbPyfbP+ej8jMcTznviOOb214THVWiPTNFxXMtgSArGU2AwpBbNQBcwJUnPn4du15pIfdz+eBKPLbF/HkzYnvj4eCm0f+4YYH9+wuNDCY9jLv80+2dsvg0Jxx3PfI/1XAZDymOMAoMhhVBKhUVkFbA0Sdn8h9Dx8ESK4/bHk+gWjxkJRcCuuO0j9W05Vja5DDh8lP2DJTbfQmBz3Hbz7d4wLjHhA4Mh9fgP9Dfen/a3U0SmiUj5KD33q0CpiJybsP0G9LfpLcc4fy0QBf4uYfsnRmZ6vGhff7JSal0/Y/cQr1cFdAAfT9ie+Bj0N//0oU/ZYDhxMJ4CgyHFUEq9Zivn/UJE5gL3AnvRFQGXAF9A36QHLEscBveiM/WfEpHvAvuAG9Gx/FsSkgz7m3u1iDwE/FBELHT1wTLgyiHO43IRqU/Y1qqUelFE/hO4y07kexXoBsrsOf5RKfW3wT6JUuqwiPwS+I6ItKOrDxYCn7cPiddv2ALkiciXgHVAt1KqCoPhJMIYBQZDCqKU+qWIvA18HfgZuiqhHX0zugV4ZpSet0NELkR7Kf4DLXpUDXxaKfXAIC9zC+AH/gldBvgK2oh5YwhT+XU/2zYDpymlviMiW9HqjP+ADmHUAi8D24fwHDG+DwjaEPgK2ttxE7AaaI077o/AOcCPgRx0hcjU43g+gyFlEVMpYzAYDH0RkevQFQkXKKVeT/Z8DIaxwhgFBoNhXCMiZwMfQnsIutHiRd9Ce0gWG40Bw3jChA8MBsN4x4/WN/gHIAudUPkY8G1jEBjGG8ZTYDAYDAaDATAliQaDwWAwGGyMUWAwGAwGgwEwRoHBYDAYDAYbYxQYDAaDwWAAjFFgMBgMBoPBxhgFBoPBYDAYAPj/r1IhzJooRcgAAAAASUVORK5CYII=\n", "text/plain": [ - "
" + "
" ] }, "metadata": { @@ -240,34 +231,31 @@ "text": [ "---------------------------------------------------\n", "Experiment: InterleavedRBExperiment\n", - "Experiment ID: f7136452-6d21-4f01-863d-080f0b82c29c\n", + "Experiment ID: 3d9e4cc7-4d19-4fb2-aa03-250502c3fc5c\n", "Status: DONE\n", "Circuits: 200\n", "Analysis Results: 1\n", "---------------------------------------------------\n", "Last Analysis Result\n", - "- popt: [0.69722312 0.96960905 0.98331924 0.25887581]\n", - "- popt_keys: ['a', 'alpha', 'alpha_c', 'b']\n", - "- popt_err: [0.01166472 0.00182016 0.00341327 0.00568909]\n", - "- pcov: [[ 1.36065800e-04 -1.68564398e-06 -1.45989199e-06 -2.48308105e-05]\n", - " [-1.68564398e-06 3.31297578e-06 -1.71071499e-06 -4.66622029e-06]\n", - " [-1.45989199e-06 -1.71071499e-06 1.16503800e-05 -3.69833061e-06]\n", - " [-2.48308105e-05 -4.66622029e-06 -3.69833061e-06 3.23657136e-05]]\n", - "- reduced_chisq: 0.09217768064462115\n", + "- a: 0.7018166470616463 ± 0.013842937481811897\n", + "- alpha: 0.9674076477807713 ± 0.0019613212271226686\n", + "- alpha_c: 0.9839420933451414 ± 0.003139693311241397\n", + "- b: 0.2634578645861757 ± 0.005672249419711346\n", + "- reduced_chisq: 0.13222172753275133\n", "- dof: 16\n", "- xrange: [1.0, 200.0]\n", - "- EPC: 0.012510569516598985\n", - "- EPC_err: 0.002559948969898621\n", - "- EPC_systematic_err: 0.03307585556038997\n", - "- EPC_systematic_bounds: [0, 0.04558642507698896]\n", + "- EPC: 0.012043429991143967\n", + "- EPC_err: 0.002354769983431048\n", + "- EPC_systematic_err: 0.03684509833769914\n", + "- EPC_systematic_bounds: [0, 0.048888528328843106]\n", "- success: True\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY0AAAERCAYAAACHA/vpAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/d3fzzAAAACXBIWXMAAAsTAAALEwEAmpwYAACOW0lEQVR4nOyddZwV1dvAv2dubycbdMfStSBISKpYKKJioIA/xe5ABUVQbGxBBF8LFUwahAWpBRaQ7oYN2K7b5/1jdi97t7hLx3z5zOfeOTVnzl7mmXOe5zyPkFKioaGhoaHhC8qF7oCGhoaGxqWDJjQ0NDQ0NHxGf6E7oKFxulgslhSr1Rp1ofuhoWE2m1MLCwujL3Q/zgdC02loXKoIIaT2+9W4GBBCIKUUF7of5wNteUpDQ0NDw2c0oaGhoaGh4TOa0NDQ0NDQ8JnLWhEeEREh69SpU+V6+fn5+Pv7n/0OXcZcaWP2+eef8+6775KcnExcXBwfffQRV199daV1fvnlF8aPH8+uXbuIjIzk0Ucf5bnnnvMqY7fbefPNN/nuu+84duwYUVFRPPvsszz++OMAOBwO3nrrLb799luOHj1K48aNmTBhAv379/dqJzk5mRdffJE5c+aQm5tLvXr1+OKLL+jevfvZHYgSZGZm8vjjj/PXX38BcOONN/LJJ58QEhJSab1TjaWUktdff51JkyaRmZlJfHw8n332GXFxcZ4ykyZN4qeffmLDhg1kZ2ezf/9+Sv/f37VrF88//zzLly/HZrMRFxfHmDFjyozd6dK+ffuLSsF2Jv8nk5KSTkgpI8vNlFJetke7du3k6bBkyZLTqnclcyHGTP35nn+mT58u9Xq9nDRpkty2bZt89NFHpb+/vzx48GCFdebMmSN1Op387LPP5N69e+WsWbNkTEyM/OSTT7zKDRw4UHbo0EEuWLBA7t+/X65evdprbJ9//nkZExMjZ82aJffu3Ss///xzaTab5fr16z1lMjMzZd26deU999wjExMT5b59++SiRYvktm3bfL7HJUuWyNq1a/tcXkop+/fvL5s1ayZXrFghV65cKZs1ayYHDBhQaR1fxvLtt9+WAQEBcsaMGXLz5s1y0KBBMiYmRubk5HjKfPjhh3L8+PHyww8/lIDcv39/mWs1bNhQ9uvXT27cuFHu3r1bPvPMM9JoNMo9e/ZU6T7L40L9FivjTP5PAutkBc/VC/5gP5eHJjTOH5ei0MjPz5cjRoyQQUFBMjw8XL788ssyNzdXWiwWeeDAgQrrdezYUQ4fPtwrrUGDBvLFF1+ssM6dd94pb775Zq+0jz/+WNaoUUO63W4ppZTz58+XQUFB8vjx4xW2ExMTIz/66COvtIEDB8ohQ4Z4zl966SV51VVXVdiGL1RVaGzbtk0Ccvny5Z60f//9VwJyx44dFdY71Vi63W4ZHR0t33zzTU9+QUGBDAgIkF9++WWZ9tauXVuu0Dh+/LgE5OLFiz1pDodDKooif/31V5/vsyKuJKGh6TQ0rljuv/9+Fi9ezKJFi/jpp5+YOHEijz76KE2bNqV27doAHDhwACEE06ZNA9Tlo6SkJPr27evVVt++fVm5cmWF17LZbJjNZq80i8XCkSNHOHjwIAB//PEHHTp04IMPPqBGjRo0bNiQxx9/nLy8vFO2s3z5cs/5H3/8QXx8PIMHD6ZatWq0bt2aTz/9VH1LPEesWrWKgIAArrrqKk9aly5d8Pf3r3BcfBnL/fv3k5KS4lXGYrHQrVu3Sse7NOHh4TRt2pTvvvuOvLw8XC4XkyZNIjAwkC5dulTlVq94NKGhcUVy4sQJfv31V0aPHk2HDh3o06cPt99+O99++y233HKLp5zBYKBx48YEBwd76rlcLqKivPcURkVFkZKSUuH1+vXrxx9//MGCBQtwu93s2rWL999/H1D1DwD79u1j+fLl/Pfff8ycOZNPP/2UefPmMXToUK92PvroI3bu3Inb7WbhwoX89ttvnjaK2/n888+pV68e8+fP54knnuDFF1/ks88+q7B/hw4dIiAgwHNce+21ZdIeeuihCuunpKQQGRmJECe3KgghqFatWoXj4stYFn9WdbxLI4Rg4cKFbNmyhaCgIEwmE2PGjGHu3LnExMT43I7GZa4I19CoiD179iClpHPnzp60+Ph4pk6dysCBAz1p1atXZ8eOHWXql3w4grrMWzqtJCNGjGDv3r3cdNNNOBwOgoKCeOKJJxgzZgw6nQ4At9uNEIIff/zRI6Q+/fRT+vXrR2pqKlFRUUycOJERI0bQrFkzhBDUr1+f+++/n6lTp3qu5Xa7ad++PW+99RYAbdq0Yffu3Xz22Wc8+uij5fYvNjaWjRs3es4TExN54YUXSEhI8KQFBQVVeH/ljYkv41JevfLqVHW8y+vHyJEjCQ8P599//8VisfD1119z6623snbtWqpXr+5zW1c62kzDB87ltF7jwmAymQAwGo2etKioKEJDQ2nWrFmF9SIiItDpdGXectPS0sq8DZdECMGECRPIy8vj4MGDpKSk0LFjRwCPlU9MTAzVq1f3CAyApk2bAupMACAyMpI//viD/Px8Dh48yI4dOwgICKBu3bqeOjExMWXuoWnTpp42ykOv19OgQQPPUb169TJp1apVq7B+dHQ0aWlpXv9XpJQcP368wnHxZSyjo1XPHFUd79IsXryYv//+m59++okuXbrQtm1bPv/8c/z9/b0Ersap0YRGKRISEsjJyfH8+KWUzJ8/3+uNS+PSp27duiiKwu7duz1pf/31F5mZmWRnZ1dYz2g00q5dOxYuXOiVvnDhQq/1/IrQ6XRUr14do9HITz/9ROfOnT0P4y5dunDs2DEvHcauXbsAPDqWYsxmM9WrV8fpdDJz5kxuuukmT16XLl3YuXOnV/ldu3aVaeNs0rlzZ/Ly8li1apUnbdWqVeTn51c4Lr6MZd26dYmOjvYqY7Va+ffff30a72IKCgoAUBTvR56iKLjdbp/b0UCzniqJ2+2Wc+fOlT/++KOcO3eu53zMmDGec43yuRStp2677TZ5zTXXyPz8fLljxw4ZGBgoY2Nj5Xfffecpc+TIEdm4cWP522+/edKmT58uDQaDnDx5sty2bZt8/PHHpb+/v5fF1YsvviivueYaz/nx48fl559/Lrdt2yY3bNggH3/8cWk2m2ViYqKnTG5urqxRo4a87bbb5JYtW+Ty5ctlXFycvO222zxlVq9eLWfOnCn37t0rly1bJq+55hpZt25dmZmZ6SmzZs0aqdfr5Ztvvil3794tf/nlFxkUFCQ//fTTCsfC6XTK5OTkSo+srKxKx7N///6yefPmctWqVXLlypWyefPmZUxuGzdu7GVm7MtYvv322zIwMFDOnDlTbt68WQ4ePLiMyW1ycrLcsGGD/OGHHyQgZ8+eLTds2CDT09M94x8eHi4HDhwoN27cKHfu3CmfffZZqdfrZVJSUqX35Qtn+ls8F2gmt+dBaEgp5eLFi+Wvv/4qx4wZ4zm+/PJLL1M9jbJcikIjNTVV3nzzzTIsLEyGhYXJ999/X86ZM0fGxsbK0aNHSyml3L9/vwTk1KlTvep+9tlnsnbt2tJoNMq2bdvKpUuXeuXfd999Xiarx48fl506dZL+/v7Sz89P9urVS65evbpMn3bs2CH79OkjLRaLjI2NlSNHjvR6OCYkJMimTZtKk8kkw8PD5T333COPHj1app1Zs2bJli1bSpPJJBs2bCgnTpxY6UtP8X1Wdtx3332Vjmd6erocMmSIDAwMlIGBgXLIkCFewkxK9W9WPLbFnGos3W63HD16tIyOjpYmk0l269ZNbt682avM6NGjy+1zyb/b2rVrZd++fWVYWJgMDAyUHTt2lLNmzar0nnzlShIal7WX2/bt28t169b5XF5KdSkqMzPTsyxQTHx8PP369auS8u1KIiEhgR49epzXaxZ5Fj2v19TQKI+L8bd4Jv8nhRBJUsr25eVpOo0SCCHo27cvBoPBKz06Opq+fftqAkNDQ+OKRxMaJZBSsmDBAhwOh1d6SkoKCxYsuOjeJDQ0NDTON5rQKIEQguTkZBRF4d/du/m3yLLGYrGQnJyszTQ0NDSueHze3CeEuA+4E6gFmEtlSyll/bPZsQuB2+0mOTmZunXrMmH+fIRQSOzSlbS0VJKTk3G73WVM9jQ0NDSuJHwSGkKIV4HXgS3ARsB2Dvt0QVmyfTsRMTHoXC5MLjuLFy0k02KhZ9EmKw0NDY0rGV9nGsOAiVLKp85lZy40QghybTaqzU2imSsH/eNuvvvyd8bVbkubu+7Slqc0NDSueHxdawkH/j6XHbkYEEIQZrVy7W9fY+zjQmksMd8pGbVxI0EFBZrQ0PCJzMxM7rnnHoKDgwkODuaee+4hKyur0jq5ubk8+eST1K5dG4vFwlVXXcXatWu9yuTl5fHYY49Ro0YNLBYLjRs35sMPP/QqM2LECOrXr4/FYiEyMpKbbrqJ7du3e/Ldbjc33ngjtWrVwmw2ExMTw913383Ro0fP2v1XxNKlS2nXrh1ms5l69erx5ZdfnrKOL2N56NAhbrjhBvz9/YmIiODxxx/Hbrd78rdt20bPnj2JioryXPvll1/2KlOS5cuXo9frad68+Rnd7+WKr0JjKdDqXHbkYsDtdhOZlYU0C+iPOjptwFUbjq9Zo7kb0PCJu+66i/Xr1zN37lzmzZvH+vXrueeeeyqtM3z4cObPn8+3337L5s2b6du3L7179/Z6mD/99NPMnj2b7777ju3btzNq1ChefPFFvvvuO0+Z9u3bM23aNLZv3878+fORUtK7d28vi8BrrrmGX375hZ07dzJz5kz27dvn5dnXF4YOHcqYMWN8Lr9//36uu+46rrrqKjZs2MBLL73EY489xsyZMyutd6qxdLlcXH/99eTm5vLvv//y008/MWPGDJ555hlPGaPRyH333ceCBQvYuXMnH330EVOmTOGVV14pc73MzEzuvfdeevXq5fO9XXFUtOuv5AE0ADYB9wIRqI9Tr8OXds73UdUd4S6XS17Tr590XKNI+TVS/oCU3yFdbyA/e/UV6XK5qtTelcTFuiP8dAMtlWTWrFmyY8eO0mw2y7CwMDlgwABZWFhYbtnTCUZUUFAgdTqd/OOPP7zS27ZtK0eNGuU5j4uLk6+99ppXmW7duslHHnmkwr7/999/pwyE9Oeff0qgwnsqj/vuu6/Mzu7KeP7552WDBg280oYNGyY7depUYR1fxnLOnDlSCCEPHTrkKfPdd99Jk8kks7OzK2z7qaeeKvfat9xyixwzZowcPXq0jIuL8/n+fPktnm8udBCmXUBzYCqQCjhKHeXP8y4xhBCkm00U3mkAS1GiAo6aCiGB+7TlqUsQXwItVca8efO46aab6NOnD0lJSSxZsoTu3bt7Zp1jxozx+l2cTjAip9OJy+U6ZXClrl278vfff3P48GEAVq5cycaNGyuMcZ2fn8/UqVOpVatWmXjZxWRkZPDDDz8QHx9f5vpnk1WrVpUJttSvXz/WrVtXZl9UyTqnGstVq1bRtGlTatas6dWuzWYjKSmp3Hb37NnDvHnzysRL//zzz0lJSSl3BqJxEl8V4W+g+nK5rHG73fSvm4fR4n2rJqOb66Nm43ba0RlMF6h3GlWlONDSt99+S4cOHQC4/fbbmTp1KmPHjvWpjbFjx3Lbbbfx5ptvetJatmzp+R4REUHjxo0956cTjCgwMJDOnTvz5ptv0rx5c6Kjo/npp59YtWoVDRo08JT7+OOPeeihh6hVqxZ6vfpf95NPPmHAgAFe7X3++ec8//zz5Ofn07hxY/755x+PK/hiXnjhBT799FMKCgro1KkTs2bNqnQcxo8fz/jx4z3nNpsNIQTvvfeeJ23u3LlcffXV5dZPSUmhd+/eXmlRUVE4nU5OnDhRbiAkX8YyJSWljIv0ilyuX3XVVaxfvx6bzcaIESO87mfz5s28/vrrrF692hPfRKN8fJppSCnHSClfr+w41x09HyiKwvOdUjCJshMnf70NZf83F6BXGqdLRYGWAK9AS5WxYcOGSte3H3300TJBmk4nGNF3332HoijUqFEDk8nExx9/zJ133un1APvkk09YsWIFf/31F0lJSXz44Yc8++yzzJs3z6utIUOGsGHDBpYuXUqjRo0YNGiQxzV4Mc899xwbNmxgwYIF6HQ67r777ko9Hjz00ENs3LjRc9x4441l0tq3L9dVUYXjUny9ysbFl7GsqH7p9J9//pn169fz448/MmfOHCZMmACoAvCOO+7gvffe84pLolE+VY7cJ4QIAEKBDCll/tnv0oVDZG8j2LW33Dw9VvjvJag7BAyVRzDTuDg43UBLZ0LJYETFDy0pKw9GBFC/fn2WLl1Kfn4+OTk5xMTEMHjwYM9DrLCwkJdeeolff/2VG264AVBnPBs3buS9997zWqIqtjRq2LAhnTp1IjQ0lJkzZ3opkCMiIoiIiKBRo0ae5Z3ly5dXOFMICwsjLCzMcx4YGEhYWJjXTOhU41JeICW9Xk94eHiFdU41ltHR0axYscKrXkVhZIuXsJo1a4bL5WL48OE899xzJCcns23bNu6//37uv/9+QF11kFKi1+uZM2dOmaW1KxmftzcLIfoJIdYBWcABIFsIsUYI0ecc9e38s+0tcFesnpFuO2x5s8J8jYuL0w20VJI2bdrwzz//+HzN0wlGVBJ/f39iYmLIzMxk/vz5nuBKDocDh8NRZulEp9NVatVXrLy02Srej1tcv7IyZ0rnzp1ZtGiRV9rChQtp3759GQehJeucaiw7d+7M9u3bOXLkiFe7JpOJdu3aVdgft9vt0SVVr16dzZs3e82aHnroIRo0aMDGjRurFOzpiqAiDXnJA+gHOIEdwGjgf8AYYDuqIryPL+2c76PKQZhmNVctpio75rStUptXCher9ZQvgZYqY/bs2VJRFDlq1Ci5detWuWXLFvnBBx/I/Px8KaWUn3zyiWzcuLFXndMJRjRv3jw5Z84cuW/fPrlgwQLZqlUr2bFjR2m32z1lunfvLuPi4uSSJUvkvn375NSpU6XZbJYff/yxlFLK3bt3y7fffluuW7dOHjx4UK5YsULecMMNMiQkRCYnJ0sppVy5cqX89NNP5caNG+WBAwfkP//8I6+66ipZp06dSq2ncnNzTxmkyWazVVh/37590s/PTz7xxBNy27ZtcvLkydJgMMgZM2Z4yvz222+ycePG8siRIz6PpdPplM2bN5c9e/aU69evlwsXLpSxsbHy0Ucf9ZT5v//7P/nLL7/I7du3y71798qff/5ZxsbGysGDB1fYX8166gyDMAGrgDmUMq1FnanMAVb60s75Pk4nCNOHH34op0+fLps/0EsyBvlMlxpSghx990fy+PEqN3fFcLEKDV8CLZ2KP//8U7Zt21YajUYZHh4ub7jhBs8Dtjj4T0lOJxjRzz//LOvVqyeNRqOMjo6WjzzySJlIecnJyXLo0KEyNjZWms1m2bhxY/nuu+96gisdOnRI9u/fX0ZGRkqDwSBr1Kgh77rrLrl9+3ZPGxs2bJA9evSQYWFh0mg0yjp16siHHnpIHj58uNIxqCjIUcnjVL+BhIQE2aZNG891v/jiC6/8qVOnSkDu37+/SmN58OBBef3110uLxSLDwsLko48+Kq1Wqyf/xx9/lG3atJEBAQHS399fNmvWTI4bN04WFBRUer+a0Cj/uepTECYhRAEwSEo5u5y8AcAvUkq/Kk5yzjlVDcJUTEJCAi9+/SmJDWfSNMPAtk8c/HH1e7T45hnq1QPN8rYsWhAmjSuZi/G3eKGDMNmAirS/gVxGDgyHjRrFwWPHsOY56a83sbGjg90NalIz6U+cTqjA84CGhobGFYGvQiMBGCuE8LJHE0LUQtVtLDm73bo4OJgdjFHAnlbBtM5fQc7e45SyXNS4xImLiyMgIKDc44cffrjQ3dPQuOjw1eT2BWAFsFMIsRpIBqKBTqjWVC+ck95dAKaMG0dCQgLt4uJIEic46kzD2CaX/TPqsnPefiKaRhIaeqF7qXG2mDNnToU7kiszkdXQuFLxSWhIKXcJIVoCzwBXA22BDGAi8KGUMvncdfHCEUYUiVZoG5tKXQq4bq+ggx0cDqjASlDjEsMXVyIaGhon8XlzX5FgePYc9uWiYsq4cexK38XXP/zGwAAr4QEnWJ4QgqMACgoMBAdf6B5qaGhonH+02KWVUDekLv86AnjuOFxVbyn7CqI5PnUWPu4L07gADB06FCFEmaNTp06eMnXq1PGk+/n50bx5c7766iuvdux2O++++y5t2rTB39+fsLAwOnXqxFdffVXlTXDnKo7EE088Qfv27TGbzeU6JExISOCmm24iJiYGPz8/WrZsyTfffFOmTHnjVdo1ytlGSsmYMWOIjY3FYrHQo0cPtm7desp6vozlzJkzadasGSaTiWbNmvH777975b/11lt06NCBoKAgIiMjueGGG9iyZUuZdnbt2sXAgQMJCQnBz8+Ptm3besUmuVKpUGgIIRYLIZqU+F7Z4fuW2UsIg84AIc15LwvyrrIjkBjn/oHVCk7nhe6dRkX07t2b5ORkr2POnDleZV577TWSk5PZtGkTN998Mw899BA///wzoAqMfv36MW7cOO6//36WL19OUlISTz/9NFOnTvXaoXwqzlUcCVB3Nd93333ce++95baxcuVKWrRowYwZM9iyZQsPP/wwDz74ID/++GOZslu3bvUar4YNG/p8j6CanB44cMDn8u+88w7vv/8+n3zyCWvXrqVatWr06dOH3NzcCuv4MparVq1i8ODBDBkyhI0bNzJkyBAGDRpEYmKip0xCQgIjR45k5cqVLF68GL1eT+/evcnIyPC6VpcuXahbty6LFy9my5YtvPnmmwQEBFRpXC5LKtrAgWoR1aToe0LReYVHRe1cyON0NvdJ6b0pZvifw2XkWOSzn90tp3GvzFRC5Y4tDlmJq/4rkotlc999990nr7/++krr1a5dW7777rteaQ0bNpR33HGHlFLKCRMmSCGEXLt2bZm6Lper0jgNpTlXcSRK8u6778ratWv71J9BgwbJgQMHes6XLFkiAXn8DHeuUmpTXmW43W4ZHR0t33zzTU9aQUGBDAgIkF9++WWF9XwZy9tvv1327t3bq0yvXr08f9vyyM3NlYqiyL/++suTduedd8q77rrLp/uR8sra3FfhTENK2VNKuaPoe4+i8wqPcyLRLgLaRLfhzXB4NfhnFvoPIMSdSc7sf8nJudA90zibmM1mjxXVDz/8QO/evcv12qooCkFB6paladOmnfIN+1zFkThdcnJyCC3H/K99+/bExMTQq1cvliw5txb0+/fvJyUlxWtcLBYL3bp1q/T+fBnLispU1m5ubi5ut9szLm63m7///ptmzZrRv39/IiMj6dChg2cmeqXjk05DCHGvEKJcV5RCiDAhRPnz48uA9tXbk2iFIOHA/9poCjHj+PUP8vO1JaqLlXnz5pXZc/HCC+VbhTudTqZNm8bmzZs9LtB3795N06ZNT3md4OBgGjduXKHDPSg/3kPJOBIV1alqTA5fmDVrFv/88w8PPvigJy0mJoYvvviCmTNn8ttvv9G4cWN69erFsmXLKm2r9P6W0mlxcXEV1i2+h/LGpbL782UsKypTWbtPPPEErVu39rjQT0tLIy8vj/Hjx9O3b18WLlzInXfeyZAhQ04Zd+RKwFfrqalAZyC9nLy6Rfn/d7Y6dTERFxnHfw4TYKPb1ct4fMbHOPNa8JIAqxW0Jc6Lj27dujFp0iSvtJCQEK/zUaNGMWbMGGw2G0ajkeeee47//e9/wMk4D6filltu8Sm29rmKI1EVVqxYwV133cXHH39Mx44dPemNGzf2CiLVuXNnDhw4wHvvvUe3bt0qbK/0/paGDRsyZ84cqlevDlCpIC2mvHE51f35MpZVaffpp59m+fLlLF++3ONBuNjr70033cTTTz8NQOvWrVm3bh2fffZZmaBXVxq+Co3K/pL+qB5wL0vMejNKSBy57vU0jl3M/YZFOHcKHs4CPz9NaFyM+Pn5nTLOw9NPP82wYcPw8/MjJibG66HSqFGjs2Ylc67iSFSF5cuXc9111/HGG2/w8MMPn7J8fHw806dPr7RMeftbateuXWFY2ZJER0cD6qygZJjWtLS0Su/Pl7GsqEx57T711FNMnz6dJUuWUK9ePU96REQEer2+TMyVpk2bnnJcrgQqs55qLYR4QAjxQFHSDcXnJY5HgHHA7oraudTRKTpaRLVmrRWqObfSpmMBneUKDnw1n/x8cLkudA81Tofw8HAaNGhAbGxsmbfQu+66i0WLFlGes0u3201OFRRa5yqOhK8sW7aMa6+9ltGjR/Pkk0/6VGfjxo3lhl89W9StW5fo6GgWLlzoSbNarfz777+V3p8vY9m5c2evdovLlG73iSee4Mcff2Tx4sU0adLEK89oNNKhQwd27tzplb5r1y5tMyhUaj01GnAXHa4S30sfx4EbK2rnQh5nw3pKSik/W/OZbPMWcui0q+STryTLpVwt9/i3lDt2SJmbe1qXuOy4mKynevfuXSbWQ1pamqdMedZTJbFarbJbt24yJCRETpw4UW7YsEHu27dPzpw5U3bu3Nlzr+XFfyjNuYojIaUaP2PDhg3yqaeekjExMXLDhg1yw4YNnrgWS5YskX5+fvLZZ5+tcCw+/PBD+fvvv8tdu3bJLVu2yBdffFECcubMmRXek5RSpqWlVRpbo+Q1yuPtt9+WgYGBcubMmXLz5s1y8ODBMiYmRubk5HjK3HPPPfKee+6p0liuWLFC6nQ6OX78eLl9+3Y5fvx4qdfr5erVqz1lRo4cKQMDA+U///zj1efcEv+Zf//9d2kwGORXX30ld+/eLSdNmiT1er2cNWtWufdT3m/xQnPe42kAwUBtoE6RcLi56LzkEQ2qe/WL8ThbQmPd0XWSMchq71aTvy7aLZ8W70kJctusvbKS58UVxcUkNCgn1kP16tU9ZU4lNKRUBcfbb78tW7ZsKc1mswwJCZHx8fHyyy+/9DyUy4v/UB7nKo5E9+7dy73X4nYqGouS5rkTJkyQ9evXl2azWYaGhsquXbvK2bNnV3o/UqpjWF7b5V2jPNxutxw9erSMjo6WJpNJduvWTW7evLnM/XXv3r1KYymllL/++qts3LixNBgMskmTJmUEYEV9Lh1fZerUqbJhw4bSbDbLFi1ayB9//LHC+7mShIav8TRqA8lSykvKMfiZxNMo6Yc+z5ZHjQ9juc2Uy/D4Dxj/v/78taUZy2/9gGrjn6J+fSgVhfOKQ4unoXElczH+Fi9oPA0p5cFLTWCcTYx6I3GRLXg1DMKP/0CNvtXYRAuCl/wJoLlL19DQuGLw2feUEOJBIcQGIUSBEMJV+jiXnbzQGBQDLaJasNoKYQW7iO+Rxe/cQkzGFmR+AZmZF7qHGhoaGucHnzf3AZ8AawEz6r6M74EcYC/wxrnq4MWAEII20W1ItEK4zKVJrRRmNXmaGJJZ9Z8fhYXaRj8NDY0rA19nGk8CbwHFRt6fSynvA+oBhZS/6e+yolONTiRa1e+R7k207WXAiYF589SY4bm5bq/yxRuENDQ0NC4nfBUaDYFlnDSzNQJIKTNR92k8cU56dxFRL7Qeh5UIHBLcef/RqUcmN/AXL89ow5JZk/juu8keQeF2u5k8eTLTpk27sJ3W0NDQOMv4KjQKAaXIFCsFdYZRTB4Qe7Y7drFh1BmpX605kftggbkldRrlExTrT0vXRlh4iMzMFL76arJHYKSkpGCz2bQZh4aGxmWFr0JjM1Dsl+Ff4GUhRGchRAdgDFCliC1CiJFCiP1CCKsQIkkIcfUpyvcTQqwSQuQKIU4IIf4UQjSqyjXPFIPOQItqLch2w8aUjQQGSkJu7EwGoTTZcYTQ0GjS0lIYO3YsKSkpREdHM2LECBRFi3N1rqhdu3a5AYS0QzvO93El7RT39Yk2CSj2p/wqEAAsB1YDjVBjh/uEEGIwamzx8UAbYCUwVwhRq4LydYE/UYVVG6A3YAHmlFf+XKEIhTbRbYgzwpDMXwlxH6RrXwezGECLg3/T95r7vMoPGzZMExjnmAMHDlzwDaSneyxZsuSC9+FSOy7mMatKAKpLHV/3afwspXyr6PseIA7oB9wCNJBSJlThmk8D06SUk6WU26WUjwHJnFSyl6YdYABeklLukVJuRFXK1xdCRFThumdMpxqdcEjors8iMC+JGg2yWRd7E2Eyg9+eHu9VdsKECUydOvV8dk9DQ0PjnHNar8JSynwp5SIp5V9SyvKDApSDEMKIKgQWlMpaAFTkqWwd4ACGCyF0QohA4D5gbVWufTaoEVQDV0BdMl1gTV2Gyc+K8YZe/MidbDnQmKHTpvHSfDV8pNPp5NixYzg1W1wNDY3LiApdo1e0XFQRUspDPhSLAHRAaqn0VNRlp/LaPSCE6AP8CnyGKug2ANeWV14I8SDwIKjBVxISEnzpvhd5eXnl1pNI6hsassa6n2bH13JC7Kdx+wyGfPUjliN23q71DplZx6lXrx5CCAwGA8uXL6/y9S9FKhozjfLRxqvqaGNWNc7VeFUWT+MAqiMvX6mK96XS7YqKriWEiAamoAZ5+gkIRN1M+IsQ4hoppZd5kpRyEqoOhvbt28sep+F7pSKfLS63i5XKShL/W0Bv/3SsLaKIql6bZs3Atu0Q/x5vRpfAVezatYtRo0ah1/saruTS50L4nrqU0car6mhjVjXO1XhV9lR7gKoJDV84gepmPbpUejXKzj6KeQTIl1I+X5wghLgbOIy6pHXeXuV1io4OsR14LxE22A1EubIpsOQxsLuT17c14pfcQapIA77++msefPBBTRmuoaFxWVGh0JBSTjvbF5NS2oUQSUDxclMxfYCZFVTzQxU0JSk+P+9P5LhqcaxxBdPhYDaJ0oJRn0+h33xW0IVmju0EVWtMcHAUqampfPDBBzz99NOa4NDQ0LhsuBBPsw+AoUKI4UKIpkKIiaibA78EEEK8JYT4p0T52UBbIcRoIURDIURbVN9Xh4Gk8935AGMAraNbA5B0bC1mkyCyWjZLgnrSks0sTWtKtWqqzbaiKAhxejGdNTQ0NC5GfFp0F0J8c4oiUko5zJe2pJQ/CyHCgVeAGGALcJ2U8mBRkRigfonyi4UQdwHPA8+h7k5fDfSXUub7cs2ziVFnpE10G7rnLmXg3pfIbdCPmwYP5ZvVa+B3cB05xLH1/9CkQy9uv72/JjQ0NDQuK3zV1F5DWf1GGOoKflbR4TNSys+BzyvIG1pO2nTgoojobtAZaBvTljU7IErm4rSnk2vUMzzuOO7fBTe7/sI9UeHEmy1xOARG44XusYaGhsbZw9fNfXWklHVLHcFAD1RfVLeey05eTOgVPW2i27DOpg6dkr4WJf0w9d4ZgYJEjwuj00G110aQsyv5AvdWQ0ND4+xyRjoNKeUy4EPUWBtXDBF+EdiCmmBzQ/axBfz3f7/jLLUM5RSChKkf43JdXCEgNTQ0NM6Es6EI34fqE+qKwc/gR/OodmywgTFrA7nhEehc3gZeitNNdlgEhYUXqJMaGhoa54AzEhpCCD0wFDhyVnpziWDSm2gT04avc2C+1Yw9PIy5t9yMGyjEBMCK8K7Yw8LIytIU4RoaGpcPvlpPLS4n2Yjq4TYceOhsdupix6Az0Dq6NU/nwK/WNMYG2dkQ15z6i5ew09qKsHwnzY5vZXtBHrm5bhwOBYPhQvdaQ0ND48zxdaahoLr6KHnkAr8BvaSUk89N9y5OFKFQL7QeNYNqonfm8O++ufy7ezeFQKxpC28anyNKptFg6WH0eoW8vAvdYw0NDY2zg6/WUz2klD1LHddKKR+qolv0ywZ/gz/xsR3ZXhvuqLnWk64XLvbUd7OcLrSc/x1GrGRkgNT04RoaGpcBmn+L08RisNC+egfW2qBNWD49mjTxRPEacM0hXmY8L8u3cLj0OJ1oCnENDY3LAp+FRpELj2+FELuEEPlFn9OEEA1OXfvyw6Az0LF6R1ZboY7Oypo9Gz1RvHZkrWZTRDRTHUP5e66C0QgZGRe6xxoaGhpnjk9CQwjRA/gPGIDqwuPzos8bgM1CiO7nqH8XLQbFQI2gGuxXIlEE1I70NiCLbbAMA3YMH71H0NK/yM8Hu/0CdVZDQ0PjLOGrG5H3UQMf9ZNSetS6RVH0FhTltz/73bt4EULgZ/BDF9kZnH/RrmY6b9w2kMDgQB67qg+JiRv4cD1cc2ga5rF6lDkDyMlRiDivAWo1NDQ0zi6+Lk81AyaUFBgAUspcYAJqzPArDj+DH3HVu3BnMvwhzASHBCOR9O7bixYt2nBV1wze4iX8920mdMUssrLA7S6/LVlKU176XENDQ+NiwNeZxhHUfRnlYQSOnp3uXFqY9WY6xHbghTwINh1m80uPU+AoAJ2dTp36odMJ7lp8J2/qRhP9yTgyutxAfr4gMNC7nYSEBKxWK/369UMIgZSS+fPnYzabtUhlGhoaFxW+zjQmAK8LIaqXTCw6Hw2MP9sduxQw6AxUD6pOy5Dq3GjMJm1RP2qtu49cWy7h4YJWraBmHT3jXS9g2riG4HX/kJ7u3YaUEqvVSmJiIvPnz/cIjMTERKxWqzbj0NDQuKjwdabRHdUN+l4hxGrU0KxRQKei7z2KlOWgxta47yz386JEr+jRK3qujWnG286j/J1/nOb+weTac4kIjkIIwd13wztvDuXOaouJCw3GZgOrFcxmtQ0hBP369QMgMTGRxMREAOLj4z0zDw0NDY2LBV9nGl1RQ6wmA7WBjkWfyYAbuLrUccUQYAygWmwvCt3gduSCEEgkDmklMBBuugkwmrjm+M/sj+iAXg9ZWd5tCCHo27evV1rfvn01gaGhoXHR4dNMQ0pZ91x35FLF3+CP5XgQ62wQjY1dBw5hagcL5i/AzxRMrVo9GDAAfvsNZn11lKcazSbt5gcJD8fjj2rJkiXs2rXLq93JkyfTqFEjevbseQHuSkNDQ6N8tB3hZ4hBMRBCCP9ZzbQywXaHjf9W/MfGpI24XFZ0OsmQIWpZ8/RphL74Pyw7NpCbq6a53W527dpFSkoK0dHRvPrqq0RHR5OSksKuXbtwV2RupaGhoXEBqMqOcD8hxKNCiF+FEP8IIX4RQowUQvidyw5e7Bj1Rv5evZbtWRGYFdhly+WrX/9k3bEjXNP7GkJDBc2bQ+PG8E7BI9jNQURMHk9Ghmp+qygKjRo18giKsWPHegRIo0aNUBRNrmtoaFw8+LojPBpYD3yMuonPD+gAfAokCSGizlkPLwF0QsfewlY0PwD9Q2xEmvMJDA7E6rQSEKAKh3vugWxCmB7xKJY5M9Hv3u7xfiuEoGbNml5t1qxZU9NpaGhoXHT4+hr7DhAKXF0UH7xzkZ6jKxCCapJ7xfL5668xqPUtDA6ENmZ4scMObu7SiWxrNiaTail1441gscAzR57EbbIQMeVtTpwAt1tSWFjI2rVruW/qVO6bOhWAtWvXUlhYqJncamhoXFT4KjSuBV6SUq4omSilXAm8Alx/tjt2qSClZNniZSRv28+zoaAT0DRgD5nbF7N8yXKcLifh4WA0wsCBcIJIFtQfiaJTsNskhYVUOKPQZhoaGhoXG74KjQDgWAV5R4ryr0iEELwy6WucmXPQFz3j9Tjp4v8zBqMeq8uKvz8oCtx/v5p/2753ODhmKiazID1dYDabiY+P92o3Pj4es9msCQ4NDY2LCl+Fxk7gngry7gZ2nJ3uXJoIAQ8224Gh6PmuCKgXnEuXBjnk2HJQFAgOhtq1oUsXKCgUTJ8O/nv+w34ohfj47uX6nure/YpzHqyhoXGR46vQeA+4UwixSAjxgBDiWiHE/UKI+cBdwLvnrosXP+s/e5iYIO+h9NO7iNz6GnnWLNzSTXAwuFwwfLiaP2tKKpHXtSdi6jtMnTqFNWvWEBQURO06dYiPj2fNmjVMmTJF02loaGhcVPga7vV74CGgOfA1MBuYArQEHpJS/njOengpsGUswpVfJllxZBF85FesTismE5hM0K2bOuNYfzSKvR3uIOinrzBkq5s2isWDJig0NDQuVnzeBCClnATEorpBv7ros7qUcvI56tulQdZWyEgqN0txFRCx+33y85MBCA8Hh+OkbmN04UsohQVcvX494eFR5ObkcPDAAdasWUNUVBT169fXdBoaGhoXFZUKDSHEUCHERiFEnhDiCOoy1F4p5Qop5XYppbZdedtb4K44JJ9wO9BtexsppUchfvvt4O8PP25sRmrXgdSb8zt5Rw961UtNTcVms2mzDg0NjYuKCoWGEOJO4BvUjXyzUZ0TPsUV6ga9QjI3gXRVmK24rfilr8TqtKIoEBqq+py64w41/33jy+iFoGGu1ateVFSU5rRQQ0PjoqOymcaTwO9AUynlYCllB+B14BEhhO58dO6S4PpNdJ11J11n3cm6tHDWpYVTY1Uz/syDDOHHsesPcrTLX+TaVb1FUJCqEB8xAnQ6+HBZW957aiJbIkO8mk1NTeWbb77RZhoaGhoXFZUJjUbAZCm9XqM/B0xArXPaq0uMxnXr0rjuSUfAzQNa8U0OhMkCTCnzMelNZFuzcUs3RqO6NFWtGtxwAzidgvkrO4CUGGw2TDYb/sXeDDU0NDQuMioTGsFARqm04vPQc9Ody4MwdzSL8iwcdIDY/QWKUHBLN1anugQVFgZ2Ozz8sFp+xYqm3DX1O2JTUohKTeWJiRNp8d9/VK9evZKraGhoaJx/ThVPQxFClBQsugrS0ZTi3sS46vNV9hbGGzaQlrsHvbk6OdYc/Ax+WCyqXqNJE9UEd+eyE9Q5chgBCClRnE5umj2bxLvv1nQaGlcUDoeDI0eOYLVay+QFBwezffv2C9CrSxNfxstsNlOjRg0MxcF9fOBUQmNFBemJpc6lD21dtkwZNw6AYaNAIhn93H2sPNyCF2Y/wJhwgSntHxz1HiTHnkM1WQ1FKISHQ2qqOtuYuGw/BW4LwTg8bbr1ejpHR1+oW9LQuCAcOXKEwMBA6tSpU+aFKTc3l8DAwAvUs0uPU42XlJL09HSOHDlC3bq+x9mr7EH/ehX6p1GEQGBQDFxV8ypyMFHvgI1ZvW6hmhBIKSl0FOJv9CcgQBUaXbpI3okJwpDs8G7IbufHVau4q3NnbbahccVgtVrLFRgaZx8hBOHh4Rw/frxK9SoUGlJKTWhUkeIZx/H84+TYcuhaqyv/7P+Hf/b9w53Nb8egM5Bjy8Hf6I9Op5rfZmWBu9Ey/pf8FZN4EDNW3ELwfocOhAcFX9gb0tC4AFRZYPTooX4mJJztrlz2nI5w1sLCnUWGjRrFsFGj8Df643Q76VO/DwCR+74gYvmNmBQjefY8XG7VIE31RyWIa3eUP0J6U5f9/Grsxz033siKuFbceOMw7Y1LQ+MCMG7cOOLi4mjZsiWtW7cmMTGRjz76iIKCgrN2jTp16nDixInTrj9t2jQeffTRs9YfX9GExjnApDMB0LtubwBWpR/EmLURU+Y63NJNobMQUGNsBAXBGyPfZPwb0aQSzdPOL2jQsi1fvPopWVkCe8WbzTU0NEA1RczOhpSUs9LcqlWrmDVrFuvXr2fTpk0sWrSImjVrnnWhUVVcroo3EZ9PNKFxFiieYSRt3UrS1q08+OprjH13MhF+EbSOas3/ZTuxKRb8DkzDpDeRUXjSklk1v5VERS2gprKPo+662JcZCW0fi3n/NjJKGz1raGic5LvvIDERNm+GevXU8zMkOTmZiIgITCb15S8iIoIZM2Zw7NgxevbsSc+ePQF4+OGHad++PXFxcYwePdpTv06dOowePZq2bdvSokULduxQI0ekp6fTt29f2rRpw//+9z+vjbs333wz7dq1Iy4ujkmTJnnSAwICeO2114iPj2fVqlVMnTqVRo0a0b17d1asqMhO6dyiCY1zhE7RYXfZGdBoAAUS5rtjsCTPwezIotBRiMOlKr5NJskLH45k0l/fcb/lAwB+Xj8AXUY67nefIitLYrNdyDvR0LiA9OjhOSzXXad+//xzNW/fPhg6FNxu1c1CYaF6PnGimn/ihFd9j+7jFPTt25fDhw/TqFEjRo4cydKlS3n88ceJjY1lyZIlLFmyBFCXsNatW8emTZtYunQpmzZt8rQRERHB+vXrefjhh3nvvfcAeP311+natSsbNmzgxhtv5NChQ57y33zzDUlJSaxbt46PP/6Y9PR0APLz82nevDmJiYnUr1+f0aNHs2LFChYuXMi2bdtOc1DPDE1onAWmjBvHlHHjaBcXR7u4OKaMG8eksW8gpeT6Rmok3FePHENIB36HfkQRCnn2PEBVRLlcdvR6I9eaZhCrHORAbnN+r9aVWkv/wZyRzBkse2poXL4cPKhGQCuJEFBFa6DSBAQEkJSUxKRJk4iMjGTw4MFMmzatTLlffvmFtm3b0qZNG7Zu3er1EB84cCAA7dq148CBAwAsW7aMu+++G4Drr7+e0NCTe6Q//vhjWrVqRadOnTh8+DC7d+8GQKfTceuttwKQmJhIjx49iIyMxGg0Mnjw4DO6z9Plit1bca4x6ozoFB01gmrQOqo1G1M3sjzqbhpWvwWz3kxmYSYh5hAAHhs0iMTERPxNCg8Ff85rmRN4t+B9Brs7Ev79Rxx9/B0KC8FiKf9aUkovhXnpcw2NS5YSFlGFpfcdNG2qKgYLC0+mGY1QrByOiDhtiyqdTkePHj3o0aMHLVq04Ntvv/XK379/P++99x5r164lNDSUoUOHem1ILF7a0ul0OJ1OT3p5/y8TEhJYtGgRq1atws/Pjx49enjaMpvN6HS6Suufb3yeaQghqgshPhBCrBNC7BNCNC9Kf1IIEX+q+lcCxTMOUP+4gaZAbE4bAxoNAOC947m4/GujU3Q43A5sLhtCCPr160fr1h1xu1xcq/+esLB0NmS3Y1fLQfh//xUWRw6pqVCe78KEhATmz5/vWR+VUjJ//nwSNPNDjcud6Gj46is13oBOp75VffWVmn4G7Ny50/OmD7Bx40Zq165NYGAguUV+4XJycvD39yc4OJjU1FTmzp17yna7devGDz/8AMDcuXPJzMwEIDs7m9DQUPz8/NixYwerV68ut358fDwJCQmkp6fjcDj49ddfz+g+TxefhIYQIg7YjBon/BhQGzAWZdcGnqjKRYUQI4UQ+4UQViFEkhDi6lOUF0XCaYcQwiaESBZCvF2Va14IAowBuKTLs0S1cN9CZOpSAne8i17Rk2PLAWDp0qUYjYJgi4UIPwM9eiQAMPzg86R99BOGsEBsNsjL825fSonVaiUxMdEjOObPn09iYiJWq1XzkKtx+XPPPRAfDy1aqDqOe+454ybz8vK47777aNasGS1btmTbtm2MGTOGBx98kGuvvZaePXvSqlUr2rRpQ1xcHA888ABdunQ5ZbujR49m2bJltG3blgULFlCrlur3tX///jidTlq2bMmrr75Kp06dyq0fExPDmDFj6Ny5M71796Zt27ZnfK+ng6/LU+8D24F+gBUoaQi6Epjg6wWFEIOBicBIYHnR51whRDMp5aEKqr0PDACeQxVewUCMr9e8UJj1ZpBQM6imZ4nq2L5fqH7iDwqq30y2jCXcEo7VamXNmkSaFtVr3nwLy5d3ZUVaWyYdkQwXAosF0tLwBHICPLMUUNc7ExNV7y7x8fH069fvopjKamicc4xG9ThLbnfatWvHypUry6Q/9thjPPbYY57z8vQcgEeHAdC+fXvPrD88PJwFCxZ48j788EPP94pmKnml3hTvv/9+7i8O/XmB8HV5qivwtpQyj5OhrItJBary13oamCalnFwU/e8x1ABPD5dXWAjRGHgMuElK+aeUcp+UcoOUck4VrnlBUISCn8HPY0UF8Gm6FSkM+B/8DiklBY6CMjMCRYFrrlEtNL762IbljZcImD0dl0s1Ry9JScFRjCYwNK4oEhK03eDnEV+FRmUebCOAwkryPQghjEA7YEGprAXAVRVUuwnYB/Qv0qUcEEJ8K4So5ss1LzRBpiAcLodniWrG/mXkRV+L3+FfMOEg05qJxWKhY8eO8ArqAQwcGEyjRjkcSzdR+NscAj8ai5/ZTVqaGme8mOIlqZKU1HFoaGhonE18XZ5aA9wP/F1O3u1U7A23NBGo7tVTS6WnAr0rqFMPVW9yBzAUdabzHvC3EKJzaZfsQogHgQdBDZl6OgrhvLy8s6ZIlkjsTjuKotA4oDE783byY2oo/3Pnkr96EofN12HUGXE4HFj8/ABo1KgRer2DYcP28cILrRmV9QxTj9/H8W8nkNaxM4cOqa7VQVXI5efn06ZNG4KCgsjJySEzM5O///6boKCgs3IPvnA2x+xKQBuv8gkODvYom0vjcrkqzNMoi6/jZbVaq/Rb9FVojAUWCSEWAD+iPrh7CyGeAG4Buvl8RZXSr8GinLRiFNRogfdIKXcBCCHuAXYCHSjlpl1KOQmYBNC+fXvZw8cNPSVJSEjgdOpVxP7M/egUHXfr7+bVJa/yq/0w91XvTUx0bQzR9diycgubNmyia1M9oWFh+OWHsnFjIs2bG+nVS/L9P3fyrv+rNJs9l6hhL5GTA7Vrq8Yi06ZNw2azMXjwYBRFwe12M3nyZGw2GzfeeONZu4dTcbbH7HJHG6/y2b59e4XuvDXX6FXD1/Eym820adPG53Z9Wp6SUi4FbgbqAt+gPuTfBq4GbpZSlo6vUREnABdldSDVKDv7KCYZcBYLjCJ2A04ukbCzIeYQbE4bNzW+Cb2iJ+HAUnbGvUdhrTvwM/jh1rnp2LEjoWFhCGDAgH40aRKPXm/mlVcEbsXA+IKnMCX+iyFpNWaz6lbd7ZZER0eTkpLCggULkFKyYMECUlJSiI6O1paoNDQ0zjo+b+6TUs4GZgshGqA+5NOllDurcjEppV0IkQT0AUoaGfcBZlZQbQWgF0LUl1LuLUqrV9T3g1W5/oXCz+CHW7oJ9wvnmrrXsGDvAv7Y+QcjWg/FmPUfzTs2J9o/mp3f7wegSW9B//79SEkRBAbCXXfBpO+Hc23MBloFBWM0Qm4u5OZq1lMaGizqoX72TriQvbhi8HWfxmtCiFgAKeUeKeXKYoEhhIgRQrxWhWt+AAwVQgwXQjQVQkwEYoEvi9p7SwjxT4nyi4D1wDdCiDZCiDaos51EYF0VrnvBMOlNGHQGnG4ntzW9DYAZ22YQuPN9Ilbehp8rh0xrpledwECBwQBOJzzzDOAfQN/kb1maphrm+vursw2XS7Oe0rjCcdshcyPkHz4rzQUEBJyyzOl6vB06dCgzZsw4nW6dMb7cly/4aj01GqhRQV5sUb5PSCl/Bp5EtRPaiGrOe52UsnjWEAPUL1HejbpHIw1YBswHjqCa4F4ycclDzaHYnDZ61+tNsCmYLWlb2OzfDiEdJP7wFC+/9TF5+fnk5eczbNQoRrw6ishI1UNCtWowcqTazv+9uA3Tz/+HoqimuWlpknnz5nlda968edrSlMaVQ8FRcGTDhmfP2yVPR2hcLK7NzxRfhUZlr62hQJX8sEopP5dS1pFSmqSU7aSUy0rkDZVS1ilVPllKOUhKGSilrCalHCKlrEgHclFSvERl0pu4ofENAHx/IBFrRDd6hm1CJ8o+5AMC1D1LDgf8739QowZcv+9jgp9/ECUtBYtFMnPmFNasWUPHjh157bXX6NixI2vWrGHKlCma4NC4/HFZofCo+v3o35Cx4aw1XWyscNttt9GkSROGDBmClJKPP/64jJv0BQsW0LlzZ9q2bcugQYM8m/Lq1KnDG2+8QdeuXcu4/UhKSqJ79+60a9eOfv36kZycDMDkyZPp0KEDrVq14tZbb6WgoIDs7Gzq1KmD262+JxcUFFCzZk0cDgd79+6lf//+tGvXjquvvtrjiv3AgQN07tyZDh068Oqrr561calQaAgheggh3hBCvFGU9L/i8xLHu8DHwNaz1qPLFJPehEEx4HK7uK2ZukT1+/bfyat9D+HGXD58oJkqmoVgyrhxfP3mmwihzjKKnRWOHg3v8wyK047y+SfAyd3hxXJdW5bSuKxY1MNzWFZep37fVeQa3VkAc1qBLHqDdxXCou6wd6p6bj3hVd+j+6gCGzZs4KOPPmLbtm3s27ePFStWlHGTfuLECd58800WLVrE+vXrad++PR988IGnDbPZzPLly7njjjs8aQ6Hg8cee4wZM2aQlJTEAw88wKhRowDVQ+7atWv577//aNq0KVOmTCE4OJhWrVqxdOlSAP7++2/69euHwWDgwQcf5JNPPiEpKYn33nuPkUXLEi+88AIPP/wwa9euJfos7ZaHyhXh3fFsNUOi7tMojR3YBjx+1np0GRNiCSG9IJ32Me2pE1yHA9kHWGA1cosSQd5/P3nKFW/YM5vNdO/eAz8/sNng2mvh/65uyO//3kL/bz8n59kXufnmYSxbNp+mDz/EQSDx/vs1RbjGlYGUkF/KFsaZD1mbyi9/GnTs2JEaNdSV+datW3PgwAG6du3qVWb16tVs27bN43/KbrfTuXNnT355Lsx37tzJli1b6NNHDQntcrmIiVE9I23ZsoVXXnmFrKws8vLyPDrLwYMH8/PPP9OzZ0+mT5/OyJEjycvLY+XKlQwaNMjTtq0oAM/q1av5888/Abjnnnt44YUXzsqYVCg0pJSvA68DCCHcQCcp5ZqzctUrFH+DP8flcYQQDG4+mAkrJvB/m39k+oKOHMsz8nV3N/WDc7lp6A0cyzXy5oMPApJq1QQHDoDJBGPHwsu9nudW+28cen8KwaOf5Oqr++EscR1NYGhcNpSwiCrjGv3EClAM4C65Ou6Gw79Bm3fBHHHGFlXFLs6hrJvzYqSU9OnTh59++qlMHoC/v3+5deLi4li1alWZvKFDh/LHH3/QqlUrpk2b5tl4d+ONN/LSSy+RkZFBUlIS11xzDfn5+YSEhLBx48Zyr30ungO+7tNQNIFx5hh1Rs8S1R3N70Cv6Fm0bxHHpB6dTk81SyEBBiePNtuIXq/3PPzNZggOVpepGjaE5sPimUt/Fv+dh9MpSUzU3IhoXIFsGQvOvLLp9nTYO/mcXrqkm/ROnTqxYsUK9uzZA6j6hl27dlVWncaNG3P8+HGP0HA4HGzdqq7y5+bmEhMTg8Ph8LhSB9X6qWPHjjzxxBMMGDAAnU5HUFAQdevW9ehLpJT8999/nn5Nnz4dwKudM6XKkfuEENWEELVKH2etR5cxQghCLCFYnVaq+VejX/1+uKSLnvc0Yu6Yq4jxtyIE9KyeysovXvB6S4iIUCNaSglPPw0PRM3h0eRXeOON7WzZkoi/fxDVqtWhVat4L1fpGhqXJVlbISOp/DxnPmx8CRw55+zyJd2kR0ZGMm3aNO68805atmxJp06dPMroijAajcyYMYMXXniBVq1a0bp1a49n3bFjxxIfH0+fPn1o0qSJV73Bgwfz/fffey15/fDDD0yZMoVWrVoRFxfnWZKaMGECn332GR06dCC7tKfTM0D48mARQijAm8D/gJDyykgpdeWlX0jat28v162r+laOc+niwe6ysz9zP4GmQJYdXMadM+/Ezx3IVEs9bq+lviG4JezJjaThgymIk5puTpyAzEx1j8bcuTB8uKS7cTl3fezgvmmqvcK+b5awd+98AgLM59VNheYWo2po41U+27dvp2nTpuXmebnFWHk3HJx+UgleGp0FGj0Kbd45Rz29+PHVjUh5Yy6ESJJSti+vvK8zjSeBR1DjWghgPKoQ2Q/sBUb42M4Vj1FnxKQz4XA56FqrK3VC6lCg5NK12sk3E0VATb8M1s9602u2EBqqhkB2uVSl+Og2f5Fg78ahr+1FlldgNgvi4vrRrVuP839zGhrni8xNFQsMUC2pUv6pOF/jtPFVaNwPvMHJYEu/SylHA02Bo1wiPqAuFsIsYdhcNhShcHeLu+njB0EGu1cZi95Fs4JPESX+Y+h0EBUFxXuKBnx6LUdFdXque5e/M1TLDZMJHA5BRsZ5ux0NjfPP9ZvgLln5cW0Fy1caZ4SvQqMesE5K6UJ1FGgBkFI6gI+AB85J7y5T/Ix+SCmRUnJ73O28FgoBurLLhCaRX0ahFxCg7tmwWiG2jpFtfZ6kF4v5em9PMp2qmwB/f3Up6zS8HGhoaGhUiq9CIxswF30/BjQukacHws5mpy539IqeQFMgNpeNKNcJOviVrw5SXAXIjS96KfSKN/w5HKpSvOmHD5KnBPGQ8xO+2t0LJS0FIVTBkpysLmVpaFxKaAYc54/TGWtfhcYGoFnR9/nA60KIO4UQg4C3UB0KalSBYFMwDpeDgN2fYqgwlAhIlx22vOmVZjar+o3CQlBCgrB26MpN/MWTWWOI6FgP06/fYjCoQiUt7VzfiYbG2cNsNpOenq4JjvOAlJL09HTMZvOpC5fAV9foH6EuUYHqnLAtUGz4exB4tEpX1cBisKAIBX3ONpRKoukqbivu5EUopWKkhIdDTg4s/G4iQ9YvRADB5IADgp4bwU+2LHrf/QTZ2epy1XkM4qehcdrUqFGDI0eOcPz48TJ5Vqu1yg+4KxlfxstsNnt2vPuKT0JDSrmwxPcUIURHVE+0fsD2It2GRhVQhEKwOZhDXf7Gz+DH7F2zeXDWg9QzmVhx9yyil/Uhp8mLHK8zHLPeTPVS9XU6iIx0Iw7sxqkoXn9Iq8uEcnA3brebgACFlBRVQV5ic6uGxkWJwWCgbt265eYlJCRUKcLclc65Gi9f42ncK4QILz6XKnuklJuAQCHEvWe9Z1cAwaZgXG5V6dC/QX/qmEzss9mYc/wQtoir8T8wDYtOT649F6vTWqZ+UJDAVasOulKKC73bwbr07gghUBQ1nvixY+C+ZBzJa2hoXKz4qtOYSokYF6WoW5SvUUVMehMWgwW7y45O0fFotOqwbFLSJPLqjUBnTcGSPBujzsjx/LLTdYBqLZvz9w034BYCtxBIIIMwfvqrF0eLPEabTGowp3Jm/GXWjrW1ZA0Njco4G/E0/IGyXrw0fCLMEobdqe7RuK9aNYJ0OhKPJrLGHYbDvz7++yZj1pnIt+dT6Cj0qiuEoH//PuyO78zR6tVJjYril0G3E0UanxeO4MknTlpP+furu8lzSnhWSEhI8HI3Uuxdt9hBmoaGhkZpKoun0VoI8YAQongPxg3F5yWOR4BxwO7z0tvLED+DH4pQcEs3gTodw6pVA+CTtZ+R1/AR7KFtwW3HbDCTlp/mNRNwu91MnjwZq7UAl06HzWRiR1wz5va4llv5jc6rP+Dzz09eKyBANcO1WlUBYbVavfxUzZ8/n8TERKxWqzbj0NDQKJfKFOE3cTKMqwRGVVAuHRh2Njt1JaEIhRBzCFm2LPYdPMzNLvhcZ2Lunrms7/wMTWuqjsmMQI4thwJHAf5G1dWyEIL8/Pwyba7v3g6RYeSvTTey/13o1Ak6dFADNplMcPQo1K59MrZ4YmIiiYmJAFosDg0NjUqpbHnqI1R9RT3U5amBReclj1igmpTyr3PbzcubIHOQRyEeqdNxV4u7APh4zccgJcYTK1EKj2HRW0jNT8VdIjR68cM9MCiIGjXq0LBhRxCC7Xd3odf/GuBySZ5/MIv0dLW80ah+JidDQsLScnUaxdHBNDQ0NEpTodCQUmZLKQ9KKQ+gCojZRecljxSprWOcMQ+/9jpj35tMfkEh+QWFZK02oEiFv3f+zaGURMJX30HA/ikYdAYcLge5tlxP3aASGzB0etAXzR39/YN48UX4NXIkP6b14tlHCj3WUxYLFBRIMjIKWbPGO0zKmjVrKCws1JanNDQ0ysXXIEwHi/diCCFMQoiRQohPhRAvCyFiz20XrwwMioHhCV0ZntAVfxlEPVdzJJL3Nv6INeZ6/A7+iHDm42/0Jy0/DafbiRCCYcOG0bFjR3Jzcjh44ADbt6+hYcOODBgwDKNR0OrlAbRjPXf++zAfTzwpCPz9wWYrfwlKW5rS0NCoiMoU4W8IIbaWSjMBicAnwEhU9+gbhBDl78bR8BlFeP8pmjvj0St6/tjxB7sjr0dx5mA5/AuKUBAIMgpVN7ZCnNRNFHP99f0oKFAf/P63X8+mgWMYyrfkv/cFS5YUXU8RBASYadgw3qtufHw8ZrNZExwaGhrlUtlMozcwp1TaI0BL4F0gGOgEOIBXzknvrmACZDC3Nr0Vl3Tx+tb52EPbErD/a5BuLAYLGYUZ2Jw2lixZwuTJ3p5wp0+fzO7dSyjWkUdMfJVt9QbwEU/w7f9Wsm+fmt6uXXf0+rI6je7du5+PW9TQ0LgEqUxo1AdKxwW/GUgGXpJS5hbFDX8X6HVuundlMGXcOKaMG0e7uDiaNa7HWy8/wYRRT/FkpycxKAZ+3/47O8OvRTjy0OUfQAiBUWckJTeFpKQkUlJSmP/SS9Tat4/o6GhSUlLYuTMJIdzY7YCiEPzXd+wNbocrv5BhwyA3V7J69Xy2b19D06bxDBnyGh06xLNmzRotVKyGhkaFVCY0goHU4hMhhBHoCCwppfz+D4g5N9278jAoBs8mvlrBtbi31b1IJE/vWEFq70RcAarfSLPeTIGzgIAgNYZGSkoKY8eOJSUlBYDg4GCqVxfYbKr7EBEagpK4isMNe7FrFzz5pECvN9O8eTxduqgmtk2b9qNjR215SkNDo2IqExpHgTolzuNRtwusLFXOAJTdLKBxWugUnSdAE8AT8U8QYAxg0f4EVh5bD9KFcKhB4gOMAfQa2Iv27dvz7+7d/Ltb3WPZoUMHhg8fjsUiiI6GvDy17YBAwZQpMNr0Nn3nPcXChT3o1KkfEYN6UuOeHrhcgubNtVCxGhoaFVOZ0PgXeFIIESLU187HATcwu1S5NsCRc9S/Kw6BIMQSQqFTnW2E+4XzcPuHAXj733FELu1D8NbXAVXAAFhd3s4MFeXknzU4GEJC8Og36teHO3od5yk+Ivuz7/jxx5P1/PzUaH+pqWosDg0NDY3SVLYj/HUgCXWJygoEAl9KKQ+WKjcUSDgXnbtSGDZK3WyftFU1Vntx/EdYHVbefeUZhBA82O5Bpm2cRlLKRnbV7E6zo7+T0/RlXMZwnnnlXQryCjhRNJ0oOeMo3tkdGam6DrHZ1B3hQV9M4NA165m090GufrEZzRu35ZqQ9Ugp2bx5HmDh6qt7UK2aGilQQ0NDo5jKNvftB1oDE4D/A+6TUo4sWaZoj8Y/aF5uzyoCgV6n98w2/Ax+PN35aQAe2bMT4bbjd/A7ABx271AmgYGBABw5cnLyp9NBbKwaItbpBPR6DDOnk2cK4lf3bby2/U72pQawfs6PbN26hrS0PWRkSE6cOA83q6GhcUlRaRAmKeUh4LVK8o8Bj53tTl1pTBk3Djg545gybhwOl4P9WfuRUiKE4K4Wd/Hdpu9Yenwb22Pq0ujAt+TVH4nJbMJgNHgUF2Fharj2Bg0aeCmzjUaoXh0OH4bAQJAR1Uh4dBg3vv8ey+mKbZ+J+iMX4LhhACm9qxMYCOnp6kwjIuI8D4iGhsZFi6+u0TXOMwadgRDzSd2GXtHzZk81Vvgzh46gsx3HnDKPwKBAgkOCPfXc0k1YWBg9evQo06a/P0RFQW6RFxJz4zgUvcSEnSByMTodDPh7FjUNFoRQhcuJE1Q649DicWhoXFn4GiNc4zxQPOMoJtQcSpY1yzPbiK8Rz8AmA/ltx2+87G7Po7E3MGGUKvdfGPchbunm1WdHUCe0ToXXCAlRdRs5OYL4anVw6/VFa1YqVpeZ5v51TjpCLBIcQqhxyUuSkJCA1Wr17Egvdq9uNpvLFVoaGhqXPtpM4yKmeLZR4CjwpI3qNgp/gz9v7V1HwsFlXuUVoeB0O0kvSK+wTSGgWjUwmSQ/rJyF4vSOn2WRhQx6zkRenvSUDwxUo/6dOHHSqqp0PA5Ai8ehoXEFoAmNi5wwSxhSSo879OiAaJ7q9BQA+1c+QsD6xwGYMOopJox6Cn+jP+mF6eTZ8ipsU1EgKspFrr/FEyrWJQQuoWDAyf3HpjL0XheFRYECSy9VSXnS51V8fDyJiYkkJyeTmJioxePQ0LjM0YTGRY5e0RPpH+k12xjedjjNIpvhsmcRcHQmuvz9hK+8jfCVtyGEwM/gR3JeMg6Xo8J2TSYdUVHRbG7ViqPVq5MWFcWHTz/Fora9eITPeTjxfobfX1ZwZGRAWtpJwdG3b1+vdvv27asJDA2NyxhNaFwCBJuD0QkdTre6lGTQGfig7wdMylFwSsjf8jb7Dh5m38HDgCpoFKGQkpdS4TKREILCwgLMZosnVGx+YCDrbuvD3KtvpdAcRsK/Cvffr274U+uogiMrC1JSYPHiJUyaNMmr3UmTJrGk2JWuhobGZUeFinAhxOIqtCOllJrTwnOEIhSq+VfjaM5Rgsxq0KUWUS24pc1Iph/6lIHMZmthCDp0FNtRWQwWcm25pBekE+Ff1mbW7XZjNpvJzs72SrfZrewZ1Jtmr40g8i7BsX/3MOKuGL763p8A1c0VgYGQne1m7dokrNZ8oqKiiImJITs7m9TUVPLy8ujevbvXznQNDY3Lg8r+VyuoYV6LjyZAD1R/VJaizx5A46J8jXNIgDEAs96M3WX3pD3V+SkmZwQSICRHDTk0Ds5iwjuv88K4Dz11ThSeKFe/IaUsIzCKycvLplFj+O1HKwlKL8at7cP/bs+kZPHAQIG/fwgAqampJCcnk5qq+rcMCQnRlqg0NC5TKtsR3kNK2VNK2ROYiBo3o5OUsp6UsrOUsh7QuSh94vnp7pWLEIKogCiszpOWSWa9mdRtbXg9HTJwEWBwcn3AbLbu2uup42/w51juMS9hA6DT6TCZTJjNZr69/36+vf9+APR6MwaDCZ1OR71mZvLHfUQ7kvjwv548eFMqRU50EUJwyy3DaNy4o1e7HTt2ZNiwYZrQ0NC4TPF1/WAs8GpR/AwPUspEYAxqBD+Nc4zFYCHUHOpxnQ4Q6Yrlu91NGBSo6hy6xabQMvKk0lyn6DDoDBzJOYLL7fJq7/HHHyc4ONgrLSQkmOuue9wTTzzw3ls48MksGondfL27GyMHHGLv3pPl9Xq4b+pUrhk79uzfsIaGxkWHr0KjIXC8grw0oMHZ6Y7GqQj3U3fYFQuAXye9z+oRD2AserE36lxMutHbTa1Jb8Ltdnspxt1uN5MnTyY1NZXo6GheffVVoqOjOXEilSVLJpOT4z4pOAb2IeXbBcTqUnkkeRQ33wxJSZJVq+axdat3nK41a9Ywb948bZ+GhsZliq9CYz/wvwry/gccOCu90TglekVPNf9qHhPcF8Z9gEx6E0vRX1IBXBmbMaX941XPz+hHnj2PEwWqTxBFUTCZTERHRzNixAgURWHEiBFER0fj72+ienWFvDw8gsPcqwsZfy7np66fk5EBgwbBX3+p1lz+/kEYDEaaNVOXqrZs2Y7Le1KjoaFxmeCrG5HXgR+EEFuAGaju0qOA21AV5EPOTfc0yiPQFEi2LZtCRyHNAw4SoCv0yrfoXLDxWWx91oFy8k8cYAwgvTAdvaIn1BLK0KFDcbvdHiunYsFR0urp2DEICFA95RraNOeL72HMc/nc+utgxn03ipQ+V/GwnAmcdKNusQRx8CDUqKG6YtfQ0Lh88GmmIaWcDvQDsoGXgM+KPrOAflLKn6tyUSHESCHEfiGEVQiRJIS42sd6DYUQuUKIirc7XwEUK8Vd0sWT7Q5i0ZWzic96AvZ8XaZegDGA1PxUcm2q18LSZrGlAzjVqKEGcCr2NmIwwPjnMukUupOF9MG9UPDygcewZeVzYPU/NGvWgVtuGYaiCA4cgJycs3rrGhoaFxifDemllIuklF1QzW2jAYuUsquU8p9TVPVCCDEY1dpqPGrUv5XAXCFErVPUMwLTgWWVlbtSMOqMxLgyIH1DufkWRRK0YzxuW5ZXuiIUj0VV8RLXsFGjPG7ZSxMYCDVrQmGhGo8DQFavgXPxv+RGxDKX/nxW+CgBh1J4fOLH1Fq2mPXrl2IyqZEAjx1TIwEWL3NpaGhc2lR595WU0i2lTJNSnu5j4GlgmpRyspRyu5TyMSAZePgU9SYAm4BfT/O6lx0Buz9FR8XKA0W62L707jLpOkWHxWDhSM4RL0usivD3h1q1wG5XPeQCuCKjWPLwPehwY8JOIHkYnQ7afPExJ7YkIaVEp4OgIMjOhkOHTtbV0NC4dPHZNboQoh5wO1ALMJfKllLKYT60YQTaAe+VyloAXFVJveuBAUBb4FZf+3y5I7I2oVcqtlLyU6BW7gamb5nOHc3v8MrTK3reeGcSbulm2659gHcQqNJYLFC7Nhw5os46TCaJIS8Xu9GA2X5yD4jVZeLEr/m4hkj0elXJERCgCowDB1QPuyEhWhhZDY1LFeGLaaQQ4ibUN3wF1cS29DujLNrsd6p2YoGjQHcp5bIS6a8BQ6SUjcupE4Maq3yglHK1EGIo8KmUMqCCazwIPAgQFRXVbvr06ae8v9Lk5eUREFBu8xcdO/fvB2CA/m0AZjlfBKBe7RqI5JfoThI9jyoMqD+OdqHtvOoeSVZ3cBda1T+nv8UCQO3Y2EqvaberFr22Q3u47tFH0JcQGk50KLhYGno98oWbcLVt6FXX7Va97Or1V7bguJR+YxcL2phVjTMZr549eyZJKduXl+frTONNIAH1wV7Rfo2qUFpSiXLSivke+EJKudqnhqWcBEwCaN++vTydYEAJCQmXTBCh7xYuBOCLrU0BaNFkGwA33NYPYf8/shd05qeoHLrteZOvB/1J08imnrr/N24BAJt37AagTbOmKEJhyl13VXpNtxvS0iSL0wv56/rrufmPP0AIXIrCd62HcPy/WB7M/ILQF2eT0rwX+tGvYL+qh6d+YSG4XBAdrepMrkThcSn9xi4WtDGrGudqvHzVadQD3jsLAuME4EJVpJekGqoZb3lcA4wWQjiFEE5gCuBfdP7gGfbnssNdQtUkjSG4uk4nyqDwZVg+9/4+hEPZhyqsa3PavOpXhKKoy0xHj273uFbPqlmTiU88weEBdcl+ti4D2x7gOd5BbtnKuvHzVX2GlOB2Y7Goy13Jyaqi3G4/5SU1NDQuEnwVGjuA8FOWOgVSSjvqUlOfUll9UK2oyqMF0LrE8RpQWPRdU4qXQhb9K8YV0ors5mPp5w8PGFMZPGMwx3KPASUCN1ks+FssvPXyE7z0zP3k2/NPfR3pxm5XlegunQ6Hnx/5gYEA+Pml8c2MAHj2ORoo+xm04WWuvx5Spswmsmcclp+noXM7CAwEqxX274fMTK9N7BoaGhcpvgqN54GXi5ThZ8oHwFAhxHAhRFMhxEQgFvgSQAjxlhDCY8YrpdxS8kDVibiLzjPPQn8uaaaMG8eUceNoFxdHu7g4Jo8dyyvPDPeaMTjq3MeJeiPZZmrMoexD3DHjDo7nl500GnQGzHozR3KOkGOtfIOFTqcjNja2HMeEgoiIWEwmHU89BdP/MBNRJ5Dt2+HF1y2kZZsIffp+ql1VH/8pH+Mn8/H3VwM7HTyIJ+iThobGxYmvOo0xqDON7UKI3UBGqXwppezuS0NSyp+FEOHAK0AMsAW4Tkp5sKhIDFDfx35plMLf6E9UQBSp+akEGgPVh7oQ2ONG8Ua9kWz/9TYOpu/gjhl3EHekJxb8mRiv6kWKXaq/9fITHM09ilM6CTWHluux1u12Y7fbkVIyvGtXbu/VS7WrReJw2D07zdu1g0WL4K23YMqUXtQ4voERNeYxPugtIl57Asuv33Ji7joCAwV2uyo4QkMhPFxVlmtoaFxc+DrTcAE7UZeQjhedlzyqtGdDSvm5lLKOlNIkpWxX0pJKSjlUSlmnkrrTKrKcupIpnnEAhFpCCbOEkWf33jgfagllWYvWLK9tYm/6DhaYppMvys4oFKEQZAoiLS+N1PzUcvUciqLQoEED9KWe7DqdnujoBthsJ39aFgu88QbMnAl16ggmH7mWatuXMbbfclIffl3VhNtshH8yhpDCZHJzYd8+dclK2xSooXFx4dO7nJSyxznuh8ZZJtIvEofLQYG9AD+jnyddiepBmyPTmVIrjHsPZbC22hzSjQZq6fVMGPWUp5wQgiBzEDnWHGxOG7GBsRh0Bk++2+3m/R9+wG63cyIvD6fbzb+7VSusiIgI9Pqe5OYq+PurinOATp3UWcfEifDFF/Da/C58sh5essLdsSsI+GgsAZ++ReCgoeQ89DzHqU9Ghqp0Dwi4Mq2sNDQuNrR4nJcpQgiiA6Ix6Axeu76tsTeQV3cY95gyeK5GHY7kHGHIiTTW55XvzivAFIDT7eRg1kGvdhRFQQhRru8qk8lIrVoK0dGq3yqr9WS+xQIvvgjz50OHDnD8ODz9NPSbcA1LJ+2i4Pb78ft1GtHdG1Hj+Tsx2vM4dkxdtiooQEND4wLjk9AQQnQ71XGuO6pRdXSKjupB1dEJndcDP6fZK9hD2/J2QBp31GpDunQzIi+bBXsXlNuOxWDBoDNwMOsgGYUZSCmRUvLYoEF0qV+fujEx+FssPHv33XSpX5+YmBhAEhwMdeuqTg5zc72Xmpo0gd9/h48/hqgo2LABeg6vz70FX7Lx9wPkPfQsuuOp6IL8CQwE3dFDHDqkqk3OVFleekOrFvtDQ8N3fJ1pJABLTnFoXIToFT3Vg6ojEFidRa/8ipGMdl+SVmCkxdG63GkyMDdW8tqs+7np7XvKfYgadAYCTYEczz/OsdxjuKQLs9lMfHw8YWFhAPTr14/4+HjMZrNHeW40qp5yo6PVmULJ2YIQcOutsGwZjBypulH/7TfoPDCGF+QEdn/5DwiByMqker846t7bFePC2Rw6KDl8+PSER0JCAvPnz/fco5SS+fPnk5CQUPXGNDSuQHwVGj1RN9mVPAYB36IGYBpwLjqncXYw6AzUDK4JEo/gcFuq88LOB9ieV493w3RcbYF3I2GdcTHPLnj2pIApgRCCQFMgVqeVA5kHaN+5Pf369WPKuHHULjK/7devX5ldqELgmXX4+6vu0h0lvLkHBMCoUbB0Kdxyi+qn6osv4Kougg8/hDynmdwXx6M7dpjo4QOoN7A1pt9+4tA+J4cOqYLIl8mClBKr1UpiYqJHcMyfP5/ExESsVqs249DQ8AFf42ksLef4TUr5APAXcMO57abGmeIRHOBZqnpr1DNMeOEhYvytKAIGBhmI9zMyfet0bvn5Fo7kHCm3LYvBglFv5EjOEdLy07xij5dnnuvpgwFiYlSPuS5X2SWrmjXh009hzhzo0UPNf+896Njdwvjcx9gzdw+ZH30LTgfVnryL0BQ1QuChQ6rOo2SkwfIQQniiFSYmJvLGG2+QmJhIdHQ0JpOp0r5raGionA1F+GxU77caFzkGnYFawbW8dByWo79T/KjUSwcLGtagdnAtNqVuot/3/Zi3Z165bekVPUHmIHJtudzz0nMcOHrU5374+UGdOqpVVPGSVcmX/Fat4IcfYMYMVVmelQXvvAOdrjYw9uC97JyxhRN/LMfZtAUmE9T44GmCv3qH5J05nt3lxUGjSiKlxGazkZKS4pWekpKCzWbTZhoaGj5wNoRGY6q4T0PjwqFX9NQMrolRZyTPmkvg7okeU1YBBBbsY1NcPW6u25UsaxbD/hrG8wuf9wRsKo2f0Y8Dh45htds4mnMUh6ucKILloCjqJr569dSYG3l5ZXUUnTuryvKff1a/Z2fDhx9Ch3iF5//sou4ldLnQ79lO6NsvUL9XbSImvkLGzuPs26cGfyppuSWEwGg04ufn53UdPz8/jEbjZT/T0AwANM4GvlpP3VvOMVwI8RHwNjD3nPZS46xSbFX1xdj/Yc/1fusWQODxBD7v8zZjeozBqDPyw+Yf6P99f9YdW+dV9oVxH/LCuA/5OH4RN+gn8Py4D7jvpRfIKMzwyfEhqLu+q1VT9R0Wi6rv8H7QQ9eu6qxj5ky45ho1f+pU6NIFhv9Px+xH5pI2aw22LtcQ9Ol46vasTfiy38nLU5etisPOOhxudu/eTUEp292CggJ2796N+zLeSagZAGicLXx11DCtgnQb8DPwxFnpjcZ5QxEKQxtuw09fdh1H6ixYTvzLiLYjeKjwH348so1Xj+3l5uk380CbB3ihywv4G/3Zd7BI51Hks/jAIdUR4on8E2QWZlLNvxoBxgCf3uCNRoiNhbAwSE9XH/JGI5hLhPvq1Ek9tm+HL7+EP/+EuXPVo1mzDtx770xuf3QH1f7vXRytO2CxgH7bJpzoSanVDCEUwIhOp+Pur9X46d/efz86nQ6j0Vhmz8nlQkkDAFCt3IoNAOLj45FSXvazLI2zh69Co245aVYpZUXuzDUudrK20qpaHuVFi1VchQRtH09hdH+CDBae8ktneEMLo9OsfL5xCvP3zueNHm9Qt7ZqyltMvdo1gJMbAo/lHsOoMxIVEIVFb/HpwWQ2Q/Xq6myiWHgYDGp6cfWmTdVd5S+/DN99px7btqmbBsf6N2HgwCncdQJaxEDQWy9hXjyHwv43kzPyBY4fT8bl8r5pl8tFcnKyx1/W5UaxVRtAYmKiR3jEx8fTr18/TWBoVAlfracOlnNoAuNSZttb4K4kkIXbQcC+SWR2nMrxrn9hDG/HB5GSA/X0RNqO8MBfD7DYOJNskYFeuIlQDhNmOOnHSq/oCTQFogiFw9mHOZxzmAJHgc/r6MXCo25dVXGel6fuLi9ZPSoKnn0W1qxRra46dlTLfPcdXHst9OkDn7T/ltQHX8W0KoGoGztz97Sp1DpwAJ3Lhclmwz83V+2v3uhlBny5UVJwFKMJDI3ToUqvVUKIAUKId4UQU4QQ7xTF7ta4FMncBLKcaUYRituK6cRyAByh7Ujv/DMnOv9CcHQ3BsePIsgUhN50gLmmqew15GCkkDtjEsq0U7wp0C3dHM4+zMGsg+Tb830WHiaTaqZbr56qOC8oUAVISesok0nd3/H77/DPPzB8uFp2+3Z4/p0Iqk95gxtbHWL5ze8SnpZG+7VrqX70KFGpqTwxcSIt/vsPKQX79wsOHFAV7pdbYKhiHUZJSuo4NDR8xaflKSFEIDALuBpwAumortKfEUL8CwyQUpbvvEjj4uT6TXQtCuv6UUfVfciTa/oCMH/aZFLyUpBSUtLOyB7RBXtEF+4Brmt6G2FLupNlzaGuwYUQ0DZkH2/071zu5Yw6I0adEbvLzpGcIxgUAxF+EQSYAlDEqd9dDAaIiFCFQV6eunRVUFBW79GkCbz+urp0tWiRanm1dCnMXhbIbJ6lru4Wtm2LQyl6WCpOJ7f8/ju7d+6iWq4ba/MOHG/RGZfehMEAISHqTMdkunQdJpbcxFi8JFV8DtqMQ6Nq+KrTGA+0Be4BpkspXUIIHXAH8EVR/uPnposa54rlP/4IwLqPIrzOAWqH1OZ4/nFybDmY9WYvD7cA4X4RzDzQjSGxi/BTVHMng3TiWHYrH0c9wbB2wwmzhJW5ZrHwcLqdpOSnoOQrhJhDCDIHYdQZT9lnnU7dXR4UpJroZmWpQkQI9cFe7KndZILrr1eP9HT4+2/4/XeJfl0aVkyYsXnadAkd1Q8fw3/c8wCk/JeKO7Qahnl/49qzh+Nx7bA1a0NgbCABAd7XuRQQQnhcvhQLiOKlqpIuXzQ0fMHXn/6twCtSyh+KE6SULuAHIUQEamQ/TWhcYgwbNQqApK1dAWh3XD2fMm4cekVPTGAMweZgUnJTsLls+Bn8Ts4KhMKa7MbcEbMMUIWGEFBLD7u2TOTBrV/xUw1/jNG9MMVcgz2sA27zydDwekVPgDEAt3STZcsivTAdP4MfoZZQ7+tUgBDqDMDPT12qys1VN/UVFqoPdJPppEv28HAYOhTuvVfyzfglWL6yeu0ssksjDXK30LK1jsFNN1P7eDWahIPf4r/x/2EyAFIIHPUaU9imC0fHfY3RCEH+LiwBOq9rXaz06NHDy0qqWHBoAkOjqvgqNMKBbRXkbeMsxA/XOP/s3L+/0nMAP4MfdULrkGXN4kT+CRRF8VhCfTSiHaHrvvSywDIr8E2siYFHrOzJs9LpyC/4H/sFAKdfbTI6TsUZ2BhchaCYUYSCn0FdBLM51Q2CilAINgcTaAzErD/1m7Bery5bhYSofqtyclS9hNut5hVbXgkhsNQ1Mfum67n5jz9wo+ASOl4Nf4PjGVEs2KhjwcYo+El1sNijxyT6vT2WHoFJhO1fh2FTEqasVAICVEFlGdALJfMEuXHtcLVuj75TewztW2EK9bsohUjpcdQEhsbp4KvQ2I/qlHBhOXnXFeVrXGI0rqtaUidt3ep1XhpFKIRZwgg0BpJRmEGWNQu9ouf4nMcJD88vUz5Sr2NS10cZfTSZG3b+SZzBSVcL9As6TtL2edzYPII6h6fht38q9rAOOMI6YAvrAMEtMZkCkVKSa8slszATvaIn2BRMgCkAk65y/1BCqALCbFb1H1arKkByclSrK0WRmEz+bG7VivpLl2JyuZg1fDhBgfmMt0wjJOR+/vlHISEBUlJg+nSYPj0KuI5mza6jSxd1Z3rHTFVIOfpchzHxXwJWLkD3x/8BkNfzBvZ8+RcmE4TP+hZ9XGN0bVthCLKc2R9LQ+MiQfhiPSGEeAp4H5gK/AAko27pugMYDjwtpZx4Dvt5WrRv316uW7fu1AVLkZCQUMZT6+VMsUK8pE6jMmxOG9lpKwla1Buzvvxd1G59IKm915Jsy+f7Td/z0+afSMlXd5/rFT3P1mnBvaEW6juTMRao7xwuQyip/TaBUNDn7sZlroZLr3rVdUu3JwxtgDEAs97skwId1BmH1arqPmbMmIbdbuX7Zary/4ZWrQgLi8JoNHPDDUMBVcBs26Yq0P/9VzXpLb1LvUkT1cS3Qwfo0F5SU3cM45YkpH8g9i49cWVkU7NFiNqeToe9UXNcrdrhHnIP+t49WL36/P/GpJQMf+UVQF2CvNQ29V1p/y/PlDMZLyFEkpSyfXl5voZ7/VAIEQk8BQwtbhd1R/jbF6PA0PCdimYYFWHSm6h2YApOpZIXDreDgN0TiW72Cs9e9SxPdnqSxfsX88PmH1iyfwlv79vA24C/wZ9b6/bn7ti6tA6OgiJBELL+UQw5W3EGNsEe3hF7WEesoR3IRZBZmOlZ1go0BmI2mDEohgofgIpyUv/x4/IFOBxOnEUuQ/7+7z90Oj0/TfgZKYuXsSAuTj1GjlQFxrp1sGoVrF4N69er5rzbt8O33wIIqlWrTtu21WnTBlq6oFXLIFLWHMK4SV3WMvy3DtOCvzjRpAPZjXqg238U2yNtcLVuj+jQHtG+Hfo2LdD7m6r0t/CVhIQErFYrG7ZvB05aVJnNZu1BrFElfJ1pBKMKCAvQCQgDMoDVUsrMc9rDM0CbaZxDZreE7M2VFrEHt+BEt7Jeck8UnOCPHX8wc/tMNqVu8qSb9Wa61upKn3p9uCk0hJjC3Rgz1mLMTEJx5lEYM4DM9l8BYDn0M/mBTSiw1EUKgU7REWAIIMAUgFFnLFeISCmJHzQIt9vtERpmoxGn08kDva+jd+9hwMngUQZD+Wa2hYWwaROsXavOQpKSVCuu0tSpAy1aqEfz5tCsqSQyzAV6PQf/nkKbH37GsGkdumz1v5A0GDj29VzcPXvhl52MJTsFpUUcBn8jOl2lQ10pUkquHzYMu93O2/PUv8e4QYPIzc3ljh49GDZs2CUx49D+X1aNCzbTEELoUfdl3CKl/BvNOaEGwPUnH/ZtBw5kxPXXM+L++8i355NekI7D7UCv6DGXswQS4RfB8LbDGd52OAezDjJ792xm75rNxtSNLNq3iEX7FvEC0Di8Md1qd6N74wfoEhiEn9EfAMWaQuh/TxMKuPVB2MPaYwttT061Phzzq6WWKZqJ+Bv8MelNGBQDilB4sH9/jh49yurdSYyPX01WvfdYtm4/RiM0aKBu6rPZVGus/CJ1jRCqQt1oVL9bLBAfrx6gLmft368Kj40b4b//1OWtAwfU4++/i+9cEBGhp1kziIjoy1U3DaPxc5KmlgOE7l2HYXMSSvNmON0gp/+M37incBuM2Ju0Iq95O1yt2+G6/U7M4f7o9ar5sV7vm+VWckYGJV8P9ycnF/X98t/cV2wlOGXcuAvck8uDUwoNKaVTCJFKuV6KNDTAz2xGURRVaW0OJsgUhNVpJduaTa49FyklBp0Bo66s+/HaIbUZ2WEkIzuMJCUvhX/2/cPCfQtZcXgFO9N3sjN9J5PXT0YndLSo1oL4GvG0j2nHVZ1nEVO4F2PGGowZawlOW4zbUh1dSDN0efvwO/gDBSFtORHcCqchGIHAoDMwYPAAEpcmMiJmAjH+hWw98g4dO75L//79i/YzqIr04GBVF1IsRPLyvON+6HTqTESvVwVJvXrqMWiQmm+3w65dsHUrbN6sfm7fDidOqOFtoSa//QbqzKYu0dF1qV9/EPUnQv360Dz6duJejyHmWBKmzesInPUj4udJ7L/uLrIcEPTjl5h2b8Ea1w5H6/aIpk0x+es9M6TSAsWg13t58dVfjOZd54Dy3MFfCrOqixlfrae+R1V4zzmHfdG4xCh+g8srKMDldnu90VkMFiwGC5HuSAqdhWQVZpFvV1/d9Tp9uZZQ0QHRDGk5hCEth2B32Uk6lsTSg0tZeXgl/6X+x8bUjWxM3chXReVrBtWkVXQrWkUNol3tOjQOaUkIYMjZTsD+KQTKL4kCHAENsYd1JKvh4+TLcJq2r0vUIitCQGP/nUTGCbKsWRh1RvSKHr2iR6foUBS8hIiUaphah+Nk8Ki8PDy6kOIHdfGspHlz9Rg8WO2vlHDkiCo8li3bR1ZWPXbuhH37VGutlBRYsaJ4NGKBwej1g6lRA+q2ddMm/BD+v/hRsyb03rSHiPn/R8gPnwHgNlso7HwNR7+cBYCSmow7ohpCr0Ong3t79CU9PRl9QgIml4s76tUjPzDwsp5p3PrII7jdbs+satioUWRkZPDE4MGX/TLXsFGj6BYXd07a9lVoHADuEkKsBf5EtZ7y+rVJKb85u13TuBzQKToCjAEEGANwuV3qDMSWTb49H7d0o1N0nod1SYw6I51rdqZzTdUtSb49n3XH1rHm6BrWJa9jQ/IGDueojhBn7ZrlqRcbGEuzyGa0CBtGF38TLZUcYm37sSTPJqfpywwa/hxvdFhLg1rqz1cnnBTMGYS17/fYgpsC6tuoTtFh0pkw682qjkRnQCd06PV6DAYFf39V4LndJwVJYaF3JELVzNdbmNSsqR7Vqx8iLq4eoIa+PXIE9uyBvXtVIbJ3r7q0dexY8TKXwhLqwG/Fd/oegndoad5N75B1xOuT8E8WLJms+up64MO+BJ7Yh7VpG1yt29HIkYNMOUKr3EzQQYOJE/n7hhs4HBLFrl0So1F4hJ3BoB7FfVeUk98vlZd0KSV5eXleHo0zMjLIzc1l/fr1dO/e/bKdcUgp2bl/Px0bNPCcn8179VURfqroNFJKeQaqunODpgg/PxS/1dxXZLrrC27pxua0UeAoINeWi91tR0qJXtFj0BnKCJHSON1OdqfvZlPqJv5L/Y9NqZvYcWIHhc7CcstXD4yhXmgDtiUdYk+Hw4QYvH/SDsykDdiDEIKQDU9gPLEStzEEpyEElyEYu6UWJxo+hRACv4y16KUDxRyJzlwNvSUavTEURdGpMxR0uF0KTqfwCJPCQry86O7fn0CDBj1OqZcoLDwZA7348/BhVcgcPqzOdMrjLn6gI2toRxJt2IA/BThR0JfYCu9GsKVGe4IbxaELD8HRoy/uftciHU78/vkbV0Aw7qAQ3IHBOANCkEHBKEa9lxAseRQLl+JDiJPfzwZV+X/pdrt5++23cTgc/L5hAwC3tGkDgMFg4MUXX7ws3eCXnF09eMMNJO3bd1qzqzM2uaX8eBoaGqeNIhTPEla4XzhOtxO7y06ho5BcWy55jjwkEkUo6BQdBsWATjn5XqJX9DSNbErTyKYMbq6u/7jcLvZn7Wf7ie3sOrGLHek72JW+i4NZBzmam8zR3GT61KZcS6Qcl50Rf91PdGANblTyaGyoQTBO/O3ZmAuPYbSnYzMFAhC+5yNMmd4vI9agFhzqNAOJJGrbaHT2DKQxDIxhWMwRWIKa4qrRH9x6yD1CspKFya8Au91AQaGCdCuA8LzJF7/ZGwzQqBE0bly2z1KqGxePHlWFSHKyehw7BodSh7AmZQgpKVCQ52Iw0/mKhwgMylMd/nwO7gwF/yPpiCP/EEQWE38NYKzhWhqFZLDl+MAy11vYYxwbr3uZGPdRbvikD65AVZDI4GCcoSHk3TSEwvZXo2Rl4P/vPC+hQ0gIMiISvb8JRcGjyC8+SgqZYrPn0t+ryr+7d+NwOJjWcxn1g3N5cLnguNWf27p2rXpjlwBSSg6npnrprrbu3o3T6WTPnj1nbXbl6z6Ng2d8JY3Llinjxp1x2NBiXYKfwY9wv3BcbhcOt8MzGyl0FHrilAtUE9viOsX/EXSKjgZhDWgQ1gAanWzb6XZyKPsQezL2ELfqUQKVsrvYTcJNreML+WqvuoO1NGZdChHb44mwRBDn50dd8zXEGIxUM+iJ1IFiCictbTMh5hAi7JlYCg6gz96IYs9ESCf5kT05HtIBt3RTb2V3utuOI5cI3IZgXIYQcqr1I63es0i3QrV9H+ES/jhEGA4RQYEIx26sj9NUC0UoCASKEOh0Ap1BoW4DQYNGAp0iEEIgEF4Ph7w8hT+/ysM00QZ9gMbAEHB+qmdYo+nk+LUnPV2QfkLiKICdx0NpxUZCyCKYbM/n6oROrEuA6khMxBWlpxPMPkLIYuyfVzEr7GquNuzi50NDyozht/1/YmebO2h4fCUDZw7B7h+CzT/YI1yO3vEMrriWBKfvI+y/JRCsphfn22129uzxFjDlzXDUQyE9Nxe3201TZxZGg+Sheqt5Zl3notgpikcgFQ9VeeeXGsUrR1/3WE6McTvfOFW9Rk5OTmXVqkSVfXUKUWYbrpSXszZN44KgK1rqMevNBJuDATyCxOl2UugoxOq0Uugs9IpHXixQdKJoqUioVl31QuvRSO8gONBW7vUCFJgYY6FWq8c5VJBFSl4KKXkppOWnkZafRr4jnyM5RziSc4SNFfb6W68zvaIn0BhArDmQ0JxkXIfuJcAYQD99HQKsEdQIshAiXAS5HaRkHWHbgdmYdUYeODIZg9vq1dbR6Ns4UPc5DAjarbkGpz4Ehy4Euy4EuxJCiv+1pAb0RrhsRBUswq6E4tSF4TSE4daHUhicxpybr+Wm/n8hFJBtYMXQq7imzjxuuasuOp0OBQWbDbIzdWRlNSQzU5CdKcjOVsjKhBaZCrVznGRnx/Be9s9FLloEOdmQlyfUnVzJ8CetacTOMkJn8byO7J8HzQlEx9WEZBbnHyCYbJ5dMoIVwB0k8hPDy4zu0zGLORAFN+d+x2OHniPfGEK+IZhCUzBWUwi/dP6QwrDq1M9cR720VXTeGUwL5x6M10mEgG4xKdyZlsOq5X4YDU7MFr1Hf6PXq59G48nlNoNBdXxZrN8pKVSKZz4ll9/K+ywphErnlyecSqeVl1fRd7f75GO4ODBalKUuqYV+uN3us6bbqFBoCCGigSnAz1LK/ytK0wGlw9PkCSEaaZH8NM41xYIEIMAY4El3uV043U6cbicOlwOby4bNZVPdj7jdqlWrhOidH6KrxHLcgOQx/xxyO7xWJi/fns+JghOeI6Mwg/TCdNIL08myZnkdOdYcsmxZWJ1WMq1ZZFqzvNoqz4Gb6vdzNgAPAWYB4TqIUNTP5IMz2P7vDPwEjAuHavp8IvTJROggTIE/j6zge/uH1NXDguA9ZVqfbw4hoZ2Oa01gAjBCp54JRNnXYFj9CTNpz2ZRh7pkcp9YRjQCiQJhAsIEcxr1RBrq0Mp9jGvti9WHjxCog6vwj+UGDrtqEVu4n27ORbhdCi63gsul4HYLph65h8a5m7jF9CPXRi7E5VJwuQQ5LiOZrijGLnudg+l6bqr+Mdc3ns/Prj4Y3E6MbicG6eK333qz1Gamc9CXtIqfQbIzAKMsxCRzCJJ7yfopiJ/nHqRNy7ncVe9LusYkcUs0UEO9VwBhgKduXsyKZdl0mX4XNqcRq8tMgcPMsZUxdDX9TbNau7grcAZN7HvId/mR6wwg2xHMrqMN+dZyD9WDU2mi340ZG3kEky+CyVFCySUURa9Dp5fodaAoAp1eqstvilCFi06W+A56XYl0IVA8S3WyxIxJFC1VSpQSOiKhCHQ66bHaU/8cktT9fZDSTX7jQxgikniixRZeXtORuLi4s6YMr2ymMRI1hsZtpdIFMBk4VvR9MOrv/PWz0iMNjSpSLExMlHXB4ZZuXG4XLunCmL8PpRLXJ4rbiiFtKXn1n/SkCSFQhIIiFKIDookNjPWklV4GKo3dZSfXlkuOLYccWw559jzyHfnk2nLZs2cPwbHB5NnzKHAUUOAoIN+Rj9Whzp4KHAWemdQepxWr00qwUAXhUydsqMaLJQVgJpDJQSAuC8KLhE3xscidxcxYMOmK7wtMisQm8jlWmM8/mXNZXAgtjNA7Uv2PLQBFqJ+/nZjGcit0NkPHiKJ8cbLclL3bWWeDvn7QpShfDxh0IHSwwrKGLToICICa4SfrFR/ZvRaS7oCIIOgWViKv6BpDY1eS6XqDJiFwVWjZ63esl06uuwv/C4NWIZAP6CSYFI9nGlBAREmuvkPVR1mwYcFGgD2b/1JSsQ+pybPRMCSo1B8yC/KehMlPPsVHMXBjQKn8FEh9DaKfg7mxcI0BFCe4XeByQ8Zx+HYhjLoGvo2CTk4QTnViZgd25MP4o7A1Ct4KhxgBhULNs0vYYoNv1ajEPBwMJgEOqebZgT12WF40Me17pzrubaLVv1332BTaR1s5fPhwhb/TqlKZ0OgPTJZSljZHkcBXUsr1AEKI48C9aEJD4yJEEQqKTsGAAQZs8aSX3iXslm7c0o1wu6gp3UikR+A43U5c0uX57pZu7C47btwnlY5Fsxmv7wJMOhOR/pFE+qlP4mJBszdvLw1aqSaRxXqIU31XmxZIKXG4HdhdduwuO1aXFbvT7kmzOW2qYYHbjsOlLuel/TCByNhdlAwkohdQx+TPX9FP0EG6aFt0j38U3WPx7M0t3dQLd1Hb7cIt3XxUVM4tpSqQ3S4iarjp63bjki6elm7cbolLupBS4pJuLGEu2kvYj+SOAjXdLd24pLpsYgiQNJaSZdJNrwxZNP4SUL8bLW6qO6386jDyS5qaBuoavkTib5b4S8lnhZLPCtVa11mz+KZGAZSI7Ch0kGwXdEsNRRFgEBIFyeEHFEKAd3NdfJPvxiDAINwYpcRoh3VP6wkwCCblOtmU4iTa6sbiAj+3BCusulqHRTEyp8BOUKqD2AKJSUoMAszp0PmoglFYyHXbqHbCSYgD9emrg7YHof58QdcRZjqbbXS2uzEKkHqQOig4CF3+0fHwDQZGh1mJKvXU3rBX8OouHXMbKvwWY8e/hALBqLh4reEypp3ocu6Xp1DVZWXn6cXOeU6yq6ishsYlS/Fs4lSmvqUpfmgVf7qLHoIl00p+Fgung+IgIeYQz3mxXqb0d1dRHPditaG76KHvdrsRCEx6Eya9CWmU/9/e+UdZVV13/PMdBhgQDAgRiShizVITzNJqREXIoEEoaFfS1NoqQVaNEEMxaTT+7EoxZRmKihCppqhrsRq1Bo1VgjVKAqgkBiONAaMRYxB1hMgvFWYYZ4bZ/ePcy9y5vBnem5n3g3n7s9Zd793zc9+97rv7nXPP2Xu/gWn1C7VQ93PD3uewDB6JD1cTVw3syUfDLz/gupT6qRttP3Qylc+2bqa2zGID2bLn5e1XNnHMyBEYLTvz47z4e2y49+1r5qhnJ6GeB0ZtGFTZk5+NnsW2IWGJeGz3E4uOWtKi9mYk+kmWi9MuAMZH6bXA62lVXw3Loq8v1dXSo66Wytpaeuyto3JILTa6F8tPOZV6YOOyR+n9561U1tVSGZWtPvMElk++ivXN9Zwxayp9ttXQo6GOyoY6Tmsw7j1rIr+dNY/rFl3BonNeQANCX6qAoZ+o5aTd67psI2d7v5AqoNUq8CjM61BgeyK5nla23HFKn67yQ7R/NJDjH7geFT0Y1LfzscviB0H8zzuZFqc379xA88APM9bvyccM+eOdDDx5JvQ8vFW9tvrKKEeG8tnUy6WdrT3eZfgRn8qqHX34Kj0q3s6Y16uigePfu5MjT72y1TXnk6QKMqmjVdpnZx1Qpg8wKDaOK5+nLq7XbFBXR+99+/h8v368ZnsOeBqrCi4YtgLZPqDz2+naMxrvA8cDa5KJGV54jwC2dVoSx3FyJjlt1ZKYKrTxDpoq2t6fK2uk9x9ug9Pm5UHCrqNCFa0WQLRH88aFNLe3J9ka6f/GwpK/5qw4vMXwXXjWFpThL3zvXg1UbLofPn1Vp7trb8vMGuCrWbQxFfjlQUs5jlMcdq2nsr3YJ/v2wtZfFE6eAlDxwYZ2r1nd8Jqbd21g+IDMkSp6VjRgL98AjZ3fr9HeSOMHwBpJtwM3mFlTMjNymT4PqAbGdFoSx3Hygk36HWdfcglNTU0HxBGZM306EyZM6H5+mCav3x+Rck9dmMyprKigqqoq6wiVhxp6dS6V7Y2umhvhlTmdHl21aTTM7AVJ1xEMwxRJK4B4kvBYwt7SwcCNZvZCp6RwHCdvxAahsrKSpoaG/d8Bqqqqup/BiDhxxAh27ty532gM6NuX/pFn3255zQUaXbW7VMTM7pD0f8D1wFdoecVSDzwHzDOzlZ2WwnGcvPLrpUsxM8ZcFtx7rHnooe778CS8fL94zBjWrl3Llh07qKys5NopU1i7di1PP/10txxdafJ6vjJzJnV1dWzZtYvpF13EY6tW0bNnT66bOpVx48Z1ST/ZBGFaBayKdoMPIrxm225mHpTJcQ4h0g/J7vbQTBICalUxatQo3o5GVxMmTAC67+jKzGhubqYx6U4ZaGxspL6+viD7NNIC7SOsqHIc5xClu87nZ6K6uhozY+LEifvTuuMII8nk00+npqaGl7du5bA+ffaPrmpqarqsj5wdFjqO4xwqlNvo6oQTTmDYsGG8/fzzQH5GV240HMdxugnJ0dXq1auR1OWjq6KErpL0DUmbJNVLWiepzSW7kqolPSFpi6Q6Sesl/WMh5XUcxzlUyPfoquBGQ9IlwELgVuA04FfAU5KObaPKOcAGgrfdkcA9wGJJ2ccWdRzHcbqEYkxPfRtYYmb3RuezJE0ErgJuTBc2s1tTSfdIGkdYAlw+b/Ucx3FKgIKONCT1Ak4HnkllPUMYUWTL4YQAAo7jOE4BKfRIYzDBzWLa6eGfgS9m04CkC4HzgdFt5E8HpgMMGTKkQ7Gr9+zZ0+mY1+WG6yw3XF+54zrLjXzpq1irp9J73ZUh7QAkjSZMSV1tZi9mbNhsMbAY4IwzzrDq6uqchVu9ejUdqVfOuM5yw/WVO66z3MiXvgptNLYTYlQelUo/kgNHH62QdC7wv8B3zeyebDpbt27ddkmbOyDnYFrHDHEOjussN1xfueM6y43O6Gt4WxkFNRpm1iBpHcHZ4SOJrPHAT9qqJ2ks8CQw28wW5NDfJzsip6SXzOyMjtQtV1xnueH6yh3XWW7kS1/FmJ6aD/xI0ouEOBxfBz4F/BBA0veBM83s/Oi8mmAw7gYelBSPUvaZmQd/chzHKSAFNxpm9mNJg4B/AYYCrwCTzCyeRhoK/EWiyjSgL3BtdMRsBo7Lt7yO4zhOC0V5EW5mdxNGDpnypmU4n5apbB5ZXOD+ugOus9xwfeWO6yw38qIv5RL03XEcxylviuJ7ynEcxzk0caPhOI7jZI0bjRS5eOAtJyTNlmSpY2siX1GZ9yTtlbRa0meLKXMhkTRW0jJJNZFupqXyD6ofSb0l3SVpu6TaqL1hBb2QApKFzpZkuOd+nSpTNjqTdKOk30j6SNI2ST+VNDJVJu/3mRuNBB3wwFtuvE5Y3RYfpyTyrgOuAWYBnydEeVwhqX+hhSwS/QgrAb8J7M2Qn41+FhAccf4DMIbgY225Qqjl7sjBdAbwc1rfc5NS+QsoH51VExYQnQOcBzQBP5d0RKJM/u8zM/MjOoC1wL2ptDeA7xdbtmIfwGzglTbyBGwBbk6k9QF2AzOKLXsRdLUHmJaLfoBPAA3AZYkyxwDNwIRiX1OhdRalLQGWt1On3HXWj+Bh46LovCD3mY80IrrQA2935vhoKmGTpIclHR+ljyC4htmvOzPbCzyH6w6y08/pQM9UmXeA1yhvHZ4r6X1JGyXdK+nIRF6566w/YbYo9vhdkPvMjUYL7XngTfvKKkfWEvbL/BVwJUEnv4o2asb6cd1lJhv9HEX415j2FVTOOvwZMJXg1foa4ExgpaTeUX6562wh8DLwQnRekPvMY4QfSIc88HZ3zOyp5Hn0QvJPwOVA/HLSddc+HdFP2erQzB5OnG6I/NZtBiYDj7VTtdvrTNJ84FzgXDPbl8rO633mI40WOuyBtxwxsz3A74FPA/EqKtddZrLRz1bCSHdwO2XKGjN7D3iXcM9BmepM0p2El9jnmdmfElkFuc/caESYWQMQe+BNMp6wispJIKkKOInw4m0T4WYcn8ofg+sOstPPOqAxVWYYcDKuQwAkDQaOJtxzUIY6k7QQuJRgMP6Qyi7MfVbsFQCldACXEFYWfC1S4kLCqo7hxZat2AdwO/AFwsu2UcBy4KNYN8D10fnfACOBh4H3gP7Flr1A+ukHnBoddcB3o+/HZqsf4B6ghhDF8jRgFWHOukexr6/QOovybgfOJjgmrSbM3b9brjoD/iO6h84jjCbio1+iTN7vs6IrotQO4BvAW8DHBKs8ttgylcKRuPkaohvuJ8BnEvkiLMvdAtQDzwIjiy13AfVTTZgTTh9LstUPUAXcBeyIHqI/BY4p9rUVQ2eEpaJPE/YZNBDeZSxJ66OcdNaGrowQZyguk/f7zB0WOo7jOFnj7zQcx3GcrHGj4TiO42SNGw3HcRwna9xoOI7jOFnjRsNxHMfJGjcajuM4Tta40XBKFklnS1oaBZRpkLRD0gpJl8e+/yVNi4LzHJeo95akJam2LpK0IQquZZIGSKqQtEDSFknNkh7P47UclynQUIZy8fWckC9ZOoqkL0n6dob06kjmLxZDLqewuMNCpySR9C1gPrCSsMt1MzAQuICwo/UD4Ik2qn+ZsCs2bqsSeJDgJmEmYbPYbuBvCQGAriHsNt7R5RfSvfgSYRfx/CLL4RQRNxpOySFpLOHBtMjMrk5lPxF5+Dysrfpm9ttU0tGE2ANLzey5RD8nR18XmFlzF8jd28w+7mw7jlPK+PSUU4rcAOwkhK48ADN708zWt1U5OT0laTbBLQzA/dE0ympJbxHcLQDsS04dSRoq6b+iGMofS1ovaUqqj3gaaaykRyR9QIg5gqS+ku6OptP2SFoGdGncaklXSvpdNN22XdL9qbCfRPLNkXR1FDhrt6RnM8SM7hGV2yKpTtJKSSdF9WdHZZYQ3OAfrZZ43W+lxOoraVEkzzZJD0ga0JXX7RQfH2k4JUX0rqIaeNzM6rugyfsIcagfAeYATxKmrnoDVxMCS50dlX1T0mEEfz0DgZuAd4ApwI8k9TWzxan2HwT+mzDVFf+e/pPg/PIW4DcEj6IPdcG1ACBpLmFK7QfAdwgjqTnASEnnWOv4ClMIsd2/CfQCbiOM1k4ys6aozC3Rtd5GiMn9l8CyVLf/BnySEHf6r6O09KhqIcGR5aXAicA8QriByztzvU5p4UbDKTUGE5zVbe6KxszsXUkvR6dvmlkcMApJNVGZZNo/EeI1jDOz1VHyU5KGAHMk3Z96KD9qZtcl6p9IeGjebGZzo+RnJPUDvt7Z64le+H8HuMXMvpdI3wisAS4CHk9UaQQuNLPGqBwEA3omIfLiQOBbwA/N7PqozgpJjcAdcSNm9qakbUBDUl8pnjOzWdH3ZyJdfE3SNHMnd90Gn55ynNaMBWoSBiPmAcI/7c+k0v8ndT6K8Ltamkp/mK5hfNT+g5Iq44MwNfYRQf4kK2KDEbEh+jw2+jyF8H7okVS9Rzsg25Op8w2EEd2QDrTllCg+0nBKjR3AXmB4kfo/gpYgP0m2JvKTpMsOjT4zxWnuCo6MPv/YRv6g1PnO1Hk8pVQVfcbyvp8q1xF5D9aX0w1wo+GUFGbWJGk1ML5Iq5F2Eubj08QhNNPLctPTLrERGUKIoU7ivCuI+78A2NVOfrbE8h5JCN8b46MDJyM+PeWUInMJ/5hvy5QpaYSkz+Wp72eBYZJGp9IvJfwbf+0g9dcCzcDfpdL/vmvEY0XU/rFm9lKGY1OO7W0AaoGLU+npcwgjhz65i+x0J3yk4ZQcZvZctPN4frSXYgnwNmFF0/mEcLyXAm0uu+0ESwgrjR6TdDMhvOhlhHcJM1IvwTPJ/rqkh4DvSaqgZfXUpBzlmChpayrtQzNbIenfgUXRi+ZnCRHajon6uc/MVmXbiZntkrQAuEnSblpWT10RFUnuX3kVOELSVcBLQL2ZbcApK9xoOCWJmS2Q9CLwz4RY0YMJu7hfAmYQQlTmo99aSV8gLBedS9gU+DrwVTN7IMtmZhBiy19LWOa6kmDk1uQgyl0Z0n5PCN15k6TXCLvbZxKmyN4BfgG8kUMfMf9KCBN6BWEZ8lrCUuRfAh8myt0HnAXcCgwgrHA7rgP9OYcwHu7VcZwDkHQxYQXYWDN7vtjyOKWDGw3HKXMkjQImE0YY9cDphF35rwPn+B4LJ4lPTzmOs4ewv2MmcDjhhf9S4EY3GE4aH2k4juM4WeNLbh3HcZyscaPhOI7jZI0bDcdxHCdr3Gg4juM4WeNGw3Ecx8kaNxqO4zhO1vw/rueA+HKIea8AAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAf0AAAFGCAYAAABgwUY+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAACqkUlEQVR4nOydd3hUxdrAf7O72d30kELoCSA91EQgoAiKgmDBCmIBvIJdvHaxgF2uXL2o+CmooKiAYEVBRQWlBJBQA0iREkoSenrdfb8/TrJkk00B0oD5Pc95sjtnZs7M2c2+Z955ixIRNBqNRqPRnPuYansAGo1Go9FoagYt9DUajUajOU/QQl+j0Wg0mvMELfQ1Go1GozlP0EJfo9FoNJrzBC30NRqNRqM5T7DU9gCqk9DQUImMjKySvjIzM/H19a2SvmobPZe6iZ5L3UTPpW6i51I28fHxR0QkzNO5c1roR0ZGsmbNmirpa8mSJfTt27dK+qpt9FzqJnoudRM9l7qJnkvZKKX2lnVOq/c1Go1GozlP0EJfo9FoNJrzBC30NRqNRqM5T9BCX6PRaDSa8wQt9DUajUajOU/QQl+j0Wg0mvMELfQ1Go1GozlPOKf99DWa2uLqq68mKSnplNrk5ORgt9uraUQ1i55L3eRcnEvDhg2ZP39+bQ/nrKHGhb5Sqg/wGBANNAJGiciMCtp0BN4FugPHgA+Al0REqne0Gs3pkZSUdMqBodLT0/H396+mEdUsei51k3NxLjExMbU9lLOK2lDv+wEJwFggu6LKSqkAYBGQAlxY2O5x4JFqHKNGo9FoNOccNb7SF5EFwAIApdSMSjS5FfABRohINpCglGoLPKKUelOv9jUajUajqRxngyFfLLC0UOAX8TPG1kBkrYxIo9FoNJqzkLPBkK8BsL9EWUqxc7uLn1BKjQHGAISHh7NkyZIqGURGRkaV9VXb6LlUPzk5OaSnp59SG4fDccpt6ip6LnWTc3EuOTk5dfI34FSo0d8xEam1A8gARlZQ5xfg4xJlzQABYstrGx0dLVXF4sWLq6yv2kbPpfo5ne9eWlpaNYzk9Pn1118lNjZW/Pz8JDw8XJ544gnJz8+vsN22bdvk6quvlsDAQPH29pauXbvKli1bRERk9+7dUvi/W+r4z3/+U6ovp9MpAwcOFEDmzp1bJfOaN2+etGvXTqxWq7Rr106+/vprt/NfffWVXHHFFRIaGiqA/Pjjj1Vy3eL88ccfcvXVV0ujRo0EkOnTp1eq3Zw5c6Rz587i7e0tzZo183jPcnNz5bnnnpPIyEixWq3StGlTmTx5sogY37GEhAS54YYbpHnz5gLI+PHjq2xee/fulauuukp8fHwkJCREHnzwQcnNzXWdX7JkicTGxkpwcLDY7XZp06aNvPHGG6d1raL/l6r8na8tqvp3DFgjZcjFs0G9nwyElygLL3ZOo9FUMRs2bGDQoEFcfvnlrFu3jjlz5vD999/z1FNPldtu9+7d9O7dm4iICH7//XcSEhJ4+eWX8fPzA6Bp06YkJSW5He+99x5KKW688cZS/f33v//FZKq6n6m4uDiGDh3Krbfeyvr167n11lu56aabWLVqlatOZmYmvXr14s0336x0v5GRkae0UsvIyCAqKorJkyfj7e1dqTYLFy5k+PDhjBkzhoSEBN577z3eeust3n33Xbd6w4YN46effmLq1Kls27aNuXPn0qlTJ9f5rKwsIiMjefnll2nevHmlx1wRDoeDwYMHk56eztKlS5k1axbz5s3j0UcfddXx8/PjoYce4s8//2TLli08++yzjB8/nvfee6/KxqGpgLKeBmrioHIr/XuBNMBerGwccABQ5bXVK33P6LlUP6e70s/IyJDRo0dLQECAhISEyLhx4yQ9PV18fHxkz5491TBSzzz99NPSpUsXt7Lvv/9e7HZ7uRqJW265RYYPH35KWov+/fvL5ZdfXqp89erV0qRJE0lJSfG40t+/f78MHTpUgoKCJCgoSAYNGiTbt28v91o333yz9O/f363ssssuk2HDhpWqe/jw4Uqv9CMiIk77u+jr61uplf4tt9wiQ4YMcSt7++23pUmTJuJ0OkVE5Oeff5aAgAA5fPiwxz5Kfi4dOnTwuNJ3Op0yceJEadGihdjtdomKipKZM2eWO74FCxaIUkoSExNdZTNnzhSbzSapqalltrvuuus83v+K0Cv9sqEurfSVUn5KqS5KqS4YhoTNCt83Kzz/mlLqt2JNvgCygBlKqSil1PXAU4C23Necc9x55538/vvv/Prrr8yaNYvJkyfzwAMP0LZtWyIiIspsd+WVV+Ln51fucSrk5uaWCuLi7e1NTk4O8fHxHts4nU7mz59P+/btue666wgLC+PCCy9kzpw5ZV5n165d/Pbbb4wZM8atPD09neHDhzN16lTq169fql1WVhb9+vXDbrfzxx9/EBcXR8OGDenfvz9ZWVllXi8uLo4rrrjCrWzAgAGsWLGizDZ1hbI+k/3797N3714Avv32Wy688ELefPNNmjRpQqtWrXjooYfIyMg4pWs9++yzfPTRR0yZMoUtW7bw9NNPc/fdd/Pjjz+W2SYuLo527drRtGlTV9mAAQPIzc0t8zuzbt06VqxYwSWXXHJK49OcPrVhyBcDLC72/oXC4xNgJNAQaFl0UkRSlVKXA1OANcBx4L9A5XVv1YCIoJSqzSFozjGOHj3K3Llz+eSTT7jwwgsBuPnmm5k+fTovvfRSuW0//PBDsrMrDHtRaQYMGMBbb73FZ599xrBhw0hJSeHFF18EKDPS4KFDh8jIyODVV1/l2WefZdKkSfz+++/ceuut+Pn5MXjwYI/jDgsL49prr3Urv+eeexg4cCBXXnmlx2vNnj0bEWH69Omu/8MPPviA+vXr88MPP3DzzTd7bJecnEx4uPtuYXh4OMnJp7ZTeOWVV7J06VLX+6ysLK688krMZrOr7FQFbUUMGDCAhx9+mF9++YX+/fuzc+dO/vvf/wLGZxIZGcmuXbtYtmwZNpuNr776ihMnTvDggw9y8OBB5s2bV6nrZGZm8uabb/LLL79w8cUXA9C8eXNWr17NlClTPH6O4PnehoaGYjabS93fJk2acPjwYQoKChg/fjz33HPPqd4OzWlSG376S4AypaWIjPRQtgnoU32jKp/4+HgyMzNdgl5EWLFiBXa7nejo6NoaluYc459//kFEiI2NdZX16NGD6dOnc/3115fbtnHjxlU6liuuuIJJkyZx//33M3LkSGw2G8899xxLly4tc4/d6XQCcO211/LAAw/g7+9Ply5dWLNmDe+++24pYVFQUMD06dMZMWIEXl5ervKZM2eyYcOGciMaxsfHs3v37lLR5bKysvjnn39ITEykffv2rvJx48Yxbty4U74PZVHyIatv375MnDiRHj16VNk1SjJ69Gj++ecfrr32WvLz8wkICGDs2LFMmDDB9Zk4nU6UUnzxxRcEBgYC8O677zJgwABSUlLw8fGp8DpbtmwhJyeHgQMHui1s8vPziYyMBNwfeiIiIti8efMpzWXp0qVkZGSwcuVKnnzySZo3b87tt99+Sn1oTo+zwWWvVhER14/xihUr6NWrFytWrGDVqlU0adKEbt266RW/pkqw2WwAWK1WV1l4eDj16tVzE2CeKLny9MSprjwfeeQR/v3vf5OUlES9evXYs2cPTz/9NC1atPBYPzQ0FIvFUmqs7dq1Y/bs2aXqz58/n+TkZO666y638t9++40tW7aU2pIYOnQosbGxLFu2DKfTSZcuXTz2GxwcTEBAAOvXr3crA2jQoAEpKSlu9VNSUmjQoEHZN8IDJR+yLBYLjRs35oILLjilfk4FpRQTJ07k1VdfJTk5mbCwMH77zdgJLfpMGjZsSOPGjV0CH4z7D5CYmEjbtm0rvE7Rw9v8+fNp1qyZ27mih7PiDz1FZQ0aNGD58uVu9Y8cOYLD4Sh1f4sMCDt27EhKSgoTJkzQQr+G0EK/EjRp0oR9+/axatUqEhISXKv+Jk2a1PbQNOcQERERmEwmduzY4fqx/f777zl+/DipqaluP+QlqWr1fhFKKRo1agTArFmzaNq0Kd26dfNY12q1cuGFF7Jt2za38u3bt3u0R5g2bRqXXHIJrVu3dit/5ZVXeOyxx9zKOnbsyKRJk1zbAN26dWPWrFmEhoYSFBTkcTyeBHBsbCyLFi3i8ccfd5UtWrSIXr16eeyjLmI2m10PHbNmzSI2NpawsDAAevfuzdy5c8nIyHA9NG3fvh2gXJuQ4rRv3x6bzcbevXu59NJLPdbxpFmKjY3l5ZdfZv/+/a7fxkWLFmGz2crViDqdTnJzcys1Ns2Zo4V+BSilsFqteHl5kZ2dTU5ODiJCZGQkVqtVr/I1VUZQUBDXX389r776KrGxsezbt4958+bRqFEj5s+fz2233VZm26pW7wO88cYbDBw4EJPJxNdff83rr7/Ol19+6dq3PnDgAJdddhmvvfYa1113HQBPPPEEN998MxdeeCGDBg1i8eLFzJ49m2+//dat78TERH7++Wc+/fRTj3PxNJ+mTZu6VrS33nqr6yHgxRdfpFmzZuzbt4/vvvuOe+65h1atWnmc09ixY+nTpw+vv/46Q4YM4ZtvvmHx4sUsW7bMVefYsWMkJiZy4sQJwDA2XL9+PQ0aNHCtWI8dO0ZeXp6rzcqVKwHc9q7L0x5kZGSwc+dOwBB6iYmJrF+/nuDgYNcD39NPP83q1atdq/kjR44wd+5c+vbtS25uLtOnT2fu3Ln88ccfrn6HDx/OSy+9xKhRo5gwYQInTpxg7Nix3HjjjdSvX5/09HTy8vLYsmULYASRSk5OZv369fj5+XHBBRfg7+/PY489xmOPPYaI0KdPH5cq3mQylTK6LOKKK66gQ4cO3HHHHfz3v//l6NGjPP7444wePZqAgAAA3nnnHZo3b06bNm0A+PPPP5k0aRL33XdfmfdKU8WUZdZ/LhxV4crhdDplzpw5MmvWLHnhhRfk5ZdflhdeeEFee+01mTNnjstV5myirrq5nQ51dS6n67KXkpIiQ4YMkeDgYAkODpb//ve/smDBAmnUqFGVBlGpDP369ZPAwECx2+3So0cPWbBggdv5okA7Jd3Npk+fLi1bthS73S4dO3aUL774olTfzz//vNSrV0+ys7MrNRY8uOwlJyfLyJEjJSwsTKxWq0RGRsqoUaPKdFcrYu7cudKmTRvx8vKStm3byldffVVq/HgIHlT8/l9yySVlBhkqOspj8eLFHtuMGDHCVWfEiBESERHhen/48GHp2bOn+Pr6io+Pj1x22WWycuXKUn3//fffcvnll4u3t7c0atRI7rvvPpd7W1paWpkBki655BJXH06nU95++21XEKPQ0FDp37+//PLLL+XOa+/evTJ48GDx9vaW4OBgefDBByUnJ8d1/q233pL27duLj4+PBAQESNeuXWXKlCnicDjK7dcT2mWvbCjHZU/JOez1FhMTI6ea3rQkTqeTWbNmGWrX7duxKEVB4bmWLVtyyy23VGnwkJpgyZIl9O3bt7aHUSXU1bnExMTo1Lp6LnWOc3Eup/O/Vteo6t8xpVS8iHjMOXx2SataQCmFxWJBKcUd06dz+4cfopTCy8vLVa7RaDQazdmAFvoVoJRy+SUrwOR0YhHB6XSSlJSkhb5Go9Fozhq00K+AgoIC8vLyjP0QJVhsClNurqu8oKCg4k40Go1Go6kDaOv9CjCbzUXx/mnwr2SUyYnX4SxyrFZExC0Cl0aj0Wg0dRm90q8Ap9PpEvocc+DlKKBRzgGUw4EUqvk1Go1Gozkb0EK/AkwmE7GxsbT84w9s/3OgfoSbrXPpsm4dsbGxZ53lvkaj0WjOX7TEqgCn08naBQtwhAajBNRGMEXBlVsWsnbBAr3S15zzpKen8/DDDxMREYG3tze9evXir7/+KreNw+Hgueeeo3nz5tjtdpo3b86zzz7rZgMzZcoUOnXqREBAAAEBAcTGxpbK4nY6164s7733nmt80dHRpcIY//nnn1xzzTW0adMGpRQzZsyokusWpzL3oCRF42rcuHGlxvXaa6+hlOKBBx4oda6ie3AmVNT36cxdc+ZooV8JAo8dI6dZKDQGsoGdYB7lJPDI4doemkZT7dx11138/PPPfPLJJ2zatIkrrriC/v37c+DAgTLbvPXWW0yZMoW3336bv//+m8mTJzNlyhRee+01V50mTZowceJE1q5dy5o1a7j00ksZMmQIGzduPKNrV4Y5c+YwduxYxo0bx7p16+jVqxdXXnkliYmJrjoZGRlERUUxceJEvL29K9XvyJEjmTBhQqXHUZl7UJKicU2ePLnCca1cuZKpU6fSqVOnUucqcw9Ol8r0fTpz11QBZUXtOReOqojUlJ+fL+88M07iZz8gMgmRWxC5AnF+hPz40vWSn59/xteoaepqFLvToa7O5VS+exkZGTJ69GgJCAiQkJAQGTdunKSnp4uPj4/s2bOnGkdZMVlZWWI2m+Xbb791K+/WrZs888wzZbYbMGCA3HHHHW5ld9xxhwwePLjc69WrV0/ef//9Sl/b6XTKxIkTpUWLFmK32yUqKkpmzpxZ4by6d+8ud911l1vZBRdcIE899VSpumlpaeLr61sq8qAnRowYccaRE4vfg4oob1wnTpyQFi1ayO+//y6XXHKJ3H///a4odiKVuwc1cX+Lcypz1xH5yoZyIvLplX4FmM1mQkOTwCTQEOgIxIOywUVNfsWszt2Ihpqa4c477+T333/nu+++Y9asWUyePJkHHniAtm3bVjpJShGvvvoqfn5+5R6nosItKCjA4XBgt9vdyr29vd3i1ZckNjaWxYsX8/fffwNGutbff/+dQYMGeazvcDiYPXs2GRkZruQ3lbn2s88+y0cffcSUKVPYsmULTz/9NHfffXe5auK8vDzi4+O54oor3MqvuOIKVqxYUWa76sbTPTgTxowZw4033ki/fv1KnavsPaip+1vVc9eUjXbZqwSX1V/BVtMII0J1EyAD2As+zXJg5zRoo5NFaE6PoiQqn3zyCdHR0fj7+3PzzTczffp0XnrppVPu75577uHmm28ut86pJOfx9/d3ZU+LioqiQYMGzJo1i7i4uHLTyP773/8mLy+P9u3bYzabKSgo4JlnnimVWGXTpk3ExsaSk5ODn58f33zzDR07dqzUtTMzM3nzzTf55ZdfuPjiiwEjZevq1auZMmUKgwcP9ji2onSv4eHhbuXh4eH8+uuvlb43YDxkvfrqq673ubm5KKWYNGmSq2zhwoWu8XmivHtwukybNo2dO3fy2WefeTxfmXtQE/e3OuauKR8t9CvAeXwTQc5dOJXVCMlnBiKBtWCJzEM2PA0tbgOvgNodqOasZOfOnYgIsbGxrrIePXowffp0rr/++lPuLzg42JU7vqqYOXMmd955J02aNMFsNtOtWzduueUW4uPjy2zz1Vdf8emnn/LFF1/QoUMH1q9fz9ixY2nevDn/+te/XPXatGnD+vXrSU1NZd68eYwYMYIlS5YQFRVV4bW3bNlCTk4OAwcOdIuMmZ+fT2RkJACff/45d999t+vcwoULadmyZZXdm5IPWU8++SSNGzfmoYcecpVV9JBV0T04VbZt28a4ceNYtmyZK9f96VAT97eq566pGC30K8C0dSLgcC9sCawFrgeceZDwMnT9T80PTnPWY7PZACMXfRHh4eHUq1eP9u3bu8r27t3LAw88wP79+8nPz2fBggWuFKzFKbny9ERFK8+StGzZkj/++IPMzEzS0tJo2LAhQ4cOdaW59cRzzz3H448/zrBhwwDo2LEje/fu5bXXXnMT+lar1aUxiI6O5q+//uKtt97io48+qvDaRZ4z8+fPL3UvioTdNddcQ48ePVzljRs3xmw2YzabSUlJcWuTkpJSbjpcT5R8yPL39yc4OLhcLUhJKroHp0pcXBxHjhyhQ4cOrjKHw8Gff/7J+++/T2ZmJqGhoRXeg5q4v1U9d03FaKFfESc2YTaVcMtrBSwAjoIKyYHkU1MJajRFNG/e3MjguGMH3bt3B+D777/n+PHjpKamEhgYSF5eHoMGDWLKlCn07duX48eP4+fn57G/qlbvF8fX1xdfX1+OHz/Ozz//zH/+U/aDblZWVqlolWazuUIXV6fTSW5ubqWu3b59e2w2G3v37uXSSy/12J+/v7/HrHLR0dEsWrSIm266yVW2aNEibrjhhnLHVxOUdQ8qy5AhQ4iJcU+wNmrUKFq1asXYsWOxWq0opSq8B7Vxf8907pqK0UK/IgZt4Mu5c3HmOZm27x5GN32fglZmLDjYtOJGosa/hDpFYyuNpoigoCCuv/56Xn31Vb744gsOHjzIvHnzaNSoEfPnz+e2227jm2++oWfPnq7Um/Xq1Suzv+pQ7//88884nU7atm3Lzp07efzxx2nbti2jRo1y1Xn33Xd59913XYZ7V155Ja+//jrNmzenQ4cOrFu3jjfffJM77rjD1eapp55i8ODBNG3alPT0dL744guWLFniZiRW3rW9vLx47LHHeOyxxxAR+vTpQ0ZGBitXrsRkMjFmzJgy5/TII49w++230717d3r37s3777/PwYMHueeee1x1MjIy2LlzJ5mZmTidThITE1m/fj3BwcGulW9GRgYZGRmuNq+//joAycnJrrLg4GA3TU5xKnMPSt7bonEBHscVFBREUFCQ23V8fX0JDg6mffv2LlV9RffA39+/Wu9vZeauqQbKMuuvzgO4D9gN5ADxwMUV1L8f2IrhJb8NuKMy16kKVw6n0ynvv/++fPHFF/LKC89I3kyLyOeIBCAHW7cU544dIikpZ3ydmqSuurmdDnV1Lqfy3UtJSZEhQ4ZIvXr1JDg4WP773//KggULpFGjRjJ+/Hh55plnKu3GVB3MmTNHWrRoIVarVRo0aCD333+/nDhxwq3O+PHjxfg5MThw4ICMHTtWmjVrJna7XZo3by5PP/20ZGdnu+qMGDFCmjVrJlarVcLCwuSyyy6Tn3766ZSu7XQ65e2335Z27dqJ1WqV0NBQ6d+/v/zyyy8VzmvKlCkSEREhVqtVunXrJn/88Yfb+cWLFwuG+a7bMWLEiFLzLu8o7ztamXtQ8t5WZlwl8eSyV5l7UJ33tzJzLw/tslc2lOOyp0Rq1uVMKTUU+AxD8C8r/DsKaC8ipaJCKKXuBd4ARgOrgO7ANGC4iMwv71oxMTGyZs2aMxqv0+lk1qxZmEwm/tmxlVFNPqax/QAyCWSTGTZuwmSxQMuWcJaE5F2yZIlr1Xi2U1fnEhMTw6l+99LT0z2qSt955x22b9/OO++8g8PhIDU1tcpX81VNWXM5G9FzqZsUzeV0/tfqGlX9O6aUiheRGE/nakNKPQLMEJFpIrJVRB4EkoB7y6h/OzBNRGaJyC4RmQ1MBZ6sicEqpbBYLCilEGXmUF5DADK7+mIqcKCW/gFOJ+Tk1MRwNOchI0eO5J9//iEqKoqYmBi2b99e20PSaDRnKTW6p6+UsgLRwKQSp34ByorIYMPYBihONtBdKeUlIvlVO0p3lFK0bNmSxMREzGYvkguFvmpvAzJRP/8Ml10OaWng41OdQ9Gcp/j7+7NgwYLaHoZGozkHqGlDvlAMT/eUEuUpQP8y2vwM/Esp9TWwBuOh4S7Aq7C/pOKVlVJjgDFguD4tWbLkjAedmZnpEv5iCoT8+VjDswDI/+VXVty1HTGZoNDQpq6TkZFRJfelLlBX55KTk0N6evoptXE4HKfcpq6i51I3ORfnkpOTUyd/A06FmvwdOxus918CGgArMMLjpACfAE8Apfx/RGQqhvqfmJgYOdN9EhFh7ty5iAhNmjShV8xA8r55FisnyOwYjO+mY1xy4gR06wZNm54Vq/26ug9+OtTVudjt9lPeOz0X91vPBfRc6iZFc7Hb7XXyN+BUqMnfsZre0z+CEekmvER5OJBcujqISLaI3An4YMTCawbsAdKBak9zV7TC9/Pzo1evXiiLDa+waAAc/Qtd9X74Aby8DBW/RqPRaDR1lBoV+iKSh+Gid3mJU5djrOTLa5svIvtFxAEMA34QkRpJZh8dHY2vr6/h36q8UEFGmsqAHiFGhZ9+ArMZ0tMNoz6NRqPRaOogtWG9/yYwUil1l1KqnVJqMtAIeB9AKfWpUurTospKqdZKqduVUq2UUt2VUrOBKGBcLYwdTGao19V4bT0AzZvCsWOwerUh8LOza2VYGo1Go9FURI0LfRGZAzwMPAusBy4CBonI3sIqzQqPIswYbn4bgEWAHeglIntqZsQeCO1p/M3ZCZdfZLz+8UdDxZ+aWmvD0tRtRo4ciVKq1NGzZ09XncjISFe5j48PUVFRTJ061a2fvLw83njjDbp27YqPjw/BwcH07NmTDz74oEZDmCYlJTF8+HDatm2L2Wxm5MiRFbbZs2cP//rXv2jRogXe3t60aNGCp59+muwSD8uJiYlcffXV+Pr6EhoaykMPPUReXp7HPpctW4bFYqmyJC3Hjx/n9ttvJzAwkMDAQEaPHs2JEydc55csWcK1115Lw4YN8fHxoVOnTnz88cdVcu0iNmzYwC233ELTpk3x9vamTZs2/Oc//6kwjPFzzz1H27Zt8fX1pV69elx22WWl0tn27du31HewKEdCEcW/h0XHU089VSVze++992jevDl2u53o6OhSqZ5Hjx5Ny5Yt8fb2JiwsjGuvvZatW7dWybU1tbPSR0TeE5FIEbGJSLSI/FnsXF8R6Vvs/VYR6SoiPiISKCJDRGRbbYzbhT0c/FqA5EO/5kbZwoVgsUBGBjgc5bfXnLf079+fpKQkt6OkO97zzz9PUlISGzduZMiQIdx9993MmTMHMAT+gAEDeOWVVxg1ahTLly8nPj6eRx55hOnTpxMXF1djc8nNzSU0NJSnnnrKLelKefz99984HA7+7//+j82bN/POO+/w6aefMnbsWFcdh8PB4MGDSU9PZ+nSpcyaNYt58+bx6KOPlurv+PHj3HHHHVx22WVVNq/hw4ezdu1afvrpJ3766Sc2bNjA7bff7jq/YsUKOnbsyLx580hISODee+9lzJgxfPHFF2X2OWPGjFMy1IqPjycsLIyZM2eyefNmXnjhBV566SVXmN+yaNOmDVOmTGHTpk0sW7aM5s2bM3DgwFLJb0aNGuX2Hfzggw9K9VX0PSw6nn322UqPvyzmzJnD2LFjGTduHOvWraNXr15ceeWVJCaejMsWExPDjBkz2Lp1Kz///DMiQv/+/cnPr1bv7POHskL1nQtHVYZndAuTWJAt8scQIxzv72NFmjQUAZGvvxb5+2+R9PQqu251UFdD154OdXUunr57I0aMkMGDB5fZJi0tTSIiIuSNN95wK2/VqpUMGzZMREQmTpwoSin566+/SrV3OBySmpp6hiM/PQYPHuwWBrZkuNfymDJligQHB7veL1iwQJRSkpiY6CqbOXOm2Gy2UvO77rrrZMKECTJ+/Hjp0KFDqb4//vhjadeundhsNmnVqpW8+eab4nA4yhzLli1bBJBly5a5yn7++WcB5O+//y6z3U033STXX399meenT58ul1xySZnnK8Pjjz8u3bp1O6U2qampArjC26alpblC8paHp+9hSTZv3iyDBg0SPz8/CQsLk2HDhklSUlK5bbp37y533XWXW9kFF1wgTz31VJltNmzY4PH+6zC8ZUM5YXjPjrixdQ3lBYXGfORthyv6GK9//BFsNjh+vPbGpjnnsNvtrlXO559/Tv/+/UtlUQMwmUwEBASU2Y+fn1+5x5VXXlltcyiPtLQ0tyRCcXFxtGvXjqZNm7rKBgwYQG5uLvHx8a6y9957j5SUlDJXoNOmTWPcuHG8+OKLbN26lf/+979MnDiR9957r8yxxMXFuTx1iujZsye+vr6l1OTlzaE6ONVr5OXlMXXqVAICAujSpYvbudmzZxMaGkqHDh147LHHPPruT5o0iZCQELp06cIrr7zitr2SlJREnz59iIqKYvXq1fz6669kZGRw7bXXlrkFkZeXR3x8PFdccYVb+RVXXFHmvc3MzGT69Ok0a9aMyMjISs9dUzZng59+3aO4MV/WFrj0Cfh4DixYABMmQGYm5Ocbe/waTTF++umnUmlx77//fiZOnFiqbkFBAZ999hmbNm3i3nuNKNU7duw4bX/e9evXl3ve29v7tPo9E/bu3cukSZMYN+6kXW5ycjLh4e5evUX534uy123atIkXXniBlStXlkrhW8RLL73Ef/7zH2688UbASGP81FNP8d577/HAAw94bJOcnExYWJgrEx0Ybrv169d3y5xXnB9++IHffvuN5cuXu8qWLl3q9hBVUFBAfn6+22c/btw4t3mXx9q1a5kxYwaff/55hXV/+OEHhg0bRlZWFg0bNmTRokVu93P48OFERETQqFEjNm/ezNNPP83GjRv55ZdfXHUeeughunbtSkhICKtXr+app55i9+7dfPjhhwD83//9H507d3b73n766acEBwezZs0aV5ro4hw5cgSHw1Hqsw0PD+fXX93Tk7/33ns88cQTZGZm0qZNG3777TdsNlul7pWmfLTQP12Co8HsDdl7oV0jaFgfkpJg3Tpo0waysiAwsLZHqalj9OnTp5RhXsk0qM888wwTJkwgNzcXq9XK448/zt133w1QlHXytLjgggtOu211kJKSwsCBA7n88sv597//Xel2ubm5DB06lEmTJtG8eXOPdQ4fPsy+ffu4++67XQ9MYAjfont4zz338Nlnn7nOFU+RW1mWL1/O8OHDefvtt90EXUxMjNtD1tdff81XX33lJrQrmzRp27ZtDB48mIcffrjCfPQA/fr1Y/369Rw5coRp06Zx8803ExcXR8OGRgjx4ilxO3bsSIsWLejRowdr166lW7dugJEat4hOnToREBDA0KFDmThxIiEhIcTHx/Pnn3+WeoAF+Oeff8jNzXV76Pnggw/o169fpeYLcOutt3L55ZeTlJTEpEmTuOmmm1i+fDk+Z0Hws7qOFvqni1cABHWGoysh72/ofzHM/MpY7XfubLjxaaGvKYGPj0+FwveRRx7hX//6Fz4+PjRs2NBt1dm6devTtmT29ANdnIsvvpiFCxeeVt+nSnJyMpdeeilRUVHMnDnTbY4NGjRwWzXDyVVigwYNSEpKYuvWrYwaNYpRo0YBRjZMEcFisbBgwQI6d+4MwPvvv++mqi/Oiy++yGOPPeZW1qBBAw4fPmykIC0ck4hw6NAhGjRo4FZ32bJlDBo0iBdffNHtwQIMrUnxz7l+/fqlyirD33//Tb9+/Rg2bFiFRnxF+Pr6csEFF3DBBRfQs2dPWrVqxYcffshzzz3nsX5MTAxms5kdO3a4hH5Jigw1d+7cSUhICE6nk8GDBzNpUsk0KsbK3WKxuD30hIeHY7PZMJvNpYwKU1JSSt3bIs+JVq1a0bNnT+rVq8dXX33lZlCpOT200D9dzDZjtX90JeRthct6G0L/hx/g2WcNf/3cXGOPX6M5BUJCQsoUDsOHD+fpp59mzZo1pfb1nU4nGRkZZe7r1xX1flJSEv369aNDhw7MmjULi8X9Zyg2NpaXX36Z/fv306RJEwAWLVqEzWYjOjoab29vNm3a5NbmvffeY9GiRXzzzTdERkbi5+dHo0aN+Oeff7jjjjs8jqN+/frUr1+/1LUzMjKIi4tzPSysXr2azMxMt4eHP//8k8GDB/PCCy/w8MMPn+kt8ciWLVu49NJLufnmm3nrrbdOux+n01muK+emTZtwOBwuTYAnir47RXW6devGl19+SUREBF5lbGN6+g5HR0ezaNEibrrpJlfZokWLytVgFBmg1aQ76jlNWRZ+58JRbdb7IiKOApGdHxsW/D90Fln/q0h4mGHF//33Itu3ixw5UmXXr0rqqsX76VBX51KW9X7//v0lKSnJ7Th06JCIlG29X5ycnBy5+OKLJSgoSCZPnizr1q2TXbt2yVdffSWxsbE1fj/WrVsn69atk4svvliuvvpqWbdunWzevNllWf31119LmzZtZP/+/SIicuDAAWnVqpVccsklkpiY6HYfCgoKRESkoKBAoqKipF+/frJ27VpZtGiRNGrUSB544IEyx+HJen/atGlit9vlzTfflL///ls2bdokn3zyibz66qvlzmngwIESFRUlK1askBUrVkj79u3lqquucp1fvHix+Pj4yGOPPebxcxQRyc3NLfU5lzzSy/HySUhIkPr168vQoUNLtSti//790qZNG/n6669FxLDUf+aZZ2TlypWyd+9eWbNmjYwaNUqsVqts2LBBRETWr18vL7zwgvz111+ye/du+fHHH6Vt27bStWtX1/1fsWKFvPnmm67v1pw5c6RRo0ZyzTXXuK594MABCQsLk+uuu05Wrlwp//zzjyxatEhGjx5drufG7NmzxcvLS6ZNmyZbtmyRhx56SHx9fWXPnj0iIrJjxw55/fXXZc2aNbJ3715Zvny5XH311RIUFFTKM0Bb75cN5Vjv17pgrs6jWoW+iMixDSKfm0S+sIhsXCQy6mbjlt55p8i+fSI7d4o4nVU2hqqirgrK06GuzqUsoQ+UOho3biwilRP6Iobgf/3116VTp05it9slKChIevToIe+//77k5uZWy3zKwtN8IiIiXD/I06dPF0B2797t9t7TUVRHRGTv3r0yePBg8fb2luDgYHnwwQclJyenzHGU5bL3xRdfSNeuXcVms0lQUJD07t1bZs2aVe6cjh07Jrfeeqv4+/uLv7+/3HzzzXL8+HHX+bI+x4iICFedxYsXlznPomP8+PHlzqesdkXs3r1bAJk+fbqIiGRmZsqQIUOkYcOGYrVapWHDhnLNNdfIypUrXW22bNkiffr0keDgYLFardKyZUt56KGH5OjRo6468fHx0qNHDwkMDBS73S5t2rSR8ePHS2ZmptsYt2/fLjfccIMEBQWJ3W6X1q1bywMPPFDhd3DKlCkSEREhVqtVunXrJn/88YfrXGJiogwcOFDCwsLEy8tLmjRpIsOHD5etW7eW6kcL/bIpT+gr4/y5SUxMjKxZs6ZK+vKYBSkrCRZfDqmboeM02JILwx6AsDBYs8ZQ8TdrBrVgFV0edTUz3elQV+cSExPDqX73zsUMaOcCei51k6K5nM7/Wl2jqn/HlFLxIlLar5daish3zmDxgXqFhi/Zm6F1C2geAYcPw4oVRoS+cyR3tUaj0WjOfrTQPxNMVsOYDyB1LXh5w+D+xvtvvwW73YjFrzPvaTQajaYOoIX+mWCyQnDhSv94PPj5weWFFr4LFhjW+06n4bOv0Wg0Gk0to4X+mWAyg3dj8GkGBZngPADNGkFUe0Otv3ix4bJ37Fhtj1Sj0Wg0Gi30zxiL70kVf+ZG40HgqgHG+2++AavVMOgrIy2oRlPdjBw5kquuuqq2h3HW0qNHDyZMmFDbw9BoqgQt9M8Ui+9JY75ja8AvCPoX5kf/7TdjxW8yGSl3NZpqYuTIkaXynyulWL9+PZMnT3YLN9u3b98yY89r6g4V5Z0vSVJSEsOHD6dt27aYzWZGjhxZqs4333xDTEwMQUFB+Pr60qVLFz755BO3Oq+99hoXXnghAQEBhIWFcfXVV5OQkOA6n5+fz5NPPkmnTp3w9fWlYcOGDB8+3C09rqbuooX+mWLyOrnSP7oa/IMgxB+6d4ecHPjpJ8Og7/hxOIfdIzW1T//+/d3ynyclJREVFUVgYGCp+P7nG3lnmaatMnnnS5Kbm0toaChPPfWUK2xuSYKDg3n22WdZuXIlGzduZNSoUfzrX/9iwYIFrjpLlizhvvvuY8WKFfz+++9YLBb69+/PscJtyqysLNauXcszzzzD2rVr+e6779i3bx8DBw6koKCgam+Epuopy4H/XDiqPTiPiBF858Q2kbn1jOh8h1aIbPxZ5JUJRqCefv1EDhwQ+ftvkRLBLWqLuhrQ5nSoq3M5ne/eqeSgL8mIESNk8ODBFZ7zFFimeFCcIkaOHCmhoaHyyiuvuMp27dolXl5eMnPmzDLH8dVXX0nHjh3FbrdLvXr1pE+fPpKcnOw6P3HiRAkPDxdfX1+5/fbbZfz48W5BbTzNo2TgndWrV8vll18uISEh4u/vL71795YVK1a4tQHk3Xffleuuu058fHzk0UcfFRGR77//Xrp16yY2m00iIyNl3LhxbsFkUlJS5JprrhG73S7NmjWTjz76SNq1a1duIJ3q4HTyzhdn8ODBMmLEiFLlnr5jXbt2Lbff9PR0MZlM8v3335dZZ/PmzQLIxo0bKzW+qkAH5ykbygnOo1f6Z4pSYPE+udo/tgb8AqFvd8NP/88/Db99Ly84caJWh6rRTJ48mdjYWEaNGuXSBhTPW1/Em2++yWuvvcZzzz3Htm3bAHj++edp06YNw4cP99h3cnIyw4YNY8SIEfz111/8+eefbglSvvzyS5599lleeOEF1q5dS5s2bXjzzTdPeQ7p6encfvvtLF26lNWrV9OlSxcGDRrE0aNH3eq98MILDBo0iE2bNnH//ffz888/c+utt/LAAw+wefNmPv74Y+bNm+eW3nbkyJHs3LmTX3/9lW+//ZZPP/20QrX10qVL8fPzK/d49dVXKz2/08k7fzqICL/99hvbtm2jT58+ZdZLT0/H6XRSr169MuukpaUBlFtHUzfQCXeqAoufsa+f/Kuh4m99JaSfgH79YNEiw6Bv9GhIT0fy81HFElSIiFuGMY3mdPnpp5/cMul5ypoXGBiI1WrFx8enVGaz4tSrV4+77rqLefPm8emnn3LLLbfwxRdf8PXXX2MyeV4rHDx4kPz8fG688UaCg4Px9/cnKirKdf5///sfI0aMcKUJfuaZZ1i8eDE7d+48pXleeumlbu/feecdvvrqKxYuXMhtt93mKh86dCh33XWX6/2IESN4/PHHXZn5WrZsycSJE7ntttt444032LFjBwsXLmTZsmX07t0bgE8++YQWLVqUO56SaXQ9Udk0unBqeedPh9TUVBo3bkxubi5ms5kpU6a4pcEtydixY+nSpQuxsbEez+fl5fHoo49y9dVXuxIkaeoutSL0lVL3AY8DDYHNwMMiUqaVilJqOPAE0BpIA34FHhOR5BoYbsWYbSf99Y+uBm+7oTi9cYgh9L/8EkaPZtPmzWTt3Uv3yy9HKYWIEBcX58oeptGcCX369GHq1Kmu91WRNe+OO+7g6aefZtOmTVx44YVce+21AHz++ecu4Q2wcOFCevXqRf/+/YmKiuLSSy9l4MCB3HjjjYSFhQGwdetWNyEMRla7UxX6hw4d4rnnnmPx4sWkpKTgcDjIzs4utSIvmYUwPj6e1atXM3HiRFeZ0+kkOzub5ORktm7dislkonv37q7zERER5Wafg9JpdOs6/v7+rF+/noyMDH777TceeeQRIiMjueyyy0rVfeSRR1i2bBnLli3DbDaXOl9QUMBtt93GiRMn+P7772ti+JozpMaFvlJqKDAZuA9YVvh3oVKqvYiU0qMppXoDM4HHgG+BcOA94HOg9Le0NjBZIaA9mO2Qvh3yjoG/P/TsBkFBsHUrkpBADrBzzRocfn7ExsYSFxdHQkICUVFResWvOWN8fHyqXPgMGTKEe+65h/nz57utMq+55ho3Y7HGjRtjNpv55ZdfWLlyJfPnz+ejjz7i6aef5o8//nDlt68Ik8mElDB4zc/Pd3s/YsQIUlJSeOutt4iMjMRms3HZZZeVMtbz9fV1e+90Ohk/frxbWtciih5MgFP+P1y6dGm5K2WAcePGuW0jlEdoaGil886fDiaTyfU96dKlC1u3buXVV18tJfT//e9/M3v2bBYvXuxR21FQUMAtt9zCpk2bWLJkCSEhIWc8Nk31Uxsr/UeAGSIyrfD9g0qpgcC9wNMe6scC+0WkKKH0bqXUO8A71T/USmKyFPrrXwiHl8Lh5VCvH2QkwXXXwfTpqLlziXnhBUw5Oaxft87lAtOhQwdiY2O1wNfUGFarFYfDUam6Pj4+tGrVCqWUm1Dw9/f3mLhFKUVsbCxRUVG88sordOjQgTlz5tC5c2fatWvHypUrufPOO131V65c6dY+LCyslKq85Ptly5bx9ttvM3jwYMAQhklJSRXOpVu3bvz9999lPhi1bdsWp9PJ6tWr6dXLiKyZmJhYYd9Vrd63Wq2nlXf+dHE6naVy1Y8dO5Y5c+awePFi2rZtW6pNfn4+w4YNIyEhgSVLllTJw4imZqhRoa+UsgLRwKQSp34BepXRbDnwqlLqauAHIAQYBiwoo37tYPGFkJ6G0D+yHBpfDeTB9YbQ55tvSLj2WrBYsGRm4ggKcq3u165dq9X7mhojMjKS1atXs2fPHvz8/AgODi5zn37RokWsXbsWPz8/srKy8PHxKbPflStX8uuvvzJgwAB8fX3ZsWMH+/bto3379oAhSO644w4uvPBC+vbty7x581i1apWbQLz00kv5z3/+w8cff0yfPn34+uuvWb58udtecevWrfnss8/o0aMHmZmZPPHEE1it1grn/fzzz3PVVVcRERHBzTffjMViISEhgdWrV/Of//yHNm3aMHDgQO6++26mTp2Kt7c3jzzySIXbJNWh3n/kkUe4/fbb6d69O7179+b999/n4MGD3HPPPa46d9xxBwCffvqpq6zo4SMtLQ2TycT69euxWq2uz+CNN96gT58+tGjRgtzcXBYsWMDMmTN5552Ta6j777+fmTNn8u2331KvXj2Sk41d1CKjxIKCAm666Sb++usv5s+fj1LKVScwMLBKtpU01UdNW++HAmYgpUR5CuDxUVFE4jCE/OdAHnAYUMCI6hvmaWDxgZDCvcDDy0GZjFj8rSKhTRs4dgx7XBxrEhJwHDsGDgeZmZmsXLmS3NzcUipNjaa6eOyxx1yCICwsrFzr9GeeeYZrr72W4OBgvv7663L7DQwMZPny5Vx11VV07dqVRx99lOeee85lXDd06FAmTJjAM888Q9euXdm0aROPPPKIWx8DBgxg/PjxPPPMM0RHR7Nnzx7uu+8+tzoff/wxGRkZREdHM2zYMO68804iIyMrnPeAAQP48ccfWbx4Md27d6d79+68/vrrNGvWzFVnxowZNG/enEsvvZSrr76a4cOHu52vKYYOHcr//vc/Xn75Zbp06cKyZctYsGABERERrjqJiYmlPruuXbvStWtXli5dyvz58+natSuDBg1ync/MzOTee++lQ4cO9O7dm6+++opPP/3U7WHivffeIz09ncsuu4yGDRu6jkmTjLXa/v37+e677zh48CDR0dFudebMmVPNd0ZzpqiaFDZKqUbAAeASEfmzWPnzwK0i0sZDm/bAIuB/wM8Yxn9vAOtF5A4P9ccAYwDCw8OjZ8+eXSVjz8jIcLOMLo2gCrLpffgmLJJFXNhn5KoQKHDQ9OvvaDltGgdiYlj+8MOYAby8KBDB6XRisVjc9hSrm4rncvZQV+fywAMPEBcXd0ptHA6HR2Op2mL+/PncfvvtxMXFMXfuXOLj4/nuu+8q1bayc3n77beZOnWqW8S3ukZd+1zOhHNxLrGxsbz77ru1PZwzoqp/x/r16xcvIjGeztX0nv4RwIFhjFeccKAsS/yngdUi8kbh+41KqUxgqVJqnIjsL15ZRKYCUwFiYmKkb9++VTLwJUuWUG5fIpC+A9ZcBMm/ENvkEDS9GPbshLvvRj76iIZr13J0+XKcAQHUCwggUSny8vMJCwvjhhtuKFPFWtVUOJeziLo6F7vd7nHPuzzS09NPuU114XQ6efXVV7nlllvo3r07gYGBvPnmm3z22WfcdNNNhIaGltu+snOx2WwoperMvD1Rlz6XM+VcnIvdbq+TvwGnQk3+jtWoel9E8oB44PISpy4Hyoo64YPxoFCcovd1J7iQUmD2htDCuPtHlhsGfn4+4O+N6tsXk9NJ18REcgsKOJacjDMri5CQEMaMGVNjAl+jqQyff/4527Zt44UXXgCgTZs2vPTSSzz33HM8/vjjtTw6jUZzutSGpHkTGKmUuksp1U4pNRloBLwPoJT6VCn1abH684FrlVL3KqVaFLrwvQ2s9eTiV6tYfCG42L6+CPj6Qn4WUmiF23rdOm6aM4chX3+NPScHLy8vVq1apff0NXWK22+/nfz8fFq2bOkqGzduHEeOHGH69OlVdp3HHnuMPXv2VFl/Go2mfGrcZU9E5iilQoBnMfbnE4BBIrK3sEqzEvVnKKX8gQeA/wKpwO/AkzU36kpitoNfC7CGQE4yZPwDvhFg2oe69FIK/PwIPniQ/Pr1ybdasefnU5CTg9Vq1S57Go1Go6l2akWnLCLviUikiNhEJLq4UZ+I9BWRviXqvyMiHUTER0QaisitJffy6wQmq5FGN8wI4Wmo+L3Az4bTmc/ebkbUvoDcXBo3aUKTpk3JSklh+/btOJ3OWhy4RqPRaM4H9EZyVWKygPKC0MIY1YeXG399vTE5cznYrx8A9owMlMPBVTfeSOvQUOw2m97T12g0Gk21oxPuVDUWPwi50Hh9ZAWIE7x8wCubi0eORH74ARUfD0ePYvLy4qqBAzHVgh+wpnpp2LBhqdjvFZGTk4Pdbq+mEdUsei51k3NxLhXlRtC4o4V+VePlC/bG4N0Isg9C6hYI7AB+FkjNhltvhfh4OHQIAGWzwdGjhsGf5pxh/vz5p9ymrrofng56LnUTPReN1ilXNSar4b4XdpHx/shy473dTsLm9axt1AgxmyEjA9m8mTWbNrHpr7+gROxrjUaj0WiqGi30qxqTl3GEFqYSKNzXF5OFPIuDbTt2kF8YHOPI66/z999/k+dwICdO1NKANRqNRnO+oIV+dWDxheDCBDpHV4IzH2WxYw3wos3mzXgVCvjQ33+n/YYNWPz8UKmpUFBQe2PWaDQazTmPFvrVgcUX7PXB7wIoyIRjaxBMOI8do/O8eRR55Cugy5df4jx0CAFIT6+9MWs0Go3mnEcL/erAbDOi8YUbLnqkLEYphe/REzhLJLtQTid+x46hvL3h2DHQ/voajUajqSa00K8OTF6Gz379vsb7lN9xipPtBQ6Uwz2NgEmE5D17cCplqPezsmp+vBqNRqM5L9BCv7qw+EK9rkYSnrStmHJSaNi1G6tvHYxTgVMpHIWhd9tt324E57HZ4MiRWh64RqPRaM5VtNCvLix+YDK7XPckZTH5+fkk9upKSovGnAgPZ/6IEQDUW7wYOXYMrFbDdS8npzZHrtFoNJpzFC30qwuT1fhbuK+vDi3GarXi4xeICvQi32Yjo00bUtq1w5yXh5ozx6jv5WXs7Ws0Go1GU8VooV9dmLwAk2tfXw4tZdPGdew7cAifQBv1GzekXfPmrI6KMs5/8gk4HGC3G1b8eXm1N3aNRqPRnJNooV9dKAVefmAPB78LUAXphKo95Ofnk5eTBzYT+xMT2dmsGWnBwah9++DXX422FgvoYD0ajUajqWK00K9OLL4gBS4Vf9fGJwgMCMTv6v3kXr6GxJQUgvz9Sb/xRqP+xx8bf+12OH4c8vNraeAajUajORfRQr86MdkAgfBLAfA6uoys7CxAgRKyrBby0tJY2qgR4uMDy5bBtm2GlsBshtTUWh2+RqPRaM4ttNCvTkxegBmCL0TM3gSbk/AqOOmS57Qq8vLysAYHww03GIXTpxt/i1b7Jfz6NRqNRqM5XbTQr06K9vWVgtDeAET67OFw/TAOh4XhZc4j224n8+hRZORIo828ecYK32QyovqlpdXe+DUajUZzTqGFfnVj8QNnvkvF39xnj+uUzZxHgd1KQW4uqk0buPhiyM6GL74wKujQvBqNRqOpQrTQr27MdlAg4X0BiPDeCwgUpd3xgqDwcCQ3F8aMMco+/NBw2TObjdC8GRm1MXKNRqPRnGPUitBXSt2nlNqtlMpRSsUrpS4up+4MpZR4ODJrcsynjcliBOqxN+SEIwybKQ+bKQ+lTDgxY1U5HHY6jUh8/fpB27aQnAzffWe09/Y2QvOK1O48NBqNRnPWU+NCXyk1FJgMvAp0BVYAC5VSzcpoMhZoWOLYBXxZ/aOtIiwBmKSAA04jEI+P2Qizq8w2AnwUJl9vTF5ehmAvWu1/8IHx3mIxXPf0al+j0Wg0Z0htrPQfAWaIyDQR2SoiDwJJwL2eKotIqogkFx1AS6AFMK3mhnyGWHxwOvM5ZOkGgN2cjcXLgslkJj8/Hz8/K86gICPm/nXXQYMGsHUrLFlitPf2hsOH9Wpfo9FoNGdEjQp9pZQViAZ+KXHqF6BXJbsZDWwWkRVVObZqxWxDKRPppuZkOPyxKAchaj9BtiyU2YaPOQ8VEGC451mt8K9/Ge3+7/+Mv3q1r9FoNJoqQEkNrh6VUo2AA8AlIvJnsfLngVtFpE0F7QMxtAJPi8jkMuqMAcYAhIeHR8+ePbtKxp6RkYGfn9/pd+DMJy31BFF5H9HC8TN7zZexzXI9WSoMk4KAemGGYBfBnJVF7K23YsnKYs2UKWS0anVylW+11v5c6hB6LnUTPZe6iZ5L3aSq59KvX794EYnxdM5SZVepGW7D0E7MLKuCiEwFpgLExMRI3759q+TCS5Ys4Uz6ktwTxK9YyNYt9WhRDyIcv9G44A++OTaS5lGXEh3bFeW0QmIi+PvDbbfB1KnELFoEQ4YYnaSnQ+PGcIZfjjOdS11Cz6VuoudSN9FzqZvU5Fxqek//COAAwkuUhwPJlWg/GvhKRM6+3LNmb0xK4WtKdy3aTRTQJ2ABKC/IO2ZE4fPyMtz07rrLUOvPnw/79xsN7HY4dEjv7Ws0Go3mtKhRoS8ieUA8cHmJU5djWPGXiVKqO9CZs8mArxjKbOXQ4cNcGLgCVeiib1IQ4nUEOfQnyplnBPEJDTUC9DRuDNdcY+zzF+3te3kZWwCZZ4e3okaj0WjqFrVhvf8mMFIpdZdSqp1SajLQCHgfQCn1qVLqUw/txgA7RGRJzQ216hCgeeBxrE53YzwLeXSSWYg4oSDTUN2bzUYUvgceMCrNmgUpKcZrvdrXaDQazWlS40JfROYADwPPAuuBi4BBIrK3sEqzwsOFUsofGAZ8WGMDrQYaps3Fy1Q6Xa7FmQ77voG840ac/pAQY7Xfpg0MGmQE7nn/faNy0Wo/PR2AkoaYNWmYqdFoNJqzi1qJyCci74lIpIjYRCS6uCW/iPQVkb4l6qeLiJ+I/KfGB1tFqNQt+OXv8HjOLLmora9D7nFw5hqGfCLGMXasUWnmTDh61Hhd6Lcf/9dfxMXFuQS9iBAXF0d8fHxNTEmj0Wg0Zxk69n5NseU1FAVln3fmw84PID/DMOALCjJW+1FR0L+/8XrqVKOuxYLk51Nw/DgJCQkuwR8XF0dCQgK5ubl6xa/RaDSaUpxtLntnLXJ8I0ocZVdw5sDROEPFbws2hP7x48a5sWPh119h+nS45x6oVw/l60v35s1xeHuTkJBAQkICAFFRUcTGxqKKrAU1Go1GoylEr/RrCDV4I1/bv2I2M5B6F0JITyT0IgA2WkbCkAPQ72fACY4cIwiPn58RmrdbN+jTx7Da//hjo0OzGSVCbIcObtfRAl+j0Wg0ZaGFfg0hIjRo0IDU9GzSMzIQEfYUdAIgwrzupDpeeUHeCeN1cLCRYhfg4YeNvx99dNKIz9ubdYsWoZxO13WK7/FrNBqNRlMcLfRrCKUUsbGxdOzYicycXA4dTuGvA2E4sRCQuwmVe8SoaLZDQbqxx+/tbbjo5eVBjx4QGwupqfDRR4gIa9auZdv27XRq1ozRo0cTFRXltsev0Wg0Gk1xtNCvQZRS9OzZE8EECHn4oBr0ReGEgz8Uq2kyDPoAwsIMlz2Af//b+PvBB6jUVGw2Gxd07Ej3Fi1QBQXExsYSFRWFzWbTKn6NRqPRlEIb8tUga9asYfv27fRFAQoQ1iQ34UKA/d9Ci1FGRbPdMOizBoGPz8nQvL17w0UXwbJl8H//R6enn0ZEUDk5cOQIqmFDvaev0Whqjfz8fPbv309OTk61XyswMJCtW7dW+3VqgtOdi91up0mTJnh5eVW6jRb6NYTT6WT79u3s2bMHc6SF+sEh+B+z8df+enRtYsVybA1k7gPfpqDM4MwyDPos3sZq/+BBw3//yScNof/RR3DXXaiwMGMbIDXVsOq322t7qhqN5jxl//79+Pv7ExkZWe2Lj/T0dPz9/av1GjXF6cxFRDh69Cj79++nefPmlW6n1fs1hMlkonXr1kRGRvJt+limJw4nKyONhk1aku4ba1Q68F2xBhbITzVe+/mdXO136wZXXGH47b/zzsn6NpsOz6vRaGqVnJwcQkJCtLaxBlBKERIScspaFS30a5CYmBiGDRuGUgoHXiiluPbaa6kXNdKosP/bk5VNdshPA2eBEZq3KBEPwOOPG2UzZ8KBA0aZzQZZWcah0Wg0tYQW+DXH6dxrLfRrEBFh5cqVxmtMFIgXa9esROpfAl5BkLYV0rYblYs+zILCjHp+fkakPocD2reHa681rPrfeuvkBby9jcQ8xVz4NBqNpk7Tt69xaGqEUxL6SqmeSqkJSqmflFIblVI7lFJxSqkZSqlRSql61TXQs53iYXKjoqIYPXo0F7SLZuf2raxZtxFpdKVRseRqP++YobI3mdxX+48+amTj+/JL+Ocfo6xEMh6NRqM5H3nllVfo0KEDnTp1okuXLqxatYr//e9/ZFWhJjQyMpIjR46cdvsZM2bwQFEm1RqkUkJfKTVCKbUJI+f9vwEfYAewCjgO9MDIgHeg8AGg8lYF5wlKKWw2m1uY3B69LqFVq1aGi12TIUbFA9+d3Jc3WcCRZyThAcOQz2QyVvstWsDNNxuvhwyBG24w6vj6Gnv7BeXE+ddoNJq6Ql6eYYicnFwl3cXFxfHDDz+wdu1aNm7cyK+//krTpk2rXOifKg5HOWHYa5AKhb5SaiPwOrAAiAaCRKSPiNwgIreJyCARaQcEA6OB+sAWpdTQ6hz42Uh0dLSbS50yW+kW3YNOHdpDaCzYwyFzD5xYf7KRyXIyQp/JdDLtLsC//43YbHDs2MkofUoZWwNFGfk0Go2mrjJzJqxaBZs2GQuZmTPPuMukpCRCQ0Ox2WwAhIaGMm/ePA4ePEi/fv3o168fAPfeey8xMTF06NCB8ePHu9pHRkYyfvx4unXrRseOHfn7778BOHr0KFdccQUdOnTgrrvucguANmTIEKKjo+nQoQNTixKjAX5+fjz66KN07tyZuLg4pk+fTuvWrenevTvLly8/47meDpVZ6X8ENBeRJ0VknZQR6k1EUkXkcxEZBPQETlThOM9dvAKNlbwyQ+NrjLLEL0+eN9kNK35n4co9MNC12t949ChJV19tlO/dizidrFmzho07dhjJemrAV1aj0WhOi+RkuPtuwwbJ4TAWM3fffcYr/iuuuIJ9+/bRunVr7rvvPv744w8eeughGjVqxOLFi1m8eDFgbAGsWbOGjRs38scff7Bx40ZXH6Ghoaxdu5Z7772XSZMmAfDCCy9w0UUXsXnzZq677joSExNd9T/++GPi4+NZs2YNb7/9NkcLF12ZmZn06NGDDRs20LJlS8aPH8/y5ctZtmwZW7ZsOaN5ni4VCn0RmSwipyQ9RGSDiPx8+sM6N4mPj3cLkSsirIzfREJC4ZctYpjxd9+34ChczSuFEaGvcJ/eZIKwMCQzkz179vBTy5Y4zWbIyOCfd95h7dq17Nm7F7FajX8e7cKn0WjqIrt3G3ZIxbFajfIzwM/Pj/j4eKZOnUpYWBhDhw5lxowZpep9+eWXdOvWja5du7J582Y3IXz99dcDhnZ2z549APz555/cdtttAAwePJh69U6asL399tt07tyZnj17sm/fPnbs2AGA2WzmhsKt11WrVtG3b1/CwsKwWq0MHVo7ynBtvV9DiAi5ublusfHj4uLYtHkbufkgjjwIaAtBXaAgDQ4uPNnYXGTQV2iV7+8PFgtpx46R5nSSGhgIQNi0aeSlp5Oammq48OXmaqM+jUZTN2ne3DA8Lk5enlF+hpjNZvr27csLL7zAu+++y1dffeV2fvfu3UyaNInffvuNjRs3MnjwYDd/96KtAbPZTEEF9lFLlizh119/JS4ujg0bNtC1a1dXX3a7HbPZfMbzqUoqLfSVUkOUUtOVUqsKrfZ3FL6erpQaUo1jPCcoSrhTlBRn2rRpLkv+bj0vQ0lhNr2i1f7e2cUamw31fkGhEYrJhISGonJzcTqdZNjt5FssBB4/Tsd163A4HIY2wcfHcOHTRn0ajaau0aABfPCBob00mw2X4w8+MMrPgG3btrlW2gDr168nIiICf39/0gsXQWlpafj6+hIYGEhKSgoLFy4sqzsXffr04YsvvgBg4cKFHD9+HIDU1FTq1auHj48Pf//9t8stuyQ9evTgjz/+4OjRo+Tn5zN37twzmufpUmEY3kI3vPlALyAR2AwUOpMTDPQFRiil4oCrROR49Qz17KdI8CckJLjKYmNjUVIAuYVq+CbXQsIEOLIcMveCb4RRbrZB3lHw8jP6CgggIDiYQ+npoBQnAgMJO3qUnitXkjV4sGEsaDIZ2wPHjkH9+pUep4i4BX0o+V6j0WiqhNtvh//7P2M/f+HCMxb4ABkZGTz44IOcOHECi8XCBRdcwNSpU5k1axYDBw507e137dqVtm3b0rRpU3r37l1hv+PHj+eWW26hQ4cO9OrVi2bNmgEwcOBA3n//fdq1a0ebNm3o2bOnx/YNGzZkwoQJxMbGEhQURJcuXc54rqdDZWLv/xdoBlwiIks9VVBKXQR8BkwC/lV1wzu3KFLpFycuLs4Q/GZvI52uVwA0Ggz7voK9c6D9E0ZFk9WI0OfIAbMdATJ9fPDKy8PkcOAE9jduTJMDB2j1ww9IYeQ/vL0NoR8QYKTprYD4+Hhyc3NdXgZFY7bZbERHR1f9TdFoNOc3VqtxVIHAB2MffsWKFaXKH3zwQR588EHXe0/7/IBrDx+MKKpLliwBICQkhF9++cVjm7I0BRkZGW7vR40axahRo8oZffVTGfX+NcBjZQl8ABFZBjwJDKnMRZVS9ymldiulcpRS8Uqpiyuob1VKvVjYJlcplaiUeqgy16oreArOU6Tqj4uLQyyBJ/3xmxUZ9H0JUsy30+Tlct9TSqH8/Wm1YwcNk5MJO3aM8ORkBGi5dClqe7HIfnY7JCVVGKmvLLuDhIQEcnNzKcNxQ6PRaE6fJUuMQ1MjVGalb8MIwFMRJwBrRZUK/fcnA/cBywr/LlRKtReRxDKazQaaAGMwggKFA96VGFOdwVNwnthYI9GOzWZDefmeVPGHxoJvpOGzf+hPCDf8Sl3ue7ZQBBNZu3dz/e+/G09uIpgcDhxKYXY6keeeM6L1KWU8RWdkuDLxlTfGojElJCS4tiGKj1mj0Wg0Zy+VWenHAc8opcrM+1d47mmMiH0V8QgwQ0SmichWEXkQSALuLaPvK4DLgEEiskhE9ojIKhFZUolr1SlKBecpFLLR0dFGEB6zNzjzDEHd7GajkZtBX5H7XhpKKeqdOIGjhGVogcVCnt2OWrECvv/+5AkfHyNSX15euWMsLviL0AJfo9Fozg0qI/QfBtoDe5VSM5VSTyqlxhQeTyqlPgX2FNZ5pLyOlFJWjKh+JTdGfsEwFPTEEOAv4BGl1P5Cr4G3lVJ+lRh7naOk8HR77xVkCH2AZjcBJkj6GXKPnaxj9na575latsRcQmVvFmHHoEHGmxdfhMzChD0mk5GwJyWl3PGVZXegVfsajUZz9qMq82OulGoIPAFcDTQHiiSVYAj874E3RORgBf00Ag5gGAX+Waz8eeBWEWnjoc1PGB4CvwEvAkHAO8BGEbnRQ/0xGNsAhIeHR8+ePbtkldMiIyMDP78aeM5w5lL0LNbx2DOE5P3FTv8x7PctPlUnKAtZ2bmYT5zAlpRkFCtFblgYTn9/ej/1FAHbtpE4dCi7/lXMttLpJCMvDz9/z4qbzMxMsrOz8fb2xtfXt9T7ukaNfS41gJ5L3UTPpfIEBgZywQUXVFv/xXE4HHXOB/50OZO57Ny504jNUox+/frFi0iMxwYickoHYAcaFh7ep9i2EcaDQp8S5c8D28po8wuQDQQWK7uisJ/w8q4XHR0tVcXixYurrK9yydgnkrZLJPOAyM6PRT5H5NtIozzzgHFkJIqk7RRxOsTpdIrExop07iyydKk49+0TOXBA5IcfREDEy0vkjz+MsgMHRBITZfFPP4nk53u8/Jo1a2T58uVGvyLidDpl+fLlsmbNmpqZ/ylSY59LDaDnUjfRc6k8W7ZsOfVGiy4xjlMkLS3t1K9VRzmTuXi658AaKUMunnJEPhHJEZGkwiP7FJsfARwYhnjFCQfKCricBBwQkeKPMlsL/zY7xevXfWz1Tqr4G/QH7yaGQV/K7yfrFAXryS9U3VutEBQEbdtCURaprl3hlluMiFfPPnsyHG/R02RKiscQveXaHWg0Gk1V48yD4+shc1+VdFcZTcbpZtwbOXIk8+bNO51hnTFVpaGpTJa960+1U6VUQ6VUqQgFIpIHxAOXlzh1OWUbAS4HGpXYw29d+HfvqY6tzmP2BpPZCLmrzNBihFG+a0aJenY2xi8mbsUKikS3BAWxdt06Nq5bZxQ8/bTxMLB0KRQPQ2kyGeF5ywjRW67dgUaj0VQlWQcMr6R1j9XYJU9H6NeV1LhnSmVW+u8opdYrpe5RSgWXV1EpdbFSaiqwE+hURrU3gZFKqbuUUu2UUpMx1P7vF/bxaaFxYBFfAEeB6UqpDkqp3hguf/NE5FAlxn92oUxG5j1Hoc9+xDDDVe/QYsj4x1VNlIWC3Cy2JqwlLS0NAeJWr2ZDUhIF6enGNkhICDz/vNFgwgQjSE8Rvr7Gar9k7GuNRqOpKRw5kH3AeH1gPhxbV2VdL1myhL59+3LjjTfStm1bbr31VkSEt99+u1Sa3V9++YXY2Fi6devGTTfd5AqqExkZyZNPPkm3bt1Khc2Nj4/nkksuITo6mgEDBpBUaFs1bdo0LrzwQjp37swNN9xAVlYWqampRERE4Cw0vM7MzKRp06bk5+fzzz//cN111xEdHc3FF1/sSuW7e/duYmNj6dixI88++2yV3ZfKCP1WwNcYRnQpSqmNhVb8byqlXlNKva+U+kUpdQxYUlj/chGZ6qkzEZmD4RHwLLAeuAjDHa9o1d6MYmp7EckA+gOBGFb8XwJ/AHee4lzPHrz8QQrj5VuDockQ4/WuT1xVlFJYbD4E+wuZGRkkJSWxadMm7GFhmH18UEXC/OaboXdvI9XuhAknr2E2Gyv+Q4d0Jj6NRlM77Pni5O+PIwf+urtKf4/WrVvH//73P7Zs2cKuXbtYvnx5qTS7R44c4eWXX+bXX39l7dq1xMTE8Oabb7r6CAkJYe3atQwbNsxVlp+fz4MPPsi8efOIj4/nzjvv5JlnngGMDH1//fUXGzZsoF27dnz00UcEBgbSpUsX/vjjDwB++OEHBgwYgJeXF2PGjOGNN94gPj6eSZMmcd999wEwduxY7r33XjZt2kTDhg2r7J5UGJxHRLKAF5VSrwPXAQOBHhirczvGKvxvjNX3HBH5uxJ9vge8V8a5vh7KtmEY750fmO1gthr79iYLtBgFibMhcQ60ewK8/IzoeflCbsYJnKYCTE4LmYXuedmNGiHZ2Sir1fDtnzgR+vc3VPw33AChocZ1vL1PqvkDAmpxwhqN5rxDBDa9CBS5HQuc2AIHF0DjwVVyie7du9OkSRMAunTpwp49e7jooovc6qxcuZItW7a44u/n5eW5xSrxlAJ327ZtJCQkcPnlxk61w+FwCeaEhASeffZZTpw4QUZGBgMGDHD1M2fOHPr168fs2bO57777yMjIYMWKFYwYMQKTyViD5+YaWt7ly5e7sgPefvvtPPnkk1VyTyoTkQ8w9uOVUr8B34lIToUNNGeGNRhyUsDkB0FRENIdjq6GffOgxUiUUlitVvIKnHw14kYyJQjJzsZms2Hx90cFBxvC3MfHSFX573/Da6/BU09heuedk9fx8YHkZCNUr7XCgIoajUZTNSQvMpKIFceRCX/dBw3/MRY8Z0hRilwoO02uiHD55Zcza9Ysj314clUWETp06FAqpgkYxn7ffvstnTt3ZsaMGa7Y/ddccw3jxo3j2LFjxMfHc+mll5KZmUlQUBDLly/H34MbdXXYU1XGkM+slJqglDoOpABpSqmvlFJBVT4azUksvoCcVHW1KEzSsHsGiOAUJ7t27eJ4WjZ2Lwf1Q/wxm82cOHGC7du346xXz4i1XxS85+67oV07SEwkcubMk9cxm42gPUlJWs2v0WhqjoSXoCCjdHneUfhnWrVeunia3Z49e7J8+XJ27twJGPvt24tyl5RBmzZtOHz4sEvo5+fns3nzZgDS09Np2LAh+fn5fP755642fn5+XHjhhYwdO5arrroKs9lMQEAAzZs355tvvgGMh4kNGzYA0Lt3b4rizBTv50ypzJ7+PRh+9Oswsuh9B1wLvFVlo9CUxmQBi//JJDwNrwR7A0jfAYeXYlImmjdvToB/AAUORfbxfTidTgIDA2nVqhUmqxXCw09G5PPygjfeAJOJpl9/DfHxJ69lt0NODhw9WnocGo1GU9Wc2AzH4j2fK8iE9U8bWUWriTFjxjBw4ED69etHWFgYM2bM4JZbbqFTp07Exsa6jOnKwmq1Mm/ePJ588kk6d+5Mly5dXJn9XnrpJXr06EHv3r1p27atW7uhQ4fy2WefuW0ZfP7553z66ad07tyZDh068N133wEwefJkpkyZQseOHTlw4ECVzb3CiHxKqfXAKhG5u1jZ3cC7gG+hG16dJCYmRtasWVMlfRVZgtYoBVmQtc8Q/gDb/gdb34D6/ZDYmcz/YT5JSUmICPV8LSSnW3EoK02aNOGmm24ywibuLbSPLFLdv/IKvPcetGgBv/xi7OuDscpPT4eIiJNlZwG18rlUE3oudRM9l8qzdetW2rVrV3HFFbcZeUWkDDc4sze0fgC6/qfMLtLT0z2qxM9GzmQunu65UqrMiHyVWem3AOaWKJsDmIGI0xmkppKYvUFZDJ99gOZ3GGWHFkPqZlJTU8nJyUEpRQFmvM1GyNzjxwuTIiplrPZzck6q7h99lMyICNi1y9jjL0IpQ9gfPAjniD+qRqOpoxzfWLbAB3BkQ/JvNTee84jKWEr4ASX1LEVRXc6Nx6y6ilJgrWck2DH7GMZ9kbfCPx/Cjin4+l7OkSNHyM/PR5QvUnAUkxh7RyJiGIF4exvpdIuM+ux2tj7+ODEPPwwffQQDBhgufWBsAeTnG258VegiotFoNG4M3ljbIzhvqWwY3sZKqRZFB8bqv1R54TlNVeLl7/5E3HIMKAvqwA+0a+ZDREQEDoeDY8eOkVdgom3zENq0bu1y/wBOuugVWq5mtG4NY8caZY884h6Zz8cHUlONQ6PRaE6RiraMNVXH6dzrygr9ecCOYkeRlcO3Jcp3nPIINOVj8jL29B2FXpI+jaHp9YCTtuYlNG3S1OXWIcpCRKP6RHcpsadmNhtq/uJhJx98EDp1gv374YUX3KqLr6/h19+nj/Fe/xNrNJpKYLfbOXr0qP7NqAFEhKNHj2K320+pXWXU+6NOb0iaKsNaDzITjaA9AK3ug8Qvce6ZxaakIGy2evj4+JCVlcXKNRs4mHKMwTffhyq+2vf3N47swhxJXl7wv//BlVfCrFlw6aUwaBAbN24kNzeXGJMJlZuLFBQQt3o1NptNJ93RaDTl0qRJE/bv38/hw4er/Vo5OTmnLPDqKqc7F7vd7go+VFkqE5Hvk4rqaKqZkhH6/FshDQZgTv6ZKO9VNA88SmhIGN8cvZW9e/eSduIwkpeGsge591O/PuzeffJ9mzbwzDNGfP7HHkM6dSI3N5dt27bRJisLf29v1vz4IwnJyUR17HjSTkCj0Wg84OXlRfPmzWvkWkuWLKFr1641cq3qpibncsqpdTW1gFJgDQHnyUCIqvX9AHQN3IjT6SDl8CGysrJo1qwZHTpfiCn/CDhLWMd6eUGDBu7W+XfeCZddBqmpqIce4nBSEvn5+WRlZZFy9Ci7NmxApaaSlJSkBb5Go9Gc5Wihf7bg5WcI/yL3veBoMuyd8FI5+GAY3YkIzZo2Q5kK3fzyPRjj+fsbe/xFan6l4K23jD3/VatoPn8+aWlpOAoT9hzOzqbg4EEK0tJcGaI0Go1Gc3aihf7ZgjKBVz3DfxVDwB/wux4AX1MqShxkZWWxdt1acnNzEZM35B4GZ4nUuUoZYXcdjpMr/pAQmDwZlKLtTz/R6tgxnCLk5+WRl5+Pd3AwN8bGYvIQt1qj0Wg0Zw9a6J9NeAW4ue+lWTuTlNcMk3LiYyoWSkEwHhIwQ+6x0v0oZaj5i0L0Alx8MXL//Sinkz5ffonJ4aBImZ/rcLBw0SLkwAEduEej0WjOYrTQP5swW13ue0opbN52TjQcA4CfOk4jvzS6dumKzW4z9t/N3pB3/KS7X3ECAiAw0N2N79FHOda8OX5paQQfOwaFhns5OTk4iwfu0e44Go1Gc1aihf7Zhi0YnEa6AxHh76NBFIgFpeBi++ccOHjgpI+sUmCyQs5hz4I6LMz4W6i2F4uFVaNGkeXtjXduLsGpqQTm5uJ0OikoKEB8fCAtDYrC/Go0Go3mrEIL/bMNizeY7TgdOezatYuD+3ZjUobQDjQdhkN/smvXLpxFBn9mOziyIN9DCkuLxQi3m5UFIphMJqRhQxJ790YAn4wMRrz3HhelpGC3240of35+xmq/eBQ/jUaj0ZwVaKF/NmIPwyT5tGjRgtimySDG7rsCrqy/kBbNm2NSxT5asw/kppR24QPw9TVi8xfu718ZHU3rP/907eebHQ6iZ8/myqLAPEoZbQ4eNBL5aDQajeasQQv9sxGzD5isdO7Qjq7eSzCpk6p7G+l0DtrmXl+ZDfV+7lHP/YWFgdWK5OSw9ZdfKCjpj19QwN8//nhy28BsBrvdCOGbV2czK2s0Go2mBLUi9JVS9ymldiulcpRS8Uqpi8up21cpJR6OtjU55jqFUmANZfeqjyjIPuJ+CnCsH2dE7yuO2cfI1ufJqM9kgkaNUPn50LgxlhL7/yYRGi1YgNujgJeX0U5b9Gs0Gs1ZQ40LfaXUUGAy8CrQFVgBLFRKNaugaQegYbHjvE7u4zT74HvwU7zILXXO5MzBuXWSe6FSYLJBTornDq1WaNiQ9jExqP/8xxDoZrOhAbDZCIyLM2L1F8duB6fTUPWXE7inZPINnYxDo9FoaofaWOk/AswQkWkislVEHgSSgHsraHdIRJKLHef18lKlbyXYnOT5nAK18z3IS3M/YbZBQY57qt7iBAQY+/tXXgldukDbtrBqFUydanQ6aRL8+KN7G29vY28/JcWjh0B8fDxxcXEuQS8ixMXFER8ff6pT1mg0Gs0ZUqNCXyllBaKBX0qc+gXoVUHzNUqpJKXUb0qpftUywLOJza9jUmWvrpU4YO2/S5+w+IAUlI7UV0j83r2sWb8esVjA3x8JC+OvgAAO3nmnUWHsWEhIcG/k6wupqXDkiJvgFxFyc3NJSEhwCf64uDgSEhKMqIF6xa/RaDQ1iqrJH16lVCPgAHCJiPxZrPx54FYRaeOhTRugH/AXYAVuB+4p7GOph/pjgDEA4eHh0bNnz66SsWdkZODn51clfVUJqVtcIXlL0qhgOa0LviFbhbK6/gxEWd3OZ2Rm4+frDSavUm2PHDmCIz+fsGPHMJnNZDVoQGZmJmaTidhPPqHhzz+TExrK2nfeIS8kxL2xw2Hs9ZvNbsWZmZlkZ58cq7e3N76+vqc5cXfq3OdyBui51E30XOomei5l069fv3gRifF0rsLUurWNiGwDipujxymlIoHHgVJCX0SmAlMBYmJipG/fvlUyjiVLllBVfVUFIpewYsUK4uKWM7Te2yilmJs8DLvdjm+325D0zXinb+eS0JXQyn3nZMnKzfSNaQb2hmANcJU7nU5mz57NP//8Q68PP8SqFHNvuYX8ggIiIyMJnzIFbrkF+19/0evll+Grr4wEPicHZfjvh4cb2wSuYmHatGmu96NHj66yjH117XM5E/Rc6iZ6LnUTPZfTo6b39I8ADiC8RHk4kHwK/awCWlXVoM5WNm3aRE5OHsrshZeXGR8fH3Jzc9m6bTtEPW9U2vY/IyJfScw+kJPspuY3mUwMGzaMFi1a4DCZyHU4ICODiIgIrr32Wkze3vDxx9C8OWzeDKNHu7vsKWUE70lJMSL3cXIPvzjF9/g1Go1GU3PUqNAXkTwgHri8xKnLMaz4K0sXDOO/8xYRcR1eVjv1w8IJrx9ysrz+JRB+GRRkwNaJpTtQZsAM2e6x9NeuXVt0AZxmM7leXphyc9m0aZNRHhwMn38OoaGwdCk89pi7AV9R1L6DB5G0NOLi4ti0aRNRUVGMHj2aqKgoNm3apAW/RqPR1AK1Yb3/JjBSKXWXUqqdUmoy0Ah4H0Ap9alS6tOiykqph5VSQ5RSrZRSHZRSrwFDgHdrYex1BpPJxIUXXkjLli35Nv1hpicOJyfjOJGRkXTp0sWIyBf1PCgv2DsLjq4u3YnFGxwZkG+E1HU6nWzbto1//vkHlEIpRZa/P4n79rFr2zacRW55EREwcyb4+Bgq/tdfLzk48PVFHTzI4V278Pf3p2fPniil6NmzJ/7+/iQnJ1eZil+j0Wg0laPGhb6IzAEeBp4F1gMXAYNEZG9hlWaFRxFW4A1gI8Ye/kXAYBH5uoaGXGeJiYlh6NChKKUowI5DeXHNVVfSuVNno4L/BdDqPuP1+ifAUdqn36Xmdxhq+uTkZEQEk1J4Wa14eXuT5u/PsaQkV2IeADp1gg8+MIz23n0XPvywRL9mxMcHryNHOLJnDytXrkREWLlyJcnJyUYCH73S12g0mhqlViLyich7IhIpIjYRiS5uyS8ifUWkb7H3/xGRViLiLSLBInKxiCyojXHXNdasWcOcOXMK3ylyJIAFP3zNho0bTlZq8xD4Nof0HbDjvdKdKDMoC+QkowA/Pz+sVivKZHw1rFYrZh8faNIElZ3tHoTn0kvhjTeM1+PHQ0lPCbOZsGbN8EtNZc2SJUybNs0l/Bs3blxl90Gj0Wg0lUPH3j9LcTqdbN++nT179uDn58ddd92Ft1899uxLYc+ube5Z9roU7ulvfxvSd5buzGwHRw4q7xjdunXD39+fmXfeyYwRI8jJycHf359OPXuiGjUyrPOLr9CHDoUXXjBeP/YYfPed65RSCqu3N/WaNOGGKVMY+MorZGdn07BhQ2w2m1bvazQaTQ2jhf5ZislkonXr1kRGRpKens6HH35IenoG9Zt2oEVkE/cse2G9odlQcObB+qc8Rs7D7Isz5xC7diSQmpqKyWQiJCQEk8lEamoqO3bswOnvbxjwZZRI03vXXfD440a/Dz0EixYBhrFhXl4eh44cwakU5oICLFlZJCcnk5eXp9X7Go1GU8NooX8WExMTw7Bhw1wrZqUUNw27g45de0NBicA9Uc+CNQSOxtEg++fSnSmFyeJHu8hA6gX543A4OHr0KA6Hg6CgIFq3bo3JZDKEvp+fKxWvi7Fj4b77jH3/u++GP107NuTn54NSiFL4padDaqoW+BqNRlMLaKF/FlNkGFeclStXItYQwAFSbP/dGgwdJwDQMn0qZB0o3Z8yk5+Xj79XFt7edkJCQvD29sZisZxcmSsFDRsayXaKRdlDKRg3DkaMgNxcGDUK/viDpKQkLBYLJrMZi82GJSiIoOxsDm3bVur6Go1Go6letNA/Sykex764D3xCQgJxq9Yg1lBwZLk3anIdhF+Gl2TAukfcHwowNAUWewBBfl7U8zXe+/r64u/vbxj3Fe3BF6bixWwuLfhffhluuw1yclB33knUoUOEh4djLgzN6+vnR71mzbggIAB19KjnrQaNRqPRVAta6J+lKKWw2WxERUURGxuLUorY2FiioqIMIzlbkGGVXzyxjlLQdRJ5KhAOL4NdH7v1WbQHfyIjn85tGjF61HA6duxIenp66T14sxkaNzb6zC3mCmgywWuvuVb8kS+9RNCaNfh6eRHu7U2H+vXJzMoix2JBjhwxoveVk5a3LHS6Xo1Gozl16nzsfU3ZREdHIyJue/pFDwAAeDeAzET3xDr2+mwL/DcdT0yAza9C2MUQ0MbV3maz0bZtO7p27YLKPkhs92gAz9b2Xl7QpAkkJhrheK2FiX1MJnjlFbBYMH30EZd8+ilKBGUy0eXeeym46SYOBwejAgKMcL0OBzRoUCpRT1nEx8eTm5tLbGwscFLrYbPZiI6OPr2bqdFoNOcBeqV/llNSELu9t/iAxb9UNr6j9l4QcQs4cyH+QcOqv5BOHTsRHR2NMnuBsqBykujZ/cKyhanVagj+vDzId9cqyIQJHLriCkxOJ0oEHA5UTg5dZ8+mocVirM79/Iwtgv373duXQcl0vYBO16vRaDSVRAv9cx17GIij1P49URPAJwJSN8PW/7qKN27aSHx8vCE8zXbEkUf8ioXEr1lTzjXs0KyZoeYvJriVyUTYfffhtJRQKHl50SU4+OQDio+PYfWfmAg5OeVOp/g2RkJCAkeOHHHZNbhpOTQajUZTCi30z3XMVrCFQUEJFzsvP4ieDJhgxxQ49IdrFb1t2zbWxK9BRFizYSu7tq2nIOtw+avoIsGfk+Mu+CMiUCWEvjk3F9W0qXt7b29DvZ+YWDoOQAmKBH9xtMDXaDSaitFC/3zAGgQWI+qeGyEXQttHAIE196OyDxITHUObNm1ouvcRUr7uw7Zt22jRuhPdO0WiChPzlEnxFX9hnP4Fa9awdPBgRCmcxpVQDgf7HnywtDrfajWE/759cPx4mZb9IsKKFe5JGVesWKFV+xqNRlMBWuifDygF9gYg+aXV/G3GQv1+kHcc/robJfnERMe4VYmJuRDl5Q/ZB6GghBtgSby9oWlTyM7GkZNDYmIif0VEcKhxY1T79vx5443kWyw0Xb4cufVWSE11b282Q0CAYdWfnFzKsl9EmDt3LqtWraJDhw6EhobSoUMHVq1axdy5c7Xg12g0mnLQQv98wWwDW/3San5lgpi3wbsxHF+HbHqBNfHu+/dr4tcgKCMjX9Z+z9n6iuPtDRERmAoKMBcK7TzgQFoa8RERfHnTTWT5+qKWL4chQwwjPrcxKUPwZ2Sc9AzwQNSDD8L27Vqtr9FoNJVEC/3ziSI1PyVWw9Zg6P4BorxQu2eQvWM2Pt4+hNevT5s2bdi6dash+JUZTFZD8DsrsLS325GmTQkPDsbL6QQRpPA41LgxS594AmndGrZvh6uugvXrS/fh62us9PfudYX9VUrRokUL6tevT2ZmJvn5+SQkJFC/fn1atGihHwA0Go2mHLTQP58oUvMjpdX89bqiCsP0xtq/xt8OCujWrRsOh4MdO3YYAtVU6IufuQ+cBeVezuTtzaB77sFutbrtz9tsNi4bORL17bfQuzccPgw33ABff126E7sdbDZjxX/kCOJ08ttvv7Fr1y4chXYD6enp7Nq1i99++02r9zUajaYctNA/3zDbjEh9BaUt5J2Rt5NId7xUHs60vxFHHt9//z3p6el4e3sXS9frbQjxrP3gdJR5KafTyZfffsshu52vbryRr6+/HoCcnBzmz59vZO377DO49VbD6v/BB400vQUlHiYsFkPdf/Qojr17MTudiAgOhwNxOsnIyHAFKXI4yh6PRqPRnO9ooX8+osweg/aYTGaOR44juSACMwXI8XWkJ63H39+f5s2bu6frtXgb/v/ZZQt+pRRpaWk4zWYy6tXDZLdjL7Y6V0oZFvsTJ8KrrxrCfepUI3b/sWMlOwN/f8wOB30jI7GWsPxXStGrVy9XjH+NRqPRlEYL/fMV73Djb7G9eREhrwD+yLkdhyhMSrgubDZmsyI/P7+06tzsbbTPPlh6u6Cwv6IVeIvWrbn/1Vdp0Lo1trw8pHC1DhgCfcQImDMHQkJg6VIYNAg2bCjVp/Lxwcvfnw6BgVhyc1Ei+Kan07JlS+x2u97T12g0mnLQQv98xWQB70bGar9Q+Cql6NatG7kFZlShsZ+/JYNY6zy6devmWaCafQz//6yDpVb8JpOJ8PBwWrZsybBhwzBZLFx3zz00aN+ehv7+pb98PXvCwoXQubPhqz9kCEyf7mYPICLkFhTg9fvvNEpOxis/n7GTJ+Pz1Vfk5OToPX2NRqMpBy30z2cs3mCv79rfd4qTzz77jAYFKzHM+Ax528q2jjVf3ntyT79UP77Gw0N2acF//fXXGwLfZHzVTGYz140ZwxW332645JXcv2/cGL75BkaNMlz1nn0W7rnHSMwDOBwONv32G/1//dX15fUqKOCq+fNZ++OPek9fo9FoyqFWhL5S6j6l1G6lVI5SKl4pdXEl212klCpQSiVU9xjPG6z1wOIHjmwUitzcHHoExmFSRat/o1oP+4+oxLll92PxNRL4eNjjLxL4bu+Dgk5G78st4fdvs8HLL8P77xsJeX74Aa68EtauxWKxEJaTg7PE3r3TZKL5oUNYtNDXaDSaMqlxoa+UGgpMBl4FugIrgIVKqWYVtKsHfAr8Vu2DPJ9QykjBi0IcObQPPYK3Odtz3XWPwcEFZfdl9gFHPmRV7M4HGIl2IiKM11keIv1dfbWh7u/QAfbsMdT9b73FNXffjbXEVoPVZOLqMWOMeuWE8NVoNJrzmdpY6T8CzBCRaSKyVUQeBJKAeyto9xHwCRBX3QM87zCZwacJJhy0N/2M1VQ68I4DMwon/HUfHPqj7L4sPsZKPzMRHEYkvZL77G7vrVZjxe/tbajwSwrrFi1g/nxDxe9wwKRJcO+9qMcfhyINgt2OmjjRCP/r6wuHDhl+/SU1CBqNRnOeU6NCXyllBaKBX0qc+gXoVU67+4Bw4OXqG915jtmK5KUSJPs8n8aBKC8jfv+qO+HwCo/1AMNWAAVZe1n71wri4uJcgl5EiIuLIz4+vljnZmjUCMLDIT29dCIemw2eew5mz4YGDWDNGnjzTWP/32aDuDi48UajrskE/v5GJL/du+HIEeNhQaPRaDSomrR2Vko1Ag4Al4jIn8XKnwduFZE2Htp0BH4FeorIbqXUBOBGEYkq4xpjgDEA4eHh0bNnz66SsWdkZODn51clfdU2Zc4lczfkHitd7kJo45xPw7w/cWAlod4Ejttiyq2flZVBdk4Bdm9ffH19yczMJDs7G29vb3x9fT00kZOx9k2ln0ktaWm0fvtt6v9pfH2OdOjAzieeIKdhQ89DKErY4+Xlsb+6xHnxHTsL0XOpm+i5lE2/fv3iRcTjj7PFU2FdQSllA+YAj4nI7sq0EZGpwFSAmJgY6du3b5WMZcmSJVRVX7VNWXORHx9C5Wwqv3FAFDS8FfPez+mcOgEu/AAaXlFmdXEWsPavZWzcsZ18DCHfoUMHevXqVbZPfUEBJCUZ+/y+vqWE9UZfX9J69KDlW28RunkzIffcQ+Ktt5I6ZAidunb13F92tmEUGBZmbCnUQc6H79jZiJ5L3UTP5fSo6aXPEcCBoaovTjiQ7KF+Q6AdML3Qar8AeB7oUPi+bGmjOWXU4I2saf0Xnzk/JdnRnBRHJJ9lTuQr59tsaLEAhhyAS3+GLhOhxZ3gzIPVo+HA/DL73LR5C06TN96kYicVEQdKKdauXVv2QCwWaNIE6tc33PqKZdkTETZs2MBPFgsZLVtyKDoalZ1NxIcf0uiee5CNGz335+9vhPrVKn+NRnMeU6NCX0TygHjg8hKnLsew4i/JAaAj0KXY8T6ws/B1ORvLmlNFRNi1axeHDh3G2zuA+vXDaXtBM44cOcLevXvdI+h1fBFa3QdSYBj37fnCY3+5ubmsXbee1CzBSjam7AOsXrmc3Nzc8gPpKAX16kFkpKGiz8x0Zerz8/MjPz+ftKwsNo4cyY833EC6nx+h+/fD4MEwfrzxsFASb29jtX/8uCH8PRkOajQazTlMbWxyvgmMVErdpZRqp5SaDDTCEOYopT5VSn0KICL5IpJQ/AAOAbmF7z38smuqBGUCkw1l8sKMhzS6SkH7cdD2UcAJ6x+HLRNLCdGDBw+SX2iYV6DsKJzYHSkcTPyncuOw2w23voAASE/H5HBw7bXXEhkZibPwIWBbZCRLJkxA/vUvI6TQhx/CJZcYQX5KCnWljC0Dm83YQti92/VAodFoNOc6NS70RWQO8DDwLLAeuAgYJCJ7C6s0Kzw0NYxSiptuuomePXsy5+g9TNt9K2u3HaJr165cfeXlpffglYK2jxjqfmWG7W9D/EOG2r9YnxbLSdMRB16YLDZ8OGoYDVZG2JrNhmV/s2ZQUIDKyqJx48bMHTqUY/XqARDesqWRoW/hQujSBZKT4YEH4LrrwJPK32w2VP5msxHyd98+Y99fo9FozmFqxZxZRN4TkUgRsYlIdHFLfhHpKyJ9y2k7oSzLfc2Zo5QiNjbW9V4w0+2iaw2B7yhDKEbeBj1nGMF59n8NK4ZD3gmUUlx11VWEh4czOGA6fc3vkpubS1h4IwZedQMq9whkHahcIB8AHx8kIoLvFi9mzeLFmJ1OlFIopVixYgXff/890qEDfP+94c8fGgp//WUk73n0UUhJKd2nl5ehRXA4YO9e2L/f2PvXaDSac5C67cOkqXFEhBUr3E0lVqz8C/FpYqj8yxL84ZfCxV+DrT4ciYM/BiOpW4iPjyczMxOzSahvPUSwdw6ZmZnEr12LWPzAkQuZe6DAQ0Q+DziV4u/jxznu50eQvz/1Q0IICgzE4XCwb98+nE6nsXq/5RYjW9899xiGfLNnQ+/eRhrf9PTSHdtshvDPyzOE/4EDOriPRqM559BCX+NCRJg7dy6rVq2iQ4cOjB49mg4dOrBq1SrmfvUt4t3EUOMXlCH4gzrCJT9AYBRk7kH9eQ2W5B/Jz8/Hz5yOl8rlosDfyc/P5/Dhw4b2wOINympE8Ms+VCpuf0lMJhM2mw2HzcalkZ+Rn7kTZ3o6FocDq9XqHuc/IMAI6vPbb0bs/uxsePtt6NULPvrIs1C3290t/Q8c0Ct/jUZzzqCFvsYjRfv3bvv4Jgv4NDHC9pa14vdpDH2+haY3gCObrgXT6KS+xtecilLQxOtvLJl/k5ubezJrn8kCFn/IT4XMvWU/VBTSvXt3fH19cTidCJBit2P39yemdevSWfsAWrY0jPu++w66d4djx+D55+Gii2DmTDeXQBfe3sZDQ26uEc+/aM9fG/xpNJqzGC30NS6KG/IlJCQwbdo0EhIS6NmzJzfddJPxAGCygE9TMFldKXlLYfaGbpOh08s4xUR04FoKk/ZhknwuD/2No0ePYFKm4hc3MvUpsyH4sw97XPUX2Rw0aNDAKBChwGzGr00bugwejCooMKzxnR7SAMfEwNdfw/Tp0LYtHDwITz0FF18MX3xROvwvGCv/gADjYSIx0VD9Z2Ro4a/RaM5KtNDXuFHSkA8gNja2xIrfbKzovQIgvwxfd6VwRN7B98dvwynKlaLXpCDY6zCNTH/j8KTKN3kVrvpPFO71Z7qdLordn5x8MpaTUorklBTiEhKQyEgICTEEf1aWZ5e9K66ARYuM1L2tWhnGe48/buz5T5/u2YrfZjPU/koZKv9duyA1VQf50Wg0ZxVa6GvcKBKqxSmeMMeFMoE9HGyhUJAOUnplbVIm2lwQQYGY3cqtpgIuC/4Fk4c2Rt9Fq34vyNwPmQfAeXIVnpCQQHZ2NmaTCaUUPj4+ZGdnk5CQYITsDQ42svP5+xurck9C3GQyUvf+9htMmQIXXGAI82efhR49jL3/1NTS7by8jH6tVsMb4J9/jKx+2uhPo9GcBWihr3FRJPATEhKIiopi9OjRREVFkZCQUIbgV2APBe9GhqrfWVo9Xv/YF1hNpffZrXIMEiaUPyCTBbz8wZkDGbsg9xjiKMDpdOJ0OrHZzHiZCmjZ0Ooqc43Ry8vw7Y+MNFT0aWmeBbPZDEOGwOLFMG0adO4MR48aVv4xMYYh4J49ntv5+RmBftLTDaO/xMSytxY0Go2mDqCFvsaFUgqbzUZUVJRLpR8bG0tUVBQ2m63sBDnWAPCLNELyFjfCS9tGIImerwWo3TOMEL555WX2w7ARMPtC7hFM2Yk0DvMnJCQYu+MIiIOO+Z8QEhJCeHi4u/U+GGr5xo2NqH5mc9nC32Qy/Pl//BFmzTKM/LKy4OOPjdf/+hesWOF5u6DI6M/pNLYKdu0y4vt7MhDUaDSaWqROZ9nT1DzR0dGIiJv1fqk9fU+Y7eAbAdlJkJ8OFj9k+7socRgS3gMCqAPfwZHl0PEFaHwtlHUdZTL6dBbQJMxC5rEj+JlOANDMspFw60EaNOjqNnY3vL2NiH7Z2XD4sCH8bTbjcLuOgj59jGPLFmP1/+238NNPxtG6NYwYATfcYKj5i2O1GofTCSdOGBoDb28ICjI0Amb3bQ6NRqOpafRKX1OKkkKzQoFfRJFLny0ECtJRaVswq7JV3QpcK3jW3A/LboTULeWPzWQh6XA6DQpWu8rM5NPbayZJBw9WPNYi4R8RYQTtSUsrO/xu+/bw1luwahX8+99G1r/t2+GZZ6BbN3jiCVi/vvTq32QCHx/jocDpNEIC//OP8deTcWElKbm9Um7CIo1Go/GAXulrqpaifX6LD1wynx9+XMDufclYrVZ8fX3JzMwkLy+PZs2acc3V16AQ2DsbtrwGR1fC4gHQ/A5o9xhY65Xq3uF0cOhQCtf7LsdU6AdoUhBiScL76M84HNdhrsyK2tsbmjY1Au8cO2bsy5vNRnnJB4f69eGxx2DsWGO1/8knEBcHn39uHO3awbBhcP31hhFhcYpW/yLGfn9qqnGdwEDjocBmK1u7UYz4+Hhyc3NdWpci+wubzUZ0dHTF89VoNBr0Sl9TXVh8wDeS8MbN8bU5UZw0srNarTRq1Miop0wQORz6L4UW/zIE4O4ZsKg3bJ9SKlCP2WSmXcgRvM3u5VZTAf3852HO2mu4+VV2FWy3Q6NG0Ly5sS+fmWlY/HtyxfPyMiz+580zDP/GjDGE/NatRjrfbt2Mvf8FC0rbDRTt/fv7nzQsTEw8uf9fTtS/ohTFmzZtchlUxsXFsWnTpopTFGs0Gk0xtNDXVBvK7IXJtzHtu/UnwMcLi8rHx8eHbt26lTYMtAZBpxeh3y8QdpERnW/Lq/DrRbDnM5dngFOcXOCYj9VU2lPAiyycez6HzH2Gj3+eZ1dCj1itxoq+RQsICzOM8NLTy3bFa93aEPTx8fDBB9C3r/Gg8NNPMHr0SfX/8uWlHyBMJuMBwM/PWOmfOGE8AOTmGg8A2dluHgBKKZemZNOmTUybNo1Nmzbh6+uL1Wqt/PaLRqM579FCX1OtdOvWDYfJh3TCyBcbVnLB6aBjVEfPDQLaQq/Z0GsWBHaEnGRY/yT81hf2zMKUuoVgtd9jUwt5mLa+gWEtYDKMCgtd/Ty5E3ruxAL16hnCv0kT4316etmueFYrXHWVoeb/6y/Dxa99e0OQf/453HwzREcbdgCrVnl+APDxMR4ATCZD/Z+YeNIGIDMTKSggPj6effv2kZ6ejoiQnp7Ovn37iI+P1yt9jUZTafSevqbaKFJDb968maiozsTGxrJq+e/s3BqHiTy6xVyEKuliB4YqvH4fY8V/8EfYMhEyd8P6xxCzN0jZAlyc+ahtkyHqWSO6nzgh96hhLGjxM+wEzPaK99GVMizufX2NVX9amiHIHQ5D0Je0+gdo0MDI6nfPPYbK/9tvYf58I3TvjBnGERoKAwbAwIFGBMCS/Xh7F908w+gvLQ1xOFD790NBATd+8QVKKWaMGgVAZmZm2R4LGo1GUwIt9DXVhie//x69L8WprJgtuShnFjjNRqY9jx2YoPHV0PBKODAftr+DSt/m5gFolTT3Js4cOLzMvQ+LryFEHTlGNj+TlyH8vfyM1xVhtRrCOjjYUL0fP26s/pUy9uctHv6N2rUzjqeegk2b4PvvjRgAiYknDQD9/eGSS6B/f7j00pI3z+gbEIcDL4sF39RULPn5oBS+6enk2WxYTSa90tdoNJVGC31NteLR77/XRcZ7Z76xAs9LBZMNzB5Wz2C4Aja9Dppcixz8iaz1r+Ob/w8APXNf4YhPX+IOdaBB28uJiY7xvOpVyljhm+0gDuO6uYcMl0FrkBEAyFSB1b/JdHL1X5TY59gx40HAZDKEdEnPAaWgUyfjeOYZw/d/4UJj73/rVvjhB+NQiq7t2hkBgi65xIgMWNiX2WwmrGFD0rKyUCJY8vMJPH6cAn9/mtevj3nvXsMI0cfHeEDx9BCiASilFdFaEs35hv510FQ7Zfr9m7zAuyF4BUHuYSN5j9luZPDz2JEJ1XgQf2wQ/NjCxV6foPJPEJq1hKv9lpB64AdUyL3QZIgRvrfMAZmN1T+AIxeyDhhC2+JvtDN7GxqC8rBYDLe7wEDDAC8z01D/Z2WV/wDQoYNxPPaYser/9VfjiIsjcMsW46Fg0iQjoE+fPnDxxTh79SIvL4/WGzfSMDkZlGLkp5/ya//+ZF1wAU6zGVNqqhEMSCnDy8DPz3gIsNn0Q0Ah2u1Ro9FCX1MXsHiDpRkUZBUK/3Rj1e9B+IsIYfXrs23bcdLrNWaLzyNEmv6iXvoiAtkLG56ChBehybXQ9AYI6VG+ADcXahhEjOvnpbo/AJjsFWsAiiL71atn7P+XfAAoS/A2awZ33mkcmZls+uILOu7aBUuWGA8E338P33+PCbgiMBCftDTD8lYEU0EB/X/9la+KNAJexbYpCgoMG4Tjxwvvr8V4APD1PRk34Dxb3Ra5PSYkJABG5sjieSb0il9zvlArQl8pdR/wONAQ2Aw8LCJLy6h7CfAa0AbwAfYCH4rIpBoarqamsPiAuRk4sk8Kf5OXsfovRClFTHQMAFl7s8jwDeLXw71p2/pWosOTUXtnGUF+9s4yDu9G0OR6Y3sgoG3Z13ZT/xd7AFAKzD5GGmGLd/k2AEqVfgDIyjIs8tPTjTplCV1fX4726mW4+4kYCXz+/BOWL0eWL8fPQ8Y/k9NJm6VLDZuAtm2NBwwwhHzxhwyn02UU6MJuNx4C7PaTWwLnsNArnjI6ISHBJfyL25toNOcDNS70lVJDgcnAfcCywr8LlVLtRcRTdpYM4G1gE//f3rmH2VFVif636jz6dTqd9ztNJ5CER4JA4oBRQjJjGAcn6qCDAb0jc0ce6ijO6Dg6+nlxLuPojHJhdLyo+MkMGAM4gARHLyIQUEI0AUlCIAnphJBn59Gd9CPd51H7/rGr+tSpPqf7dOg+53R6/b5vf1W1966qvU+dqrX32muvDV3A24HvikiXMeY7JSq2UipErPCPnmUd8yRbrfCXiKd2l17B/6PtN1FbMwl4nUWL324/3I0fgPbX4I2fwBsPw6l9sPPbNiTOgelXwfR3Q8MF/fj5DzQAANyknTpojBX6sTF2eCBSVViLEG4ApFJ27N+f/meM7aFXVeUfBpgzx4brr0cyGTZ885ss/ta3iASmDUZcl4ufew5WrLBj+osWWf8AF18MF11k7wvZ4QYfY6w2oLXVNgiMyfoO8IcEYjEbziBhKCJcdtllvQIf4LLLLlOBr4wqytHT/1vgHmPM973jT4rIu4CPAV8IZzbGbAI2BaJ2i8jVwOWACv0zmWiNDZkkJNsgfQKMwUicjS++lJN146aNWSO++nPg/M/DeZ+DY7+DfQ/B/seg4zXY8W821J4FU99pw4RLCxsRgh1m8IcaTMZqAJLHAK9xEK33tADxwo0AX4j6q/H5dgDt7bYXDjbedbM9dg/jOBw+91zWrVzJ8kcfBRGM4/DauedSV1XF9IMHkQMHrJfAp57KntjUZIX/woXWMHDBAjtjwB/3Dw4JGGMbJsePZ/0R+A2XmhrbaPDPGaELB23cuJEdO3b0qvKNMaxZs4Z58+axePHichdPUUpCSYW+iMSBRUBYNf84sKTIa1zs5b11SAunVC6RONRMBncCJtXBC88/wa7tL3PevPm0u+OZNbma7du3A+Ra74sDEy+14cLb4Oh6OPDfcPAX0PU6NP/AhmgdTLocJl9ht3VN/WgBQlMM/RkI3W5WQxBNeAaJVfntAfxedU2NnQqYTttGwBtv2CEBb1perybAK8v2hQt56yuvkIjFeOmzn+X5XbuYMWMG01euhAMHYONGePFFuwjQli2wZ48NjzySvffs2daQ8Pzzs9tp0+w9/KEHH18j4NsHGGPz+ZqDmpqsvUJ4SKHCcF2XHTt2sGfPHpqamli1ahVr1qxhz549gHUi1WdZZkUZZsoxm6TUb+lEIAIcDsUfBt7Z34kisg+YhC3zV4wxdw1LCZXKxYkgVQ2QaOKs88dzyaIFrFv/AovfMh8xyf5d0jox6/Bn8lJ4yz/B8Rfg8BNw6Fdw8hXbEDj4C5u3ZiZMvhwmLrFagNoZ/ZQpljvO76asB0D83nLUNiqitZ7GINZXGxAUmnPmWKHvawI6O5FUip6jR4n09NCRTNKZTrP54EGMMXR0dNg6z5hhw3vfa6+ZSsGrr8JLL8HmzbYR8Oqr1lZg9247TdCnoQHmz7d2AeeeC3PnWjfDEyb01QiA1QSk09ZYMZ22DQF/uCIetw2CTMZqMPx6lVmgOo7DvHnzAOjo6ODuu+8GoKmpiXnz5qnAV0pOcDYJULLZJFJKxx4iMh3YD1xhjHkmEP9l4EPGmPn9nDsbSACXAV8HbjHG3Jsn343AjQBTpkxZtGbNmiEpe0dHB4lEYkiuVW7OvLrUgpsBXDB4PePiW8tVmRbG9/yOcckXGdfzIjHTnpPe7UyhLb6Ak/ELOBk7j85oE0YGo+I2Nvivmogn+J2cshZ8LsbQcvgwbiaDYwzRSIRMOo3BCrOJkyYVNfYuqRS1e/eS2LXLhuZmEs3NxNrb8+ZPjRlDZ2Mjp2bOpGvmTLpmzaJr5ky6p07FhBsCgbJiDB09PSTC3gYdr77hUCK6urpwXZfuwOJG1dXVOI5DbW1twfPOvPdF61IJtLa2kkwmSSQSvT38jo4O4vE443x7nNNk+fLlm4wxecesSi3041hjvGuNMQ8G4v8dWGCMuaLI63wJ+EtjzNn95Vu8eLHZuHHjmylyL08//TTLli0bkmuVmzO2Lsa1lv/Jk5Bux0rZqB0eKFZIGxdOvGy9+h19Ho79FtK5Xv+I1MDYi2DcRTB2oQ11TQPP7fdx09aVsMlkVeY4PL1xN8vevsgzEIza4EQwxnD//ff3DmHgukRcl0gmw7mNjbzvyiuRdDprkOc4tndejLrdGGhpge3brbOg7dth504bCjQGiETsugRNTXa44KyzbGhstNvaWp5++WWWXXBBoM6u7f2n01njQf/+jmPL6g8v+LMJIpFseJM9cWMM3/ve9zhy5Agf+eEPiUSj/PjGGzl16hSTJk3ixhtvLKglOmPflzeB67o52pHwcSkYyc/FGMMDDzxAc3MzVVVVNDY2snfvXnp6epgzZw7XXHPNm1Lzi0hBoV9S9b4xJikim4AVwIOBpBXAfw3iUg7Qj+WVcqaTfyzMc7kbrQMzxTreSXdapz+mCxCQmGdwV2jM3skK8rkfs4L55KtW+B9/AVpfsCv4HVtvg080YWcEjDkPGs6z2/r51tVvGCdKn1fPuIDJDg0YQAwQwTgxom4bVU6SjBFcR8g4Dm4sxqkxYzBNTYhviJdM2lkCXV25y/X6gjWsaheBKVNsWLo0+APbBX927rTL/+7alQ3799v1BF5/Hdat61u/CRO4ZOJEO0wwa5ZtIEyfbsOMGdbxUPj3z2Rs+bu7cxsFwfL7Qw2xmG0YhBsFkUjB5+q6Lh0dHWQyGUgmiSWTOC0tZGpr6ejowHVdIiPUQLHUPPTQQ3R1dXHdddfhOA6u67J69Wpqa2u5+uqry128EUNbWxvpdJpUKkU6ne4dqmtraxvW+5bD8uZ24F4R+S3wG+BmYDpwF4CI/CeAMeYvvONPArsBr5vDUuCzqOX+qKWosTBxstb/1RPtDIBMt9UApLuyQsUZqBEQscK84QKYYxe5oeeYFf6tm+HEFmjbYqf0HdtgQ5Ca6VA/104XrJ8LiTk2VE/Nvac4gDddMYhxcUyaaidJItrJeyc9iGB4uOX9IA4JZyJOzxFrNBiNQSwOiRqQSbbhkE5nGwN+Q8Afh4essPR71r3lEWvgN21abmMArL3B3r1Z+4C9e214/XVrjHjsGGOOHbNag3zU1GSvPW2aXaho2rRs42PKFLu8cdioMJOx9/aXHg42DIJGhr6Ww28gRKM4IsTSad7y4ovM2L8fgL++/XYeW7mS3e94h47pF4nruuzZs4eOjg5Wr17Nddddx+rVq2lubiaRSJSlxz8SMcaQyWRwvZkyxpjekMlkhtWgr+RC3xhzv4hMAL6Edc6zFbjKGPO6l6UxdEoEO4bfBKSBXcDn8RoJyugi7FkNKM6zWiRuQ3yMFRBuj6cJ6LCNAH/cXaKeNqCfV6NqAkxdYYNPd4s1CDzxCpzcBie2QccuOHXAhpZQjzhSa4cE6s6CukaobWR8D9Aeh5oZWeEvDmnXYe/+FnoyERxxmRA/TpX00J5JcGD/G6R7ThB1hKzRgI+TNTSsiUFdApyxkDHgGki7kPIEaXe3Fab2R87OHvA1BMEGQVWV7cXPndv3t3FdaGnhhWee4ZJYzDYGDhywYf9+2LfPGig2N9vQH+PGweTJtgEwaZKd6eBvJ0zI3QZXJwxqDYwB18W4LjNaWnj3Y4/heI0FJ53mT9eu5aFzzsHs24f4wwp+ff1GhK9F8W0SRrlQmzp1Kq+99hrNzc189atf7RVcU6dOLXPJRhYNDQ29w007PvOZnPjhpCxzbDynOnl76saYZaHjO4A7hr1Qyogg7Flt/PjxHD9+fHCe1YLOd+INnmBIWSc86S7IdEK6Oyv8JDJwQ6B6sg2TA2Ypbhq69lpnQe077LZzN3Q0Q/K4bRyc3Nab/UKAX3kH8XFW+NdMJ1I9jYtr99AWqaEhdoIqJ8nyCU/yaMt7SLtCJFaXX1NhjB2eyPRYWwd/CCFIFIg6UB8BasAIZLAhnYGeFCR7IJXOGh8iWduBoIodbNzUqZz01xjIR3s7HDxow4EDdhjh0CE4fNhuW1rgyBE7TbC1tbDGIOf3r7arIPph7FjbaPBDQwOTX3gBE/qdXMfB2b/fCvVUqreR4BskAlZLsnt36HfzPBj6wyX5bBD8BkJwG94fYTiOw+HDhxERXNe1wyWBeO3lF4eI0N7ennddknzxQ0nlTqxVlAL4gj/Y239TrlRFspoAfwzezVhjOzdlPQNmuqxWALIzBCTiGdsVeI2caFadP+3K3LRkm7UN6HzdNgw699J6cBvjYm1WM5BsteHEVgR4W6jxPzexi1vq/o1uUw/rfg7Vk6BqotVCxCdAfLy3P942IOJjrROhQo0DXNtAwAXHgONCzEA1VtibmP1N0inbk3ZdT1PgWh8FGReI2LwSgUwaTh71hKA1SOzdJuqy0wILkclYR0F+A+DIETh6NLt//LhdYMgP3d1ZjUK+R4H15hUmnkxy1SOPIBs2WMdJwZBIQH09Mzo7bXnr6qxzo7q67FoGvr+FWCzbUAh4TRwQv+HkN6LCjalgXL6ZDwOFISadTpNOp3Fdl9pIB38+9UEePnw1J9MNvWnRCvbXUCkYY+js7MQYQySTQYyhrr2dzvr63vgzRr2vKG8Wfww/yPr164fWh7oTASJWG+Cv2OdrBEzaawx02WGCdCe5PWhP8PWGPGWKj4X4RXYGgMdLPS+z7LILbI+85yh07bO2AqcOsmvbb0ic2sLk2IHeafFRyZCQNmj7fXF1kijEGqx2I9ZgVzeMjQmEes/FcL01TIx5W984Mpqw54pktQbGzQY3A5mUFfj7gEQS0kk7hNDtxbv+72QC0xY9AScRr3EQsw2EsREYOwPmzcraPEBoSqa3PdVtGwLH2+B4q/Uh0NoKrXZr2trYv20bdYcPMzawjoEAdV1d1kCxAHkGMfoSj9uGgN8Y8Pd918bhY9/Loe/x0HfZXFVlr1VVlV0XIRh3Ov/vYKMhmbR2F8H4sBbC760H9710x3VJOA7JVIobzvoeDbGT/PH4X/DQgfdTG43i+LNI/HOK2Y5CjDF0dXWx8KWXmHloH7vSKW65807WrlzJyxdfzHDOqlOhr4wofIHvj+Enk0mmT5+es3rasKnGfI0AnoFZvMEvlNcQSNvespu0KnXfbiDfWLv4IUJ2vr5/Hyc7XAC4xmXzlnH8oazP+V4m3ShbnGu4+PJrcHqO2UWKksfsDIDkcWtw6GsMUq22cZI85rkQPu0fwU5ZjNZZu4RorT2O1AT2q5nb0QUHZthVCiPV3mqG1fb3c6qwn56YbYgQAdexIYUdYnAjduuni78gkMkKfcexUtvxfstxwIQxQENvUX2Ma3j2/vvp7DrFh6P/QXyayyM7V9LmjKfBifBnf7QCp70TOjrhZDt0dNn9ji72vXGYmVHscWcntHvbri6br7PTCtNk0jY2hhNf+AcbAr37gSmP8SqIe7McAjMe5pxst4aSsag1+oxFbQMrFvUMQWNZuwbf5XLAKNI4DuNffJEG0jSMPYnEYB7bueD4Zo4fmYbZvDl3ymXQLiL4Hw8eBxsZkNsoKJQH7HDMwYN9z813fljzEbxOeEgi/P0Y7HExcZkM9a2trFy7FqkFpkJsTJqVa9ey++x+Z6K/aVToKyMKEaGqqqp3DH/dunW9Y/xVVVXD7sKyQKG8Mf8CDmvcjDcn3wu+/YCbzDYW8FTsqQ5yBBsOjggN3ZuoiZ/KuWzcSXOu+9844/65f3sDn0wPpE7YkGzz9k9mQ7rd23bYRY78rT+0ke60tgGZLhv6YQbAawMXaVCI10hwvK1Es0MsBLcRwE9zQKIIDu+YdIh02iWecJEYrLjwSQ60TyMSjSPOcatZGBfU0tjGRLq1DsbXAlOyGocc50qOHY5IZqztQ08akmlIprytt++n9W5Tns2El97jn+Ptp/14L6QzgPe/ob3X9hQXOIX1gALZePoeNwYULf1u85wLEDHwQT/+CRsXxeXPzKP24KHv9j0/6lgNTjSg1XEciPjH3n6v5iECEbHb3jjvNw8Mf1zYk4E6b70LEe96km0ERkL2J44/7BHKL8Hrh/KI45mxSCAtkDfc+ETsvn8+hK5j4wX4k5efRWpdeAuMObgbPgSZ70VoGmZXvCr0lRHHokWLcsa8/DH+il0tzR8q6A/jgrMfEmd56nK/gZAmk+nhPOdXxJ1Un9PidOLu+gHO7A95tgZ4W/8DJNmtROw4f9XEQNogMZmAjUOnt+3yGgOnvP1udu7azdzGcV58D7jddspkpjugCUnaeDdpp1S6PdnGULBh5Ca93yPl2VmcGricIQSYNSY3rr6qk/lVXsvk6LY+5/g0gfUjOlg820hqBsp4puPS65Z6CBk/5FcsHQ4w/yPAR+zx3FcfhoshMiNN5JxzVOgrSph8Vq8jGl9I51ntz2nbyqR4eLkKS8xJYXbcAfM+bsfg/bF2N+01HtK5jQjfC6BvtJfPXbEJRPfuezu+EWM0YYPfswmOsYuw/9AO5p49PxsvgfTgttjn5teltzHgeTUMboP2Fr11t8fGzfCznz3KzHgzF47ZjCPWvOBkup4X2i9j+RVXIL4xY+j32vPGIZqmj++b5gbsGfzf03X7/s6+vQOeoV/vNXz3zG5gZoWbrW+w+23c7L5/HUzusRCIJze/t9+RTJOIRUJp+br30Oc6xmCA7hMtVMd7+jigdF1BaqYF/lHGu4R3nV4vjG7ucdBFtQnd24TLkE1LZVxiTvj/E7hWn/Lnq2P4sNBYevj8gfL3cw/PJsd1MwguItBTP5ZE7ADtf1PPrs4ONeRTlFHNy1/DIVM43U3Bq9+Ei/9lcNftFToh4VFwH3KEVK9gCggl4/fqPJVmb3wmcE+y8afTA+xd5CjQhQ5/e3O+lwbjGk7Ed7O09lf4csIRqIucQqomYGZdjeRbERHDnrY9NM2fnScp2DoqwGA+3GEBaYrY90/pHSMPpfkzCbztxm2HWXbupKxBpclNt/uBcyU3LpPJ0PnrD1JTfaRP8V0TQca9n8ik94aEdX917mesP99xgN/sP8WyGf2oUQqd2881+xghFnveYPJgnRz96L57ufqCh0lUdbL17P/Jsu7PkhjbyfTDv1dDPkUZzUjbZqQfoS+ZU3a1wEFf2Ff9n37ZCuLshLpZxecP9/AKxeVN7yePn891GRtpoSrSnZMUc9IsrvkFVH8HonH6YAzIfutZsW9i3qr0pg1G8PV7rX5PLv4+ALE2mDxn4Gvm3YfIiVdoSLTmPSsaSWOO3gNv/XTujJecSw/h8dFt0HRe/nyF4vqLL5hmcjb9UuSzMKkUYyZ1EY8mc+LjToqrJj6GyaRyHWINISr0FaXCcf/k99x1110cPXqUWCzW65AolUoxceJEbr755pHvFKWP+p8hbYyIMVxS/QRVeewiqqUL2bsG5n2swMlO/jUURiISgeoJp326+7tbcIxb+Nm4aXjtrsFrnU4HZyeM6WfZ6womClw2fTPxSN//Y230FNHXf2jX/hgGRviXQlFGB/5ysI2Njdxwww00NjbmxCv9Y9q2MjGyN29aTJLw0uftzAWlX5yTW4k4hYdkxD1NrdMow23d0u//0fx++P6P2tNXlArHcRyWLl3K9u3b6ezs5O677wbg7LPPZv78+SO/l18KthVhF7H1ttL0UEcw7rte5I477qCjw3qnjEajpNNpABKJBJ/+9Kd1tcIikG1fR0y6H43J8P0f9WuhKCOAxYsXc+211+bEXXvttSxenHfJbCWEtG0hIv30UE/XLmKUEYlEqK+vJxqNEo1GEZHe/fr6ehX4xdL2Utn+j9rTV5QRgDGG559/Pifu+eefr2z/BJXEVS9x/wMP0NzcTDqd7l0HPhqNMmfOHK655hr9HYvAdV0SiQRHjhxh9uzZrFq1ijVr1rB7925dWncwXLWZu777XVpaWjDGMG/edL6y81ZEhMmTJ3PTTTcN2/9Rn46iVDhh18M33HADCxYsYOvWraxfv35Yp/ecSYgIIkJdXR0TJ06krq6uN04pDsdxqK6u7hX4juOwatUqZs+eTXV1tQr8QbBw4ULq6upy4urq6li4cOGw3ld7+opS4YRdDweXFy6b6+ERSjwe59JLL2XJkiU899xzbNiwodxFGnFcffXVOT16X/CrwC8eESEej1NVVdVrHwH2fY7H4+qRT1FGOyPO9XCFISKcffbZzJgxgyVLliAiLFmyBIDq6mr9HQdJWMCrwB8cruuyc+dOWltbqaqqIhaLUVVVRWtrKzt37mTRokXD9puq0FeUEcIZ53q4xORrOPkNAEUpJSJCe3s7sViMyy+/nFQqxbRp03j22Wdpb2/Xnr6iKMpQoA0npRIQERYvXkx3dzdLlixh3bp1JdM8qdBXFEVRlBJTLs2TDsQoiqIoShkoh+apLEJfRD4uIrtFpFtENonI5f3kvVpEHheRIyLSLiIbROQ9pSyvoiiKopwJlFzoi8gHgTuBrwIXA88BPxeRxgKnXAE8Cbzby//fwMP9NRQURVEURelLOcb0/xa4xxjzfe/4kyLyLuBjwBfCmY0xt4SiviIi7wbeBzw7nAVVFEVRlDOJkvb0RSQOLAIeDyU9DiwZxKXqgfyLOiuKoiiKkhcppQtPEZkO7AeuMMY8E4j/MvAhY8z8Iq7xCeBrwAJjzOt50m8EbgSYMmXKojVr1gxJ2Ts6Okgkzow1tbUulYnWpTLRulQmWpfCLF++fJMxJv9qXMaYkgVgOmCApaH4LwPbizj//UAXsLKY+y1atMgMFU899dSQXavcaF0qE61LZaJ1qUy0LoUBNpoCcrHUhnxHgQwwJRQ/BTjU34ki8gHgXuAvjDFrh6d4iqIoinLmUlKhb4xJApuAFaGkFVgr/ryIyDVYgX+9MeYnw1dCRVEURTlzKYf1/u3AvSLyW+A3wM1Ytf9dACLynwDGmL/wjldhBf5ngWdEZKp3naQx5niJy64oiqIoI5aSC31jzP0iMgH4EjAN2ApcZbJGeeH5+jdjy3mHF3zWAcuGs6yKoiiKciZRFt/7xpjvAN8pkLasv2NFURRFUU4P9b2vKIqiKKMEFfqKoiiKMkpQoa8oiqIoowQV+oqiKIoySlChryiKoiijBBX6iqIoijJKKOmCO6VGRI4AfRblOU0mYt0InwloXSoTrUtlonWpTLQuhTnLGDMpX8IZLfSHEhHZaAqtWjTC0LpUJlqXykTrUploXU4PVe8riqIoyihBhb6iKIqijBJU6BfP98pdgCFE61KZaF0qE61LZaJ1OQ10TF9RFEVRRgna01cURVGUUYIKfUVRFEUZJajQHwAR+biI7BaRbhHZJCKXl7tMAyEiXxCR34nISRE5IiJrRWRBKM89ImJC4flylbkQInJrnnIeCqSLl+eAiJwSkadF5IJylrkQIrInT12MiPzMS++3ruVERJaKyKMist8r1/Wh9AGfg4iME5F7ReSEF+4VkbGlrIdXjoJ1EZGYiHxdRDaLSKeIHBSR1SLSGLrG03me1ZpKqouXPuB7LiJVIvItETnq1flREZlZ0opQVF3yvTtGRP49kKfs37Uiv79le19U6PeDiHwQuBP4KnAx8Bzw8/AHoAJZBnwHWAL8IZAGnhCR8aF8TwDTAuGqEpZxMGwnt5wLA2mfAz4DfBJ4K9AC/FJE6ktdyCJ4K7n1uAQwwAOBPP3VtZwkgK3ALcCpPOnFPIfV2Dq/ywuXAPcOY5kL0V9darHl+idv+15gFvALEYmG8v6Q3Gd10zCWuRADPRcY+D2/A3g/cC1wOTAGeExEIsNQ3v4YqC7TQmGlF/9AKF+5v2vLGPj7W773xRijoUAANgDfD8XtBP653GUbZD0SQAZYGYi7B3is3GUrouy3AlsLpAlwEPhiIK4GaAduKnfZi6jbF4E2oGagulZSADqA6wfzHIDzsA2ctwfyvMOLm18pdSmQ53yvnAsDcU8D3y73sxioLgO950ADkAQ+FIibBbjAH1dSXfLk+T6wfTD1LVNdcr6/5X5ftKdfABGJA4uAx0NJj2NbcCOJeqxWpzUU/w4RaRGRHSLyfRGZXIayFcMcTw22W0TWiMgcL342MJXAMzLGnAKeocKfkYgI8FfAfV6ZfQrVtZIp5jm8Dfshfy5w3m+ATir8WWF7vtD3/VnlqcRfFpFvVKh2Cfp/zxcBMXKf3RvAK1TwcxGRBLAKK/jDVNp3Lfz9Lev7ElZXKVkmAhHgcCj+MPDO0hfnTXEn8HtgfSDuF8BDwG6gCbgNeFJEFhljekpdwH7YAFwPvApMBr4EPOeNf0318uR7RjNKVcDTZAX25Q9+tArW1RhzrOQlLJ5insNU4IjxuiwAxhgjIi2B8ysOr/H/TWCtMWZfIGk1dl2PA8AFwD8DFwJXlryQ/TPQez4V2wsN+30/TAU/F+A6IA78Ryi+Er9r4e9vWd8XFfpnOCJyO1Yt9A5jTMaPN8YEjY62iMgm7Efs3diXpiIwxvw8eOwZ5TQDHwEqzvBwENwA/M4Y85IfMUBdby9t8RRvDP8+YCzwnmCaMSboTGWLiDQDG0TkEmPMC6UrZf+MlPf8NLgB+Kkx5kgwstLqW+j7W05UvV+Yo9gW8JRQ/BSgIiyqB0JE/g/WOOcPjTHN/eU1xhwA9gFzS1G208UY0wG8jC2n/xxG1DPy1I3vJb9qspdQXSuZYp7DIWCSN6wB9A5xTKYCn5Un8H+M7b3/URGalo3Y70VFP6s87/khrEZzYihrxb5DInIRsJgB3h8o73etn+9vWd8XFfoFMMYkgU1YNWyQFeSOs1QkInIn2T/cq0Xkn4hVLR0c7rK9GUSkGjgXW87d2BdgRSj9cir7GV0P9GCFSkFCda1kinkO67EGTW8LnPc2oI4Ke1YiEgPuxwr85caYYj6yC7HCs6KfVZ73fBOQIvfZzcQaklXUcwlwI/Y/98RAGcv1XRvg+1ve96Xclo2VHIAPYi1bP4p9Ce7EGlecVe6yDVDufwdOYqeLTA2EhJeeAL7h/YmasFNM1mNbxPXlLn+oLt8ArsCOf18KPObV7Swv/e+BE8DVwAJgDXactaLqEaiPADsIzQoppq5lLncCuMgLXcCXvf3GYp8D8HNgi/e/e5u3v7aS6oId8nwE2I+dIhV8f/xZFmd75yz23p+rsIZvLwCRCqpLUe858H+9uHdipyY/hR2Drpi6BPLUev+zLxY4v+zfNQb4/pb7fSnpyzYSA/BxYA+2Z7YJWFruMhVRZlMg3Oql1wD/Dzs3NIkd87oHmFXusuepi/8yJL0P8X8B5wfSBTvV7SDQDawDFpS73P3UZ7n3LP5gsHUtc7mXFfhP3VPscwDGYcfIT3rhPmBsJdXFExaF3p/rvfNnefU75n0XXsN2CMZXWF2Kes+BKuBbXn26gLXl+BYM9B/z8vwldt779DznV8R3rZ//z62BPGV7X3TBHUVRFEUZJeiYvqIoiqKMElToK4qiKMooQYW+oiiKoowSVOgriqIoyihBhb6iKIqijBJU6CuKoijKKEGFvqKUARF5m4g84K2olxSRYyLySxH5iL+OuYhcLyJGRJoC5+0RkXtC11opIltEpNvLP1ZEHBG5Q0QOiogrIo8MY12avPteP0A+vz7nDFdZThcReZ+I/G2e+GVemUfaIluKkhddcEdRSoyIfBq7gM6TWM9cr2MdcVyJ9Y7WBvy0wOl/hnXU4V8rCvwI65rzE1inJO3AB4BbgM9gvZJV8ip9lcD7sB7pdGEj5YxGhb6ilBARWYoVLN82xnwqlPxTb1WuukLnG2NeDEXNwK7X/YAx5pnAfc7zdu8wxrhDUO4qU1lLLiuKchqoel9RSsvfA8eBz+VLNMbsMsZsLnRyUL0vIrdiXUQD/MBTQz8tInuwLj4BMkHVu4hME5H/FJGjItIjIptF5MOhe/hq+KUi8qCItAEbvLRaEfmONxzRISKPAjNP43coiIjcKCIvecMVR0XkByIyPpTHiMhtIvIpEdktIu0isk5ELgjli3j5DopIl4g8KSLneuff6uW5B7t88Qwv3ni/YZBaEfm2V56jInKfiIwdynorSinQnr6ilAhvrH458IgxpnsILnk3sBV4ELgN+BlW9V8FfAq7mp+/StcuEanD+vgeB/wD8AbwYeBeEak1uWvEgx02+DF2qMD/VnwXuxDVV4DfYVcKWz0EdQFARL6GHZL4N+DvsJqM24AFIrLE5K5J/mFgO3YYIw78K1Zbcq4xJu3l+YpX13/Frsq2CHg0dNv/DUwC3gq8x4sLazXuxC6AdB0wH/gX7FK6H3kz9VWUUqNCX1FKx0TsoiCvD8XFjDH7ROT33uEuY8zzfpqI7PfyBOP+Gruu+HJjzNNe9M9FZApwm4j8ICRUf2KM+Vzg/PlYofdFY8zXvOjHRSQB3Pxm6+MZLP4d8BVjzD8G4ncAvwZWYlfA80kBf2qMSXn5wDaA/gB4TkTGAZ8G7jLG/L13zi9FJAl807+IMWaXiBwBksHfK8QzxphPevuPe7/FR0XkeqMLmCgjCFXvK8roYSmwPyDwfe7D9nTPD8U/HDq+FPvNeCAUv2aIyrfCu/6PRCTqB+zQQju2/EF+6Qt8jy3ettHbLsTaRzwYOu8np1G2n4WOt2A1KlNO41qKUja0p68opeMYcAo4q0z3H49dyjPMoUB6kHDead72cCg+fHy6TPa2rxVInxA6Ph469lXy1d7WL29LKN/plHegeynKiECFvqKUCGNMWkSeBlaUyRr+OHY8OszUQHqQsNrabwRMAZoD8UPV2/WnFV4JtPaTXix+eScDLwfitXeujFpUva8opeVr2B7rv+RLFJHZInLhMN17HTBTRN4eir8O2xveNsD5GwAXuCYUv2poiscvves3GmM25gm7B3m9LUAn8Oeh+PAx2J57zeCLrCgjC+3pK0oJMcY843l+u11EzgfuAfZiLer/CPgoVggXnLb3JrgHa+n+kIh8EdgHfAg7ln5TyIgvX9m3i8hq4B9FxMFa718JXDXIcrxLRA6F4k4YY34pIl8Hvu0Zyq0DuoFZXhnvNsY8VexNjDGtInIH8A8i0o613r8E+CsvS9B/wTZgvIh8DNgIdBtjtqAoZxgq9BWlxBhj7hCR3wJ/A3wDa9XfjhU2NwFrh+m+nSJyBVbL8DWsU5/twP8wxtxX5GVuAjqAz2KnyT2JbaT8ehBF+VaeuJeBBcaYfxCRV7DeBT+BHWJ4A/gVsHMQ9/D5X4BgBf2nsNqK64HfACcC+e4GLgO+CozFzrBoOo37KUpFIzrbRFGU0YSIfABr0b/UGPNsucujKKVEhb6iKGcsInIp8G5sD78b65zn81gNxxKdY6+MNlS9ryjKmUwHdn7/J4AxWIPFB4AvqMBXRiPa01cURVGUUYJO2VMURVGUUYIKfUVRFEUZJajQVxRFUZRRggp9RVEURRklqNBXFEVRlFGCCn1FURRFGSX8f4idedOWkam3AAAAAElFTkSuQmCC\n", "text/plain": [ - "
" + "
" ] }, "metadata": { @@ -299,7 +287,9 @@ { "cell_type": "code", "execution_count": 6, - "metadata": {}, + "metadata": { + "scrolled": false + }, "outputs": [ { "name": "stdout", @@ -307,7 +297,7 @@ "text": [ "---------------------------------------------------\n", "Experiment: ParallelExperiment\n", - "Experiment ID: 2aa4c1cf-7575-46f4-b80c-c8dc4658eb00\n", + "Experiment ID: 93a23b0a-de1f-47ce-9cf7-ba02ad92d5df\n", "Status: DONE\n", "Component Experiments: 5\n", "Circuits: 140\n", @@ -315,16 +305,16 @@ "---------------------------------------------------\n", "Last Analysis Result\n", "- experiment_types: ['RBExperiment', 'RBExperiment', 'RBExperiment', 'RBExperiment', 'RBExperiment']\n", - "- experiment_ids: ['6ca546fc-b1c2-42b6-904b-b8b1bf465d4b', 'd3414e4d-90f1-4a19-8b44-4da6972e10fb', '8c888438-1d75-483c-9d8f-fdd2b2a34560', 'b686a25a-bfc2-497a-8ce2-afc32648d2f0', '09597176-8112-422b-894f-c95a20dd15e9']\n", + "- experiment_ids: ['a0fa8768-71cd-40a4-8438-931cdd9b9eea', '48bdf15a-3c8c-4b7f-bdff-87150897fe21', '454d15f5-0455-4d85-abc1-c46f268e0685', 'e7f28773-a077-4bfd-8445-1dd875b56ee7', '08354cff-6a8c-438f-84ee-61d1a2400716']\n", "- experiment_qubits: [(0,), (1,), (2,), (3,), (4,)]\n", "- success: True\n" ] }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY0AAAEPCAYAAAC+35gCAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/d3fzzAAAACXBIWXMAAAsTAAALEwEAmpwYAABZGElEQVR4nO2dd5hU1dnAf+/M9kJbOii9oyB9LYgVCygaFcUCRowtsX5RExN7Iho1apTYJVZMoqJENEAELFTBQkdgASlLWdr2Nu/3x53ZnZmdWWZhtrD7/p7nPjtzzrn3nHN39773nLeJqmIYhmEYkeCq7QEYhmEYRw8mNAzDMIyIMaFhGIZhRIwJDcMwDCNiTGgYhmEYERNT2wOoTpo3b64dO3Y8rHNzc3NJTk6O7oDqODbnhoHNuWFwJHNeunTpHlVtEaquXguNjh078u233x7WuXPnzmXEiBHRHVAdx+bcMLA5NwyOZM4isjlcnW1PGYZhGBFTr1caRv2mY8eObN4c9oXIMGqMDh06sGnTptoeRo1gQsM4atm8eTMW0cCoC4hIbQ+hxrDtKcMwDCNiTGgYhmEYEWNCwzAMw4gYExqGYRhGxJjQMIzDYPLkyXTq1ImEhAQGDhzIV199dchz/vnPf9K/f3+SkpLo0KEDf/nLXyq0eeGFF+jVqxeJiYn06NGDN998s0KbZ599lp49e5KYmEj79u255ZZbyMnJKavv2LEjIlLhOP/8849s0odg3759XH311TRu3JjGjRtz9dVXs3///kOed6h7qao8+OCDtG3blsTEREaMGMHKlSsD2hQWFvKb3/yG5s2bk5yczAUXXMDWrVsD2oS6L/fee+8Rz7vBoar19hg4cKAeLl98MUd37lQ9eFA1P1+1tPSwL3XUMGfOnNoeQpVw/nxrnqlTp2pMTIy+/PLLumrVKv31r3+tycnJunnz5rDnzJgxQ91ut77wwgu6YcMG/c9//qNt2rTRv/3tb2VtJk+erMnJyfruu+/qhg0b9L333tOUlBT95JNPytq88847GhcXp2+++aZmZGTo//73P+3YsaP+8pe/LGuza9cu3bFjR9mxbNkyFRGdMmVKxHOcM2eOdujQoUr35ZxzztHevXvrN998o/Pnz9fevXvrqFGjKj0nkns5adIkTUlJ0X//+9+6fPlyvfTSS7VNmzZ68ODBsjY33nijtmnTRmfOnKlLly7VU089Vfv166clJSVlbTp06KD3339/wL3Jzs6u0hzDUVt/i5VxJP/PwLca5rla6w/26jyOVGisXKm6dm35sXGj6s6dqtnZqgUF9U+QNDShkZubq9dff702atRI09LS9Pe//71mZ2drYmKibtq0Kex5Q4YM0YkTJwaUde3aVe+9996w51xxxRU6ZsyYgLLnnntO27dvrx6PR1VV09PT9fbbbw9oc+edd+pJJ51U9v2WW27R4cOHB7S5//77tU+fPmH7fvTRR7Vx48aam5sbtk0wVRUaq1atUkC//vrrsrKvvvpKAV2zZk3Y8w51Lz0ej7Zu3VofffTRsvq8vDxNSUnRF198UVVV9+/fr7Gxsfr222+XtdmyZYuKiH7++edlZR06dNC//OUvEc+pKjQkoWHbU5UQEwMpKeWH2w3Z2bB9O2zaBOvXw+bNsHs35ORAURGouQ0cNVx77bV88cUXzJ49m/fee49nn32WX//61/Tq1YsOHToAsGnTJkSEKVOmAFBUVMTSpUs5++yzA6519tlnM3/+/LB9FRYWkpCQEFCWmJjI1q1byxwUw7VZvHgxxcXFAJx88sl8//33LFy4EIAtW7bwySefcN5554XsV1V57bXXuOqqq0hKSorwzlSdBQsWkJKSwoknnlhWdtJJJ5GcnBz2vkRyLzMyMsjMzAxok5iYyPDhw8vaLF26lOLi4oA2xxxzDL169arQ95NPPklaWhr9+/fnT3/6E0VFRUc28QaIOfdVgZgY5/CnpAQOHoR9+8rL4uMhORkSEyE21jkakO/PUcGePXv417/+xT/+8Q8GDx4MwGWXXcYbb7zBI488UtYuNjaWHj160Lhx47LzSktLadWqVcD1WrVqxezZs8P2N3LkSG677TZmzpzJmWeeyfr163nqqacA2LFjBx07dmTkyJG89tprXHzxxQwaNIilS5fy6quvUlxczJ49e2jTpg2XX345WVlZDB8+HFWlpKSEq6++mscffzxkv7NmzSIjI4OJEydWej+2bNlC7969y76XlpZSWFhISkpKWdlVV13Fiy++GPL8zMxMWrRoEeDkJiK0bNmSzMzMkOdEci9954Zqs23btrI2breb5s2bV2jj3/ett97KCSecQFpaGosXL+bee+8lIyODV199NfRNMUISsdAQkfHAFcCxQEJQtapql2gO7GghlCApLoYDB2Dv3vKyhARHkCQkmCCpC6xfvx5VJT09vaxs6NChvPHGG1x88cVlZe3atWPNmjUVzg/2AFbVSr2Cr7/+ejZs2MCFF15IcXExjRo14rbbbuPBBx/E7XYD8Mc//pHMzExOPPFEVJVWrVoxfvx4nnjiibI28+bN45FHHmHy5MkMHTqU9evXc9ttt/HAAw/w8MMPV+j3lVdeYfDgwfTv37/S+9G2bVu+//77su+LFi3innvuYe7cuWVljRo1qvQaoeZ/qPsS6rxQ51T1fodqc+edd5Z9Pv7442nUqBFjx47l8ccfJy0trdJrGeVEJDRE5I/AQ8AK4HugsBrHdNTjEwo+VJ0Vyf79UFrqfHe5ylckJkhqnvj4eADi4uLKylq1akXTpk0D3riDad68OW63u8Lb865duyq8DfsjIjz++OP8+c9/Lnsr/9///gc4Vj3gbLu8/vrrvPTSS+zcuZM2bdrw8ssvk5qaWvYW/Yc//IErrriibOVw3HHHkZuby8SJE7n//vuJ8XuD2bVrFx9//DEvvPDCIe9HTEwMXbt2Lfu+devWCmWV0bp1a3bt2hXwoFZVdu/eHfa+RHIvW7duDTiriWOOOSZsm9LSUvbs2UOLFi0C2gwfPjzsmIcOHQo4LxAmNCInUp3GdcCzqnq8qo5T1WuDj+oc5NGOiCMQEhMd3UhqKiQlOcJj/37Ytg0yMhwdyZYtsGcP5OaajqQ66dSpEy6Xi59++qms7JNPPmHfvn0cOHAg7HlxcXEMHDiQWbNmBZTPmjUrYD8/HG63m3bt2hEXF8d7771Heno6LVu2DGgTGxtL+/btcbvdTJ06lVGjRuFyOf+qeXl5ZasO/2tqiD+UKVOmEB8fz+WXX37IcR0p6enp5OTksGDBgrKyBQsWkJubG/a+RHIvO3XqROvWrQPaFBQU8NVXX5W1GThwILGxsQFttm7dyurVqyv9nfhWVm3atKnaZBs64TTk/geQDZweSdu6dByp9dTatarbttXcsXWr6qZNquvXB1ptbdqkunt39VttNTTrqUsuuURPP/10zc3N1TVr1mhqaqq2bdtW33rrrbI2W7du1R49euiHH35YVjZ16lSNjY3VV155RVetWqW33nqrJicnB1hc3XvvvXr66aeXfd+9e7dOnjxZV61apd99953eeuutmpCQoIsWLSprs3btWn3zzTd13bp1umjRIh07dqw2a9ZMMzIyyto88MADmpqaqu+9955u3LhRZ86cqV26dNGLL744YG4ej0e7detWwTIpHCUlJQGmqKGO/fv3V3qNc845R/v27asLFizQ+fPna9++fSuY3Pbo0SPAzDiSezlp0iRNTU3VDz74QJcvX65jx44NaXLbtm1bnTVrli5btkxHjBgRYHI7f/58ffrpp/W7777TjRs36vvvv69t27bVCy64IKL7cyiO9G+xOqhVk1vgP8AdkbStS8fRJjSqKkh27YquIGloQmPnzp06ZswYbdasmTZr1kyfeuopnTFjhrZt21YfeOABVVXNyMhQQN94442Ac1944QXt0KGDxsXF6YABA3TevHkB9ePHjw8wWd29e7cOGzZMk5OTNSkpSc844wxduHBhwDmrVq3S/v37a2JiojZq1EgvvPDCCuaqxcXF+uCDD2rXrl01ISFB27dvrzfddJPu3bs3oN0XX3yhQIBQqgzfPCs7xo8fX+k1srKy9Morr9TU1FRNTU3VK6+8Uvft2xfQBii7tz4OdS89Ho8+8MAD2rp1a42Pj9fhw4fr8uXLA9rk5+frr3/9a23WrJkmJibqqFGjdMuWLWX1S5cu1aFDh2rjxo01ISFBe/TooQ888ECVzJAroyEJDdEQy9pgRKQr8CHwJDAD2BvcRlU9h7/eqR4GDRqkh5u5b86cubRrNwI/45E6RUmJo3D36UgA4uKcba+kpHIdSdBORqUcbdnNRCTktoxh1DR18W/xCDP3LVXVQaHqIrWeWuf9+UaYeq3CtYwoEM78NyfHsdzyb5eU5OhT4uIcQRJ8nmEYRqRE+vh4GEcwGHWYUIKktBTy8hxfEh9utyNEkpJMkBiGUTUielSo6oPR6lBEhgP/BwwE2gLXquqUStqPAO4AhgCNgfXAM6r6erTGVJ9xuytuUXk8UFjoWGj5VtQul7PdtXevYwpsJsCGYYSiyu+XIpICNAX2qmruYfSZguPv8ab3OBQnAsuBJ4AdwEjgZREpUNV3D6P/Bo/PR8TrqgA4wkPVERqlpU6ZiNPGt73lEyQuCz5jGA2WqniEjwT+BPQHBFARWQbcp6qzKjvXH1WdgaNMR0SmRND+z0FFfxeR04BfACY0ooSIc/iHJ1ItD5Oyd2/5qiM21mmXkGDbW4bR0IjondErMD7FWSU8AtwMPAqkAjNE5KxqG2FoGgH7DtnKOCL8nRJTU8sDN8bEOFtbu3bBzz/Dhg2OY+K2bU4Mrry82nNMnDBhQshcEsOGDStr459XISkpib59+/LSSy8FXKeoqIi//OUvnHDCCSQnJ9OsWTOGDRvGSy+9RGFh1QIizJs3j4EDB5KQkEDnzp3Dxm/yJ5LcFFu2bGH06NEkJyfTvHlzbr311goB+JYvX86pp55KYmIi7dq14+GHH65g5VNUVMT9999Pp06diI+P59hjj+W5556r0hyriuqhc2SEIpJ7+cEHH9C7d2/i4+Pp3bs3H330UYU2leXwKC4u5p577uH4448nOTmZNm3aMG7cOLZs2XJkk64nRPp++CAwExjlb1orIg/j+HA8BES82jgSRGQUcAZwUpj6XwG/AicshH/snKqQk5NDRsbcBrUVU1CQw8qVcw/7fN8Wlz8iznaWy1W+mqluzjzzTN56662AMv9wIQD3338/N910Ezk5OUyZMoUbb7yRJk2aMHbsWIqKihg5ciTfffcdDz/8MKeccgpNmjRhyZIlPP300/To0SNiU8aMjAzOO+88fvnLX/L222/z9ddfc/PNN9OiRQt+8YtfhD3P95D67LPPEBEmTpzI1VdfzfTp0wEnoOD5559PWloaX331FVlZWYwfPx5V5W9/+xsABw8e5KyzzmL48OEsWbKEtWvXMmHCBJKTk7nrrrvK+rriiiv4+eefefnll+nWrRs7d+4kPz8/ovn5EBEyMjLKQqIciieeeIKnnnqKKVOm0KNHDx5++GHOOuss1q5dS2pqashzIrmXCxYsYOzYsTz00ENcfPHFfPjhh1x66aV88803ZWFD3n//fW677TYmT57MySefzOTJkzn33HNZtWoVxx57LHl5eSxbtoz77ruP/v37c+DAAe666y7OOeccfvzxx4BQLf4c7rOmusjJyameMYVz4PA/gDzg/DB1o4C8SK4T4twcYEIV2p8EHARuiqR9fXDuq8lj5sw5NeKYuGGD6vbtqvv3q+blqRYVqXpTSlQJQjhUjR8/Xs8///xKzwuVV6Fbt256+eWXq6rq448/riKiS5YsqXBuaWmpHjhwIOIx3n333dq1a9eAsuuuu06HDRsW9pxIclPMmDFDRSTAge2tt97S+Pj4svFNnjxZU1NTNS8vr6zNI488om3bti3L4fHf//5XGzVqpLt37454TqEAAjzXKyOSHBmhiOReXnbZZXrmmWcGtDnjjDPKfreqh5cPZeXKlQrojz/+GLI+1N9ibVPb+TQKcbaEQpFKDQQwFJGTgc+A+1X179Xdn3HkBMfc8h2xsZCfX769lZHhbHH9/DNkZTm+JoWFjpVXTZGQkFCWs+Kdd97hzDPPZNCgir5NLperLNrrlClTEBE2bdoU9roLFiyokC9i5MiRfPvtt2X9hTrnULkpFixYQK9evQKC+I0cOZLCwkKWLl1a1uaUU04hMTExoM327dvLxjxt2jQGDx7M008/Tfv27enWrRu33nprQPrYaBNJjoxQRHIvw7XxXfdw86Ec9NqsN23aNIIZ1m8iFRpzgUdEpJN/oYgci7N1NSe6wwrEa6b7GfCQqj5TnX0Z1Y/bXR4q3idIEhMdq639+50kV5s3O3qSjAzIzHQcFvPzHcX8ofj8889JSUkJOO65556QbUtKSpgyZQrLly/njDPOAOCnn36iV69eh+yncePG9OjRg1j/kMZBZGZmhswFUVJSwp49e8Kec6jcFKGuGxw1NlzfvjqAjRs38vXXX/PDDz/wwQcf8Pzzz/P5558zYcKESufep0+fgPsbXNanT59K74n/WPzHFi73RmXz8b+X4dr4rltZDo9wfRcVFXHXXXcxevRo2rdvH3Z8DYVIdRr3AN8Aa0VkIY7pa2tgGLDfWx8RXpNdX7xlF3CsiPTHMeHdIiKPAUNU9Qxv+xE4SvjJwDsi0tp7bqmq7o60X6NuI+JYYgXj75yoWq4j8TcXDmb48OG8/PLLAWVNmjQJ+H7ffffx4IMPUlhYSFxcHL/97W+54YYbACIOB3HRRRdx0UUXHbJdqFwQocorO8d3XrAgOdS5h+rb4/EgIrz77rtliaaef/55Ro4cyc6dO8OGNZ8xY0bASqlbt27MmDGDdu3aAVQqSCsb2+Hk3gguj2Z+jpKSEq666ir279/PJ598UunYGgqROvetE5HjgbuAU4ABOPGnngX+qqo7qtDnIAJXJg95j38AE4A2gH9CpwlAEo5D4P/5lW8GOlahX+MoJJRzoqrjiBiOpKSkQ+aBuPPOO7nuuutISkqiTZs2AQ+M7t27s3r16iMZdhmtW7cOmS8iJiYmbA6HSHJTtG7dmm+++SbgvOC36HB9Q/lbfps2bWjXrl2ZwADKVllbtmwJKzR86XCDyyJRhEeSIyPceYe6l+Ha+K5blXwoJSUlXHHFFSxfvpy5c+dazg0vEdsGqeoOVf0/VR2qqt28P++uosBAVeeqqoQ4JnjrJ6hqR7/2E8K07ximC6OeE25VUhXS0tLo2rUrbdu2rfCGOW7cOGbPnk2oYJcej6dsfzsS0tPTK6SBnTVrFoMGDQr7Nh5Jbor09HRWr17N1q1bA64bHx/PwIEDy9p89dVXFBQUBLRp27Zt2cP9pJNOYvv27QE6jHXrnFBzoQRDNIgkR0YoIrmX6enplebniDQfSnFxMWPHjuXHH39kzpw5ZYLOqILQMIyjhcLCQjIzMwOO3bsj38m8/fbbOeWUUzjrrLN47rnn+P7778nIyODDDz/k5JNPZtmyZQB89NFH9OzZsyxXdShuvPFGtm7dyu23387q1at59dVXmTJlCv/3f+WL5uDr9OrVi3POOYcbbriBhQsXsmDBAm644QZGjRpFjx49AEdx26dPH6655hq+++47Zs+ezW9/+1uuv/76MkX9uHHjSEpKYsKECaxYsYIPP/yQSZMmceedd5YJynHjxpGWlsa1117LypUr+eabb7jtttu45JJLKiSH8mf37t0B93fHjh0kJCREdL9FhNtvv51Jkybx4YcfsmLFCiZMmEBKSgrjxo0ra3fNNddwzTXXVOle3nbbbXzxxRc89thjrFmzhscee4w5c+Zw++23l7W58847mTJlCq+++iqrV6/mtttuY/v27dx4442As8K49NJLWbhwIe+99x4iUjavqpoi10fCbk+JyBfAzaq6xvu5MtSngzCM2mb27NkVsrG1a9cu4K28MuLj45k5cybPPPMMr732Gvfccw8JCQn06NGDa6+9tuyN9MCBA6xduzasFRQ4b9UzZszgjjvu4O9//ztt27blueeeC/DRCHWdd955h1tvvbXMyueCCy7g+eefL6t3u918+umn3HzzzZx00kkkJiYybtw4nnzyybI2jRs3ZtasWdxyyy0MGjSIpk2bctdddwXkyk5JSWH27Nn85je/YfDgwTRt2pQxY8YwadKkSu/R4MGD2bx5c9j6Dh06VGpVdvfdd5Ofn88tt9zCvn37GDp0KDNnzgzw0Qh2povkXp544olMnTqVP/zhDzzwwAN06dKF999/v8xHA2Ds2LFkZWXx6KOPsmPHDvr27cuMGTPKVlZbt27l448/Bihbtfl44403DmkkUN8Jm09DRObg+EOsEZG5HCLKraqeFv3hHRn1OZ9GdbBy5Vz69BlR28OImHbt6l4OA6NhYvk0CBQCqnp4PRuGYRj1ikhjT10jIiFNB0SkmYhcE6rOMAzDqF9Eqgh/g0AzWH86ET6jn2EYhlGPiFRoVOZxkwxE4KdrGIZhHO1UZj3VH8eJz8doEekb1CwRuBz4KfpDMwzDMOoalXmEXwg84P2swH1h2mUB10VzUIYRCccc0+GQYScMoyaoLkfIukhlQuMZYArO1tRG4GLgu6A2hcBOrWu2ZkaDYOHCTUd8jaPNzBicoI2+w5+4OCfwY0JCeWremJiKOUyOxBTzaKUhzrm6qMzk9gBwAMAb3XaHqhaFa28YRs0QExM6vW5JiZNR8eBBJ6y8f3rexMTyPO+qTn1DSjBmRI9IAxaGd/00DKNOUJkwycuD7GxHYBQVOWHnY2OdVUlwrncTJkZlRBoa3ZdG9SagB1AhMLWquiucZBhGrRMsTFwuJ4dJaSkUFDhJr/w3mGNinNDziYmBwiQ42rDRMIlIaHid9/6GE768H/A6EAtcAOwG3qmuARqGUT34ws4H5ybxeJzVSH5+YPZEXx4Tn97EJ4zc7prJ/W7UDSJdadwOPAY8AkwEJqvqMhFpipPVL6taRmcYRo0TLsmVx+NsdR04AHv3lpf7QtUnJjrnxcWVCxQTJvWPSIVGN+BLwOM94gBUdZ+I/An4E/B8+NMNwzjacblC5zFRdYRJdraTrtefYL2J/+rEODqJVGjkAy5VVRHJBDoDC711OUDb6hicYRh1H5FyE99g/PUmvq0ukfJtMZ9Asa2uo4dIhcZynLzes4GvgN+LSAZO+JAHgTXVMjrDMI5qKtObVLbV5RMmPiW8WXXVHSIVGi/jrC4A/ogjPL72fs8GxkR3WIZh1Gcq2+oqLS33Nwll1ZWQ4Py01UntEKmfxvt+n9eLSB8gHUgC5qvqnmoan2EYDQiR8P4mHg8UFzvbXaWlgefY6qTmiNhPwx9VzcVZbRiGYdQIh7s6iYsrV9T7hIlZdh0+lUW5PbYqF1LVLYduZRiGEV0OtTopKXGEyo4d5QLFp7w3y66qU9lKYxOHyAsehN1qwzDqFL7Vic8L3h+fZVdubkUnxri4cv2JbXcFUpnQ+CVVExqGYRhHDT7LrmB8fiehtrvc7kD9iW9l0pAESmVRbqfU4DgMwzDqBJX5nfi2uw4ehH37Auv8rbv8t7vqm/7ksBThhmEYDZFwynhwtrv8rbuC9Sfx8eWH/wrlaBMokQYsfP0QTVRVLXufYRgNlnDbXeAIkcJCJ0S9v/4EyhXywXG76qr/SaQrjdOpqN9oBqQC+72HYRiGEYJDCRSfQr60NFBQhBIotb1CidS5r2OochEZDrwIXBnFMRmGYTQYjkSg+G95+YRJdQuUI9JpqOqXIvJXnFwbJ0dnSIZhGAZUfctLtdxvJTiHfLSIhiJ8I3BCFK5jGIZhRMihBIpPGR/tVccRWRaLSAwwAdgaldEYhmEYR0x1erVHaj31RYjiOKA7kAbcGM1BGYZhGHWTSLenXFS0nsoGPgSmqurcaA7KMAzDqJtEaj01oprHYRiGYRwFNJBoKYZhGEY0iFhoiEg3EfmHiKwTkVzvzyki0rU6B2gYhmHUHSJVhI8AZgD5wKfATqAVMBoYKyLnqOq8ahqjYRiGUUeIVBH+FPAdMFJVc3yFIpIKzPTWD4r+8AzDMIy6RKTbU72Bx/0FBoCqZgOPA32iPTDDMAyj7hGp0NiK45cRijhgW3SGYxiGYdRlIhUajwMPiUg7/0Lv9weAP0d7YIZhGEbdI1Kdxqk4YdA3iMhCyhXhw7yfR3iV5eDk1hgf5XEahmEYdYBIVxonA6XADqADMMT7cwfgAU4JOsIiIsNF5BMR2SYiKiITDtW5iBwnIvNEJN973v0idTE9iWEYRv0mUo/wTlHsMwVYAbzpPSpFRBoBs4AvgcFAD2AKkItjtWUYhmHUEDWeI1xVZ+D4fCAiUyI45UogCRivqvnAChHpBdwpIk+ranBMrGiMscJ3W9gYhmGARPrMFZEk4Jc4+o1mQBYwF5iiqnmH1blIDvBrVZ1SSZs3gTRVPd+vbDCwGOisqhlB7X8F/AqgVatWA6dOnVqlMeXk5ODxeBBxEReXgssFOTkHcblcJCWlVOlaRxsFBTkkJNTvOQZjc24YNMQ55+fn0KjR4c35tNNOW6qqIX3vIvUIb40jILoDm4FMoDNwCfAbERmhqjsPa3SHpjUV83Xs9KsLEBqq+jLwMsCgQYN0xIgREXekqkyaNImioiL69z+Bjh1P5YcfPmP16u+IiYljwoR7A1YcS5fOpaAgnxNPPAcRQVWZP/9zEhISGTgw8n7rCitXzqVPnxG1PYwaxebcMGiIc16+fC6nnjoi6kmYIt2eegJoCpyiqt/4CkXkROADHJPcCdEdWgDByyEJU35EeDweioqKnM/bt/H19OvZ16QJpKZSUlKEx+PB7c1uoqqsWbOMvLxsAE488Rzmz/+cVasWk5SUyoABp9qWlmEY9Y5Ihca5wD3+AgNAVeeLyB+ASVEfWTmZOCsKf1p6f0Z1dePxJtrtvmg15818jFKXi1gtZvro0Szv16+C0EhISCIvL5tVqxazatXisuskJCSF1YN4PB5cLlfY74ZhGHWZSJ9WKcD2MHVbvfXVxQLgFBFJ8Cs7yzueTdHsKCYmhpO6dOHimR8RX1pIUnE+sSUlXPDRJ3Sals+mj1dSUuBka3e5XBw4sBeA5Oxs2v/8M8nZzqrjwIG9IQXB9OlTmDbtlTLh5PF4mDbtFaZPnxLNaRiGYVQbka401gJXA5+HqLsKWBNphyKSAvjCqbuAY0WkP7BXVbeIyGPAEFU9w9vmXRyv8yki8iiOXuVe4KHqsJxKzMyk1OVyvFK8uCnlmu8fh9seZ8Dv1tB0WA/Gtp3LsVvW0E62ctqXcwEodbu9q5L+lJSUEBNTfns9Hg/FxYVkZWUybdorjBlzPdOmvUJWViZpaa1txWEYxlFBpELjSeBNEWmF8xDfgbNldDlwJo5AiZRBwBy/7w95j3/g6EXaAF18lap6QETOAl4AvgX24fhnPF2FPiPC4/GwaNcuhmhJQHmRO46buvydlL0JfL+nG/oFXMS/+RVvBbRzlZQwevp0tvbsXUEAuFwu3O5Y3O4YsrIyee21RwBwu2Nwu2NNYBiGcVQQqXPf216T24eBV/2qdgI3quq7kXbozSceVkOsqhNClC0Hhkfax+Hi8XjITk5m+ujRXPDpp5SI4C4t5dPR59Oh389MmPB7rt7lYuFC+ObrZ/j2PwN5Ie8Wkskvu0ZeSRLz3zmObkv+yjG9Uml2xUjo0MG5dvZeSktLSM7Opun+/exr0oTc1FSys/dWutII1o+Y34hhGLVFxM59qvqyiLyK45HdDNgLrFVVT3UNrqaJiYlBRFjerx9JF1xAr4Tu/HBwI8t3bACEmJgY2rWDX/wCLr7YzbTum4idVAJ+C5NYipm7ZTi/23IOfWf/CH+DzUk92dp3JImdW9I5/wcu/mQaUL6dtf30kWGFwNKlcykqKmDYsJFlZr0LF/6XuLiEo9Ks1zCMo5tKhYY3LtTtODqI/cD7wO9UdXV1D6w2EBGGDx9Obm4ucYnJFLY/kYHJ6RR8M4PExOSAB3tpaSl742L5z+hRjJ4+nVK3G3dpKR+efhEnpSzmz+5lZH29luN2/Jdz8j7n1MUv8v3iX3Ien+PyWgr7trOe69I1wDLLh6pSVFTAihWLABg2bCQLF/6XFSsW0bfv0LArDluZGIZRXYQVGiJyBfA6sB4nxWtn4A4c34j/q5HR1QIjRoxAVZk718leKyKcdNJ5FR66brcbVWV5v35s7Nw5YLupn/zIddddgEhvtm3rzaJFdzD1q1xyPpvBldnvkOS3neUq8dDmxZ95Z+caOp3Xm4GDhKQkyvrOyFiNy+VmxYpFZcLD5XKTkbGa9PRzKozfcTjM48QTz/VzOPyMhIQkW5kYhnHEVLbSuB34CLhMVUsBROQB4F4RucdXVh8JFhDh3tLT0lqzZ892clNTyU1NDSj30a4dXHwxXHhhAv88dglJz+QHbGcBXJ4zFddbU0l/az7fxqQzuE8e/dMTGTTYQ1ZWCQkJpRX0IHl5OZSWlgasTio6HJ7L/PmfsWrVkkodDm1lYhhGpFQmNLoDDwQJh8k45q/HEhS+oyHie7D26TOU9PSRLFjwX1auXBTygSsi5DVqzH9Gj2LMtGko4HG7+ffZF/NV3BkM260UHByCZyVc+sN9XPzDh3z44sV8w0Ucn/I99+Q+RqnbRSwl/Gf0KFYNGFihH1XFp2JatWoJq1Yt8avzhBQG/joT3zVMZ2IYRjgqExqNcZTd/vi+N6WBCw0R4ZhjutKyZXvS0x0ldXq68+CNj08IuVpp1qxlyO2sPs2FM8Zcz5kiZGdD5t+Hc/CTDdy86e/coc+gOV5zM+8K5dyPPuOFtb8mNhaGDYOuXUHE6SMpqRH5+bkVViZJSY1CChl/nUmjRgkR6UwMw2i4HMp6yiUi/nag7jDl1CcrqkgZOHBEwIPVJzjCbQHl5h4AqLCdlZt7oOw6qamQevdFcPdFZGUfZN0tl3PyF/8lxu/2xlPIy6smsujeYXzG8WxM6YcMHEC3k1uyb18Kp239kYunfwSUW2itH1bRaV9E2LNnBwkJSaxYsYju3buzbt06EhKS2LNnhwkMwzAqcCih8U2Y8kVB3zWCa9VLItV/iAhBctavzhXyvJLEJJYNOI6T5s2CknKhoSIcaNaYM/O+YVz+e5ADz8y7jTvmPUN7TuYZrgmw0Bo1/T8837VbBQstx0u9iIKCwMj2BQV5FBcXmZe6YRgVqOxB/1CNjaKBkJzciLy8bPr0GUJ6+jksWPA5K1cuJjm5Ucj2LpeL7OQkpo8eHWDW6wugeN11f2T7wYNkzV1O2s9pjNviIWH6TGKyA20U3CWlHHghiXu2CukDChncr4hjeqficrnIz3cERnJ2Nmnr1pGcnU1uair5+XkmMAzDqEBYoaGqJjSiSLkOpB3p6ed4t7Ick9n4+MSwKxS3OzakHsTtjnUaNGlC2phTOAM4XZV/HbOB4qdiiCsJNNH6Me84pr3nYu97c7iF89jo7sbWFv1pmpJCn8RtnLNiJohwmstVJpSC42dVB2a5ZRhHFw1yS6m2CK0DOafSLa24uHjy84sr6EHi4uJDKrZzUlL4z+jRARZaH593IS1aHeS+lh52fNmFx799iB753zEgcxEj2Ox/AVweD6OnfcLmpA7VvtIwb3fDOPowoVHDRKoD8ZGS0pj8/JwKZr0pKY0rtHWC/oZ2ODzWvZXx4xX3zd1Q/SObNsGHizxkvPh3Jv10N8mU6zVitZQ73nmGzVM/YU27EeQOHkH8tePo1ddNbGw07sLhe7sbhlG7mNCow1TVrNflchEf7ySGCl6ZxMcnla0cRKBTJ+jYUfho707iHi8KcDgsJI7HXPfSv/QHTt3yIQe3zKbjB1eRkAB/bPsqbTsnknjuCHqe0Y4WLQ5/bsOGjURVA7zd+/QZUrbyMAyj7mFCo45TFbNeEaFHjxPYtGkN+/btKitv2rQlHTv2rHCOx+MhJyWlTNGusbFIcTGfjj6fuEEpJA36gFeWwsavt9NxlbBpE1yw8Rn6blwJs+EnujI3+TQ2HH8RnHsuAwdC794QFxfZ3JYtm1eWkMp/TMuWzbPtKcOoo5jQOAqIdEvL2fIpDBAYAPv27aJt204VtnxEhKKiwrLtrONTU/nRaz0lJQX07i307euC8cdwP7B3Lyxb8gMzZv5IwsK5dP55Lufl/pO3FsRz64JzcVHK867b2NrhJIpOHEGXk9swYIATSiV4yKrKd999RbB7z+rV3yLishzrhlFHMaFRz9i1aytABbNeX7k/IkJCQhL5+TnkpqaS1b07uevWAU6e8+CHdrNmcOZIN4w8ATiB0tI7WLKylJJFuVy2CvYszGDclrdonPECZMCad3owlxHc0/Qm4of044QTYMAA6NcP4uNL8CVe/OWrrxJTUsI7V15JbmoqqkpJSQmx0VKgGIYRNSIWGiLSDrgLJxlSM+ACVV0hIrcDC1Q12OHPqGEOx6zXX9HeuHECsbFNwyrag3G7oc/xbvoc34ixAHRlW9Ze5n/yPSUz59Bi5VzGZb3LB/t+wX//C/v+u4hj+Ad/ZARbu5yKthzLJfkv0nbrdhDltmefZfro0WSeeZ4JDMOoo0QkNESkD/AVTubsBcAJgG/nugMwBBhXHQM0qkZVzHqDFe2rVs2rVNEeCU3S3DS5diBcOxD4P7KLS7h/I4xeDon/WssV89/mZs/fYQOs3dCdLmzAjQcU3CUlnPfxDB5rcRNbBijHHCMVtrWiRbC3u3m/G0ZkRLrSeApYDYwECoAiv7r5wONRHpdxBFTFrLcqivbDGktsDF16QJcewCXXcLBkHAeWLuPAx3OQj/+Ba3+gTiPWU8zpLz/C3Jf/x9bknmjPXiSOGEq/ftC/P6SlHfmYpk+fQlFRARdd9CvAERgfffQycXEJjB494cg7MIx6TKRC42TgClXNERF3UN1OoHWIc4yjhKr6jhwRMTHI0CEkndCffzffTddnf8IV5L3ePnYrdxT/lfjcIjKWdqTzUieg8p/5Hccm7yW/Q0/iju9J85N70vX0Y0lpHPwnGR6Px8OePdspKSnmo49epmfPnnz00cvs3buTmJhYW3EYxiGIVGhUFsG2OfilojOMCIiLi6OwaRrTg7zXp48ezeqBg5lw1W/ZtXgTG5dk8asD8MMP0OXbTZyRO5O0VXthFTAV/sfp3NTtf/TrB78seIGW3ZvScnhPYvr0QJOSQ/ZdWuoIqcLN69G9OynMzobU1LJywzDCE6nQWAxcC0wPUXcZ4aPhGkZIVJWePU9geUkRg5csCbCe6tvzBIhx0+qkrrQ6qSvp3nNKSt7j+59g7Td72Dt/DSUr1rA2szE//QTrf/LwBveQQi487bTfk3QMK0+5ifzbf0fPnpDy7VwKO3TBJS56f7+MMdOmBcTbWjVgYJlFV3XP3eJtGUcrkQqNR4DZIjITeBcnFPqZInIbcBGORZVhRIyIEBMTR0JCEq9PnFhWnpCQRExMXMiHaEwM9OoFvXo1h4knAydTWAhXrYIffnBx47I9HFy2noRNa+iua+iZt4Y5/23J6/+FNrF72F58GgB3xSQSX1LghI/3xduaPh33yItqJN5WYWF+mXGCqrJgwefExyeaQ6NxVBCR0FDVeSIyBngGeN1bPAnYBIwxc1ujqng8Hn7++ScKCvJIS2vNmDHXM23aK2RlZfLzzz8xcOCIiB7g8fFwwgnOwYQEoC95eX1ZudLZ0tr/A3T9EbauT+EMZtOTNYwomcMYpuGiPIR8icZw8m/vIO7zmXgGDqGo32CK+/SHhISozVlV+fnn9ezevQ0gwI+mRYt25tBoHBVE7Kehqp8Cn4pIV6AlkKWqa6ttZEa9xuVyUVCQT0JCEhdeOBGXy8WFF07k3XefpqAg/4je+JOSYPBg5/CRnZ3A8uVn8MMPp/HCv3ozau2nxPoJDSlVvs0ewPHTZtNm2tsAlLpiWPzYF7S65BSS9m3DtS+Lku69nSXPEbJy5WJWrlx8xNcxjJomov9MEblfRNoCqOp6VZ3vExgi0kZE7q/OQRr1D1WlU6eeFBTksXjxLFSVxYtnUVCQR6dOPaOuW0hNhRNPhF/9Sjntii/57KJzKYqJpSA+mUJXHA+1u58r096lLdtpz89czAc84fk/Rt/Tix49YOq5/6DlWf1o3rUx8WeeTOJ9d5D40btQWFjVmVex3DDqFpG+Mj0AfA5sD1HX1lv/cLQGZdR/fFFugYAot337Dq3WKLe+tLvB8bYSUou5Vf7OpZfex+rV7Vm+vD3f/ngxaStg33p4avfVLKEDg4uXMHj1EgasfhHXP/7O9TMvpXc/uGDHS3SQLbiHDaao32A8bdqF7L9ly/bs3l3x36hly/bVMl9/TAFvRINIhUZlf1lNgaq+bhlGmeDwCQyg2sOiu1wu+vU7iVWrlpCbSlm8rbi4BHr3Hkzjxi6GDYNhw8rPycuDlSuPYcWKK1m04kpe+RE2rC3h2NKN/PRJLB98Ap1YSH/eIuYVZ8vrQHIbMgeez8EnX6FtW5DCAoiPZ+PGVUDFeFsbN64qC/lSHfgnvAIs4ZVx2IQVGiIyAjjdr+gGERkV1CwROB9YGfWRGfUe34PLn4UL/1utgsMJhlhEUVFBQHlRUQElJUUh375D6UgKC2NYt647y5fDihXw/PI3uHPlZHoWfs9gljAkdzH7v4znN0OgaVP4If944uM8pDdqTXxCIe22bgWRsnhby/v1w+Px4HZH7qhYlTn7J7xq1CjBEl4Zh01lK41TgT94PyuOn0YwRThuVrdGeVxGPccnMHwPLv/MfVB9Kw4RITY2nrS01mRlZZaVp6W1Jja2YgrdcMTHw3HHOYeP0tJENm5MZ8WKdL5ZAStXQtMVsG+f8jzXMaRgMUMPLqS9b5dXFVdJCed//Cm5mUkUDl1P0nHdK8aRP0L857xixSK6d+/OunXrqjxnw4BKhIaqPgQ8BCAiHmCYqpq5hxEVnPznCQE6DN/WSVzc4QVLjARVpbi4kKysTPr2HUqjRgnExTVlxYpFtGnT4Yjeut1u6NbNOS66yNcfbN8urFx5DwtWePjww3/x94yJNCKn7LxCTxxXL3gHzn2Hva401qcNY2/3YeSOGkv707rRvv2RyRH/OfuTlZV5xHM2Gh6R+mlYMB4j6oQKlljdOo1gYbVq1bxqFVYiThKqdu3g7LNd/NDHReKvCgLS68ZJMeNaT6fxrh0MKl1I+u4FDNn9KRd+cxyf0I1TkpdxZ9KL7O0+DEkfRqtTe9Kjl4vExMjnHBMTR3x8EoWF5bng4+PDO1IaRjiqbHAuIi2BCh5PqrolKiMyGhQ1GizRS20IK3AcGn/ctZl8b3rdUrcbd2kpM0afR7+ha7jssjvZuPF6/rcKXlm2n9x18aSthVZZGxie+2+a7X4FvoEDTzZiMUN5qMPrND2uPX16eejZ20Xv3qGzJHo8HtauXRYgMAAKC/NYu3ZZxI6UR4JZbtUfIs2n4QIeBW4AmoRpFn0NnmFUE7UhrFSVwsK8MnPfpvv3s69JEye9bmEeMTHqDZMC/KKJ9xzYtetSPlvxC3Z98xPuJQtpsWEh3Q4sYenmNAo2w0n/+T3pfMRChjE1YRi7uwwjdsBx9OgTQ8+e0LOnkJTUiPz8XH756qsku91su+QSclNTSUpqVO1z97fc8oVOMcuto5dIVxq3A7fg5M14FPgTTuTbK70/J1XH4AyjPuFyuUhMTCEvz8nDnpuaWlaXmJgS8m1fBFq1glatXHBGD6AHMJ6CApj2E6xeDSnT+7Hr+zWcu+9zxhe8CSthy8pj6MBmQOjP9+Q3HsHohGm02rkTFeHWZ57jk1GjyDgptUKf0STYcsvf4MEst45OIhUa1+I47z2DIzQ+UtVlIvIoMBM4tnqGZxj1BxGhZ88BFBTksWrVkrLy3r0Hh8zJXhkJCX7WW5ddAVxBsUdZ9cMm9n22kL0b93NJsrB6Nby78kp6HViN54B4gzQCpXDex58zbP5DLFzorG569ICePXH8SqL0HPdt/akGOnH26VO9TpxG9RGp0OgMfKuqpSJSguOfgaoWi8gzwN+AB6tlhIZRjxgw4FQWLPg8oExEGDDg1CO+triEJid0oskJnegEDPSVL3qVLx/+Iyf+MA+XlsfbKiKO5N3ZDP/wdn7keD5hMKvoTVJqDD16lAsR38/DzZq4bNk8VANT8qh6WLZsXrVvT5kuJfpEKjQOUK783o6zRvbl0IgBmkV5XIZR7/Dt5a9cubiCb0p1KuNLBw9j6dmDSV/xZYDVVlJMLudeOJsbZrxJQv5+AHJJYmn2QJ749m7e+XYU5TGxhObNAwVJ9+7Oz0aNKp/zli0/sWdPYOiUVauW0Lx522qN7Osfht43FgtDf+REKjS+A3oD//UeD4lIPs6f4J+AZdUzPMOoP9SWb4qIUJzWoixLIiKUulz8Z/RoEoYkk/XXPcRs2kDcD0uI/W4xA5cs5t6zSxjSCEq+XsQdc0azSIewcM9gFu8ZwsffDGYPLcqu36ZNoBDp3t05UlKcB3Vu7oGQ48rNPVBtb/7BYegbN060MPRRIlKh8QzOFhU4wQkHAO94v28Gfh3dYRlG/aQ2zH09Hg8ej6dCkMbc1FTiPR48QGmX7uR36U7+xVcCzj97ZyDmpGTim43mjO+XMHLdZ4g3+vB9I75hetaJlK5dT9MdmSzecQJz5wam123XDrp1E4qLTyEtLZMJi9+ga+x6PrzuUgCKi4tr5MG9cuXiMi9448iJ1Llvlt/nTBEZAnQBkoDVqlpcTeMzjHpHTZv7ulyuMsus3NTUsiCNwXWhKOl1HPufdvKuSU42scuXEfv9Yn59zfHckgzJj/+Dxs89ikdcZDbvy4qkIXxdOISns8azbVsc27YJMBSARQylExnseTINbeWiVass4uOV7t2Fbt2gcePoztuJKLwtZLlx+ETqp3EN8KmqZgGok+xgvbeumYiMUtU3q2+YhmEcCSkpjcnPzwlZHimakkpR+qkUpZcr7fMn3krJgKHEfb+YZt8v5szvP+DM0n8ycd11bNoCcX97gq2Lv6U4W7h43zQKSCA2p5gbcl7i7Q1XM39++fVbtYKuXZ2tLV84lu7dHQV8VeWqE28rjvj4RAoL88vK4+MTiY2tGS/4+qqEj3R76g0gHcgKUdfJWx+x0BCRm4HfAm1wIuTerqpfVdJ+JI51Vl+cMOzfAL9VVVtvGkYEhEtqdaTJrjxpLSg8axSFZ43yXRDXzh3ExLno2hUau1czaPtHxJQ4Gvh4igB41T0RTmvOmC3zKN6TzdqDrdm2sxU7d7Zi8TddeIO+ZX00aVIuRLp2Lf/crh2EWyR5PB7WrFlGYWF+oEMjsGZN9XvB12eHxmjk00gmwCbjEBcSGQs8C9wMfO39+ZmI9A4VikREOgEfA88BVwMpwBPADKBrpP0aRkPG94bbp89QGjdOIDa2KStXLor+m68IntZty77uf+p1FrVpzvkvPEt8cfkutsYIFx4/j/MLviVu1zJcJfvK6tZ2G8UDA6bz00/w3vc9ce0vYeeSVs5BK6Yzgn8yloQEGNNmEU26pJHWuxXte6bQrbvQqRPExTkC8bgffqDdtm0BYejXDUmP7pyDqO8OjZXl0+iPo/D2MVpE+gY1SwQuB36qQp93AlNU9RXv99+IyDnATcDvQrQfCMQCv1N1jMxF5DHgCxFprqp7qtC3YTQ4RIRjjulKy5btSU93gjSmpztWW/Hx1We1Bc4DdHtyIq6gFY27tJTMxDj2vDfTeeMvKsK1ZxfuPTtpGhvH072cdqmPXEBxxlZSt+6k++61JBz4kpZNXcz1jCVrVwnvZKTjylCY7ZgL76QVk7mFf3e4k04xw/i/Db/zOjQqLo+H0dOn80rf46s9KGZtZKWsKSpbaVyIYykFjrH2fWHaZQHXRdKZiMThCIEng6pmAieGOe1boBiYKCKv4ijfxwNLTGAYRmSEstpKT6+ZB9iBxIQyc19xuShxuZg+ahQHEv3insbF4WnbHk/bQCV19h+fKPtcivMgSFflO4EDWbDogxkcXLeTvE07Kd22k5isnWTmtWHzZuE49uGmNOB6rhIPB5/N56510K1zKV26QOdubo491lmdRAsRYejQswOyUg4devZRLzAAJNyepog0xglOKMBG4GIcfw1/CoGdGuHGqIi0BbYBp6rql37l9wNXqmqPMOedAvwLaA64vOM4V1V3hWj7K+BXAK1atRo4derUSIZWgezsHOLiUsLumdZHCgpySEhIqe1h1Cg25+pn795dqCojH34Yd1ER3/3pcXaoY27brFnLqPdXVCRs25bI1m+3c9/rlxNfWp6NuhQXl/Me/+YyhjOP6YxmEUNZyDDWpQ1gZ8e+NO6UQPv2ed4jn6ZNi6qsiM/Ly6awsIDS0vKde7c7hvj4BJKSqjfel4/8/BwaNTq83/Npp522VFUHhaoLKzQCGol0ALYfqWmtn9AY7q/4FpEHgCtUtWeIc1oDXwLTgPeAVJw4WACna3B8Aj8GDRqk33777WGNdc6cubRrN4KUBvQ8WblyLn36jKjtYdQoNufqpbIMjdW5XaOqvP32U3RbND/AofGfZ17CvGPG0LnzZeQvXsGARX+n6+4F9Cz+ETfOo2QAS/mOAXQkg2Ry+TmlN526uJxVSWfn6NIFOnWC5OSKfXs8Ht5992ny83Np1qwVF130Kz766GX27t1JYmIy48bdWW1K+OnTp1BcXMiYMdezcuWXnHnmcF599RXi4+OZMGFCxNcRkbBCI1I/jc1+F4vH2Y7qjRNSZIqqbg93bhB7cFaZrYPKWwI7w5xzC5Crqnf7jeEq4GecLa2vI+zbMIwaJjjVrG+7piZSzaakNGZ5v34MXrKEZLeb173h4Ps1P8iYMSDXHAdMBmBLVg77Zi6h9OsFnNO5D122wAXznufq3U9zIKcRi38YwoIf0llAOk8xEsV56Ldu7QiRTp3KBUqnTkJJiZMpYu/enbz22iP+d6Ta5uzxeMoyNE6b9gpdu/bg1VdfITMzk9atW+PxeKIirCpThD8M/EJV+/iVxQOLgOMot6i6TUSGqWrGoTpT1SIRWQqchbPd5OMs4IMwpyVB0MZk+fcGtHlkGEcftZlqtmXLduzZs53XJ06ku59DY8uW7Sq0jU9LofUVp8EVp5WFt3D//Bv2LuyHfrOAIUsWcMbmP5Eb34zLTt3Fho1w2sbX0MxSFmSm89783njKUgoJIrfRpMl+RuTN5QT3UtYM64WrLXTrFktpKcRUOf3doXG5XMTExOF2x5CVlUlaWiMyMzOJiYkhLi4uaqubyoZ+Jo5Zqz+3AMfjmLz+CegFfAj8gQiV4cDTwFsishjH3+JGoC3wIpRZRg1R1TO87T8F7vBuYb2Lsz31Z5yVxtII+zQMoxbwKYR37NgcIDjS0lpXq2LYyVYYrIJ1WLv2O4YNG4nbXXneuNJjOlJ6TEe49BoKgbycbNxbMnittzPmtNGvEr9sIQCF8amsTxvKzKSL+GvhTWzdKpy/71Ne4gaKiCXui2Ju4CUeYCyPPqoce6yzOgk+2rZ1cs0f7pxLSooC9CgAJSUlFBUVVf9KAydMyF+DysYAO3DMXxVYLCJ/Ae6ItENVfV9E0nAETRtgBXCe3xZYG2/fvvZfiMg44G4ch8B8YCFwjqrmRtqvYRg1j6qyaNHMkCuNRYtmVptOw+12k5CQRH5+Lh5P+UaFy+WUH0pghEJTUinpfXzZ96xP5uPOWE/c0gXELVtI96UL6Nj/ey6dpEz96x+58+nHcKEk4Xikv84vKUiM59/5l7F5QzHHbviK70jlK1LIJpVsUimKTaF9BzcdOzpCxPfTJ1AqW6E4IWGcBsEZGmNiYmpkpdEYPz2D11x2CPDvIGupH3Ae9BGjqpPxbSZWrJsQomwqcHhmUIZh1Br+Oo3glUZ16jRUlU6depUp3Bs1SiAurikrViyiU6de0dkWE6G0czfyO3cj/9JrfB2jHg9tsrajLgFP+aMylhJ+3/NxHn3vF2R+n8Wpl59R4ZL3FE/iifX3ULx+Ey9yBjlegbKfFLZJKtNa3cD23mdyfMtMRu95g5TWKTRun0rTY1IgJZH8TWs5bv36Cg6NK0QoKSkhJgr7YpVdYRvQEcdyCZyoY3HA/KB2sYC98RuGUQF/nUaw9VR16jSCw9CvWjWvRsLQI4LL5WL/Mcfgcblwe8qNO4tjYlh85lmMSnHRbUhT9vxrDpKbg+Tl4MrJRnJzuOW4kzmzEez+LoaDb55I6YFsEg5mk5S/j4TiLUzN3McXmZBHBn/l9xW635P2KLfsneE4U/o5NG7s3PmwVlehqExofAXcLiKf4CRhuhUnH/inQe1OALZGZTSGYdQraiuHCNROGHpwBGVOSmqZQ6MCHreb6aNHsz8tzRlTfDxFJ46ocG4M0AegT3u46q2Auvx8uGkznLsJNmUM47qN+ezckMO+LdnkZOaQrNk0yjpAAfEk4Oeb4naTdvAgpaWl1b7SeAhH0bwTKMBRQL/ob37rZQIw94hHYhhGvaS2Ht6+vir7Xl19irjKzH1jSkp458oryU1NJVFchz2GxEQna2LPnuAYryZ4j+YUFcHPP8OM16eS+GYB+HmvuUtLSejVKyoCAyoRGqqa4Y0/NRFoCixW1QDR53XW+x9ViHBrGEbDozYe3rWFx+OhqKgAgNcnTgyoKyoqwOPxRG2ryEdcHHTq5KFpr618euH5jJ4+HY2NRYqLmT56NNtKS2vEegpv1Nn7K6nfDvzmiEdhGIZRT3C73TRv3pY9e7ZRWlpaoTzaAsOf4uKikBkaY4uKotaHOccZhmFEEVWlRYs2AQIDoLS0lBYt2hxxDpPKiImJBfwyNKY6ca5iY2Oj1ocJDcMwjCjib2bsT3WbGbtcLpo0aUHTpoFBIFu2bEmLFi2i5qdhQsMwDCOKBJsZT5x4P337DiUrK5Pi4sJqXWmMGjWetm07BpR17NiR8ePHR62PaoiAYhiG0XCpLTNjX0ThlSsX07fvUFJSEhg6tCmLFjkZGkeOjI7FmgkNwzCMKFMbZsbBwmrFinmcfbYjrBISoiesTGgYhmFUA7VhZhxKWEVrheGjstDoX1ThOuoXldYwDMOoJapbWFW20nDh5Ab30QMnedImHC/xVjixqXYAa6M6KsMwDKNOUplH+AjfZxEZAzwLDFPVxX7lQ4H3vXWGYRhGPSdSk9tHgD/6CwwAVV0EPAg8GuVxGYZhGHWQSIVGN2B3mLpdQNfoDMcwDMOoy0QqNDKAG8LU3YCj5zAMwzDqOZGa3D4EvCMiK4B/U64IvwToCVxZPcOrXdxuyMlxPsfGOpEk63FwTsMwjEMSkdBQ1akisgdHePwOJ1tfMbAEGKmq/6u+IdYOItC5MxQVQWGhIzzy8qC01KmLiXGESJTCuRiGYRwVROzcp6qzgdki4gKaA3tU1XOI045qRCA+3jkaNQJVKC4uFyK5ueDL5mhCxDCMhkCVPcK9gmJXNYylziPiCIa4OEhNLRciRUWOAMnNdb5DuRCpxtD5hmEYNU7EQkNEOgOXAcfi5Bj0R1X1umgO7GjAX4ikpDhl/kIkJ8fJ66vqCI/YWOcwDMM4WolIaIjIhcC/cKytdoFf1nKH6ov1e5ThEwzJydCyJZSUOEIkP98RIj7Fukh5W1OuG4ZxtBDpSuNRYC5wpaqG89cwQhAT4xxJSZCW5uhAioqgoKBcue4Lr296EcMw6jqRCo3OwF0mMI4clwsSEpyjSRNHYPgstPLynG0tX5ZI35ZWjMUiNgyjjhDp42gNkFadA2moBFtoQbleJNSWlm81YltahmHUBpEKjbuBZ0RkkapurM4BGYF6kebNnZWHv6mv/5aWrUYMw6hJIn3UPIiz0lgtIj8Be4PqVVVPjebAjHLcbudISIDGjQNNfX2rkfx8Z/VhqxHDMKqTSIVGKZYzo84QbOrbooWzGikqcg6fEPF4HAETE2OrEcMwokOkYURGVPM4jCPE7YbEROfwrUb8zX19fiM+zFLLMIzDwd496yn+fiA+3YjP3LeoyNGL5OU521y+bS1V57BtLcMwwhGpc9/wQ7VR1S+PfDhGdeJv7uuz1CopcQRHQQFs2uQIEo/HERwuV/m2lgkSwzAg8pXGXA7t9W1Rlo5CfM6HiYmOgOjatXxbq6CgPKaWD7PWMoyGTaT/+qeFKEsDRgGnAr+O2oiMWiV4WystraK1lk8/4tvKMkFiGA2HSBXh88JUfSgifwVGA59FbVRGnSKUtZbH4wiS4uJy/Yi/ot0EiWHUT6LxL/0pMBW4OQrXMo4SXK5yT3ZfhF+fIPGtSEyQGEb9Ixr/vj2Aep2MyYgMf0GSmuqU+a9Iwm1t+fQqpmw3jLpPpNZT14QojgP6AtcBH0ZzUEb9IXhFEry15VuR5OYGhkbxOSSaIDGMukWkK40pYcoLgfeB26IyGqNBEGpry6ds95n/+vQkvnS6Lle5IDGHRMOoPSIVGp1ClBWo6s5oDsZouPgr2/2ttnx+JD6HxIICp8yH6UkMo2aJ1Hpqc3UPxDCC8Tf/TUpy8o9AedRf/+0tn8Ldl1rXtrcMo3qo0vuZiPj8MpoBWcA8Vf20OgZmGOHwj/rrr3D3rUp8Ca3y88sTWrlcgUp3wzAOj0gV4anAf4BTgBIcgZEG3CUiXwGjVDWnkksYRrXicgVubzVr5pT7BIlvVeILJe+z3vJ4HCFjuhLDiIxI/03+DAwArgYSVbUNkAhc4y3/c1U6FZGbRSRDRApEZKmInHKI9iIit4vIGhEpFJEdIjKpKn0aDRNfiJRGjaBVK+jY0QmV0qkTtGtXHu23sBCys8szJebnO4JGDxU8xzAaGJEu1H8B/EFV3/EVqGop8I6INMfJ7HdrJBcSkbHAszjOgF97f34mIr1VdUuY057CCVnyW2A50BhoE+HYDSMA/1WJ2+0IDyjXlZSUOAp338rEl5fE5SoP4uh2m77EaJhEKjTSgFVh6lZRtfzhdwJTVPUV7/ffiMg5wE3A74Ibi0gP4DfA8aq62q/quyr0aRiHxKcrgUBTYH/Fu0+Y+EcDhnJdielLjPpOpH/iGThv+rNC1J3nrT8kIhIHDASeDKqaCZwY5rQLgY3AOSLyKc6W2jzgt6q6K5J+DeNw8aXP9d/mgnJzYP+IwD59iT8mTIz6RqR/yi8BT4lICvAOsANoDVwOTMRZPURCc5wQ6sH+HTuBM8Oc0xno4O1rAk6I9ieB6SKSrqoBIUxE5FfArwBatWrF3LlzIxxaIDk5OYd97tGKzTk6+JJZ+Q7f9lYwvuRXNU1BQQ4rV86t+Y5rkYY458LCHObNmxv160bqp/FXEWkB3IHz4AYQHI/wSar6bBX7Df4XkhBlPlxAPHC1qq4DEJGrcXKWDwYWBY31ZeBlgEGDBumIESOqODSHuXPncrjnHq3YnKuPUCuTggLns3/GxJqIxbVy5Vz69BlRPRevozTEOS9fPpdTTx0R9b+jSE1uGwMPA38BhuH4aewFFqrqvir0twcoxVml+NOSiqsPHzuAEp/A8PITjunvsQQJDcOoi/g7KvryuEOgzsSngPdtdflCqPgcFn3e72YabNQmhxQaIhKD45dxkapO5wjyZqhqkYgsBc4C/uVXdRbwQZjTvgFiRKSLqm7wlnX2jt081Y2jGn+dCZQ7K0L5yqSkxDEJLihwfvqHUfFfnZhFl1ETHFJoqGqJiOzEWSFEg6eBt0RkMY5AuBFoC7wIICKPAUNU9Qxv+9nAMuB1EbndW/YMzgrj2yiNyTDqHP7CxGfNBeXe7/753X1BHv11J77VSUyMrU6M6BGpIvxtHIX3jCPtUFXfF5E04A84vhYrgPP84lu1Abr4tfd4w5c8B3wJ5ONYcd0ZrAQ3jIaAv58JVNzqCrU6KS4uP9/jcba/LI+JcThEKjQ2AeNEZAnwMY6eIUBxraqvR9qpqk4GJoepmxCibAdwaaTXN4yGSPBWV7jVydatjumwv+7Et0Lxj9Fl211GKCIVGi94f7bD8bMIRoGIhYZhGDVLsBd8ixbldf6rE39lfPB2l+lPDDiyfBqGYdQDfLqP+Hjnu2+7Cxwh4hMqRUXOVpcvirC/R7wJlIaD5dMwDCMsvu2u+HgnerAPn/7EJ1B8IemDt7x8Doy+zItutynlj3aqHNxARIJ/5apqsUANoyHhrz/xrVD8Cd7y8q1QCgoCBQqUCxKfUDHqNmGFhoi0Bl4D3lfVN71lbqAoqGmOiHS31K+GYfgI3vLyx6eU99/28nnH5+c7bfxXKf6mw7btVftUttK4GSdXxiVB5QK8Amz3fh6L42vxUHUM0DCM+oVPKR8Kf7Ph0lJHkPh0KcHbXr5r+YSK6VJqhsqExjnAK6qaH1SuwEuqugxARHbjJGMyoWEYxhERbDbsr0eBwFVKaakjTPwV9L6Ncv9YXj4dir+wMQ6fyoRGD+D+EOXBt32dt61hGEa1ErxK8fdFgcBVim+lUlDgCAyfCXEofYqtVCKnMqGRAARkB1DVUhFpgxN40EeBt61hGEat4p9Iy5+ffnLS/AavVPxXKf4rFR+2/VWRyoTGLpzAgF/7F4ZQeHcCdkd5XIZhGFHFX6keDp8w8VfS+w7/yMP+1wwWLPWdyoTG18DVwJuHuMY1OIEHDcMwjmoO9eD3eAKFir/TY3GxI1j8t7+CLcB8eeaPZioTGs8BX4vIk8C9qlriX+kNmf4EMAI4pdpGaBiGUUfwPfRjY0PX+zs9+m+B+Y6CAqcMAre6jibdSlihoaoLRORuHMFwlYjMArZ4q4/FyYHRHPidqi6o9pEahmHUcYKtv0Lhv1oJXrH4b4OFivtVFwRLpR7hqvqUiCwD7gF+QbnCuwAnTPkTqvpF9Q7RMAyj/nCo1QpUFCy+7I6H0q/461iqi0iSMM0B5ni9wdNwTG73qGq0kjIZhmEYfkQqWIKFS3FxuXBxuapnNRJx7CmvkNgV/SEYhmEYVcUnWMJthW3YELr8iPutnssahmEY9RETGoZhGEbEmNAwDMMwIsaEhmEYhhExJjQMwzCMiDGhYRiGYUSMCQ3DMAwjYkxoGIZhGBEjGhxAvh7hzSq4+TBPb05g3pCGgM25YWBzbhgcyZw7qGqLUBX1WmgcCSLyraoOqu1x1CQ254aBzblhUF1ztu0pwzAMI2JMaBiGYRgRY0IjPC/X9gBqAZtzw8Dm3DColjmbTsMwDMOIGFtpGIZhGBFjQsMwDMOIGBMahmEYRsSY0AhCRG4WkQwRKRCRpSJySm2P6XARkeEi8omIbBMRFZEJQfUiIg+KyHYRyReRuSLSJ6hNvIj8TUT2iEiu93rta3QiVUBEficiS0TkoIjsFpHpItI3qE29mreI3CIiP3rnfFBEFojI+X719Wq+wYjI771/38/7ldW7OXvno0FHpl99jczZhIYfIjIWeBb4M3ACMB/4TESOrdWBHT4pwArgNiA/RP3dwF3Ab4DBOOl8Z4lIql+bZ4BfAFcApwCNgP94c8bXRUYAk4ETgdOBEmC2iDTza1Pf5r0VuAcYAAwCvgCmicjx3vr6Nt8yRGQYcD3wY1BVfZ3zWqCN33GcX13NzFlV7fAewCLglaCyn4DHantsUZhbDjDB77sAO4D7/MoSgWzgBu/3xkARcKVfm2MADzCytucU4bxTgFJgdAOb917ghvo8X++4N+C8HMwFnq/Pv2PgQWBFmLoam7OtNLyISBwwEJgZVDUT5621vtEJaI3ffFU1H/iS8vkOBGKD2vwMrObouSepOCvqfd7v9XreIuIWkctxhOV86vd8Xwb+rapfBJXX5zl39m43Z4jIVBHp7C2vsTmb0CinOeAGdgaV78T5ZdQ3fHOqbL6tcd7Sg4OeHU335Fnge2CB93u9nLeIHCciOUAh8CJwkaoup/7O93qgK/DHENX1cs44OyETgHNxtuRaA/NFJI0anHNMlYbcMAj2dpQQZfWJw5nvUXFPRORp4GTgZFUtDaqub/NeC/QHmuDsWf9DREb41deb+YpIDxy94ymqWlRJ03ozZwBV/cz/u4gsBDYC44GFvmZBp0V9zrbSKGcPjhQOlrgtqSi96wM+q4vK5puJs/pqXkmbOomI/BVH2Xe6qm70q6qX81bVIlVdr6rfqurvcFZXd1A/55uOM9YVIlIiIiXAqcDN3s9Z3nb1ac4VUNUcYCXQjRr8PZvQ8OJ9Y1kKnBVUdRbO3nB9IwPnj6hsviKSgGNR4ZvvUqA4qE17oBd1+J6IyLPAOByBsSaout7OOwgXEE/9nO80HKuh/n7Ht8BU7+d11L85V8A7p544CvCa+z3XtkVAXTqAsTjWBRO9N/JZHKujDrU9tsOcTwrl/1R5wP3ez8d66+8BDgIXA31x/um2A6l+1/g7sA04E8cMeQ7OW6y7tucXZs4veOd0Os5bl+9I8WtTr+YNTPI+HDriPEwfw7GIObc+zjfMPZiL13qqvs4ZeBJnRdUJGAr8xzvHDjU551q/EXXtAG4GNuEoFJcCw2t7TEcwlxE4e5XBxxRvveCY8e0ACoB5QN+gayQAf8NZ8ucB04Fjantulcw51HwVeNCvTb2aNzAFJ0NlIY5t/mz8TCjr23zD3INgoVHv5uwnBIq8D/4PgN41PWeLcmsYhmFEjOk0DMMwjIgxoWEYhmFEjAkNwzAMI2JMaBiGYRgRY0LDMAzDiBgTGoZhGEbEmNAw6iwiki4i//QmlSkSkSwRmSUi433x/0VkgjcZTUe/8zaJyJSga40WkeXiJNdSEWkiIi4ReUZEdoiIR0SmVeNcOkqIRFgh2vnm07W6xnK4iMgYEbkzRPkI75jPrI1xGTWLBSw06iQicjvwNE5CoXtwnNeaAmfjeLXuBz4Oc/pFOJ6xvmvFAO/ghEq4Bcc5Khu4BCdB1V04UXCzKlzJ8GcMjifx07U8DqMWMaFh1DlEZDjOg+l5Vb01qPpjb/Ta5HDnq+p3QUXtcPJq/FNVv/Trp5f34zOq6onCuONVtfBIr2MYdRnbnjLqIvfiZJ67O1Slqm5Q1eD0nmX4b0+JyIM4YWEAXvNuo8wVkU04IRcASv23jkSkjYi86c2jXChO/u2rgvrwbSMNF5F/ich+nHwHiEiSiEz2bqfliMgnQFRzT4vI9SLyg3e7bY+IvBaU0hbv+B4VkVu9SXuyRWSeVMwb7fa22yEieSLyhYj09J7/oLfNFJwQ3O2kPD/1pqBhJYnI897x7BaRt0WkSTTnbdQ+ttIw6hReXcUIYJqqFkThkq/i5En/F/Ao8CnO1lU8cCtOUpt0b9sNIpKME7OnKfB74GfgKuAtEUlS1ZeDrv8O8B7OVpfv/+klnOCXDwFLcKKKvhuFuQAgIpNwttSeA36Ls5J6FOgrIidqYO6Qq3BybdwGxAF/wVmt9VTVEm+bh7xz/QtO3KoBwCdB3T4CtMDJPX2Btyx4VfUsThC9cUAP4AmcdAPjj2S+Rt3ChIZR12iOk9t4czQupqpbReR779cNqupLVoOIbPO28S/7NU5+gtNUda63+DMRaQU8KiKvBT2U/62qd/ud3wPnoXmfqk7yFs8UkRTgxiOdj1fh/1vgIVV92K98HfA1MBondLiPYmCUqhZ724EjQIfgZH1rCtwOvKiq93jPmSUixcBTvouo6gYR2Q0U+d+vIL5U1d94P8/03ouJIjJBLchdvcG2pwwjkOHANj+B4eNtnDft3kHlHwV9H4rzf/XPoPKpURrfWd7rvyMiMb4DZ2vsIM74/ZnlExhelnt/Huv9eRyOfuhfQef9+zDG9mnQ9+U4K7pWh3Eto45iKw2jrpEF5AMdaqn/ZjihpYPJ9Kv3J7htG+/PULmao0FL78/1YerTgr7vDfru21JK8P70jXdXULvDGe+h+jLqASY0jDqFqpaIyFzgrFqyRtqLsx8fjC+NZrBZbvC2i0+ItMLJ34zf92jg6/9sYF8l9ZHiG29LnNShPmx1YITEtqeMusgknDfmv4SqFJFOInJ8NfU9D2gvIicFlY/DeRtffYjzF+FkzbssqPzy6AyPWd7rH6tOPvDgI6OK11sO5AKXBpUHfwdn5ZBY9SEb9QlbaRh1DlX90ut5/LTXl2IKsAXHoukMnHS844CwZrdHwBQcS6MPReQ+YCtwJY4u4YYgJXiosa8VkXeBh0XERbn11HlVHMc5IpIZVHZAVWeJyOPA815F8zycLG3HePt5VVXnRNqJqu4TkWeA34tINuXWU9d5m/j7r6wCmonITTg5uQtUdTlGg8KEhlEnUdVnRGQxcAdObuTmOF7c3wI34KSprI5+c0XkVBxz0Uk4ToFrgatV9e0IL3MDTm75/8Mxc/0CR8h9XYWh/C1E2Uqc9J2/F5HVON7tt+Bskf0M/A/4qQp9+HgAJ1XodThmyItwTJG/AQ74tXsVGAb8GWiCY+HW8TD6M45iLN2rYRgVEJFLcSzAhqvqV7U9HqPuYELDMBo4IjIUOB9nhVEADMTxyl8LnGg+FoY/tj1lGEYOjn/HLUAjHIX/P4HfmcAwgrGVhmEYhhExZnJrGIZhRIwJDcMwDCNiTGgYhmEYEWNCwzAMw4gYExqGYRhGxPw/NjrXDEvXC24AAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgUAAAFGCAYAAAD6uOxSAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAACGcklEQVR4nO3dd3xT1fvA8c9JultGC7RlFwTKLNCWrQgoQ4agoqIggspWUQQniAsXOPjhQFyIgqioIOsrOKooS1qQXVGGgGWv7pXz++M0aVq6oJs+79crr5Kbe29OLm3y5IznUVprhBBCCCEspd0AIYQQQpQNEhQIIYQQApCgQAghhBAZJCgQQgghBCBBgRBCCCEySFAghBBCCABcSrsBpa169eo6KCioyM4XGxuPu7s3ShXZKSucpKR4PDy8S7sZ5VpZvoZag80GSoGLC1itpd2i3MXHx+PtXTavY3kh17DwiuMaRkZGntJa18i+vcIHBUFBQWzZsqXIzrdmTQTNmnUr0290Zd2uXRG0aNGttJtRrpWHa5iWBomJJjDw84PKlctegBAREUG3bt1KuxnlmlzDwiuOa6iUOpTT9gofFAghSoeLC1SqBOnpcPIknDplgoMqVcxjQoiSJ396QohSZbWCj48ZUjhzxgQHvr5QtSq4uZV264SoWCQoEEKUCRYLeHubOQcXLpgAoUoVEyB4eJR264SoGCQoEEKUKUqBl5f5d0KCCRC8vKBaNfD0RCbxClGMJCgQQpRZnp7mZ3IyHD4M7u5QvbrpUZDgQIiiJ0GBEKLMc3c3t9RUOHoUXF1Nz4GPT9lbsSBEeSZBgRCi3HB1Nbf0dDh+3KxasC9nlBULQhSe/BkJUUpGjhzAiRMxxXLu1NQkXF0rxuw8m838tFjMrSiHFZKSkvCQWY6FUhauYc2aNVm+fHmptqG8kKBAiFJy4kQMmzYVXeIsZ0lJsXh4VCqWc5dVzsGBi4v5WVixsbFUqlSxrmNRKwvXMDw8vFSfvzyRoEAIcUWwBwFaQ0pKZhrlou49EOJKJkGBEOKKopS5aW0mJiplJiNarRIcCJGfEq+SqJTqqpT6Til1VCmllVIjCnBMK6XUL0qpxIzjnlYq65+3UuoWpdRupVRyxs+biu1FCCHKPKUyew/S0syyxrQ0EywIIXJWGqWTfYCdwEQgMb+dlVKVgbXAcaBdxnFTgElO+3QCvgAWAm0yfn6llOpQxG0XQpQz9uDAYskMDlJTM+cgCCEylXhQoLVepbV+Umu9BCjIn+VQwAu4W2u9M+O4V4BJTr0FDwE/a61naK33aK1nABEZ24UQxeSnn37k2ms7U61aJerVC+TJJx8jLS0tz2OOHz/OffeNICioFlWretG/fx/27duXZZ9jx44xcuRd1KsXSNWqXoSHt+bzzxc6HrfZbNx88400alSPypU9qF+/JiNGDOPo0aN5Prc9OEhPN8FBSor5d/beg3feeYcGDRpQo0YNwsLCWLduXZbH582bR/fu3alatSpKKQ4ePJj/xSqEMWPGoJRi1qxZ+e6bkpLC008/TYMGDXB3d6devXr83//9X5Z9Zs+eTdOmTfH09KROnTpMmDCBuLg4x+NBQUEopS669evXr9Cv5d9//2XAgAF4e3tTvXp1HnzwQVJSUnLc97fffsPFxYWWLVsW+nlFwZRGT8Gl6gSs01o79yp8D9QCgpz2WZPtuO+BzsXeOiEqqO3b/2TgwL5cd11PNm3aymeffcGKFd/x1FOP53qM1ppbbx3E33/v46uvlrJp01bq1atP377XEx8f79jvnnuGs3fvHpYsWUZU1E6GDh3OyJF3sW7dr459unXrwcKFX7JjRzSLF3/NgQP7ue22go0aWixmjoF9UqJzcPDFF18wceJEnnzySX777Tc6d+7MDTfcwL///us4PiEhgV69evHMM88U+HpdbvCwZMkSNm/eTK1atQq0/5AhQ/jf//7HvHnziI6O5quvviIkJMTx+KJFi3j00Ud56qmn2LNnDwsWLGDVqlVMnDjRsc8ff/xBTEyM4xYVFYVSittuu+2S2+8sPT2dfv36ERsby7p16/j8889ZsmQJjzzyyEX7nj17luHDh3PdddcV6jnFpSkPQUEgZujA2XGnx/LaJxAhrjDx8fGMGzeaGjWqUKtWdZ5++ini4uLw9fXm0KEcS6QXi6+++oJmzZrz9NPP0qhRI7p2vZYXX3yVuXPfJjY2Nsdj9u3bx6ZNG/m//3uHdu3aExwczFtvvUtiYiJffPG5Y7+NG9czduwE2rfvQMOGDXn44UeoW7cuf/yxGQCLxcKDDz5Ehw4dqV+/Pp06dWby5MfZsuUPkpKSHOfZs2c3Awf2o1q1StSp489dd93BsWPHHI/bJyGCGVJITobXXnudu+8ewahRowgODmbOnDnUrFmTd99913HcQw89xBNPPMHVV19dlJf0IocOHWLixIksWrQIV1fXfPdfs2YNP/74I6tWraJnz54EBQXRoUMHunXr5thn/fr1dOzYkbvuuougoCB69OjB8OHD2bRpk2OfGjVqEBgY6LitWrWKypUrZwkKtNa8+uqrXHXVVXh6etKqVSs+++yzfNu3a9cuPv30U0JDQ+nZsyevvvoq77//PhcuXMiy77333svdd99Np06dCni1RFGokKsPlFKjgdEAAQEBREREFNm5k5Li2Lu36M5XESUlxbFrV0RpN6PYpaYmkZSU84dnXu69dwTbtm1l6dJlnD9/nmHDhnL48EEaN25CQIAfSUmx2GzpF537lltuZsOGDXme+7//Cp5MKSEhFjc31yzPY7VqkpKS2LhxHddcc81Fx8TGngFAqaztc3NzY926n7nzztsB6NixI19+uYiePbtTtaovq1ev5uTJk1x9daccr9mZM2dYuPCTjPXoqSQlpXLs2DF69LiGu+4aznPPPUtqairPP/8cN9/cnx9++BFLDokMUlJSiIqKZMKECVy4YK5jbGws3bp1Y926dRcFO/bejbi4uFwDIWcF3Q8gLS2N2267jcmTJ1OnTh201iQnJ+d5/JdffkloaCgvv/wyn3/+OR4eHvTs2ZPp06fj4+MDQFhYGJ9++ik//vgj7du35/DhwyxdupTrr78+x3Nrrfnggw+47bbbSEtLc+zz3HPPsXTpUmbOnEnjxo3ZvHkzY8aMwd3dnT59+jiOT09PdxwTERFBcHAwVatWdWzr0qULycnJrFu3jq5duwLw/vvv899///HRRx/xyiuvYLPZCnzdcpKUlFSk7/MlLS4ursTaXx6CgmNAQLZtAU6P5bXPMXKgtZ4HzAMIDw/XzlF0YWitWbv2F5o27ZbRNalRsgbqku3aFUGLFt1KuxnFztXV45ITDJ06dYqlS7/lww8/oUuXbgAMHnwbn3zyMc8887zjfDklL5o3bz6JiXnP7b2U9vTpM4C3336bb75Zxm23DeH48eOOMe8zZ87neK6QkDDq1avHCy/M4N1338fHx4f/+783OHr0KCdOnHIcs3jxNwwbNoQGDRrg4uKCu7s7CxZ8Tvv2XbKc78knH+Pdd98iISGBDh06smzZasc5PvlkJiEhbXj11Tcc+8+fv4jAQD927YqmXbv2F7XvzJn/SE9Pp06dINzcKpGcHIu7eyVq167Lr7/+elESHm9vbwB8fHwueqxFixYX9dx06NDB8Z5Qv359du3alev1feqppwgICODhhx8GzPCDu7t7nomAjhw5woYNG/Dy8uKbb77h3LlzPPDAA5w6dYolS5YAMHLkSBISErjhhhvQWpOWlsZdd93FG2+8keP71Zo1azh48CATJkxwPHd8fDxvvfUWa9ascQR/rVq1YseOHXz88cfceuutjuOdkxedPXuWmjVrZnkNPj4+WK1WLly4QKVKldixYwevvPIKGzdupGrVqri7u2OxWAqVAMnDw4Oiep8vDRERESXW/vIQFGwAXlFKeWit7f2CPYH/gINO+/QEZjod1xNYX1KNjIyMJDk52XFfa82WLVtwd3fPMp4nRGH888/faK3p0CGzS7Vduw588snHDBp0c57H1q5du0jb0rNnL15+eRYTJ07gvvtG4O7uzpNPTuO339bl+C0cwNXVlS+++IYxY+6lZs1qWK1WevS4nt69zQeU3fTpUzl9+hSrV/9A9erV+e67pdx773B+/PFXQkJaO/abNGkKI0bcy7//HmLGjGcZMWIYy5evRilFVFQkv/32K35+Phe1Y//+f0hOTubGG29wbHv77fe49trujvv2pEdaZ843SE8veDKkVatWkZqa6rjfuHFjVq1a5fh/yGs4ICIigvnz57Nt27b8n8iJzWZDKcWiRYuoUqUKAG+99Ra9e/fm+PHjBAQE8Msvv/D888/zzjvv0KFDB/7++28mTpzI9OnTee655y465/vvv0+7du1o3Trzuu/evZukpCT69OmTJZBITU0lKCgIgBtuuMExQTO/AMguOTmZ22+/nVmzZtGgQYNLeu2iaJR4UKCU8gEaZdy1APWUUm2AM1rrf5VSLwHttdb22SWLgOnAfKXUC0AT4HHgWZ35LjIb+FUp9TiwFLgJ6A4U74BfBnu33s6dO6lRo44jIIiOjiY4OFh6DESRcXd3B0x3u52/fwC+vr40a9Y8z2MHDLiB339fl+c+Z87E5fl4dg89NImJEx8mJiYGX19fDh48yNSpT9CgQcNcjwkNDeOPP7Zx/vx5UlJSqFGjBldf3YHQUJOK9p9//uGdd+bwxx/bHAFASEhrfvttHe+8M4e5cz9wnKt69epUr16dJk2a0LRpM666qi6///4bV199DTabjRtu6MfLL188Yz8gIAAXFxc2b96WZZu7uztWq5UTJzKnKCkFJ08eJyAgEPtnfEHSKNevXz/HbfYPzbxEREQQExNDzZo1HdvS09N57LHHePPNNzly5EiOx9WsWZPatWs7AgKAZs2aAWbWf0BAAFOnTuWOO+7gvvvuA8w3/Pj4eO677z6efvppXJwqS504cYJly5bx9ttvZ3keW8Z6zuXLl1OvXr0sj9mDnQ8++IDExMSM+S6+AAQGBvL7779n2f/UqVOkp6cTGBhITEwMe/bsYeTIkYwcOdLxXFprXFxcWLVqFb169cr3+onLVxo9BeHAz073n824fQKMAGoCV9kf1FqfV0r1BN4GtgBngdeA1532Wa+UGgK8ADwH/APcrrXOnDlTjJRSuLm54ePjQ3JyEosWLcJi0Xh7e+Pm5iYBgSgyQUENsFgs/P33Pseb8cqV33H27FnOnz+f5cMgu7lzP8h3+OByKKUcM+O//PJz6tatS9u2ofkeZ2/rvn37iIzcwvTpzwOQmJgAgDVbTWSr1er4MMqJ/TF7j13btqEsWfIl9evXz/VbeaNGjS7aFhoaxg8/rOWWWzK7wH/8cS033XRLlmRIAE4dAUVq/PjxDB48OMu23r17c8cddzBq1Khcj+vSpQtfffUVcXFxjjkEf/31F5AZpCQkJOR4bXUOWZ3mz5+Pu7s7d9xxR5btzZs3x93dnUOHDtGjR48c22LvEXEePujUqRMvvPACR44coU6dOgCsXbsWd3d3wsLC8PT0ZMeOHVnO884777B27Vq+/fbbAgVUonBKPCjQWkcAuX5Kaq1H5LBtB9A1n/MuAZYUsnmXRWtNSkoKx44lU7lyZX788So8PM4RGnqMOnVSpKdAFJmqVasyaNDNvPLKi3Ts2InDhw/zzTdLqFWrFitXLufOO4flemxRDx8AvPbaTHr37oPFYmHp0m+YOfNlFi780vGhc/ToUfr0uY4XXniJgQPNcsGvv/6KatWqU69efXbu3MHkyRO58cZB9OxpvgEGBzflqqsa8eCD43n55Vn4+VXju++W8uOPa1myZBkAGzduYOvWKLp0uZoqVaqyf/8/PPvsNOrXD6JLF9NBOHbsBD766H2GDr2dyZMfo3r1Ghw4sJ8lS77k1Vdfy3WMeuLESYwceRft2rUnLKwNn3zyKTEx/zFq1FjHPidOHOP48WNER5sP3D//3M3p0+cICqpHtWp+AJw8eZL09HTHMTExZhKnffWD1WqlRo0aObbB398ff3//LNtcXV0JDAwkODjYsW348OEALFiwAIA777yT559/npEjR/LMM89w7tw5Jk6cyODBgx3nGzBgAK+//jrh4eGO4YNp06bRv3//LL0E9gmGQ4YMcQQYdpUqVWLy5MlMnjwZrTVdu3YlLi6OjRs3YrFYGD16dI6vq1evXrRo0YLhw4fz2muvcfr0aaZMmcKoUaOoXLkywEU5Cfz9/XF3d5dcBSWkPMwpKAcUH35YnwUL2vPKK+v44YcQXF1T+d//LAwefIrwcAkIRNGZPfttJkwYw1VX1QVg6tRnaNq0GePG3cc///zNtGnPlFhb1qxZzSuvzCA5OZmQkNYsWbKMPn0yx+lTU1P5669ozp8/79gWExPDo49O4vjx49SsWZOhQ4fz5JPTHI+7urqybNkqpk59nJtvHkBcXBxXXdWI99//mP79BwDg6enJt98u4bnnniY+Pp7AwJr06tWHzz77wlGmt1atWvz88+9Mm/YEAwb0ISkpibp163H99b0cwzA5ufXW2zl9+jQvv/wCMTExtGjRkmXLVmUZDnj//bm88MKzjvuDBpmkPvPmfczIkSOwWqFdu3Z5LhGtX79+oZMeOedOADNp74cffuCBBx6gXbt2+Pr6MmjQIF5++WXHPlOnTkUpxbRp0zhy5AjVq1dnwIABzJgxI8u5IiIi2LdvX67LDJ9//nkCAgKYNWsW48aNo3LlyrRp04ZHH3001/ZarVZWrlzJ+PHj6dKlC56engwdOpSZM2fmeowoWSqnLqOKJDw8XG/ZUrjytVOn2nj11TRSU914/vnfmDYtcyqDi0sq48dbeeyx8pASomyoKKsP+vULl9LJZdzlXEf7CIe9CFNRlHAuz8pK6eTCvs+XpuJYfaCUitRaX1RTuoL/uhbe2bPw2muK1FQz8WvGjI5ZHk9Lc+W99xROX5SEEFcw51TKKSkmIVJOqZSFKIskKCikJUsyM6IBJCVdPCJjtcKKFSXYKCFEqbMHB5CZLVGqNIqyToKCQjp2DBISMu/ffffOi/ZJTIQTJ0qwUUKIMkOqNIryRIKCQgoMBC+vzPutWp26aB8XF6hePe/zZJ/bUdHneghxJZKhBVHWSVBQSIMHmz/qvKSmKpYsgdyqum7fvp0tW7Y4AgF78qPt27cXcWuFEGWBDC2IskqCgkLy9YXJk8HVNecsJlZrGt7emi1boFcv+P77rI9rrTl48CBRUVGOwGDLli1ERUVx8OBB6TGoYEy6YHXR7ZprMiewNmkS5NhetaoXbdu25IMP5mU5T0pKCq+9NpP27dtStaoXgYF+XHNNR95//70s6bhLwuLFi2jXrg1Vq3pRr14gI0YMy1KpMCfOr9F+y16SecuWP+jT53r8/avi71+V3r2vc1RRBFME5777RhAWFoK3tys9e3YrsteUnJzMQw89QK1a1fH19ebmm2/MNcvgqVOnaNCgNu7uilOnsvYkFmZo4eDBg9x77700bNgQT09PGjZsyBNPPJFvgqq3336bkJAQKleuTOXKlenUqRMrV67Mdf8xY8aglHLUtbA7duwYd911F4GBgXh5edG6dWsWLlyYf8ML4Ouvv3YkSGrevDnffvvtJbdPXB4JCorAs89Cz57bcXFJRSkNaFxdU7Fa07j22t38/jv06AHnzsE998CTT5p5Bnb2VKZRUVEsXLiQqKioLNtFxdKjx/UcOhST5bZs2aos+zz11NMcOhTDli3bufHGQUyYMIavvvoCMAHBzTffxCuvzGD48JFERPzOhg2RTJw4iQULPmbjxrwrJRal9et/Z+TIuxg27G62bt3FV18tZc+e3dx999B8j7W/RvvtiSemOh6Li4tjwIA+1KpVi19/3cgvv2ygZs2a9O/f21FNLz09HXd3D8aNu58bbuhXpK/rkUceYunSr1mw4HN++mkdsbEXuOmm/lmSFdmNGjWSkJA2+Z5z3boImjYNKvDQwt69e0lPT+fdd99l165dzJkzhwULFjBx4sQ8n6dOnTq88sorji8iPXr0YNCgQTn2TC5ZsoTNmzc7MlY6Gz58OHv27GHZsmXs3LmT4cOHc9ddd/Hrr7/m+1rzsmHDBm6//XaGDh3Ktm3bGDp0KLfeemuW0s4FaZ+4PBIUFAlN//6bmTz5DapWTWLSJM3gwTsZO/Y9rr9+K9WqaRYsgGeeAVdX+OQT6N8foqNNitjw8HCaNGnHpk2NWL78KjZtakSTJu0IDw+XTIgVkLu7e5Za9oGBgfj5+WXZx8enEoGBgTRq1Ihnn32BRo0a8913SwH4v/97k99++43Vq3/g/vsfpE2btjRo0IDBg2/jl1/WFygFcVHZuHEDderUYeLEh2nQoAEdOnRk/PgH+OOP/DOQ21+j/eacVS86ei9nzpxh2rRnadq0Kc2aNWP69Oc5d+4cf/0VDZgKhm+/PZf77htN7dp1cn2eFSuW07FjGJUre9CkSQOefvopUlJSct3//PnzzJ//IS+9NJPrr+9J27ahfPTRp+zYsZ0ff/why75z5swmISGBhx56JN/Xa5fT0EJOvQd9+vRh/vz59O7dm4YNG9KvXz+eeuopvv766zzPP3DgQG644QYaNWpEkyZNmDFjBpUqVbqorPahQ4eYOHEiixYtyjFN9Pr165kwYQIdOnSgYcOGPPLII9StW5fNmzN7a44ePcqIESPw9fXF19eXfv36sW/fvjzb9+abb9K9e3eeeuopmjVrxlNPPUW3bt148803L6l94vJIUFAELBYL7dq1o1WrOnh5JVKjxue0br2TZs1q0aZNGywWC0rBqFGwfDk0bAh790LfviZAePVVGDmyDT/9dA2//daRn366hpEj2zBzpowxioLx8PBwVORbvHgh3bp1IyzsorwkWCwWRzrZnPj5+eR5GzDghlyPzUnnzl2IiYlhxYrlaK05deoUX365mD59+uZ77JtvzqJmzWq0a9eGl1+ekeWDukmTYGrUqMH8+R+SnJxMcnIyH330PvXq1aN58xYFbt+aNd8zYsRQxo27n61bdzFv3kd8880Spk17MtdjoqIiSU1N5frrMwvz1K1bl6ZNm7FxY2Zh1m3btvLaa6/w0UcLcq0amRfnoQV770FKSt69BxcuXHAUHyqI9PR0Fi9eTFxcHJ07d3ZsT0tL44477mDq1KmOgkrZXX311Xz55ZecPn0am83GsmXLOHnyJNdffz1gaix0794dDw8PfvnlFzZsML05119/PQnOS7ay2bBhw0VFj3r37s369ZnXtiDtE5dH0hwXkfDwcEJDQ/nyy6WA6QEYOHDgRW8GrVrB//4HTz8NixeboQSlNFpbAJMAyZ4I6e23UwEXHn1UegsqkjVr/ndRud+xYyfw4ouvXLRvWloaixZ9xs6dOxg9ehwAf/+9jy5dOl+0b0E4Vw3Miaen5yWdr2PHTnz22WJGjBhKYmIiaWlpXHddTz788JM8jxs/3vRwVKtWjT/+2MzUqY9z8OABR4XESpUqsXZtBIMHD+LVV18CoH79IFauXHtJbXzllRlMmjSFu+82FfmuuuoqZsx4hZEjh/Hyyzmn3j1+/BhWq5Xq2ZYUBQQEOOZKxMfHM2zYEN54Yw61a9fm778v/nb877//0qZNZmXL9PR0kpOTs/zf33HHMN5+e66j50BrExhYLJkZE+2diYcOHWLWrFk8+WTuAY3djh076NSpE0lJSfj4+PDtt9/SqlUrx+PTp0+nevXqjBs3LtdzfPnllwwZMoTq1avj4uKCu7s7n3/+OW3atAFg8eLFaK159913HYHoe++9h7+/PytWrOC2227L8bzHjh0jICAgyzbna1vQ9onLI0FBEdFas3HjxizbIiMjcxwC8PaG116Ddu3gkUfsAcHF0tJcmTtXM2YM5FH8DjBvKM6Vz7LfF+XHNdd05e23s04crFq1apb706c/xQsvPENycjJubm5MmjSFUaPGAIVbzppT1cDC2LNnNw8//ABPPDGNXr16ExMTwxNPTGHChDF89NGCXI976KFJjn+3amUmxQ0dejszZrxCtWrVSExMZPToe+jQoSOffLKQ9PR03nhjFoMHD2TDhi14e3sXqH1RUZH88cdmZs3KDLhsNhuJiYkcO3aMDz+cy+uvv+Z4bNu23QU676RJD9Kly9XcdNMtue5Tq1atLEHYH39s4qmnHmPNmgjHtuy9OkqZQEBrMzExLc3cP3XqOH369KFnz548/PDD+bYvODiYbdtM+eolS5Zw9913ExERQcuWLYmIiGD+/Pls27Ytz3NMnTqVU6dO8cMPP1C9enWWLl3K8OHD+fXXX2ndujWRkZEcOHDgovH+hIQE/vnnH/7991+aN88Mip588skCBTQFbZ+4PBIUFAGtNRs2bGDnzp3UqFGHO++8ia1btxAdbcY2c5sbkJ4OHh6QlJT7ue3ZEIfmMS9r0aJFJCcnM3z4cKxWK+np6SxYsAB3d3fuvPPOwr48UcI8Pb3y/XCeOHESI0bci5eXFzVr1szy+9W4cRPH796lyt5DkV2XLtewfPnqAp/v1VdfIjy8PY88MgUwH/De3t706HENzz33oqN8bn7atesAwD///E21atVYvHgR+/f/Q0TE747gd8GCRQQE+LJs2bd5Vot0ZrPZmDp1OjfffOtFj9WoUYN77rmHIUPucmyrVasWAQGBpKenc+rUqSxVDo8fP06XLtcA8PPPP3L48GE+/dT0iNgDtXr1Apk8+TGee24GLi4uWf6fjx49ctG23CiV2UNw9OgxbrihB82bt2T+/E/Jowitg5ubm+N5wsLC+OOPP3jjjTf48MMPiYiIICYmJstE5/T0dB577DHefPNNjhw5wj///MOcOXPYtm0brVu3BqB169asW7eOOXPm8MEHH2Cz2WjTpg0ffPDBRVUW/fz8qFy5cpYPdvu8mcDAQI4fP55l/+PHjxMYGAhQoPaJyydBQRFQSjlKe8bFpTgmD4KZNJbbZMETJ8wkorzklw3R3uV49uxZFixYwPDhw1mwYAFnz57F19dXegyuUH5+1XL98Bgy5E6mTn2CyMgtF80rsNlsxMXF5TqvoKiHDxISEi76/bPft11CSr8//zTtCgys6TivUirL8JyZu6Mu6bxt24YSHb0312vp5+dHrVpZi/mEhobh6urKjz+uZcgQE3QfOXKEvXv30LGjGbZZsWINqamZcyC2bPmD0aPvYe3aCBo1alzg9uUnJiaG3r2707x5CxYs+BytXUhOvvRiTDabzbFUdfz48QwePDjL47179+aOO+5g1KhRAI45ATn939qvf2hoKJ9//jnVqlWjbt26OT5vTte9U6dOrF27lilTpji2rV271jHnoSDtE5dPgoIiEhYWhtaatWt/ATJXFeS1esDfHzw9FXnMucHDQ5GtrHoWVqs1SyAwe/ZsAHx9fR09B6J8SU5Ovmgdv9VqzfKtNC8PPPAQK1d+R9++PZk27VmuuaYrlStX4c8/t/LGG7N47rkXufbabjkeW9TDB/36DWDcuFG899679OzZm2PHYpg8+SHatg2lXr16ACxb9i1Tpz7B//73I7Vr12bjxg1s2rSRbt26U7lyFSIj/2DKlIfp3/9GxzHXXdeTJ56YwgMPjGfChAfR2sbMmS9jtVrp1q2H4/n37NlNSkoKp0+fIi4uzhFctG7dBoAnn3yam27qT7169Rk8+DasVhd2797JH39s5qWXXs3xNVWpUoURI+7lyScfpUYNf6pVq8ajj06iVasQrrvOTLJr0qRJlmPs+QmCg5s65iKkp6dz8uRJxz7BwU359deNWf7vPT09qZLL2OF///1Hz57dqFWrFrNmvcnp05k5EKpVq4HVasVigZCQpkyYcD8PPHA/AI8//jj9+vWjbt26xMbGsmjRIiIiIhy5Cvz9/fHP9qbj6upKYGAgwcHBADRt2pRGjRoxfvx4Zs2aRbVq1Vi6dClr165l2bJlAAwdOpRZs2Zxxx13MGPGDOrVq8fhw4dZtmwZY8eOpXHjnIOjiRMn0rVrV15++WUGDRrEt99+y88//8xvv/1W4PaJyydBQRHKHgDkt5ywXz+YNk2TV3dfcrKmS5e8z2O1Whk2bBhz5sxxbBs2bJgEBOXUTz/9QP36WXNU1K5dm/37C9Yt6u7uztKly3j//Q+ZP/9DnnrqMTw8PGjSJJjhw0fSqdPlTUK8HMOHjyA2NpZ3332Lxx57hCpVqtCtWw9mzMgcwz9//jx//RXtWD3h7u7OkiVfMGPGsyQnJ1OvXn3uuWcUjzzyqOOYpk2b8s03y5kx41muvbYTSilat27Dd9+tzjIkMXBgXw4dOuS43759W8D8XQH06tWbpUtX8tJLz/PGG7NwcXGhceMm3HXXiDxf12uvvYmLiwvDht1OYmIi3btfx4cfLrikv7nDhw8THNwgz33uuutuPvhgfo6P/fDDGv7+ex9//72PRo3qZXksOvoAQUFBaA3R0dEcP36KtDTTc3Ds2DGGDTMJpKpUqUJISAirV6+md+/eBW67q6srq1at4vHHH2fAgAHExcXRqFEjPv74YwYMGACAl5cXv/76K4888gi33nor58+fp1atWnTv3j3PFRKdO3dm8eLFTJ06laeffpqrrrqKL774gg4dOhS4feLyqYqeMS88PFwXZZ3tNWsiaNasGwV9b3j1Vc3bb6eRlpbTOlsTMPj7wxtvQG7ltFesWMHu3Uf55JNbsdmstG+/iRYtDtC8eW369+9/ma+k9OzaFUGLFt1KuxnFrl+/cDZtKp4a70lJsXh4lG4N+yvBlXQd7aMq9pULFkvmvITiFBsbS6VKpXsNw8PDKcr3+ZIWERFBt9w+AC6TUipSa33RumXJU1DKJk+Gnj334+KShrt7Okpp3N3TcXFJo1u3/XTooDlxwkw0nDYtayZEgJSUVD7+uDpvvXUv589X5cKFyvzySzfeeutePv64OikpOadfFkJULPacB/ZljSkpUm9BXEyGD0qZxaJ48MFkhg7dztGjbTl5UlGjhoXatbdSrZoLLVoo3n0XZs6Ejz6C336DOXOgZUtz/JtvuhAZGUZ6euZ/pT3PQWRkGG++6cKjj+b0zEKIisi+rBEylzVaLKaaq/OqBlExSVBQBoSEhGCz2bBY7H+NCputjWNm9f33Q9eu5udff5kUyVOmwJAhMHeuIjU15xSfqamuzJ1LgfIcCCEqHvvqBJvN9BzYAwbnpEiiYpHhgzJg+/btREZGZimdHBkZmaVASUiIqbA4fLjJg/7iizBwYP5/uPY8B0IIkRvnegvZqzXK8ELFIkFBKdNak5ycTHR0dJbSydHR0SQnJ2fJTufpCS+9BJ9+apYzHjgASUl5/8UmJuo88xwIAaZk86BB5W9SalnRtm1Lnn/+mdJuRqHlVm9B5h5UHBIUlDJ7PoPg4GCio6NZuHAh0dHRBAcH55rnoEcP+PFH+7yCvLsKPD3JM8+BqDjuu28E7u7qotuff27jtddmM3/+Z459e/bsxsSJ95dia0VBzJ37Dk2aNKByZQ86dgzjt9/W5bl/TEwMw4ffSatWTfH0tHLffSMu2ic1NZUZM56jefOrqFrVg3btWrNq1f+y9B5Mn/4MSqksN3vGwZyMGTMGpRSzZs0q7EsWxUyCgjLAOQOiXX6Jj/z8TEElF5e8w/f0dDMHoSCyZ4K7lMxwonzo0eN6Dh2KyXJr0aIlVapUuai+QkWTV7nksuirr77gkUcm8thjT7Jp01Y6duzMjTfewL///pvrMcnJyVSrVp0pUx6nffuc1/1Pnz6VefPe5fXX/49t23YzatRYbr/9JrZv3+roPUhPN/UT/vsvhpgYc9uxY0eO51u6dCmbN2++qAaCKJskKCgD7EMGzuxDCXnx9YUJE8DNLT3Hx93d0xk7tmCTDFetWsWyZcscgYC9FOqqVasK9iJEueDu7k5gYGCWm4uLS5bhg/vuG8Gvv/7C3LlvO3oTDh48eNG5Ro0aSe3aNXjllRcd2w4cOICPjxuLFn120f52S5d+Q1hYCFWqeBIY6Mf111+bJdf9rFmvUq9eIH5+Ptxzz3Cef/4ZmjQJcjye01DH888/Q9u2LR33t2z5g759e1GrVnWqV69M9+5Xs3HjhmzXQvHuu29z22034+vr7SiXvGLFcjp2DKNyZQ9atWrF008/lSVgOHHiBLfcMpAqVTxp3Lg+8+d/lMcVLz6zZ7/O8OEjuPfeUTRr1ow335xDYGBN5s17N9djgoKCeOON/2P48BH4+vrluM+iRZ8yefLj9O3bj4YNGzJmzDj69OnLm2++lmXugdXqgq9vIH5+gfj7B1K9+sUZNw8dOsRjjz3GokWLcHXNeUK0KFtKJShQSo1XSh1QSiUppSKVUtfks/8EpdQepVSiUipaKTU82+MjlFI6h5tH8b6SwnOeQxAcHMzQoUMdQwkFCQymTFHcfPMprNY0LJY0TMIjAM3VV59nypT8pxDb857bU5DaA4LDhw+TnJwsPQYVzGuvzaZjx07cffdIR29CTrnrX331dZ5//iWeeWaaowDTc889TZMmwY6aANmZbHpDGDbsbv78cw8//vgrd96ZWXBoyZIveeaZqUyb9iwbN0bRpEkws2e/fsmvITY2lqFD7+LHH9fx22+bCQlpw8CBfTl9+nSW/WbMeJY+ffoSGbmDsWMnsGbN94wYMZRx4+5n69ZdvP3223zzzRJHwAAmKPnnn79ZvfoHvvpqKQsXLuDQoYN5tue339bh5+eT5805uMpPSkoKUVGRXH99ryzbr7++Fxs3ri/weXKSnJyMh0fWt05PT0/Wr//NcV8pOHBgPw0b1qJJkwbcfvsQ9u7dT1paZpKktLQ07rjjDqZMmUKzZs0K1SZRckp8SaJS6nZgNjAe+C3j52qlVHOt9UX9XkqpccArwChgE9AeeF8pdVZrvdxp1wTgKudjtdZ51B8sG+zFlJznEBSkmJKd1jauvno91avHEB3dmJMna/D331cRF1eJn37yZcYMzZQpCnf33M9hsVgYOHCgIxB46623AKhbty4DBw7MUnRGlG9r1vwvSyXEnKoeVqlSBTc3Nzw9vfIcJ/b19eWee+7jm2+WsHDhAm6//Q4WL17EF198k+vvTEzMf6SmpnLzzYOpX78+AC1aZH7DnzPnTe66625HGejHH3+KiIif2b//70t6nd2798hy/80357B06dd8//3qLBUUBw++nXvuuc9x/7777mbSpCncffdIAGrX9mfGjFcYOXIYL788k3379vH996v5+eff6Ny5CwAffPAJTZs2zLM9YWHh+RabslcJLIhTp06Rnp6Ov39Alu0BAQH89NMPBT5PTnr27M2cOW/StWs3GjduzE8//cjSpd+Qnp7ZI9muXQc++GA+wcFNOXHiBC+//ALdu3cmMnIX1apVw2KB6dOnU716de677748nk2UNaWRp2ASMF9r/X7G/QeUUn2AccATOex/F/C+1vrzjPv7lVLtgMcA56BAa62PXXR0ORASEoLW2hEAFKSYkp29UpynZwqtW+/EYrHQvfsvbNjQiU2b2vHuu4qff4bZszMTHuXEHhjYAwJAAoIr0DXXdOXtt+c57l9q1cOcDBs2nGnTnmDnzh2Eh7fjxhsHAvD55wuZMGGMY7/vvltNp06d6dHjekJDW3L99b3o0eN6br55sKPY0969exg5MuuHSMeOnS45KDhx4gTPPDONX375mRMnjpOenk5iYiKHD2f93pG9imRUVCR//LGZWbMyazPYbDYSExM5duwYe/fuwWKx0K5de8fj9evXz3e83NPTs8iLTRWX116bzbhxo2jTpjlKKRo2vIrhw0fyySeZwyR9+tyQ5ZgOHTrStGlDFi78hIcemkRERASffDKfTZu2oXVm74Eo+0r0HV8p5QaEAWuyPbQGyK1KizuQ/Rt/ItBeKeU8SOWplDqklDqilFqhlGpbJI0uIZdaTCn7vu7u7nh5eVGtWjUqVfLg+usjmTz5N4KCNHv3muJLb75plhblxD5k4Mx5joG4Mnh6etGoUSPHrXbt2oU+5403DuLs2bOsXLmcZ5+d4djev/+NbN68zXELCwvHarWyatUaVq5cQ6tWIcyf/yEtWjRm+/Y/C/x8FovlomE1ezElu3vvvZvIyD+YOfMNfvllPZs3b6NOnToXTSb09vbOct9mszF16nRHm9et+40tW7aza9e+LFUqL+XvE4p++KB69epYrVZOnDieZfvx48fz7N0piBo1arBkyVLOno1n375D7NixFx8fHxo0yL03xMfHh+bNW/D33/sAWLcugmPHYmjQoCZ+fr64ubk45hc4F6wSZU9J9xRUB6zA8WzbjwPX53LM98C9SqlvgC2YoOI+wDXjfDFANHAP8CdQCZgI/K6Uaq213pf9hEqp0cBoMN1tERERhXtVTpKS4ti7t+jOVxC1arlSrVpNpw9wLywWC+7ucVx99To++qghy5bVYeZM+O67C0yZspd69bLWaz537hxVq6bi71+PqlWrcu7cOVJSUtiw4bsSn5WelBTHrl0RJfqcpSE1NYmkpNhiObfNln7RudPTU7HZ0nJ8zuyPWa0WUlIK1j6LBRo2vAqlFJ07t3cc4+oKdeo4d29nnr9Nm5a0adOSRx55mA4d2vP555/SpElDmjRpwvr16xgy5FbHURs2/I7W2nFs1apV2Lo1Kkvbtm7dgtY2x7b163/jlVdepUeProDpOYiJiSEtLTnLcSkpiVnut27dmt27d/Dgg/dnXMfqWCwmJ3BaWiINGtTFZrPx++8Rjqp9hw8f5r///rvo3M5atAhm3brfcnzMztfX95J+H9q0acP336+iX78+jm0//PA9N944sEDnsdnSSE9PzXPfatUqExd3lm+++Yqbbro5132TkpLYu3cPXbp0JikplhEjhtOv3w0Zz5OOxWLl5ptv4pZbBnP33SO4cMGcp6SyJiYlJRXp+3xJi4uLK7H2l4c0x88DgcB6zKL848AnwKOADUBrvQFwTC1WSq0HtgEPAA9mP6HWeh4wD0yVxKKsPrVmTQRNmxa8SmJh2ScqHjiQmdsgc+JibcLDwwkPVwwZAo88AtHRlZkwoT2PPgqjRmXmQF+1ahXJyZqBA2/EYrE4eg7c3d3o0qVbybyYDBWlSqKrq0exVeDLqbqf1eqKxeKS43Nmf6xBg0Zs3RrJsWOn8fHxwc/PL9ehpB9+WMuff27Dx8cHm82Kl5dXru3atGkjP/30Az179sbfP4Bt27Zy9OhRWrVqg4dHJR58cBL33DOcDh0607VrN779dgmRkVvw8/NztO366/swe/abLF78FVdf3ZWlS79h06ZN1K5dx7FP48ZN+OqrJXTpci3x8fE8+eSjuLm54eLinuX1u7l5Zrk/deqz3HRTfxo0aMTgwbeRnp7M338f4I8/NvPSS6/SqlUovXr14eGHH+add+bh6enJo49OwtPT86JzO/PwqISvb9EmDHn44SmMHHkXHTt2oVOnLrz//lyOHTvGuHEPOtpxzz1mTvZHHy1wHPfnn9sAiI9PwMXFjejof3Bzc6NZs+YAbN68if/+O0pISBv+++8ozz//DFrDY49NdZz3sccm06/fAOrWrcfJkyd48cXnSUhIYMSI0Xh4VKJu3UrUrWt6Fuy/i25ubtSuXY+QkFDHcIJSpuZCcVds9PDwKPIqgyWpOKok5qakg4JTQDoQkG17AJDjfACtdSJwj1JqTMZ+MZhv+bHAyVyOSVdKbQEaF1G7y6yCTlTs2tUkPHrmGfjiC3j+eZM2+fXXoUED6Nu3LzabjVtvNW/8X39tkTkFFdjDD0/mvvvupk2b5iQmJhIdfYCgoKAc950+/SkGDBjIn39uZenSb7JM5MuucuUqrF//O++8M4dz585Rp05dnnhimuOYW2+9nQMH9jN9+lMkJCTQv/+NTJw4iU8/ne84R69evZk6dbpjnyFDhjJmzHhWrPjOsc+8eR8xfvxoOnYMo2bNWkyb9gwnT+b4dpFFr169Wbp0JS+99DxvvDELFxcXGjduwl13jXDs88EH8xk3bhS9e/egevXqPPXUdE6UQtrQW2+9ndOnT/Pyyy8QE2PyTSxbtsoxgRO4aA4FQPv2WUdWV65cTv369fnrr4OA+VY9ffpUDhzYj4+PD3369OXjjz/N0mN49OgRhg+/g1OnTlGjRg3at+/IunUbszx3XuxvK1qbhEiQteaC1F0oPSq/JW9F/oRKbQL+1FqPdtr2F/C11jqniYY5neMX4KjWOsd1T8p8Em7JeJ578jpXeHi4Lso622vWRNCsWcn1FNg5T1TM6b6ztWvh0UfhxAnw8ICnnoIRI+D8ec2AAYrUVHjwQejbV+PrW/C/zktpQ14qSk9Bv37hbNpUPDXec+opKA7Lln3LkCGDiYzczuLFi9iy5Q9Wrco+ZahwXn99FnPnvuX40CpJJXUdr2QFvYbO05fsvQdF9Z3E3oNaXhVHT4FSKlJrHZ59e2l8DXwdGKGUuk8p1UwpNRuoBcwFUEotUEo5+rqUUk2UUncppRorpdorpRYDLYEnnfaZrpTqrZRqqJRqA3wIhNjPWRFcykTFnj3hp5/gppsgKQmmTYOwsBTatNEcOqQ5cgSeeUbTtq1m8uTjBcp5vn379ix5FezDGs5FncSVxWaz8cwz07j99jto3rwFQ4cO5+eff+S9997l1KlTpd08Uc7YgwCLxUyITkkxhZnS06XuQkkq8TkFWusvlFLVgKlATWAn0FdrfShjl3rZDrFiljEGA6nAz0BnrfVBp32qYuYIBALnga1AV6315mJ6GeWery+89Rb07QsPPqg5ccIty+MJCQpQLFlSDX9/zaOP5h5kaK05ePAgMTExQGZUHhUVRc2aNWnVqtVl9RiIsu3zzxfy11/RLFliVq0EBwfzzDPP8+yz09iyZTPvv/9xKbdQlFcyvFB6Snz4oKy5UoYPLte5c9C2rSYlJfe/Mnd3zdatKtd0yfZegaioKMAs84qPjwcgNDS0wDkX7GT4oPCk27toyHUsvKK6hs6TE63WSxtekOGDi5Wl4QNRhqxcacbv8mK1wooVuT9un9wYGhpKcnIyZ86cITk5+bICAiGEyIlzEGAfXrAXZ6rg322LVHlYkiiK0YkTkJiY9z4JCWY/IYQobc7DBzkNL8iCqcKRoKCC8/cHT0/zwZ+XfftM911Of3DOwwf2zIoJCQmO4QTpLRBCFAfnACE93dwuZ3hBZJKgoILr18+sPsibYtkyOHYMZs2ChjlkO7VPMrQPGdiDBPt2cTF//5p06HDRkF6RSE1NwtW1zBcJLfPkOhZeSV9DrTOHE+yBQc2aNUvs+cs7CQoquKpVYexYeOedVFJTL6537uqaSq9eLmzerNi0ySxnnDIlazZEpRRBQUF4e9fi4YfDSE1VPPBAOI0aKWrUcJNeglx8/PHy/He6TBVlsmZxk+tYeKV5DZOTzbwDi8UMgVauDO7usnohL9K5InjkEU2XLruxWtNQygZoXF1TsFrT6NJlN+++q/n5Zxg82OQ1eP55GDgQoqPN8VrDW295cu+9bTl0CI4cgWefhXvvbctbb3nKJCAhRKlwd4dKlcDLC2Jj4dAhOHAAzp41wYK4mPQUCCwWxe23H6JNm80sWDAYm82Fq6+OonHjaJo0CcRiCcHX15RfvvFGeOwx2LoVeveGiRMhMdHGmjVBpKZmrsM0eQ6srFkTxKuv2njssfzjz6LKiCiEEM6UMnOnwMw7OHXK9Bx4epqcLV5elJtl5MVNggLh6P6vWbMmgYErUEqhtaZp07ZZ6icAXHedyYY4YwZ89pmZY2D2v3joASA11ZX33tOMHUuueQ7AZERMTk521G2wT150d3cnJCSkSF+vEKLislrBXjE7JQXs054qVTLvUZ6eFXt4QYYPBGA+hA8fPuwIAJRSHD58+KK69WDG5V55Bb78EqpVA63z/gvKL8+B1prk5GSio6MdCUbslR6Tk5NzbIMQQhSWmxv4+JggITERDh+Gv/82PQnJyaXdutIhQYHAZrOxf/9+jhw5gre3N3feeSfe3t4cOXKE/fv3Y3OuVOKkSxcYNgwg7w/txMS88xzYkx8FBwcTHR3NmTNnMko/B8tyRiFEsVPKFIerVMn0FJw7BwcPwv795t/2XAgVgQwfCCwWCw0z1hnGxcWxaNEitNbUrVuXhg0b5lk+uXZtMx6XV54DT0+TDyEv9sAg2j57EclvIIQoeRaLeU8Dkznx5Ek4frzizD+QngIBQOvWrRk4cGCW4YOBAwfSunXrPI/r189M3MlLejr075/3PvY5BM6cqy4KIURJc3ExQwuVKpnkbTEx8M8/8N9/5otQLp2o5ZoEBQIwH8qRkZFZtkVGRub7oWzPc+DmlpbrPnXq5N2TYA8I7EMGfn5+jqEECQyEEGWB8/yDpCSz9Pqff8zQaFLSlVN/QYICcdGH8tChQy/pQ3nSJBvt22/LkufAxSUVpdKxWtP55x9F9+6wYEHOkbVSipMnT+Lt7U1YWBgAYWFheHt7c/LkSRlCEEKUGfb5Bz4+ZkjBOf/BmTPlf4KizCkQKKVwd3fPMrHPvjQw+5LEnLi4WBk48C+uvTaaSpXu4NQpRfXqVmJjPwe82Lz5JtauhSeegG++gVdfhSZNMo/XWpOWlsbx48eJjIzEy8v0Uhw/fpxatWpJvgIhRJlksWTNf3D6tJmD4O6eOf/ANefV2mWWBAUCgJCQkCwfvvbAoKAfxi1btiQxMZH27RVKmWWKmzc3wtPTk3HjTInmadPgjz+gVy944AG4/37zxwMmN3lMTAxRUVE0b16D3bujUUpJznIhRLngnP8gLc1MTtS6/E1QlOED4ZA9AChoQGDPM7Bv3z7HcMOWLVvYt28fycnJgKZ/f/j5Zxg61Czvef11Exxs3Giex83NjRo1avDRR/04caISSUlJ1KhRAzc3qZ0ghChfXFzM8EJOExTj48v2BEXpKRCF5jzcEB0d7VhWmD3PQNWqZujg5pvh0UdNkpBbboEhQzT9+qVz8uRJ7DkPbDYbJ0+epG7dujJ8IIQot9zczE1rMyExNtYMO1SqZBLBlbUMitJTIIqEc2Bgl9vwQ8eOsHYtPPKI+WNZvFhx//2t2Ly5MbGx3qSnW9i+vSUXLsivpxDiyuCcIMnLy/QY2DMonjxZdlYwyLuuKBKXmmfA3R0mTTLBQYcOmvPnXfnf/3pw/rwvx4/78PPP3XjrrZG8917lMvGHIoQQRcVeoMmeQfHCBbOCYf9+M1kxObn0AgQJCkShFWZJY6NG0KGDwmq1Z0BSzJrVjtRUV9LSXPjxx6uYNasM9a0JIUQRsq9gqFTJ9JyePVu6JZ4lKBCFltuSxuDg4HyXNJ47B++9p0lPz5yWm5aW+WuZkuLC3Lma8+eL8xUIIUTps1rN0IKPj1nKePq0CQ5KsvaCBAWiSISEhGSZQ2APDPIre7xyJVitWYOGMWO2ZbmflqZYvLhImyuEEGWaPUDw9i7ZoQQJCkSRuZwljSdOmCqKzho3Ppflfnq6WbWwaFHZXsojhBDlnQQFolT5+4OnZ95hsMWiSUqCKVNg0CDYvbtk2iaEEBVNqQQFSqnxSqkDSqkkpVSkUuqafPafoJTao5RKVEpFK6WG57DPLUqp3Uqp5IyfNxXfKxBFpSBVFl1cYNYsE0BERkKfPvDssxAXVzJtFEKIiqLEgwKl1O3AbOBFoC2wHlitlKqXy/7jgFeA54AWwHTgbaXUAKd9OgFfAAuBNhk/v1JKdSi+VyKKQn5VFt3c0hg3Du64A375Be65x4yvzZsH114Ly5eXjbW9QghxJSiNnoJJwHyt9fta6z1a6weAGGBcLvvfBbyvtf5ca71fa70YmAc85rTPQ8DPWusZGeecAURkbBdl3JQpirFjLbi6pmdUWQRX1xRcXdMZO9bClClmbkLlyvD882ZyYps2cOyYCSiGDjXre4UQQhROiQYFSik3IAxYk+2hNUDnXA5zB5KybUsE2iul7PWnOuVwzu/zOKcoUzTNmq1g4sRP8PU9j9Vqo3fvDTz00Cc0a7YCe+pju5AQ+O47eOklqFLF9CBcdx3MnHnxpEUhhBAFp/JKLFPkT6ZULeAocK3W+len7U8DQ7XWwTkc8yJwL9Af2IIJKlYAAUAtrXWMUioFuE9rvcDpuOGYHgb3HM45GhgNEBAQELa4CNe7XbgQh6enT5Gdr6I4ffoM6elpnDnjS2BgEqmpSWitsVpdqFbNL9fjzp515cMPG7JmjammGBiYyPjxf9Ox4+mSanqZlJQUh4eH/B4WllzHwpNrWHiJiXFUrly017B79+6RWuvw7NvLQ0Gk54FAzNwDBRwHPgEeBS5rgZrWeh5mCILw8HDdrVu3ImkowJo1ETRt2q1clMgsK2w2G59++imnT5/myy+78Oije/jvv0OkpKRQrVo1rr56EBZL7p1aV18NmzfDk0/Cnj2ePP10K3r2NJMR69cvwRdShuzaFUGLFt1KuxnlnlzHwpNrWDg2G+zeHUFRfk7lpaTnFJwC0jHf8p0FAMdyOkBrnai1vgfwAoKAesBBIBY4mbHbsUs5pyhblFJUrVoVNzc3br/9S3x9z5CamoqbmxtVq1YtUL6D9u3hf/8zgYCPj6mp0KOHKdFclEMK2XvWSrKnTQghiluJBgVa6xQgEuiZ7aGemJ6AvI5N1Vof0VqnA0OAFVpre0/Bhss5pygblFIMGDCAmjVrorV23GrWrMmAAQMKXDbZxQXuuw9+/dWUZ05KgtdeM8HBmuwzTi7D9u3bs9RysNd82L59e+FPLoQQZUBprD54HRihlLpPKdVMKTUbqAXMBVBKLVBKOc8NaKKUuksp1Vgp1V4ptRhoCTzpdM7ZQA+l1ONKqaZKqSeA7sCbJfWixOXTWhMZGcmpU6dQSjlup06dIjIy8pK/jQcEwJw58PXX0KwZ/PsvjBwJd911+asUtNYkJydnKfJkLwKVnJwsPQZCiCtCic8p0Fp/oZSqBkwFagI7gb5a60MZu2TPV2DFLGMMBlKBn4HOWuuDTudcr5QaAryAyWfwD3C71npTcb4WUXRiYmJITU3Fy8sLq9UFLy8vUlNTiYmJuexzduxohhQ++cSsTPjpJ/jtNxgzBh580OQVLyh7LQeA6OhooqOjAbIUgRJCiPKuVDIaaq3f0VoHaa3dtdZhzisRtNbdtNbdnO7v0Vq31Vp7aa2raK0Haa2jczjnEq11U621m9a6mdb6mxJ6OaKIuLq6EhoaSrVqfoSGhuLq6pr/QflwcYF774V16+D2200Z0jlzoGtXWLbs0hIfOQcGdhIQCCGuJFL7QJQ6pRRBQUGEhoY6PnTDw8MJDQ0lKCioSD50a9Qwkw6/+87kOYiJgfHj4dZbYc+egp3DPmTgzHmOgRBClHflYUmiqABCQkLQWl9Uermov4WHhcGKFfD55/Dyy7BhA/TqBXffDZMnm7TLOdFas3z5cmJiYhzBy5YtW4iKiiImJuaSJkQKIURZJT0Fosy4nNLLl8NqhWHDzPyCe+4x2z7+GK65Bj79NP8CTUIIcaWSoEBUWFWrmloKa9ZAp05w5gw8/jjccANs3Jh1X/uyybZt2zJpUl26dj1OdHQ0bdu2lV4CIcQVQ4ICUeE1awZffQVz50Lt2rBrF9xyiym2dPRo5n6rV6/m8OHDWY49fPgwq1evLuEWCyFE8ZCgQAhAKRgwwBRXeuQR8PAwZZm7djUJkOLjbfz777/s3RvD2bPunD3rTURELfbujeHff//FZrusjNtCCFGmyERDIZx4esKkSWb54gsvmNUKr78OixcrqlTpQ3R0HbS2oLXihx+uxmbryjXX7OS++zR5lGcQQohyQd7GhMhB7drw7rvwzTfQsiX8959iz54gbDYXtLYAitRUN9LTXdiwoRWvvy4VsIQQ5Z8EBULkoUMHWLTIJEHKTXKylblz4fz5kmuXEEIUBwkKhMjH//4Hrq55JyiyWDQrVpRQg4QQophIUCBEPk6cMBUX85KYCMePl0x7hBCiuEhQIEQ+/P3B0zO/PASKr76CbFmQRQ6yp4WWNNFClB0SFAiRj379Cpbl8N9/YeBAGDcOsqUzEBm2b9+epV6EvZ7E9u3bS7llQgiQoECIfFWtCmPG2HBzS8vxcTe3NMaOtfHAAya/wXffwbXXwosvQmxsyba1LNNak5ycTHR0tCMw2LJlC9HR0SQnJ0uPgRBlgAQFQhTAo49a6NnzAK6u6Vgs5sPLy0vj6ppOz54HmDrVwuOPw6+/ws03Q3IyvP02dOkCn3wCaTnHExWKvchVcHAw0dHRLFy4kOjoaIKDg6UEtRBlhAQFQhSAUjBvXmOiohT16yvq1IFnnlFs3aqYN68x9s+z2rVhzhxTibFdOzh9Gp58Eq67DtauhYr+ZdgeGDiTgECIskOCAiEugZ+fhYAAqFMHhg4FX9+c/4TatoVvv4V58yAoCP7+G0aMgNtugx07SrTJZYp9yMCZ8xwDIUTpkqBAiEv09dfmlh+lzCTFn3+GZ54xcxPWr4c+feDBB7MWW6oInOcQBAcHM3ToUMdQggQGQpQNEhQIcQkuZzmdmxuMGgW//w5jxpj7X38N11xjJiNeuFBcrS1blFK4u7tnmUNgn2Pg7u4uQwhClAESFAhRQIVdTle1Kjz9tKnEOHBg5mTEzp3hgw8gJaUYG19GhISEZJlDYA8MQkJCSrllQgiQoECIArEvp9u7d2+W5XR79+695OV09erBO++YyYgdO8LZszB9OnTrBsuWXfmTEbP3CEgPgRBlhwQFQhSAUgo3Nzd8fHzYu3cvCxcuZO/evfj4+ODm5nZZH2xt28KSJfDxx9C4MRw6BOPHm3kIv/9+ee2UbIFCiMKQoECIAtBak5KSQnx8PAkJCWitSUhIID4+npSUlMv+8FUKevWCH36AV14xKZX//NOsUrjrLtizp+DnkmyBQojCkqBAiAJQShEWFoa3tzfJycmcPXuW5ORkvL29CQsLK3QXuIsLDBtmegimTAEfH/jpJ+jZEx56KP+VClprDh48SFRUlGPJ35YtW4iKiuLgwYPSYyCEKBAJCoQoAK01kZGRxMXF4e7ujp+fH+7u7sTFxREZGVlkH7peXiYIWL8e7rnHBAtffWVWKjz3HJw5k3cbU1NTiYqK4syZM0RFRZGamioBgRCiwEolKFBKjVdKHVBKJSmlIpVS1+Sz/51KqW1KqQSl1DGl1GdKqUCnx0copXQON4/ifzWiInCeU+Dt7Q2At7d3oeYU5KVaNXj+eYiIgEGDzEqF994zaZPnzIGEhIuPqVWrFi4uLiQkJJCWlkZCQgIuLi7UqlWrSNsmhLhylXhQoJS6HZgNvAi0BdYDq5VS9XLZvwvwKfAJ0AIYBDQHFmbbNQGo6XzTWicVw0sQFZDznALnxDuFnVOQn6Ags2zxf/+Drl1NToOXXzbBwYIFkJpq9rMPbwQEBKC1dtwCAgKKZHhDCFExXFJQoJTqqJR6Rin1P6XUdqXUPqXUBqXUfKXUSKWUbwFOMwmYr7V+X2u9R2v9ABADjMtl/07AEa31G1rrA1rrjcAcoEO2/bTW+pjz7VJemxB5Ke3EO61aweefw+LF0Lo1nDgBTzyRuYwxPd0Mb5w4cQKllON24sSJIh3eKAqyQkKIsqtAQYFS6m6l1A7Mt/qHAS9gH7AJOIv5gP4AOJoRIDTI5TxuQBiwJttDa4DOuTz970BNpdQAZVQHhgCrsu3nqZQ6pJQ6opRaoZRqW5DXJkRBlYXEO9dcAytXmqGEhg3h4EGzjPGGG2Dt2jRSUlL58svbOHvWD09PT1JTU/nvv/9KrH35kRUSQpRtLvntoJTaDtQAFgDDgW06h9BeKVUF6A8MBXYrpUZorb/Itlt1wAocz7b9OHB9Ts+vtd6glBqCGS7wzGjzWuBup92igXuAP4FKwETgd6VUa631vvxeoxAFVRYS7ygF/fubGgpffgmvvQa7dil27epEnTpBJCb6obULp0/3xsvr5zIzdOCcAApMdUR7AqimTZuitS4zbRWiolL5dd0ppSYC713K+LxSqjUQqLX+Ptv2WsBR4Fqt9a9O258Ghmqtg3M4V3NMEPAm8D1mvsBMTHAyPJfntwLbgJ+11g/m8PhoYDRAQEBA2OLFiwv60vJ14UIcnp4+RXa+iigpKQ4PD7mGBZWcbOG772qzaFFd4uPdAGjb9jg9ehymVq04fH3TqFMn3/i/RCQmJpKcnMzx4+b/t3r1C1itFtzd3fH09Czl1l1MfhcLT65h4SUmxlG5ctFew+7du0dqrcOzb8/3nUJrPftSn0xr/SfmW3t2p4B0ICDb9gAgtzkATwCbtdYzM+5vV0rFA+uUUk9qrY/k8PzpSqktQONc2jcPmAcQHh6uu3Xrls8rKrg1ayJo2rQbVmuRnbLC2bUrghYtupV2M8qVH36A1FSb4/7WrQFs3Wr+zFxdbYwfb+HRR0urdYZ9qODAgWjeeacdFouVu+5ahre3N8HBtWnePLzM9RTI72LhyTUsHJsNdu+OoCg/p/JSoqsPtNYpQCTQM9tDPTHzFXLihQkknNnv59h+Zd5ZQjATGIW4op07B3PnalJSMv8cunY97Ph3aqqFOXM0u3eXQuOcOCeAstk0aWlpRZoASghReAUOCpRSg5RSHyulNmWsOtiX8e+PlVKDLuE5XwdGKKXuU0o1U0rNBmoBczOeZ4FSaoHT/suBgUqpcUqphhlLFP8PiNJa/5txzHSlVO+Mx9sAH2KCgrmX0C4hyqWVK7moZ+rGG//Jct9mU/TpA9OmmZULpcE5AZTFonB1dSmWBFBCiMtXkImGvpgP5s7Av8Au4K+Mh/2AbsDdSqkNQH+t9dm8zqe1/kIpVQ2YipkfsBPoq7U+lLFLvWz7z1dKVQLuB14DzgM/AY857VYVMxwQmPH4VqCr1npzfq9PiPLuxAlITMz/W3Z6Onz0ESxaZLIljhsHfn4l0MAMzgmgrBlRjLe3N97e3sWSAEoIcekKMvvoNcwH9bVa63U57aCUuhr4DJgF3JvfCbXW7wDv5PJYtxy2zcHkJsjtfA9jlkoKUeH4+4OnpyYhIfcPVS8vzZgxit274fvvTenmBQtg1CgYPRoqVy7+djongPLy8sLHpxLBwcFER0c7EkBJYCBE6SrI8MGNwOTcAgIArfVvmG/ug4qoXUKIAurXz/QC5CU93QQAH31khhu6d4e4OHjjDejYEWbPNveLk3MCKB+fSkDJJoASQuSvIEGBOyZBUX7OAW6Fao0Q4pJVrQqjR9twcUnN8XFX11RGj7ZRpYq536YNfPYZfPstdOoE58/Dq6+af7/7LiQmlljThRBlTEGCgg3AUxnj+jnKeOwJcl9BIIQoRo89ZqV374O4uKShlFma6OqagotLGr16HeSxxy5eI9u+PSxZAl98AeHhpgLjCy+Y4GDevKIPDuzJi6Kjo4mLiwXMEsXo6GiSk5NloqEQZUBB5hQ8BEQAh5RSKzETA+09B76YIkX9MMsEuxd9E4UQ+dOMGnWONm2+4O23b8BqTad7919o1+4E7do1ATSQc/f81VebAksRETBrFmzbBs8+C3Pnwv33w513gkcR1Bu1p4WOi7Ny7JgmPT2OBQvSufnm5oSHt5XhAyHKgHx7CrTWu4HWmCqFnTDVDedm3F4EumBSILfRWu8qvqYKIXKjlOL48ePAecaM+YwaNU7Ttu0e4DzHjx/P9wNXKTPPYMUKmD8fWraE48fNEsYuXcy25OTCtVFrmDlTce+9bTl9uhJnz/qwYkUY997blpkzFdJRIETpK1CeAq11jNb6Ya11I8AbqJ1x89FaX5XxWNmpuiJEBZOens7JkydJSkqiUqVK+Pv7U6lSJZKSkjh58iTp+c1EzKAU9OxpSjV/+CE0bw7HjsFTTxU+OJg5E+bN0yQnK7S2AIqUFFeSkxXz5mlmzsz3FEKIYnbJGQ211kkZQUKM1lqmJAlRBlitVgICAvD19cVqtXLmzBmsViu+vr4EBAQ48gIUlFKm4NL338P770OzZhATkxkcfPLJpQUH9qyLueVTSExUzJ2rOX/+kpophChi+QYFSqmbL/WkSqmaSqmOl9ckIcTl6Nu3L8OHD8diMX/WFouF4cOH07dv38s+p8UCffvCmjVm8mHTpiY4ePLJS+s5MFkX8x7CsFoVK1ZcdlOFEEWgID0Fc5RS25RSY5VSeeY/U0pdo5SaB/yNSTMshCghWmuioqKybIuKiiqSWf0Wi8mHsHatCQ6cew46dzb5D5LyqKNqsi7m/RyJiaWXglkIYRQkKGgMfAM8BxxXSm1XSn2qlHpdKfWSUmquUmqNUuoMZpVCY6BnRiVCIUQJsFcgjI6OJjg4GD8/P0e2wC1bthTZcj97cLBmTeawwrFjZkJi587wwQc5f/jbsy7mxdNT4+9fJM0UQlymgqw+SNBaPwfUAYZhqhyGAfdgUgsPAKzAbKCF1rq71lryFQhRgpyzBYaHmxLpxZkt0HlY4YMPoEULs1ph+nST52DuXEhIyNy/oFkX+/cv0mYKIS5RQfIUAKbssVLqR2CZ1jqPjkIhRGkICQnJUj/AnhegONf/Wyxwww1mUuLatSZt8vbt8Pzz8PbbMGYMjBhhsi6OHWtWGeQ02dDTUzN6tHJkXRRClI6CTDS0KqWeUUqdBY4DF5RSXyulqhZ764QQlyR7AFBSCYGUgl69YNUqU2ipbVuTIfGll6BDBxMs2IsvubnZMrIualxdU3BzszF6NEyZUiJNFULkoSBzCsYCT2PKEc8ClgEDgTeKsV1CiHJIKbjuOli+HD7/3AQE586ZTImdOmmOHo1hxIjPqFLlHJUrX6B7918YP/59unffgsm6KIQoTQUJCkYB72ute2itH9Na3wpMAIYppaQAkhDiIkpB167wzTemvsI110BsrGLJklp89NEdaO1Bo0aV6d//AlZrfJGtkhBCFE5BgoKGwFfZtn2BmVxYv8hbJIS4onTqBIsXw7JlmqZNj5CW5sr5815s3QorV15DQkI1vLy8pPaBEGVAQYICH+BCtm2xGT9zrZwohBDOwsMVP/xQm9de24m3dxJaw/ff+/Pee8P5449h7NtXdoKC7L0W0oshKoqCpjmurZRqaL9heg8u2p7xmBBC5GjHjh1cdVUi/v7nqFPnFKGh/wDw9deK7t3hvvvgzz9Lt43bt2/PktvBngNi+/btpdswIUpAQZckLsll+9Ictl1aknUhRIWgtSY5OZmoqChstlq4ukL//j/QpUsl9u27np9/rsHq1YrVq80chAceMAmRSnJUwd7G6OhoALy8yJIUynnJpxBXooIEBSOLvRVCiArH/tnq6xvL2LGHmDGjBh98YJY0rltnbm3bmuCgZ0+TE6H426QcyZ+io6OpX9+LQ4eOOJJCSUAgrnT5BgVa609KoiFCiCubPetiaGgon31mOhS9vb0dWRcDAxVTp8L998PHH5vSzVu3wj33QJMmMH48DBoErq7F387w8HBHbwEgAYGoMEog9hZCCKNVq1YAjBnzA2PG/HDRdjDZDx9+GDZvhueeg1q14K+/4KGHzHDChx9mTaFc1OxzCJwVZf0IIcoyCQqEECUie9GmoUOH5lm0ycsL7r0Xfv/dZERs3Bj++w+efhrat4fXXjNZE4uzjcVVWEqIskqCAiFEichetMneTZ9f0SY3N7jtNvjpJ9NL0LYtnD0Lr79ugoNp0+DIkeJpIxRvYSkhyhoJCoQQJSYkJCTL+Lw9MAgJCcn3WIvFFF5avtxkSezRw5Rp/ugjM6zwwAOwa1dxvwIhrmwSFAghSlRhizYpZbIkfvqpqcx4881m+zffmKJMd95pVi5cTk+/85JE+7wC+3BCcnKyDB+IK16pBAVKqfFKqQNKqSSlVKRS6pp89r9TKbVNKZWglDqmlPpMKRWYbZ9blFK7lVLJGT9vKt5XIYS4HEWZLbB5c5gzB9avN/MPPD3hl19gyBDTq7B0KaSlFfx8Sinc3Nzw9vYmOjqaM2fOEB0djbe3N25ubjJ8IK54JR4UKKVuB2YDLwJtgfXAaqVUvVz27wJ8CnwCtAAGAc2BhU77dMLUY1gItMn4+ZVSqkNxvQ4hxKUrrmyBdeqYlQqbN5sSzNWrw86dMGECdOkCH3wAcXH5n0drTUpKChcuXOCdd7pz8mRl4uPjuXDhAikpKdJTIK54pdFTMAmYr7V+X2u9R2v9ABADjMtl/07AEa31G1rrA1rrjcAcwPkD/yHgZ631jIxzzgAiMrYLIcqA7F3zzjP9i6pr3s/PLF3cuBFeeQUaNjSTEKdPN5MSX3oJjh3L/XilFCdOnCA+Pp70dI3WmqSkJOLj4zlx4oT0FIgrXokGBRmllsOANdkeWgN0zuWw34GaSqkByqgODAFWOe3TKYdzfp/HOYUQJcx5tUF0dDQLFy50LP0r6uRAnp4wbJgZSvjoIxMQnD8Pb70FHTuawGHPnouPS09P58SJEyQlJWW0GUdgcOLECdLT04usjUKURaoku8OUUrWAo8C1WutfnbY/DQzVWgfnctzNwHzAE5OFcS0wUGudmPF4CnCf1nqB0zHDgfe11u45nG80MBogICAgbPHixUXzAoELF+Lw9PQpsvNVRElJcXh4yDUsjLJ+Dc84JRjw8/Mrkefcs6cyS5bU4fffa2CzmQAkNPQMgwcfJizsrCPtcmJiInFxcZw6VZXAwCRSUhKwWCz4+Pjg6elZIm29kpT138XyIDExjsqVi/Yadu/ePVJrHZ59e0ELIpUapVRzzHDB85hv/zWBmcB7wPDLOafWeh4wDyA8PFx369atSNoKsGZNBE2bdsMqZaEu265dEbRo0a20m1GuldVraB8yOHQoM7GAh0fdEkkj3KIFDB4MBw+aOQaLF0NUlB9RUX40bQqjR8PAgZodO7awd+855swJY/r0raxe7UGHDqcIC6tO8+aS7vhSldXfxfLCZoPduyMoys+pvJR0UHAKSAcCsm0PAHIb6XsC2Ky1nplxf7tSKh5Yp5R6Umt9JOPYSzlnsUpJMd2XQohM2bMFhoeHO+5DydUXCAqCF16ARx6Bzz4zdRb27oVJk+CllxQBAU3Zs6ctNpuF9HQrP/98DT/9ZGHw4FOEh0tAIK5sJTqnQGudAkQCPbM91BOzCiEnXphAwpn9vr39Gy7xnMXG1RVcXMxMZ5moLESmy81oWFx8fU3Cow0b4M03zfLGkydh585KpKe7oLWFY8e8SE11Iy3NhW++qc6rr9pKtI1ClLTSGD54HfhUKbUZM4lwLFALmAuglFoAoLW2Dw0sB95XSo0jc/jgTSBKa/1vxj6zgV+VUo8DS4GbgO7A1SXwerJQCurWhdOnzc3LywQJQgiT0VBrfVFGw9Lsknd3h1tvheuvNymUU1MzH5s1q73j3ykpLrz3HowdC1WqlEJDhSgBJb4kUWv9BWap4FRgG+aDu6/W+lDGLvUybvb952OWMd4P7ASWAH8BA532WY9ZkTAC2I6Za3C71npTcb6W3FgsUKOGWTudnGxSsQohjMJmNCwuq1ZdXJbZ1TVrJ6XWJnOiEFeqUsloqLV+R2sdpLV211qHOa9E0Fp301p3y7b/HK11C621l9a6ptZ6aMZcAud9lmitm2qt3bTWzbTWpf6n6+Njxi9lOEGIsu/EiYsD+GnTNmS5n5Ji5iO89JKp2CjElUZqHxQzV1cznODnB7Gxl5ZyVQhRcvz9L54g7OWV9Q/WYoGkpMx8B+PGwZYtJR/wF2WqaCGcSVBQAiwWk3a1bl0ZThCirOrXD9LT8/5wdXHRLFoEAwaY+999BwMHQv/+ZlghJaX421lcqaKFAAkKSpS3txlOcHMzvQYS3AtRdlStCmPHKjw9c/7D9PTUjBunuPZamDvXrFq4/35z3LZtZiVDhw7w+utmKKI4lESqaFGxSVBQwlxdzQTEGjVMYOA801kIUbqmTIHRoxXu7hqlzPJDN7dU3N01o0crpkzJ3Ld2bXjiCTN88Oqr0LSpCQZee82kVX7gAdi6tWjbV5KpogtLhjjKJwkKSoFSZo5B/fpmjkFCQmm3SAgB5m+zRYuVTJ68iGrVYrFabfTvH8nkyYto0WIlOX3menrC0KHwww/w5ZemZHNamhlO6N/f3L7+2gwdFk0bFWFhYVm2hYWFlamAQIY4yi8JCkqRp6cJDDw94cIFk85SCFF6MgsiHcfHJwEPDwuhoXtISjqeb0EkpUyZ5g8/hPXrzSTEqlVNb8GDD5reg1dfhZiYwrXxzz//ZNmyZVk+cJctW8aff/5ZuBMXkexDHIAMcZQjEhSUMhcXqFULataE+PiSmagkhMiZ1WolNDQUX19f0tLSSU1N5cKFC/j6+hIaGoq1gEVN6tWDqVPN0MLMmdCsGZw6BbNnm3kHY8aY8s6X+vlos9nYv38/hw8fxsfHhzvvvBMfHx8OHz7M/v37sZWBbxbZhzjOnDlTZoc4xMUkKCgDlDIZ0oKCzJtEfHxpt0iIikspRYsWLbJsa9GixWV9mHl6wp13wtq1ZjjBvmphxQq45RaTRXHBgoL/zVssFho2bEjdunWJj49n0aJFxMfHU7duXRo2bIjFUjbe0nfs2AGQpTfDebsou8rGb5AATLrV+vWhcmUznCCl24UoWVprDh48yIYNGxgy5Cv8/M5is9nYsGEDBw8evOyub6VMD8HcubBpEzz0kJlsvHevmawYFgbTpsHffxfkXIratWtn2Va7du0y8w3cPnwQFRVFQkICWkNCQgJRUVEyfFAOSFBQxlgsEBBgVigkJUlOAyFKks1m4/Tp06SlpWGxWHBxccFisZCWlsbp06eLpHu+Zk2zymHzZnj7bWjXzqxE+ugjuPZauO02k3I5p0RnWmsOHDjA5s2beeed7rz33vXEx8ezefNmDhw4UCY/cMtIrCIKSIKCMsqeItme06AMDBUKccWzWq34+/vj5+eHUoq0tDSUUvj5+eHv71/gOQUF4eYGgwbB0qXw/fdmBYOnJ/z+O4waZXoW3ngDjjkVgNdaY7PZSE1NxWYzw42pqakZ921lIiiwV8MMDQ3F29sbAG9vb0JDQ0ulGqa4NBIUlGH2nAb+/qZ2gkxCFKL49e3bl5YtW2bZ1rJlS/r27Vtsz9mypVmZEBkJzz0HV11lgoFZs8yqhdGj4bffQCkzp8DfvzGxsV6cPu1JVFRT/P0bl6k5Ba1atbqk7aLskKK+ZZxSpu67p6cpwBIfbzIjCiGKnn09fVRUFO7u7litLri7uxMVFQVQ7LPnq1SBe++Fe+4xPQaffGJ6EVauNLeGDaFKlYZs394Sm02hteKnn7ry449WBg8+xaxZpd9d75xlMTg4GC+veDw86hIdHQ0U/zUUhVM2wkqRLw+PrJMQpbCSEMUjJiORQGhoKNWq+REaGpple0lQCq6+Gt5/38w9eOQRCAyE/fth69ZKpKdb0doCKFJT3UhLs/LNN9V49dXSH2e0Dx/YlyACjiWKMnxQ9klPQTlitZpJiN7eJgFKaurFVd2EEJdPKUVQUBA1a9YkPDyc3bt/cXywldYHWmAgTJoEw4dDWJgmLS3nNqSkuPDee5qxY02PQ2kKCQlBa+24XvbcBRIQlH3SU1AO+fhAgwam90AyIQpRtEJCQrJ8gNk/0EJCQkq1Xd9/D25ueX+opqUp3n23hBqUj+wBgAQE5YMEBeVU9kyIRZVXXQhRNj/QTpyAxMS8Vxekp8OcOab+wmefmQnKpUVrzS23wD//ZN4va6Ro08UkKCjHnDMhKmXeAOR3Wogrk79//sOFLi4aLy/YsQMeewxCQ+HRR+HPP0v2vcFeEAnKbkEkKdqUMwkKrgDu7ibXup+fyWkgSxeFuPL06wfp6Xn3WFitit9/N70FHTqYXsSFC6FvX9N78MknZsixODkXRIqLiwXKXkGk7EWbnFdMlJU2lhYJCq4QFgtUr25WKNhs5s2gAv9eC3HFqVoVxo4FN7eclx65uaUxdqzpUbj5ZlNrISLC5DioWhV27oQnnzS9Bw8/DH/8UTzvEc4FkRISEkhLSytzBZGyF21auHBhmWtjaZGg4ApjL8dcubLpNZCli0JcOSZNSic8PAqrNQ2lbIDG1TUVqzWN8PAoJk3KWjClcWOYPt0kRXr7bejc2aRO//JLk02xe3d47z04c6Zo22n/0HVW1j5sy0MbS4MEBVcg+9LFunXNUILUTxDiymCxKPr1282YMXOpUuUclStfoFu3CMaMmUu/fruxWHL+QPPwMEHAV1/BunUwYYLpWdy3z2RQDA01vRC//FI0q5ns3fHOnMfvy4Ly0MbSIHkKrmDe3mYS4smTcP68uV+EqduFECXMYrEwfPhwli5dyj33fOzY3qBBAwYNGlSgNMcNG5phhClT4IcfYNEiM8ywfLm51akDt99ubtmKMRaI1prly5cTExODl1cwLi4uBAcHExUVRUxMDAMGDCj1b+PZsy6Gh4c77kPF7jGQnoIrnIuLWbZYu7ZUXRRCZHJ1hRtugE8/NeWcJ082vYtHjsBrr5mJikOHwnffXd6S58REN06fdiU1FdasqU5iolvRv4jLlD3rovMcg4qedVF6CiqISpXMfIPjx81cAy8v6TUQoryx2WwsXbqUgwcPopTCarWSnp7OwYMHWbp0aYF7C7KrVctMPpw40dRcWLwYVq82PQgREWai4i23mN6DFi3yO5ti794BvPOOJi3NDGF+8EEdtL6b8eMVAwaUjQ9cybqYs1LpKVBKjVdKHVBKJSmlIpVS1+Sx73yllM7hFu+0T7dc9mlaMq+ofHBOeJSYKL0GQpRHJ0+eBCAoKIgHHniAoKCgLNsLw2KBa64xkxIjI+GFF0wQcO4cfPgh9OplljZ+/DGcPZvzOWbOhHnzFKmploz6DJCS4kpqqoV58xQzZxa6mUWmLCapKm0lHhQopW4HZgMvAm2B9cBqpVS9XA6ZCNTMdtsPfJnDvi2y7bevSBt/BVDKrExo0MDkN5A0yUKUHxaLhbp16xIUFOToFRg0aBBBQUHUrVu3SEsn+/rCyJGwZo1JsTxihOkx2LEDpk7NnJz4888mkyKY4GHu3Ny/cCQmmsfPny+yZooiVhrDB5OA+Vrr9zPuP6CU6gOMA57IvrPW+jzg+BVSSnUBGgJ35XDuE1rrU0Xf5CuPq6uZZ3DhghlSsFqluJIQ5UHfvn2x2WyOAMAeGBRlQJBdy5YwYwZMm2YChC++gF9/zZycGBgIgwebVQ5WqwZy/8ZttWpWrFAMHVpszRWFUKJBgVLKDQgDZmV7aA3QuYCnGQXs0lqvz+GxLUopd2A38ILW+ufLbmwFYE+T7OUFx46ZAMHHx3QhCiHKruwBQHEGBM48PGDgQHM7ehSWLDE5Dw4ehLfesu+Vdxd8YqLixInibmnBOAdXOd2viFRJrslUStUCjgLXaq1/ddr+NDBUax2cz/FVgBjgCa31bKftwUB34A/ADdOLMDbjedblcJ7RwGiAgICAsMWLFxf2pTnExcXh4+NTZOcrSenpmcmOSvPvIikpDg+P8nkNywq5hkVDrmP+tIZdu6rw/feB/PJLDZKSzHdNF5d0WrY8RZ8+B/HzS3S8p1gsZm6Tn18pNho4f/4CWtuoWrWqY9u5c+dQykKVKpVLr2E5SEyMo3Llov097N69e6TWOjz79vIWFEwAXgNqaa3zzMGllFoFpGmtb8xrv/DwcJ09gUVhRERE0K1btyI7X0lLTTW9BvHxpZfXYNeuCFq06FbyT3wFkWtYNOQ6Xpr//oNOnTRpabn3Fri7a7ZuVVSpUoINy8Zms7Fs2TIOHz7M11/fQfXq1Rk2bCmHDx+mbt26DBw4sMz0GNhssHt3BL16dSvS8yqlcgwKSvpVnwLSgYBs2wOAYwU4fhTwdX4BQYZNQONLa55wdTXJS2rVkhUKQohLU6sWTJig8PTM/LJZvXpCln2qVFF8/TWcPl3SrctksVgYOHAgderUITk5maNHj3L48GHq1KlTpgKC0lCir1xrnQJEAj2zPdQTswohV0qp9kBr4P289nPSBjPUIC6R8woFDw8z1yA9Pf/jhBBiyhQYNUrj6pqOUjYee2wzVmsqFosNNzfNiRNmwmJoqFndsHLl5SVHKqydO3dSt25dR1EorTV169Zl586dJd+YMqQ0Vh+8DnyqlNoM/I4Z+68FzAVQSi0A0FoPz3bcaGCf1joi+wmVUg8BB4FdmDkFw4BBwC3F0P4Kw9XVRP6xsWaFglJmUqIQQuRGaxuBgZ8yenQcixbdiYuLjZ4913HVVXvw969CjRp38vXXFiIizHLHNWvMhOf+/c0KhnbtzHtN8bbRlE7etGkTMBCtFTabjU2bNtGhQ4csSY1KkxneV1nuF3e7SryPRGv9BfAQMBXYBlwN9NVaH8rYpV7GzUEpVQkYAnyQy2ndgJnAdmBdxjn7aa2/KeLmVzjOvQbe3mZ9sVReFELkJSkpCQ+PZPz80vDwsNCv3zk8PJJJT49nwABYsMAkR3rmGWjVyryvLFwIN91kKjnOnAn//FN87dNac/jwYVJTU1HKgpubC66urqSmpnL48OEyURRp+/btWQo0aa3ZsGEDkZGRxfq8pZLmWGv9DvBOLo91y2FbLJDr1Eut9avAq0XVPnExew0FHx/Ta5CSIr0GQoiLWSwWOnbsyD///IPW6aSlpZGQkEBQUBBXXXWVY7y+Rg0YNcrcoqPh66/N7d9/4c03za1tW7j5ZrjxRlPVsSjb6OHhQf369XF1NbOpq1atipeXFx4eHqU+p8DekxEdHY3NZt5rN2zYwM6dO2nZsmWx9hhU3NkU4rJUqmQqL1aqZOYapKaWdouEEGVN69atGTRoUJZtgwYNonXr1jnuHxxsKjdu3mwSI912m+mZ3Lo1c/7BXXfB0qVFN/n5hhtuwNc3iAsXPDl71ptNmxrh6xvEDTfcUDRPUAjOBZqio6M5e/aMIyDo1KlTsQ4hSFAgLpmLCwQEQL16ZgJiXByUgd42IUQZobW+qJs7MjIy3255qxWuvhreeAP+/BPeeQeuu84MY/70E0yYACEh8MADJr3y5Q5l2myahx/+jxEjQjh9ujJnz/qwcmU7RowI4eGH/8NmK/03NHtg4Ky4AwKQoEAUgpcX1K9vcqTHxpohBSFExaa1ZsuWLURHR+Pl5YWLi4vjG6/zGHl+PD1N5sQFCyAqyqRZDg2FhAT45hsYNgzCwkxPQmTkpX0xmTVL8d13NUlLc0FrBSiSk62kpbnw3Xc1mTWrbEwyzJ5DZ8OGDcU+30GCAlEoVqsZG8wo1EZsrBRYEqIiU0px8uRJvL298fGpBEBYWBje3t6cPHnysr7pVqtmCjItXw6//QaTJ0PDhnDqFHz0kZlz0KULvPoq7MunDJ69aFNycs4ff8nJllIv2uQcWAUHB+Pr60fLli3ZuXNnsQcGEhSIIuHhYYYT/P1NJC9Jj4SomLTW1KhRg7i4OB5/fAtXXWWGDuLi4qhRo0ahP9AaNICHHzYFmVatMhMVAwLg0CGYPRu6dYOePc3Qw9GjFx+/cqW9aFPuTNGmQjWzUJRSuLu7ExwcTHh4OEqZoYOWLVvi7u5erEMIpbL6QFyZLBYzlODtbVYoxMaaIYbSSJUshCgdzmPh0dHR1K/vxaFDR2jatGnGB1zRfKApBa1bm9u0abBhg5mIuGoV7N5tbjNmmLwHgwaZPAjVq8OJE6YoU17KQtGmkJAQtNYZwxvmusqcAlEuubmZVMk1a0JSkuk5EEJUHDlNkivKgCA7+wTFWbPMigX7kIKHB/zxBzz1lJmPcOedpkfBwyPvngJPT42/f7E09ZJkv14lkVBJegpEsbAnPfLyMuN+586ZiUOurqXdMiFEcctpktyWLVuKNTCwc3eH3r3NLS7OZExcuhR++cXcjLzbkJ6u6N+/WJtZZklQIIqViwsEBpoA4dgxk+Pc27v405gKIUqH1prly5cTExNDaGgoXl7xeHjUJSoqipiYGAYMGFBiKYR9fEzyo5tvhjNnYPVqEyCsX581fbAzN7c0xoyxUKVKxexIr5ivWpQ4Ly+zQqF6dRO9JyWVdouEEBWJnx8MHQpffQWRkYrmzU8A2YcRNNWrJ9CmjaVUijSVBRIUiBJjsZg/zKAgM4wQGyvVF4W40iilGDBgAKGhoURHR3PmzBmio6MJDQ0t0V6CvAQEaF588RBPP/0F/v5JVKmiqVEjGVD8919l7rnHTGCcOBF+/LH0crBkX6lREjUZJCgQJc7dPXMiYnKymYgoGRGFuHKU9ETDS2XPpeDv707Dhu40a6aIinJl+vQ13HRTNC1amC8tS5bA8OHQpo1ZBlmSAUJpFUSSoECUCvtERHsdBcmIKMSVI7eJhmWh+iBk5lKIj48nLi4WMGmZvbxOcPfdF/j+e80vv8CUKdC0qUlk9OWXJRcgOBdEMtctsyBScnJysV5HmWgoSpW9jkLlypm5DYQQ5Vf2bHz2iYbR0dFA2egxUErh5uaGt7c3CQkJJCQkEB0djbe3N25ubiilaNQIHnrI3P7+22RTXLEC9u41AcKXX0KVKtCrl8mBcM01phe0qNpn72l5+OG6PPzwTtzd/6JFixZSEElUDJ6epo5CQIBJkyy5DYQon7Jn4wMcFf+KOxtfQWmtSUlJIS4ujvSMiU2m1yCOlJSUi76JN2qU2TsQEWHSLDdrZnoQvvoK7r7bzEF44AH4/vuimUi9Y8eOjLZmthkgKiqq8CfPg/QUiDJDKaha1SQ/8vY2f3CS20CI8seejc8eANi/+ZaFgABMe8LCwjhy5AhDhnwNmPlN/v7+hIWF5dnOxo1NgPDww6YHYcUKkzp5925TqOmbb8z71/XXQ9++0KOHWX11KbTWHDx4kH///Zf09FoAxMXFsW7dOho2bEhoaGixXUvpKRBljlJmEqJzaWYpsiRE+VIa2fgKyl7aOT4+Hnd3d3x9fXF3dyc+Pr5AJZ7t7EMMa9fCunXwxBPQqhXEx8OyZTBmjLk/apQJFi5cKHj70tPTSU1NdfQUpKamkpqaSlpamswpEBWTPbfB+fNw8qRJZerpWdqtEkKUd/bVB6mpqXh6eqKUwtPTk9TU1Muu5NiwIdx/v7n9+6+pwbBypSn7vGqVubm5mXTMffuauQjVquV8LovFQsOGDTPuaUBjs9m46qqraNKkCRZL8X2fl54CUabZiyw1aGCChAsXIDW1tFslhCjPbDYbycnJXLhwgUqVKnHnnXdSqVIlLly4QHJyMrZCdk3Wqwdjx5rJiZs3w3PPQadOkJYGP/1k5iS0aQODB5s6Df/9d/E5QkJCqFOnTpZt9evXJywsrFBty48EBaJccHXNOqQQGytDCkKIy2P/Jl6vXj3i4+NZtGgR8fHx1KtXj4YNGxbpN/HateHee03Og61b4ZVXoHt30/O5YYOp8NiuHfTrB2+9ZeYp2FdwREVFYbEoQOHh4cGmTZtYv369DB8IYZd9SMFiufRJPEII0bp1a1q1asWiRYsc2wYOHFisXfPVq8OwYeZ2/rxZzbBqFfz8M2zbZm4vvWQmM151VRXq1KmOj08lXF1dCAvryMaNGzl69GixtQ8kKBDlkH1IoVKlzAqMHh5mvE4IIQrCPtnQWWRkZImtkqhSJbNYU2KiWeq4ejX88APs26fYt68J0ASrVbNoUSP+/bc2XbtaqVHDRfIUCJETewXG+vXNfamlIIQoiOwJloYOHUpwcLBTBsGSzbzo6Qk33AD/93/w55+waBGEhABo0tMV69bVYdYsxU03tWfp0rBiTQsvQYEo9+yJj+y1FOLjpZaCECJ32RMs2fMolIUES66usGkT7NsH9vLOPXocIjUVkpIUr78OTz9dfM8vQYG4IthrKTRoYBIgxcZKeWYhRO5CQkKyDBXYA4MQ8xW91Jw7B3PnmiEFu759Dzj+nZAAs2aZ/YqDBAXiimK1Qo0aJjhwdZUljEKI3JXFBEsrV5r3sbxYrSa9cnEolaBAKTVeKXVAKZWklIpUSl2Tx77zlVI6h1t8tv2uzThXklJqv1JqbPG/ElFWubtD3brmJlkRhRDlxYkTkJiY9/hnQoLm2LHief4SDwqUUrcDs4EXgbbAemC1UqpeLodMBGpmu+0HvnQ6ZwNgVca52gIvAXOUUrcU08sQ5YS3t1nCWKOG6XZLSJD5BkKIssvfHzw98+6x8PJSBAYWz/OXRk/BJGC+1vp9rfUerfUDQAwwLqedtdbntdbH7DfgKqAh8L7TbmOB/7TWD2Sc833gE2By8b4UUR7YlzA2bGiWMcbFyXwDIUTZ1K8fpKfn/c0lPV1z663F8/wlGhQopdyAMGBNtofWAJ0LeJpRwC6t9XqnbZ1yOOf3QLhSSmrsCcAsYQwIMD0HMt9ACFEWVa0KY8cq3N1zXl/t4ZHO5MmKqlWL5/lVSa7HVErVAo4C12qtf3Xa/jQwVGsdnM/xVTC9Ck9orWc7bf8L+Exr/ZzTtq7AL0AtrXVMtvOMBkYDBAQEhC1evLjQr80uLi4OHx+fIjtfRVRS19BmM7nItTa9CVeSpKQ4PDzk97Cw5DoWnlzDy3PwYBKxsR5oDXXqxHH0qDcAVaokcdVVha8M171790itdXj27eUto+EwTO/Gp4U5idZ6HjAPIDw8XHfr1q3wLcsQERFBUZ6vIirJa2izmR6DkyfNskZPT/OzvNu1K4IWLbqVdjPKPbmOhSfX8PKkpf3J77/v5O23+zJ9ehS//ppA585Had06lPDwiz7Li0xJfz86BaQDAdm2BwAFmUs5Cvhaa30m2/ZjuZwzLeM5hciRxWK66xo0MGlH4+Kyrg8WQoiSprXm0KFDWCyxVKqUgNWqueaavVitsezfv79YMy6WaFCgtU4BIoGe2R7qiVk5kCulVHugNVknGNptyOWcW7TWMmos8uXikpnfwMPD9B6kpJR2q4QQFVlaWpqj51IpRWoJTIIqjZHU14ERSqn7lFLNlFKzgVrAXACl1AKl1IIcjhsN7NNaR+Tw2FygtlLqzYxz3geMAGYVyysQVyw3N1Pq1LmeQlpa6bZJCFHx1KxZE1fXrPPk3dzcqF27drE+b4kHBVrrL4CHgKnANuBqoK/W+lDGLvUybg5KqUrAEOCDXM55AOgLdM0451PAg1rrr4v8BYgKwV5PoVYtExRI8iMhREmx12YIDQ3FmpHe0MfHhw4dOuDh4VGsmRdLZaKh1vod4J1cHuuWw7ZYIM/pq1rrX4DQomifEGAmHFaqZBIgnT9vyjQDeHldGZMRhRBlV6tWrdiyZctF20NDi/dj7gpbiCVE0bMnP2rQwPyUyYhCiOKktWb58uVERUXh6emFq6sLLVq0YNOmTXz11VfFOtGwvC1JFKLUuLhA9eqmGuPp06b3wM3NTEwUQoji8MIL0Rm9kyXTPSlBgRCXyM0NatY0vQYnT5qVCh4eZrsQQhSWUooBAwawZcsW9uyJJijIi0OHTtGhQwc6d+5crAGCDB8IcZk8PEwVxnoZ02JlpYIQoqjs2LEjx+1RUVHF+rwSFAhRSF5eWVcqxMaacs1CCHE5tNYkJycTFRVFQkI8YNK/b9q0iaSkJJlTIERZ57xSITbWDCvYbCZguNLqKgghSpZzDFDccwvk7UqIImSxmHTJDRqYDImJiRAfn/WPWggh8uKcp8DT0wulwNvbm44dO+Lu7i5zCoQob6zWi5cxJiRIcCCEKJhWrVoBmT0DSim01sWep0CGD4QoRvZljFWqwNmz5ubiYjImCiFETrTWbNmyhejoaIKDg/HyiqdevUB27tyJUopOnToVW2+B9BQIUQJcXcHf3/QceHmZeQeSAEkIkRP78EFwcDDh4eEoBZ06daJly5bFPnwgPQVClCB7jgM/P5M2OTbWBAySAEkI4SwkJAStNVpnDh8UZw+BnfQUCFEK3N0zqzG6uprgIDm5tFslhChLsgcAJZHVUIICIUqRcwIkq9VkR0xJKe1WCSEqKgkKhCgDPD1NYFCvnsl5IMGBEKI0SFAgRBni5ZUZHIAZVkhNLd02CSEqDgkKhChjlMpMnVynjsltIMGBEKIkyOoDIcook8XMBAgJCXDihAkOPDzM5EQhhChq0lMgRBlnDw6CgkzPgc0mPQdCiOIhQYEQ5YQEB0KI4iZBgRDljAQHQojiIkGBEOVU9uDAPiFRljIKIS6XTDQUopzLPiHx5ElITzfBgZtbabdOCFGeSE+BEFcIe3BQv74JBuxJkCR9shCioCQoEOIKoxRYLCY4sKdPjo2FpKTSbpkQoqyT4QMhrmD2DImJiXD6tAkOXFxMWmUhhMhOggIhKgBPTzMZMSkJzpzJDA48PEzPghBCgAQFQlQoHh5Qq5aZZ3D2LJw/b4YXPD0lOBBCSFAgRIXk7g6BgeDnB+fOmQDBajVBg0VmGglRYUlQIEQF5uYG/v5ZgwOtzVwECQ6EqHiU1rq021CqlFIngUNFeMrqwKkiPF9FJNew8OQaFg25joUn17DwiuMa1tda18i+scIHBUVNKbVFax1e2u0oz+QaFp5cw6Ih17Hw5BoWXkleQ+kgFEIIIQQgQYEQQgghMkhQUPTmlXYDrgByDQtPrmHRkOtYeHINC6/ErqHMKRBCCCEEID0FQgghhMggQYEQQgghAAkKioxSarxS6oBSKkkpFamUuqa021SWKKW6KqW+U0odVUpppdSIbI8rpdQzSqn/lFKJSqkIpVSLbPv4KqU+VUqdz7h9qpSqWpKvo7QopZ5QSv2hlLqglDqplFqulGqZbR+5hvlQSk1QSm3PuI4XlFIblFL9nB6Xa3iJMn43tVLqLadtch3zkHFtdLbbMafHS+36SVBQBJRStwOzgReBtsB6YLVSql6pNqxs8QF2AhOBxBwefxR4BHgAaAecANYqpSo57bMICAX6ZNxCgU+Lsc1lSTfgHaAz0ANIA35QSvk57SPXMH9HgMcwrzsc+AlYqpQKyXhcruElUEp1BEYD27M9JNcxf9FATadbK6fHSu/6aa3lVsgbsAl4P9u2fcBLpd22sngD4oARTvcVEAM85bTNE4gFxmTcbwZooIvTPldnbAsu7ddUCtfQB0gHBsg1LPS1PAOMkWt4ydetCvAP0B2IAN7K2C7XMf9r9wywM5fHSvX6SU9BISml3IAwYE22h9ZgvtWJ/DUAAnG6hlrrROBXMq9hJ0wwsd7puN+BeCrmda6E6ek7m3FfruElUkpZlVJDMAHWeuQaXqp5wBKt9c/Ztst1LJiGGcMDB5RSi5VSDTO2l+r1k6Cg8KoDVuB4tu3HMf+xIn/265TXNQwETuqMkBgg498nqJjXeTawDdiQcV+uYQEppVoppeKAZGAucJPWegdyDQtMKTUKaARMzeFhuY752wSMwHT7j8K85vVKqWqU8vWTKolClDNKqdcxXYVXa63TS7s95VA00AbT/T0Y+EQp1a0U21OuKKWCMfOnrtZap5Z2e8ojrfVq5/tKqY3AfuBuYGOpNCqD9BQU3inM2G5Atu0BwLGLdxc5sF+nvK7hMaCGUkrZH8z4tz8V6Dorpd4A7gB6aK33Oz0k17CAtNYpWuu/tdaRWusnMD0uDyPXsKA6YXpIdyml0pRSacC1wPiMf5/O2E+uYwFpreOAXUBjSvn3UIKCQtJapwCRQM9sD/Uk63iPyN0BzC+y4xoqpTyAa8i8hhswY7+dnI7rBHhTQa6zUmo2mQHB3mwPyzW8fBbAHbmGBbUUM1O+jdNtC7A4499/IdfxkmRcn6aYCYal+3tY2rMwr4QbcDuQAtyHmRU6GzMJpH5pt62s3DJ+gdtk3BKApzP+XS/j8ceA88DNQEvMG8x/QCWnc6wGdmT88nfK+Pfy0n5tJXT93gYuYJYjBjrdfJz2kWuY/3V8GfPmGoT5YHsJsAE3yDUs1HWNIGP1gVzHAl2vWZjelQZAB2BFxt93/dK+fqV+ca6UGzAeOIiZvBQJdC3tNpWlG2advc7hNj/jcYVZphMDJAG/AC2zncMX+Czjj+dCxr+rlvZrK6Hrl9O108AzTvvINcz/Os4HDmX8nZ4AfgB6yzUs9HXNHhTIdcz7etk/5FOAo8DXQPOycP2kIJIQQgghAJlTIIQQQogMEhQIIYQQApCgQAghhBAZJCgQQgghBCBBgRBCCCEySFAghBBCCECCAiHKLKVUJ6XUlxmV1FKUUqeVUmuVUncrpawZ+4xQSmmlVJDTcQeVUvOznWuAUmqHUiopY/+qSimLUupNpVSMUsqmlFpajK8lKON5R+Szn/31NCqutlwupdQgpdSkHLZ3y2jz9aXRLiGKkhREEqIMUko9BLwO/ITJbnYIk6ykF/AucA5YlsvhN2GSmdjP5QIsxKQ/nYBJmBKLKQY0EXgEkzb19EVnEs4GAddj/l+EuCJJUCBEGaOU6or54HlLa/1gtoeXZVRJ9M7teK311mybagOVgC+11r86PU+zjH++qbW2FUG73bXWyYU9jxCi9MjwgRBlz2PAGeDRnB7UWv+jtd6e28HOwwdKqWcw6bcBPszo5o5QSh3EpFEFSHfu2ldK1VRKLVBKnVJKJSultiulhmV7Dns3f1el1FdKqXOYGvEopbyUUu9kDHfEKaW+A+pcxnXIlVJqtFLqz4zhkFNKqQ+VUn7Z9tFKqReUUg8qpQ4opWKVUr8opVpk28+asV+MUipBKfWTUqppxvHPZOwzH1PWtnbGdp1xDZ15KaXeymjPKaXUZ0qpqkX5uoUobtJTIEQZkjFXoDuwVGudVASn/ADYCXwFvACsxAwtuAMPAiPIrLT2j1LKG5Nn3Rd4EjgMDAM+VUp5aa3nZTv/QuBzzFCE/f3kPUyRsGeBPzDV3hYVwWsBQCn1MmbI4/+AKZiekBeAlkqpzlrrdKfdhwHRmGESN2AmprelqdY6LWOfZzNe60xMLYQw4LtsT/s8UANoB9yYsS17r8hsTGGbO4Fg4FVMWfW7C/N6hShJEhQIUbZUBzwxcwgKTWt9RCm1LePuP1rrjfbHlFJHM/Zx3nY/pqZ7d611RMbm1UqpAOAFpdSH2T50l2itH3U6PhjzofiU1vrljM1rlFI+wNjCvp6MCZVTgGe11s85bf8L+A0YgCnta5cK9Ndap2bsByZAag+sV0r5Ag8Bc7XWj2Ucs1YplQK8Zj+J1vofpdRJIMX5emXzq9b6gYx/r8m4FvcppUZoKTIjygkZPhBCOOsKHHUKCOw+w3xTbp5t+7fZ7nfAvK98mW374iJqX8+M8y9USrnYb5ihi1hM+52ttQcEGXZk/KyX8bMVZn7GV9mOW3IZbVuZ7f4OTI9MwGWcS4hSIT0FQpQtp4FEoH4pPb8fplxrdsecHneWfd+aGT+PZ9ue/f7l8s/4+Xcuj1fLdv9Mtvv2Ln+PjJ/29p7Itt/ltDe/5xKizJOgQIgyRGudppSKAHqW0mz+M5jx8OwCnR53lr1b3B4kBAD7nbYX1bdl+7LJXsDZPB4vKHt7/YFdTtvl272okGT4QIiy52XMN95Xc3pQKdVAKRVSTM/9C1BHKdUl2/Y7Md+md+dz/CbABtyWbfuQomkeazPOX09rvSWH24FLPN8OIB64Ndv27PfBfPP3vPQmC1F+SE+BEGWM1vrXjMx5ryulmgPzgX8xKwKuA+7DfEjnuiyxEOZjZup/o5R6CjgCDMWM5Y/JNskwp7ZHK6UWAc8ppSyY1Qe9gL6X2I4+Sqlj2bad11qvVUq9AryVMZHvFyAJqJvRxg+01j8X9Em01meVUm8CTyqlYjGrD0KBezN2cc7fsBvwU0qNA7YASVrrHQhxBZGgQIgySGv9plJqM/AwMAuzKiEW82E0BlheTM8br5S6FtNL8TIm6VE0cJfW+rMCnmYMEAdMxiwD/AkTxPx2CU2Zk8O2XUBLrfWTSqk9mOyMEzBDGIeBH4F9l/AcdtMBhQkEHsT0dowAfgfOO+33AdAReBGoilkhEnQZzydEmaVkpYwQQmSllBqMWZHQVWu9rrTbI0RJkaBACFGhKaU6AP0wPQRJmORFj2N6SDpLjgFRkcjwgRCioovD5DeYAFTGTKj8EnhCAgJR0UhPgRBCCCEAWZIohBBCiAwSFAghhBACkKBACCGEEBkkKBBCCCEEIEGBEEIIITJIUCCEEEIIAP4fywWAi+Ty8iEAAAAASUVORK5CYII=\n", "text/plain": [ - "
" + "
" ] }, "metadata": { @@ -334,9 +324,9 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY0AAAEVCAYAAAAckrn/AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/d3fzzAAAACXBIWXMAAAsTAAALEwEAmpwYAABTxUlEQVR4nO3deXhU5fXA8e+ZyU4ChD1BVoGwCSooi6LgBipY11KhKta1al1rXX91qa22WqvWFTeqolgrUhFcsBIFRURAZUcgBAJh30PWmfP7485MJpNJuIGEhOR8nuc+Se5979z3HXHOvLuoKsYYY4wbntrOgDHGmCOHBQ1jjDGuWdAwxhjjmgUNY4wxrlnQMMYY45oFDWOMMa5Z0DDGGOPaYQ8aInKKiHwoIhtEREVkXBXu7Soie0VkXw1m0RhjTAVqo6aRDCwGbgHy3d4kInHAJOCrGsqXMcaYAzjsQUNVp6vqvar6H8BfhVv/CvwEvFczOTPGGHMgR0SfhoicC4wEbq7tvBhjTEMWU9sZOBARSQNeBi5U1b0icqD01wLXAiQmJvZr167dQT3X7/fj8RwRMbXaWJkbBitzw3AoZV65cuU2VW0Z7VqdDxrAW8ALqvqtm8SqOh4YD9C/f3/9/vvvD+qhmZmZDB069KDuPVJZmRsGK3PDcChlFpHsiq4dCaH3NOABESkRkRLgVaBR4O9razlvxhjToBwJNY1jIv7+BXAfcCKw4fBnx9QVHTt2JDu7wi9Exhw2HTp0YO3atbWdjcPisAcNEUkGugT+9ADtReRYYIeqrhORR4ETVfV0AFVdHHF/f8Afed40PNnZ2dh+MKYuOFBfa31SG81T/YGFgSMReCjw+8OB62nA0bWQL2OMMQdw2GsaqpoJVBiWVXXcAe6fAEyozjwZY4xx50joCDfGGFNHWNAw5iA8//zzdOrUiYSEBPr168esWbMOeM+///1vjj32WJKSkujQoQOPP/54uTTPPfccPXr0IDExkYyMDN54440y14uLi3n44Yc5+uijSUhIoG/fvnzyySfVkr9DtXPnTi677DKaNGlCkyZNuOyyy9i1a9cB7ztQXlWVBx98kPT0dBITExk6dChLliwpk6awsJDf/e53tGjRgkaNGnHeeeeRk5MT9XkFBQX07dsXEeFgh+Q3aKpab49+/frpwZo5c+ZB33ukOtLK7PzzPfwmTZqkMTExOn78eF26dKnedNNN2qhRI83Ozq7wnunTp6vX69XnnntOV69erR999JGmpaXpP//5z1Ca559/Xhs1aqRvv/22rl69Wt955x1NTk7WDz/8MJTmD3/4g6alpelHH32kq1ev1ueff14TEhJ0wYIFh5S/SDNnztQOHTpU6X0ZMWKE9uzZU7/++mv95ptvtGfPnjpy5MhK73GT18cee0yTk5P1P//5jy5atEgvueQSTUtL0z179oTSXH/99ZqWlqafffaZzp8/X0899VTt27evlpSUlHvmjTfeqOecc44COm/evCqVsSK19W+xMofy/zPwvVbwuVrrH+w1eRxK0Pjii5m6aZPqjh2qe/eq7t+vWlSk6vMd9EvWeQ0taOTl5ek111yjjRs31ubNm+u9996re/fu1cTERF27dm2F95144ol69dVXlznXpUsXvfvuuyu859JLL9Xzzz+/zLlnnnlGjzrqKPX7/aqqOmjQIL311lvLpLn99tv1pJNOCv2dlpamTz31VJk0F154oY4dO/aQ8hepqkFj6dKlCujs2bND52bNmqWALl++vML7DpRXv9+vbdq00UceeSR0ff/+/ZqcnKwvvviiqqru2rVLY2Nj9a233gqlWbdunYqIfvLJJ2Vee8qUKdqzZ89Qfi1oRFdZ0LDmqUrs2AHbt8PGjbBuHWRlwapVzrF+PWzeDLt2QV4eFBRAcTGojQA9Ylx55ZV88cUXfP7557zzzjs8/fTT3HTTTfTo0YMOHToAsHbtWkSECRMmAFBUVMT8+fM566yzyrzWWWedxTfffFPhswoLC0lISChzLjExkZycnNBck4rSfPfddxQXF1eaZvbs2YeUv0M1Z84ckpOTGTx4cOjcSSedRKNGjSp8rpu8ZmVlsWnTpjJpEhMTOeWUU0Jp5s+fT3FxcZk07dq1o0ePHmWenZOTw29/+1smTpxIYmLioRe6gbKgUQmvF5KSIDkZUlKcn8nJkJAAfr8TLLZuhQ0bSoPKzz/DmjWQk+Nc273bSVdYCCUlFlTqim3btvHee+/xwAMPcMIJJ3DmmWfyy1/+kn/9619ccMEFoXSxsbFkZGTQpEmT0H0+n4/WrVuXeb3WrVuzadOmCp83fPhwpkyZwmeffYbf72flypX8/e9/ByA3NzeU5rXXXmPevHmoKt9//z2vvPIKxcXFbNu2LZTmqaeeYsWKFfj9fmbMmMHkyZNDr3Gw+Vu3bh3Jycmh4+yzzy537vrrr6/w/k2bNtGyZcsy8xVEhFatWlX4XDd5Df48UBqv10uLFi0qTOPz+Rg7dix33HEHxx57bIXlMAfmesitiFwBXAq0BxIiLquqNpi5FR6Pc8TGRr/u9zsBorDQ+d3vh/C5P7GxEBdXesTGOgEqeDSgeUK1ZtWqVagqgwYNCp0bMGAAr7/+OhdeeGHoXNu2bVm+fHm5+yMnc6lqpRO8rrnmGlavXs0vfvELiouLady4MbfccgsPPvggXq8XgP/7v/9j06ZNDB48GFWldevWXHHFFfztb38LpXn66ae55ppr6NmzJyLC0UcfzZVXXsnrr79+SPlLT0/nhx9+CP09d+5c7rrrLjIzM0PnGjduXOH90Z7p5rlu81rV8kSm+ctf/kJsbCy33357pfeYA3NV0xCR/wNeB9KBH4AvIw7bGCmMx+MEg8REaNSobC0lORliYpymrD17nCaunBzIzobVq52mr6wsp/aybRvs3Qv791tNpbrFx8cDEBcXFzrXunVrUlNT6dmzZ4X3tWjRAq/XW+7b85YtW8p9Gw4nIvz1r39l3759ZGdns2nTJk488UTAWQ4FnGaX1157jf3797N27VrWrVtHx44dSUlJCX2LbtmyJVOmTCEvL4/s7GyWL19OcnIynTp1OqT8xcTE0KVLl9DRtm3bcudatWpV4f1t2rRhy5YtTkdpgKqydevWCp/rJq9t2rQBOGAan88Xqo1FS/O///2PmTNnEhsbGyoXwMCBAxk7dmyF5TLluW2eugp4WlX7qOoYVb0y8qjJTNY3Xm9pUAkPJikpTpAJBpXduyE3131Q8fksqLjVqVMnPB4PP//8c+jchx9+yM6dO9m9e3eF98XFxdGvXz9mzJhR5vyMGTPKtOdXxOv10rZtW+Li4njnnXcYNGhQuQ/j2NhYjjrqKLxeL5MmTWLkyJHllrhOSEigbdu2lJSU8P777/OLX/yiWvJ3sAYNGsS+ffuYM2dO6NycOXPIy8ur8Llu8tqpUyfatGlTJk1BQQGzZs0KpenXrx+xsbFl0uTk5LBs2bJQmtdff50ff/yRH374gR9++IHp06cDMHHiRP76179WwzvQgFTUQx5+AHuB09ykrUvHoY6eWrFCdcOGunXk5KiuW6e6Zo3qqlWqK1Y4x/Llzs+VK51rOTmqW7eq7tmjmpenWlCgWlysGhioE1VDGz118cUX62mnnaZ5eXm6fPlyTUlJ0fT0dH3zzTdDaXJycjQjI0MnT54cOjdp0iSNjY3Vl19+WZcuXao333yzNmrUqMyIq7vvvltPO+200N9bt27V559/XpcuXaoLFy7Um2++WRMSEnTu3LmhNCtWrNA33nhDV65cqXPnztXRo0drs2bNNCsrK5Tm22+/1ffff19Xr16tX331lZ522mnaqVMn3blzZ5XyF6mkpERzc3MrPXbt2lXp+zlixAjt3bu3zpkzR7/55hvt3bt3uSG3GRkZZYYZu8nrY489pikpKfr+++/rokWLdPTo0VGH3Kanp+uMGTN0wYIFOnTo0AqH3KqqZmVl2eipSlDJ6Cm3fRpfAn2BL2oicBn3REr7Piri8zk1lYIC5/cgVafpLCambJ9KTIxzBNM0lD6V5557juuuu47gRl0PPvggPXr04Oqrr2bVqlU8+OCDFBcXs2LFijK1j9GjR7N9+3YeeeQRcnNz6d27N9OnTw+NuAKnc3v16tVlnvfGG29w5513hvpSMjMzQ01U4HTWPvnkk6xYsYLY2FiGDRvGN998E2q+Audb9v3338+aNWtITk7mnHPO4c0336Rp06ZVyl+k9evXh5q4KnLFFVeERpFFM3HiRG6++ebQKKbzzjuPZ599tkyaFStWlGlGcpPXP/zhD+Tn53PjjTeyc+dOBgwYwGeffUZKSkoozT/+8Q9iYmIYPXo0+fn5nH766bzxxhuhviBTfURdtGeISBdgMvAEMB3YEZlGVauy3/dhcSibMM2cmUnbtkNJTq7mTNUBPl/ZIygrK5NOnYYSEwPx8WWDSjBQxcTUnaAiIrj592tMTauL/xYPcROm+araP9o1tzWNlYGfr1dwXavwWqaWVVRT8XicvpXwmorf79Q+wmsgMTFlR4DFxpYNLA1sV01jGhS3H/QP4wQG0wAcqPnL73cCS16eMwIs8gtWcDhyXJxTY4kMKtZiYMyRy1XQUNUHazgf5ghyoHkqqk5Qyc93Aos/ouFSpLRfJdgMFhlU6koTmDGmrCo3KQV23kvF2Wkvr/qzZI50waAQU8G/LlUnkBQVle+sDwo2gYUHFWsCM6b2VWVG+HDgz8CxOJsoqYgsAO5T1RmV3WtMODcjwIKz6vfuLe1XCWdBw5ja4XZG+HBgGpAM/Am4AXgESAGmi8iZNZZD0yBFzqoPnwSZnOycj2bcuHGISLlj4MCBoTQdO3YMnU9KSqJ379689NJLZV6nqKiIxx9/nOOOO45GjRrRrFkzBg4cyEsvvURhYWGVyvLll1/Sr18/EhIS6Ny5My+++OIB73GzN8W6desYNWoUjRo1okWLFtx8880UFRWVSbNo0SJOPfVUEhMTadu2LQ8//HCZUT6ZmZlR369oS6dUJ9UD75ERjZv38v3336dnz57Ex8fTs2dPPvjgg3JpKtvDo7i4mLvuuos+ffrQqFEj0tLSGDNmDOvWrTu0QtcTbr+vPQh8BvRU1YdU9aVAP0cvYAbOPt/GHDaV9XmcccYZ5ObmljmCM4CD/vjHP5Kbm8tPP/3E+eefz/XXX8+7774LOAFj+PDh/PnPf+bKK69k9uzZzJ8/n9tvv53XX3+9zKznA8nKyuKcc85h8ODBLFy4kHvuuYff/e53vP/++5XeN2bMGBYsWMDHH3/MJ598woIFC7jssstC130+H+eeey579+5l1qxZvPPOO/znP//hjjvuCKXZs2cPZ555Jq1bt2bevHk888wzPP744zz55JPlnrdkyZIy71fXrl1dlxGcIadr1651nf5vf/sbf//73/nnP//JvHnzaNWqFWeeeSZ79+6t8B437+WcOXMYPXo0Y8eO5YcffmDs2LFccsklzJ07N5Tm3Xff5ZZbbuHee+9l4cKFDB48OLRAI8D+/ftZsGAB9913HwsWLOC///0v69evZ8SIEZSUlFTpfamP3M7T2A9coqrTolwbCfxbVZNqIH+HxOZpVM2SJZn06jW0trPhWtu25cfGjxs3jm3btvHRRx9VeF/Hjh256aab+P3vfx86161bN/r168c777zD3/72N+6++26+++47+vcvO1Td7/ezb9++Ay7eF3TXXXcxefLkMsuVXH311SxZsqTC4LNs2TJ69uzJ7NmzOemkkwCYPXs2Q4YMYfny5WRkZPDxxx9z7rnnkp2dHZqc+NZbb3H11VezZcsWGjduzAsvvMBdd93F5s2bQ0uBP/LII7zwwgvk5OQgImRmZjJs2DC2bt1abpXYqhARsrKyykxErIiqkp6ezk033cR9990HQH5+Pq1ateKJJ57guuuui3qfm/dy9OjR7Nixo8ySImeccQYtW7bknXfeAZyFKfv06cPLL78cStO1a1cuvvhiHn300ajPXrp0Kb169eKnn37imGOOiVr+hjJPw21NoxCo6P+SlMB1Y45YCQkJoT0rJk6cyBlnnFEuYAB4PJ5QwJgwYcIBv2HPmTOn3H4Rw4cP5/vvvw89L9o9B9qbYs6cOfTo0SMUMIKvW1hYyPz580NphgwZUmbviOHDh7Nx48Zyee7fvz9paWmcfvrpzJw5s8LyVAc3e2RE4+a9rChN8HUPdr+RPXv2AJCamuqihPWb26CRCfxJRMqsMyAi7XGarmr2X5kxVfDJJ5+U2QciOTmZu+66K2rakpISJkyYwKJFizj99NMB+Pnnn+nRo8cBn9OkSRMyMjKIrWjsMc7qrNH2gigpKSm3Kmv4PQfamyLa60auGlvRs4PXANLS0njhhRd4//33mTx5MhkZGZx++ul89VXlC1f36tWrzPsbea5Xr16VvifheQnPW2V7frh5LytKE3zdg9lvpKioiDvuuINRo0Zx1FFHVZi/hsLt6Km7gK+BFSLyLZALtAEGArsC142pE0455RTGjx9f5lz42kwA9913Hw8++CCFhYXExcVx5513hppF3DYzXHDBBWU2bKpItL0gop2v7J7gfZGB5ED3HujZGRkZZGRkhK4PGjSItWvX8sQTT3DKKadUmL/p06eXqSl17dqV6dOn07ZtW4BKA2lleTuYvTciz1fn/hwlJSX8+te/ZteuXXz44YeV5q2hcDu5b6WI9AHuAIYAx+OsP/U08A9Vza25LBpTNUlJSaH9Eipy++23c9VVV5GUlERaWlqZD4xu3bqxbNmyaslLmzZtou4FERMTQ/PmzSu8J7g3RTBfGrE3RZs2bfj666/L3Bf5LbqiZ0P5b/nhBgwYwKRJkyotV7TFDzt06OCqTyN8j4zw5rUD7fnh5r2sKE3wdauy30hJSQmXXnopixYtIjMzs8L/Xg2N69Huqpqrqr9X1QGq2jXw8w8WMMyRqHnz5nTp0oX09PRy3zDHjBnD559/TrRBFH6/P9S+7cagQYP4/PPPy5ybMWMG/fv3r/DbuJu9KQYNGsSyZcvIyckp87rx8fH069cvlGbWrFkUFBSUSZOenl7ph/sPP/xAWlqa6zJWlZs9MqJx814OGjSo0v053O43UlxczOjRo/npp5+YOXNmKNAZ2yPc1EOFhYVs2rSpzLF161bX9996660MGTKEM888k2eeeYYffviBrKwsJk+ezMknn8yCBQsA+OCDD+jevTsbNmyo8LWuv/56cnJyuPXWW1m2bBmvvPIKEyZMKDNyK/J1evTowYgRI7juuuv49ttvmTNnDtdddx0jR44MNSWdddZZ9OrVi8svv5yFCxfy+eefc+edd3LNNdeEOurHjBlDUlIS48aNY/HixUyePJnHHnuM22+/PRQon3rqKaZMmcLPP//MkiVLuOeee5gyZQo33XRTpe/R1q1by7y/ubm5JCQkuHq/RYRbb72Vxx57jMmTJ7N48WLGjRtHcnIyY8aMCaW7/PLLufzyy6v0Xt5yyy188cUXPProoyxfvpxHH32UmTNncuutt4bS3H777UyYMIFXXnmFZcuWccstt7Bx48bQHuglJSVccsklfPvtt7zzzjuISKhc+fn5lb4vDUGFzVMi8gVwg6ouD/xeGVXV06s3a8YcnM8//7zcN+W2bduW+VZemfj4eD777DOeeuopXn31Ve666y4SEhLIyMjgyiuvDH0j3b17NytWrKhwFBQ436qnT5/ObbfdxgsvvEB6ejrPPPMMF110UShNtNc50N4UXq+XadOmccMNN3DSSSeRmJjImDFjeOKJJ0JpmjRpwowZM7jxxhvp378/qamp3HHHHWX2yS4qKuL3v/89GzZsIDExkV69ejFt2jTOOeecSt+jE044gezs7Aqvd+jQodJRZW72yIicTOfmvRw8eDCTJk3i/vvv54EHHuDoo4/m3XffZcCAAaE0B9rDIycnh//+978AoVpb0Ouvv864ceMqfW/quwrnaYjITOC3gaCRyQFWuVXVYdWfvUNj8zSqpj7M0zCmNjSkeRoV1jTCg4CqHtyTjTHG1Ctu1566XESiDh0QkWYicnm0a8YYY+oXtx3hrwNHV3CtExXv6GeMMaYecRs0Kptx0wiwVbyMMaYBqGz01LE4k/iCRolI74hkicCvgJ8xxhhT71U2I/wXwAOB3xW4r4J024GrqjNTxhhj6qbKgsZTwAScpqk1wIXAwog0hcBmrcJYMxE5Bfg90A9IB65U1QmVpB8K3AacCDQBVgFPqeprbp9p6qd27ToccK0iYw6Ho47qQG6us0VxbKyzNbHHU3Z74vryT7WyIbe7gd0AgdVtc1W1qKL0VZAMLAbeCBwHMhhYBPwNZ6HE4cB4ESlQ1berIT/mCPXtt2sP+TWOtLkp1cHKXL38fucoKID9+0u3J1YtDRTBLY6DASUuzjkiA0tlWyDXFW4XLKx46mcVqep0YDqAiExwkf4vEadeEJFhwEWABQ1jTK3yeJwj5gCfpn4/+HyQn+8EF5+v7PVgkImJcYJLXFxpzSU8qAR/ry1ul0ZHRK4FfgtkAPGR11X1cMbIxoC7NSGMMaYOCAaXA60a7/M5ASYvr7QWA+VrLjExZWstMTGHp8biKmgEJu/9E/gX0Bd4DYgFzgO2AhNrKoNR8jISOB04qYLr1wLXgrP8c2Zm5kE9Z9++fWRlZdZqRD/cCgr2sWRJZm1n47CyMjcM9bXMwd7kaL3KhYX7DvrzrzJuaxq3Ao8CfwKuBp5X1QUikoqzq9/2as9ZFCJyEk6T1M2q+l20NKo6HhgPztpTB7v2iq091TBYmRuGhljmRYsyOfXUodXeAe/2e3RX4CvAHzjiAFR1J/Bn4JbqzVZ5InIy8DHwR1V9oaafZ4wxpjy3QSMf8ASG1m4COodd24czdLbGBIbpfgw8pKpP1eSzjDHGVMxt89QioAvwOTALuFdEsnCWD3kQWO72gSKSHHgtcIJW+8Ds8x2quk5EHgVODO7PEZinMQ14HpgoIsEttHyq6n5nHWOMMYfMbU1jPJAa+P3/cOZazAa+Bbrh7B3uVn+cSYILcZYheSjw+8OB62mUXRxxHJCEMyEwN+yYV4VnGmOMqQZu52m8G/b7KhHpBQzC+TD/RlW3uX2gqmZSyQKIqjouyt/joqU1xhhzeLmepxFOVfNwmqqMMcY0IJWtctu+Ki+kqusOnMoYY8yRrLKaxloOsC94hCNg1RRjjDGHorKg8RuqFjSMMcbUc5WtcjvhMObDGGPMEaABraxkjDHmULldsPBAGx6pqtrufcYYU8+5HXJ7GuX7N5oBKcCuwGGMMaaeczu5r2O084E1oV4ExlZjnowxxtRRh9SnoapfAf/A2WvDGGNMPVcdHeFrgOOq4XWMMcbUcYcUNEQkBmddKNt61RhjGgC3o6e+iHI6DmeF2+bA9dWZKWOMMXWT29FTHsqPntoLTAYmBVauNcYYU8+5HT01tIbzYYwx5ghgM8KNMca45jpoiEhXEfmXiKwUkbzAzwki0uXAdxtjjKkP3HaEDwWmA/k4+3VvBloDo4DRIjJCVb+soTwaY4ypI9x2hP8dZx/v4aq6L3hSRFKAzwLX+1d/9owxxtQlbpunegJ/DQ8YAKq6F/gr0Ku6M2aMMabucRs0cnDmZUQTB2yonuwYY4ypy9wGjb8CD4lI2/CTgb8fAP5S3RkzxhhT97jt0zgVZxn01SLyLaUd4QMDvw8NdJaDs7fGFdWcT2OMMXWA26BxMuADcoEOgYPA3wBDwtLavuLGGFNPuZ0R3qmmM2KMMabusxnhxhhjXHPbPIWIJAG/wenfaAZsBzKBCaq6v0ZyZ4wxpk5xVdMQkTbAAuAZnEl8ScAJwLPAfBFpXWM5NMYYU2e4bZ76G5AKDFHVTqo6KNDPcTLQFGdIrjHGmHrObdA4G7hHVb8OP6mq3wD3A+dWd8aMMcbUPW6DRjKwsYJrOYHrxhhj6jm3QWMFcFkF134NLK+e7BhjjKnL3I6eegJ4I9Dh/TbOpL42wK+AM6g4oBhjjKlHXNU0VPUt4HqgN/AKzp4arwJ9gOtV9W23DxSRU0TkQxHZICIqIuNc3HOMiHwpIvmB+/4oIuL2mcYYY6qH63kaqjpeRF4BMnDmaewAVqiqv4rPTAYWA28EjkqJSGNgBvAVzjDfDGACkIezj0e18/v95f72eGwepDHGVBo0ArWAW4EuwC7gXZxRVMsO9oGqOh1nF0BEZIKLW8bizAu5QlXzgcUi0gO4XUSeVNVqXetqwoQJ5Ofnk5HRA3ACxuTJLxEfn8ioUeOq81HGGHPEqTBoiMilwGvAKpzmqM7AbTgLEv7+sOTOMQiYFQgYQZ8CfwI6AlnV9SC/3092djYAbWNiiNscyyerZ7HTVxi6HlnjiDxntRJjTH0mFX1RF5G5OMNpf6mqvsC5B4C7geTguUN6uMg+4CZVnVBJms+AHFX9Tdi59kA2MFhV50Skvxa4FqB169b9Jk2aVKU85ebm0nHWLE549VX8Xi8en495V13F2iFDaN48jfCelN27t+P3+0lNbRk6t3PnVjweD02aNK/Sc+uCgoJ9JCQ0rNHTVuaGoSGWOT9/H40bH1yZhw0bNl9Vo27hXVnzVDfggYjg8DzOpkvtqcZv+C5ERjap4DyqOh4YD9C/f38dOnSo64eUlJTw7P33c9H4V4jxFYfO9xv/CnOSG3PSTZcQE+O8ZX6/n9de+zOqftp64znvmCF8uGgWG3yFiHj4zW/ui1rjUFXC+/Aj/65NS5Zk0qvX0NrOxmFlZW4YGmKZFy3K5NRTh1LdHy+VBY0mOJ3d4YJ/p3L4gsYmnOG94VoFfm6uzgfFxMRw4znnUPT3fxJHadCI9RVz8RPvsOLVLKYPfZyW/dqT0bmIvH1xDFg1l1FTp+LzernC52PqqFEs6tuXaDW4+fMzKSjYz+DBZyMiqCrffPMxCQlJ9Os3tDqLYowxNeJAo6c8IhL+ddlbwXkOYhSVW3OAv4pIgqoWBM6diTNDfW11Psjv9zPxm28YExYwAEqIYbH2pMeO73hjciN2TIb7eZw7eYpUduHFT2xJCQAjP/yIFe16lAsaqsry5QvYv38vAIMHn80333zM0qXzSEpK4fjjT62wxlGXayfGmIblQEHj6wrOz434W128FgAikowzGguceSLtReRYYIeqrhORR4ETVfX0QJq3cZrEJojIIzjNZncDD1X3yCm/3092YSEfjRrJedOmUSKC1+dj6shRfHP0Sew87iNuWull5UrYMbcf364dxAj9uMxr7Pcl8uEzI1k18SM6pBVTfOwJtOzfga7dlN2784mNhey5X7Dn08nsbNoUUlLYv39vhYFg/vxMCgvzGTRoRKh2MmfOJ8THJ1rtxBhz2FX2Qf9QDT2zPzAz4jkPAf8CxgFpwNHBi6q6W0TOBJ4Dvgd24szPeLKG8seivn2RM8/i2Ca9mPLjNPYkJZLCPoYMUYYNc9L4/SOY/tpP+P/0GZSUVrLiKWKdpz2Pb7+Tk7d/DYth61stmMcJ7ONMCpIS+Ef+o/g8McRSzMRTLmXN4C74fL5yfSCqyvr1q9i6dQMAgwaNYM6cT1iy5DtatmxbYe3ERnQZY2pKhUFDVWskaKhqJqUd2dGuj4tybhFwSk3kJ1xMTAzx8fH4fD6aZHSn+KghXHTyIN544694PN5QJ3ggT+SqUysJ9ml4fT4+HnU2V/V+lZKTPmPyl0vxfzePJivmcfSWeZxR9Dmn7Z9JIoUQGMb765lvc8nMdxn+ZjEde8TStStkZEC3btC5M2zb5mzDvmTJdyxZ8l3o+cHzkaZOnUBBQT4XXXQdHo8Hv9/P+++/REJCxfNMrPnLGOOW6xnhDcXdd99NSUkJs2bNBpxAcvnld5UJGECoz2JR376s6dyZ1F272Nm0KXkpKXhROveIo9sx/XEqVr9FVYl96Qn46xdQVPo6cRTzXy6keF0MD617gD9/ej+Cn05ksVY60TT1Blq23EpGk+X0SFiGr72XuPbFxMWV4PP5yuTL7/ezefN6VJ1AcdFF1/H++y+xa9cWRDxRaxzz52eSn7+fk046O1Sur7/+mMRE65w3xpRnQSOKyAAR+TeA1+tFxIOqn3YnDOPkk89h9uzpLF/+PSIevF5vmfSqyoqS3ZzmLylzvjgmhumjLqRPfGcGNu/PLTGQP385L83uxVZtwdwdA8jfkcAoplJIArEUcx0vMr3Zecya5aVrV6dW0rUrdO6sBMcjFK9fzacPXktxoN9E1R+1c/6nn+ZQUuJEsdTUJL7++mOWLZtHTExcpZ3zxpiGyYLGQRIRjjtuCPv353HyyecgIpx88jkAJCU1Kvdh6/P52Bkfy9RRo8o0ZzlDdHty7Lh7OT42luMBz45W7Pp4PPHfzeGEGdNovXsLAAmBKsorXMP2HXex6X9pbPlfK7bQiuW04kZ+x67Gt3FbzBPcsuNp/HgQr/L+8AtZPah3uTL4/X683hhKSopYtmwe3bp1Y+XKlQB4vTGB695y9xljGi4LGoegX7+hZdr/g4Ej2rfz4Ifvor592XH8CZx3zCl8uOgrNviKylwH8Ddrwf6x1+C/9Cq++PPN/PK1l0koCmvTioWdbVvSPCWNFlu3ctyeFTTO38w7MZdTuCeee3mMWAI1Gh/8cvp7vPlpAldN3kGrni3p2tlHlwwvXbt6CY6ibrR3L81XrqTR3r3kpaTg8XgPS8CwTntjjiwWNA5RZICoqDnH4/HQpk0HCgv3M+LC6ynxeBjRbxCTJ79IfHxS1A9Kv9/PlkYJeCNW3fWon48vOotf3vwYMTEx+HCGlL1fWMLU++7D954XSkrnmijCxb73uGnhs+QthEe5j6G8yRJ6kejpTru4rVxS8D4+8XKqx887p/6KtUN64PP5ajRwTJ06geLiQs4//5pQp/2UKS8TGxtvi0MaU0dZ0DiMRo0aV+abtMfj4cILr6/wm7XX6yUvpXHUJq28lMblPtC9MUJhuo8YyvabaIzwxG9+z/hTE1mzBpI+P5Efl+aSvnMJJ5e8TFJBYM6kFoMPxn7xNv/7YhifP7mRwjYd8XTuSELvLjQZ0ocuXSA19dDfC7/fT3FxIdu3b2LKlJc5//xrmDLlZbZv30Tz5m2sxmFMHeU6aIhIW+AOnKGvzYDzVHWxiNwKzFHVyAl/JorID8LKPhhVlYSEpKgjtBISkqIOjc1LSYkaZCTdw5AhMHQo8JsLgQspKSnhX/f+jnHvvk5iSWHoNfx46MJqBu/9lsZ798LP8MOnfTnu7z8A8E78FRyVuIO8Vh3R9h1J6N6RJgO60+LUXritmHg8HmJj4xDxUrD2Zz598FoKmjZFGjclNjbOAoYxdZTbWdy9gFmAD2dZj+OAuMDlDsCJwJiayGBDJiKhD88OA05n8OARfPPNJyxd+h0ej6dcwPB4PMTExEYNMjExseU+iL1eLwVtm+I0cIW9ToyfD26+lONGPMyGxbvYsTCbTdmFHLMTVq2CffmxJBeu55hdX9Fk5R74HKY+O5KBcVPp1Ane2XYmsSnx+I7qSGzXDjQ+piOx/frg65IReobf72fTpnUc8+OPUQYG+KymYUwd5bam8XdgGTAcKKDMTAO+Af5azfkyOEGje/fjKSjIZ/BgZxmRwYNHAJCQkBi1/yQ1tRVbt26g48AzGDRoOHPmfMqSJXNJTW1VLq3f76cwNTVUM9HYWKS4mKmjRuFr2ZiM7krPXs1gdDMAbgH8fsjNfYXlq2HaatiwZBcFy9eSvd5D0TZYsUJZTROO3r6ajmu/JnX2LgBeS/gt4/s+T9dOJTz+xfH4Wh/FWcU7OHHlPLz+0rW7Rk2dyprOR9d40LAOeGMOjtugcTJwqaruE5HIBojNlF+F1lSTaCO0ggEkkojQrl0XWrU6ikGDhiMiDBo0HID4+ISoNROfzxeqmfRJSeGnwOipmCjLmjj3QNu2znHKKQBNgWMByMuDNWuEVav+w9erYPVq2LxyN/6sbHYWJLF6Liyfu48L6ELHLWvpxSq8lO3kL9ZYznvrv8RtE+KP7UVJt56UdOmOJqcc6lsZEj5rHnA1a94Y43AbNCpbwbYFkF/JdXOI3I7QguhBJhhAomnatAXbtm0kLyWF7d26kReYp9G0aYsq57NRIzjmGOco1QS/vw+5uU4QWb26KR+tnszq1cqmH1axcE8fkigIpfb4/Pg3C83+9RRx/yodAfbmyHfZd84v6dkom+7Zn+I9pifFXXqgzaq22VXkrPmePXsccNa8MaaU26DxHXAlMDXKtV9S8Wq4phZUJcgEr/XqNYAmTRKIjU1lyZK51ToTvHztBPx+ZfLkz5n2+bn8YvqHFEssXr+Ph9Pv523vNezd2YwWe9bQg2X0ZCn//uh4Vn8Ev+Yr3uS60GvvTmjFjtY9WHDdeFoM7kbHRluJ9xTjb51GtN1nVJW4uAQKC/dTvH41umsLxXv3QkoKcXEJUfdBMcaUchs0/gR8Hth69W2cpdDPEJFbgAs4DIsJmuoX2Zy1dOmXlTZnVSe/38/OnVvY2e8Ysrt1DHXax6f4uJIXGTfuPvbsyWD16gyyss7n7DVOTWX+mrFkZA2hc5ETTHoULKNH9jJuvLcxm4F75BX+oveyz9uYTc16srddT/zdelB87Y2kH51ITIyXpk2b0+qzOZw/ZQqIMMzjYeqoUWw5a+RhmdBoC0SaI5mroKGqX4rI+cBTwGuB04/hbIJ0vg23PXJVtTmruoSv3ZWXkkJeSmmfhYiHmBgvzZtD8+Zw4onhd3rw+TqycWNH1qw5m6ws+HYN9FgNCVkwdd157KYxPX1L6bF1GT23TiN1wVs0mnQrnlh4PukOhuV/RJeiVXhQUMXj9zNq6lRe6tm7xpun5s/PpKiogIEDh4f2R/n220+Ji0uwBSLNEcH1PA1VnQZME5EuONutblfVFTWWM3PYVKU5qzq1aJHG1q0b6NXrxDJ7hbRokVbpfV4vtGvnHKeeWvZaUVEv1q3rxZo1kLkGXs+CLT/vpvX6GDZuhPm7u9CLVCRie/m8kiSmPTuQmH//gzZNCvBl9CShXy9aDDia9HZe1/NPKqOqFBUVsHix8x1r4MDhfPvtpyxePJfevQdYjcMcEdzO0/gj8IqqblTVVcCqsGtpwDWq+nAN5dHUQ6VNY21DuxIOGuQMJ46Pjz6c2I24OOjSxTlKNQEgPx9Wr76G15/1cNy0hST4S0eOx1HMwt3Hc+fuJziNmc52XxOhgHje84zm4c7/omNHGB43k+SMtjQ5/mg6dPZy1FEQZRHkCsuclbUMj8fD4sVzQ8HD4/GQlbUsVH5j6jK3NY0HgE9w9uWOlB64bkHDVEn0prHow4mrQ2Ii9OrlZd6A7UyPObfM3JSPRpzLxR0+4udj/sdXP+dR/NMyElYvofmmJSzf345Vq2D1Kj9TGEmj6fspIJ7ldOdr6UVmi4v5ufcFdOgAndr76NDZS6dOTk0oPr70+T6fL7S1b6O9e8tMvty/f2+Nr/Vlc1NMdXAbNCr7vzgVKKzkujEVOtxNY6pKSkpq1Lkp3VKLOfdcxeNJBk4IHLB/P4zKguwseGPOTDzLlpC8biltdixhcOFslm/txviZF5DKDjaSznK6s4RefEovNjXryZbOA2mS0Yb27YU1a7pz1pbpjMt8AwCf18vUUaNYfOyxNVr2qVMnUFRUyAUXXAM4AeODD14mLs4WhzRVU2HQEJGhwGlhp64TkZERyRKBc4El1Z4zY2qAiFBQsB+g3NyUgoL9UT+4k5KgVy/o1csDI0/EWTXHkZ8Pw9YpnbJh86ISZn5yE81yl3DqntmM9b0NO+CaHeN55ftr6MJqHmMSo5jqdMIDnpISzpkynbc2XcZ7KUrnztC+PbRqFXXE8EHx+/3s3r2N/Pw8PvjgZbp3z+CDD15mx45NJCY2Oiw1Dqvl1B+V1TROBe4P/K448zQiFQFLgZurOV/G1JhGjRqTn78v6vmqSkyEbhlCtwzgrFZwxxOha+t27mXn10s5u6QDnXZB3JyNnPrJbOJKyq5CXKIx5M5pw9tzFnAx/+FjOpEb15Gitp3wdu5AeucEOnSADh2cgBLZ7HUgIkJSUmPy8/PYsWMT27Y1ZseOTQAkJTWu8dpdbS6Bb8Obq1+FQUNVHwIeAhARPzBQVb87XBkzpqYcjgmNADGpKbQcOYCWwEDAd9nJvP3Cdfz28cdCa20BxHqKSBuwjaH5W7j+x6eI0yLn61iWc3T73wp+phtnMINT+Iq1dGJP807423ckoWs7juoYQ8eOTkBp3x6aNStfS/F4nBPlN9uq2Q/Q2lwCP3x4M2DDm6uJ23kaVo809UJtTmgUkdCWv+dPmYICfq+XaaNG0rfvQi686n62cSWeTRspWL6WPT9mUbgii19ltGNNLgz9ag5Xrv+Ls17XdmA7lCz00oTd7KcRF/Me3VnOxvhOFLbpCJ06kdw1jaPaCxs3tmPAyllc9sVbZSY05p6eXmPlBWdkWLt2Xdm7dzfbt2/i1Vf/BEBcXCLt2nWtsYAROby5ceMEG95cTaq8CZOItAISIs+r6rpqyZExNay2JjQGn7mob1829OjFL08Yzr/nfcqOuJjQRD+8XvzpRxGXfhQtTjsZgOtDr/BHNhffg67PYefCLPIWZVG4NpcrujQiOxtGz/mMi3e+4gxLyXaO3Mw2pJNLa47lKc4rM6Hx3CnTuDznEgoKlI4dhfbtoU0bqmVOSniZV678gaKissvTFRXls3LlD/TvP6xG3ncRCdUwFi+eS7du3Vi5ciW9ew8ITaw0B8ftPA0P8AhwHc6yptHU/PoLxlST2pjQ6PV6SUpKoaSkiPN/cwc+r5fz+w1i4sS/ExMT5264bWws0rkTzTp3otlFzqn7QxdfZmP+M+QtzWb3j2vJX5rFni0FjGntpzBzFp6NZdcdjdci/jTvj2TMuxSAp7mZVNnN3sbpFDVPR9qmI926EtuvD+3aOU1fzZtXrYNeVYmPT2L//r385pVXiCkpYeLYseSlpBAfH30jseoSDBzB2gZgAaMauK1p3ArciLNvxiPAn3FWvh0b+PlYTWTOmPomI+NY8vP3l9nyt3Pn3iQmJlXPAxITadSvO436dQ+dOlaVTyasQR8UwncCLpYYpnf/JednKOvXC0cvzqF34XzSd28kdncJrIGps0Zy3qvOOqXzOZ5touxMSmd/k3SKW6Wzu+dgioYNp1076JC4hZSOzZGYssEvP38vx/z4I203bADglqefZuqoUfw8YFD1lLkCqsqcOZ+UOTdnzic1OheoIXAbNK7Embz3FE7Q+EBVF4jII8BnQPuayZ4x9UewnX3Zsnl4vZ7QMiLLls2r8Xb2HXGlfSmI4Av0aRQPas6zY4K1h8nk58PX2X42L93OnuUb2bjZy9l5sG4dfL9yMGnF2aTnbSQjbwGtN27mpR+u44a3h+OlhELSUIRtMW3YnZROXmpbVvcfTbY/lds+/AiPlg4zHjV1Ks91615j5VVV/vvfV0PL1DRpkkhsbFOWLPmOLVs28ItfXGWB4yC5DRqdge9V1SciJTjzM1DVYhF5Cvgn8GCN5NCYeiKynT3YbFLT7eyqWuFmW/E+X5lglZgI3bp76Na9JdASgGtCr/Qsu3fD+vXww3rYsLaYTdmFnJELW9b7+H3WP2letJG2JRtI37OR9D2r+Dp7EwsZQAEJxFG6P0pMSQlj/vEqs1Z0Z9fIy+nUZAc95/2LuI7p+NPa4mvTFl/r9KqNLY6wbVsu4IzgCv8ZPF/T6utwX7dBYzelnd8bgQxK99CIAZpVc76MqZdqo51dVSkpcdbZipzQWFJSVKU9RJo0cY7evQFiAwdAPKo3sHMn5OTAuvXw9XrYtU7xzPqG2DXFZV6nhBi+LhrE+Cmt+WwKDGAl33J7uedNumASO88cTQ9dyjGf/4PYjm3xt0l3gkqbtviO7oZGadoLDuX1+fwMuuN6Gnm9vHbxxZCSEporUpNLttTn1YzdBo2FQE/g08DxkIjk47SQ/hlYUDPZM6Z+CX54hPv2209rNHB4vV4SEhpRUlJEYWHpKKb4+ET3HfAuiDhzRJo1gz59nHN+vzJhwpd8vOBszp8yBT+C3+PlpX7XMr3Z+aS1Pp0zNsCGnAG0X7+dxnkbacuG0PHeB31Z8QGcwQbeZCqpbAnNpgd44ZczKRo8lP6bp9Hno7/gaZeOprXF1yadM/buZuvqpU5fikioL8V36dU1Ohu9vq9m7DZoPIXTRAXO4oTHAxMDf2cDN1Vvtoypf4IBI/jhEf5hAjVb47j00lv4+uuPWbZsXuhc5869Oemks2vkeUEiQmpqCxb17csJ8+aVGT01ssUazj//9EB/iqDajF27mrFhQ29ycpway5D10HkDrF9/Jj1yNrFvVzFt2ERbNpDORjL/3Yed/4YReLiTeNIXLeIo+YQmuo+BQKHEOX0pgWHG50+ZwrK12SSPXIqvYxcKhp19SE1gFZV527Zc4uMTyzRDxscnsm1b7hEdMMD95L4ZYb9vEpETgaOBJGCZqhZXeLMxBnA+TOLiEsr0YQT7OOLiam5iYTBYBTvcGzdOIC4ulcWL54Y65Gvy2Xl5ewB47eqry1zLy9sTMV8GUlOdw2n+Ki8vL5acnHaBA9I3wIYNkJNzNmNzzmbzZlCFFPZwLtN4Ua8nntIl8P3qoe3CVTRZeCd+hOt+vZ/WHWDUor/QOet/0KULsT274u/chZJOXSnJ6FXlMvv9frZty6WkpOzHYmFhPtu25R7x6265nadxOTBNVbcDqNMIuipwrZmIjFTVN2oum8bUD9EmFtZ0n0ZksFq69MvDEqzAGVLcrdtxLF78LT5f6XhfrzeGbt2Oq/KHZ6NGkJHhHNEUFUFuLmRnN+LTfxUQ/1mhMykgeJ04urOCQuLpQDY/vuV01eaRyC/ZT9dF79P0g+0A7IhpxW/P20x6Olyy/E+0LslBunUl8ZiuxPXsgq/j0ZBQbp5zoHyxlJQUl5ub4vXGRk1/JHHbPPU6MAhn8YJInQLXLWgY40JtTCysjWAFzrfunJxVZQIGgM9XQk7OKvr3H1at37rj4oILO3pYvXoT0xPPKbNvyicjR/CbHpMYMuQWNmxIZUOgprJyw23csPE2NmyA4q076cIqUkt2MmOy87r9WE1PPqJFZulH4OL4fvxu0Pekp8PY9Y+R3DQGyehKYu/OxGsS3X6cU25uSs7QM6utrBWp6RWFq2M/jUaUmTLk4sVEbgDuBNJwllW/VVVnVZJ+OM6Q3t44iyR8Ddypqiur8lxjGrLaCFYej4fY2DgSEpJCS9IDJCQkERsbV2PNNCJC794D+MnvKzPMOL9JUwb06UPfvkLfvtHvLShIJTf3BDZuhHM2wMaN8PnGCUzIgX3rd5K4YRXtCn+mqDCOzEznnv9jAt1ZAc48SI4H/HjLLIE/aspUnt95HIvic0jtlU6bo2KIi6veck+dOoHCwgIuvPBawAkYL788noSEBMaNG1ctz6hsP41jccoeNEpEIlsaE4FfAT+7faCIjAaeBm4AZgd+fiwiPaOtXyUinYD/As8AlwHJwN+A6UCXyPTGmLpDVWnRIo1Nm9aV6/xv0SKtxkYS+Xw+li2bj9/vKzvM2O+cP/74UyscNZaQAJ06OUd5qaiewO7dTlAZFQgqz21czu61O4lZu4pGG1fSZ8cXjOEdYigdrRarJdyS+UfI/CMleHmE+3m+5YN0aFPILfsfpSi9I9qhI3FdO5DS4yjS2sfSujWuA4vf72fz5vWo+pk8eTzdunVn/PjxbNmyOTTMuDqCdGU1jV/gjJQCZz+N+ypItx24qgrPvB2YoKovB/7+nYiMAH4L3BMlfT+cweD3qKoPQEQeBb4QkRaquq0KzzbGHEa11fnvzNFwGkB69OhPamojvN7GLFv2PT5fySF9eIpA06bO0bNn+JVU4ASKi4/l388sJPaZkjJtMIUSx71tHyHV05jkHeuZlzeArVuh0daNjOFhPKsVAu0tPjzcxLO8yG/p2Xwzt3ifJa9VR0radsTTqQOJ3drRun08aWnOIpMJCU6AVnU6cIrWrcKzczN5e/dCSgp+v79K83EqU1nQeAqYgNM0tQa4EGe+RrhCYLO6zI2IxOEEgSciLn0GDK7gtu+BYuBqEXkFZ8TWFcA8CxjG1H211fnfp88g8vPzOOmkc1i69EtOOukcABITG9Xos2NiYtDWaXw0amTEEvjn0nqgh7Fjr0VEuLAEtmyBjRs78er6AvKWr8e3ei0xG7JJ2rKWtUX98OyCpttXcRV/wbvFD4udZ/gRLmQy/+V8urOMaxPeZHdqB9Z72tGHhVyfOx6fN5ZhWsjUUaNY1q9f9ZWvoguquhtnJniwiWhjNQytbYGzGu7miPObgTMqyMdaETkTeA94DvDgBK+aHWBujKk2daXz/6STzqnxZ4sI3bsfz+rYeJ7s3JnUXbvY2bQp3rYd6X50r9DzY2IgPd056B+HM4vh6NDrnAuUlMCWLScxfV0Be5dvoGjlWjQ7m/jctXjietN2B/TJXcJNBY8TmxvRtex3hhqPmjqVvQMGVFv/kVS1yiIi8TjNUT1xlhSZoKobXd6bDmwATgnv+BaRB4BLVbV7lHvaAF8BU4B3gBScxRMBTtNgfaw0/bXAtQCtW7fuN2nSpCqVL2jv3n3ExSVzBA+nrrKCgn0kJCTXdjYOKytzw3C4y7xv3+4yHf9BCQlJJCc3qdZn+f2we4eX/av2kJz5BaO+fI54X2HoelFiIl/dcw8xQ4a4fs1hw4bNV9X+0a5V1hH+MHCRqvYKOxcPzAWOoXRE1S0iMlBVs1zkZRvgA9pEnG9F+dpH0I1Anqr+ISwfvwbW4zRpzQ5PrKrjgfEA/fv316FDh7rIVnkzZ2bStu1QkhvQ/1tLlmTSq9fQ2s7GYWVlbhgOZ5l9Ph//+tdj+HwlxMcnMXbs7Uyc+CSFhfvxemO44oq7a2TdK9/JPt7dPRPPV74y56W4mB927+a2IUOq5bmVfY8+A2eEUrgbgT7A40ATnK2PiwnfB6YSqloEzAciByufCXxTwW1JOIEmXPDvBlQPMMYcCYJrfQUDhtfrZezY24mPTyIhoVGNLpSYl5LiLHkfE0NRYiLFMTFMHTWKvJSUantGZR3hRwP/iDh3PpCLM5JJge9E5HHgtio880ngTRH5Dme+xfVAOvAihEZGnaiqpwfSTwNuCzRhvY3TPPUXnJrG/Co81xhjDosxY27F5/OFAkQwcNRkwPB4PMTExEVdAj8urvrmxFT2Kk0IazIKjHw6EZgZMVrqR5xJeq6o6rs4OwHeD/wAnAyco6rZgSRphPUGqeoXwBicIcALcVbZLQZGqGqe2+caY8zhFBkgajJgBKWmOnugdBx4OjrwVHqd7nz3btmyZbU9o7KaxgagI04nNMAAII7yzUixQJU+vFX1eeD5Cq6Ni3JuEnBwPdrGGNMAiAjt2nWhVau2DBo0gsWLv2T48BEAJCYmVtuoscqCxizgVhH5EGfo7c04S39Ni0h3HJBTLbkxxhhz0KINMx4xonr3RK8saDyE02ewGSjA6Ut4MawZKWgckFltOTLGGHPQanpOTGWT+7IC609djTM//jtVfTMiM+nA/7AVbo0xpkGodJXbwAKCf6zk+kbgd9WdKWOMMXWTzXMwxhjjmgUNY4wxrlnQMMYY45oFDWOMMa5Z0DDGGOOaBQ1jjDGuVbY0+hdVeB0NW2DQGGNMPVXZPA0Pzt7gQRk4+2CsxZkl3hpnbapcYEXNZM8YY0xdUtmM8KHB30XkfOBpYKCqfhd2fgDwbuCaMcaYes5tn8afgP8LDxgAqjoXeBB4pJrzZYwxpg5yGzS6AlsruLYF6FI92THGGFOXuQ0aWcB1FVy7DqefwxhjTD1X6YKFYR4CJorIYuA/lHaEXwx0B8bWTPaMMcbUJa6ChqpOEpFtOMHjHpzd+oqBecBwVf1fzWXRGGNMXeG2poGqfg58LiIeoAWwTVX9NZYzY4wxdY7roBEUCBRbaiAvxhhj6jjXQUNEOgO/BNoDCRGXVVWvqs6MGWOMqXtcBQ0R+QXwHs5oqy1AYUQSLXeTMcaYesdtTeMRIBMYq6oVzdcwxhhTz7kNGp2BOyxgGGNMw+Z2ct9yoHlNZsQYY0zd5zZo/AG4N9AZbowxpoFy2zz1IE5NY5mI/AzsiLiuqnpqdWbMGGNM3eM2aPiwPTOMMabBc7uMyNAazocxxpgjgO0RbowxxjW3k/tOOVAaVf3q0LNjjDGmLnPbp5HJgWd9ew8tK8YYY+o6t0FjWJRzzYGRwKnATdWWozrE54OiIoiJAY815BljjOuO8C8ruDRZRP4BjAI+rrZc1QEi0KoVFBRAYSGUlDjnVZ0AEhPjHF6rXxljGpDq+P48DWf1W9dE5AYRyRKRAhGZLyJDDpBeRORWEVkuIoUikisijx1Srl1o3hzatoXOneHoo6FDBzjqKGjRAhISnECyb1/ZIz8fioud4GKMMfVNlffTiCIDcL0Zk4iMBp4GbgBmB35+LCI9VXVdBbf9Hacp7E5gEdAESDuUTFeV1+sc8fHQqFHpeVUneJSUOE1ZhYVO4Ni/H/yBd0XEqZ14vRAba01dxpgjl9vRU5dHOR0H9AauAiZX4Zm3AxNU9eXA378TkRHAb3G2ko18dgbwO6CPqi4Lu7SwCs+sMSJOIIiNhcTEsteCwaSkxAkmwaau4uKy93u9pc1dIoc3/8YYUxVuaxoTKjhfCLwL3OLmRUQkDugHPBFx6TNgcAW3/QJYA4wQkWk4TWpfAneqap3eQTAYCACSk0vP+/2lwaS4uDSg5OeX1k6gtHZifSfGmLpC1EXju4h0iHK6QFU3V+lhIunABuDU8HkdIvJHnL06MqLc8yIwDvgRp3lKKQ06gyL3KReRa4FrAVq3bt1v0qRJVcliyL59+0gO/6Q/jFRLD7+/9PdIItVbMyko2EdCQu2UubZYmRuGhljm/Px9NG58cGUeNmzYfFXtH+2a29FT2Qf15EpeMuJviXIuyAPEA5ep6koAEbkMZy2sE4C5ZV5YdTwwHqB///46dOjQg8pgZmYmB3tvTQjvOwn2n4Q3d4UHj2D/S1WHCi9ZkkmvXkOrPe91mZW5YWiIZV60KJNTTx1a7U3eVeoIF5HgvIxmwHbgS1WdVoWX2Iaz+GGbiPOtgIpqLblASTBgBPwMlODsVz436l31THjfSaRgc5fP5/wsKCgNKD6fk0a1tP/kYAKKMcaA+47wFOAjYAjOh/V2nMl9d4jILGCkqu470OuoapGIzAfOxNlzPOhM4P0KbvsaiBGRo1V1deBc50Deq7sGdETyeCAurvTvlJTS38P7TyI75IMBJTytTWY0xlTGbU3jL8DxwGXAJFX1iYgX+BXwQuD6zS5f60ngTRH5DicgXA+kAy8CiMijwImqenog/efAAuA1Ebk1cO4pnBrG9y6f2WAFA0p4UAmKDCjr1jkBo6goepNXcFKjdcob03C5DRoXAfer6sTgCVX1ARNFpAXOzn6ugoaqvisizYH7ceZaLAbOCes3SQOODkvvDzSLPQN8BeQDM4DbIzvBTdVEBpSYGGfyIpRv8grvQ8nPL30N1fIBxYYNG1N/uQ0azYGlFVxbShX3D1fV54HnK7g2Lsq5XOCSqjzDHJrIJq9wwU75YEApLnYCSlGRM6kxONorGDysH8WY+sNt0MjCmZE9I8q1cwLXTQNRWac8lAYTn88JKMFaSnizVzCoeDxWSzHmSOI2aLwE/F1EkoGJOCOa2uD0aVyNM8vbGKC0ZhGN318+qAQDSvjkxvDRXtaXYkzd4Xaexj9EpCVwG85EO3DmVhQCj6nq0zWTPVPfBGsWldVSwoNKYaFzBGsrfn/0OSmVBSpjTPVxO+S2CfAw8DgwEGeexg7gW1XdWXPZMw1N8MM/2J8SPnxYtWxQCXbQhy8UGZ42GKAsqBhTfQ4YNEQkBmdexgWqOpV6tm+GOXKIlK7nFR9f/nowqESO+ooWVIKCc1MsqBjjzgGDhqqWiMhmnJncxtRZ4UElmmg1lXXrnKayYPNX+Dpf4X0qwaBiHfWmoXPbEf4WTof39BrMizE1KlpNJSbG2WgLSheIDNZUgtv9Bo/Ijnoo3/xlQ4pNfec2aKwFxojIPOC/OKOnyiwwqKqvVW/WjDm8wtfmqkhkUAkOKQ4ewW2Bw1ltxdQnboPGc4GfbXH2w4ikgAUNU+9VNukRyjaBHai2Es4CizlSuA0anWo0F8bUEwfqV4HSuSrh/SvhgaWoqHxgCd8yOBhgLLCY2lBb+2kY02AdaK4KHDiw+HxWYzG1o0r7aQCISGRXn6qb7f+MMa4dbGApLi7tZwk2hYWvAxa8r6DAOu/NwakwaIhIG+BV4F1VfSNwzgsURSTdJyLdqrr1qzHm0FQlsIQHmPXrISmpNLhEdt6HT4y0WouJVFlN4wacPTQujjgvwMvAxsDvo3H2xHioJjJojDl4wQ/+cF4vtAnbOzM41LiiDvySkvId+OELToaPOrO+lvqvsqAxAnhZVSPn0SrwkqouABCRrcDlWNAw5ojkZqgxOEEjPLj4/WVrK8Gf0RqrI2suFlyOXJUFjQzgj1HOR/6nXhlIa4ypx8KXsa9MtCax8KAS3pEfrLEEf4aPEgv+tOBSt1T2nz8BKLPvd2Cb1zRgW9jpgkBaY4yJ2iQWTWRwCdZcwgNMRfNaIpvGggHG1LzKgsYWoDMwO/xklA7vTsDWas6XMaaecxtcghMmw4NL+CrHwVFj0RakBCew+P3OopXBAGMjxg5eZUFjNnAZ8MYBXuNy4Otqy5ExxoQJTph0I1rtpaQEsrMhISH6ci/hQ5LDd5O0ABNdZf8pngFmi8gTwN2qWmZgXmDJ9L8BQ4EhNZZDY4xxqaIP+ZgYSEsr/Ts4Yiw8uIQ3j4XPdwl27gcDS2T/S+RR3/tgKgwaqjpHRP6AExh+LSIzgHWBy+2BM4EWwD2qOqfGc2qMMdUkfMRYZfNcoGyAiazJBINLsLmsuLj8vcEgEtkHc6TWYiqt9Knq30VkAXAXcBGlHd4FwFfA31T1i5rNojHG1B63Q5KDogWYYDNZeJCJVosJF60WUxeCjJtNmGYCMwOzwZvjDLndpqq2KZMxxkSoyod7ZC0mPMBEHpHzYCIDTbAmU9MjyVyvPRUIEltqLivGGNOwVLUWU1GQiVaTqan+lSovWGiMMaZ2VCXIZGXVTB7qQAuZMcaYI4UFDWOMMa5Z0DDGGOOaBQ1jjDGuWdAwxhjjmgUNY4wxrlnQMMYY45oFDWOMMa6JRtubsZ4IbEWbfZC3t6DsZlMNgZW5YbAyNwyHUuYOqtoy2oV6HTQOhYh8r6r9azsfh5OVuWGwMjcMNVVma54yxhjjmgUNY4wxrlnQqNj42s5ALbAyNwxW5oahRspsfRrGGGNcs5qGMcYY1yxoGGOMcc2CRgQRuUFEskSkQETmi8iQ2s7TwRKRU0TkQxHZICIqIuMirouIPCgiG0UkX0QyRaRXRJp4EfmniGwTkbzA6x11WAtSBSJyj4jME5E9IrJVRKaKSO+INPWq3CJyo4j8FCjzHhGZIyLnhl2vV+WNJCL3Bv59Pxt2rt6VOVAejTg2hV0/LGW2oBFGREYDTwN/AY4DvgE+FpH2tZqxg5cMLAZuAfKjXP8DcAfwO+AEnO18Z4hISliap4CLgEuBIUBj4KPAnvF10VDgeWAwcBpQAnwuIs3C0tS3cucAdwHHA/2BL4ApItIncL2+lTdERAYC1wA/RVyqr2VeAaSFHceEXTs8ZVZVOwIHMBd4OeLcz8CjtZ23aijbPmBc2N8C5AL3hZ1LBPYC1wX+bgIUAWPD0rQD/MDw2i6Ty3InAz5gVAMr9w7guvpc3kC+V+N8OcgEnq3P/42BB4HFFVw7bGW2mkaAiMQB/YDPIi59hvOttb7pBLQhrLyqmg98RWl5+wGxEWnWA8s4ct6TFJwa9c7A3/W63CLiFZFf4QTLb6jf5R0P/EdVv4g4X5/L3DnQ3JwlIpNEpHPg/GErswWNUi0AL7A54vxmnP8Y9U2wTJWVtw3Ot/TI9WuOpPfkaeAHYE7g73pZbhE5RkT2AYXAi8AFqrqI+lvea4AuwP9FuVwvy4zTEjIOOBunSa4N8I2INOcwljmmSlluGCInrkiUc/XJwZT3iHhPRORJ4GTgZFX1RVyub+VeARwLNMVps/6XiAwNu15vyisiGTj9jkNUtaiSpPWmzACq+nH43yLyLbAGuAL4Npgs4rZqL7PVNEptw4nCkRG3FeWjd30QHHVRWXk34dS+WlSSpk4SkX/gdPadpqprwi7Vy3KrapGqrlLV71X1Hpza1W3Uz/IOwsnrYhEpEZES4FTghsDv2wPp6lOZy1HVfcASoCuH8b+zBY2AwDeW+cCZEZfOxGkbrm+ycP4RhcorIgk4IyqC5Z0PFEekOQroQR1+T0TkaWAMTsBYHnG53pY7ggeIp36WdwrOqKFjw47vgUmB31dS/8pcTqBM3XE6wA/ff+faHhFQlw5gNM7ogqsDb+TTOKOOOtR23g6yPMmU/k+1H/hj4Pf2get3AXuAC4HeOP/TbQRSwl7jBWADcAbOMOSZON9ivbVdvgrK/FygTKfhfOsKHslhaepVuYHHAh8OHXE+TB/FGRFzdn0sbwXvQSaB0VP1tczAEzg1qk7AAOCjQBk7HM4y1/obUdcO4AZgLU6H4nzglNrO0yGUZShOW2XkMSFwXXCG8eUCBcCXQO+I10gA/olT5d8PTAXa1XbZKilztPIq8GBYmnpVbmACzmZjhThj8z8nbAhlfStvBe9BZNCod2UOCwJFgQ/+94Geh7vMtmChMcYY16xPwxhjjGsWNIwxxrhmQcMYY4xrFjSMMca4ZkHDGGOMaxY0jDHGuGZBw9RZIjJIRP4d2FSmSES2i8gMEbkiuP6/iIwLbEbTMey+tSIyIeK1RonIInE211IRaSoiHhF5SkRyRcQvIlNqsCwdJcpGWFHSBcvTpabycrBE5HwRuT3K+aGBPJ9RG/kyh5ctWGjqJBG5FXgSZ0Ohu3Amr6UCZ+HMat0F/LeC2y/AmRkbfK0YYCLOUgk34kyO2gtcjLNB1R04q+BuL/dKJtz5ODOJn6zlfJhaZEHD1DkicgrOB9OzqnpzxOX/BlavbVTR/aq6MOJUW5x9Nf6tql+FPadH4NenVNVfDfmOV9XCQ30dY+oya54yddHdODvP/SHaRVVdraqR23uGhDdPiciDOMvCALwaaEbJFJG1OEsuAPjCm45EJE1E3gjso1wozv7bv454RrAZ6RQReU9EduHsd4CIJInI84HmtH0i8iFQrXtPi8g1IvJjoLltm4i8GrGlLYH8PSIiNwc27dkrIl9K+X2jvYF0uSKyX0S+EJHugfsfDKSZgLMEd1sp3Z96bUS2kkTk2UB+torIWyLStDrLbWqf1TRMnRLoqxgKTFHVgmp4yVdw9kl/D3gEmIbTdBUP3Iyzqc2gQNrVItIIZ82eVOBeYD3wa+BNEUlS1fERrz8ReAenqSv4/9NLOItfPgTMw1lV9O1qKAsAIvIYTpPaM8CdODWpR4DeIjJYy+4d8mucvTZuAeKAx3Fqa91VtSSQ5qFAWR/HWbfqeODDiMf+CWiJs/f0eYFzkbWqp3EW0RsDZAB/w9lu4IpDKa+pWyxomLqmBc7extnV8WKqmiMiPwT+XK2qwc1qEJENgTTh527C2Z9gmKpmBk5/LCKtgUdE5NWID+X/qOofwu7PwPnQvE9VHwuc/kxEkoHrD7U8gQ7/O4GHVPXhsPMrgdnAKJylw4OKgZGqWhxIB04APRFn17dU4FbgRVW9K3DPDBEpBv4efBFVXS0iW4Gi8Pcrwleq+rvA758F3ourRWSc2iJ39YY1TxlT1inAhrCAEfQWzjftnhHnP4j4ewDO/1f/jjg/qZryd2bg9SeKSEzwwGka24OT/3AzggEjYFHgZ/vAz2Nw+ofei7jvPweRt2kRfy/CqdG1PojXMnWU1TRMXbMdyAc61NLzm+EsLR1pU9j1cJFp0wI/o+3VXB1aBX6uquB684i/d0T8HWxSSgj8DOZ3S0S6g8nvgZ5l6gELGqZOUdUSEckEzqyl0Ug7cNrjIwW30YwclhvZ7BIMIq1x9m8m7O/qEHz+WcDOSq67FcxvK5ytQ4OsdmCisuYpUxc9hvON+fFoF0Wkk4j0qaFnfwkcJSInRZwfg/NtfNkB7p+Ls2veLyPO/6p6sseMwOu3V2c/8Mgjq4qvtwjIAy6JOB/5Nzg1h8SqZ9nUJ1bTMHWOqn4VmHn8ZGAuxQRgHc6IptNxtuMdA1Q47PYQTMAZaTRZRO4DcoCxOH0J10V0gkfL+woReRt4WEQ8lI6eOqeK+RghIpsizu1W1Rki8lfg2UBH85c4u7S1CzznFVWd6fYhqrpTRJ4C7hWRvZSOnroqkCR8/spSoJmI/BZnT+4CVV2EaVAsaJg6SVWfEpHvgNtw9kZugTOL+3vgOpxtKmviuXkicirOcNHHcCYFrgAuU9W3XL7MdTh7y/8eZ5jrFzhBbnYVsvLPKOeW4Gzfea+ILMOZ3X4jThPZeuB/wM9VeEbQAzhbhV6FMwx5Ls5Q5K+B3WHpXgEGAn8BmuKMcOt4EM8zRzDb7tUYU46IXIIzAuwUVZ1V2/kxdYcFDWMaOBEZAJyLU8MoAPrhzMpfAQy2ORYmnDVPGWP24czvuBFojNPh/2/gHgsYJpLVNIwxxrhmQ26NMca4ZkHDGGOMaxY0jDHGuGZBwxhjjGsWNIwxxrhmQcMYY4xr/w9Gxox5cbPyWAAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgUAAAFGCAYAAAD6uOxSAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAACDHUlEQVR4nO3deZzM9R/A8ddnZndnL/exu+SMVmGx1llYQkVSOlRK6kd0KkJF0a2DkpToVIqoqBCS+8qu2JCtXBG77mPX3vP5/fGZGbP3rr3t+/l4zGN3vvP5fuczH2vmPZ/j/VFaa4QQQgghLCVdASGEEEKUDhIUCCGEEAKQoEAIIYQQDhIUCCGEEAKQoEAIIYQQDhIUCCGEEAIAj5KuQEmrXr26rl+/fqFd79y5eGw2P5QqtEuWO4mJ8Xh7+5V0Nco0acPCUZLtqDXY7aAUWK3mVhbfV+Lj4/Hzk7/FgiiKNoyMjDyuta6R8Xi5Dwrq169PREREoV1v2bJVXHllOFZroV2y3Nm5cxVNm4aXdDXKNGnDwlEa2tFuh4QE89PfH6pWBW/vshMgrFq1ivDw8JKuRplWFG2olDqQ1fFyHxQIIURpZrGA80tiYiL8+y94ekL16ua4fAERhUmCAiGEKCO8vc0tNRViYkxvQaVK5mazlXTtxKVAggIhhChjPDzMUILWcPYsnDoFvr5maMHXt+wMLYjSR4ICIYQoo5QyQQBAUhIcOmQChqpVoUIF87sQ+SF/MkIIcQmw2cwtLQ2OH4ejR82wQuXKZshBiLyQoEAIIS4hVquZgKg1xMfDmTMmWKha1Qw5WCQ7jciBBAVCCHEJUgp8fMzvKSlw5IgJCKpUgYoVwcurZOsnSicJCoQoIfff34ejR48UybVTUhLx9JQ+44K6FNtRa3NzJkUq6kmJiYmJeJfw+EVQUBA//vhjidahrJCgQIgScvToETZvLrzEWe4SE8/h7V2hSK5dnlzK7egMDsBMSLRYimZo4dy5c1SoULJtGBYWVqLPX5ZIUCCEEOWQUhd6CVJTzU+LxQQI7o+J8kWCAiGEKOecPQRaQ3Jy2d9vQVy8Yp+HqpTqrJT6QSn1n1JKK6UG5eGc5kqp1UqpBMd5zyuV/k9VKXWrUmqXUirJ8fOWInsRQghxCVLqQoCQmmpyH6SkmH0XRPlQEotT/IEdwHAgIbfCSqmKwHIgFmjjOG8UMMKtTAdgLjAbaOn4OU8p1a6Q6y6EEJc8Z3BgsZi8B8nJJkBIS7swD0Fcmoo9KNBaL9ZaP6u1ng/kJf4cAPgC92mtdzjOex0Y4dZb8ASwUmv9itb6T631K8Aqx3EhRBH59dcVdOnSkWrVKlC3biDPPjuGVOcAdTZiY2MZPHgQ9evXonJlX2688Xr+/vvvdGViYmK4//57qVs3kMqVfQkLa8HXX8/OdK1ly5bSuXMHKlf2pWbNylx3XbdCeV3Tp7/PFVc0oGbNGrRv35p169ame/yjj2bQs2dXatasjM2m2L9/f6E8r7sJE56jefMmVKniR0BAFa677lo2btyQ63kffDCNkJArqVTJh2bNgvnyy1mZykydOoXmzZtQqZIPDRtexuOPP0JcXFy6a7RuHUL16hWpWbMi4eEdWLJkESkpBe89+OOPP+jSpQs+Pj7Url2bF198EZ1NpPH111+jlOLGG2+8uCcT+VYW0lh0ANZqrd17FZYCtYD6bmWWZThvKdCxyGsnRDkVFbWdvn17ce21Pdi8+Xe+/HIuP/30A2PHPp3tOVprbr/9Zv7552/mzVvA5s2/U7duPXr16k58fLyr3AMPDGT37j+ZP38hW7fuYMCAgdx//72sXbvGVWbhwgXce++d3H33vWze/DurV29k0KD/Ffh1zZs3l5EjhzNmzLOsXbuO9u07ctNNN/Dvv/+6ypw/f57u3XsybtyEPF83v8HDFVcEM2XKNCIj/2DlynU0aNCAPn2uJzY2NttzPvzwA8aOHcPYsc/z++87ef75Fxg+/BF++unCcrw5c77i2WdH8/TTY9m+/U8+/ngWP/+8mJEjh7vK1K59Ga+88jqbNm1lw4YIwsO7cfvtN7NzZ1SBeg/Onj1Ljx49CAgIYMuWLUyZMoU333yTyZMnZyq7d+9eRo0aRadOnfLcZqLgVHYRWrE8uVJxwKNa689yKLMMOKS1fsDtWF3gANBRa71RKZUMDNZaz3IrMxCYqbXOtHeYUupB4EGAgICA1nPmzCmsl8TZs3H4+PgX2vXKo8TEOLy9L/02fPLJR9mwYWO+z4uPj+eZZ57h+++/w8PDg/vvf4ARI0bQuHEjNm/+jbp162K3p2GxFO2eui+88ALLly9n3bp1rmNLlixh0KD7+OefPVkuQ/vnn79p3bo169atp3nz5gDY7XYaN27E88+P57777gOgVq0g3njjTe655x7Xuc2aNeXBB4fy+OOPk5aWRkhIc0aNGs2gQYOyrePu3bt57rlxbNiwAW9vb7p06cJrr00kICAg23O6detK06bNmDp1qqsdW7VqSd++NzNhwoR0Zbdu3UrXruFERf1BvXr1cmyvSpUq5qlcds6ePUudOpfx7bff0b179yzL9OjRnbCwMF57baLr2NixzxIREcHSpeZ701NPjWTXrl0sXrzEVebVV1/hhx9+YNOmzdk+f716dRk/fgIPPGDeipOTk3n55ZeZN+8bTp06RZMmTRg37jl69Ehft7S0NKyO/Z0/+ugjxo8fzz///IOPI7PSG2+8wccff8zu3btxdv6mpKTQs2dPBg8ezNq1azlx4gTz5s3Lb5O5dOjQgffee++izy9pcXFx+PsX7nti165dI7XWmdZqlsvVB1rrGcAMgLCwMB0eHl5o1162bBVNmoTLHucFsHPnKpo2DS/pahQ5T0/vi1oD/7//DWbr1kiWLPmF06dPc8cdt3D06DGCg5twxRVNgazX1/fpcwPr16/N6pIuJ0/G5fi4u7Q0ja+vb7rnqVixKomJieza9RdduoRncZano1y1dOd5e3uzZUsEQ4c+CkDHjtewcOEP3HLLHVSpUoWffvqR48ePc911vfH2rsCWLb9x6NAh/Pwq0qVLF44cOUyzZiG8+urrtGzZCoAjR47Qq9cNDBr0P9544x1SU1N4/vmxDBgwgDVrNmLJYlF+cnIy27ZtY+TIMXh7V3C1Y48e1xMREZGpTW02P8dP/zz9W+a1XFb1+vLLr6lYsSJt2nTM9hopKan4+VVM97i/fyUiIyOxWr3x9PSkc+duzJ07l+3bd9KuXXv+/fdffv55KTfccGOW101LS+Pbb+cRHx9P587dXGWGDh3A3r17mDXra2rXvowlSxZz5539Wb9+C6GhLbBYzNwE9zwFv//+O506daJmzZqu69900028/PLLnDhxggYNGgAwevRoLr/8coYNG8amTZvw8PAoUK4Db29vCvN9vritWrWq2OpfFoKCGCBjWB/g9lhOZWIoRmlpaZnuWyU6EIXo+PHjfPvtPD7++HPCwtoAcNttd/D5558yYcJLOZ47ffpHJCTkOrc3z3r0uI53332br776kjvuuJPY2FheffVFAGJiss7UGBzchLp16/L888/ywQcz8ff359133+bQoUMcOXLhnK+++oZ77rmTWrWq4+Hhgc1mY9asr2nRoiUA+/btBeDFF5/n9dcnUb9+A6ZPn0aPHuFERe0mKCiIGTM+oHnzFrz66uuu637yySwCA6sSGRlBmzZtM9Xv+PHjpKWlUbNm+reTgIAAfv31l3y1T8uWTfn33wPpjrVq1dT1bbhu3Xps27Yzx2ssWvQT9957J+fPnycoKIjFi5fn2MvRo8d1fPbZx9x8cz9atw5j69ZIPv30I1JSUjh+/DhBQUHcccednDhxgmuv7YzWmtTUVAYMuDddOwHs2PEHnTt3IDExEX9/f7755nuaNTO9O3v27GHu3K/566/91K1bF4BHHnmUlSt/4aOPPmTKlPcBs6TRvTM6JiaGyy67LN3zOF9PTEwMDRo0YNmyZXzzzTds27Ytx7YRRaMsBAUbgdeVUt5a60THsR7AYWC/W5kewJtu5/UAcp+VU0g++ugjTp2COnUaMWUK1Khh59y5OVSurLj77ruLqxriErdnzz9orWnXroPrWJs27fj880+5+eZ+OZ5bu3btQq1Ljx49mTjxLYYPf4TBgwdhs9l49tnnWLdubZbfwgE8PT2ZO/c7hg79H0FB1bBarXTr1p3rrrsh3WSz8ePHceLEcZYs+YXq1avzww8L+N//BrJixRpCQlpgd8xyGzNmLP363QbA++/P4Ndff2H27Fk89dQYtm6NZN26NVStmrnbde/ePSQlJXHTTTe4jk2b9iFdunQttPZZuHAxKSkprvtNmzZm4cLF1KpV29UWuQkP78pvv23jxInjfPLJTAYMuIPVqzcSFBSUZflnn32O2NgYunTpiNaagIAA7rnnPiZNesP1b7JmzWpee+0l3n33fdq2bceePf8wcuRwXnxxPOPHv+i61hVXBPPbb9s4e/YM3303n8GD72P58lU0bdqMbdu2orWmZcur0j1/UlIS4eHdsFjSB0VXX90p3XBFdo4dO8agQYP4+uuvqVy5cq7lReEr9qBAKeUPNHLctQB1lVItgZNa63+VUq8BbbXW1zrKfAWMBz5TSr0MXAE8DbygL7yLTAHWKKWeBhYAtwBdgWuK4SWRmprGnDlNWb06jNdfX8fkyRoPjzTs9v506LCNO+5Iw8NDegxEwdlsZoqMl9tuNjVrBlClShWuvPKq7E4DCn/4AOCJJ0YwfPiTHDlyhCpVqrB//37GjXuGBg0aZntOaGhrtmzZxpkzZ0hOTqZGjRpcc007QkPN8OaePXt4//2pbNmyjZCQFgCEhLRg3bq1vP/+VKZP/4jAQPOh6P6aPTw8uPzyxq4JgXa7nRtu6M3EiW9lqkNAQAAeHh789tu2dMdsNhtWq5WjR9NP5ouNjSUwMDBfbZPV3IG6detRv379PF/Dz8+PRo0a0ahRI9q1a89VVzXm008/4tlnn8uyvI+PDzNmfMK0aR8SGxtLUFAQH300gwoVKlCjRg0AJkwYxx133MUDDwwGoFmz5sTHxzNs2GDGjn0eDw/zseDl5UWjRuatOjS0NRERW3j33bf58MOPsdvtKKVYv35LpuDGOVfAGRQlJcVRqVINUlKgRo1AYmJisdsv5ENwTpwMDAxk586dHDlyhGuvvdZ1PWcA6OHhwc6dOwkODs5z+4n8K4megjBgpdv9Fxy3z4FBQBBwufNBrfUZpVQPYBoQAZwCJgGT3cpsUErdCbwMvAjsAfprrbOfNVOIXnjBwvr1bUlNtaK1QmtFSor5j7JlSysmT7YwenRx1ERc6urXb4DFYuGff/52ddsuWvQDp06d4syZM1SqVCnbcwt7+MBJKUWtWrUA+Oabr6lTpw6tWoXmep6zrn///TeRkRGMH2+GPxISzgNkGnqzWq2uD4jQ0NbYbDb++iuaq682sb/dbmffvj306HEdAK1ahTJ//jfUq1cv22/lzg89d6Ghrfnll+XceuvtrmMrViznlltuzfU1FTW73U5SUlKu5Tw9PV3d9PPmzaFXrxtdPQXnz5/Psm1zm3Su9YXnbtGiFVprYmNjCA/PunfFGRS5z29p374DY8eO4cyZRHx9vfHwgGXLllOrVi3q169PzZo1+eOPP9JdZ9y4cZw6dYpp06a55hyIolPsQYHWehWQbeJMrfWgLI79AXTO5brzgfkFrF6+nToFb72lSEw0/8liY33TPZ6UZGX6dBg6FHJ4vxYiTypXrszNN/fj9ddfpX37Dhw8eJDvvptPrVq1WLToR+6++55szy3s4QOASZPe5LrrrsdisbBgwXe8+eZEZs/+xvWh899//3H99dfy8suv0bevSTL67bfzqFatOnXr1mPHjj946qnh3HTTzfTo0RMw8w4uv7wRjz/+MBMnvkXVqtX44YcFrFixnPnzFwJQsWJFhgwZxksvjad27cuoV68+H3zwHqdOnWLAgHsBGDbsEUeXe3+eemoM1avXYN++vcyf/w1vvDEp24lrw4eP4P7776VNm7a0bt2Szz//giNHDjNkyDBXmZiYGGJjY/j7778A+PPPXZw5c5o6depStWpVwHSFu88zOnDgiOtcMB/Ezm/vGZ09e5ZJk96gd+8+BAYGcfz4MaZPn8Z//x3ittvucJV74IGBgJkrAfDXX3+xZctm2rZtz+nTp5gyZTI7d+7go48+d53Tu3cfpkyZTOvWYbRpY4YPJkx4jl69bnT1Eowd+zQ33NCbyy6rQ1zcOebM+YrVq1exYMEiAK644gruumsAQ4YM4vXXJ9GyZSinTp1k9epVNGzYMNuhrDvvvJtXXnmBoUMH8fTT4/jrr794/fWJjBs3Hq0Vfn5+NGvWLN05lStXJjU1NdNxUTTKwpyCUm3+fLBYNM4456232mQqY7FofvpJMWBAMVdOXJKmTJnGI48M5fLL6wAwbtwEmjS5koceGsyePf/w3HMTiq0uy5Yt4fXXXyEpKYmQkBbMn7+Q66+/ME6fkpLCX39Fc+bMGdexI0eOMHr0CFf39oABA9N1h3t6erJw4WLGjXuafv36EBcXx+WXN2LmzE+58cY+rnITJ76Jl5cXgwffx/nz52nVKpRly1a6xttr1arFypXree65Z+jT53oSExOpU6cu3bv3dA3DZOX22/tz4sQJJk58mSNHjtC0aTMWLlycbjhg5szpvPzyC677N9/c23H8UwYOHATA1Ve34cCB9BMN3dWrV4+//tqf5WMeHh7s2rWTzz//hBMnTlCtWjVat27DihVraN48xFXu4MF/052XlpbGlCmT+euvaDw9PenSpSurVm1IN2TxzDPjUEoxYcJz/PffIapXr06vXn148cVXXGViY2O4//57iImJoVKlSjRrFsIPPyyhZ8/r3NrgUyZOfIVnnhnNf/8domrVqoSFtc225wBM79DixcsZPvwROnYMo0qVKjzxxEgee2yEa88F546NsudCySjRPAWlQVhYmI6IuPjta196CcaP12ht/oKtVjtpaeknWSmlGTlS8eST2V9Ha41y+1+Q8X55Ul6WJPbuHSZbJ5dy0o4Fl582dN/O2bkhU2Fs5xwWFkZB3udLWlEsSVRKZZmnoCxkNCzVAgPB123E4IknIjOV8fYGt2W5mURFRREREeEa09NaExERQVRUVGFXVwghSi3Zc6HkSVBQQLfdBmlpF77RBwXFZyqTmKho3Djr87XWJCUlsXv3bldgEBERwe7du0lKSsp18o8QQlyKnMEBkGnPBXlbLDoSFBRQlSrw5JOpeHomZ1NCozXccQdMnWq2I3WnlMLLyws/Pz92797N7Nmz2b17N35+fnh5eZXbIQQhhICsew+Sk817qWzpXPgkKCgEr7ziwdVX/4aHR4prgoyPj8ZqTaVt2wgGDjQR7sSJcMstsHfvhXO11kRFRbFnz3HWrq3LL780Y+3auuzZc5yoqCjpKRBCCAdncKCUCQqcAYIMLxQeWX1QCJSClSuvITY2mZUrYcQICAhQXHednerVzWqE666DkSNh61bo0QPGjYP77jNBwU8/XcnGjS2xWOykpHji6ZnCzz9fTYcO27j7bo3VKr0FQgjhzjm0oLX50gUXVi4UxuTE8kqarhAFBHhRtSoMHw4DBkD16heyzoWHw4oV0K8fJCaaoODOO+H552Hz5hakpXmQkuIFKFJSvEhL82Dz5ha8lTkZm7iEmXTBKtOtU6f2rjJXXFHfdbxyZV9atWrGRx/NSHed5ORkJk16k7ZtW1G5si+BgVXp1Kk9M2d+mKfkN0X9eqpU8cv2nJMnT/LEE4/RvHkTKlXy4fLL6/Doow9x4sSJLMsnJiYSFtYCm00RGXlhhvmxY8fo3fs66tevRYUKNi6/vA6PP/5IuuWRF0trzUsvTaB+/VpUquRDjx7h7NqV9T4G2dWvMHz00Qx69uxKzZqV87w1c0pKCq+88iJNmlxOxYrehIW1YOnSn9OVOXfuHCNHPkHjxvWoVMmHLl06EhGxJV2ZrP5t3f9OC2LNmtW0b9+aihW9CQ5uyIwZ07Mt++abr+Hjo3jyyUddvQcyOfHiSVBQjCpXNvMKZs6EatVg/Xr47LML2Q8zSknx5MMPFYXwHibKkG7dunPgwJF0t4ULF6crM3bs8xw4cISIiChuuulmHnlkKPPmzQVMQNCv3y28/vorDBx4P6tWrWfjxkiGDx/BrFmfsmlT/rdrvliTJk3J9FoaNGiYLgFPRkeOHObw4f949dU3iIz8g08//ZJ169Zw7713ZVl+zJinqF37skzHLRYLffvewnff/ciOHX8xc+ZnrFy5goceGlIIr+sN3nlnEm+/PZUNG7ZQo0ZNevXqwblz5/Jcv4z279+PzZa/XsHz58/TvXtPxo2bkOdzxo8fx4wZHzB58rts27aLIUOGcccdt7Bt2++uMsOGDWb58qV89NHnREb+QffuPbnhhu78999/6a6V8W8149/pxdi3bx99+/aiffuObN78O6NHP8OTTz7G999/m6ns5s2b+OijGa7cDdlNTnRf6ihyJkFBCejVC379FZo2hRySOwJmne5PPxVLtUQpYbPZCAwMTHdzZslz8vevQGBgII0aNeKFF16mUaPG/PDDAgDeffcd1q1bx5Ilv/Doo4/TsmUrGjRowG233cHq1RvylIK4sFSqVCnd69i7dw/79u3lgQey/2Bu2rQZ33zzHX363ESjRo3o3LkLr732Jr/++gtnz55NV/aHHxayevXKLPc3qFatGg8+OIzQ0NbUq1ePbt2uZejQhzPt/7Bx4wa6d+9C5cq+NGhQm0cffSjT87jTWjN16juMGvU0t9xyK02bNuPjjz/n3DmT+S+v9SsMjz/+BKNHP+NK9ZwXX331BU899TS9evWmYcOGDB36ENdf34t33pkEQEJCAt9//y0vvzyRLl3CadSoEc89N4HLL2/EjBkfpLtWxr/VjH+nZ86c4fHHH+eyy2pSrVoFunfvkmtvycyZ0wkKqsU770zlyiuv5H//G8K9997H22+nb8MzZ85w330DmDHjE6pUqZLusYyTE1NTYd8+OHMm82RvkZ4EBSWkenW4/nqAnMPXhAQ4erRYqiTKMG9vb9eOfHPmzCY8PJzWrTPlJcFisVCxYsVsr1O1qn+Otz59bsj23Lz45JOZXHVVUzp06Jiv886dO4vNZsPXLSnIoUOHePzxh5g16yvXJjw5OXz4MAsXfkenTl1cx3bs+IPevXvSu/dNbNmynblzvyMqahsPPvhAttfZt28fMTExdO/e03XMx8eHa67pzKZNFzZmzW/9iktSUhLe3t7pjvn4+LBhwzoAUlNTSUtLy7GM04YN67jsspo0bXoFDz00hKNub1Zaa26+uTdHjhzm++9/YvPm37nmms5cd123dNtkZ7R588Z0bQtmS+jIyIh0u04+/PCD9Ot3W44ZFOFCcODhAbGxZqL34cMQHy+rF7IiEw1LUECASXx0/nz2ZXx8ck58JC49y5b9nGm732HDHsm03z2YN/CvvvqSHTv+4MEHHwLgn3/+5uqr8/eh6+S+a2BWCvLhdubMGebP/4aXXnotX+edPn2aCROe44EHhrhy86elpTFo0ACGDx9JSEiLHMfS7733Ln78cSEJCQn06nUjM2d+6nps8uQ3uf32/jz55EjXsalTP6Bt21YcPXqUihUzv97YWLN3Qc2aAemOBwQEuLrX81o/939n50oj92NXX92JH3/Mfcvh/OjR4zqmTn2Hzp3Dady4Mb/+uoIFC75z7dNQoUIF2rfvwMSJL9O0aTMCAwOZO/drNm3ayOWXX9hAqmfP6+nbtx8NGjRg//79TJgwjuuu68amTZHYbDZWrVrJ9u3b2LNnL1WqmDexCRNeYtGiH5k9+wueeirrXeJiYmLo1q17umM1awaQmprK8ePHCQoK4uOPZ7Jnzz989tmXeX7dHh7g72jaxESIizPBQuXKUKEC5JD5ulyRoKAE9e4Nz2W9A6pLairceGPx1EeUDp06dWbatPQTBzPuLT9+/FhefnkCSUlJeHl5MWLEKIYMGQpQoGWsWe0aWFi++upL7Ha7a8OivIiLi6Nfvz7Url2b1157w3X89ddfxdPTiyeeGJHrNd58823Gjh3P33//xXPPPcPIkU/w/vsfArB1ayR79vzjmo8BF9pv7949/PXXTp544gnXYz/8sCTTDoNZyWv93IOww4f/o0eP8HTHiqKHYdKkKTz00BBatrwKpRQNG17OwIH38/nnn7jKfPLJFwwd+gANG16G1WqlVatQ+ve/i61bL2RsveOOO12/N2vWnNDQ1jRuXI8lSxZx88392Lo1kvPnz3P55em30U5MTGTv3j1A+gDorrvuYdq07CcUOkVHR/P888/y66/rst39MjfOThC7HU6fhhMnTFBQtSr4+Zlh2/JKgoISVLkyDBsGH3yQSnJy1v8UdepcWG4jygcfH99cP5yHDx/BoEH/w9fXl6CgoHRJrho3voLo6OiLeu6MPRQZFeSb6yefzOSWW27NNO6cnbi4OPr27QXA99//lK47e+XKFaxbtxY/v/QfCp06tef22/vz+eezXcec491NmjShatWqdOvWiWeeGUedOnWw2+3cf/9gHn8888YktWvX5vLL69GxY3i6Y86u76NHY13bVwPExsYSGBiYr/q5/zs7e0GKMjADqFGjBvPnLyAxMZETJ05Qq1Ytxo59mgYNLnx4X3755fzyy2ri4+M5e/asY+Oq/unKZFSrVi1q176Mf/75GzBbLQcEBLB48RJstvR/V84hLPcAyHksMDCQ2NjYdOWPHo3Fw8OD6tWrs3z5Uo4fP06rVk1dj6elpbF27RpmzpzOqVPxOW545c5iuZCmPiUFHBtYUqGC2dXWx6f8bcwkQUEJe+op+OuvPSxffjlWqyI52YKnp53UVPPHuGePlfBweOUVuOmm8vcHKrJWtWq1bD887rzzbsaNe4bIyIhM8wrsdjtxcXHZzisoquGDLVt+IypqO2+99U6eyp87d46bbroBrTU//vgz/v7pP1RmzPiU8+cvpBQ/fPgwN954HZ9/PpsOHa7O9rp2xyCyc1lmq1ah/PnnzmzbUqlUatSole5YgwYNCAwMZMWK5YSFmTwkiYmJrF+/ltdee7NA9StO3t7e1K5dm5SUFL7//tssV4T4+fnh5+fHqVOnWL58Ka+++kYWVzKOHz/O4cP/ERhodqls2TKU2NhYLBZLtu2b1fF27TqwcOH36Y798styWrcOw9PTk5tuujnT3/WQIffTqFFjxox5Fi8vLy6Gp6e5aW3mcp09a4YcqlQxww4XedkyR4KCEmaxKPr120PXrn+jdS+OHVPUqKFQajF2uy+LFnVj7Vp4+GGzCuHVVyGbLdjFJSIpKYkY51cWB6vVSo08/sM/9tgTLFr0A7169eC5516gU6fOVKxYie3bf+ftt9/ixRdfpUuX8CzPLapvqR9/PINGjRpn+bxbtvzGAw8M5JNPZtGmTVvOnTtH7949OXv2LPPmLSA+Pp74ePMBW7VqVby8vGjQoEG6a/j5maChYcPLuewys/xv0aKfOHnyBKGhrfHz82fXrp0888wo2rVr73qdTz01hk6d2vPII8MYMmQo/v4ViI7ezaJFP7qGGDJSSvHYY0/w+uuvEhzchMaNr+C1117G39+fO++8GyBP9QPS/Tt7e3tz4MCRdMe8vLxy7FmJiYkhNjaGv//+C4A//9zFmTOnqVOnruu86667ljZt2vLyy2Yux2+/bebw4f8ICWnJ4cP/8dJLE7Db7YwceWGMf9mypdjtdoKDm7Bnzz8888wogoObcN999wOmF+ellyZwyy23EhgYxIED+3nuuWeoWbMmffveAsC113anY8erufvuu3jttbcIDm5CbGwMy5b9TLdu3bnmmk5ZvqYhQ4bxwQfvMXLkEwwePJSNG9fzxRef8cUXXwNmKC3jcJqfnx9VqlSladNm2bZVXillhhe8vc3KhRMn4Nix8jO8IEFBCdNaU6NGDU6c2E2TJpEMGBBGREQku3efokmTAAYM0Hz9teLFF2HxYti4UXoNLnW//voL9eoFpTtWu3Zt9u49lKfzbTYbCxYsZObMj/nss48ZO3YM3t7eXHFFMAMH3p/vmf8Fde7cOb75Zg7PPvt8lo+fP3+ev/6K5rxjxu3WrZFs3rwJgGbNrkhXdtmyldkGNBl5e3szc+Z0du/+k6SkJC67rA59+97CqFFPu8o0bx7CihVrGD9+HN27dyEtLY0GDRq6PtiyM3LkaBISEhg+/BFOnTpF27btWLRoGRUq5G+b5Yz/zhl17tyF5ctXZfv4zJnTefnlF1z3b765t+P4pwwcOAiAffv2UKdOHVeZxMRExo8fx759e/H39+f663vx6adfpPugPXv2DOPGPcN//x2iatWq3Hzzrbz44iuuMXyr1cqOHX8we/YsTp8+TVBQEF26dGX27G9cbaCUYuHCxYwbN5qHHzYrEwICAujQ4WoGDBiY7Wtq0KABCxcuZtSoJ5kx4wOCgmoxefK73HLLrTm2VVGwWk0QAOmHFypWNLdLcXhBlffc+mFhYbow99letmwVV14Znq9I0rkzovs4cHBwMGFhYa6x4v/+M0MNa9aYx6+/Hl577dJcmbBz5yqaNg0v6WoUud69w9i8uWj2eM/PHvYie9KOBVca2rBduzAWLSqc/2tam9ULqalmeKFyZTO8UJSrF1atWkV4eHihXlMpFam1zrRuWfIUlAJKKcLC0v/buAcEALVrw1dfwRtvmD/An3+Grl1h/nzzR+pcTuSU8b4QQoiCMxveXVjGePIk7N9vbmfPlv3kSBIUlALOngJ3ERERmZaWKWX2VPj1VxMQnD5t9lno0eM/pk6d7woE0tLSmDVrFl99lT67mhBCiMJjsZjhhQoVzPtzTAzs2WOSI50/XzaTI8mcghLmPnTgHDJwH0rI2GMAptfgiy/gm29gwgTNn3/WZs+em1m+fB/dujVkz55N1K4dT61aJkDIy7pqIYQQF8999UJiIhw8aIIG5+qFDAkiSy0JCkqYUgqbzZZuDoFzKMFms2UKCC6cB/37Q+fOil694jh61J9t2xqxbZvGw6MN0I7rrtvHoEESEAghRHFxX73gnhzJ09NshOfra34vrWT4oBQICQlJ1yPgDAxCQkJyPXfWLDsnT7rPcFGkpnqRmurB0qX1eeONvPdf2TP0dWW8Ly5dgwcP4uabJXXmxWrVqhkvvTShpKshShlncqQKFcykxKNHzd4L//5r0iyXxqlfEhSUEhl7BLLrIXB3+jR8+KEiNTXrsDM11ZMPPsjb1suLFy9m4cKFrkDAbrezcOFCFi8u+FaoonQYPHiQa99799v27duYNGlKujzyPXqEM3z4oyVYW5EX06e/zxVXNKBiRW/at2/NunVrcyy/YMF39OrVk9q1a1CtWgWuuaYdP/74Q6Zy33//LS1aXEWFCjZatLgqUzIhrTUvvTSB+vVrUamSDz16hLNr1850Za64oj42m6JSpYquv7WxY5+mvPLwuDD/wG43K8r27DHzEBISSs/WzhIUlGGLFl3YOzw7KSkwYkTOqZLtdjtJSUkcPHjQFRgsXLiQgwcPkpSUJD0Gl5Bu3bpz4MCRdLemTZtRqVKlTAlhypvk5OSSrkK+zJs3l5EjhzNmzLNs3vw77dt35KabbuDff//N9pw1a1bTtWs3FixYxObNv3P99b24445b0gUTmzZtZMCA/tx11wB++20bd901gLvuup3fftvsKjNp0hu8884k3n57Khs2bKFGjZr06tWDc+fOpXu+sWOf56+//nb9rT3zzLjCb4gyyMvLBAd+fma3xn//NT0Ix4+DI9lmiZGgoAw7ehQSE3PrUVD8/DP06gVRUVmXsFgs9O3bl9q1a3Pw4EHee+89Dh48SO3atenbty+W3CIPUWbYbDbXXgDOm4eHR7rhg8GDB7FmzWqmT5/m+oaX1S5/Q4bcT+3aNXj99Vddx/bt24e/vxdffZX97nULFnxH69YhVKrkQ2BgVbp375Iu1/1bb71B3bqBVK3qzwMPDOSllyZwxRX1XY9nNdTx0ksTaNXqQja7iIgt9OrVk1q1qlO9ekW6dr2GTZs2ZmgLxQcfTOOOO/pRpYofzz33LAA//fQj7du3pmJFb5o3b87zz49NFzAcPXqUW2/tS6VKPjRuXI/PPvuEkjBlymQGDhzE//43hCuvvJJ33plKYGAQM2Z8kO05kydPYdSop2nTpi2NGjVi3LjxhIa25ocfFrjKTJ36Dl26dOXpp8dy5ZVX8vTTY+ncOZypU98BTC/B1KnvMGrU09xyy600bdqMjz/+nHPnzjFnTvoVT/7+FQgICHD9rWVMV13eZVzeePq0Wdq4bx+cOVMy+97Iu30ZVrMm+Pjk3Odks2mqVoVdu8yujC+/bLqqMvr555+xWCzMnt2Pr77qh91ux2Kx8PPPPxdR7UVpNWnSFNq378B9993v+obnnhHP6Y03JvPSS68xYcJzrtUyL774PFdcEexK95tRTEwM99xzJ/fccx/bt//JihVruPvuC7smzp//DRMmjOO5515g06atXHFFMFOmTM73azh37hwDBtzLihVrWbfuN0JCWtK3by9OnDiRrtwrr7zA9df3IjLyD4YNe4Rly5YyaNAAHnroUX7/fSfTpk3ju+/muwIGMEHJnj3/sGTJL8ybt4DZs2dx4MD+HOuzbt1aqlb1z/HmHlzlJjk5ma1bI+nevWe6492792TTpg15vg6YtqpSpYrr/ubNGzNdt0eP61zX3bdvHzExMenK+Pj4cM01nTM99zvvvEX9+vVo06YlEye+UuZ6Y4qT+/wDqxViYy/MPyjOzlpZfVCG5WXrZYBly+DDD+Hjj+GDD2DJEpME6WrHvizO4YN9+/YBYWitsNvt7Nu3jwYNGrgCBFH2LVv2c7qdELPa9bBSpUp4eXnh4+Pr2vUvK1WqVOGBBwbz3XfzmT17Fv3738WcOV8xd+532f69HDlymJSUFPr1u4169eoBpMtXP3XqO9x7732ubaCffnosq1atZO/ef/L1Ort27Zbu/jvvTGXBgm9ZunQJd999j+v4bbf154EHBrvuDx58HyNGjHLl+K9duyavvPI6999/DxMnvsnff//N0qVLWLlyHR07mv9AH330OU2aZL97IEDr1mG5bjaV190jwWw+lJaWRs2aAemOBwQE8Ouvv+T5Oh98MI3//juULjCLiYkhICDzdZ17MsTGmp9ZPfd///3nuv/ww4/TsmUr/P29iYraybhxT7N//z6mT/8oz/Urrzw8zDJGMMMJxZkQSYKCMqxyZRg6VPP++6lZTjb09Exh6FArQUGKCRPMfgmjRsHu3XDHHXD33TB2rMnhHRMTQ0KCF3FxftjtVqKimtO4cXSmjXlE2dapU2emTZvhun+xux66u+eegTz33DPs2PEHYWFtuOmmvgB8/fVsHnlkqKvcDz8soUOHjnTr1p3Q0GZ0796Tbt2606/fba7Nnnbv/pP77x+c7vrt23fId1Bw9OhRJkx4jtWrV3L0aCxpaWkkJCRw8GD68faMu+1t3RrJli2/8dZbr7uO2e12EhISiImJYffuP7FYLLRp09b1eL169ahVK/1Oihn5+PgU+ZbI+fX999/yzDOj+PLLua4ArTA98cQIwKQ5DgvrQMWKFRkwoD+vvPI61apVK/Tnu1QV9/JFCQrKuFGjFDt2/Mnq1VdhsWhSUjzw9EzFbld06vQno0Y1d5UNDTW9BNOmwbvvmrTJy5fDiy/CqlVt2bixBXa7Ba0Vq1Z14ddfu9Kx43YefLAEX6AoVD4+voX+4XTTTTfz6KPDWLToR5YsufAt9cYbb6JNm3au+7Vr18ZqtbJ48TI2b97EL78s47PPPua5557hl19WExLSIk/PZ7FYMmX7TMkw+Pq//93H0aOxvPnm29SvXx8vLxs33HBtpu5rP+duNw52u51x48bTr9/tACQlxWGzma9s7rtU5mV1kLt169Zy00035FhmzJhnGTPm2RzLOFWvXh2r1crRo7HpjsfGxubYu+P03XfzXTtT3nhjn3SPBQYGppvjkfG6AQHm59GjsdStWzfPz+38W9iz5x8JCkqxEgkKlFIPA6OAIGAn8ITWOtu1NEqpR4BHgfrAv8ArWutZbo8PAj7N4lQfrXVi4dW89LFYFLNmNefXXyOZPfsM8fG++Pmd5557KtG1a+tMb15eXvDkk3DjjabXYMsWeOghCxZLKHb7hbIpKWbz8N9+a8mkSRZGj0aUI56eXnneP8PX15dGjRqjlKJbt2tdxytUqJDlroFKKdq370D79h0YO/Z5WrZsyrx5cwkJaUGTJleyefMmBg16wFXeuWOiU/XqNdi+fVu6Yxnvb9iwjsmT36VXL7NrYGxsLEeOHMn1tbRqFUp09G5X4JRxM5/g4CbY7Xa2bPnNtdvkv//+y+HDh3O8bmEPH3h5eREa2ppfflnOrbfe7jq+YsXyXHcTnD//G/73v/v4+OPP6dfvtkyPt2vXgRUrljNy5Kh0123f3rzeBg0aEBgYyIoVywkLawOYnRfXr1/La6+9me3zOv+NAgNz3hlSlKxiDwqUUv2BKcDDwDrHzyVKqau01pnW0iilHgJeB4YAm4G2wEyl1Cmt9Y9uRc8Dl7ufe6kHBO4qVtS0bHlhnXCFCh1yLN+4MXz3HcyYAS+9pNMFBO6SkqxMn64ZOlRRqVKhVlmUYvXq1Sci4jf279+Pv78/VatWzXaewC+/LOf337fi7+/P+fPn8fX1zfa6mzdv4tdff6FHj+uoWTOAbdt+59Chg1x55VUAPProcB54YCBhYW3o3Dmc77+fz5Ytm9N9YIaHd2PSpDf47LNPuOaazixY8B0bN66ndu3LXGUaN76Cr776krZt2xEfH8+zz47Gy8sr19f97LPPc8stN1K3bj1uu+0O0tKS+OeffWzZ8huvvfYGwcHB9Ox5PY88MpT335+Bj48Po0ePyHUYpiiGD4YPH8H9999LmzZt6dDhambOnM6RI4cZMmSYq8wDD5gtij/5xHyH+uabOdx//71MnPgW11zT2TU86OXl5WrjRx8dzrXXdubNNyfSp8/N/PDD96xevZKVK9cBJqh77LEneP31VwkObkLjxlfw2msv4+/v75pgumnTRjZv3kR4eFdsNis7dvzJqFFPcuONN6XrXRClT0nMHhsBfKa1nqm1/lNr/RhwBHgom/L3AjO11l9rrfdqrecAM4AxGcpprXWM+63oXkLp4dw7YevWrdhsNqpUqYLNZmPr1q1ZbqrkzmIxM129vXPuCrVaFT/9VNg1F6XZk08+hZeXFy1bXkXt2jVyXPs+fvxY+vTpS9WqVVmw4Lscr1uxYiU2bFjPLbfcSNOmjRkzZiTPPPOca/Lf7bf357nnJjB+/FjatWvFjh1/MHz4iHTX6NnzOsaNG8/48WPp0KE1Bw7sZ+jQh9OVmTHjE+Lj42jfvjX33HMn9933APXq1c/1dffseR0LFixi9eqVXH11W7p168qbb06kTp0LH2QfffQZ9es34LrrutGvXx/69787T9cubLff3p+33nqHiRNfpm3blmzYsI6FCxenmx9w8OC/6eZRzJw5ndTUVJ566gnq1Qty3fr37+cq06FDR778cg6zZn1GWFgIX345i9mz59K27YWhoJEjR/P4408yfPgjdOgQRkzMERYtWubqGbLZbMyfP5cePcJp164tL7zwPA88MIQvvvi6GFpGFITK6UOj0J9MKS/MN/q7tNbz3I5PA5pprbtkcU4ksExr/YzbsZeB0YCf1jrFMXzwMXAIsALbgOe01r/nVqewsDCdcYfCgli2bBVXXhlOce1BpLXmxx9/5MiRI4SGhro2VNq6dStBQUH06dMnx/HPt9+GSZM0WmdfRinNyJGKJ58sileQ2c6dq2jaNLx4nqwE9e4dxubNhfe356649rBfuPB77rzzNiIjo5gz5ysiIrawePGyQn2OyZPfYvr09/jrr/2Fet28KK52vJSVhjZs1y6MRYuK5v9aUbPbYdeuVfTsGV6o11VKRWqtwzIeL+6eguqYD+3YDMdjgexmqCwFHlBKtVFGGDAY8HRcDyAaeADoC9wFJALrlVKNC7n+pY5Sivr167sCAue+CaGhodSvXz/XCVEm10HOz+HlZcoJ4c5utzNhwnP0738XV13VlAEDBrJy5Qo+/PADjh8/XtLVE0JchLKw+uAlTMCwAVCYAOJzTE+BHUBrvRFwpStTSm3A9BY8Bjye8YJKqQeBB8GsrV21alWhVTYxMY7duwvvenlhtZqkF7t2rXYdM8O68ezcmXNdmjeHl17KnHd7375KzJt3BUeP+pGUpFi+/AgNG+6hYsWiXzCbmBiXa70vBSkpiSQmnsu94EWw29OK7NpOc+Z8zV9/RTN79mwSE89Rr14txo4dx4QJ49i8eT3vv599Zr38SE1NQmtd5K8nK8XRjpe60tCGKSmJZfo9JTExrlA/p3JS6ocP3Mp4AgGY+QcPYiYfVtZaZ5nrSSn1KRCotc5xHVBZHz4oDG+8AdOnp5GUlLnSVqsdsJCWBlWrwoQJ0K+fSc/pLioqiqSkJFdvhXOug81my9Nuj2CGQpRSruED5/1L1aUwfHCpk3YsuNLQhjJ8kFmpGD7QWicDkUCPDA/1wPQE5HRuitb6kNY6DbgT+CmHgEABIZgAQuRi1CgYNsyCl5cdpeyAxtMzGS8vO48+qlixAjp0gJMn4fHH4a67TG5uJ601+/fvTze50TmvYf/+/TlOdnSKiopKNzHSeY2o7DZsEEIIUehKYvhgMvCFUuo3YD0wDKgFTAdQSs0C0FoPdNy/AmgHbAKqYFYvNAPuc15QKTXe8fjfQEXMkEEI2a9oEOlounaNwMtrBx9/fDN2uwfXXLOVq67aS8eOzWjUKIx58xTffGMSHa1dC9deC8OHw0MPmYxbQUFBHDlyhK1btxIdHU18fDxgjuf67FqTlJTkyp/v6wsRERFER0cTHBx8yfcYCCFEaVHsSxK11nOBJ4BxmHH/a4BeWusDjiJ1HTcnKyYQ2A4sB7yBjlrr/W5lKmOWKf4JLANqA5211r8V0cu45Bw5cgQfn2SCgqw0aeLP4MG+eHsnuxK+KAX9+8OaNXDrrSYf9xtvQM+esHnzhcmNSUlJnDx5kqSkpHSTH3PinBwZHBxMdHQ0J0+edAUEeTlfCCFE4SiRiYZa6/eB97N5LDzD/T+BVrlc70mgmBbMXXqcKxiCgoJ48MEKjjkBZqjJZrOl+1CuVs2kSL7jDnjmGfj7bxMk9Ox5kvDw9Kkh/v33X7y8vGjRIvf0tUopWrdu7eotAGjdOnNGxktJzZpBtGuXaUivUKSkJOLp6V0k1y5PpB0LrjS0Yc2akkUxr8rC6gNRDEJCQtJ10zu/vWf3oXzNNWbfhPffh6lTNcuWVWPNmu5YLHY8Pe106LCFc+d2cezYMZo3b57rLovbt29n79696eYULFy4kIYNG+YpqCiLPv30x9wLXaTykuuhqEk7Fpy0Ydki++EKl4wBQG7f0r29YcQIWLrUTqVKZ0lM9OH8eT/OnPHnl1+u4cMPh7FyZRh2e84TDe12O3v37uXgwYOulLr+/v4cPHiQvXv3Yi/OzcSFEKIck6BAFNiCBVYSEtx3m1OkpnqRlubBb7+1YvLknNdnWiwWGjZsSJ06dYiPj+fkyZPEx8dTp04dGjZsmGsvgxBCiMIh77aiQE6fhunTITk56w/+5GQr06bBmTM5X6dFixb07ds33bG+ffteskMHQghRGklQIApk0SKwWHIeHkhNhdtug0OHsi+jtWb16m28+WYfjhypzObNjVi9eluechwIIYQoHBIUCJeMH8B5+UA+ehQSc92gWrNrF3TpAu+9B8nJ6R+12zUDB/7BoEEhnDhRkbQ0C4sWtWHQoBAGDvwj1zkJQgghCocEBQK4+IyCZkOl3CYkKlq0MMHDa6+Z3AYb3PJXvvmmZu3aK0lN9XDt1piUZCU11YO1a6/kzTclKBBCiOIgQYFIl1HQPU1xdHQ0SUlJOfYY9O4NaWm5XR++/trcGjQwuQ1uvx0efdT8/uGHipQUzyzPTUnx5MMPVa5zEoQQQhScBAUiU0bB2bNn5zmjYOXKMHSoHU/PlCwf9/RMYehQO5UqQefOsGIFPPWUWc74/fdw/fVgt+fc02C1Kn76qSCvUAghRF5IUCCAC4GBu7ymGB41StG+fRRWa6ojONB4eqZgtabSvn0Uo0ZduIbNBk8+CStXQo8eZkghJet4wiUhQXP06MW8KiGEEPkhGQ0FcGEOgbuIiIg87l0AI0faad/+C7Zvv4zz5/3x9Y2jZctDdOzYLNM2ywB168Jnn8HYsfD559o1lwDg3Ln0Qwk+PmbughBCiKIlQYFIN4fAOWTgvA+59xg49y04dOgQdvsfruN16zbIdf+CUaPgq6/Sr0h4/fV26cqkpcGNN17kixNCCJFnMnwgUEphs9nSzSFwzjHIuCFSVrTWREZGEhsbi1IKq9WKUorY2FgiIyNznKhYuTI89JDCyyvVdSwx8UKs6uGRyrBhikqVCvwyhRBC5EKCAgGYDZHcewScgUFISEiezj98+DCpqan4+vpSrVo1fH19SU1N5fDhw7me++STqbRp8ztWaypgZ9CgPwATSKSmevDvv3ZiYy/2lRWui8nlIIQQZYUMHwiX/G6IlLGsp6cnoaGhruGHrVu35ukanp4e9OixjbCwrfz7bwgdO57m5MnzxMZaiYhoyfffe7B8uZmg+L//gWfWqxeLXFRUFElJSa7gyTnsYrPZ8hw8CSFEaSY9BaLAlFLUr1/fFRA4exlCQ0OpX79+noYfWrZsSUCAN82bR1GxYgItW26jb9+dTJu2i549NXFx8NJLZsXCmjXF9MIy1PFiczkIIURZIT0FolCEhISgtc40/JCXngL3iYpnzpwhNTWVpKQkatasSe/ezejTR7FiBTz/vEl2dNdd0KsXjB8Pl11W1K/sQh2dSzajo6NdkzDzkstBCCHKCukpEIXmYocfnBMV4+PjsdlsWK0e2Gw24uPjXRMVr70Wfv0Vnn7aLFFcvNjspTB5MiQkFMWrycwZvLjLbXWFEEKUJRIUiBKnlMLLyws/Pz98fX1RCnx9ffHz88PLy8v1oWuzwWOPwerVcNNNJvHRpEkQHm6ChKLuwd++fTsLFy5Mtz/EwoUL2b59e9E+sRBCFBMJCkSJ01qTnJxMXFwcTZo0oWrVqjRp0oS4uDiSk5MzjdfXrg0ffADz58OVV5otmYcMgTvvBEevfqGz2+3s3buXgwcP4u/vz913342/vz8HDx5k79692O32onliIYQoRhIUiBLnzJPQpEkT17h9WFgYTZo0yTFPQocO8PPP8MorJt/BunVmIuLzz8Pp04VbR4vFgpeXFxUqVCA+Pp6vvvqK+Ph4KlSogJeXFxaL/FcSQpR98k4mSoWLzZPg4QGDBsHatTBwoBlC+PhjuOYa+OKL3HdwzCutNTVr1sRqtRIfHw9AfHw8VquVmjVryuoDIcQlQYICUWoUJE9C1arw2mum56BDBzh1ykxKvP562LixcOrWunVrKlSowKef9ua998JJSkqiQoUKMtlQCHHJkKBAXFKaNoV588ycg9q1YdcuuO02GDoUDh68+Ou6r5CwWBQeHplXSAghRFknQYG45ChlViesXg1PPQXe3vDTT2aVwhtvgKP3P5/XNCskfH19sVisrhUSvr6+6VZICCFEWSZBgbhk+fiY1Mhr1sDNN5sljFOmQOfOZuVCfhYMaK2Jiopiz57jJCZWIjk5gAMHrmHPnuNERUVJT4EQ4pIgQYG45NWuDdOmwYIF0KIFxMTA8OGmNyEyMm/XsNs1S5eGMHXqA8TE2Dh0CD7+uA5Tpz7A0qUh2O0SFAghyj4JCkS50aaNGUZ4+20ICIDffzeBwaOPwn//5XzupEkWNm0KIS3NA60tgCI52YO0NA82bQph0iT5rySEKPvknUyUKxYL3HGHWcL4+OMmS+L335shhTffzHq+wenTMH06JCRkPW8gIUExfTqcOVO0dRdCiKImQYEol/z8YMwYM9/AmTL5nXegUyeYOzf9fINFi8Bqzfl6VqvphRBCiLJMggJRrl12mVm+uGABtGwJsbEwYoTZhXHTJlPm6FFISMh5zkBCgubo0SKvrhBCFKkSCQqUUg8rpfYppRKVUpFKqU65lH9EKfWnUipBKRWtlBqYRZlblVK7lFJJjp+3FN0rEJeaNm3gxx/N6oTAQPjjD7j1VrOngtUKPj45Lzn08VHUrFlMlRVCiCJS7EGBUqo/MAV4FWgFbACWKKXqZlP+IeB14EWgKTAemKaU6uNWpgMwF5gNtHT8nKeUald0r0RcaiwWk+ho7VoYOfLCFs2TJkFSUs49BWlpmhtvLKaKCiFEESmJnoIRwGda65la6z+11o8BR4CHsil/LzBTa/211nqv1noOMAMY41bmCWCl1voVxzVfAVY5jguRL76+Zghh7VozKTEtDdLSFJB1YODllcrQoZpKlYq3nkIIUdiKNShQSnkBrYFlGR5aBnTM5jQbkJjhWALQVinl6bjfIYtrLs3hmkLkKijILF9cssTspwDOIQQNaDw8kvHwSGPYMAujR8v0HCFE2Vfc72TVASsQm+F4LBCYzTlLgQeUUm2UEQYMBjwd18Nxbn6uKUSeNW9u9lN4/vl9VK8ehwkOFP7+8Tz00Aauv/4PJMuxEOJS4FHSFciDlzAf7hsw78axwOfAaCAfiWovUEo9CDwIEBAQwKpVqwqlogCJiXHs3l141yuPEhPj2LlzVUlXI5NmzU7z5pvJLFoUwpIlDTl9ugpTp3Zi69aDDB26icDAjB1aJae0tmFZI+1YcNKGBZeYGFeon1M5Ke6g4DiQBgRkOB4AxGR1gtY6AdNTMNRR7gjmA/0ccMxRLCaf15yBmZdAWFiYDg8Pz+/ryNayZato0iQ813XtIns7d66iadPwkq5GOna7nVmzZnHy5Ek2b76a6tVP0bz5IbZsacH69XWIiLiMBx5QPPYYpWJuQWlsw7JI2rHgpA0Lxm6HXbtWUZifUzkp1qBAa52slIoEegDz3B7qAXyby7kpwCEApdSdwE9aa2dPwUbHNd7McM0NhVR1Uc5ZLBZq1qxJhQoVePTRla7j119/lCVLQti8uTYffABffw1PPAH33QdeXiVXXyGEuBglMTtqMjBIKTVYKXWlUmoKUAuYDqCUmqWUmuUsrJS6Qil1r1KqsVKqrVJqDtAMeNbtmlOAbkqpp5VSTZRSzwBdgXeK60WJS98NN9xA3brpV862bFmdb7+txeLFZjLi6dMwYYLZpnnhQpDNE4UQZUmxBwVa67mYpYLjgG3ANUAvrfUBR5G6jpuTFbOMcTuwHPAGOmqt97tdcwNwJzAIiAIGAv211puL7pWI8kRrTUREBNHR0QQHBzNgwACCg4OJjo4mIiKCkBDNvHnw2WfQuDEcOAAPPwx9+sDGjcVbz5zuCyFETkpkHZXW+n2tdX2ttU1r3VprvcbtsXCtdbjb/T+11q201r5a60pa65u11tFZXHO+1rqJ1tpLa32l1vq7Yno5ohxQSnHs2DH8/Pxo3bo1Silat26Nn58fx44dQymFUtCjB/zyC7z+OtSoYXZivO02M5wQnemvtnBFRUURERHhCgScgUxUVFTRPrEQ4pIhi6uFyAOtNTVq1CAuLo7IyEi01kRGRhIXF0eNGjXSfSP38IB77oH16+Gpp0wypF9+ge7dzf0jR4qmfklJSezevZuIiAgAIiIi2L17N0lJSdJjIITIEwkKhMgDpRRhYWE0adKE6OhoZs+eTXR0NE2aNCEsLAyVRaICPz948knYsAEGDgSlzETEa66B116Ds2cLt35eXl74+/uze/duTp48ye7du/H398fLyyvL+gkhREYSFAiRR87AwF12AYG7GjVMELBypdl9MTER3nsPOnaEmTMhKangddNak5ycTHx8POfPn0drOH/+PPHx8SQnJ0tPgRAiTyQoECKPnGP07tzH8HNz+eUmCPjhB2jXDk6dMisVOneG+fPNHgsXy32OQ1JSEmlpqSQlJaWbAyGEELmRoECIPMht9UF+vom3bg3ffguffgrBwXDoEAwfDtddBytWXNwyRvc5DjabDQ8PD2w2W7o5EEIIkRsJCoTIA6UUNpuN4OBg15BBWFgYwcHB2Gy2fH8TVwp69oTly2HyZKhVC/7808w9uO02yNAhkaf6OecU+Pn5AeDn5ydzCoQQ+SJBgRB5FBISkm4OgTMwCAkJuehrWq3Qv7/Zpvm556ByZdi0Cfr2hQcegL/+ytt13OcUBAcHU7VqVYKDg2VOgRAiXyQoECIfMn7jLqxv4N7eMGyYWanw2GPg4wNLl8K115oVDIcO5V4vZx6FiRPD2LOHTHkUhBAiNxIUCFGKVKoETz9tchwMHAgWC3zzDXTqBM8/D8ePZ32e1prU1FRiY2M5d+4cAJGRkcTGxpKamio9BUKIPJGgQIhSKCDALGNcvRpuuQWSk+Hjj80yxrfeAsfnfjpBQUEkJto4ciSNxEQ7H310nsREG0FBQcX/AoQQZZIEBUKUYvXrm5wGS5dCt24QHw9vv202X5o+HRISnCUVc+bU5Z13BnLqVCXS0iwsXdqBd94ZyJw5dQEZPhBC5E6CAiHKgGbN4Isv4LvvoG1bk+PgpZdMdsQvv4SJEzXff1+dlBQrWpv/1ikpXqSkWPn+++q8+aYMHwghcidBgRBlSLt2JjD44gto2hRiYmDMGNObkJRkzfKcpCQr06fDmTPFXFkhRJkjQYEQZYxSZijh55/NEEKNGpBxeCDjvEKrFX76qdiqKIQooyQoEKKMsligTx+4916A9FHAlCmh6e4nJMDRo8VXNyFE2SRBgRBlXGCg2Z7Z3aFDFdPd9/GBmjWLsVJCiDJJggIhyrjevTNvptS795509xMSoG7dYqyUEKJMyldQoJRqr5SaoJT6WSkVpZT6Wym1USn1mVLqfqVUlaKqqBAia5Urw7BhCpvtQmTQtetBtxIarRV33gn33w87dhR7FYUQZUSeggKl1H1KqT+ADcCTgC/wN7AZOAW0Az4C/nMECA2KqL5CiCyMHGmna9e/8fBIRSk7AJ6eyXh4pNKt2988/LDGxweWLTO7MQ4ZAtHRJVxpIUSp45FbAaVUFFADmAUMBLbpLHKmKqUqATcCA4BdSqlBWuu5hVxfIUQWrFYLjz+eROvWc5k2rRdWaxrduq0hLCyWq69uRosWigcfhGnTzHLGxYthyRKz8dKTT0KjRiX9CoQQpUFeego+BhporcdorX/PKiAA0Fqf0VrP1lr3AtoDpwuxnkKIHDh3SaxQwU6lSufx8NC0a7eHChXsrl0Sa9SACRPMvgqDBoGHByxYAF27wvDhsG9f8dU1p/tCiJKTa1CgtZ6itU7Mz0W11tu11ksvvlpCiPxw7pKYmpqKxWKSGPn6+pKampppl8TAQHjlFRMcDBhgljbOnw9dusCIEfDvv0VXz6ioKCIiIlyBgNaaiIgIoqKiiu5JhRB5JqsPhLgE2O12jh07xqlTpxg5ciPBwR74+/tz6tQpjh07ht1uz3RO7drwxhuwdi3ceac5Nneu2ZFx1Cg4eDDTKQWitSYpKYno6GhXYBAREUF0dDRJSUnSYyBEKZDnoEApdbNS6lOl1GbHqoO/Hb9/qpS6uQjrKITIhVKKKlWq4OXlRWxsLCdOnCQ2NhYvLy+qVKmSrqcgo7p1YdIksyPjbbeB3Q5ffWX2VRg9Gg4dKrw6enl54efnR3R0NLNnzyY6Oho/Pz+8vLxyrKMQonjkGhQopaoopdYB3wFdgePAJsftOBAOfKeUWi9LEoUoGUop+vTpQ7t27UhOTiYtLZXk5GTatWtHnz598vSB26ABTJkCq1ZBv34mOJg92wQHY8YUPDhwznuIi4sjPj4egPj4eOLi4lzzHoQQJSsvPQWTgLpAF611fa11b631vY5bb611A6AzUBt4qygrK4QoepdfDlOnwsqVcMstkJpqdmIsaHCglKJ169b4+/uTlJTEyZMnSUpKwt/fn9atW0tPgRClQF6CgpuAp7TWa7MroLVeB4wBbi6kegkh8sE5Pr9161ZsNhseHh7YbDa2bt2abmJffjRqZHZfXLUqc3AwenT+5xxorYmMjCQ+Ph6bzUaVKlWw2WzEx8cTGRkpPQVClAJ5CQpsmARFuTkNeBWoNkKIi3bkyBEAQkNDqVq1KqGhoemOX6yMwUFa2oVhhVGj8r5awblCIiUlhS++6MuMGT3w8fEhJSUl0woJIUTJyEtQsBEYq5SqkF0Bx2PPYDIeCiGKmVKK+vXrExoaSlhYGABhYWGEhoZSv379QvnAdQYHK1demHPw1VdmtcLIkbB/f87nO1dInDx5EqvVSs2aAVSoUIGTJ09mu0JCCFG8cs1oCDwBrAIOKKUWATu40HNQBWgK9AbSMBMRhRAlICQkBK21KwBQShEWFlbo38AbNTJzDp54At59F77/HubMgXnzTE/C44+beQkZKaWwWCxYrVaSk5M5ejSW2NhYrFYrFotFegqEKAXykrxoF9AC+BzoALwKTHfcXgWuxqRAbqm13ll0VRVC5CbjB2tRftBefrlZrbB69YU8B/PnQ3g4PPJI1nsrNGnSBB8fH+x2O8nJqSQkJODj40OTJk2KrJ5CiLzLU54CrfURrfWTWutGgB9mpUFtwF9rfbnjscN5fVKl1MNKqX1KqUSlVKRSqlMu5e9WSm1TSp1XSsUopb5USgW6PT5IKaWzuHnntU5CiIvToIHJc7BuncmQaLWa9MnXXgsPPgg7HV8VlFJ4enqSluZPXJwfZ89WYPv2ZqSl+ePp6Sk9BUKUAvnOaKi1TnQECUe01gn5PV8p1R+YgullaIWZh7BEKZXlbu9KqauBLzA9FU0xKxyuAmZnKHoeCHK/5Tc9sxDi4tWtazIkrl8P990Hnp6waBH07Gm2bN661c7Uqd5MnNifM2cqc/ZsRVat6sLEif2ZOtWbtDSZUyBESctL8qJ++b2oUipIKdU+m4dHAJ9prWdqrf/UWj8GHAEeyqZ8B+CQ1vptrfU+rfUmYCpmu2Z3Wmsd437Lb72FEAVXuza8+ips3AiDB4O3t9myuU8fC0uXXkFamgdaWwBFSooXaWke/PprIyZNkp4CIUpaXnoKpjq67ocpparmVFAp1UkpNQP4BwjJ4nEvoDWwLMNDy4CO2Vx2PRCklOqjjOrAncDiDOV8lFIHlFKHlFI/KaVa5eG1CSGKSGAgvPACbNoE//sfgHYEA5klJ3swfTqcOVOsVRRCZJCXoKAxJsXxi0CsUipKKfWFUmqyUuo1pdR0pdQypdRJzCqFxkAPrfWMLK5VHbACsRmOxwKBmYuD1nojJgiYDSQDxwAF3OdWLBp4AOgL3AUkAuuVUo3z8PqEEEWoRg0IDgYfn5zLWa3w00/FUychRNZUXrOIOb7l3wJcj+m6rwV4AyeA3cAaYK7WencO16gF/IdJmbzG7fjzwACtdXAW51wFLAfeAZZi5gu8CWzTWg/M5nmswDZgpdb68SwefxB4ECAgIKD1nDlzcnn1eXf2bBw+Pv6Fdr3yKDExDm9vacOCKG1tGBtrbgCJiVY2bKjN6tWXER9v8p0FBsbRrdu/9Ox5jFq1Sk9mw9LWjmWRtGHBJSTEUbFi4bZh165dI7XWYRmP5zkoAHB03cdd7AQ+R2BxHrhLaz3P7fg0oJnWuksW53yBWeVwi9uxa4C1QB2tdZaZ2JVSnwKBWusbcqpTWFiYjoiIuJiXk6Vly1Zx5ZXhWK2FdslyZ+fOVTRtGl7S1SjTSlsbzp4NEybA+fM5l6tWzeyvcNttYLMVS9VyVNrasSySNiwYux127VpFz57hhXpdpVSWQUFeJhpalVITlFKnMN38Z5VS3yqlKue3ElrrZCAS6JHhoR5knw3RF5MYyZ3zfpb1V2ZtUwhmAqMQooT17m3SI+fmxAmzr0LHjjBzZu5BhBCicOVlTsEw4Hngd8wuiAsxY/dvX+RzTgYGKaUGK6WuVEpNwQxFTAdQSs1SSs1yK/8j0Fcp9ZBSqqFjieK7wFat9b+Oc8Yrpa5zPN4S+BgTFEy/yDoKIQpR5cowbJjGZss6MrDZ0njsMc20adCkCcTEmJ6Ftm3h7bfh9OnirK0Q5VdegoIhwEytdTet9Rit9e3AI8A9juGAfNFaz8WkTh6HGfe/BuiltT7gKFLXcXOW/wyzjPFRTIrl+cBfmMDEqTIwA/gTs5KhNtBZa/1bfusnhCgao0Yp+vU7jpeXHYvFDFv6+mq8vOz063ecMWMUN98My5fDp59CaCicOgVvvWWCg5deMsGCEKLo5CUoaAjMy3BsLmYVQb2LeVKt9fta6/paa5vWurX7pEOtdbjWOjxD+ala66Zaa1+tdZDWeoD7XAJHRsV6juvV1Fpf51i1IIQoJZSCt94KYOtWRb16issugwkTFL//rnjrrQCcCQ0tFpPw6IcfzH4KnTtDfDxMnw4dOpjhhX37Sva1CHGpyktQ4A+czXDsnONntjsnCiFEVqpUUQQEwGWXmbTIlStnnbRIKTO34OuvYfFiMy8hJcVMWuzcGYYNgz/+KObKC3GJy2ua49qO8fqGSqmGmN6DTMcdjwkhRKFq0QJmzIBVq8zmS1Yr/PgjXH893HWX2XchHwupcpVxG2fZ1lmUF3kNCuYDf7vdnLkIFmQ4/nch108IcYnJuAw6P8uiGzUymy9t3AhDh4KvL6xZA/37m56En37K2yqHnCxevJiFCxe6AgG73c7ChQtZvDhjElUhLj0eeShzf5HXQghRLkRFRZGUlASEAQqtNREREdhsNkJCMmVGz1ZQEDz/PDz2GHz+OXzyCWzfbgKFBg3M0MJtt5l9F/LDbreTlJTEwYMHWbhwIVdcUYWFCxdy8OBB6tSpg91ux2LJ9z5yQpQZuQYFWuvPi6MiQohLm9aapKQkoqOjefppCAsLIyIigujoaIKDg9Fa53v75CpV4IknTDAwd66ZjLhvn0mA9NZbZs+Fe+81SyLzwmKx0KBBA06fPs3BgwepXDmFgwdjqFChAg0aNJCAQFzy5C9cCFEslFJ4eXnh5+dHdHQ0s2fPJjo6Gj8/P7y8vPIdELjz8YFBg8zcgmnToGlTOHYMJk40yxknTID//sv9OlprUlJSsFqtpDnGIdLS0rBaraSkpORrqEOIskiCAiFEsdBac+DAAWJjY4mPjwcgPj6e2NhYDhw4UCgfuB4ecPPNsHSpWbXQqZNZzjhzplnJ8NhjsGtX9ucrpfDw8CAuLg6ttesWFxeHh4dHgQIXIcoCCQqEEMUmMDCQ1NRUzp8/z8mTJzl//jypqakEBma5SepFU8osW5wzB37+Gfr2NTnkv/sOevQwSyHXrMm8YiEtLY1t27aRkJDA3Ll3cPp0NSwWCwkJCWzbts3Ve1DSCjJZU4icSFAghCg2Sik8PT2BCx9knp6eRfoNvHlzeP992LDBzDHw8TFLG++6C667zgQKKSmmrNVqJSAgAKhMXJwfqamK7dubAZUJCAjAWgp2OouKiiIiIsLVfs7JmlFRUSVcM3EpkKBACFEsnHMKatasicViQSmFxWKhZs2aBZ5TkBd16sCLL8KWLSYrYo0asHOnGVLo2NFMUjxzRrNsWQveffc+zpypRFqalZUru/Duu/exbFkL7PaS/UbuPlnTGRg4J2smJSVJj4EosLwsSRRCiALTWpOcnExsbCze3t74+vpy/vx5YmNjueyyyy5q9cHFqFIFhg83Kxa+/94EA//8Y/ZWeP11RWpqEHb7he9LKSmmZ2PhwgBq1VKMHl3kVcyWUoqwMLPbbXR0NNHR0QAEBwcTFhYmcx5EgUlPgRCi2Bw5cgSlFKGhodxzzz2EhoailOLIkeLf5dzb2wwhrFxpch20aQPJyaQLCA4d8nf9npzswfTpmjNnir2q6bgHBk4SEIjCIkGBEKJYKKWoX78+oaGhrg+xsLAwQkNDqV+/fol9qFks0L073H47eHun735/5530H75Wq8maWJKcQwbu3OcYCFEQMnwghCg2ISEh6YYJnIFBafiWe/QoJCWlP2azpZKUdOFt8vz5vOU7KCrOgGD37t00adLElQBq926Teb60tKUou6SnQAhRrDJ+aJWWD7GaNcHHJ31dnnsu4w7sipkzTVKkmJjiq5vr2ZXi2LFj+Pv707p1a5RStG7dGn9/f44dO1Zq2lKUXRIUCCEEZkOltLT0XfDe3unzEiilOX8epk6F9u3NyoXi3L5Za02NGjWIj48nMjISrTWRkZHEx8dTo0YNGUIQBSZBgRBCYPZHGDpU4+mZkuXjnp4pPPqoZsEC6NXL7Mb43Xdm++bbbjNZFIs6t5FzuCU4ODhdqmhZfSAKiwQFQgjhMGqUonv3vXh4pKKU2TrZ0zMZD49Uunffy+jRijZtTNrk9ethyBDw9zdbOT/wgEmr/NFHcO5c0dVRVh+IoiRBgRBCOFgsisceS+SVV5ZQufIZrNY0unVbyyuvLOGxxxKxWC588NatazZaiogwP+vWhQMHYPx4CAszPw8cKPw6yuoDUZQkKBBCCAdngqX4+MM89tg3BAWdoV27f4iPP0xycnKWH7wVKpgeg3Xr4OOPoUMHiIszPQZXX216EDZsyLzPwsXW78cff2Tr1q3MmnUT338/gODgYLZu3cqPP/4ogYEoMAkKhBDCjTORUmhoKFWrViU0NDTd8exYrWZ+wfz5Zn7B7beDp+eF33v0MDs3JiQUTj1ltEAUBQkKhBDCIWOCJeCiEiw1awbvvAO//QYjR5p9Fv78E556ymROnDgRDh++uPr16dOH0NBQzp8/z9GjsURHRxMaGkqfPn1kXoEoMAkKhBDCTUhISLqJe86JfSEhIfm+Vo0aMGIEbN4MU6ZASAicOnVhSeOwYWaDpvz0+jtzE7hz5iwQoqAkKBBCiCJms5lli4sXw4IF0KePOf7jj3DzzXDDDTB3LiQm5n6t7du3s3DhQlcgobVm4cKFbN++vaiqL8oRCQqEEMJNVFRUutn8ztn+UVFRBb62Umb4YPp02LQJHn8cqlUzCZBGjDCPvfZa9qmU7XY7e/fu5eDBg1itVmrWDMDf35+DBw+yd+9e7HZ7gesoyjcJCoQQwkFrTVJSEtHR0a5lfxEREURHR5OUlFSos/tr1YIxY8y8g8mToXlzOHkS3nvPrGAYMiTzqgWLxULDhg2pVq0hp097ER0dx6+/BlGtWkMaNmyIxSJv6aJgZEMkIYRwcE8MFB0dTb16vhw4cKhIMwZ6e0P//nDHHSbnwaefwqJFZqhh8WJo0gQGDYJ+/cDXF5YubcH06SEkJ2u0Vvz0U2sWLfJg2DBFSIisShAFI0GBEEK4cQYG0dHRrmPFkTHQObTQpo3ZbGn2bPjyS9i9G55+Gl59FRo2hD//1CQlKcDUJznZE4AZMzSgGD26SKspLnHS1ySEEG5KQ8bAwECzlHHzZpg2zWRIPHsWtm3DERBklpCgmD5dc+ZMsVVTXIIkKBBCCAdnQODcZKhq1aquzYdKIpWwl5dZnbBwIQwfDlZrzs9vtcJPPxVP3XKTsa0k22LZIEGBEEI4KKWw2WyuOQSAa1dCm81WorkAPD3Bbs/5+c+fV8TGFlOFclCUKzhE0SqRoEAp9bBSap9SKlEpFamU6pRL+buVUtuUUueVUjFKqS+VUoEZytyqlNqllEpy/LylaF+FEOJSVJjJiwpTzZrg45P7t+2vv4avvoLz54uhUlkozhUcovAVe1CglOoPTAFeBVoBG4AlSqm62ZS/GvgC+BxoCtwMXAXMdivTAZjrONbS8XOeUqpdUb0OIcSlK2OPQGnIFti7N6Sl5V6Pw4dh1Cho3Rqefx7+/rsYKufGGUQ5h11OnjzpGo6RLZ5Lv5LoKRgBfKa1nqm1/lNr/RhwBHgom/IdgENa67e11vu01puAqYD7B/4TwEqt9SuOa74CrHIcF0KIMq9yZRg2TOPllZrl415eqTzyiObdd01AcPas2bUxPNxkU1y4EJKTi6eukoq57CrWoEAp5QW0BpZleGgZ0DGb09YDQUqpPsqoDtwJLHYr0yGLay7N4ZpCCFHmPPUUdOv2D1ZrKkrZAY2nZzJWayrduv3D00/DrbfCDz+Y3RnvucfkNti4ER5+GNq2NZsxHTxYtPV0pmJ2J6mYywZVnOM7SqlawH9AF631GrfjzwMDtNbB2ZzXD/gM8MHkVlgO9NVaJzgeTwYGa61nuZ0zEJiptbZlcb0HgQcBAgICWs+ZM6dwXiBw9mwcPj7+hXa98igxMQ5vb2nDgpA2LBylsR1PnDhBSoqdEyeqAgo/v3i8vRPx9LRQrVq1TOXj462sWBHAjz/W5sABPwCU0rRte5LevQ/Tps0JrNbCrePp06dJTk7Gy8sLb28PEhNTXfcrV65cuE9WDiQkxFGxYuH+HXbt2jVSax2W8XipT16klLoKM1zwEubbfxDwJvAhMPBirqm1ngHMAAgLC9Ph4eGFUleAZctW0aRJeKH/JytPdu5cRdOm4SVdjTJN2rBwlLZ21Frz5ZdfcubMGWbP7ojVauWeexaQmppKpUqV6NSpX5Zd9G3bmgRIW7bAF1/ATz8pNm+uxubN1ahdG+66y9wCA7N40ouwfft29uzZw+TJ7RkxYgfx8Ufw8/Pj8ssb0LRpi8J5knLCboddu1ZRmJ9TOSnuOQXHgTQgIMPxACAmm3OeAX7TWr+ptY7SWi8FHgbuVUpd5igTk89rCiFEmaOUYsCAAdSqVQutNamp5ht4rVq1GDBgQI5j9kqZ4GDqVJNOedw4qF/fbL701lvmscGDYdUq80FUEP/991+6umitUUrxX3Y7PYlSo1iDAq11MhAJ9MjwUA/MKoSs+GICCXfO+876b8znNYUQoszRWhMZGUl8fDwWi8LT0wObzUZ8fDyRkZF5Xu5XrRo89BCsXWuWMPbqZY4vWQIDBkDHjvDuu3D0aP7raLfbSUpKYv/+/aSmmrfqs2fPsn//fpKSkmQnx1KuJFYfTAYGKaUGK6WuVEpNAWoB0wGUUrOUUrPcyv8I9FVKPaSUauhYovgusFVr/a+jzBSgm1LqaaVUE6XUM0BX4J3ielFCCFHUlFJ4eXnh7++P1TFG6efnh7+/P15eXvme3W+xQOfOMHOmGVoYMwbq1DETEV9/3ezDMGRI/noPlFLUrl0bT09PtLajtSYlJQVPT09q164tKxBKuWIPCrTWczFLBccB24BrgF5a6wOOInUdN2f5zzDLGB8FdgDzgb+Avm5lNmBWJAwCojBzDfprrTcX5WsRQojipLUmOTmZ+Ph4Jk8+yJo1AQQHBxMfH09ycnKBEgMFBMDjj8P69WYjpuuvN9s2L158ofdgyhSzWVNOlFJ4e3vTtm1bVwBgtVpp27Yt3t7eEhSUciUy0VBr/T7wfjaPhWdxbCpmsmFO15yPCRiEEOKSlDENs/tWz4WVhtlqha5dzS0mBubONRkSDx6EN96ASZOge3e4+25TJqtJ1Xa7nZ07d2I6gY2dO3fSqlWrAtdPFC3Z+6CQWSwQHw+pWecXEUKIAinONMyBgWYjpo0bzVbOvXqZCYtLl8J990G7dmaS4qFDF85JS0tj06ZNHD4cz/nz/oAnu3e35vDheDZt2kRaWsYpYqI0KfVLEssaDw8zJnfkiMke5utb0jUSQlxqijsNs8ViMiOGh5vJh/Pmmd6D/fvh7bfhnXfMY3fdBd27W1i/viOrV1+F3W4hORkWL26L3d6OLl128eCD8l20NJN/nSLg52eW+vj5mVSjEhgLIS4VNWvCI4+YlQvffGO2dvb0hJUr4cEHoWlTxZo1zUlL80Br8xGTkuJJWpoHGzc25623ZE5BaSZBQRHx8ICgIKhVCxISzE0IIS4VFgtcfTVMmwaRkfDCC9CokXmvS0298MG/ZcuFjEgJCYrp0+HMmZKocWYZJ2bKDo4SFBS5ihWhQQPw8jK9BrJEVwhRUKXtw6xqVZP4aMgQsNnS12Xu3Cbp7lssmp9+Ks7aZS0qKoqIiAhX22mtiYiIICoqqoRrVrIkKCgGnp5w2WWm5yA+HhITS7pGQoiyqjR/mB07lnknxnr10ncLJCSYZY4nThRjxTLQWpOUlER0dLSrLSMiIoiOjiYpKanEg6ySJEFBMVEKKlUyvQYeHtJrIITIv9L+YVazJvj4pJ8z8Nhjv2copVi1ymzvPGQIrFhR/Ku1nCs2goODiY6OZvbs2URHR6db6lleSVBQzLy8zOqEgADTa5CUVNI1EkKUFaX9w6x379wnVnt4mJUKaWmmx2DgQLPvwmuvwZ49xVJNAP744498HS8vJCgoAUpBlSpmhYJSEBdnMocJIURu3BMWOZWGgACgcmUYNkxjs2UdGdhsaTzyiGb2bJNW+emnTe9pbCy8955JuXzzzWY/hri4oquns8dl69atxMfHAxAfH8/WrVtLRY9LSZKgoATZbFC3LlSvDufOSa+BECJ3ziEDd+5zDEraqFGK7t334umZhsVi6uTrq/H0TKN7972MGmWCl8BAeOwxs7Tx++/hzjtNXpctW+Cpp6Blywtpl4t6qLW0tF1pIMmLSpjFYmbu+vmZhEdxceb3UhD0CyFKGfc5BM4hA+d9KC09Bpobb/yTq65ax+zZd+LlBYMG7cfffxUNGlQDGgEX6ujc0rltW3jxRfjpJ5P/YNMm+PZbc6tTB26/3dzq1s32ifPMmS46NDSU3bt3o5TC19eXJk2aFFq66LJKegpKCek1EELkJru9D4KDg0vVh1lQUBA+Psl4ep5EqVSqV1+Gt3cyQUFBOZ7n5wf9+5tAYP16k2K5dm2z78LkydChA9x2m9mPwdHrf9G01hw8eJAZM3rw4YfdUUpx8ODBct9rIEFBKeLsNZC5BkKI7BTn3gcXw1mf0NBQ7HbtGr8PDQ3NV09G/fowerTpMZgzB/r1A29vsw/DiBFmeGH4cFi3Lv/DC3a7nb1793Lw4EEsFis1awbg5+fHwYMH2bt3L/ZyvDRMgoJSyNtbeg2EENkr7r0PSpLFAp06wdSpsG2b2YCpbVs4fx7mzzc9C+3bw+uvw969eb2mBZvNRsWKFUlLS+Po0VjOnTtHxYoVsdlsWCzl96Ox/L7yUk56DYQQZZFz3sPWrVuxWJRryGPr1q0FnhBZoYLZdOn7700PwRNPmMRw//0H775rgoebboJZs+D06ZzrWKNGDTw9PbHb09AaEhIS8PT0pEaNGuV6CEGCglLOvdcgLk56DYQQpd+RI0cAmDLlMMHBHoSGhqY7XhgaNIBRo8xwwrx5cMcdZvVCZCQ88wy0amU2aFq2DFJS0p+rlKJ169YoVZmzZ305ccKHzZsboVRlx/HS0fOScRijOIY1ZPVBGZBxhcK5c+b3ctzDJYQopZRS1K9fn6CgIMLCwti1a7Urr0JRTIa0WKBjR3N75RVYssQMK6xdC4sWmVvVqib/wW23QUiI6SkYMeII339/PWlpFrRW/PprZ1asUGzZcoTJk2thsZRsYLB48WKSkpLo06cvYAKCOXPm4O3tTb9+/YrseSUoKENsNqhXz3SLHT1q9lTw9i7pWgkhRHohISForTNNhizqb+C+vnDrreZ2+LAZZpg/H/76Cz75xNwaNYIaNRQREQGkpl74CExJ8QRg4cIAatVSjB5dpFXNkd1uJykpiYMHD7Jw4UKuuKIKc+bMYf/+/dSvXx+73V5k8x7ku2YZ48yG6NxD4dw52UNBCFH6lPRkyFq14JFH4Ndf4eefzS6O1avDP/+YIYeUlKy/EycnezB9ui7R7Z0tFgsNGjSgQoUKHDp0kGPHjrF//34qVapE48aNi3QipAQFZZRzD4XAQLNeNyGhpGskhBClj1LQvDm88AJERMD994PVmvNEQquVEt3eWWtNSkoKVquVNMdmEmlpaVitVlJSUop0IqQEBWWY+86LXl6m1yC3zUiEEKK88vSEatXAbs+51+L8ecXWrSXXC6uUIjQ0lLS0NLTWrltaWhrt2rUr0l4XCQouAV5eZllOUBAkJpr1u0IIITIz2zvnXm7OHJNBceJEMyehONntdn744QfOnTuHl5cXHh4eeHl5cebMGebOnVukqxAkKLhEKAUVK5peAz8/OHu2+PcoF0KI0s5s75zb8IEmMBAOHTJJk7p2hZ49Yfp0M4GxqDmTK1WoUIE5c27j+PGKVK5cmUqVKuHt7S1zCkTeeXiYHoM6dcza3Ph4SXokhBBOlSvD0KEaT8+ULB/39EzhkUc0W7aYlQt3322GaXfuhJdeMtkUb7sNZs+GU6eKpo5aa1JTU0lMTMTPzxdPTw9CQkJISEggNTVV5hSI/PPzM9kQK1Y0cw2Sk0u6RkIIUTqMHm2hZ8/9eHikopQd0Hh5peDhkUrPnvsZPdqCxWKGD958E37/HT76CHr1MsO1GzeafRlatTITFxcuLJrJ3haLxfWlTmtdLOmXJSi4hFmtEBBgchvY7ZIqWQghwAy3zpjRmK1bFdWqnaNKlThuvDGS339XzJjRONPW9TYb3HADzJxp9l+YPBk6dzYTu5ctg4cfNkmRHnsMVqzInEEx//VT9OnTh9DQUBISzpOSksrOnTtp164dt99+u0w0FAXj42N6DZypkhMTS7pGQohLXcYu7tK2n4DWmr17t1KxYgJVqsTTrt0/7NmzNdd6VqxoNmH6+muTUvmFF0yPwfnz8N13MHCguT9mjOlRuNg5gc6ET+46duxY5PkeJCgoJ9w3WHImPZLli0KIohAVFZVu8yPnJklRUVElXDPDWZ/du3fj6+tLzZoBBAcHs3v37nxt2lSzpkmK9NNPsH69GVK44goz1+DLL83cgzZtYMIE08OQn7jIWUd3GzduLPLgSoKCcsZmu5D0SJYvCiEKm9aapKQkoqOjXR9qERERREdHk5SUVCp6DJRSHDt2DH9/f/z9KwBmgyR/f3+OHTt2Ud/G69eH4cNNBsVffoFHHzXvtTExZtihd2+4+mqzxPHPP3MOEJwBQXR0NL6+ZqJhs2bN2LFjR5EHBhIUlEPuSY9k+aIQojA5u72Dg4OJjo7m5MmTREdHExwcXCz7H+SFc+vk+Ph44uLOAZrIyEji4+MLvHWyUnDllWanxo0b4Ycf4H//M/O7DhwwSxy7dzfLHN9+26RdznwNs9107dpXcf58BZKTYceODtSt26JINpVyJxsilWPO5YsVK0JsrOk58PMj0yQbIYTID2dgEB0d7TpWWgICSD9ef++9PwAQHU2hBy5KQevW5jZ+PGzeDAsWwOLF8Pff8NZb5ta0Kdx0E/TpYyaGaw0//xzC9OmalBRFSgo8+6wiLa0tTz2lCA0tuvfpEukpUEo9rJTap5RKVEpFKqU65VD2M6WUzuIW71YmPJsyTYrnFZVtfn7mD7FqVTPXICmppGskhCjLshoPz89YfXHIaiJfUQYuVqvZ3vmNN8wSxy+/hDvuMF/Kdu6E114zj/fuDXfdZRIlJSUp10TF+HhITFRMngzPP18kVQRKIChQSvUHpgCvAq2ADcASpVTdbE4ZDgRluO0FvsmibNMM5f4u1MpfwqxWszqhQQMzKVEmIgohLob7eHhwcDBVq1Z1DSWUpsCgJAMXT88LwwfbtsGnn8Itt5gvaNu2wdq16b+cnT5tc/1+/rzpXTh9umjqVhI9BSOAz7TWM7XWf2qtHwOOAA9lVVhrfUZrHeO8AZcDDYGZWRQ/6l5Way0fa/lks0HdujIRUQhxcZzj4c6ueMA1x6Cox8PzKmPgMmDAgBILXGw2k0L5vfdg+3a4997Muzi+/HKHdPetVs28eUVTn2KdU6CU8gJaA29leGgZ0DGPlxkC7NRab8jisQillA3YBbystV550ZUtx5wTEf384NgxOHPG5Drw9CzpmgkhyoKQkBC01q4AwNlVXxoCAsgcuLgPJZRk4OLjYyYkZtzF0cMjjdRUq+v++fOKmJiiqYMqzohIKVUL+A/oorVe43b8eWCA1jo4l/MrYXoVntFaT3E7Hgx0BbYAXsC9wDDH86zN4joPAg8CBAQEtJ4zZ05BX5pLXFwc/v7+hXa90sBuN6sTtDZDC0UtMTEOb+9Lqw2Lm7Rh4ZB2LDhpw/w5edJsuuSe9Kh69QRiY31dPQgWi1nuWL36xT9P165dI7XWYRmPl7XVB/dghjy+cD+otY4Got0ObVRK1QdGAZmCAq31DGAGQFhYmA4PDy+0Cq5atYrCvF5pYbebMazjx838g7xsPXqxdu5cRdOm4UX3BOWAtGHhkHYsuNLahlFRUSQlJbl6CpxDCjabjZCQkBKr1+nTcN996ecUvPXWKsaM6eK67+0NR46YzZ0KW3HPKTgOpAEBGY4HAHnpDBkCfKu1PpmHspuBxvmrnsiOe0ZEb2/JbSCEKLsyJlhyn2NQ0gmWzC6Odry8sn6D9fJKZeRIe5EEBFDMPQVa62SlVCTQA3CfJtED+Danc5VSbYEWwBN5fLqWmKEGUYi8vKB2bbM8JiZGchsIIcoe9zkE0dHRrnwKpSXB0ujRFv755x+WLWtIWpr57u7pmYzWij59/uall64qsucuieGDycAXSqnfgPWYsf9awHQApdQsAK31wAznPQj8rbVelfGCSqkngP3ATsycgnuAm4Fbi6D+ggtbM586BSdOmEmI3t4lXSshhMib0pxgSWs7vXrtpFGjX5k1qz9Wq50bb1zBVVft5KqraqF1E5Qqmo7+Yg8KtNZzlVLVgHGYXAI7gF5a6wOOIpnyFSilKgB3Ai9mc1kv4E3gMiABExz01lovLuTqCzfO3AYVKsDRo2ZIwdfXZEoUQojSLLs8BaUhMLBYLDRo0IDTp0/j5xeP1ZpG69ZbqVy5Mo0bN8ZShDO+S+TtW2v9PvB+No+FZ3HsHJDt9FWt9RvAG4VVP5E/NhtcdpnZlvnoUTNBxtdXhhSEEKVTxjwFYWFhrvtQ8j0GWmtSUlLw9PTEalWAwsfHB09PT1JSUtIt9yxs8p1OFAqlTI+Br68MKQghSrfSmqfAvX7Hjh0jJSUFi8XkJ/D19SUlJYWYmBjZEEmUHTKkIIQoC0pzgiW73U5SUhJnz57FarXi6elBxYoV2bdvH1WqVMFutxfZEIK8VYsikXFIQVYpCCFKm4wBQGkICMDMKWjYsCEAdnsaKSmpxMXF0aBBA6644opLb06BKB+yGlLw8CjaxEdCCHEpaNGiBc2bN2fSpKOuY3feeWeRBgRQQlsni/LFfQdGZ+KjlJSSrpUQQpReWmsiIyN58MFfqFHjLACbNm0q8sRK0lMgio174qPY2AurFIpjPwUhhCgrMq6O8PWNp27dQHbs2AFAhw4dimyoQ96ORbFzJj6qUcNszSzbMwshxAWZV0eYQKBZs2ZFvjpCegpEibBYoEoV8Pc3cw3OnDE9CTZbSddMCCFKnnN1hNYXVkcUZQ+Bk/QUiBLl6QmBgVCvnpmYePZsSddICCFKh5JYHSFBgSgVvL1NYFCrltmmOT4eSnCjMiGEKJckKBClhlJQsaIZQqhSxeQ4SEgo6VoJIUT5IXMKRKlUvboJEI4fh3PnTKDg5VXStRJCiEub9BSIUsvLywwn1HXsm3nuHKSllWydhBCiuGTMSVDUOQpAggJRBvj4mPkGQUEmt4HMNxBCXOqioqKIiIhwBQJaazZu3EhkZGSRPq8MH4gywTnfwM/PpEw+edJkSpSUyUKIS43WmqSkJKKjo7HbTZK3jRs3smPHDpo1ayZbJwvh5EyZXLHihfwGNpvkNxBCXDrct3L+889o6tf35cCB4zRr1qzIcxXI8IEok7y8zHBCvXomEdK5c5CaWtK1EkKIwuEeGDhJ8iIhcuHjYyYi1qplNlmKizN5DoQQoixz7n/gbuPGjbIhkhC5cW7R7OdnhhOOHTO9Bz4+5jEhhChLSnJDJAkKxCXDuZ9ChQpmIuLJkyaNskxGFEKUJe4bIoWGhvHnn6vp0KEDgGyIJER+eXhAzZpQubLpNTh71qRRluRHQoiyQjZEEqKQeXlB7dpmMiLIZEQhRNkiGyIJUQScyY9q1TJBgUxGFEKIrMnwgSgX3CcjnjsHR4+a476+MhlRCCGcJCgQ5YrFApUqgb+/yYx44sSFzIgSHAghyjsJCkS55MyMWKmSWaVw+rSZoCgrFYQQ5ZnMKRDlmqcnBARA/fpmhcLZs2bTJSGEKI8kKBACs3eCc6WCxWKCg5SUkq6VEEIULwkKhHDjTJtcpw6kpckyRiFE+SJBgRAZKGVWKTRoYDZdcu6pkJZW0jUTQoiiJRMNhciGUmaLZn9/M5xw/Diuvc0tEk4LIS5BJfLWppR6WCm1TymVqJSKVEp1yqHsZ0opncUtPkO5Lo5rJSql9iqlhhX9KxHlgcViUiY3aGBWLJw/b25FvFmZEEIUu2IPCpRS/YEpwKtAK2ADsEQpVTebU4YDQRlue4Fv3K7ZAFjsuFYr4DVgqlLq1iJ6GaIcslqhalVo2NAECfHxEhwIIS4tJdFTMAL4TGs9U2v9p9b6MeAI8FBWhbXWZ7TWMc4bcDnQEJjpVmwYcFhr/ZjjmjOBz4GnivaliPLIw8P0GDRoYLIknjsHCQklXSshhCi4Yg0KlFJeQGtgWYaHlgEd83iZIcBOrfUGt2MdsrjmUiBMKeV5MXUVIjfOHAcNG5p5BmfPSnAghCjbinuiYXXACsRmOB4LdM/tZKVUJeAO4JkMDwUCv2RxTQ/Hcx7JcJ0HgQcBAgICWLVqVd5qnwdxcXGFer3yqKy2odZm+WJampmHUJJpkxMT49i5c1XJVeASIe1YcNKGBZeYWHzviWVt9cE9mN6NLwpyEa31DGAGQFhYmA4PDy94zRxWrVpFYV6vPCrrbZiYCMeOmfkGXl4mMVJx27lzFU2bhhf/E19ipB0LTtqwYOx22LWr+N4Ti3tOwXEgDQjIcDwAiMnD+UOAb7XWJzMcj8nmmqmO5xSi2Hh7m+RHdeuayYlnz0JycknXSgghclesQYHWOhmIBHpkeKgHZuVAtpRSbYEWpJ9g6LQxm2tGaK0lWa0oEc7siHXrmqEECQ6EEKWd0sW8nsqxJPEL4GFgPWblwP+AplrrA0qpWQBa64EZzvsI6Ky1viKLazYAdmAChg+Bq4H3gbu01t/mUp9jwIGCvi431ZHeiYKSNiw4acPCIe1YcNKGBVcUbVhPa10j48Fin1OgtZ6rlKoGjMPkHNgB9NJaOz+YM+UrUEpVAO4EXszmmvuUUr2AtzFLGw8Dj+cWEDjOzdQoBaGUitBahxXmNcsbacOCkzYsHNKOBSdtWHDF2YYlMtFQa/0+5pt8Vo+FZ3HsHOCfyzVXA6GFUT8hhBCiPJIM7kIIIYQAJCgoCjNKugKXAGnDgpM2LBzSjgUnbVhwxdaGxT7RUAghhBClk/QUCCGEEAKQoEAIIYQQDhIUFBKl1MNKqX1KqUSlVKRSqlNJ16k0UUp1Vkr9oJT6TymllVKDMjyulFITlFKHlVIJSqlVSqmmGcpUUUp9oZQ647h9oZSqXJyvo6QopZ5RSm1RSp1VSh1TSv2olGqWoYy0YS6UUo8opaIc7XhWKbVRKdXb7XFpw3xy/G1qpdR7bsekHXPgaBud4Rbj9niJtZ8EBYVAmYRMU4BXgVaY7IxLlFKZci6UY/6YnBTDgaz2EhwNjAQeA9oAR4HlyuSocPoKs+z0esctlALug1GGhGOW8XYEumFSeP+ilKrqVkbaMHeHgDGY1x0G/AosUEqFOB6XNswHpVR7zOZyURkeknbMXTQmV4/z1tztsZJrP6213Ap4AzYDMzMc+xt4raTrVhpvQBwwyO2+wuxkOdbtmA9wDhjquH8loIGr3cpc4zgWXNKvqQTa0B+zj0gfacMCt+VJYKi0Yb7brRKwB+gKrALecxyXdsy97SYAO7J5rETbT3oKCkgp5QW0BpZleGgZ5ludyF0DzPbXrjbUWicAa7jQhh0wwYT7HhnrgXjKZztXwPT0nXLclzbMJ6WUVSl1JybA2oC0YX7NAOZrrVdmOC7tmDcNHcMD+5RSc5RSDR3HS7T9JCgouOqAFYjNcDwW8w8rcudsp5zaMBA4ph0hMYDj96OUz3aeAmzDbAYG0oZ5ppRqrpSKA5KA6cAtWus/kDbMM6XUEKARJl19RtKOudsMDMJ0+w/BvOYNymwBUKLtVyJpjoUQF08pNRnTVXiN1jqtpOtTBkUDLTHd37cBnyulwkuwPmWKUioYM3/qGi270F4UrfUS9/tKqU3AXuA+YFOJVMpBegoK7jhmbDcgw/EAICZzcZEFZzvl1IYxQA2llHI+6Pi9JuWonZVSbwN3Ad201nvdHpI2zCOtdbLW+h+tdaTW+hlMj8uTSBvmVQdMD+lOpVSqUioV6AI87Pj9hKOctGMeaa3jgJ1AY0r471CCggLSWicDkUCPDA/1IP14j8jePswfsqsNlVLeQCcutOFGzNhvB7fzOgB+lJN2VkpN4UJAsDvDw9KGF88C2JA2zKsFmJnyLd1uEcAcx+9/Ie2YL472aYKZYFiyf4clPQvzUrgB/YFkYDBmVugUzCSQeiVdt9Jyc/wBt3TczgPPO36v63h8DHAG6Ac0w7zBHAYquF1jCfCH44+/g+P3H0v6tRVT+00DzmKWIwa63fzdykgb5t6OEzFvrvUxH2yvAXbgBmnDArXrKhyrD6Qd89Reb2F6VxoA7YCfHP+/65V0+5V441wqN+BhYD9m8lIk0Lmk61Sabph19jqL22eOxxVmmc4RIBFYDTTLcI0qwJeO/zxnHb9XLunXVkztl1XbaWCCWxlpw9zb8TPggOP/6VHgF+A6acMCt2vGoEDaMef2cn7IJwP/Ad8CV5WG9pMNkYQQQggByJwCIYQQQjhIUCCEEEIIQIICIYQQQjhIUCCEEEIIQIICIYQQQjhIUCCEEEIIQIICIUotpVQHpdQ3jp3UkpVSJ5RSy5VS9ymlrI4yg5RSWilV3+28/UqpzzJcq49S6g+lVKKjfGWllEUp9Y5S6ohSyq6UWlCEr6W+43kH5VLO+XoaFVVdLpZS6mal1Igsjoc76ty9JOolRGGSDZGEKIWUUk8Ak4FfMdnNDmCSlfQEPgBOAwuzOf0WTDIT57U8gNmY9KePYBKmnMNsBjQcGIlJm3oi05WEu5uB7ph/FyEuSRIUCFHKKKU6Yz543tNaP57h4YWOXRL9sjtfa/17hkO1gQrAN1rrNW7Pc6Xj13e01vZCqLdNa51U0OsIIUqODB8IUfqMAU4Co7N6UGu9R2sdld3J7sMHSqkJmPTbAB87urlXKaX2Y9KoAqS5d+0rpYKUUrOUUseVUklKqSil1D0ZnsPZzd9ZKTVPKXUas0c8SilfpdT7juGOOKXUD8BlF9EO2VJKPaiU2u4YDjmulPpYKVU1QxmtlHpZKfW4UmqfUuqcUmq1UqpphnJWR7kjSqnzSqlflVJNHOdPcJT5DLOtbW3Hce1oQ3e+Sqn3HPU5rpT6UilVuTBftxBFTXoKhChFHHMFugILtNaJhXDJj4AdwDzgZWARZmjBBjwODOLCTmt7lFJ+mDzrVYBngYPAPcAXSilfrfWMDNefDXyNGYpwvp98iNkk7AVgC2a3t68K4bUAoJSaiBnyeBcYhekJeRloppTqqLVOcyt+DxCNGSbxAt7E9LY00VqnOsq84Hitb2L2QmgN/JDhaV8CagBtgJscxzL2ikzBbGxzNxAMvIHZVv2+grxeIYqTBAVClC7VAR/MHIIC01ofUkptc9zdo7Xe5HxMKfWfo4z7sUcxe7p31VqvchxeopQKAF5WSn2c4UN3vtZ6tNv5wZgPxbFa64mOw8uUUv7AsIK+HseEylHAC1rrF92O/wWsA/pgtvZ1SgFu1FqnOMqBCZDaAhuUUlWAJ4DpWusxjnOWK6WSgUnOi2it9yiljgHJ7u2VwRqt9WOO35c52mKwUmqQlk1mRBkhwwdCCHedgf/cAgKnLzHflK/KcPz7DPfbYd5XvslwfE4h1a+H4/qzlVIezhtm6OIcpv7uljsDAoc/HD/rOn42x8zPmJfhvPkXUbdFGe7/gemRCbiIawlRIqSnQIjS5QSQANQroeevitmuNaMYt8fdZSwb5PgZm+F4xvsXq6bj5z/ZPF4tw/2TGe47u/y9HT+d9T2aodzF1De35xKi1JOgQIhSRGudqpRaBfQoodn8JzHj4RkFuj3uLmO3uDNICAD2uh0vrG/LzmWTPYFTOTyeV8761gR2uh2Xb/eiXJLhAyFKn4mYb7xvZPWgUqqBUiqkiJ57NXCZUurqDMfvxnyb3pXL+ZsBO3BHhuN3Fk71WO64fl2tdUQWt335vN4fQDxwe4bjGe+D+ebvk/8qC1F2SE+BEKWM1nqNI3PeZKXUVcBnwL+YFQHXAoMxH9LZLkssgM8wM/W/U0qNBQ4BAzBj+UMzTDLMqu7RSqmvgBeVUhbM6oOeQK981uN6pVRMhmNntNbLlVKvA+85JvKtBhKBOo46fqS1XpnXJ9Fan1JKvQM8q5Q6h1l9EAr8z1HEPX/DLqCqUuohIAJI1Fr/gRCXEAkKhCiFtNbvKKV+A54E3sKsSjiH+TAaCvxYRM8br5TqgumlmIhJehQN3Ku1/jKPlxkKxAFPYZYB/ooJYtbloypTszi2E2imtX5WKfUnJjvjI5ghjIPACuDvfDyH03hAYQKBxzG9HYOA9cAZt3IfAe2BV4HKmBUi9S/i+YQotZSslBFCiPSUUrdhViR01lqvLen6CFFcJCgQQpRrSql2QG9MD0EiJnnR05geko6SY0CUJzJ8IIQo7+Iw+Q0eASpiJlR+AzwjAYEob6SnQAghhBCALEkUQgghhIMEBUIIIYQAJCgQQgghhIMEBUIIIYQAJCgQQgghhIMEBUIIIYQA4P8xH5JUmWHo2gAAAABJRU5ErkJggg==\n", "text/plain": [ - "
" + "
" ] }, "metadata": { @@ -346,9 +336,9 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY0AAAEPCAYAAAC+35gCAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/d3fzzAAAACXBIWXMAAAsTAAALEwEAmpwYAABSHUlEQVR4nO3dd3hUZfbA8e/JpCcQICEhBCkCIkVRQSm2WHEVrOuyiw3sq6gsrqKuBV3srr1iY/3pqmvdVbBgiYo0BV3pCNJJgNADqTPn98edGSaTmXATEgjJ+TzPPMnc+9657zuQOfN2UVWMMcYYN2L2dQaMMcbsPyxoGGOMcc2ChjHGGNcsaBhjjHHNgoYxxhjXYvd1BupTRkaGduzYsVbX7tixg5SUlLrNUANnZW4arMxNw56UedasWYWq2jrSuUYdNDp27MiPP/5Yq2vz8vLIzc2t2ww1cFbmpsHK3DTsSZlFZEW0c9Y8ZYwxxrVGXdMwjVvHjh1ZsSLqFyJj9poOHTqwfPnyfZ2NvcKChtlvrVixAlvRwDQEIrKvs7DXWPOUMcYY1yxoGGOMcc2ChjHGGNcsaBhjjHHNgoYxtfDss8/SqVMnEhMT6dOnD999991ur/n3v//NYYcdRnJyMh06dODhhx+ukuaZZ56he/fuJCUl0a1bN1577bVK58vLy7nnnnvo3LkziYmJ9O7dm08//bRSmm+//ZYzzzyTnJwcRIQJEybsUVnd2rx5MxdddBFpaWmkpaVx0UUXsWXLlt1et7v3UlUZO3Ysbdu2JSkpidzcXObNm1cpTWlpKddddx0ZGRmkpKRw5plnsnr16kppOnbsiIhUetxyyy17XO4mR1Ub7aNPnz5aW1999bXm56uuX6+6aZPqtm2qRUWqO3eqlpaqlperer21fvkG6euvv97XWagR57/v3vfWW29pbGysjh8/XufPn68jR47UlJQUXbFiRdRrJk2apB6PR5955hldunSpfvzxx5qdna1PPfVUMM2zzz6rKSkp+q9//UuXLl2qb775pqampup///vfYJqbb75Zs7Oz9eOPP9alS5fqs88+q4mJiTp79uxgmokTJ+qtt96q77zzjiYlJemrr75a4zJ+/fXX2qFDhxpdc9ppp2mPHj30+++/16lTp2qPHj108ODB1V7j5r184IEHNDU1Vd99912dM2eOnn/++Zqdna3btm0Lprn66qs1OztbP//8c501a5Yef/zx2rt3b62oqAim6dChg955552an58ffGzfvr1GZYxmX/1frM6e/D0DP2qUz9V9/sFen489DRrz56suWaL666+qixapLlzo/Ax/LF2quny56urVquvWVQ0yJSWqZWWqFRWqPl+ts1TvmlrQ2LFjh15xxRXavHlzTU9P19tuu023b9+uSUlJunz58qjXHXXUUXr55ZdXOtalSxe95ZZbol7zpz/9Sc8+++xKx5588klt166d+vz/KQYMGKCjRo2qlGb06NF69NFHB59nZ2fr448/XinNueeeqxdccEHE+6akpOyVoDF//nwFdMqUKcFj3333nQK6cOHCqNft7r30+Xzapk0bHTduXPD8zp07NTU1VZ9//nlVVd2yZYvGxcXp66+/HkyzcuVKFRH99NNPg8c6dOigDz/8sOsy1URTChrWPFUNjweSkiA5GVJToVkz52f4Iz4eRKCsDLZvh40bIT8f1qyBVatgxQpYtgyWLoVff4UlS2D5cuf8unVO+q1boagIdu6EkhLntSoqwOfb1+9C4zVixAi++uorvvjiC958802eeOIJRo4cSffu3enQoQMAy5cvr9TEU1ZWxqxZszj11FMrvdapp57K1KlTo96rtLSUxMTESseSkpJYvXp1cIJitDQzZ86kvLy82jRTpkyp+RtQh6ZNm0ZqaioDBw4MHjv66KNJSUmJ+r64eS+XLVtGQUFBpTRJSUkcd9xxwTSzZs2ivLy8UpoDDjiA7t27V7n3I488Qnp6Oocddhj33nsvZWVle1bwJsgm99WBmBjnEevy3fT5nEd5OZSWgqrzXMPmqak6wSjw+nFxzj1CH4Fz4Y8mNNeoVgoLC3nnnXf45z//yZFHHgnAH/7wB1599VX+/ve/B9PFxcXRrVs30tLSgtd5vV6ysrIqvV5WVhZffPFF1PsNGjSIG264gc8//5yTTz6ZJUuW8I9//AOA/Px8OnbsyKBBg3j55Zc599xz6du3L7NmzeKll16ivLycwsJCsrOzGTRoEI8//ji5ubl07dqVL7/8kvfffx+v17tH78fKlSvp0aNH8LnX66W0tJTU1NTgsQsvvJDnn38+4vUFBQW0bt260iQ3ESEzM5OCgoKI17h5LwPXRkqzZs2aYBqPx0NGRkaVNKH3vv766zn88MNJT09n5syZ3HLLLSxbtoyXXnop8ptiInIdNETkEuBPQHsgMey0qmrnusxYYxb4YHcrEFR8PqcWEggw4bWQQNAJBJrY2KqBxuOJHmiakiVLlqCqDBgwIHisX79+vPrqq5x77rnBYzk5OSxcuLDK9eEzgFW12lnBV1xxBUuXLuWss86ivLyc5s2bc8MNNzB27Fg8Hg8Ad9xxBwUFBQwcOBBVJSsri0suuYSHHnoomOaJJ57giiuuoEePHogInTt3ZsSIEbz66qt79H60bduWn3/+Ofh8xowZjBkzhry8vOCx5s2bV/sakcq/u/cl0nWRrqnp+x0pzejRo4O/H3rooTRv3pyhQ4fy4IMPkp6eXu1rmV1cBQ0RuQO4G5gL/AyU1mOeTBgR58Pe/7nhitvaTKiyMqcpLRBg4uJ23TdSsNmfazMJCQkAxMfHB49lZWXRsmXLSt+4w2VkZODxeKp8e16/fn2Vb8OhRIQHH3yQ++67L/it/MsvvwScUT3gNLu88sorvPDCC6xbt47s7GzGjx9Ps2bNgt+iW7duzYcffkhJSQkbN26kbdu23HLLLXTq1KlW70NAbGwsXbp0CT5fvXp1lWPVadOmDevXr6/0Qa2qbNiwIer74ua9bNOmDeDUJg444ICoabxeL4WFhbRu3bpSmuOOOy5qnvv16wc4XyAsaLjn9vvlZcATqnqoqg5T1RHhj/rMpKm5QE0jPh4SE52+mZSUyH0yqanOORHnUV7u9K9s2uT0uVTXN7NsmXMuPx82bIDNm51+nR07oLjYCVjl5eD1Vh+w9rZOnToRExPDr7/+Gjz23//+l82bN7N169ao18XHx9OnTx8mT55c6fjkyZMrtedH4/F4yMnJIT4+njfffJMBAwaQmZlZKU1cXBzt2rXD4/Hw1ltvMXjwYGLCqoKJiYnk5ORQUVHBe++9x1lnneWm2PVmwIABFBUVMW3atOCxadOmsWPHjqjvi5v3slOnTrRp06ZSmpKSEr777rtgmj59+hAXF1cpzerVq1mwYEG1/yaBmlV2dnbNCtvEuW2eSgc+qs+MmH0rUGtw2y8D7pvNQsXEOLWW8L6Zvd0/06JFC84991zuu+8+BgwYwKpVq3j33Xdp27YtH330ERdeeCEAa9as4aSTTuL+++/nnHPOAZxmjosuuoijjjqKo48+mueff561a9dy9dVXB1//1ltvZebMmcHaRKAPJTc3l9LSUl599VXeeecdvvnmm+A1ixcvZsaMGfTv35/Nmzfz6KOPMnfuXP75z38G08yYMYM1a9Zw2GGHsWbNGsaOHYvP5+Pmm28OpikqKmLJkiUA+Hw+Vq5cyc8//0yrVq1o3759xPfD6/WyYcOG4PODDz6Y6dOnV6oFJCUlBft2wnXv3p3TTjuNq666ihdffBFV5aqrrmLw4MF069at0uuOHDmSkSNHunovRYRRo0Zx7733cvDBB3PQQQcxbtw4UlNTGTZsGABpaWlcdtll3HTTTWRmZpKens7o0aM59NBDOfnkkwEngE2fPp0TTjiBtLQ0fvjhB/7yl79w5plnRn1PTGRuPyK+AXoDX9VjXsx+pjbNZjXpnwkEi2iBZk8988wzXHXVVcFmj7Fjx9K9e3cuv/xylixZwtixYykvL2fRokWVah9Dhw5l48aNjBs3jvz8fHr16sWkSZOCI67A6dxeunRppfu99tpr3HTTTcG+lLy8PI466qjgea/Xy6OPPsqiRYuIi4vjhBNOYOrUqYTuPllSUsLtt9/Ob7/9RmpqKqeffjr/93//R4sWLYJpfvzxR0444YTg87vuuou77rqLSy65JOpEv1WrVu22iau66wHeeOMNrr/++uAopjPPPJOnn366UppFixZRWFgYfO7mvbz55pspLi7m2muvZfPmzfTr14/PP/+cZs2aBdM89thjxMbGMnToUIqLiznppJN47bXXgn1BCQkJvP3229x9992UlpbSoUMHrrjiikrB1rgj6qLNQES6AO8DjwCTgE3haVS1wQ0O7du3r9Z2576vv84jJyeXkMEjjd68eXn07Jm7r7NRRWigCTRzqULXroKb/7/G1DeRhvd/cQ937pulqn0jnXP7fW2x/2e0IRpag9cypkZCazRxcfs6N8Y0bW4/6O/BCQzGGGOaMFdBQ1XH1nM+jDHG7AdqPKVLRFJF5AARSamPDBljjGm4XAcNERkkIj8CW4DlwFYRmSkip9RT3owxxjQwroKGiAwCJgKpwN+Ba4BxQDNgkgUO01AMHz68yp4JIkL//v2DaUL3VUhOTqZXr1688MILlV6nrKyMhx9+mMMPP5yUlBRatWpF//79eeGFFygtrdmCCN988w19+vQhMTGRAw88MOr6TaHc7E2xcuVKhgwZQkpKChkZGVx//fVVFuCbM2cOxx9/PElJSeTk5HDPPfdEHeUzZcoUYmNj6dWrV43KVxuqu98jIxI37+V7771Hjx49SEhIoEePHnzwwQdV0uxuD4877riDgw8+mJSUFFq2bMlJJ51U7YKUTYnbmsZY4HOgh6reraov+Ps5egKTcZYYMaZBOPnkk8nPz6/0mDRpUqU0d955J/n5+fzyyy+cffbZXH311bz99tuAEzAGDRrEvffey4gRI5gyZQqzZs1i9OjRvPrqq5VmPe/OsmXLOP300xk4cCA//fQTt956K9dddx3vvfdetdcNGzaM2bNn88knn/Dpp58ye/ZsLrroouB5r9fLGWecwfbt2/nuu+948803effdd7nxxhuDabZt28Ypp5xCVlYWP/zwA08++SQPP/wwjz76aJX7bd68mYsvvpiTTjrJddlCiQjLly93nf6hhx7iH//4B0899RQ//PADmZmZnHLKKWzfvj3qNW7ey2nTpjF06FAuuOACfv75Zy644ALOP/98ZsyYEUzz9ttvc8MNN3Dbbbfx008/MXDgQH73u9+xcuXKYJpu3brxzDPPMGfOHKZMmUKnTp047bTTWLduXc3emEbI7TyNncD5qjoxwrnBwL9VNdnVDUWOA/4K9AHaAiNUdYLLa7sCs/353u0MCpunUTMNdZ5GNDk5VcfGDx8+nMLCQj7++OOo13Xs2JGRI0fy17/+NXjsoIMOok+fPrz55ps89NBD3HLLLcycOZO+fSsPVff5fBQVFe128b6AMWPG8P7771daruTyyy9n3rx5UYPPggUL6NGjB1OmTOHoo48GnFrAsccey8KFC+nWrRuffPIJZ5xxBitWrAhOTnz99de5/PLLWb9+Pc2bN+e5555jzJgxrFu3jqSkJADGjRvHc889x+rVqyst5nfuuefSu3dvVJV3332XuXPnuipfgIiwbNmyShMRo1FV2rZty8iRI/nb3/4GQHFxMZmZmTzyyCNcddVVEa9z814OHTqUTZs2VVpS5OSTT6Z169a8+eabgLPm1KGHHsqLL74YTNO1a1d+//vfc//990e897Zt20hLS+PTTz9l0KBBEcvfVOZpuK1plALR/kqaUbMFDFNxFj68ASh2e5GIxANvAd/W4F7GuJKYmBjcs+KNN97g5JNPrhIwAGJiYoIBY8KECbv9hj1t2rQq+0UMGjSIH3/8MXi/SNfsbm+KadOm0b1790qL+A0aNIjS0lJmzZoVTHPssccGA0Ygzdq1ayvl+dlnn6WgoIDbb789ajnqkps9MiJx815GSxN43drsh1JWVsb48eNp3rw5hx12mOtyNlZug0Ye8HcRqbTOgIi0x2m6+trtDVV1kqrepqrvAjWZRf4g8AvwTg2uMU3Qp59+SmpqaqXHmDFjIqatqKhgwoQJzJkzJ9g08+uvv9K9e/fd3ictLY1u3boRV82Mw4KCgoh7QVRUVFRaTiP8mt3tTRHpdcNXjY1278A5cPo87r77bt54443gkhtu9OzZs9L7G36sZ8+eUa+tbo+MaHtvVFee0PcyWprA61a3h0f4vT/++GNSU1NJTEzkscceY/LkydWuZNxUuJ3cNwb4HlgkItOBfKAN0B9nNFXkv8g6IiJnAIOBI4Dz6vNeZv933HHHMX78+ErHQtdmAvjb3/7G2LFjKS0tJT4+nptuuinYLOK2meGcc84JLmJYnUh7QUQ6Xt01gevCA8nurq3u3qWlpfzxj3/kkUceqfHS6pMmTapUU+ratSuTJk0iJycHoNpAWl3earP3Rvjxutqf44QTTuDnn3+msLCQF198kT/84Q9MmzYt6qq427dX3jQtdMHN/X0rgVBuJ/ctFpFDgRuBY3E+vDcBTwCPqWp+fWVQRLKBF4FzVXW7i/9UVwJXgvPtIXQTmZooKipi2bK8JrU5UUlJEfPm5e3rbOyx5OTk3e4DMXr0aC677DKSk5PJzs6u9IFx0EEHsWDBgjrJS5s2bSLuFxEbGxt1Dwc3e1O0adOG77//vtJ14d+io90bnL+N/Px85s+fz4gRIxgxwtndwOfzoarExsYyadKkKs04AaELCoYec9On4WaPjGjX7e69jJYm8Lo12Q8lJSWFLl260KVLF/r370/Xrl156aWXuOOOOyLmb+rUvGpK7Qj8NwtsQxD6PPRn+O+1UVRUVOvPv+q4Xi/KHxj+utuEde914DlVne4msaqOB8aD0xFe244g6whv3NLT06MGlmHDhnHrrbfy448/7nFH+IABA/jwww8rHZs8eTJ9+/aN+m08dG+KQL9G+N4UAwYMYNy4caxevZp27doFXzchIYE+ffoE04wZM4aSkpLgvuKTJ0+mbdu2dOzYkYqKCubMmVPp3s8++yyTJ0/mgw8+cBUAaiN0j4zAVruBPTIefvjhqNe5eS8HDBjA5MmTuemmmyqlCbxvoXt4nH/++ZXSnHde9Y0YPp+v2uHWhxySW+31oQtvBlZ3rm5ztNCdOANbB4Sv9hy+OVpoTee772rfEV6d/eF79InAXSJSISIVwMtAiv/5lfs4b6YBKi0tpaCgoNIjdK+I3Rk1ahTHHnssp5xyCk8++SQ///wzy5Yt4/333+eYY45h9uzZAHzwwQccfPDBwb2qI7n66qtZvXo1o0aNYsGCBbz00ktMmDCh0sit8NcJ3Zti+vTpTJs2rcreFKeeeio9e/bk4osv5qeffuKLL77gpptu4oorrggGtGHDhpGcnMzw4cOZO3cu77//Pg888ACjR49GRIiLi6NXr16VHpmZmSQkJNCrV69K+4OH27BhQ6X3Nz8/n8TERFfvd2CPjAceeID333+fuXPnMnz48Ep7ZABcfPHFXHzxxTV6L2+44Qa++uor7r//fhYuXMj999/P119/zahRo4JpRo8ezYQJE3jppZdYsGABN9xwQ6U9PLZt28btt9/OjBkzWLlyJbNmzeLSSy9l9erV/OEPf4hart0JLLwZFwcJCbvfHK1ZM+eRmupsphYT46zyXFIC27bBxo1QUABr18Lq1bBypbNR2m+/ORullZXVz8ZnUWsaIvIVcI2qLvT/Xh1V1doN8N69Q8KenwX8DTgKiP7XapqsL774okq7c05ODqtXr3Z1fUJCAp9//jmPP/44L7/8MmPGjCExMZFu3boxYsSI4LfWrVu3smjRoqijoMD5Vj1p0iT+8pe/8Nxzz9G2bVuefPLJSt9qI73O7vam8Hg8TJw4kWuuuYajjz6apKQkhg0bxiOPPBJMk5aWxuTJk7n22mvp27cvLVu25MYbb6y0V3ZtHXnkkaxYsSLq+Q4dOlQ7qszNHhmh8ybA3Xs5cOBA3nrrLW6//XbuuusuOnfuzNtvvx3c2hV2v4dHbGws8+bN45VXXmHjxo2kp6dz5JFH8u2333LooYfW9K2qE4HaQ03U1wjgqPM0RORr4M/+oJHHbla5VdUTqjsf8rqpQKBdYCrwAPBfYJOqrhSR+4GjogUhERkOPG3zNOre/tY8FWmehjH7goiwZk3D+r84Z04ep56aW6u+kVrtpxEaBFQ1t+a3jaovlYfo3u1//BMYDmQDnevwfsYYY+qI27WnLhaRiEM9RKSViFwc6VwkqpqnqhLhMdx/friqdqzm+gluahnGGGPqnttWsleJ/u2/E9F39DPGGNOIuA0a1bWKpQAVdZAXY4wxDVx1o6cOw5nEFzBERMLXTE4C/gj8ijHGmEavusl9ZwF3+X9XnGGukWwELqvLTBnjxgEHdNjtshPG7A0HHFB1hnxjVV3QeByYgNM09RtwLvBTWJpSYJ3auEezD0yfvnyPX2N/G2ZcF6zMZk9UN+R2K7AVwL+6bb6qlkVLb4wxpvFzu2Bh9KmfxhhjmgzXE9NF5EoR+UlEdoqIN/xRn5k0xhjTMLie3Ac8BfwAJOLMy3gd2AYsBe6prwwaY4xpONzWNEYB9wN/9j9/VlUvAQ7E2bJ1Y91nzRhjTEPjNmh0xdmb2+d/xAOo6mbgXpz9vo0xxjRyboNGMRDjH1pbgFPDCCgC2tZ1xowxxjQ8bnfum4OznPkXwHfAbSKyDGf5kLHAwnrJnTHGmAbFbdAYz67axR04wWOK//l24Oy6zZYxxpiGyO08jbdDfl8iIj2BAUAyMFVVC+spf8YYYxoQtzWNSlR1B05twxhjTBNS3Sq37WvyQqq6cvepjDHG7M+qq2ksZzf7gofx7FlWjDHGNHTVBY1LqVnQMMYY08hVt8rthL2YD2OMMfsB1wsWGmOMMa5GT4nIK7tJoqpqu/cZY0wj53bI7YlU7d9oBTQDtvgfrojIccBfgT44y4+MqK4pTERygb8ARwFpwBLgcVXdXSAzxhhTx9xO7usY6bg/ADwPXFCDe6YCc4HX/I/dGYizjMlDQD4wCBgvIiWq+q8a3NcYY8weqtXkvgBV/VZEHsPZa+MYl9dMAiYBiMgEF+nvCzv0nIicAJwHWNAwxpi9aI+Cht9vwOF18Do10RxYHemEiFwJXAmQlZVFXl5erW5QVFTEsmV5xDShoQIlJUXMm5e3r7OxV1mZm4amWObS0iK++Savzl93j4KGiMQCw4nyAV4fRGQwcBJwdKTzqjoeZ4FF+vbtq7m5ubW6z9df55GTk0tqai0zuh+aNy+Pnj1z93U29iorc9PQFMs8Z04exx+fi0jdvq7b0VNfRTgcDxwEpANX12WmqsnH0ThNUter6sy9cU9jjDG7uK1pxFB19NR24H3gLVXNq8tMRSIix+D0hdypqs/V9/2MMcZU5Xb0VG4956Na/lFaE4Gxqvr4vsyLMcY0ZXXREV4jIpKKswsgODWY9iJyGLBJVVeKyP3AUap6kj99Lk7AeBZ4Q0Ta+K/1quqGvZl3Y4xp6lyPDRKRriLyTxFZLCI7/D8niEiX3V9dSV/gJ/8jCbjb//s9/vPZQOeQ9MNxNnv6K848jcDjhxre1xhjzB5y2xGei9OfUIzzrX8dkAUMAYaKyGmq+o2b1/L3f0Ttz1fV4RGeD4+U1hhjzN7ltnnqHzi1gUGqWhQ4KCLNgM/95/vWffaMMcY0JG6bp3oAD4YGDABV3Q48CPSs64wZY4xpeNwGjdU48zIiiQfW1E12jDHGNGRug8aDwN0ikhN60P/8LiB8fShjjDGNkNs+jeNxlkFfKiLT2dUR3t//e66/sxycvTUuqeN8GmOMaQDcBo1jAC/OUNcO/gf+5wDHhqS1fcWNMaaRcjsjvFN9Z8QYY0zD14QW/jbGGLOnXC8jIiLJwKU4/RutgI1AHjBBVXfWS+6MMcY0KK5qGv71nmYDT+JM4ksGjgSeBmaJSFa95dAYY0yD4bZ56iGgJXCsqnZS1QH+fo5jgBY4Q3KNMcY0cm6Dxu+AW1X1+9CDqjoVuB04o64zZowxpuFxGzRSgbVRzq32nzfGGNPIuQ0ai4CLopy7EFhYN9kxxhjTkLkdPfUI8Jq/w/tfOJP62gB/BE4mekAxxhjTiLid3Pe6f8jtPcBLIafWAVer6r/qI3PGGGMaFtfzNFR1vIi8BHTDmaexCVikqr76ypwxxpiGpdo+DREZLiI/i0iRiKwGHgaWqur3qrrAAoYxxjQtUYOGiPwJeAVnIt9EnH6Mv2DLoBtjTJNVXU1jFPAB0F1Vh6rqkcDdwLUi4tkbmTPGGNOwVBc0DgJeVFVvyLFngQSgfb3myhhjTINUXdBIw+nsDhV43rK2NxSR40TkvyKyRkRURIa7uOYQEflGRIr9190pIlLbPBhjjKmd3U3uixGR4APwRDruP+dWKjAXuAEo3l1iEWkOTMYZ3nskcD1wEzC6BveskfLy8mqfG2NMU7W7IbffRzk+I+y5ungtJ6HqJGASgIhMcHHJBTid8ZeoajEwV0S6A6NF5FFVrdOdAseNG4fX6+XYY48DnIAxYcJ9xMR4uOyy26ukV1VCKz3hz40xpjGRaJ+5InJXTV5IVe+u8c1FioCRqjqhmjSvAemqekbIsSOBmcCBqrosLP2VwJUAWVlZfd566y3X+VFVCgoKAGi+cyfp24rJT/RQ0qIFAOnpbSoFhJ07i/D5vKSmpgWPFRVtJSbGQ3Ly/rccV0lJEYmJ+1++94SVuWloimUuLi6iefPalfmEE06Ypap9I52LWjuoTRCoJ21wFkUMtS7kXKWgoarjgfEAffv21dzcXNc3Ki8v57777uPAqYs55cv3qBDhCPXywWnnsPDIHgwf/nvi4uIC9+Gll+4B4LA2BzIwuzNT85fyS8FvAFx++Z1VahyzZuWxc2cRxxxzBiKCqjJlykSSk1Pp0yd6PvdWbWbevDx69oyej8bIytw0NMUyz5mTx/HH51LXHxWuZ4TvY+HVIYlyfI/ExcVx26WX4vt7F+K9ZcT7j58/8R0mfTqYT56+h+96/ZmUrm1pm13B4l+7cuq6zzj923F4PR5O93rxDhnCnN69KS8vJz4+Pvjaqsrs2d8AkLhlczDILPQHmSOOOD5iIJg1K4+Skp0MHPi7YKCZOvUTEhOTowYaazIzxtSX/SFoFODUKEJl+n+uo47J8uV4Y2IgZKCxFw+HeWfzu8KJPJQ3gmV5MIqneYz7yWAjHnzEVVQAcPqHk/i//MtI1lJyDoyhXcdYcnIgNtY5f8j//sfp46oGmYqKimAtJkBV+fnnKfh8TmYGDvwdU6d+wvz5PxAT44kYaJwgU8zAgaeFBJlPSUxMqrY2Y4wxbuwPQWMa8KCIJKpqif/YKTj7eyyvyxuVl5fzxH/+ww1aUflELLxyxaUcfuIYblqXxOq1kDa9B0t/OpL0zZ9VSlqqCRRMb0Xi9NsYxtMUks46stgUl8WRngROLP2aOK0IBpkh//2Ipe26RqwJeL3eYMBYMeMrtn32PptbtIBmzfD5vHi9XmJjd/0TqioLF85m587tAAwceBpTp37K/PkzSU5uFrU24/P5iImJifrcGGMC9nrQEJFUoIv/aQzQXkQOAzap6koRuR84SlVP8qf5F3AXMEFExuFMOrwFuLuuR04B7GjWjI+GDOHMiROR+ER8JTv5aMgQNMvDoUfG0yfO+TDVa07lx4/XoyM/h5AYk+gpodfpXrZvH8IrS9OJ27yO1B3ryCxfR4fyAkpIIJHSYPo4bwWjn3qY/GfeYmGzPjyZ+z7t2sHRpV+Rnu6F/Bh6bvyJsz77CK/Hg8fr5aMhQ5h/RJ8qAUBV8fmc5cDmz5/J/Pkzg+d8Pl/EZqqPPppAeXkpZ599RTDdhx++SFxcAkOGDK/Lt9YY0wjsi5pGX+DrkOd3+x//BIYD2UDnwElV3SoipwDPAD8Cm4F/AI/Wdcbi4uLweDzM6d2bzGEX0N7bFjmwHXMmvUJMjKdS81F5eTk/F/yGd8gQhny06wN94pAzaNf7S4Zdcivx8acC4PVCQYHyydsfc91jv4eQZR7LiOMpRpLh20jJ1kT+8x/n+HBupi+zOBWn40ZgVxPYfyaxuOBIfvQspvlhncnpFE/z5iAiVFSUAZCyfTstt2xhc4sW7GjWjIqKsioBw+fzUV5eysaNBXz44Yt069aNDz98kY0bC0hPb2M1DmNMFXs9aKhqHrs6siOdHx7h2BzguPrL1S6333475eXlTJnyPSU5A0hNheHDb6vS3+DxOPMc5/TuzeqDezL0qEG8PfMzNifEVjrv/A6ZmRXsaDabiWedUSnIfDxkMFt7tWDAaQ+ybl0cT6yCVavgtcXv8dpvS+m4dCLXFD9TqXZS4kvkymkP02rabXiJYTkdme/pynetz+HttHMZWv4mN/z2BD4RJAbeO/U8Fh11MD6fr1K+YmJiOOCArhQVbWPjxgIKC5uzcWMBCQnJHHBA170SMKzT3pj9i+ugISI5wI04H96tgDNVda6IjAKmqWr4hL/9VniACH8OTlBISUmjvLyMcy69Ea/Hwzl9BvD66/8gLi6+0oczEPwgnNO7N8s6d+WCgYN5Y+rHFKUm40Fp107o2BH69Qtc0YGKihz+/eQkPE94KzeBxRRz84EPkRXbkrR1S8jc+iudvYuJLVjNloIWjOFh4qhwqiheOP+Td7j9078z/JWlVHQ6iJwc/A9l4cJCEhLiaRuzgfTFi0nZvp0dwOLFP9O37wn1+gE+a1YepaXFDBiwq9N+2rRPSUiwTntjGipXQUNEegLf4YwpmgYcDsERqR2Ao4Bh9ZHBhmzYsFF4vd5ggPB4PFx44Y1VAgZAbGwscXEJVFRUcP519+KLjeX8PgOYMOEBYmNjK3VoB4hIsI8ltHYyacgZpPfewsWXjsTj8aAKmzbB4Su8XP7Y/eg3Umn0VwxeHtDbGLUqiSdWHUQOq3mIm/mZw/iNw+jKeq7jaSqI5Vgp5+62d/B5h36UljrBrG1baNcO0tKoszHfqsqqVUvYsGENAAMGnMa0aZ8yb95MWrfOidppb4zZt9zWNP4BLAAGASVAWci5qcCDdZyv/UZ4gIgUMAKGD7+FioqKYICIjY1l+PBbIgYMcJqPYmPjmdO7N78deGClPorY2Phg85EIpKdDq1YxrBhYTvy3ZZVexxsbyyuXXs95g4bRdyd4p65h0OtTGbb9zao3VRi75h4mrLmENVO/4gdasZmWbKIV/0seSPN2zemQXUZ2WyGrXVyw1tK2LWRnQ0KC+/cuEDCWT/+SrZ++FxwZFjhen6xZzJjacRs0jgH+pKpFEfbSWEfVeRQmivAAES1gBLRs2ZoNG9bQsf9Jlb6Nt2zZukpan8/Hpvi4KjWTj4YMIb9dSwYdmU5nD3BiP0pvX86ajYX8ctsITv7kE+K8u6om4lFG6AQSfJWDz6E7/8ecxYdy8uIXeYaRbCc1GFA205KjeQNvZlsGN/+W42Km4MloSXx2K1LataR5+5akHHM4mW1jiRGlomLXvJXwvEabt1JXQidMAq4mTBpjHG6DRnXbumbgYrVaU3MiwgEHdCEzMyfY7j9gwGkAJCQkVflmHOgXiFQzkUjfpFulU37mUPj000qHY8THJ8+9Sp+Tz8ezfSsxWzYhWzbz73ZdWL0Jir89im+n3k1F4WbYtJnY7ZtJ2rmZ8opECtdD+/Vfcgn3wOLKt2vGNkrjmvFk4s1csPNFroxJIqt8HTFocGTY4I8+ZlvrNiQuX4Ivpz2anFKn72n4XJYWLZKDEyarm8tijHG4DRozgRHARxHO/YHoq+GaPdSnT26lppNA4Ij0wSYiJCWlsHPndjr0O7HSDPKkpJSI8zoWbMqnwl8z0bg4pLycj4YM4ddN+RwRF4cvIxNfhjMBvznQow3Q40i4+sgq95/thXXrYO3auxm//FY2/7aZ7Ss3s3PNZsrXbSJ+WypFm2FS+bGUUkZX72JO4QtiQnr5d1Yk0278IrLG9wBge3wrtqa1Z2u7nsz+y+u0bQsHrptGaip4c9rjy2zjDE9zSVUpK3PmiM6f/wMHHXQQixc70a2srGSvNFNZ05jZn7kNGn8HvhCRz3Em2ylwsojcAJzDXhoO21RFqlFES3fwwUdUWqsq0ASTmJgcMWiUlhYHayaHNmvGL9u3OzWT0mJqOnfS43H6Ntq2Bfom4ky5yQ6evxUoLob8/DNZu3YIE99+nxM//Jo4366gEU8Z93Ebr3AZ7VlJ+7KVtN+wktINxVx8sZPmO27iGP/3lAqJZVNSDss75JI3fALZ2dD7tw9okRlPQtf2+Nq1R5vvWoUYoKLC2R8lZfv2XSPGmjULHq9Ps2blUVZWQv/+g4I1w+nTPyM+PtGaxsx+we0eGN+IyNnA48Ar/sMP4CzjcXZjGm67v4tUMwkEkHDOMQGUuAM6Iz26Ezd/AWxZD0i9fPtNSoIDD4QDDqhgwYK5TNLTK/VpfDrkNPp1m8lJJ/2V9evjWLsWvloLa9fCcfnOz5GrX6ZtyVIOYBXtdSXtd65k7YIsbhnj3GM5o2jPyuA9izzNmdphGBMHP0dWFhw4aRXtty/i2AXfg8AJHg8fDRnC4qMG1DhQ1kSgljN3rvPn0r//IKZP/4y5c2fQq1c/q3GY/YLreRqqOhGYKCJdcBYM3Kiqi+otZ6bW3NZMYmJiyMo6gJKSYs477yoWLPiW8867ivfee4HExKR6ndwXGAAQqf8lkTK6d4+lR4/I16p2Y9u2bqxdC/n5zqNgLQz1/37ByqnEF6ykdclKJ7B4V7Lgt+48/yTEoJQwgbjAmGSFmIoKzvzgvwz+7a+sXA4XzLsFbd+euM7tSe3Rgea92uNplRY5MzUgImzYkE9CQjJz584IBo+EhGQ2bMi3gGH2C27nadwJvKSqa1V1CbAk5Fw2cIWq3lNPeTT1aMiQ4ZWWC4mJieG8866q99ngqkpSUgrFxTtI6NCVQaOu4IMPXmTHpgKSklKq/dYt4swZSUuD7t0jpcgBcti2bQBr10JBAXTJh9FrYe1aYcS3r/L82j+Tyo7gFaUksPV/wnv/K+QxHiOByiPH7k29n/e63sJBrQq5cs2dlLVpDwe0J65LB1J7tCe9VzbJzav/c/L5fKxfvxpVX+VlXoD161fbsi1mv+C2pnEX8CnOyrLh2vrPW9DYT4V/UO2ND66YmBjS0jJISmrGOedcQUxMDOec4wSO+PiEOslD8+bO4+CDdx3zepW3n/gfCU+UVpplH+sp5+BTFnDcof24uqCY0pXriFm9ksT1K2mxbSXfFh3LTz9BOfn05m3SF26qdK/hvMoHzYdzdMv5jCq+jx2t2lOa3QEOaE9C1/YkH9KZ9Jw4vF6l95zIw4zrs2kMbDVjUzfcBo3q6s0tIWRhJGNcilTLCQSQ+rSjWfPgXJbAiLGJQwbTsfdqLr1U/RM0A534/Sgrgz+s9zeDFRzCU/kb2byqCO/yVXjWrCR5wwpmFh3Ltm2wc9t6uvI97da/TdzCXVHpRL7ka07kfLpxJ3dX2oNl8Icf8+mO0/iuqzOIICsL/wKUdVfmjz6aQFlZCeeccyXgBIwPPhhPfHziXlnN2EaMNR5Rg4aI5AInhhy6SkQGhyVLAs4A5tV5zkyTsLdrOR6Ph+TkZsw7/IhKI8aK01qQnJgScUZ/fLyzjEq7dqFHU4Hu/geMVNi8GfLzc5lSsIx1a73sWFoAK1bgWbOSkvLepG9UOm1cVvX1tZwtn6dxweceLuB1LuR1Vns6sqlZB3ZkdKA0uyPbuh1J67ZxtGnjBJWsLGjTxhlYsDs+n4/CwrVUVJTzwQfjOfjgg/ngg/Fs2rSO2Ni4eq9x2BpjjUt1NY3jgdv9vyvOPI1wZcB84Po6zpcx9UJV6dSpO/PmzWBHs2ZsPOggdixeDD4vnTp1r/U3YBFo1cp59OwJ4CHQtwIDuRTnw/vjl2Lw3uvBU7FrvmyZxLGjZxb9U5W2S8rJ3FhIH+8sWm8phC3AEkj+bgfFxHEzD9KVySykA5/RgXWJHSlK78DKjseR1UZo0wYyM3cFlcxMaN0avF6nVlO6Ygm6aR2l27dDs2bB4/XF1hhrfKIGDVUN7HOBiPiA/qo6M1p6Y/YX69evBqBnz6NIS0siLq4F8+bNDB6vL6rK+pgSPh4yuMry+P0O+5YRI47F4xmB6gg2bodFK3ZQNG8FxUvW8JeWyaxbB52nJpC5cgeHFk8i01cAJVC4Jp3WawoBeJwbOIyfWU5HfqYjK+jAYg5idtJNDPe8wqNF9+PFw3ExXp7qOZIfuw9kxgwlO9sJNG5qLrU1b95M5s3bux8h1ixW99zO07DeMtMohC/NMn/+N9UuzVLX91aNPMwYJWRujb8T/5AUOKQH0IPgivmMAkZRAawpLmHHgpVsXbaRN9Kd2fg93mtFm1999Nj2Fekla4hB+ZnDOK34Ex7hpl37svjgL3MeZ/ycnXzw7528wYUA9E/+haSMFGLbZJDatjmZWRKsubRuvatprFkz930uO3ZsA6puDBY4Xl9CJ1ICNpGyjtR4EyYRyQQSw4+r6soIyY1pcGqyNEtdi42NpaKinIQOXRg06ko++GA8Ozat2+3ClZFIUiKpRxxE6hFOIxgAQ+8C7qIcKCgrw5O/msxt27jz9fvg31ppfeoYfFzGS/RKW8U3zS5k/Xp4d+fvyFm5FlY6u0oWksFb/JGR/o0yH2AMO0lmS2xrylq0xteqNSU5nfF0PCAYVDIzdzWLtWqllJaWcMj//sfZH34IgNc/mXL+EX3r7Zt/+ETK5s0TbSJlHXE7TyMGGAdcBbSIksz9AkDG7GNuJ0DWpZiYGDIy2gZHMTmjxa4MjmKq887o+Hi8HQ7E6/WyMyu+0nItAN5YD0/dcD1D//x3ZiSBKpRPfJX5vxVQunoD3oINUFhIZnIXhmTAhnU+rvjxZVr5NjrDlQudx5OLr+MGniSeUtbSlkIyKCSDFbRmFhksS+jHjaWfEIMzpDimooIz/jORT8pPY/rBGuzcT6nDtSlFhP79B+H1+pg7d0ZwjbHu3Y8MLuFS3xpr05jbrzejgGtx9s0YB9yLs/LtBf6fD9RH5oxpbCIPM76y3keN7WyeVmWY8UdDhrCzeZozPAynuSl+8KnB3dUC2hIYRhlDCYWsLS+nePVGtvy6gR0rCsn0ZjHWA1vXlDPzyz+RsH0DyTsK6Vr6G/28MyguTaSUeJIoCb5mgq+Mpz8eSf7H93Eb9/Emw+iYtI7rEsZT3CKb8oxsyM4mJieb5I6ZZGR5grWX1q2DWa7Wm28+QXl5WaU1xpYuncvKlYsZNmxU3byxUTgjxkoYMGBQyIixz0hIqP+msfoOVm6DxgicyXuP4wSND1R1toiMAz4H2tdZjoxp5Pb2MOOYmBg8ntiIC1PGemJrfv+4OJI6tSGpk7ONThcCK5amwtinKyUtLVO2P/oQyc8WV9pNslxiea/F+TQXDxrbhsRtkF28lNHFdzojxpbvSjuUt/g3Q+nDj9zNXfyPbDYnZLMzLZuSltms6XwcCW3TgwGldWtIT/eSn+9lwNLpnDXRCZQn+APlnN69K+24WdeqjhgbxLRpnzFv3ox6HzEWGqwCefn8889ITEwkNze3Tu7hNmgcCPyoql4RqcCZn4GqlovI48BTwNg6yZExps4FNvOqNMzYf7w+eTw+fJkVfHzm4Cqz4H87ogeXXHILR3g8PKKwfftApqwupmhJATt/K6B8VT6Sn09m6lGcWAwdlhXRflU+R1TMJrN0PZ71PlgPRy+awlSOZhhvcCPXk082+WTTjxacxUfEUQH+iZRnfDiR95eczXNF5WTmeIJBJiPD2f2yrvb9CszunzdvBvPmzahyvD6EB6tmzRL57LPPmDlzBjk5ORx/fN0EK7dBYyu7Or/XAt3YtYdGLNCqJjcVkWuAm3Cm3M4DRqnqd9WkH4QTlHrhzD7/HrhJVRdHu8YYU1X4MOP6FviQijRizEOEEWM9EqFHR6Bj8DWOCf6WC8zG64P5hV62/rqeHUvyuTCuGydtg9RfOvHDL0NJ2ZZP5o58Din5hVgq9+MkaBmvz7kE5lzCJlqygdYMZCqbSOcMPiY3cTqlzVpT3qI1mtEaycqk9KBDyMiMISNjV4DJyIDEKsOBdtm4sQCoOmIscLz+7ApWoXvF1GWwchs0fgJ6AJ/5H3eLSDFOd9i9wGy3NxSRocATwDXAFP/PT0SkR6QRWCLSCfgP8CRwEc5U3IeASTg1Y2NMNfblMOPA/QFnmG2zZlWO11RMDKRnekjPzIajszkkeGag/+EoX7OKioEHBpdrAadZ7Mvj7qa8qJzYzRtI2LaBdhnNiCmEYwq/Z1TJw8SWeGED8Ct4iSGOchR4hBsZyH9ZTya/0Jotca3ZmpLDG13HkpEBvT1zyWheRmzbdBb+diC5G/K47LtXQMDnianUNFab0XLuRN9rp664zfnjOE1U4CxOeATwhv/5CmBkDe45Gpigqi/6n18nIqcBf8bZpydcHyAOuFVVvQAicj/wlYhkqGphDe5tTJO0r4YZOyPGstm0aQNlZbt2hY6PT6JVq9b11p/j9Xp548s3OShC5//io2K54IIxwT6NT4LX3M+8wnvZsmwzRcs2ULJqAyX5m/lzRgwbNoDvlx78WrCW1OINdC77jYzyGZRsSWTUD2MBuJYxnMGkYB4U/0e4gqfCx5APPsLziZeZL96Ir3lLpEUaZe0OZMPAs8jIgA47F5CWHkvzA9KIz2zhrrc/zPbtWwC49KWXSPF4WPP737OjWTO2bNlSy3eyKqlNtUWc/2mdgWRggaq62vJMROKBncCfVPWdkOPPAL1U9fgI13QEFgI3AC/57/kU0ENVj4qQ/krgSoCsrKw+b731Vs0K57d9exHx8ak0pUVAS0qKSExM3dfZ2KuszPVvx45tFBfvICkphZSU5lWe1wdV2LgxH4DELVuCTUQlLVoAkJ6evUcLQqpCUVEsmzfFsWVrPFu2xJOyZCmJa/PxbNpKTsH/GFz4DvHs+mgsI47NtCCJEprj7FH/HcdwHE7L/Dx60IMFwfTFJJLX/HeM6/UCaWnl3LpgJCkxxXibpaDNk5EWyRR378LOE47E41HS5s1lY/F2MufN44h//QsVwRcbyw+XXcbyY48lOzsbt0444YRZqto30jlXQUNELgYmqurGCOdaAYNV9TUXr9MWWAMcr6rfhhy/E7hAVbtFue5Y4B0gA4jBaS77naqur+5+ffv21R9//HF32Yro66/zyMnJJbUJfZ7Mm5dHz565+zobe5WVuf7tiy1ufT4fL7/8dwBatsyie/eDWbBgIZs3rwPgssvuqLdajs/n44Pn7uLqhx6o1DRWFhvHXRc+wsG5I9m0QSnK387WDWUs25HJxo3QdflkErcUELN9K6m+raSxlaV0ZjxXAfApg2jPStJwzqWwk39yMcP5Jy1aQMHWRBK06oLj5bGxPDlqFKMeeMD1iDERiRo03DZPvQoMAKoEDaCT//xug0aI8EglEY45J0TaAC/7X/9NoBnO8N9/i8iJquqLdJ0xpmGI1DRW3xPsYmJiaNOmA6WlJZx77pUsWPAt5557Je+/P56EhHqYSBnC5/OxKT4uOC8mdI2xxI5bOOEEn79Po0XYlacATi1m61YoLISuG6FvofP7F5s+o9D/+8aNsG1jOVs2lCNbYMsW5XdM4ihmcif3kMyupkCvx0Ob4uI6e7/rYj+NFAgbohBdIc5o7TZhxzOBdVGuuRbYoao3BzMjciGwCqfXa4rLextj9pF9MQM/0kTKc8+t/4mUzutr5DXG0N3eXwRatHAeXaod6hMHxOH1wpYtwoYNJ/DJq7/iedNbaU6Mx+tlW3p6/QcNETkMp8M7YIiI9ApLlgT8EfjVzc1UtUxEZuGE1HdCTp0CvBflsmQqvQUQ8rwJ9TgYY2pqX+1KmZXVnk2b1rOjGcERY3FxibRqlVnnefB4nDkmLVr4+P6gDUw884wqnf8b45x9U+piQmN1NY2zcEZKgdN09Lco6TYCl9Xgno8C/yciM3HmW1yNs1LB8xAcGXWUqp7kTz8R+IuI3AX8C6d56j6cmsasGtzXGGPqnarSunU269atpFevfvTvPyi4WGLr1tn1tgaViCASE3Hmf1xMzF5pnnocmIDTNPUbcC5OB3SoUmCd1mAIlqq+LSLpOBs8ZQNzgdNVdYU/STbOyKxA+q9EZBhwM86EwGJgOnCaqu5we19jjNkbRIT4+MRgwAj04QDExyfWW9OciJCQkMjOneVVZv4nJtbdfavbhGkrzkzwwAS7tW6H1u6Oqj4LPBvl3PAIx94Cajd21hhj9rJ90fkvInTrdjjLly8KjhIDyMrKolu3bnV2b1eNa6q6IhAwRCRBRK4RkadF5Db/MFpjjDEh9nbnv6pSXl7K5s3r6NWrH61aZdOvXz/WrVtHaWlpnS0lUl1H+D3AearaM+RYAjADOIRdI6puEJH+qrqsTnJkjDGmxsKbxebO/YZTT3WaxfZK8xRwMoTMiXdcCxyKs/bTvUB34H2c/omadIYbY4ypY5GaxQYNqttmseqapzoD4ctgng3k46wDtV1VZwIPAydhjDFmn6vvZrHqgkYaIRPu/OtGHQV8HTZa6n84I56MMcY0ctUFjTWELmoP/YB4YGpYujjAhr4aY0wTUF3Q+A4YJSIt/KvaXo+zH/jEsHSHA6vrKX/GGGMakOo6wu/GmXG9DijBmYn9fMgkvIDhQF59ZM4YY0zDUt3kvmX+9acuB1oCM1X1/0LT+OdofEnNVrg1xhizn6p2lVv/9qt3VnN+LXBdXWfKGGNMw2SrxBpjjHHNgoYxxhjXLGgYY4xxzYKGMcYY1yxoGGOMcc2ChjHGGNeqWxr9qxq8joZsz2qMMaaRqm6eRgzO3uAB3YA2wHKcWeJZOGtT5QOL6id7xhhjGpLqZoTnBn4XkbOBJ4D+/uXQA8f7AW/7zxljjGnk3PZp/B24IzRgAKjqDGAsMK6O82WMMaYBchs0ugIbopxbD3Spm+wYY4xpyNwGjWXAVVHOXYXTz+GaiFwjIstEpEREZonIsbtJLyIySkQWikipiOSLyAM1uacxxpg9V+2ChSHuBt4QkbnAu+zqCP89cDBwgdsbishQnD6Qa4Ap/p+fiEgP/wKJkfwDGAzcBMzB2VXQdgs0xpi9zFXQUNW3RKQQJ3jcirNbXznwAzBIVb+swT1HAxNU9UX/8+tE5DTgz/7XrkREuuGspHuoqi4IOfVTDe5pjDGmDrie3KeqX6jq0UASztDbJFU9piYBw7/PeB/g87BTnwMDo1x2FvAbcJqI/CYiy0XknyKS6fa+xhhj6obb5qkgVfXhdH7XRgbgwWneCrUOODnKNQcCHYA/4uwSqMAjwEciMsCfnyARuRK4EiArK4u8vLxaZbSoqIhly/KIaUJz5ktKipg3L29fZ2OvsjI3DU2xzKWlRXzzTV6dv67roCEiBwJ/ANoDiWGnVVUvq8F9Ney5RDgWEAMkABep6mJ/Xi7CmVB4JDAjLCPjgfEAffv21dzc3Bpka5evv84jJyeX1NRaXb5fmjcvj549c/d1NvYqK3PT0BTLPGdOHscfn4tI3b6uq6AhImcB7+B8gK8HSsOSRPvAD1cIeHGat0JlUrX2EZAPVAQCht+vQAVOAJsR8SpjjDF1zm3jyzggD8hW1baq2inscaCbF1HVMmAWcErYqVOAqVEu+x6IFZHOIccOxAl4K1zm3xhjTB1wGzQOBB5R1WgT/GriUWC4iFwuIt1F5AmgLfA8gIjcLyKhnetfALOBV0TkcBE5HHgFp4bxYx3kxxhjjEtu+zQWAul1cUNVfVtE0oHbceZazAVOV9VArSEb6ByS3icig4EngW+BYmAyMDq8E9wYY0z9chs0bgYeF5EZqvrbnt5UVZ8Fno1ybniEY/nA+Xt6X2OMMXvGbdAYi1PTWCAivwKbws6rqh5flxkzxhjT8LgNGl5szwxjjGny3C4jklvP+TDGGLMfaELznY0xxuwpt5P7jttdGlX9ds+zY4wxpiFz26eRx+5nfXv2LCvGGGMaOrdB44QIx9Jx9rg4HhhZZzkyxhjTYLntCP8myqn3ReQxYAjwSZ3lyhhjTINUFx3hE3FWvzXGGNPI1UXQ6AbYch7GGNMEuB09dXGEw/FAL+Ay4P26zJQxxpiGyW1H+IQox0uBt4Eb6iQ3xhhjGjS3QaNThGMlqhpt4yRjjDGNkNvRU7bZkTHGGPd7hAP497U4HmgFbAS+UdWJ9ZExY4wxDY/bjvBmwMfAsTh7c2/Emdx3o4h8BwxW1aJ6y6UxxpgGwe2Q2/uAI4CLgCRVzQaSgIv9x++rn+wZY4xpSNwGjfOA21X1DVX1AqiqV1XfAO7wn290dHerbRljTBPjtk8jHZgf5dx86mj/8IYmPh527KgaPEQgJsZ5eDy7fjfGmMbObdBYhrM44eQI5073n29URKBTJydg+Hzg9e76WVEB5eXOo6wMSkud45FeIzS4eDzOMWOM2V+5DRovAP8QkVTgDSAfaAP8EbgcGF0/2dv3RHZ94FdHtXJgCTzKypxHRQUUFzvnA+kDAcRqLsaY/YXbeRqPiUhr4C/AcP9hwZkR/oCqPlGTm4rINcBNQDYwDxilqt+5uK4rMBsQVU2tyT3rmwjEung3fb6qNZdAcAnUXkpKnHOBwBIaYEKDSuB3Y4zZW9wOuU0D7gEeBvrjzNPYBExX1c01uaGIDAWeAK4Bpvh/fiIiPVR1ZTXXxQNvAd/izBXZLwU+8HcXYMJrLj6fU1upqNhVcwn8jBRcYmJ21ZICAcaaxowxe2q3QUNEYnHmZZyjqh+x5/tmjAYmqOqL/ufXichpwJ+BW6u57kHgF+Ab9uOg4ZbbmkugzyVSv0toYAk0jYUGloBAIAsEqkDAMcaYcLv9WFLVChFZB0To6q0Zf22hD/BI2KnPgYHVXHcGTkf8ETTS4b21FdrnEhdXfdrQ2ktokAk0i4k4ASZwPPS60BpM6MNqMMY0LW47wl/H6fCetIf3y8DZSzx8ocN1wMmRLhCRbOBF4FxV3S67+YQSkSuBKwGysrLIy8urVUaLiopqfe3+qrS0iBUr8iodCww3Dv0Z/tid0A7/hqakpIh58/L2dTb2Kitz01BaWsQ33+TV+eu6DRrLgWEi8gPwH5zRU5U+LlT1lRrcN/yjRiIcC3gdeE5Vp7t6YdXxwHiAvn37am5ubg2ytUteXh61vXZ/Vdsyhw9LDm8iCzSTBY4FrgkPIoFaS3htpj7Nm5dHz5659XuTBsbK3DTMmZPH8cfn1vmXNbdB4xn/zxyc5qVwCrgJGoU4zVxtwo5nUrX2EXAicLyI3OV/LkCMiFQA1/iDhNmH3A5LDggPMKGd/IFHYA5MaDNZgOqugLK3g4wxTd2e7KdRY6paJiKzgFOAd0JOnQK8F+WyQ8KenwX8DTgKWFMX+TJ7V00+3EM7+kNrMeE1mYqKXZMsI9ViAvcNBBkbrmxM7eyL/TQeBf5PRGYC3wNXA22B5wFE5H7gKFU9yX/vuaEXi0hfwBd+3DRONa3FRAoyobWZ8vKqNZmiKOszBwKM1WaM2aVG+2kAiEj4n4yqul/aT1XfFpF04HacyX1zgdNDAlM20Lmm+TIGah5kVq6ELl0iB5lItZnAEObq7m+BxjRmUYOGiLQBXgbeVtXX/Mc8QFlY0iIROagmW7+q6rPAs1HODd/NtROIvme5MTVW0w/1wKixugo0gTxECjQNccSZadqqq2lcgzMv4vdhxwVnCOxa/+9DcZqY7q6PDBrT0Ijs+oCviWjNZqF9NKFBJ3S+TGhdPnzNski1Gws2pr5UFzROA15U1eKw4wq8oKqzAURkA85mTBY0jKlGbZqpotVoAhM1Q2s0oYEn0sKYAT4f7NxZtWZTm0Bomp7qgkY34M4Ix8O/wyz2pzXG1LGa9tEEhAeb0OerVkF6etVmNNXdN6OF1moiBR3T+FUXNBKBSuNKVNXrn6FdGHK4xJ/WGNNAVBdsPB5o2TL6tdGCTficmvBmtWhLzwR+D31Eak6zoLN/qC5orAcOxFmJNihCh3cnYEMd58sYs4/UdrRX+ACB8N8DASY08Ph8VQcKRAo4ELmWE37M1L/qgsYU4CLgtd28xsU48y2MMU1YbQcIBFQXcMJrOYHfQ/t1Ir1eIJD4fM7WzeG1nfDAY3avuqDxJDBFRB4BblHVSv8s/iXTHwJygWPrLYfGmCahtv03AYHgEingrF4NmZmVm9RCA09481r46wb2qwmt1UQbvdbYRQ0aqjpNRG7GCQwXishkILBJUnucpT8ygFtVdVq959QYY6oRCDqRxMRAWlr114eu3BwedML3rQkNPNH6dXaX10CAiRR4GnKtp9oZ4ar6DxGZDYzB2cci0OFdgrOD3kOq+lX9ZtEYY+pfaL9IbWs7sCvIhAec0J+hASd0Z063tZ7wPIfXfOoz6LjZhOlr4Gv/bPB0nCG3haq6x5syGWNMY1NXTVTVBZ9INZ9A4Akcr68ai+u1p/xBYn3dZ8EYY0y4PQ0+y5bVTT7CNYFuG2OMMXXFgoYxxhjXLGgYY4xxzYKGMcYY1yxoGGOMcc2ChjHGGNcsaBhjjHHNgoYxxhjXREP3kWxk/LsKrqjl5RlU3jekKbAyNw1W5qZhT8rcQVVbRzrRqIPGnhCRH1W1777Ox95kZW4arMxNQ32V2ZqnjDHGuGZBwxhjjGsWNKIbv68zsA9YmZsGK3PTUC9ltj4NY4wxrllNwxhjjGsWNIwxxrhmQcMYY4xrFjTCiMg1IrJMREpEZJaIHLuv81RbInKciPxXRNaIiIrI8LDzIiJjRWStiBSLSJ6I9AxLkyAiT4lIoYjs8L9eu71akBoQkVtF5AcR2SYiG0TkIxHpFZamUZVbRK4VkV/8Zd4mItNE5IyQ842qvOFE5Db//++nQ441ujL7y6Nhj4KQ83ulzBY0QojIUOAJ4D7gcGAq8ImItN+nGau9VGAucANQHOH8zcCNwHXAkTjb+U4WkWYhaR4HzgP+BBwLNAc+9u8Z3xDlAs8CA4ETgQrgCxFpFZKmsZV7NTAGOALoC3wFfCgih/rPN7byBolIf+AK4JewU421zIuA7JDHISHn9k6ZVdUe/gcwA3gx7NivwP37Om91ULYiYHjIcwHygb+FHEsCtgNX+Z+nAWXABSFpDgB8wKB9XSaX5U4FvMCQJlbuTcBVjbm8/nwvxflykAc83Zj/jYGxwNwo5/Zama2m4Sci8UAf4POwU5/jfGttbDoBbQgpr6oWA9+yq7x9gLiwNKuABew/70kznBr1Zv/zRl1uEfGIyB9xguVUGnd5xwPvqupXYccbc5kP9Dc3LxORt0TkQP/xvVZmCxq7ZAAeYF3Y8XU4/xiNTaBM1ZW3Dc639PBFz/an9+QJ4Gdgmv95oyy3iBwiIkVAKfA8cI6qzqHxlvcKoAtwR4TTjbLMOC0hw4Hf4TTJtQGmikg6e7HMsTXKctMQPttRIhxrTGpT3v3iPRGRR4FjgGNU1Rt2urGVexFwGNACp836nyKSG3K+0ZRXRLrh9Dseq6pl1SRtNGUGUNVPQp+LyHTgN+ASYHogWdhldV5mq2nsUogThcMjbiZVo3djEBh1UV15C3BqXxnVpGmQROQxnM6+E1X1t5BTjbLcqlqmqktU9UdVvRWndvUXGmd5B+Dkda6IVIhIBXA8cI3/943+dI2pzFWoahEwD+jKXvx3tqDh5//GMgs4JezUKThtw43NMpz/RMHyikgizoiKQHlnAeVhadoB3WnA74mIPAEMwwkYC8NON9pyh4kBEmic5f0QZ9TQYSGPH4G3/L8vpvGVuQp/mQ7G6QDfe//O+3pEQEN6AENxRhdc7n8jn8AZddRhX+etluVJZdcf1U7gTv/v7f3nxwDbgHOBXjh/dGuBZiGv8RywBjgZZxjy1zjfYj37unxRyvyMv0wn4nzrCjxSQ9I0qnIDD/g/HDrifJjejzMi5neNsbxR3oM8/KOnGmuZgUdwalSdgH7Ax/4ydtibZd7nb0RDewDXAMtxOhRnAcft6zztQVlycdoqwx8T/OcFZxhfPlACfAP0CnuNROApnCr/TuAj4IB9XbZqyhypvAqMDUnTqMoNTMDZobIUZ2z+F4QMoWxs5Y3yHoQHjUZX5pAgUOb/4H8P6LG3y2yr3BpjjHHN+jSMMca4ZkHDGGOMaxY0jDHGuGZBwxhjjGsWNIwxxrhmQcMYY4xrFjRMgyUiA0Tk3/5NZcpEZKOITBaRSwLr/4vIcP9mNB1DrlsuIhPCXmuIiMwRZ3MtFZEWIhIjIo+LSL6I+ETkw3osS0eJsBFWhHSB8nSpr7zUloicLSKjIxzP9ef55H2RL7N32YKFpkESkVHAozgbCo3BmbzWEjgVZ1brFuA/US4/B2dmbOC1YoE3cJZKuBZnctR24Pc4G1TdiLMK7sYqr2RCnY0zk/jRfZwPsw9Z0DANjogch/PB9LSqXh92+j/+1WtTol2vqj+FHcrB2Vfj36r6bch9uvt/fVxVfXWQ7wRVLd3T1zGmIbPmKdMQ3YKz89zNkU6q6lJVDd/eMyi0eUpExuIsCwPwsr8ZJU9EluMsuQDgDW06EpFsEXnNv49yqTj7b18Ydo9AM9JxIvKOiGzB2e8AEUkWkWf9zWlFIvJfoE73nhaRK0Tkf/7mtkIReTlsS1v8+RsnItf7N+3ZLiLfSNV9oz3+dPkislNEvhKRg/3Xj/WnmYCzBHeO7NqfenlYtpJF5Gl/fjaIyOsi0qIuy232PatpmAbF31eRC3yoqiV18JIv4eyT/g4wDpiI03SVAFyPs6nNAH/apSKSgrNmT0vgNmAVcCHwfyKSrKrjw17/DeBNnKauwN/TCziLX94N/ICzqui/6qAsAIjIAzhNak8CN+HUpMYBvURkoFbeO+RCnL02bgDigYdxamsHq2qFP83d/rI+jLNu1RHAf8Nu+3egNc7e02f6j4XXqp7AWURvGNANeAhnu4FL9qS8pmGxoGEamgycvY1X1MWLqepqEfnZ/3SpqgY2q0FE1vjThB4bibM/wQmqmuc//ImIZAHjROTlsA/ld1X15pDru+F8aP5NVR/wH/5cRFKBq/e0PP4O/5uAu1X1npDji4EpwBCcpcMDyoHBqlruTwdOAD0KZ9e3lsAo4HlVHeO/ZrKIlAP/CLyIqi4VkQ1AWej7FeZbVb3O//vn/vfichEZrrbIXaNhzVPGVHYcsCYkYAS8jvNNu0fY8Q/CnvfD+bv6d9jxt+oof6f4X/8NEYkNPHCaxrbh5D/U5EDA8Jvj/9ne//MQnP6hd8Kue7cWeZsY9nwOTo0uqxavZRooq2mYhmYjUAx02Ef3b4WztHS4gpDzocLTZvt/RtqruS5k+n8uiXI+Pez5prDngSalRP/PQH7Xh6WrTX53dy/TCFjQMA2KqlaISB5wyj4ajbQJpz0+XGAbzfBhueHNLoEgkoWzfzMhz+tC4P6nApurOe9WIL+ZOFuHBljtwERkzVOmIXoA5xvzw5FOikgnETm0nu79DdBORI4OOz4M59v4gt1cPwNn17w/hB3/Y91kj8n+12+vzn7g4Y9lNXy9OcAO4Pyw4+HPwak5JNU8y6YxsZqGaXBU9Vv/zONH/XMpJgArcUY0nYSzHe8wIOqw2z0wAWek0fsi8jdgNXABTl/CVWGd4JHyvkhE/gXcIyIx7Bo9dXoN83GaiBSEHduqqpNF5EHgaX9H8zc4u7Qd4L/PS6r6tdubqOpmEXkcuE1EtrNr9NRl/iSh81fmA61E5M84e3KXqOocTJNiQcM0SKr6uIjMBP6CszdyBs4s7h+Bq3C2qayP++4QkeNxhos+gDMpcBFwkaq+7vJlrsLZW/6vOMNcv8IJclNqkJWnIhybh7N9520isgBndvu1OE1kq4AvgV9rcI+Au3C2Cr0MZxjyDJyhyN8DW0PSvQT0B+4DWuCMcOtYi/uZ/Zht92qMqUJEzscZAXacqn63r/NjGg4LGsY0cSLSDzgDp4ZRAvTBmZW/CBhocyxMKGueMsYU4czvuBZojtPh/2/gVgsYJpzVNIwxxrhmQ26NMca4ZkHDGGOMaxY0jDHGuGZBwxhjjGsWNIwxxrj2/52SA6keAGQkAAAAAElFTkSuQmCC\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgUAAAFGCAYAAAD6uOxSAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAACC1UlEQVR4nO3deZzM9R/A8ddndmdvt7WsW7Luc51dS46KcnQoSjqU1I+UIqRUpERJh+iQIkVlUyqSI7myG0I2d8QucrT3MfP5/fGZGTNrL/bm/Xw85sF8r/nM19p5z+d4v5XWGiGEEEIIS3E3QAghhBAlgwQFQgghhAAkKBBCCCGEgwQFQgghhAAkKBBCCCGEgwQFQgghhADAu7gbUNwqV66s69SpU2DXi49PxNc3EKUK7JKXnZSURPz8Aou7GaWa3MOCUZLuo90OWoPFAt7e5s/SIDExkcDAknEPS6vCuIdRUVEntdbBmbdf9kFBnTp12LJlS4Fdb/ny1TRqFIGXV4Fd8rKzc+dqmjSJKO5mlGpyDwtGSbyPqamQlgZWK1SqBEFBlOjfN6tXryYiIqK4m1GqFcY9VEodymr7ZR8UCCFEaeLrax42G8TFmUf58lCunNkuRH5IUCCEEKWQl5fpJdAa4uPh9Gnw9ze9BwEByBCmuCgSFAghRCmmlAkGwAwrHDli5hxUrAhlypi/C5FX8uMihBCXCB8f87DZ4ORJOH7cDCuULw9+fsXdOlEaSFAghBCXGC8vCAw0QwuJiXD2rJlvUKmS2V5aVi6IoidBgRBCXKLchxbS0+HYMRMQVKgAZcuaFQxCuJOgQAghLgNWq3nY7WZS4smTZs5BhQpmaEEmJgqQoECIYnPffTdz/PixQrl2enoKVqsMIufXpX4ftTYPpUwPQmEMK6SkpOBXzBMaqlWrxtKlS4u1DaWFBAVCFJPjx4+xaVPBJc5yl5ISj59fmUK59uXkcrmPzuAAzHwEL6+CCxDi4+MpU6Z472F4eHixvn5pUuTTTZRS1yqlvlFK/aOU0kqpwXk4p5lSao1SKtlx3gSlPDu7lFK3KqV2KaVSHX/2LbQ3IYQQlxD3ngKbzSxtTE01f3cGC+LyUBxzUIOAHcAIIDm3g5VSZYEVQBzQ1nHeU8ATbsd0BD4H5gMtHX8uUkq1L+C2CyHEJc19GCE93QQHGRlmLoK49BX58IHWehmwDEApNTcPpwwEAoB7tdbJwA6lVEPgCaXUdK21Bh4HVmmtJznOmaSU6uzYflfBvgMhhLj0KXVu8mFGhvnTYjk3tCATEy9NpWG1akfgF0dA4PQjEArUcTtmeabzfgQ6FXrrhBDiEufsPdDa9B6kpZlAQYYWLj2lYaJhVeBIpm1xbvsOOP6My+KYqlldUCn1EPAQQEhICKtXry6otpKSksDu3QV3vctRSkoCO3euLu5mFLr09BRSUuIL5dp2u63Qru1u9erVTJr0Ert27SIgIIC77hrAhAkT8M4ht+7x48d57rkJ/Pzzz5w9e5ZOnToxdepUrriivuuYuLg4nn12PKtWrSI+Pp4rrriCESNGcMcd/V3HNGvWlL///tvj2o8/PpKJEyfm+33NmTOHN998k7i4WBo2bMSUKVPo1Oncd4yPPvqIL79czPbt2zl79izbt/9B7dq18/262RkxYgRz537Eiy++xPDhw/N0zoYNG+jZ8yYaNGjAxo2bXNv//PNPJk+ezLZt2zh06CBjxozhmWfGnnd+bGwszz//HMuXLychIYE6deowffrrXH311cC5gMDZY5Bdz4HNZiM+/tzP4s6dOxk1ahRRUVFUqFCB++67j9GjR6OyuMCiRYt44IEH6NGjB4sWLcrT+85KSkpKgf6eL2oJCQlF1v7SEBQUOK31bGA2QHh4uC7IkpTLl6+mYUMpnZwfJbFcbWGwWv0KbWZ7Ucya3759G7fffhtPPTWGjz6az9Gj//DYY0NRyotXXnkty3O01tx9d3csFguLF0dStmw5ZsyYTp8+fdi6dZerZvwjj9zK6dOn+PLLb6hcOZjIyK956KGHqFu3Addccy0ASinGjZvAQw894rp+UFAQfn5B+XpfixZ9zpgxo3nzzXcID2/FRx99zG233crWrbuoVasWAOnpdrp3v5FbbunHU0+NxNc3KNf77euriIk5QJ06dS6oPV99tZjff/+d0NBQvL198/Tvevr0aYYOHUrnztdz9Og/HufYbIp69epz66138Nxz47O85pkzZ+jRowdXXXU1kZHLqFw5mAMH9lOtWuh5x9rtJkCwWEydhcxDC+6rD/777z/69OnDtddey6xZs9i9ezf33XcfFStW5Mknn/S47v79+5kwYQLXXHMN3t7e+VrB4OfnV6rLNxdl+enSMHwQC4Rk2hbiti+nY2IR4hKTmJjII488RHBwOUJDKzNhwjgSEhKoUCGQQ4eyLJFeKBYt+pxGjRozYcJE6tevz7XXXsfkya8ya9bbHt8M3e3Zs4dNmzby5pvv0LZtO8LCwnjrrXdJTk7m888/cx23ceN6hg59lHbt2lOvXj1GjnySmjVr8ttvmz2uFxRUhqpVq7oeQUGeAcGff+6id++eVKpUhho1qnDPPXcRG5vzr4UZM6YzaNBgHnhgCGFhYbzxxkyqVq3G7Nnvuo4ZPvxxnn76Ga666uoLvW0X5NChQzz55Ag+/ngB1gtIP/jwww9wzz330qFDx/P2hYe35ZVXXuPOOwcQEBCQ5fnTpr1KtWrV+PDDebRt2466devSpcv1NGrUyHVMWloaY8eOpn79GlSqFMBVV7Vl2bIfSU01QwxZTUycP38+SUlJfPzxxzRt2pTbbruN0aNHM336dLTbWER6ejp33XUXkyZNol69enl+3yL/SkNQsAG4Rinlnv2iG3AUOOh2TLdM53UD1hd664QoYg89dD+rV//M99//xLx5n/HWWzN4/PHHCAtrmGMX9s0330jFikE5Pi5EamrqeUlp/P39SUlJITo6Kstz0tJSAfD1PXeexWLB19eX9evXubZ16nQ1ixd/wb///ovdbuebbyI5ceIE11/f1eN6b7zxGtWqVaJt25ZMmTKJtLQ0175jx45x/fXX0qRJU9at28z33/9EQkICt93WG3s2U+nT0tKIjo6ia9fuHtu7du3Oxo1F++skIyODQYPuYsyY8R4fxrmZNesdjh+P45lnxl/0a3/zzRLatm3PwIH9qVGjCm3btuSdd97y+OAeMuQ+fvllDR9/vIDo6B3cffe93HrrzezYsc1jWaN7DoQNGzZwzTXX4O/MvQz06NGDo0ePcvDgQde2cePGUadOHe69996Lfg/i4hT58IFSKghwDh5agFpKqZbAKa3130qpl4F2WuvrHccsAJ4D5iqlXgIaAGOAifrcT+gMYK1SagywBOgLdAYKN4zPRGeadaO1znKcTIiLdfLkSb78chEffPAx4eFtAbjttjv4+OOPeP75F3M8d9as90lOznUVcJ5169aDN998nQULPuWOO+4kLi6OyZNfACA2NutMjWFhDalVqxYTJozl3XfnEBQUxJtvvs6RI0c4duzcOQsWfMHdd99JaGhlvL298fX1Zd68z2jRoqXrmGHDhtOyZSsqVarEb79tZvz4MRw8eIBZs94HYPbsd2nWrAWTJ7/iOufDD+dRtWpFoqK20LZtu/Pad/LkSWw2G1WqeHY8hoSE8PPPP13Q/WnZsgl//+3Zc9OqVRPX74RatWqzdevObM9/4YXnqFSpMg8//Ei2x2S2Y8cfTJo0kbVrN+KVjzHMAwf289577zB8+EieemoM27ZtZeTI/wEwbNhj7Nu3j88//4y//jroGlIZNuwxfv75J+bMeY+ZM98BzgUEqalm1cKxY7HUrFnD47VCQsy9jo2NpW7duixfvpwvvviCrVu3XnT7xcUrjjkF4cAqt+cTHY+PgcFANeAK506t9VmlVDfgbWALcBqYBkx3O2a9UupO4CXgBWAf0F9rfW52TSGLiooiJSXF9VxrzZYtW/D19aV58+ZF1Qxxidu3by9aa9q3P9ct3LZtez7++CP69OmX47nVq1cv0LZ069adKVNeY8SIR3nwwcH4+voyduyzrFv3C5Zs0uFZrVY+//wrHn74AapVq4SXlxddunSlR48bPYLq554bz7//nuT773+icuXKfPPNEh54YBArV66lefMWADz+uCtVCc2aNads2bIMHNifSZNeoVKlSkRHR7Fu3dose0D2799Hamoqt9xyo2vb22+/x3XXdS6o20Nk5DLS09Ndz5s0uZLIyGWEhlZ33YvsrFmzmk8+mcvmzVvz/HqpqakMHNifKVNeo27duhfdbgC73U6bNuG89NLLALRs2Yq9e/cwa9bbDBv2GFu3RqO1pmXLxue1ISKii+Occ0HRVVddQ2Tk92htEiLZbFkvazxx4gSDBw/ms88+o3z58vl6D+LiFEeegtVAtl+ftdaDs9j2B3BtLtddDCzOZ/Muitaaffv28ddfJ6hV60p+/FGTknKQwMAd1KtXiWbNmkmPgSgQvr6+APj4+Li2VakSQoUKFWjUqHF2pwFm+ODXX3/J8ZhTpxIuqD2PP/4EI0aM5NixY1SoUIGDBw8yfvwz1K2b/Thw69Zt+O23rZw9e5a0tDSCg4O5+ur2tG5tUtHu27ePd96ZyW+/bXUFAM2bt2Ddul94552Zrp6AzNq2be84fy+VKlXCbrdz4409mTLl/EmPISEheHt7e3zohoSE4Ovri5eXF8ePey5miouLo2rVLBczZSuroZxatWrnaaLh2rWrOXbsGLVrV3Nts9lsjBs3mrfeeoP9+zMvyDLDJbt3/8mQIfcxZMh9gPlw11oTEOBNZOQyunXrft55WalWrdp5P08NGzbirbdmuK6rlOLXX387L7hxDg04g6LU1ATKlw/GYoGqVaty/HgczljJ9B6Ye121alV27tzpGPa53nU951CPt7c3O3fuJCwsLE/vQVycy3L1QUHTGj7++AqWL+/LK6+sY/p0sFprYLffw3XX7aJXL0n0IQpGnTp1sVgs7N27x9Vt+91333D69GnOnj1LuXLlsj23oIcPnJRShIaGAvDFF59Rs2ZNWrVqnet5zrbu2bOHqKgtPPecGf5ITk4COK/728vLK9u5AADbtm0FoGpV80HaqlVrFi/+gtq1a2f7rbx+/frnbWvdug0//bSCW2+93bVt5coV9O17a67vqaA8/PAw+vW7zWNbr149uOOOu7j//iFZnlO9enWio//w2DZr1jusXLmCRYu+pnbtOnl+/Y4dr+Kvv2I8tu3Z8xe1aplAp0WLVmitiYuLJSIi694VZ1DkvhKmffuOjBs3mrQ0UyTJZoMfflhBaGgoNWvWITi4Cn/84fkexo8fz+nTp3n77bfz3QMicidBQQGYMEHz00/NyciworUCFOnp5pfQL780YupUzejREhWI/Ctfvjx9+vTjlVcm06FDRw4fPsxXXy0mNDSU775byoABd2d7bkEPHwBMmzaVHj1uwGKxsGTJV0ydOoX5879wfaD/888/3HDD9bz00sv07m3KkXz55SIqVapMrVq12bHjD0aNGsEtt/RxfYsNC2vIFVfUZ/jwYUyZ8hoVK1bim2+WsHLlChYvjgRg48YNbNq0kYiIzpQtW46oqN946qmR9Op1iytYGjr0UT78cA4DB/Zn1KjRrmV1ixd/wauvTst2iduIEU9w33330LZtO9q0acnHH3/CsWNHGTJkqOuY2NhY4uJi2bPnL8Cscjh79gw1a9aiYsWKgOkKt9lsrnMOHTrmOhdMkBMcHJxlG6pUqUKVKlU8tlmtVkJCqnp8U77//kGAmSthtVpp0qTpedfx9fX12J6Wlsaff+4CzPr92NhYtm3bSmBgkCtIGj58JNdd14kpUyZx22392bbtd95++01eeGEyAA0aNOCuuwYyZMhgXnllGi1btub06VOsWbOaevXqZTuUdeedA5g0aSIPPjiYZ54Zz549fzFt2hTGjXuOjAyFt3cgYWFNPQoylS9fnoyMDJo2bZrlNUXBkqAgn06fhmnTFGlpJghITfUcS01Pt/Lee5qhQyGHL3FC5NmMGW/z6KMPc8UVNQEYP/55GjZsxCOPPMi+fXt59tnni6wty5d/zyuvTCI1NZXmzVuweHEkN9xwbpw+PT2dv/6K4ezZs65tx44d4+mnnyAuLo5q1aoxcOAgxo591rXfarUSGbmM8ePH0K/fzSQkJHDFFfWZM+cjevW6GTDDKIsXf86kSRNJTU2lVq3a3H//EJ588mnXdUJDQ1m16leeffYZbr75BlJSUqhZsxZdu3Z3DcNk5fbb+/Pvv/8yZcpLHDt2jCZNmhIZucxjOGDOnFm89NK5JEl9+vR0bP+IQYMGA3DVVW1zXCJau3Zt/vrrYC53OGeHD/+d+0GZHD16lHbtWrme79+/j/fff49rr72OFStWA2bZ4qJFS5gwYSyTJ79IzZq1eO65Fxk6dJjrvDlzPmLKlEk888zT/PPPESpWrEh4eLtsew7A9A4tW7aCESMepWPHcCpUqMDjjz/J448/4epNdc45UMrkPRBFS2WeMX+5CQ8P11u2XHz52jlzYORITWKi+YkODEwjMdHH4xh/f83EiYqBA/PV1MvG5ZK8qGfPcCmdXMLJfcy/i72HBVnOOTw8nPz8ni9uhZG8SCkVpbU+r6a0xGH5FBsLSUnnnmcOCABSUuD48Zyvk3n5oixnFEJcztwLMmXuPZCCTIWnNCQvKtGqVgX3pGADBuw67xg/P8g0POhh+/btbNmyxbUky7mccfv27QXdXCGEKHWyKuecXdZEkT8SFOTTbbeZCNapdevzuwTS0qB7NiuBtNakpqaye/duV2CwZcsWdu/eTWpq6nkJkYQQ4nKl1LkAwT1rolRsLDgSFORThQrw5JMaH5/0bI7Q2GyKe+6BvXvP36uUwsfHh8DAQHbv3s38+fPZvXs3gYGB+Pj4yBCCEEJkwb33ICPDs/dAAoSLJ0FBAXjxRQs337wXb+90lNKAHas1DW/vDDp2PELNmvDHH3DDDTB/vucPrNaaQ4cOceLECRITE9Fak5iYyIkTJzh06JD0FAghRA6y6j1ISzOBggwvXDgJCgqA1nb69fudp556gzJlEuja9Q+6dl3H0KGzGThwCz/8YKdfP0hOhqefhgcegFOnPK9x5oxm06Yr+Pbb+mzadAVnzkgwcDky6YLVeY9rrungOqZBgzqu7eXLB9CqVVPef3+2x3XS0tKYNm0q7dq1onz5AKpWrcg113Rgzpz3SE1NLfb3U6FCYI7ndesWcd45d999Z5bHpqSkEB7eAl9fRVSU5wzzv//+m759b6ZChUBCQyszcuRwj6JJFys1NZXHH/8foaGVqVAhkH79buHIkfOzDIKpp1C3bnV8fRUnT57M92s7HTx4kIcffoCwsHqUK+dPWFg9xo9/JtcEVa+++jKdOrWlcuWyVK8eTN++N7Nz5w6PY5Ys+YqePXtQvXowvr6KNWtWn3ed99+fTffunalSpTy+vsqjoFF+ff31l7Ro0ZgyZXxp0aIxkZFfZ3vssGEP4+urmD79NVdwoJQJCpwBgvtKBpEzCQoKgFKK+Ph4ypa1UbmyFx980JyHHy5DmTJ2EhISKFdOMXMmvPUWlCkDP/4I118Pq1aB3a5ZsuRK3n77QVatuo516zqwatV1vP32gyxZciV2u/wkX266dOnKoUPHPB6Rkcs8jhk3bgKHDh1jy5bt3HJLHx599GEWLfocMAFBv359eeWVSQwadB+rV//Khg1RjBjxBPPmfcTGjRuK7L1MmzbjvPdSt249brvtjlzPvffe+zzOe/vt97I8bvToUVSvXuO87TabjT59epKQEM/PP//CvHmf8fXXi3n66Sfz/b6efPJxliz5knnzPuPnn38hPv4/+vbt5ZGsyGnIkPto3rxlrtdcs2Y1DRrUyXMbYmJ2Y7PZmDnzXX7/fSevvz6T+fPn8cQTI3J9nYcfHsaaNev58cef8fb25sYbu3LK7ZtKYmIiHTt24tVXp2d7naSkJLp27c748c/nuc15sXHjBgYO7M9ddw1k8+at3HXXQO6663Y2bz6/lM1XXy1my5bNroya7pwBgtYmQNi/H/791wQJInuyJLEAKKUIDw8nJSWFxMR013MwSVac8wL69oW2bWH4cNi0Ce6+G1q0sLBr15XYbN6uCYvp6WZZ46pVVzJtmoWnn87yZcUlytfXN9c8+0FBZVzHTJz4EosXf8E33yzh9tv78+abb7Bu3Tp+/XUzbdqcW4Zct25d+vW7jYSEC6tvkB/lypXzSL28fv2vHDiwn48++iTXc/39A3K9D998E8maNav47LPF/PCDZ+C0YsVydu3ayZ49h6hZ0yR6mjz5VYYOfZAXXphE2bJlAfj226W89NLz7Nq1k6pVq3HnnQMYP/45j/oS7s6ePcvcuR8wZ85HdO1qKrZ/+OEnXHllbVau/Inu3Xu4jp05cwZJSUmMGTPuvPblV48eN9Cjxw2u5/Xq1WP06HFMnPgs7747O9vzvvvuR4/nH330CcHB5Vi//ldXcqiBA+8ByLFnY/jwxwHO651x988//zBq1HB+/vlnADp06MRrr73BlVdeme05M2e+wXXXdWbMmHEANGo0jtWrVzFz5ht88slnruMOHTrEk0+OYNmyn+jd+8bsLucaXvD1NT20J0+Cvz9UrGhWjl1s7oNLldyOAtKmTRs6derkeu4MDDJXSKxRAxYtgmeeMettt22D9PSsY7O0NG9mzdK4JYMTIkt+fn6uinwLF84nIiLCIyBwslgsrg/DrFSsGJTj4+abs//lmxcffjiHxo2b0LFjp1yPXbRoIaGhlWnZsgmjR48iPj7eY/+RI0cYPvwR5s1b4CrC427Tpg00bNjIFRCAKfecmppKdHQUAMuX/8jgwQN55JHH+P33ncye/SFffbWYZ58dm227oqOjSE9Pp2vXc0uKatasScOGjdi4cb1r29atvzNt2it8+OG8bKtGFrT4+P8oX77CBZ4Tj91up0KFCzsvN0lJSXTv3hk/Pz9++mkNa9ZsoFq1atx0U1eS3JO7ZLJp0waPewvm38393mZkZDBo0F2MGTOeRo0a5ak9FgsEBpreWrsd/vkH9u0zOWRSUmR4wUl6CgpQ5pUC2a0c8PKCxx6DxESYOVM76iVkzcsLvv0WyYZ4GVm+/Ifzyv0OHfookye/ct6xGRkZLFjwKTt2/MFDDz0CwN69e7jqqtw/dLOSW6nerD588+rs2bMsXvwFL774cq7H9u8/gFq1ahMaGsquXTsZP/4Z/vhjO8uWLQfM0MDgwQMZMeJJmjdvkeV4dmxsLCEhIR7bKleujJeXF3Fxpv7AK69M4oknnuLee01VwSuuuIJJk17hvvvuZsqUqVm2LS4uFi8vLypXruyxPSQkxFXXIDExkbvvvpPXX59J9erV2bt3z3nX+fvvvz1KD9tsNlJTUz3+7e+6627efntWbrcLMN+cX3/9NZ5+OvuAJitPPjmCFi1a0qFDx9wPvgBffLEQrTXvvPMu/v4mEH377feoUaMKy5Z9m+0QUlb/bu73FuCFF56jUqXKPPzwIxfVNh8f89Aa4uNNunqrFSpVMoHD5Zxe+TJ+68XP+UOZk+Tk3LMhikvLNddcy9tve3b/Zq4t/9xz43jppedJTU3Fx8eHJ554iiFDHgbI14qVrKoGFpQFCz7Fbre7uqZz8uCDD7n+3rRpM+rWrcfVV7fn99+jadWqNa+8Mhmr1YfHH38iX22Kjo7it98289pr5wIuu91OcnIysbGxfPDBLKZPn+bat3Xr+cnJsvLEE8O56qqrc6ysGBoa6hGE/fbbJsaNG83y5atd23Lq1XEXFxfHzTffwPXXd2PEiJF5OgfgqaeeYP36dfz887rzqlLmV3R0FAcPHqB6dc/x/qSkJPbv33deUDR69FhGj849oFmzZjWffDI31wA2L5QyQwlg5h3EOSpmBwVB+fIm8dzlNrwgQUExqlLFjGnl0JOGv3/O2RCdJE3ypcPfPyDXD+cRI55g8OAHCAgIoFq1ah7/1lde2YCYmJgczs5e5h6KzK666hqWLv3+oq794Ydz6Nv3VlcVwQvRpk04Xl5e7N27h1atWrNq1UrWrfuFwEDPksjXXNOB22/vz8cfz6dq1aps2PCrx/6TJ09is9kICTFzFex2O+PHP0e/freTWXBwMPfffz933nkuiAkNDSUkpCo2m42TJ096VDmMi4vjqquuAWDVqpUcPnyYTz75GDgXqNWqVZVRo0bzwguT8Pb29vh3/uefI+dty4vY2Fh69OhCkyZN+eijT/L8/37UqJEsWrSQH39cRb169S7oNfPCbrfTokVL3n//fXx9PX+uKlasSNmyZT0+2J0/F1WrViXO+ensEBcX55pfsnbtao4dO0bt2tVc+202G+PGjeatt95g//6sV4HkxtvbBANghhMOHzY9teXLmyGHHGpoXVIkKChGPXvCs8/mfExGBvTqlfMx27dvJzU1lfDwcJRSrqyIvr6+581pEJeGihUrZfvhYSbKPUNU1Jbz5hXY7WZFTHbfQAtr+OC33zazffs2XnvtjYs6f8eOP7DZbFStaj4IZs/+iKSkRNf+o0eP0qtXDz7+eD4dO14FQPv2HXn55Zc4cuQINWqY1QkrV67A19eX1q3bANCqVWtiYnZney8rVqxIaKhnMZ/WrdtgtVpZuXIFd945ADDzG3bv/pMOHcywzbffLic9/dw09y1bfuOhh+5nxYrV1K+f/SS7C3Xs2DG6d+9M48ZN+OSTz/DOY7/3E0+MYPHiz/nxx1U0bNiwwNrjrlWr1nzxxWdUqlSJqlVrZnlMVve9ffuOrFy5gieffMq1beXKFa57+/DDw+jX7zaPc3r16sEdd9zF/fcPKZC2+/mZh91uhhb+/dcEBRUrmuGFAu5UKVEkKChG5cvDww9r3n03g/R0a5bHeHtDVBR06ZL1NZxpkp3fDJ3VwGJiYggLC5Meg1IoNTXVY/wUwMvLy+NbaU7+97/H+e67b7jppm48++xErrnmWsqWLce2bb/z+uuv8cILk7nuuogszy2s4YMPPphN/fpXZvm6v/22mfvvH8SHH86jbdt27Nu3j4UL53PDDTdRqVJl/vxzF6NHP0nLlq3o1Ml84NetW9fjGoGB5itevXpXuAKAbt2607hxEx54YBCvvDKNf//9l2eeeYr77x/iCorGjp1A3769qFWrNrfddgdeXt7s2rWD337bzMsvv5rleylXrhyDBz/A2LFPExxchUqVKvH000/QrFlzrr++KwANGjTwOMc5iz8srKFrLoLNZuPEiROuY8LCGrJ27UaPf3t/f3+P1Rvujh49SrduEYSGhvLaa294rBQIDg52DQc0a9aQRx55jGHDHgNg+PBHWbDgExYtWkKFChVcrxcUFESQ46vyqVOnOHz4b86cOQPAvn17KV++PCEhVV3f2GNjY4mLi2XPnr8A+PPPXZw9e4aaNWtRsWJF7rprIK+//hoDBtzF889PombNWhw5cpilSyMZMmRotisQHntsBNdffy1Tp07h5pv78M03X7NmzSpWrVoHQJUqVaiSqfvUarUSElKVsLCwLK95sZyTE8FkS3T+05QtC+XKmcDhUvv1KkFBMXv6aQtxcXF8+WUwStlJT/fGas3AbrdQoYKdkyd9uOceuOcemDDBs/gSeKZJjomJcQUHkia59Pr55588ukYBqlevnuduUV9fX5YsiWTOnA+YO/cDxo0bjZ+fHw0ahDFo0H15mvlfkOLj4/nii4WMHTshy/1JSUn89VeMa0a6j48Pq1at5K23ZpCQkECNGjW58caejB//3AWNe3t5ebFkyXcMHz6MiIir8Pf35847B3pMIOzevQdLlnzHyy+/yOuvv4a3tzdXXtmAe+4ZnOO1p017A29vb+6+uz/Jycl07nw9H3ww74Lad/jwYcLC6uZ4zD333Mv778/Nct9PPy1n79497N27h/r1a3nsi4k5QJ06dQD4668Y/v33XMDw3nvvAHDDDdd7nDN+/HM8++zzAHz77TcMGXKfa98jjww575g5c2bx0ksTXcf06dPTsf0jBg0aTEBAACtXruWZZ55kwIDbOXv2LNWqhRIR0TnHlQ4dO3bi008X8txz45k4cQL16l3B/Pmf065d+2zPKQpWq3lobSaJnz1rvrRVqGCGHbJZwVrqqMs9jW54eLguyDrby5evplGjiDx3L9ntdiIjI9m9+xgxMVeSlBRIQEAiYWF7aNCgGrGxvZk61UJ6OtSpAzNmQLhbj7DWmqVLl3L06FGUUgQGBrrSJYeGhnLzzTeXusBg587VNGkSUdzNKHQ9e4azaVPh1Hi/2Br2wpPcx/wrCfewfftwvvuu4P+v2Wxm/oHdbuZ/lS9fOMMLq1evJiIiokCvqZSK0lqft25ZegqKmVKKhIQE/P3TaN9+L2XKlCE+Pp7U1DSSkhIYNkzRubNJePTnnyYB0qOPwhNPnItMq1atSkxMLLt21SUpKYiAgAQaNz6Qa+IXIYQQF8/L69zwQlrapTG8IEFBCVCuXDkSEhIIDw93zQnYsmWLayyxcWP47juYNg3eeQdmzoSVK02vQcOGMHOmH2vW3I/dbkFrhdWazsqVndm+fRcff1z6fiiFEKK0cc99UJqHFyQoKGZKKerUqUO1atVcqweySpHs6wtjx0LXrvD447BrF9x0E7Rtq9m8uRE227l/Smea5F9+acTUqZrRoyUqEEKIouCe+8BmMysXTpwoPasXLrO0DCVT8+bNXQEBZJ8iGaBdO1ixwkw8TE+H9estZGRkvXIhPd3Ke+8pSZMshBDFwDm8UKaMCRZiY01q5aNHTX6akjilT4KCEiKvKZLB/JBNmWJKMCuV80+VM01yXmSedHq5T0K9nDz44GD69MklIYbIVqtWTXnxxeeLuxmiBLNazTBCYOC55Ej79pkCTUVYzTxXEhSUYhUqFFya5O3bt7NlyxZXIOBMgLR9+/YCaKkoCR58cDC+vuq8x7ZtW5k2bQZz537qOrZbtwhGjHisGFsr8mLWrHdo0KAuZcv60aFDG9at+yXXc9auXUOHDm0oW9aPsLB6zJ7tWVuhQYM6Wf6c9O7d0+O4Y8eO8cAD91K9ejBly/rRokVj1q5d49qfkJDA44//j0aNGlKunD9Nm4YxY8brBfPGSzGlzATEMmXMn2fOwMGDcOCAmYfgqGtWbGROQSlWpYoZu0pOzv4YP7/c0yRLAqTLR5cuXc8rW1y5cuU8Z8K7lKWlpWVbLrkkWrToc558cgRvvvkOnTpdzXvvvcMtt9zI1q27qFWrVpbnHDhwgN69b+Lee+/no48+Zf36dQwfPozg4GBXnYZff/0Nm7OOOxAbe4wOHdp4FDA6c+YMERFXcdVVV7NkyXdUrhzMgQP7CQ4+98vmqaee4Oeff+K992bToEET1q1byyOPDKFy5cp5qn9xObBYzuWecdZe0Nr0JpQvXzylnaWnoBTr2dOsj82JzZZ7mmTnHIawsDBiYmKYP3++KyBwn+sgSj9fX1+qVq3q8fD29vYYPnjwwcGsXbuGWbPedn1LzKoK4ZAh91G9ejCvvDLZte3AgQMEBfmwYMGn5x3vtGTJV7Rp05xy5fypWrUiXbte55Hr/rXXXqVWrapUrBjE/fcP4sUXn6dBgzqu/VkNdbz44vO0atXU9XzLlt+46abuhIZWpnLlsnTufDUbN27IdC8U7777Nnfc0Y8KFQJd5ZK//Xap65t0s2bNmDBhHGlp51IWHz9+nFtv7U25cv5ceWVt5s79MIc7XnhmzJjOoEGDeeCBITRq1Ig33phJ1arVmD373WzPmTNnFtWqhfLGGzNp1KgRDzwwhHvuuZfXX3/NdUxwcLDHz8cPPyyjbNmyHkHBtGmvUq1aNVcWyrp169Kly/UeZYw3blzPwIH3cO2111KnTh3uvnsQ7dt3YPPmTYVzQ0o5Z+2FMmVMb8HRo2Z4ITa2aOceSFBQipUvD0OHgq+vLdtjlIKffsr9h+r777/nyJEjHsMHR44c4fvvL674jSi9pk2bQYcOHbn33vs4dOgYhw4do2bN83PXv/rqdF588WWef/5ZVy/TCy9MoEGDMFdNgMxiY2O5++47ufvue9m27U9WrlzLgAHnvjUuXvwFzz8/nmefncjGjdE0aBDGjBnTL/g9xMfHM3DgPaxc+Qvr1m2mefOW9O59E//++6/HcZMmTeSGG24iKuoPhg59lOXLf2Tw4IE88shj/P77Tt5++22++mqxK2AAE5Ts27eX77//iUWLljB//jwOHTqYY3vWrfuFihWDcny4B1e5SUtLIzo6iq5du3ts79q1Oxs3rs/2vE2bNpx3TrduPYiK2kJ6Fv3WWms++ugD7rrrbo+6F998s4S2bdszcGB/atSoQtu2LXnnnbc85iF16nQ13323lCNHTCbODRvWs23bVrp3vyHP7/Ny5etrAoSAALO8sSiHFKTPsJQbNQr++msvK1ZccV6a5IoVUzhxIojhw02egylTsh5KsNvtpKamcuDAAXx8fChXrhxnz57lxIkT1K1bF7vdjuVyqx96iVq+/AePSohZVT0sV64cPj4++PsH5JgAq0KFCtx//4N89dVi5s+fR//+d7Fw4QI+//yrbH9ejh07Snp6Ov363Ubt2rUBaNLk3Df8mTPf4J577nWVgR4zZhyrV69i//69F/Q+O3f2LBbyxhszWbLkS3788XsGDLjbtf222/pz//0Pup4/+OC9PPHEU9x7r0nxW716FSZNeoX77rubKVOmsmfPHn788XtWrVrnqsPw/vsf07BhzlUG27QJz7XY1IVUj3RWe6xSJcRje0hICD///FO258XGxtKlS1ePbVWqhJCRkcHJkyepVs0zvfZPP63g4MEDPPCAZ6GhAwf289577zB8+EieemoM27ZtZeTI/wG4aiy8/vqbPProwzRp0tg1PPX66zPp2VMmtOaVUkVfnVGCglJOKbjuus1ceeUq9u1rRFpaOXx8znLFFbuoVi0Iq/VuJk5U/PgjbNoEL70Effp4JjRSSmGxWLBYLKSlpXHq1ClsNptrmwwfXDquueZa3n57tuv5xVY9dHf33YN49tln2LHjD8LD23LLLb0B+Oyz+Tz66MOu47755ns6duxEly5dad26KV27dqdLl67063ebq9jT7t1/ct99D3pcv0OHjhccFBw/fpznn3+WNWtWcfx4HDabjeTkZA4f/tvjuMxVJKOjo/jtt8289torrm12u53k5GRiY2PZvftPLBYLbdu2c+2vXbs2oaGhObbH39+/0IpNFaYPP5xDeHhbmjdv4bHdbrfTpk04L730MgAtW7Zi7949zJr1tisoePvtmWzYsJ6FCz+nfv2G/PLLWsaMGUXt2nXo0UN6C0qqYvn6p5QappQ6oJRKUUpFKaWuyeX4R5VSfyqlkpVSMUqpQZn2D1ZK6SwefoX7Toqf1hq73Y6PTzI33PAvH37YnBtu+BcfnxS0ttO/v2blSrjuOjPL9bHH4MEHTTINd0op/P39+fzz21mw4FbXcwkILi3+/gHUr1/f9ahevXq+r3nLLX04ffo03323lIkTJ7m29+p1C5s3b3U92rQJx8vLi2XLlvPdd8tp1qw5c+d+QJMmV7J9+7Y8v57FYjlvuWzmru8HHriXqKjfmDr1ddasWc/mzVupUaOGx9wAMIXD3NntdsaPf87V5l9+WceWLdvZuXOPR5XKC/1/UdDDB5UrV8bLy4vjx+M8tsfFxeXYu1O1alWP+RsAx4/H4e3t7areeG77cZYujcyyHHG1atVo1Kixx7aGDRu5gq7k5GSeffYZJk9+lRtvvJFmzZozbNhj3HHHnR7zF0TJU+Q9BUqp/sAMYBiwzvHn90qpxlrrv7M4/hHgFWAIsAloB8xRSp3WWi91OzQJuML9XK11SuG8i5LDYrHQsmVL9u3bR1JSEgsWLADMt5crrrgCi8VC9eowfz589hlMnAg//AAbN8KkSdC7t/kF17NnT957byEJCYHY7V5s29aUdu2O07NnTwkMLkNWq4/HDPScBAQEUL/+lSil6NLlXOW9MmXKUKbM+YVwlFJ06NCRDh06Mm7cBFq2bMKiRZ/TvHkLGjZsxKZNGxk8+H7X8Zs2bfQ4v3LlYLZt2+qxLfPz9evXMX36m9x0k1lGFxcXx7Fjx3J9L61atSYmZrfrW33mYj5hYQ2x2+389ttmV7XJv//+m6NHj+Z43YIePvDx8aF16zb89NMKbr31dtf2lStXuFYRZKV9+45ERn7tse2nn1bQpk04VqtnErR58+bi6+tL//53nXedjh2v4q+/Yjy27dnzF7VqmSGh9PR00tPTz6saabF4oXUus6NFsSqO4YMngLla6zmO5/9TSt0APAI8k8Xx9wBztNafOZ7vV0q1BUYD7kGB1lrHnnf2ZaBFixY0a9bMFRAA9OnTx2NcVykYMMD0GIwaBWvXmsJKS5fCSy/ZGT9+DytW9HfVT1i9+jp+/tlCVNQeZs9ugJeXzCm4nNSuXYctWzZz8OBBgoKCqFixYrbzBH76aQW//x5NUFAQSUlJBGSu7+1m06aN/PzzT3Tr1oMqVULYuvV3jhw57PrW+dhjI7j//kGEh7fl2msj+Prrxfz22yaPD8yIiC5Mm/Yqc+d+yNVXX8uSJV+xYcOvVK9ew3XMlVc2YMGCT2nXrj2JiYmMHft0npYbjh07gb59e1GrVm1uu+0ObLZU9u49wG+/bebll18lLCyM7t1v4NFHH+add2bj7+/P008/keswTGEMH4wY8QT33XcPbdu2o2PHq5gzZxbHjh1lyJChrmPuv990qn744TwAhgwZyrvvvsWTTz7Ogw8+zIYNv/LJJ3P55JPPPK5tJhi+zx133ElQUBCZDR8+kuuu68SUKZO47bb+bNv2O2+//SYvvGB6O8qWLcu1117H+PFj8PF5lfr1G/HLL2uYP38ekye/WqD3QRSsIv1Nr5TyAdoAyzPtWg5kV+TdF8j8jT8ZaKeUcg9t/ZVSh5RSR5RS3yqlWhVIo0sBrTVRUVEe26KiorLMSFi9OixYAFOnmtmtP/wAV11lYcWK+ths3mhtARTp6T7YbN6sXHkF06ZJQHC5GTlyFD4+PrRs2Zjq1YP5++/zOvFcnntuHDff3JuKFSuyZMlXOV63bNlyrF//K3379qJJkysZPfpJnnnmWdfkv9tv78+zzz7Pc8+No337VuzY8QcjRjzhcY3u3XswfvxzPPfcODp2bMOhQwd5+OFhHsfMnv0hiYkJdOjQhrvvvpN7772f2rXr5Pq+u3fvwZIl37FmzSquuqodXbp0ZurUKdSseW7d//vvz6VOnbr06NGFfv1upn//AXm6dkG7/fb+vPbaG0yZ8hLt2rVk/fp1REYuc03gBDh8+G+PeRR169YlMnIZ69atpV27lkyZMonp0988r3dhzZrV7N27J8uhA4Dw8LYsWrSExYu/oHXrpkyYMI7nnnuRoUPP/Tt88slCwsPbMmTIg7Rs2ZipU6fw3HMvuuYciJJJFWUqW6VUKPAPcJ3Weq3b9gnAQK11WBbnTAYeAHoBWzBBxbdACBCqtT6mlOoINAC2AWWAEcBNQAut9Z4srvkQ8BBASEhIm4ULFxbYe/zvvwT8/c+PrAtTUlISKSkp+Pn5ERAQcN7z7Bw/7ssbbzRgy5ZKADRqdJLbbvuLcuU8x12VMpUai6qIR0pKAn5+RXsPi8PIkY+xfv2G3A+8CHa7DYul8P/Bli5dyqBB97B+/QYWLVpEdHQUS5ZEFuhrvPnmm8yZM5s//thRoNfNi6K6j5eyknAPO3XqyOuvv1WsbciP5OQEypYt2N+JnTt3jtJah2feXhpWH7wIVAXWAwqIAz4GngbsAFrrDYDrt6tSaj2wFfgfMDzzBbXWs4HZAOHh4ToiIqLAGrt8+WoaNowo0ipYJhVxqivRkDNFsa+vL02anF9UyalJE/jnH9i+3dQC//PPyrz4YuXzjgsIgOefh4EDC+89uNu5czVNmkQUzYsVI6vVz2O8uiBlHgsvDHa7ncmTJ9O//120atWOgIByvP76dD7++FNuvfX28yauXSxvb1MttLDfT1aK4j5e6krCPbRa/Urt7xS7HXbtWk1Bfk7lpKiDgpOADfMt310IkOV8AK11MnC/Uuphx3HHMN/y44ET2ZxjU0ptAa4soHaXaM2bN/dIRezMUJiXCYInTkB6usbEW1lLTtYcPy6TDYWnzz6bz19/xbB4sekZCAsL4/nnX2TixGfZsmUzc+Z8VMwtFEJcqCIdLNZapwFRQLdMu7phegJyOjdda31Ea20D7gS+1dlMY1Xm07A5JoC4LFxIlUV3pn5Czsf6+alc6yeIy8/AgfeQmJjOFVecW/QzevRYjh49WaABwRNPjOKvvw4W2PWEENkrjhlk04HBSqkHlVKNlFIzgFBgFoBSap5Sap7zYKVUA6XUPUqpK5VS7ZRSC4GmwFi3Y55TSvVQStVTSrUEPsAEBZ7lv8R5evYEmy3neSUpKZqmTXM8pEBI6WYhhCheRR4UaK0/Bx4HxmPG/a8GbtJaH3IcUsvxcPLCLGPcBqwA/IBOWuuDbseUx8wR+BOzkqE6cK3WenMhvY1LhqmfoPDxycjmCI3Win794N13TSWv7OTnQ11KNwshRPErlrVmWut3tNZ1tNa+Wus27isRtNYRWusIt+d/aq1baa0DtNbltNZ9tNYxma43Umtd23G9KlrrHo7JhyIPnnzSTpcue/H2zkApO6Dx8cnA2zuDLl32cOutmpQUkyL5lltg167zr5GfD3X30s1btmwBcJVuTk1NlR4DIYQoIqVh9YEoZF5eFm69dT9duuxF65s4cUIRHGxBqWVUqGDhppsa0KcPjB4N27bBjTeaxEcjRphiHc4P9d27dwMQHh7Oli1b2L17Nw0bNvSYBJkV58RIgJiYGGrXDuDQoSOXfOnmKlWq0b79eSuCCkR6egpW6yWf5bvQyX3Mv5JwD6tUqZb7QQKQoEC48fdPo08fsFjMMpglS9IwozXQpQusWgUvvwxz58KMGbBsmUmC1LatwsfHh8DAQHbv3k1MTAxaawIDA/Hx8cnTh7ozMHCW4AUu6YAA4KOPluZ+0EW6XJZ1Fja5j/kn97B0kVR1wlU6+ciRI0RGRmK324mMjOTIkSOkpqZit5tFHkFBpl7CV19BvXqwZw/07QvjxmliYo5w4sQJEhMT0VqTmJjIiRMnOHToUJ66/53DDe7chyOEEEIUPukpEFgsFnr37k1kZCSHDx/mrbdM5q+aNWvSu3fv83Let28PK1bAG2+YyYdz5yoqVOjM1VevJjXVSlJSEAEBCTRsuI9qeei1cwYEMTExhIWFERCQiJ9fTVevwaXeYyCEECWF9BQI4Fxg4C6rgMDJzw/GjDFDCM2aaU6fDmDp0ptYsaIL69Z1YNWq63j77QdZsuRK7Pacv+0rpfD19XXNIQATCISFheHr6ysBgRBCFBEJCgSAa8jAnXMoISdNmkBEhMJiMWV2tfbCvaDSzz9fKQWVhBCilJDf1sIVEBw+fJiaNWvy2GOPUbNmTQ4fPpxrYHDmDMyerbHbsy72kJ7uzaxZmrNns399rTUHDx4kOjqaG26IZ98+M58gOjqagwcPyrwCIYQoIhIUCCwWC76+vh5zCHr37k3NmjXx9fXNdggB4Lvvcq+eaLdDZC6F87TWpKenEx8fT0ZGBtHR0aSnp0tAIIQQRUgmGgoAbrrpJux2uysAcAYGOQUEAMePQ3JyztdOT1dMnw7NmkGrVlkfExoayrFjx7DZ7GitSUpKwt/fn9DQ0It5O0IIIS6C9BQIl8wBQG4BATgLKuV8jFKaEyfg5pth/HiIj8+8X9GmTRsCA0NJSAjEZrOwbVtTAgNDadOmjUw0FEKIIiJBgcgXU1Ap52OsVnjwQZMU6aOPICICvv/+3H67XXPvvTsYN+4mzp4tj83mxerV1zFu3E3ce++OXFcvCCGEKBgSFIh8MQWVwGrNulKS1ZrOI4/AxIkmEGjVCmJjTZBw//3wzz8wdapm7dpG2GzeaG1+JJ2rF9aubcTUqRIUCCFEUZCgQOTbqFHQu3csXl4ZWK1pgB2rNQ0vrwx6945j1ChzXJMmZsLhSy+Z7Ig//mh6Dd5+W5GRYc3y2hkZVt57T+W4ekEIIUTBkImGogBoWrdeSUhIAvv3NyIjoxLe3v9Sr96fVK8eBNwDmHkBXl5w333Qowc895xJfuTclx0vL8W338LAgYX9PoQQ4vImQYHIN4vFQuXKlbHb7dSqdRQ4CkB6egCVK1fOcsJiaCjMmQOPPQZff+25LyXFc41jcrJZ5VASZK74mFsFSCGEKE1k+EDkm9aaKlWqYLVaCQsLY+DAgYSFhWG1WqlSpUqOuQY6dgQ/P8/9r77azuO5n5+mSpVCafoF2b59u0eRJmfNhu3btxdzy4QQomBIUCDyLXPtAmcZ5LzULujZEzLHDP/95+vx3G6HXr0Ko+V5p7UmNTWVmJgYV2DgLOKUmpoqSZaEEJcEGT4QBaJ58+YeXenOwCC3rnWzekExa5ad1FQTo/br9xdffdXAcYSmdWuFn18hNj4PnO8HICYmxlXB0T0QEkKI0k56CkSByfzBmNcPyqeeMoGBj48dpex06nQUqzUdi0UDig0boHt3+PXXQmj0BXAmWXInyZWEEJcS6SkQJYCmc+ctlC9/gDlzbsbHB4YMOUKVKptRqgUffxzG3r2KO+6Afv1gwgQIDi76Vm7bto39+/e7ekS01kRGRlKvXj1atGhR9A0SQogCJj0Fotg55yS0alWXWrX8sFph7Ng6tGxZj3bt0vjpJ8WoUeDnB199BddeC3Pn5p5JsSDZ7Xb279/P4cOHCQoKYsCAAQQFBXH48GH279+fa4lpIYQoDSQoECVC8+bNHV3z5+YktGnThubNm+PrCyNHws8/Q5cu8N9/MG6cmXy4dWvRtM9isVCvXj1q1qxJYmIiCxYsIDExkZo1a1KvXr081YkQQoiSTn6TiRJh+/btREVFAeeW+0VFRXks96tdG+bNg/ffh2rVYPt2ExiMHg2nTxd+G1u0aEHv3r09tvXu3VuGDoQQlwwJCkSxc1/uN2bMFq64gmyX+ykFN94Ia9bAsGEmQ+Knn8I118Bnn5nli4XZThO4nBMVFSXLEYUQlwwJCkSxc89rEBMTw6lTp4iJiclxuV9goBlCWLHCJEA6fdpZgwH++KPg2+iel8A9QZN73gIhhCjtJCgQJYJ7HgCnvKz/b9AAFi2CmTOhShWIjoabbjIBw5kzBdu+i03QJIQQpYUEBaJEcH4Td5fXb+BKmaWKa9fCkCHm+dy5ZpXCwoUFN6TQvHlzj0DFGRg0b968YF5ACCGKmQQFothl7pqvWLHiRXXNlykDzz9vSjK3bw///gtPPlnwQwq33moeQghxqZGgQBS7zF3zQL665hs1gi+/9BxSuPFGGDMmf6sUnAWR3FdISEEkIcSlRIICcUlyH1J4+GGzSuGTT8wqhU8+ufDER+4rJBIS4gEpiCSEuPRIUCCKXeYKhJD9ksQLVaaMSYu8YgVcdZXpKRgzxlRnzDSFIUfuEwuTkpI4fjwu1xUSQghR2hRLUKCUGqaUOqCUSlFKRSmlrsnl+EeVUn8qpZKVUjFKqUFZHHOrUmqXUirV8WffwnsHoiBdzJLEC9WgAXz+Obz3HoSGmjkGvXvD44/D8eN5b6cURBJCXMqKPChQSvUHZgCTgVbAeuB7pVStbI5/BHgFeAFoAjwHvK2UutntmI7A58B8oKXjz0VKqfaF905EQbrYJYkX9homA+KaNfC//4GPj1nOeM01MGsWpKXlfP62bdv47LNlnD3rz+nTgWzadAWffbaMbdu2FVgbhRCiOBVHT8ETwFyt9Ryt9Z9a6/8Bx4BHsjn+HmCO1vozrfV+rfVCYDYw2u2Yx4FVWutJjmtOAlY7totSID9LEi9UQIAZQli1Crp1g4QEePFF6NrVbMuKzWbnzTd9GTv2Bk6dKsPp00F8+21bxo69gTff9MVmk4JIQojSr0iDAqWUD9AGWJ5p13KgUzan+QIpmbYlA+2UUlbH845ZXPPHHK4pSpCCWpJ4oerUMfkMPvkE6tWDffvg7rth8GA4cMDz2GnTLKxadSUZGd5obQEUaWneZGR4s2rVlUybJtNzhBClnyrKWdNKqVDgH+A6rfVat+0TgIFa67AszpkMPAD0ArZggopvgRAgVGt9TCmVBjyotZ7ndt4gTA+DbxbXfAh4CCAkJKTNwoULC+w9/vdfAv7+QQV2vctFcnIyWmsCAgJISUnAzy+IpKQklFL4+/sX+uunpyuWLKnB/Pm1SUryxmq106/fEe666xC+vjZ27YKc/qsoBY0bm1UOJYHzHor8kfuYf3IP8y85OYGyZQv2Hnbu3DlKax2eebt3gb5K4XgRqIqZe6CAOOBj4GngovpstdazMUMQhIeH64iIiAJpKMDy5atp2DCixHw4lCZaa5RS7Ny5miZNIlzPi0rLlqbI0ssvwxdfWPj881qsXl2LiAj45htITs7+3IAAkzhp4MAiamwunPdQ5I/cx/yTe5g/djvs2rWagvycyklR93meBGyYb/nuQoDYrE7QWidrre8HAoA6QC3gIBAPnHAcFnsh1xQlU+YAoDhm9VepAq+/DkuXQqtWEBdnVi0kJ+fco5acrPO8ikEIIUqqIg0KtNZpQBTQLdOubpiegJzOTddaH9Fa24A7gW+11s6egg0Xc00hstO6tekdmDHD5DownVTZ8/dXVKlSJE0TQohCUxzDB9OBT5RSm4FfgaFAKDALQCk1D0BrPcjxvAHQHtgIVMCsXmgK3Ot2zRnAWqXUGGAJ0BfoDFxd+G9HXKosFrjtNlOauWNHjc2WfWBgs2l69ZJ8BUKI0q3Ip0xrrT/HLBUcD2zFfHDfpLU+5DikluPh5IUJBLYBKwA/oJPW+qDbNddjeg8GA9uBQUB/rfWmwnsn4nJRvTo89hj4+GSdG9nHx8bQoVCuXBE3LAuZJw5L+mUhxIUolomGWut3gHey2ReR6fmfmCRHuV1zMbC4INonRGajRsHRo7F8/XUIGRlmSaJzSKFMmQy6dfMp1vaBKdiUmprqSgLlXOrp6+sr5Z2FEHkii6uFyAOLRTF48AlGj/6c8uXPUKbMfzRsuIuAgBT+/deXXr0Ujz8OscU0tbUw60cIIS4fpWFJohDFzm63s3//flJTj1OmTDJWqxd9+/5MQsIqdu3qxtq1V7JokeK778yyxqFDoQjSK7i4p4mOiYmhdu0ADh06IgWbhBAXRHoKhMgDpRSJiYlYrVbKli1DlSohtG/fnqAgTbdum/j5Z7jxRkhKgtdeM/UUvvzSrDEuyjYWdv0IIcSlTYICIfJAKUWLFi1o3749ZcqUAcwHcPv27WnRogX16inef98UWGraFI4dg+HD4eabYfPmomljUdaPEEJcmiQoEKIAdeoEy5bB9OkQEgJbt0LfvvDQQ3DwYOG9rtaapUuXEhUV5VE/IioqiqVLl0pgIITIEwkKhMgD94l8CQnxgM52Ip+XF/TvD7/8AiNHgp8ffPcdRETAxIlw5kzhtPHs2bNkZGS42qK1JiMjg7NnzxbOCwohLjkSFAiRB87x+rCwMO655xv69p3vquqY3bh9YKBZyvjLLyYJUno6zJ4NV10F778PaWkF28aGDRtitVr5/fff+fffU/z+++9YrVYaNmxYsC8khLhkSVAgRB5d7ES+0FCTLvn77012xDNn4LnnoEsXs60gevadbWvdujUffdSTEyfKkJqaSuvWrWWyoRAizyQoECKP8juRr3lzMxHxo4+gXj04cAAefBD69YPo6Py3b/v27Rw5csQVZGitOXLkCNu3b8//xYUQlwUJCoTIA+dEvujoaMLCwhg4cCBhYWFER0df0EQ+paB7d/j5Z3jpJahY0axOuPlmeOQROHQo92tkxZlH4eDBgyilUErh5eXFwYMH2b9/P/aiXBsphCi1JCgQohhYrXDfffDrr6augp+fqcp43XXw/PNw+vSFXU8phcViwWq1YrE4X8PqeG6R4QMhRJ5IUCBEHiiluPnmm2ndujUxMTHMn28mGrZu3Zqbb775oj90y5aFZ56BtWvh1lshIwPmzDGTEd99F1JS8t6+unXr0r59e7y8vAAIDAykffv21K1bV4ICIUSeSFAgRB4VZsbA6tXhzTfhhx/g6qvh7FkzvHDttXnPjNisWbMsqyQ2a9Ys3+0TQlweJCgQIo+KImNg06awcCHMnw+NGsE//5jMiDfcYHoTcmrbp59+ypo120hOLofW3hw6dBVr1mzj008/leRFQog8kYJIQuSBMyBwz03gfA4FW2NAKZPo6JprYPFimDoVdu6Eu+4ycw7GjjXBgzu7XfPjj81Zu7YJdruFtDR4//2a2Gz3ce21OxkwQOPlJUMIQoicSU+BEHmglMLX19cjWZEzmZGvr2+hjNm7Z0YcOxbKlIE1a6BHD/jf/+Dw4XPHTptmYePG5ths3mht/lunpXljs3mzcWNzpk2T/+pCiNzJbwoh8qh58+YePQLOwKB58+aF+rr+/vDoo7B+PQwZAj4+8NVXZr7Bc8+ZfAezZkFyctaBSXKyYtYsM09BCCFyIkGBEBcgc49AUc7qr1jRLFdcu9YkPEpPN+mSr78+94mIXl7w7bdF0kwhRCl2QUGBUqqDUup5pdQPSqntSqk9SqkNSqm5Sqn7lFIVCquhQgijZk2YOdOsVOjcGVJTTYCQk+RkzfHjRdM+IUTplaegQCl1r1LqD2A9MBIIAPYAm4DTQHvgfeAfR4BQt5DaK4RwaNoUPv3UlGW2ZPqf/PvvVTye+/srqnhuEkKI8+S6+kAptR0IBuYBg4CtOov1TUqpckAvYCCwSyk1WGv9eQG3VwiRyYgRMHeuZ9XF+fMbexxjs0GvXkXbLiFE6ZOXnoIPgLpa69Fa69+zCggAtNZntdbztdY3AR2AMwXYTiFENsqXN3UT/P3PbStXLtX1d4sFeveGcuWKvm1CiNIl16BAaz1Da53HZKuuc7ZprX+8+GYJIS7EU0+ZYQRfXxMEjBmzCavV7LPb4YsvTK2F3buLt51CiJJNVh8IcQlQCp5+2pRgrl0bAgPtTJoEGzeanAb+/rB8OXTtap5fbDVGIcSlLc9BgVKqj1LqI6XUJseqgz2Ov3+klOpTiG0UQuRR+fIQEmKqMA4caFYqjBljchzcdx94e5/LcfDMMxAXV9wtFkKUJLkGBUqpCkqpdcBXQGfgJLDR8TgJRABfKaV+lSWJQhQve6aEBc7nVaqYAktr18Jtt5mJh/PmQadOZvupU8XRWiFESZOXnoJpQC3gOq11Ha11T631PY5HT611XeBaoDrwWmE2VgiRvWXLlhEZGQmYucB2u53IyEiWLVvmOqZWLZgxA1auhJtuMqWZ330XOnaE6dMhPr6YGi+EKBHyEhTcAozSWv+S3QFa63XAaKBPAbVLCHEB7HY7J06c4ODBg5w8eRKAyMhIDh48yIkTJ87rQQgLgzlz4LvvTJGlhASYNs0EB+++C8nJxfEuhBDFLS9BgS8mQVFuzgA++WqNEOKiKKVo3Lgx3t7epKSkkJ6ezsGDB/H29qZx48bZpmNu2RIWLIAvv4R27eD0aTOc0KkTfPSRyZYohLh85CUo2ACMU0qVye4Ax75nMBkPhRBFTCmFj48P1atX5447vqBChVPY7XaqV6+Oj49PrjUaOnQwExA//RRatIDjx2H8eFO++bPPck+jfCFsNluOz4UQxScvQcHjQGPgkFLqE6XUaKXUQ47HaKXUPOCg45gnCq+pQojsaK1JS0vj6NGjHtuPHj1KWloa2eQc86CUqaXw3XfwwQfQsCH88w+MGgUREbB4sZmgmB8LFixg3rx5rkDAZrMxb948FixYkL8LCyEKRF6SF+0CWgAfAx2BycAsx2MycBUmBXJLrfXOvLyoUmqYUuqAUipFKRWllLoml+MHKKW2KqWSlFKxSqlPlVJV3fYPVkrpLB5+eWmPEKWd1prDhw+TlpaGUsr1SEtL4/Dhw3kKCpyUghtugBUr4O23oV49OHjQpFPu0gUiI3OvypgVm81Gamoqp0+fdgUG8+bN4/Tp06SmpkqPgRAlQJ7yFGitj2mtR2qt6wOBmJUG1YEgrfUVjn1Hc76KoZTqD8zABBStMEMO3yulamVz/FXAJ5igpAlmMmNjYH6mQ5OAau6PC83EKERppZQiMTERq9VKQEAA3t7eBAQEYLVaSUxMvKgSzxYL9OkDq1aZlQm1asHevTBsGHTrBsuWwQXEGnh5eTFo0CAqVKjA6dOnmTFjBqdPn6ZChQoMGjQILy+vC26jEKJgXXBGQ611iiNIOKa1vpg5yk8Ac7XWc7TWf2qt/wccAx7J5viOwBGt9eta6wNa643ATExlxkxN07Huj4tomxClklKK5s2bU716dYKCggAICgqievXqNG/e/KKCAidvb+jfH9asgSlTIDTUpEseMsT0KCxfnvfgwBkYfP757Xz++e0AEhAIUYLkJXlRvwu9qFKqmlKqQxbbfYA2wPJMu5YDnbK53K9ANaXUzcqoDNwJLMt0nL9S6pBS6ohS6lulVKsLbbcQpZVzTkFSUhJhYWFUrFiRsLAwkpKS8jynIDc+PnDPPbBuHUyaZDIn7thhMiX27Ak//ZR7cOAcMnDnPsdACFG8VG6/LJRS/wAnMHMIvtBaZ5v7zDE34B5M+eSRWuvZmfaHAv9gEiGtdds+ARiotQ7L5rr9gLmAP6bc8wqgt7OnQinVEWgAbAPKACOAm4AWWus9WVzvIeAhgJCQkDYLFy7M8R5ciP/+S8DfP6jArnc5SklJwM9P7uGFSk5ORmtNQECA6x4mJSWhlMLfvYRiAUlNtfDdd6F8/nktTp82q5HDwv5j0KCDhIefIqvOCWfOhNOnK2K1Wilf/l8yMjKwWCwEBwcXeBvzS34W80/uYf4lJydQtmzB3sPOnTtHaa3DM2/PS1AQAIwCHgMqAH9iPnxPAKmObfWAcKAcsBYYp7U+b3nixQQFSqnGmCDgDeBHzHyBqcBWrfWgbNrsBWwFVmmth+f0/sLDw/WWLVtyOuSCLF++mkaNIpDe0Iu3c+dqmjSJKO5mlEpaa5RSrnvofF6YkpNNyuR33gFH3iRat4YnnzSJkZwvr7Vmzpw5JCcn891391GmTBnGjNnC+vXr8ff3Z8iQIYXe1gslP4v5J/cwf+x22LVrNd27RxTodZVSWQYFeVl9kKS1fgGoAdwNRGGGAO4HRgI3A16YyYNNtNadswoIHE4CNiAk0/YQILs5AM8Am7XWU7XW2x0lmYcB9yilamTTZhuwBbgyt/cnxKUk84dqUXzI+vvDww/Dhg0mt0HFiqZa48CB0Lu3mYugtWlL+/btqVGjBsnJSRw/HkdMTAw1atSgffv2JS4gEOJylOeJhlrrNGAl8IjWurHWurzW2k9rXV1rfb3WeqLWOsdq7Y5rRAHdMu3qRvaJjwIwgYQ75/Ms26/Mb5fmmAmMQogiEBAAjzxiyjWPG2eCg6goGDAAbrkFVq3SHDx4iL//PsuZM76cPh3IL7/U5O+/z3Lo0KECmfcghMgf79wOcHTFP4sZpy8L2JRSS4EHtNZnLuI1pwOfKKU2YyYRDgVCMXMWcCRDwm1oYCkwRyn1COeGD94AorXWfzvOeQ5TtXGPo43DMUFBdisahBCFJDDQLFu8916YO9fUUoiOhrvvVlSseANnznhhtytA8eOPHfnhh6vo2zeOXr3Ich6CEKLo5BoUYD60JwCrgd8w8wf6Av8B913oC2qtP1dKVQLGYz7gdwA3aa0POQ6plen4uY40yo9hKjaeBX7GFGByKg/MBqo69v8OXKu13nyh7RNCFIzAQHj0URg8GD7+GKZP15w65VkeJT3dPI+MDCE0FJ5+uhgaKoRwycvwwRBgjta6i9Z6tNb6duBR4G7HEsMLprV+x1GG2Vdr3cZ90qHWOkJrHZHp+Jla6yZa6wCtdTWt9UCt9RG3/SO11rUd16uite6htd5wMW0TQhSswEAzhJDTqsO0NG9mzYKzZ4uuXUKI8+UlKKgHLMq07XPM5MLaBd4iIcQl57vvTBKknGgN33xTNO0RQmQtL0FBEGaowF28489sKycKIYTT8eNm6WJO0tIUU6fCkiX5L7yUX/ZMxR0yPxfiUpXX1QfVlVL1nA9M78F52x37hBDCQ5Uq4O+f8yxCpeDff808hIgI+OKLgi3ZnFfLli0jMjLSFQjY7XYiIyNZtixzElUhLj15DQoWY2b2Ox/OpYdLMm0/L3ugEEL07Ak2W85LDq1WzcSJpvDS/v0wciRcey18+imkphZNO+12O6mpqRw+fJjIyEgAIiMjOXz4MKmpqdJjIC55eVl9cMErDIQQwl358jB0qOLddzNISzv/146PTwaPPOLNgw+apYxLlsCbb5rgYPRoeOMNkwNhwACTLKmwWCwWevfu7QoEypdP5/DhWGrWrEnv3r2xWC64hpwQpUquQYHW+uOiaIgQ4tI2apTm6NE4vv46BJvNC63B19eOzabp3TuOUaNCAYXVCrffDv36wbffmuBg926YMMH8/aGHYNAgKFNIM5qcgcFbb73l2iYBgbhcyE+5EKJIWCyK118PZe7c7VSq9B8VKiTQs+dvzJ27nddfD8Vi8Zxz4OVl0iSvWAEffggtWpjaCpMnQ/v28NprcCrb8mwXzzmHwJ37HAMhLmUSFAghioxSioiIVpQtm0yFCom0b7+XiIhWOdY9sFigRw+zrHHBAhMQnD0Lr79u/v7CCxCbXeWUC+QMCA4fPkzNmjWpUqUKNWvWdM0xkMBAXOokKBBCFBmtNZmrkm7ZsiVPdQ+UMlUXv/rKPDp3hqQkeO896NjRzD04dCjXy+TIYrGQnJxMmTJluOWWWwC45ZZbKFOmDMnJyTKEIC558hMuhCgSzoAgJiaGgIAAqlQJISwsjJiYmDwHBk7t25tVCT/8ADfdZJYufvopXH01PPYY/PnnxbcxKCiI1NRUoqOjAYiOjiY1NZWgoKASU7QpcztKSrtE6SdBgRCiSCil8PX1JSwsjB9+KMOXXyrCw8MJCwvD19f3okonN2sGc+bA6tVwxx1mqOHrr6FrV7OK4bffLryd1apVQynFiBGhxMRkEB0djVKKatWqXfjFCsH27ds9gihnsLV9+/Zibpm4FEhQIIQo9erXN3MMfv0V7rsP/Pzgp5+gTx+49VZYtcqkUc6NUiZQad26NXa7RmtNamoqrVu3Jjw8/KICl4LkbI9774qz9yU1NVV6DES+SVAghCgSRfGBVqMGvPQSbNoEw4dD2bKwcSPcfTd07w6RkZCRUQBvppg4gxbnsMv8+fOJiYkhLCysRAQtovSToEAIUSSK8gOtcmUz8XDzZhg3zqRZ3rULhg0zWRI//jjrWgzOQCU6OhqLRbmGPKKjoy943kNhcd5HdxIQiIIiQYEQosgopWjTpo3HtjZt2hTaB1qZMiYQ2LABXn0V6tQxKxTGjoUOHWDGDDhzxvOcY8eOkZzsQ3p6RbT25uTJ7iQn+3Ds2LFCaeOFys8KDiFyI0GBEKLIbNu2jcjISI9JcpGRkWzbtq1QX9fPDwYOhLVr4d13zQTFkydNoNCuHUycCP/8A6BYu7Y9b7xxL7GxfqSlwdy5dXjjjXtZu7Y9UPxzCpxDLmFhYQwcOPCiV3AIkRUJCoQQRcJut7N//34OHz5MUFAQAwYMICgoiMOHD7N///4iSQzk5QW33ALffw8LF5qhhMREmD0bOnWCbt1g8eJg0tMt2O0mAEhKUqSnW/jqq2CmTi30JubIfQWHc8ggvys4hHCXl4JIQgiRbxaLhXr1THX1xMREFixYAEDNmjWpV69ekSYGUgquucY8/vjD9B4sXerMb3CuHe5fvFNTLcyapXn4YUW5ckXW1PM0b94crbUrAHAGBhIQiIIgPQVCiCLTokULevfu7bGtd+/etGjRophaZIYS3nkHnn4avL09u9/ffLO1x3MvL1OkqbhlDgAkIBAFRYICIUSR0VoTFRXlsS0qKqpEjIVnZIDN5vnhevhwWY/nSUmK48eLslVCFC0JCoQQRaKkT5KrUgX8/T239e3713nH/f47nDhRRI0SoohJUCCEKBIlfZJcz55gs3kGJldddfS841auNLUXnnoK9uwpqtYJUTQkKBBCFJnmzZt7TIpzBgbNmzcv5pZB+fIwdCj4+GSd8tBqzeC22zQ9ekBaminjHBEBgwbB+vV5S6NcUKQgkigsEhQIIYpUSZ4k99RTim7dDmC12rBYzAdtQIDGarXRvfsB3nhD8eGHpgDT3Xeb/AcrV8Ltt8ONN5qSzunphdtGKYgkCpMEBUII4aIZMuQMzzyzmKpVU/DxgcGDDzJ27CKGDDkDmA/i+vXhlVdMGuVRo6BSJbO08X//M5kS33kHzp4thNZJQSRRyCQoEEIIB6UUPj4+VKnig5/fWZTKoHbtXwkO9sXHx+e8Xo1KlWDkSBMcTJ0KV14JsbEwaRKEh8Ozz8LBgwXbPimIJAqTBAVCCOGgtSYtLY34+HhsNhtgEi3Fx8eTlpaW7TdxPz8YMAB+/hk+/dQkRUpKgg8/hKuvhgceMNUaC+KLvDMweO+9rrz3XldACiKJgiNBgRBCODh7Cmw2GzabRmtNSkoKNpsty56CzCwW6NzZpFBesQL69werFX74AW691cw7+PJLM1HxYklBJFGYJCgQQggHZ32G+Ph47rlnCcHB/+Hl5UV8fPwF12do3BimT4dNm8wQg3PewfDh5yo0njp1Ye1zn0MQEBBAlSohJSrXgztZIVE6SVAghBAOFosFHx8fvL29Hb0F5uHt7Y2Pj89F1WeoUsVMRty8GV57DcLCIC7OVGhs29bkO9i9O2/XUkpx4sQJAgMDCQoqA5hS1IGBgZw4caLEDCHIConSq1iCAqXUMKXUAaVUilIqSil1TS7HD1BKbVVKJSmlYpVSnyqlqmY65lal1C6lVKrjz76F+y6EEJcau91OWloaaWlpeHl54e3tjZeXl2tbfio5+vnBXXeZJYyffQZdukBKisl3cP31ZqhhxQrI6SW01gQHB5OQkEBCQjxg0kYnJCQQHBxcIr6NZ14hAcgKiVKkyIMCpVR/YAYwGWgFrAe+V0rVyub4q4BPgI+BJkAfoDEw3+2YjsDnjm0tHX8uUkq1L6z3IYS49FgsFurWrUu5cuWw2+1kZGRgt9spV64cdevWLZBKjkqZks2ffAJr1sC995r0yuvWweDBZpLiBx9AfHxW55pJhjVqNCE2VhMTk8C8eTZq1GhSYiYbOudlBAYGEhMTw6lTp4iJiSEwMDBP8zJE8SqOnoIngLla6zla6z+11v8DjgGPZHN8R+CI1vp1rfUBrfVGYCbg/oH/OLBKaz3Jcc1JwGrHdiGEyBOtNenp6VitVnx9ffHy8sbX1xer1Up6enqBf8utXx8mT4YtW8zyxRo1zBLGCRPMksYJE+DAAff2wdSpigceaMW//5bh9Okgvv22DQ880IqpU1WRZlXMjnMFR0JCAomJiYBZwZGQkJDjCg5RMhRpUKCU8gHaAMsz7VoOdMrmtF+Bakqpm5VRGbgTWOZ2TMcsrvljDtcUQojzuH/LDQgIQCkICAgo9G+5zhTLv/4Kc+aYiYgJCabH4JprTCrlNWvMPIRZs2ykpiq0tgCKtDQrqamKWbNsTJ1aKM27IEqZeQ5BQUGkpqaSkZFBamoqQUFBtGnTRnoKSrii7imoDHgBcZm2xwFVzz8ctNYbMEHAfCANOAEo4F63w6peyDWFECIr7t9yGzZsSMWKFWnYsGGRfcv19oabbjLLFn/8Ee68E3x8zDyEAQNg5kxNaqpXluempnoxa5YulEyKF0Jrzbfffsvx48c9eluOHz/Ot99+Kz0FJZwqyn8gpVQo8A9wndZ6rdv2CcBArXVYFuc0BlYAb2C+/VcDpgJbtdaDHMekAQ9qree5nTcImKO19s3img8BDwGEhIS0WbhwYYG9x//+S8DfP6jArnc5SklJwM9P7mF+yD28eMnJyWitCQgIcN3HpKQklFL4Z66tXATOnrWybFk1IiOrc+qU+XXm55dB27axdOr0D8HBya5jLRYIDYWKFYu8mR7OnDlLWloaSoG/v5Xk5HS0Bh8fH8qXL1e8jSuFkpMTKFu2YP8/d+7cOUprHZ55u3eBvkruTgI2ICTT9hAgNptzngE2a62dHWPblVKJwC9KqbFa6yOOc/N8Ta31bGA2QHh4uI6IiLjQ95Gt5ctX07BhBF5ZB/MiD3buXE2TJhHF3YxSTe5h/mitUUq57qPzeXHp1MkMMbz+unmekuLNL7/U4JdfangcpxQ8+aTJi1BcnMsP//gjCqUUjRoFExNzCq01bdq0oXHjkjEhsrSw22HXrtUU5OdUTop0+EBrnQZEAd0y7eqGWYWQlQBMIOHO+dzZ/g0XeE0hhMhWSazkWK0aBATkfIy3NwQVcweRUgpfX1/atGnjMS+jTZs2+Pr6loh7KbJXHKsPpgODlVIPKqUaKaVmAKHALACl1Dyl1Dy345cCvZVSjyil6jmWKL4JRGut/3YcMwPoopQao5RqqJR6BuiMGXIQQohSr2dPsNlyHu5NTzfVG59+GnbuLKKGZaFZs2bAuWDK+adzuyi5ijwo0Fp/jlkqOB7YClwN3KS1PuQ4pJbj4Tx+LmYZ42PADmAx8BfQ2+2Y9ZjJiIOB7cAgoL/WelNhvhchhCgqzhUKVmtGlvu9vDKoVUuTnAzz50P37tC3L0RG5q/WwoVyT8X8ySe3cPp0xRKbilmcr6jnFACgtX4HeCebfRFZbJuJyU2Q0zUXYwIGIYS4JI0aBX/9tY8VK67AZrOgtcJqzUBrRbdu+5g9uwH798PHH8MXX5jUyps3m1TLAwbAwIFmImJhcg4fhIWFOVIxmyqOgAwflALFEhQIIYS4cBaLom/fvTRqtI4PP+yH3W6hY8ffaNr0IGFh1bBYwqhfH158EUaPNksbP/4YYmLgjTdg5kzo0QPuucfkPyisz+fmzZs7egTODR+UlIyLImdSEEkIIUoJm83G8ePHgTMEBSVSqVIyzZvvQOuzHD9+HJvt3JzsoCCTQnnlSli8GHr1MkHAsmWmBsO115pESWfOFE5bS+JkTZE7CQqEEKKU8PLyIjg4GKvV6krJbLPZsFqtBAcH45XFWmiloGNHeO89M5QwahRUrQr798Pzz0ObNmYZoxQwFCBBgRBClBp2u5309HTsdruj61+hlPLYnpOQEJPDYNMm00twzTWmUuPChXDjjWaFw8KFkJyc42XyJPOEQplgWDpIUCCEEKWEs4qjj4+Po/iRRmuNj4/PBVVxdKZTXrgQ1q6FIUPM6oatW02vQevWphjTnj0X187t27c7yiabQMC5ImG7dEeUeBIUCCFEKWG32zlw4ADp6ekMGhTJY4+txtfXl/T0dA4cOJBrT0FWrrjCDCNs2WIyJrZqBf/9Z4oxRUTAbbfBkiWQmpq362mtSU1N5fffD/D33ymkp8PkyQf5/fcDpKamSo9BCSerD4QQopSwWCz4+vpStmxZvL29UUpRrlw5MjIy8PX1zXNPQVb8/eGOO8xjxw6YNw++/ho2bDCPihWhf3+zrLFu3ZyupFi1Kpx33mlDRobJkfD++zXQujbDhinCw2XCYUkmPQVCCFFKaK0JDg7G29ubhg0bMnDgQBo2bIi3tzfBwcEF9i28aVNTpjk6Gl5+GRo3hlOn4N134eqrTXCwdGnWSZGmToXZsxXp6RZHeWdIS7OSnm5h9mxVIso7i+xJUFDAlIKkJJAeMiFEQXMmBmrYsKFr3X94eDgNGzYslMRAZcrAoEGwfDl8843pRfDzg3XrTHbFtm1h8mQ4cMAcf+YMzJqV/UTF5GSzv7jLO4vsyfBBAbNaoVIlOHnSdMdZrcXdIiHEpcSZGMi9rkBhJwZSyixdbNPGzD/48kv49FOTFOntt83j6quhTh2wWM4lLcqKl5fm228VAwcWWnNFPkhPQSGoXBlq14aMjIJZ2iOEEO6KMzFQuXJw//0mKdKSJXD77ed6Dz79FJKTc25LcrLi+PGiaau4cBIUFBJ/fxMYBASYmbwXMSlYCCFKLKXM8MEbb0BUFLz0kkmKlFl0dBWP5/7+phaDKJkkKChE3t7mP0m1apCYaJKECCHEpaZ8ebjvPvjpJ7BaPSdULVjQ2OO5zabp1asIGycuiAQFhUwp091Wty5YLJCQIJMQhRCXpgoVYNgwhb//uV9yNWrEexxTvrzi22/N78LiJlkXzydBQRHx8YFatcxa3//+g/T04m6REEIUvKeegi5d9mK12lDKzuOPR+HtnY7FYsfb20ZcHDz9tEmS9MQT8NtvxfNFyZl10RkISNZFQ1YfFCGLxUxCDAiAY8dMYBAQUNytEkKIgqO1ndatV1K79o989tlAvLzsdOv2C3Xr7qJsWT+qVr2fhQstbNwIn39uHvXrm8qNt91mfkcWfhs1Bw8e5NixYwCEh4ezZcsWoqOjqVatGs2aNSsRVR3dy087nxd2u6SnoBgEBJhJiIGBptfArdqpEEKUalprfH198fNLJSAgAS8vG40a/Y6fXypBQV7066f58ktTc2HYMAgOhr174cUXzZLHBx+EFSvM6q3CVK1aNQCio6OZP38+0dHRHtuLW1Y9GRs2bCAqKqpQX1eCgmLi7W0mIIaGmmWLMglRCHEp8PLyonXr1lSsWBE4NzRQsWJFWrdu7SrvfMUVMG6cGT748EPo1s0c+/33MHgwtGtnsinu31/wbVRK4ePjQ3BwMCkpKZw6dYqUlBSCg4Px8fEp9l4CZ/2ImJgYR2AAGzZsYMeOHYVeP0KCgmJWtqxJ+OHtDfHxMglRCFH6NWvWjHLlynlsK1euHM2aNTvvWKsVevSAuXNh82YYOxbq1YO4OHjrLVPeuW9fU9GxoCYnaq1JS0vjxIkT2O12tNbY7XZOnDhBWlpasU84dCakCgsLIyYmhtOnT7Fjxw6aNm1Kx44dCzVokaCgBPDxgZo1TTdafHzW+cSFEKI0sNvtLFmyhIMHD6IUjofi4MGDLFmyJMdKjlWrwqOPmqGFr782aZUDAkyw8OSTZnLi44+bAk0F8bmdnmnGd+bnxckZGLgr7IAAJCgoMZQyKxPq1DGJjmTpohCitDpx4gQAvr5+WK1W6tSp47E9N0qZ4YPXX4etW2H6dPM8KQkWLTITEq+6yuz/55+La+OxY8ewWq188cUdLF7cH39/f6xWq2vyYXFzroZwt2HDhkLvxZCgoITx8zOBQYUKptegsCfbCCFEQbJYLNSsWZM6deoQHGyWEvTp04c6depQs2bNCy7vHBhoqjJ+/TX88gv873+mR+HQIXjtNWjfHu68E776Ku9p5ZVS1K5d21Fx0sxxCAoKIjg4mNq1a5eIOQVbtmwhJiaGsLAwKlSoSNOmTdmxY0ehBwayJLEEsljMUEJgoFm6mJYmSxeFEKXHTTfdhN1uZ/588+FqsVjo06fPBQcEmdWrB2PGmFwIv/xiljP++KP5+y+/QFAQ3HKLqcfQtq3pcciKc05BUlISAQEBBAWVcY3fO+cUFGdg4KyGGRYWRuvW4fz55xo6duwIUCjVMN1JUFCCBQSYXoPjx02p0cBAcEzcFUKIEs1isfDll7Bz57nnBcXLCyIizOPMGVPW+Ysv4PffYcEC86hTxwwz3H471Kjheb5SihMnTrgCAlC0adOGw4cPc+LEiWLvKYBz1TC1PlcNU+YUCLy8zNLF6tXNskWpuiiEEOeULw+DBsG338Lq1fDYY2Z44eDBc8MLt91mehWcqxe01mRkZPD332c5dCiFI0c0L798iL//PktGRkaxrz5wKo5qmNJTUEqUKWPmGxw/bhIeBQWZYQYhhBDGlVfCM8+YNMq//GJ6D3780axW2LDB5EW48Ua49VZYubINS5aEYLNZ0BrmzKmB1vfQt28cvXplP/RwqZOgoBSxWk2yo/h4M9fA29uUIRVCCHGO+/DCf/+ZXoTFi2HTJjMh8auvFBCKewrh9HQrAN98U5XQUMXTTxdHyz1JmmORK6VMwqO6dU1+g/h4s4RRCCHE+cqWhQEDTDDw668mDwJ4fti6S031YtYszdmzRdnK80maY3FBfHzM5JkqVSAxUdIkCyFKlpJYlrhOHVN3JrceVq1NEFFcijPNsQwflGJKmXwGzqWL8fHm7zLXQAhRnLZv305qaqorI59z3b2vry/Nmzcv1rYdP577l6i0NMXEiSZx0q23mkRJRbnyyz2b4Z9/xlCnTgCHDp2kSZMmkuZY5M7HB2rVOtdrkJpa3C0SQlyuMn/LBVyJeAr7W25eVKkC/v45f6haLKa0/eLFpqRz27bwwguwY0fRZZr9448/ADyGD5RSrmqOhaVYggKl1DCl1AGlVIpSKkopdU0Ox85VSuksHolux0Rkc0zDonlHxc/Za1Cnjvm7FFcSQhSHzMV8Tp065crMFx4eXuw5AHr2BJst51+OVqtm2TIYOdIMN8TFwXvvmcJNXbrAzJlw5EjhtdEZWEVHRzNrVhdOnChLYmIiGzduvPSqJCql+gMzgMlAK2A98L1SqlY2p4wAqmV67Ae+yOLYJpmO21OgjS8FfH1Nr0FwsFmTK70GQoiillUxn5IQEIDJazB0KPj4ZJ1D3scng6FDoUULGDXKTE6MjIR77zVfvP76C6ZMMfkP+vWDTz6B06cLp61Zzcu4FGsfPAHM1VrP0Vr/qbX+H3AMeCSrg7XWZ7XWsc4HcAVQD5iTxeHH3Y/VWtsK7V2UYBbLueJK0msghChqWRXzcZ9JX9xGjYLrr9+Ht3cGStkBjdWajrd3Btdfv49Ro84dqxSEh8PkyRAdDR99ZFIp+/mZJY5jxpjqjYMHm+ChIBLMOTMuhoSEYLGYyQyBgYFUq1aNuLi4SyfNsVLKB2gDvJZp13KgUx4vMwTYqbVen8W+LUopX2AX8JLWetVFN/YS4Ow1OHMGTpwwcw98fYu7VUKIS1nmYj4BAYn4+dUkJiYGKBk9BkrBLbfE0LTpej74oA92uzdXXx1N48b7qVu3Eko1yPI8Hx/o3t08EhLg++/PFWpascI8AgLghhugb1+45hqTX+ZCaa0JDg4mOjoau918t01MTCQxMZEOHToUar6Cou4pqAx4AXGZtscBVXM7WSlVDriD83sJnD0NtwL9gBhgZU5zFS4X7r0GFovkNRBCFC73Yj7OIQTnHIPCLuaTV0opevXqRe3a5QkMTKRMmbM0abKNWrXK06tXrzy1MSjI1FVYsMD0ILzwgukxSEoyyxnvuQdat4axY2Hz5oL7vVvYvS2qKLtzlFKhwD/AdVrrtW7bJwADtdZhuZz/KDANCNVan8rl2GVAhtb6liz2PQQ8BBASEtJm4cKFF/xespOQkEBQUFCBXa+g2WymHLNSJTeNZ0pKAn5+JfcelgZyDwuG3Mf8K6n3MCkpieTkFE6cKINSiooVz2CxWPD39yMgH2Vp//nHn9Wrq/Dzz1U4fDjQtT04OIWIiON07nycK65IyPX3b3JyMlprDh/2oUqVZCyWVPz9/VFK5at9Tp07d47SWodn3l7UQYEPkATcpbVe5Lb9baCp1vq6XM7fihk6GJiH13oOuFNr3Sin48LDw3Xmsa/8WL16NREREQV2vcKQmgqxsWatbknMa7Bz52qaNIko7maUanIPC4bcx/wrqfdw27Zt7N+/n+nTTUnihx/+icDAQOrVq0eLFi3yfX2tTYXIJUvMXIOjR8/tq18fevc2cxPq18/ufDMMM3JkTUaO3IGv736aNm1aYHkKlFJZBgVF+nGgtU4DooBumXZ1w6xCyJZSqh3QgqwnGGalJWZYQWTinGvgzGsglReFEJcTrTVpaWkkJiYyffph1q4NISwsjMTERNLS0gqki14paNoUxo83ExK//tqsYKhYEfbuhWnT4LrrzDLHd97xXOLoPi8jICAAq9Wbpk2bsmPHDjZs2HDJZTScDnyilNoM/AoMxVSmmAWglJoHoLUelOm8h4A9WuvVmS+olHocOAjsBHyAu4E+mDkGIgvu2RDj4kzRkMDAos3aJYQQxSHzvAf3JZSFMe/BYoF27cxj4sRzyxy//94kRNqxAyZNMnMQeveGXr1M+6pXb0xSUhnS0mDHjo7UquWFr6/3pbP6AEBr/blSqhIwHpNLYAdwk9b6kOOQ8/IVKKXKAHcCL2RzWR9gKlADSMYEBz211ssKuPmXHGcNhfh4M6Tg5SWVF4UQl77mzZt7zOJ3BgaFPRHSaj1XwfHll2H1avjmG1i+3ExYjI6G55+H0NDmxMVpbDZFejqMHauw2doxapSidevCmxNWLLUPtNbvAO9ksy8ii23xQLYzVbTWrwKvFlT7LjfOyov+/iYvuPQaCCEuB5kDgKJeGeHnZ5Yv3nCDWbWwYoUJEFasgH/+AWclx/fea05ionk+fbo598UXC6dNJWyKmShOVitUr24eqanmh1QIIUThCwgwQwfTpp3/hWzPnoquvyclwWuvmfwzhUGCAnGeMmVMXoMyZUyvQXp6cbdICCEuD999B96Z+vDvuGO3x3MvL1i0iEIhQYHIkrc3hISYVQo2m8neVUIylAohxCXr+PHzV4S1axfr8TwpycwBKwwSFIgcBQSYXoOKFaXAkhBCFDZT2jnnb2ABAZqqueYAvjgSFIhcWSxQubIpIeossCSpkoUQpV1WVQiLmyntnPMxNptJsVwYJCgQeebnZwIDSXokhCjttm/f7lG50ZkwaPv27cXaLlPaWeHrm3Vk4OdnY9QoRfnyhfP6EhSIC+JMelS3rgkS/vsv96hWCCFKEq01qampxMTEuAIDZwbB1NTUYu8xGDVKc8stsW6lncFqTcPbO4M77zzKxImXVkZDcQnw8YHQUDPPIM5R89Lfv+QWWRJCCCf3DIYxMTGuss7uGQ6Lk1IwYMA/VK++jLlzb8XLy8aNNy6nZcs9dOvWFqVqFNprS0+BuGhKmWWLdeuaPxMSIC2tuFslhBC5cw8MnEpCQOAUGxtLmTI2ypZNxstLc911f1G2rJ2j7pWVCoEEBSLfvLzOLV/U2gQHMhFRCFGSOYcM3LnPMShOSim8vb3x9fXFYjGZjAICAvDz88Pbu3BrH0hQIAqMv7+ZiBgcLBMRhRAll/scgrCwMAYOHEhYWJjHHIPiZLfbSU1N5b///sPLywur1ZuyZcty5swZUlJSsBfity6ZUyAKlMVyrvriiRNmImJAwPkZuoQQorgUdZXEC2WxWKhXrx4AdruN9PQMEhISqFu3Lg0aNMBiKbzv8/KrWhQKHx9TQyE+3mToSk01wUEJGa4TQlzmiqtKYl61aNGCZs2aMW3acde2O++8s1ADApDhA1HInHUUypeXjIhCiJKluKsk5kRrTVRUlMe2jRs3FvrQhgQFotB5eZl5BnXqmOGF+HjJbSCEENnRWrN06VKio6MJCAjAavWmadOmbNy4kUWLFhVqYCDDB6LI+PqaFQrx8Sa3gVKS20AIIbJy9uxZ0tPTefHFGAICTKCQlpbG6dOnC/V1padAFCmloGzZc7kN4uMlt4EQQmTWsGFDvL29+f33aE6fPsWmTZuwWq00bdq0UF9XggJRLJylmevUMc+lyJIQQhjOSY9t2rQhNTWVjAwbKSkpdOjQgU6dOhXq3AcZPhDFyllk6b//zCoFGUoQQoisFcVESAkKRLFTCsqVM7kN/v3X9BikpZlljUIIcblxJleKjo7G19cXLy8v/Pz82LhxIwAdO3YstABBhg9EieEcUnAGA7JKQQhxuTp27BgArVq1pmLFirRv3x6AI0eOFOrrSk+BKHGUOn9IQVYpCCEuF0op6tSpQ7Vq1WjdOpw//1xDp06dAPDz85M5BeLyk3lI4fRps6TR17e4WyaEEIXPmXFR63MZFwt7kiHI8IEo4dxXKVgspvdAhhSEEJeD4si4KEGBKBX8/Ezio+rVTarkxERTplkIIUTBkeEDUWooZRIeBQSY4YR//zU9Cf7+xd0yIYS4NEhPgSh1vLygcmWTFdHPzwwppKcXd6uEEKL0k6BAlFrO8sy1apl5BpIVUQgh8keCAlHqBQSYiYhVqkByMiQlyXwDIYS4GDKnQFwSLBaoUMHMOfj3XzhzBqxWM7wghBAib6SnQFxSnEsYa9c2QcF//0FGRnG3SgghSodiCQqUUsOUUgeUUilKqSil1DU5HDtXKaWzeCRmOu46x7VSlFL7lVJDC/+diJLKzw9q1ICaNU1QkJAg8w2EECI3RR4UKKX6AzOAyUArYD3wvVKqVjanjACqZXrsB75wu2ZdYJnjWq2Al4GZSqlbC+ltiFJAKZMRsU4dCA42cw1kvoEQQmSvOHoKngDmaq3naK3/1Fr/DzgGPJLVwVrrs1rrWOcDuAKoB8xxO2wocFRr/T/HNecAHwOjCvetiNLAOd+gXj0oW9b0GqSkFHerhBCi5CnSoEAp5QO0AZZn2rUc6JTHywwBdmqt17tt65jFNX8EwpVS1otpq7j0eHubFQp16pjljJLfQAghPBX16oPKgBcQl2l7HNA1t5OVUuWAO4BnMu2qCvyUxTW9Ha95LNN1HgIeAggJCWH16tV5a30eJCQkFOj1LkdFdQ/tdjPfQGvTm3ApSUlJYOfO1cXdjFJP7mP+yT3Mv5SUovtcKW1LEu/G9G58kp+LaK1nA7MBwsPDdURERP5b5rB69WoK8nqXo6K8h1qbpEfHj5sgITDw0ijRvHPnapo0iSjuZpR6ch/zT+5h/tjtsGtX0f1OLOqg4CRgA0IybQ8BYvNw/hDgS631qUzbY7O5ZobjNYXIklJmnkFgoMltcPKkSaMcEFDcLRNCiKJXpJ2mWus0IArolmlXN8zKgWwppdoBLfCcYOi0IZtrbtFay6ixyJWXF1SqZCYjlilj5hvIZEQhxOWmOEZSpwODlVIPKqUaKaVmAKHALACl1Dyl1LwsznsI2KO1Xp3FvllAdaXUG45rPggMBl4rlHcgLllWq0l+VLfuueRHMhlRCHG5KPI5BVrrz5VSlYDxmJwDO4CbtNaHHIecl69AKVUGuBN4IZtrHlBK3QS8jlnaeBQYrrX+shDegrgM+PqaxEdJSRAXZ+YdBASYHgUhhLhUKX2ZZ3JRSp0ADuV6YN5VRuYx5Jfcw/yTe1gw5D7mn9zD/CuMe1hbax2ceeNlHxQUNKXUFq11eHG3ozSTe5h/cg8LhtzH/JN7mH9FeQ8vsdXZQgghhLhYEhQIIYQQApCgoDDMLu4GXALkHuaf3MOCIfcx/+Qe5l+R3UOZUyCEEEIIQHoKhBBCCOEgQYEQQgghAAkKCoxSaphS6oBSKkUpFaWUuqa421SSKKWuVUp9o5T6RymllVKDM+1XSqnnlVJHlVLJSqnVSqkmmY6poJT6RCl11vH4RClVvijfR3FRSj2jlPpNKfWfUuqEUmqpUqpppmPkHuZCKfWoUmq74z7+p5TaoJTq6bZf7uEFcvxsaqXUW27b5D7mwHFvdKZHrNv+Yrt/EhQUAKVUf2AGMBlohanj8L1S6rzsjJexIEz2yhFAchb7nwaeBP4HtAWOAyuUyWbptABoDdzgeLQmnxUzS5EI4B2gE9AFU+zrJ6VURbdj5B7m7ggwGvO+w4GfgSVKqeaO/XIPL4BSqgMmBf32TLvkPuYuBpPV1/lo5rav+O6f1loe+XwAm4A5mbbtAV4u7raVxAeQAAx2e66AY8A4t23+QDzwsON5I0ADV7kdc7VjW1hxv6diuIdBmIqjN8s9zPe9PAU8LPfwgu9bOWAf0BlYDbzl2C73Mfd79zywI5t9xXr/pKcgn5RSPkAbYHmmXcsx3+pE7uoCVXG7h1rrZGAt5+5hR0ww4V5N81cgkcvzPpfB9PSddjyXe3iBlFJeSqk7MQHWeuQeXqjZwGKt9apM2+U+5k09x/DAAaXUQqVUPcf2Yr1/EhTkX2XAC4jLtD0O8w8rcue8Tzndw6rACe0IiQEcfz/O5XmfZwBbMWXDQe5hnimlmimlEoBUTIXVvlrrP5B7mGdKqSFAfUxhu8zkPuZuE6aS7w3AEMx7Xq9MscBivX9FXiVRCJE/SqnpmK7Cq7XWtuJuTykUA7TEdH/fBnyslIooxvaUKkqpMMz8qau11lJY/CJorb93f66U2gjsB+4FNhZLoxykpyD/TmLGdkMybQ8BYs8/XGTBeZ9yuoexQLBSSjl3Ov5ehcvoPiulXgfuArporfe77ZJ7mEda6zSt9V6tdZTW+hlMj8tI5B7mVUdMD+lOpVSGUioDuA4Y5vj7v47j5D7mkdY6AdgJXEkx/xxKUJBPWus0IArolmlXNzzHe0T2DmB+kF33UCnlB1zDuXu4ATP229HtvI5AIJfJfVZKzeBcQLA70265hxfPAvgi9zCvlmBmyrd0e2wBFjr+/hdyHy+I4/40xEwwLN6fw+KehXkpPID+QBrwIGZW6AzMJJDaxd22kvJw/AC3dDySgAmOv9dy7B8NnAX6AU0xv2COAmXcrvE98Ifjh7+j4+9Li/u9FdH9exv4D7McsarbI8jtGLmHud/HKZhfrnUwH2wvA3bgRrmH+bqvq3GsPpD7mKf79Rqmd6Uu0B741vH/u3Zx379ivzmXygMYBhzETF6KAq4t7jaVpAdmnb3O4jHXsV9hlukcA1KANUDTTNeoAHzq+M/zn+Pv5Yv7vRXR/cvq3mngebdj5B7mfh/nAocc/0+PAz8BPeQe5vu+Zg4K5D7mfL+cH/JpwD/Al0DjknD/pCCSEEIIIQCZUyCEEEIIBwkKhBBCCAFIUCCEEEIIBwkKhBBCCAFIUCCEEEIIBwkKhBBCCAFIUCBEiaWU6qiU+sJRSS1NKfWvUmqFUupepZSX45jBSimtlKrjdt5BpdTcTNe6WSn1h1IqxXF8eaWURSn1hlLqmFLKrpRaUojvpY7jdQfncpzz/dQvrLZcLKVUH6XUE1lsj3C0uWtxtEuIgiQFkYQogZRSjwPTgZ8x2c0OYZKVdAfeBc4Akdmc3heTzMR5LW9gPib96aOYhCnxmGJAI4AnMWlT/z3vSsJdH6Ar5t9FiEuSBAVClDBKqWsxHzxvaa2HZ9od6aiSGJjd+Vrr3zNtqg6UAb7QWq91e51Gjr++obW2F0C7fbXWqfm9jhCi+MjwgRAlz2jgFPB0Vju11vu01tuzO9l9+EAp9Twm/TbAB45u7tVKqYOYNKoANveufaVUNaXUPKXUSaVUqlJqu1Lq7kyv4ezmv1YptUgpdQZTIx6lVIBS6h3HcEeCUuoboMZF3IdsKaUeUkptcwyHnFRKfaCUqpjpGK2UekkpNVwpdUApFa+UWqOUapLpOC/HcceUUklKqZ+VUg0d5z/vOGYupqxtdcd27biH7gKUUm852nNSKfWpUqp8Qb5vIQqb9BQIUYI45gp0BpZorVMK4JLvAzuARcBLwHeYoQVfYDgwmHOV1vYppQIxedYrAGOBw8DdwCdKqQCt9exM158PfIYZinD+PnkPUyRsIvAbptrbggJ4LwAopaZghjzeBJ7C9IS8BDRVSnXSWtvcDr8biMEMk/gAUzG9LQ211hmOYyY63utUTC2ENsA3mV72RSAYaAvc4tiWuVdkBqawzQAgDHgVU1b93vy8XyGKkgQFQpQslQF/zByCfNNaH1FKbXU83ae13ujcp5T6x3GM+7bHMDXdO2utVzs2f6+UCgFeUkp9kOlDd7HW+mm388MwH4rjtNZTHJuXK6WCgKH5fT+OCZVPARO11i+4bf8LWAfcjCnt65QO9NJapzuOAxMgtQPWK6UqAI8Ds7TWox3nrFBKpQHTnBfRWu9TSp0A0tzvVyZrtdb/c/x9ueNePKiUGqylyIwoJWT4QAjh7lrgH7eAwOlTzDflxpm2f53peXvM75UvMm1fWEDt6+a4/nyllLfzgRm6iMe0390KZ0Dg8Ifjz1qOP5th5mcsynTe4oto23eZnv+B6ZEJuYhrCVEspKdAiJLlXyAZqF1Mr18RU641s1i3/e4yH1vN8Wdcpu2Zn1+sKo4/92azv1Km56cyPXd2+fs5/nS293im4y6mvbm9lhAlngQFQpQgWusMpdRqoFsxzeY/hRkPz6yq2353mbvFnUFCCLDfbXtBfVt2LpvsDpzOYX9eOdtbBdjptl2+3YvLkgwfCFHyTMF84301q51KqbpKqeaF9NprgBpKqasybR+A+Ta9K5fzNwF24I5M2+8smOaxwnH9WlrrLVk8Dlzg9f4AEoHbM23P/BzMN3//C2+yEKWH9BQIUcJordc6MudNV0o1BuYCf2NWBFwPPIj5kM52WWI+zMXM1P9KKTUOOAIMxIzlP5xpkmFWbY9RSi0AXlBKWTCrD7oDN11gO25QSsVm2nZWa71CKfUK8JZjIt8aIAWo6Wjj+1rrVXl9Ea31aaXUG8BYpVQ8ZvVBa+ABxyHu+Rt2ARWVUo8AW4AUrfUfCHEJkaBAiBJIa/2GUmozMBJ4DbMqIR7zYfQwsLSQXjdRKXUdppdiCibpUQxwj9b60zxe5mEgARiFWQb4MyaIWXcBTZmZxbadQFOt9Vil1J+Y7IyPYoYwDgMrgT0X8BpOzwEKEwgMx/R2DAZ+Bc66Hfc+0AGYDJTHrBCpcxGvJ0SJpWSljBBCeFJK3YZZkXCt1vqX4m6PEEVFggIhxGVNKdUe6InpIUjBJC8ag+kh6SQ5BsTlRIYPhBCXuwRMfoNHgbKYCZVfAM9IQCAuN9JTIIQQQghAliQKIYQQwkGCAiGEEEIAEhQIIYQQwkGCAiGEEEIAEhQIIYQQwkGCAiGEEEIA8H8ZAaiSpocFDgAAAABJRU5ErkJggg==\n", "text/plain": [ - "
" + "
" ] }, "metadata": { @@ -358,9 +348,9 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY0AAAEPCAYAAAC+35gCAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/d3fzzAAAACXBIWXMAAAsTAAALEwEAmpwYAABuLElEQVR4nO2dd3hUVdrAf+9MJj3UCKFIUYoURaUERCHYggoCNlR0wUXsbXXVdfVT1nUt6+rKWlZFBTt2FEUDugQVMDQLHaS30EIgvcy83x9nJplMJskEkhDC+T3PfSZzzrn3nHOT3Pee8zZRVSwWi8ViCQXHkR6AxWKxWI4erNCwWCwWS8hYoWGxWCyWkLFCw2KxWCwhY4WGxWKxWEIm7EgPoDaJj4/XDh06HNK5OTk5xMTE1OyA6jl2zscGds7HBocz5yVLluxV1eOC1TVoodGhQwcWL158SOempqaSlJRUswOq59g5HxvYOR8bHM6cRWRzRXV2e8pisVgsIdOgVxqWhk2HDh3YvLnCFyKLpc5o3749mzZtOtLDqBOs0LActWzevBkb0cBSHxCRIz2EOsNuT1ksFoslZKzQsFgsFkvIWKFhsVgslpCxQsNisVgsIWOFhsVyCLz00kt07NiRyMhIevfuzQ8//FDlOR9++CGnnnoq0dHRtG/fnqeffrpcmxdffJFu3boRFRVF165deeuttyq83vvvv4+IMGzYsDLlHTp0QETKHRdddFH1J1oN9u/fz7XXXkvjxo1p3Lgx1157LZmZmVWeV9W9VFUmTpxI69atiYqKIikpiRUrVpRpU1BQwO233058fDwxMTFcfPHFbNu2LWh/+fn59OrVCxE5ZD+uYxpVbbBH79699VD53//m6IEDh3z6UcmcOXOO9BCqhfnzrXumTZumYWFh+uqrr+rKlSv1tttu05iYGN28eXOF58ycOVOdTqe++OKLun79ev3yyy+1VatW+vzzz5e0eemllzQmJkbfe+89Xb9+vb7//vsaGxurX3zxRbnrrV+/Xtu0aaNnnXWWXnTRRWXqdu/erTt37iw5li5dqiKiU6dODXmOc+bM0fbt24fcXlV16NCh2r17d503b57Onz9fu3fvrsOGDav0nFDu5ZNPPqmxsbH68ccf67Jly/Tyyy/XVq1a6cGDB0va3HTTTdqqVSudNWuWLlmyRAcPHqy9evXS4uLicn3eeuuteuGFFyqgixYtqtYcK+JI/S1WxuH8PwOLtYLn6hF/sNfmcbhCY+1a1YKCQ77EUcexJjRycnJ0woQJ2qhRI23evLn+9a9/1aysLI2KitJNmzZVeF6/fv30+uuvL1PWqVMn/ctf/lLhOVdddZWOHDmyTNl//vMfbdu2rXo8HlVVHTBggN51111l2tx99906cODAMmWFhYXar18/nTp1qo4dO7ac0Ajkscce08aNG2tOTk6l7fyprtBYuXKlAvrjjz+WlP3www8K6OrVqys8r6p76fF4NCEhQR977LGS+tzcXI2NjdWXX35ZVVUzMzPV5XLpO++8U9Jmy5YtKiL6zTfflLn29OnTtXv37iXjtUIjOJUJDbs9VQkFBbBrF6h1BWiQXHfddfzvf//j22+/5f3332fSpEncdtttdOvWjfbt2wOwadMmRISpU6cCUFhYyJIlSzj//PPLXOv8889n/vz5FfZVUFBAZGRkmbKoqCi2bdtW4qBYUZuFCxdSVFRUUvbggw/SoUMHxo4dW+UcVZXXX3+da665hujo6CrbHyoLFiwgNjaWM844o6Rs4MCBxMTEVHhfQrmXGzduJD09vUybqKgoBg0aVNJmyZIlFBUVlWlz/PHH061btzJ9b9u2jZtvvpl3332XqKiow5/0MUqdCw0RGSQiX4jIdhFRERkXwjkni8hcEcnznvew1KI3jXqlRHg45OTAwYNWajQ09u7dy0cffcQjjzxC3759Oe+887jiiit48803GTVqVEk7l8tF165dady4ccl5brebli1blrley5YtSU9Pr7C/5ORkpk+fzqxZs/B4PKxdu5ZnnnkGgJ07d5a0eeONN1i0aBGqyuLFi3nttdcoKipi7969AMyaNYsPPviAl19+OaR5zp49m40bN3L99ddX2m7Lli3ExsaWHBdccEG5sptuuqnC89PT0znuuOPKOLmJCC1atKjwvoRyL32fVbVxOp3Ex8dX2MbtdjNmzBjuueceTj311ErvhaVyQvYIF5GxwFVAOyAyoFpV9cQQLxULLAfe8h5V9dsImA18D/QFugJTgRzgmRD7DJnU1FTy8/MJDzdTjI5Wvv46hRYtIjn77KSa7s5yhPj9999RVQYMGFBSlpiYyJQpU7jkkktKytq0acPq1avLnR/4zqKqlXoFT5gwgfXr1zNixAiKiopo1KgRd955JxMnTsTpdALwf//3f6Snp3PGGWegqrRs2ZKxY8fyz3/+E6fTyd69exk3bhzvvfceTZs2DWmekydPpm/fvlU+KFu3bs0vv/xS8j0tLY3777+f1NTUkrJGjRpVeo1g86/qvgQ7L9g51b3fgW0ef/xxXC4Xd999d6XnWKompJWGiPwfMAVoDfwCzA04vg+1Q1Wdqap/VdWPAU8Ip4wBooGxqrpcVT8BngLurunVhqqSn59PWloaWVkHUVUWLUphzZo09u/PL1mBWI5+IiIiAAgPDy8pa9myJU2bNqV79+4VnhcfH4/T6Sz39rx79+5yb8P+iAhPPfUU2dnZbN68mfT0dPr16wcYaycw2y5vvPEGubm5bNq0iS1bttChQwfi4uKIj49n+fLl7Ny5k3PPPZewsDDCwsJ46623mDlzJmFhYaxZs6bcmD7//HMmTJhQ5f0ICwujU6dOJUebNm3KlbVo0aLC8xMSEti9e3eZ/xFVZc+ePRXel1DuZUJCAkCVbdxud8lqLFib7777jjlz5uByuUrmBdC/f3/GjBlT5f2xlBLqSmM8MElV/1Sbg6mAAcAPqprnV5YC/B3oAGz0bywiNwA3gHkI+L8phUJRURE9evTA7S5m6dJpAHTr1gOHo4g5c+biaMBaoOzs7Grfr6OVjh074nA4WLduHe3atQPgiy++YP/+/Rw4cKBkOyqQ8PBwevfuzezZs7n88stLymfPns2ll15aZb9Op5M2bdoAxmR2wIAB5R7GLpeLtm3bAjBt2jSGDRuGw+Ggb9++LFu2rEzbhx56iP379/Piiy/SsWPHMnVTp04lIiKCK6+8sspxHS4DBgwgOzubBQsWlOg1FixYQE5OThk9hz+h3MuOHTuSkJDA7Nmz6du3L2BMZn/44YcSk+XevXvjcrmYPXs2V199NWD0F6tWrSrpe8qUKeTk5JT0sWPHDpKTk3n33XcZOHBgjdyD+va/U2v/zxVpyP0PIAs4O5S21TmAbGBcFW1mAW8ElLUDFBhQ2bnVtZ7yeDw6efJknThxor733ns6ceLEkuOFFybr2rUeLSqq1iWPKo4166nLLrtMzz77bM3JydHVq1drXFyctm7dWt9+++2SNtu2bdOuXbvqp59+WlI2bdo0dblcOnnyZF25cqXecccdGhMTU8bi6i9/+YueffbZJd/37NmjL730kq5cuVJ//vlnveOOOzQyMlLT0tJK2qxZs0bfeustXbt2raalpeno0aO1WbNmunHjxgrnUJH1lMfj0c6dO5ezTKqI4uLiMma6wY7MzMxKrzF06FDt2bOnLliwQOfPn689e/YsZ3LbtWvXMmbGodzLJ598UuPi4vSTTz7RZcuW6ejRo4Oa3LZu3Vpnz56tS5cu1aSkpApNblVVN27caK2nKoFKrKdCXWnMBXoB/6s5cVUtAveFpILyw2b79u0ARGZm0nbrVvY3aUJOXBx795ryffugkl0Iy1HEiy++yI033sjxxx8PwMSJE+nWrRvXX389v//+OxMnTqSoqIg1a9Zw4MCBkvNGjx7Nvn37eOyxx9i5cyc9e/Zk5syZJRZXYJTb69evL9PfW2+9xb333luiS0lNTS3ZogKjrH322WdZs2YNLpeLIUOGMH/+fA4l+2Rqairr1q3jnXfeCan91q1by61UAhk7dmyJFVkw3n33Xe64444SK6aLL76YF154oUybNWvWlNlGCuVe3nfffeTl5XHrrbeyf/9+EhMTmTVrFnFxcSVt/v3vfxMWFsbo0aPJy8vjnHPO4a233irRF1lqDtEQ9ulFpBPwKfAvYCaQEdhGVUPRTwReNxu4TVWnVtLmLaC5ql7kV9YXWAicoKobKzq3T58+Wh2Pz8LCQp544glO/vVXRkz/AkVRp4MZw4ezrFcvxo59gPz8cNq1g1q0XjxiHG3ZzUTE6pks9YL6+Ld4mJn7lqhqn2B1oe7QrwV6YpThu4CigKPwkEYWGguAs0TE32LrPGAHsKkmO3K5XJwQHc1Fn3+FU92EqQdXcTHDZ8ygXXg0LpeLqCjYuRPc7prs2WKxWI4OQt2eepQa2goSkVigk/erA2gnIqcCGaq6RUSeAPqp6jneNu8BjwBTReQxoAvwF+BvWguivZPTiSfMUUYMup1O2nnMMtflgsJC2LvXblNZLJZjj5CEhqpOrME++wBz/L7/zXu8CYwDWgElPh+qekBEzgNeBBYD+zH+Gc/W4JhK+Dkzkz6e4jJlTreb1fmZnOT9Hh0N+/dDXFzD3KayWCyWiqh2ulfvSqEpZmWQU1X7QFQ1lVJFdrD6cUHKlgGDqttXdSkqKmKP08mM4cO5+Muv8BQpLoqY2vEP7A1zUlRURHh4OCKUbFN16ABW12axWI4VQvY6EJFkEVkMZGJ0CQdEZKF3FdAgcLlcACzr1YsZk57juUF3cJA4Ov6+mYMHYkvqTVvweMw2lcVisRwrhOoRngx8hQkB8nfgFuAxIA6Y2VAEh4gwePBg+vTpQ36TJuSdHcd/Wt7Jbm3BzwsuKxe2ICYGMjJMfCpL/WDcuHFBc0n079+/pI1/vono6Gh69uzJK6+8UuY6hYWFPP3005x22mnExMTQrFkz+vfvzyuvvEJBQUG1xjR37lx69+5NZGQkJ5xwQkhxo0LJTbFlyxaGDx9OTEwM8fHx3HHHHRQWlirjUlNTGTFiBK1atSI6OppTTjmFN954I6T7FRMTU605VhfVqnNkBCOUe/nJJ5/QvXt3IiIi6N69O5999lm5NpXl8CgqKuL+++/nlFNOISYmhlatWnH11VezZcuWw5t0Q6EiBw4t60y3AGNq6wgod3jL54dynbo+DiU0usfj0a+//rrEue+uO5/RiIgiBdW33lLdvr3ssXmz6rp12iCc/hqCc9/YsWP13HPPLeeYtm/fvpI27du314cfflh37typ69at0wcffFABnTZtmqqqFhQUaFJSkjZu3FgnTZqkS5cu1Q0bNugHH3ygiYmJ1bpPGzZs0OjoaL3tttt05cqV+uqrr2pYWJh+/PHHlZ5XVW6K4uJi7dmzpw4ePFiXLFmis2bN0latWultt91W0uYf//iHPvjgg/rjjz/q+vXr9aWXXlKn06nvvvtuSZvMzMxy9+qEE07QcePGhTxHVfO7qMwJMZBQcmQEEsq9nD9/vjqdTn3sscd05cqV+thjj6nT6dSffvqppE1VOTwyMzP13HPP1WnTpunq1as1LS1NzzzzTO3WrZsWVfCPHuxv8UhzRPNpALnARRXUDQNyQ7lOXR+H4hH+9ddf68SJE3X69M919WqPfvzx13r++Snag2X656av6rp15QXH77+r7thRra7qJQ1FaFSVX6J9+/b69NNPlynr3LmzXnnllaqq+tRTT6mIBPUWdrvdeqAa2bnuu+8+7dSpU5my8ePHa//+/Ss8J5TcFDNnzlQR0S1btpS0efvttzUiIqLS8V1++eV6ySWXVFj/448/KqDz5s2rcm7+VEdohJIjIxih3MsrrrhCzz333DJtzjnnnJLfreqh5UNZsWKFAvrbb78FrT+WhEaoOo0CoKIQl3He+qMeESEyMpLExETi4hp5tzWSGT9eeSj2Xzy+/xam/V/5JXRUFBw4AFlZR2DQlhohMjKyJGfFu+++y7nnnkufPuV9mxwOR0m016lTpyIibNq0qcLrLliwoFy+iOTkZBYvXlwmR0bgOVXlpliwYAHdunUr8Wb3XbegoIAlS5ZUOJ6DBw9WGiF38uTJ9OjRo8J4UTVBKDkyghHKvayoje+6h5oP5eDBgwAhRxduyIQqNFKBv4tImTgDItIOmEhZE9qjmqSkJJKTk/GpL0SEgQPPp/krT5NFHGdOu42VK8q7h8TEQHo6VPAcsNQh33zzTZk8ELGxsdx///1B2xYXFzN16lSWLVvGOecY16B169bRrVu3Kvtp3LgxXbt2LWMgEUh6enrQXBDFxcXlorL6n1NVbopg160oaqyPL7/8ku+++44bbrghaP2BAwf46KOPQoqK26NHjzL3N7CsR48eFZ4bSo6Mis6r6l5W1MZ33UPJh1JYWMg999zD8OHDSwJJHsuEanJ7PzAPWCMiPwE7gQSgP8aaKvh/5FFKsFj+PZKO48sBj/OHBTfz1wnv0/WHq8uY2jqd4HAYwdG2LUiNBm23VIdBgwbx6quvlilr0qRJme8PPvggEydOpKCggPDwcO69915uvPFGoDQJV1WMGjWqTMKmigiWCyJYeWXn+M4LFCShnjtv3jyuvvpq/vOf/5SJd+XPO++8g9vt5tprr61wXD5mzpxZZqXUuXNnZs6cWRLBtzJBWtE4A+cX6jmB5TWZn6O4uJhrrrmGzMxMvvjii0rHdqwQqnPfWhE5BbgHOAs4HRN/ahLwb1XdWXtDPHIEPjsSX5vAL71e5/bN9/DWy8O49tZGZf7YoqJMlr/MTMGuYo8c0dHRJfkSKuLuu+9m/PjxREdH06pVqzIPjC5durBq1aoaGUtCQkLQXBBhYWE0b968wnN8uSl841Itm5siISGBefPmlTmvorfoH3/8kQsvvJBHH32Um2++ucKxTp48mUsvvZRmzZpVOS//gIL+ZaEEV/TPkeG/vVZVTpJQ7mVFbXzXrU4+lOLiYq666iqWLVtGampqhb+vY42Q/TRUdaeq/llVE1W1s/fzvoYqMETMysE/xlRcEydbH3iJKVzH0/8O4+uvF/DTTyklbzuqyvLlKXz3XSrVtMq01DHNmzenU6dOtG7dutwb5tVXX823335LsGCXHo+nZH87FAYMGMC3335bpmz27Nn06dOnwrdx/9wUPgJzUwwYMIBVq1axbdu2MteNiIigd+/eJWXff/89F1xwAY888gh33XVXheNcuHAhv/76a0hbU4eLf44MH74cGZXpUkK5lwMGDChzXV8b33X9c3hU1AaM2e3o0aP57bffmDNnTomgsxCa9dTRehyKya2POXPm6IEDqqtXl7eWGjZMFVRPO223PvLIRP3446912zZjaTVx4kT94IOvdcMGj7rdh9z9EaGhWE8FM7ndvXt3SZtg1lP+5Ofn66BBg7RJkyY6adIk/fnnn3XDhg36ySef6IABA0ru06effqpdu3bVbdu2VXgtn5nonXfeqStXrtTJkyery+UqYyYa7DpV5abwmdwOGTJEly5dqrNnz9bWrVuXMbmdM2eORkdH65///OcK74WP8ePHa+fOndXj8VQ4F392795dae6NYH34E0qOjGuvvVavvfbaat3LefPmqdPp1Mcff1xXrVqljz/+uIaFhZUzua0sh0dRUZGOGDFCW7durUuWLCkzr9zc3KDzCfa3eKSpc5NbTO6Mk/x+ruz4rqLrHMnjcIWGx6O6caM5/IXGzz+rXhwzW6fyB71y9BdlkjU9+eQ/9eWX39A1a1Sr+L+pdzQUoYEJrlnmaNOmTUmbqoSGqhEcTz75pJ5yyikaGRmpTZo00cTERH355Ze1oKBAVVWnTJkSkqlpamqqnnbaaRoeHq4dOnTQ//73v2Xqg11n3759OmbMGI2Li9O4uDgdM2aM7t+/v8x5mzdv1osuukijoqK0WbNmetttt2l+fn6V96J9+/ZlrnPw4EGNiYnRp556qtJ5+NO+ffug166oj0A8Ho8+8sgjmpCQoBERETpo0CBdtmxZmTaDBw/WwYMHlymr6l6qqn700UfatWtXdblcetJJJ+knn3xSrs2LL76o7du31/DwcD399NN17ty5JXW+BE3BjilTpgSdz7EkNCrMpyEic4CbVXW1iKRSRZRbVR0S2tqm7qhuPg1/fLHo8/Jg82ZoFGBwvOzOV0n++Eaud71K0zsziY3NLalr3jyBESMmkJPj4PjjjWXV0YDNp2GxHBr18W+xtvJpVKgI9xcCqnpoPTcAoqKgcWMTKsQ/om3PZ69nRcob/CPrIUZ++RlDrzR7pGFhEYwYcT1Op4Po6NKghmHVDg1psVgs9Y9QY0/9QUSCmg6ISDMR+UPNDqt+ER9vghN6/HMTOoSvhw0knr2MX/06pzz3MzFZWRQXF/DGG4+hqoSFGYV6enp5SyyLxWI5GgnVemoKfjkuAujorW+wuFxw3HGQW7oDRXFxMTldG/Fr81MYzxucl/ktd0z6Dyf/+mtJPZiVSk4OBMSas1gslqOSUIVGZR43MUBxJfUNgsaNzRaTz5/J6XTSSsI5+cByBIglh/DiIobPmEErCS+T0D4mBnbtgvz8IzN2i8ViqSkq3Gn3pmA93a9ouIj0DGgWBVwJrKv5odUvHA5ISIAtW8zKw+Fw0CInB09YGBSXyswiCadFTg4Oh6PMuVFRsGMHtG9vkzZZLJajl8rUsyMwubnBWE49WEG7fcD4mhxUfSU62qw4cnONEOh92Y04nn2qTJuwoiJOPPfGcue6XGaVsnu3ET42zMjh0759+yrDTlgsdUEwD/mGSmXbU89h9BUnYLanLvF+9z9aAy1U9ZgJyhIfb7zECwqKmPL1FGYMH45HBHU4ceMAPDx20/ygEUyjo0003AMH6n7cDZFNmzYdti/PnDlzjrg/UV0fds41f1QW6bihUaHQUNUDqrpZVTdhBMRM73f/I11Vjym7IJcLWrSAoiIXqsqyXr0oOLUfRd1P5uepi9hJa/614c/MmZYR9PzYWGNNZfUbFovlaCQkRbhXQBRW3fLYwCjFPTRtauLRvP7H69j99RJ+ylrEs2fdQ3P20eXBy9m1rfxqQ0SJjDT6Dbc79IiqFovFUh8IOWChiNwgIj+LSK6IuAOP2hxkfUMEWrd2cO65E2jWLIF9+9J5/fW/s29fOp0uj+Rf3V5jpbsLf7nPg79MWLIklZ9+SsHlUlRh504lJSWF1NTUIzYXi8ViqQ4hO/cBzwOLgEiMX8Y7wEFgPfBobQ2wvhIZCfHxDs4/v2xU0FGjJjDsnau5t8lrzJobwdtTjTxVVQoL81m+PI2ffkohMlL5/vsU0tLSyM/PtysOi8VyVBDqSuMu4AnAF4z/JVUdi1GS52EsqI45mjb1kJIyuUzZ9OmTadHCw5NPQifWMfz/erF7+vyS1LE9evRj+fI0XnvtUdatS6NTp36cdVaytQKyWCxHBaEKjc7A94DHe4QDqOp+4B/AnbUyunqMx+PhjTcms39/Ok2aJDB+/P/RvLnZqpo+fTIXXeThjGHNidB82tx5KZ5tO1i6dC6BfpIul5CSMtemibVYLEcFoQqNPMDhtZRKx6wwfGRjTG+PKRwOBxERESQkJHDJJRMoKHAwcuQEmjdPwOWKwOFw8Jd/NuOG46YTVZxF8YhLKMo+yIoVaWWus2pVGoWF+ezYoWVjW1ksFks9JNTYq8uATsC3wA/AX0VkIyZ8yERgda2Mrp4zbtw4PB4PbreDjRsBjODweYM3bgy3/rcnYy97i0/SL2XXP55n2WUDy3n2ZWRsJT8f9u0zMa4sFoulvhLqSuNVwJf1+v+AWOBH4CegCyZ3+DGJw+HA5YKWLU1gQv/wIQADBkCb2y/h7zwEq7MoPhjslgsxMUZoVCOTqMVisdQ5Ia00VPUDv59/F5EewAAgGpivqntraXxHDY0aGU/v/HxjWeXPPffAqO//xt9//T+6zl7HV/uH4nIX8+6YMeQ3aYrD4cThEGJjTf6N8PDy17BYLJb6QMh+Gv6oao6qfquqXxyKwBCRW0Rko4jki8gSETmrivZXiMgvXh+RzSJy76GMuzYRMTGliooop5twuWDS84qEw8Dl39N2+3Za7trFnZMm0X3pEg4c2Ivb7cbhgIgI2L69TAxEi8ViqTdUKDREpF11jlA7FJHRwCTgceA0YD7wdUXXEJELgPcwW2Q9gVuAP4nIbaFPs24IDzchRnJyytedeKKTMee8x7/5Ew4Uhyqu4mKGz5hB2N49JaHUw8NN+507ywsfi8ViOdJUtj21iSryggcQasDvu4GpqupzcLhdRIZifEAeCNL+WmCGqr7k/b5BRJ4A7heRF+tb7KsmTcw2VUGBWTX4KCoqYmDreRQ7XOApKCl3O500zdxPUVERLpcLMBF0s7Nhzx6jK7FYLJb6QmVC449UT2hUiYiEA72BfwVUzQLOqOC0CCAwvF8e0BZojxFu/n3cANwA0LJly0MO0ZGdnX3I56pCYaHJo+FP64FnEfXWW8bTxYuruJhWZ5zF2rXzyl3H7TZbW3WVf+Nw5ny0Yud8bGDnXHNUKDRUdWqN9wbxmBXJroDyXcC5FZyTAkwSkfMxJr+dKLXWakWA0FDVVzFbWfTp00eTkpIOaaCpqakc6rkAGRlmpRAXZ757PB6mr5lM3rCLGPHZ52QTSyzZHAyLZePBbC7uNqic5ZXHY1Yc7dub1Udtc7hzPhqxcz42sHOuOQ5JEV4DBK5gJEiZj8nAf4DPgUKMme80b129DZTYtKnZnirw7kQ5HA4cjjCW9erFjrat+TDucnrxCyfrMvYeiC8nMMw5JgfHtm1m5WKxWCxHmpBMbkXkjSqaqKqGkr1vL+ZBnxBQ3oLyq4+SC2P0F3/1nrcHOMdbvSmEPo8IItCqFWzaZLaYPJ5i9u7dDsCbN97Etdfez78v+J3tq47n9Zc93BD7Np7R15Rz/PNlk92+Hdq1s6liLRbLkSVUj/CzKb8SaAbEAZneo0pUtVBElgDnAR/5VZ0HfFLFuW5gO4CIXAUsUNXdofR7pIiIMNZUu3dDbKwT34KqS5dTCQtzcu+9m7n77pYM2TmHhHuuI7Mgm9yxN5e7TmSkSTGbng6tW9tUsRaL5cgRqnNfh2DlIjIIeBkYU40+nwXeFpGFwDzgJkzsqpe913wC6Keq53i/xwOXA6kYpfh13u+Dq9HnEaNJE+PlXVAgjB//EPPmzWTVqsWsWrUYgHvvjeFvj1zLFcUfkvzwXRSd1o+iU3qXu050NGRlwd69NtSIxWI5chyWTkNVvwf+jcm1Eeo5H2BCrT8E/AKcCVyoqpu9TVoBJwac9gdMLo95QA8gSVUXHs7Y6wrfNlVREagKAwdeWKZ+7NiBPDzRybW8zQ53S2L/eDmSub9MG59VcWysCTWSkVGvrIwtFssxRE0owjdgnPRCRlVfUtUOqhqhqr29wsdXN85/ZaOqe1V1gKrGqmqMqp6rqmlBL1xPCQ833uJZWcpPP6WUqfvppxTGjlUGjWzO5fohYTu3Evvnm0rqfdn+VBURiIlRvvkmhVmzUut4FhaLxRK6TiMoIhIGjAO21choGjBxccqKFSmsWJFGz56J9O+fzE8/pbB8uZF/Tz2VzPCV/Rm/9nWa553CnxWgNNsfQP/+ySxcmMK6dWmIJJKXp0RFWQWHxWKpO0K1nvpfkOJwTITb5hi9hKUSHA6hWbNIunZNpE+f5JJMfgDh4ZHExgqTJ8OFF/6BnFRo8hrccGkGe/fuJDw8iuXL00qER3h4FJmZO9m+XWjf3lhnWSwWS10Q6vaUA2P6439kAZ8C5/iFBLFUwtlnJ3HRRcnk5QmqlAiO3r2TAOjUCZ591rT1/O3vNB7ci9zNv1NYmMfYKVMYO2UKAIWFeWRk7AQ8bN9uPMctFoulLghJaKhqkqoOCTguUNWbVDW1lsfYoIiLE5o2NSa0QLnc4MOGwS23wOc6HEfGXoa9/xkSJHJhWJiLyEgjMHbssMENLRZL3XCkPMKPaY47zjjpVeTl/Ze/QONBp3I7z9N50yoGpv6I0+0moqCAmKysMm2joiAvD3btMjGvLBaLpTYJWWiISGcReVNE1opIjvdzqoh0qs0BNkQcDuOkl58ffIXgdMKLL0JK2/G8xbUM+f5/tN22rSQHx8m//kpMTOOSVUpsrPEF2XvMp8KyWCy1TUhCQ0SSgF+BYZjYTy95P4cDy0TkqHC0q09ERpamiA1Gs2Yw+TV4zPkgiiBQJgdHZGZGif8GlPpw7N8f/HoWi8VSE4RqcvsM8DOQrKrZvkIRicOENX8G6FPzw2vYNGlidBu5ucbjO5AePWB00qdkfRdHE0qTh7udTpxbNpVpK2Ii6u7aZVYqjRrV7tgtFsuxSajbU92Bp/wFBoCqZgFPYby0LdVEpDTJUlFRsHqhyWn7iXQUlCl3ut1kNG5UTokuYlYcO3aYkOoWi8VS04QqNLZh/DKCEY43kKCl+oSFGf1GXl55RbbH4yGvcWO+Gn4hBYRT4P0VLDylL3mNG+MJohBxOCAmxkTFzcurixlYLJZjiVCFxlPA30SkjX+h9/sjmHzflkMkOhri48uvDpxOJyefPIB1/QewsXUHxjsns5jT6fXzb/Rt1LYkr3ggTqexqtq6tTSfh8VisdQEoQqNwZgw6OtFJFVEPhCRVGA9EAskichb3uPNWhprg6Z5cyM8AlcHffuezZgxdxPpKuCmhFe4Ouo98jSKHo88jeRWoEXHrGDCw43gsAmcLBZLTRGqIvxMTPKknZi83O295Tu9n2f5tbXeAoeAf9Km4mLz0AezRfX556+x77rrABi09UeumfIOX2VexOcPzWTAs5dXeM3wcLPltXWrSeBkw41YLJbDJdR8Gh1reyCWUv3Gli3GEkrVw/Tpk9m3L53mzRMYOXIC06dPZv/IHLp+uoZNH53AGxfAeedVfM2ICOMP4hMcYYcVotJisRzrWI/wekZ0tMn2l51t8oq7XBElAsPhcDBy5ASGDNlDt4uy8HiEd278gS0fV55aJDLSrDi2bTOrGIvFYjlUQn7vFJFo4I8Y/UYzYB8mm95UVc2tldEdozRtanQbeXkwfPg4PB4PDoeR7z7BMWqUg7tuK+bx6X8k+k8F7O6+lBbd4wG8uTdKzXFVTQj1vDwjOI4/3uYat1gsh0aoHuEJwFLgPxgnvmigL/ACsEREWtbaCI9BREzSJhGjxC7vjyGIwD+fDeMfPacR79lF9sgxHNzvZsmSVObP/6bEW1xVmT//G5YsSSUqyqw0tm2zkXEtFsuhEer21D+BpsBZqtrRm0mvI0ZB3gRjkmupQZxOo99YvDiVBQtSygiBn35KYcmSVCIi4N5pvfn7cc9zZs4s5l/wKMuX/8LKlQtLBMf8+d+wcuVCVq9eiqoSHW0Ehw2pbrFYDoVQhcYFwAOqOs+/UFXnY3J9X1TTA7NARIQSHp7PihVpJYLDl+2vsDAfVaVpUxj+xQSmRY5l3Na/s/yNlqjCypULee21R1m50ug7CgrySwRPVJRZwezYYQWHxWKpHqHqNGKBHRXUbfPWW2oYEWH48GTcbvjttzRWrDCZ+3zpYn3bVse3Ew5Oe4k7L+/P+7+P5oxv53Peed+VuZYrwN42OtrEvNqxw6xorI7DYrGEQqgrjTXAtRXUXQOsrpnhWAIRES6+OLlMmb/A8NGjbzSJb9yIOGDTvA7EPpvJDS+/XJJ/44QTepY7JzraeIzbFYfFYgmVUIXGv4CrRORbEfmjiFwgIteJSApwNfB07Q3x2EZVmT07pUzZTz+llAmL7mPIELhn3A+spBt3HnyeZrsySvJvBGsPpYJju40eZrFYQiBU5753vCa3jwKv+VXtAm5S1fdqY3DHOqpKSkoKaWlpJCYmMnhwMtOnG50GlF9xqCqt4r8hWvIIUzdh6oZiGD5jBi907oqeMbTcagNKt6oKC82Kw25VWSyWigjZT0NVXxWR14CuGD+NDGCNqtrs1LWEiBAZGUliYiLJyUZAXHhhMqrgckWWEwCqSqN9eygODyOsoHS/qUhcNNq3p8LVBhjB4XMAbNPGeo5bLJbgVPpoEJFxwF1AJyAT+ABjRbWqtgdmMSQlJZVx1mvcWDjvvGQyMsqvGESEzKbNcAYoKBxFHtYVdyE5yCoDSp0BHQ5jjrt1q3L88WIFh8ViKUeFOg0RuQp4A+PI9xUmOOGfsGHQ65zAFUV8vBAXZ7aUAttFdezMjOHD8YjgFqEYJ7fwIi99ehsbN5YXGkuWlPUDiYxU0tJSmDEjNWhiKIvFcmxTmSL8LuAzoJuqjlbVvsDfgFtFxO56H0F8Gf/CwsqGUjeWVuPZOvhctrdpw+6WLXnmrnuY1+V8HFmFPHT52jIKb1Vl69bfS/xAABYsSGHNmjR27PidLVvUhlW3WCxlqExodAEmq6r/XsdLQATQrlZHZakSp9PoHlRLU8WqKp9//jqZmXt44/rrefWmm8hvEs2ll77NZ1GX8v6uIfz5kg3s3l16nRYtTF6tFSvS2Lt3Z4kvSMuWbRAxEXdtIieLxeKjMqHRGKPs9sf3vWntDMdSHVwuaNvWhD53u43QyM4+UK5dREQRq8b1I9pZwJRt53LHZTvIyDArkwEDhtK9e78y7bt378eAAUOJjDR6jc2bbepYi8ViqMpPwyEiJQfgDFburQsZEblFRDaKSL6ILBGRs6ponywiC0QkS0T2isjnItKlOn02VCIjjUd3Tg6oCnFxTYI37Hkie9+aSUvZw3/Xn8dNl+8jM9PoNNLTN5dpmp6+mSVLUgGTyCkiwuTjCNShWCyWY4+qHvbzgCK/w/e+mRZQHvLOt4iMBiZhFOqnAfOBr0Uk6JaXiHQEPgd+8LY/F4gCZobaZ0MnLs7oOHJyhLZtOwVdORx/fCeikxLZ8fIXdGI9d62+kauuUn7+eTkZGbvKtM/I2MXq1UvweIw1tctlhNOWLXDwYJ1Ny2Kx1EMqM6r8Wy31eTcmB8dk7/fbRWQocDPwQJD2vQEXxtTXDSAiTwD/E5F4Vd1bS+M8qmja1JjLdukymOXLvylTJwKnnz4YgJhhQ9j8/Bc882Q3fvtN2L//UsaMeZMb33+FqOho1o4eDRhdiT9hYRATUxpypKndoLRYjkmkMoevGu9MJBzIBa5S1Y/8yl8Eeqrq4CDndMDEtroT440eDTwPdFfVfkHa3wDcANCyZcve06ZNO6SxZmdnExt79MVh3L//IPn5OURFxRAT04icnIPk5ZV+97F7dwT33n0yI3a/zfedR/K5XExjVx7fPvggTmcYERGRREfHBe3D7TZCpCH4cRytv+fDwc752OBw5jxkyJAlqtonWF1dC43WwHZgsKp+71f+MDBGVbtWcN5ZwEdAPGZL7WfgAlXdHay9jz59+ujixYsPaaypqakkJSUd0rlHkjlzUtmzJ5/TT08mOlpKwqmHh0fSu3dSmbYHP0rhpLuG8i5X82bYtbze6m4+uOJCXMefQMeO3ejTZ0jQPlRNOtpGjcy2mOMoThp8tP6eDwc752ODw5mziFQoNI7Uv3ugpJIgZabCZA18HXgLky0wCcgCPqyuAv5YYMiQJEaNSsbhEPLzjYVU//7J5QQGQOyl5/H1oFGM4T1mFg+jydat3DFpEsfP/ZZVq0p1GoGIGD1KdrZN5mSxHGvU9UN3L+AGEgLKW2CCHwbjViBHVe9T1Z+9K5RrMLnKz6i1kR7FuFxC27bg8QRPF+vPmv5dcIuDMNzEkU14cTHDZnxJxP59VfYTE2Ouv3Ur1nvcYjlGqFOhoaqFwBLgvICq8zBWVMGIxggaf3zf7UqjAsLD4fjjzUO9uDh4GxEhPjuHovCyCZry3ZHE7C6qVNj4iIoywmnzZuMvYrFYGjZH4qH7LDBORK4XkW4iMgloDbwMxjJKRPzTzn0FnC4ij4hIZxE5HZgCbMUIIEsFREQYwZGXV/EWUuNT+5cLcBimxbz11Rh2VbT2CyAy0ijFt2wxW1YWi6XhUudCQ1U/wMS1egj4BTgTuFBVfR5mrYAT/dr/D5PoaQRGAZ6C8Q0Zqqo5dTbwo5SoKBNuJCfHrAgCyW/StCTAocfhoDDMxScRo/hw94X8fVga27aF1k94uOlr2zbYv79m52CxWOoPIQsNEWkjIs+KyGIR2SAiPb3ld4lIYnU6VdWXVLWDqkaoam9/SypVHaeqHQLaT1PV01U1VlWPU9XhqrqyOn0ey8TGGq/x7OzygmPPnh0s69WL7W3akHn88fznzjvYM6YlRc4I3t+ZxJvJ7/H776H143SavnbtMkcFenSLxXIUE5LQEJEewDJMnvAdQHsg3FvdHuNDYanH+Mxjs7MDHffMF7fTSVF0NDlxcWS1a8yXD9/DyrhEXswcw6Lkh1j2a2gSwOEwfR04YCyrKtKnWCyWo5NQVxrPAKuAjsAlGBNZH/OB/jU8Lkst0LQptGgBWVmlgmP/fuNQv/CfL/HbpJfo1q2vKXdm0+inWXzVajz35P+D5y79gQULQu8rNtZEx7VRci2WhkWoQuNM4ElVzaa8P8UuypvQWuopzZpBfLwRHB6P4nIZy6ldu7aW+XS5XEQ2ctFj3mTuPWMe3+QNZswYmP1V6Ak2oqPNymPTJqsgt1gaCqEKjcr2JuIpDWRoOQpo3twcOTkOrrrqbpo1SyAjI529e3eSkZFOs2YJXH313TgcDsIjhDumncEf/gB9Cn4k6YbOzHkyLeS+wsON8Ni2DTIyyse0slgsRxehCo2FwHUV1F2BiYZrOUoQMauN5s0hN9fBqFETytSPGjUBh19sEKcTHn8cRoxrRjFhXPr8YObe+F7IAsDpNB7ke/bAzp1lzX8Dw9jUZVgbi8VSfUIVGn8HhovILIwyXIFzReRNYBTwj1oan6WW8AmORo08fPLJ5DJ106dPLhdCRATG/KM7Mx5M4yf6c9WXY1g89EGKC0NTkPtCj+TmGkfAggITGyclpTQ/uaqSkpJCampqjczRYrHUPCEJDVWdC4zEKMLfwCjCnwTOAkaqauj7FZZ6g6qHL76YTGZmOk2aJBAf34rmzRPYty89qOAAuOKWeDa+PIs3nNczYvnjvD/8vWpl9YuONgJk40bl4MF80tLSSgRHSkoKaWlp5Ofn2xWHxVJPCTm4tap+BXwlIp0wsaL2qeqaWhuZpdZxOBxERESQkJDAxRdP4LffvmfkyAlMnz4ZlyuizBaVP8nDw1nU8lWuvmY405YPY9plMPUND8e1DG3hGhEBYWFCp07JuN2QlpZGWpp570hMTCQ5OTmkECYWi6XuCdVP42FvWHNU9XdVne8TGCLSyhva3HIUMm7cOCZMmEBCggOn0yjHR46cwPDh4yo9r28/4aaZF9P2eAf7ftmCK/E00j8L3SbX6YTGjYXu3ZPLlFuBYbHUb0LVaTwCtK2grrW33nKU4nA4EDHxo5o0gexsR0hK7k6dYMYM6NMtl4iibLrfNoQtT7xbjZ6V5ctTypT46zgsFkv9I1ShUdmrX1PAum81EFq0MFZV/g6AlXHccfD0jJN46FyjIO//wjVsvubBKmOI+JJDLV+eRs+eiYwb9zCdOyeW0XFYLJb6R4U6DRFJAs72K7pRRIYFNIsCLgJW1PjILEcEn1WVCOzdayyeqtotioqCp6fE8/Q/ZrH25du4Yc7jfHxJYxI/uQ+ns6J+hPDwSHr2TKR/f7MlNWhQMiJQUBBJcbHgcgU/12KxHDkqU4QPxkSiBWNiG8xPoxBYCdxRw+OyHEF8gsPhgN27TUiQqlK6Ohxw//+F80HnVxh/30A+XHQJfcfCiy9C48bBz+ndOwlVLdFhOBxGcOTnC5s3Q6tWJtGTxWKpP1T4KFDVv6mqQ1UdmO2p/r7vfkekN/psNaISWY4WmjUrDXIYasTa0VcKF304FlfTOH6ak0t6n4vY/Xn1/jyioown+datxiHQRsu1WOoPofppOFR1YW0PxlL/aNq0NKx6qLnA+/eHmTNh4Im7OD53Dd1uSWLj398p127JklQWLPimjHPfggXfsGRJKmFhZmssM9MGPbRY6hPVTsIkIi1EpF3gURuDs9QPGjWCtm2NN3eooc7btYOXvu7Ig+ekMZ8zGPjytay97AHUbZYNqsrq1UtZsWIh4ef3ovmlSSxY8A0rVixk9eql3m0rsz2larzIDxywsassliNNqH4aDhF5XET2ATuBjUEOSwMmNtYIgvx8k3c8FGJi4JmpzfnmrhRe4QaSFjzJwsH3kpNjhEZkZDQAOTkH2blzEytWmMVsZGR0GeupiAjjSb5zJ+zYYXN0WCxHklBXGncBt2LyagjwOPAYRlisByZUeKalwRAVBe3bm4d2fn5o5zgccOe94US88TJ/iniJezbeyrBhsGGDg1GjbqBZs5Zl2jdr1pJRo24o543uS+6Un29DrVssR5JQhcZ1wKPAU97vn6nqI0A3YDtgt6eOESIizIoDqFbMqfOThVGzbias8wmsXausOuc2ljy/gISEdjjdbiIKCojJyiIhoV2lHuE+Jfm2bSalbKh6FovFUjOEKjROABarqhsoxvhnoKpFwHPAH2tldJZ6SXi4ERzh4ZCTE/p5nTrBl1/CNefv4eziFIb+82zCbnuVNtu303LXLu6cNAnn+6/x7rvPVurcFxZmVh1ZWWbVkZt7+HOyWCyhEarQOABEen/eAXT1qwsDmtXkoCz1n7AwaNPG6DoOHgxdQR0bC0++0YJP75vPInozavfnOFRxqOIqLmb4jBk4du/EHcISIjrajGPLFrvqsFjqilCFxs9Ad+/PKcDfROQqEbkceAJYWhuDs9RvHA5ISDBhRw4eDN2fQgSuuSOetBHnUkhZt2+300mr/EKcFbmSB+ByGdPcgwftqsNiqQtCFRrPAb5/x0eAdOBd4APABdxW4yOzHBWImPhTrVoZ5XSolk0iwtWP3IzDVVZ/IUUwaPSfqhXp1meaa1cdFkvtE6pz32xVfcX7czrQD+gCnAp0UdXfam2ElqOCJk3g+OONcjxUk9xFW1fz9ciReETII4JcovjScyFF5ySz/4sfqj0Gl6tU17Fxo7Wwslhqg1D9NP4gIs1939Xwu1dYxInIH2pthJajhpgY6NDBbFNVZVnldrtZuXIRS3t0Z3ubNmQmNOXBKx/j7ehroaiYHjcPIuOKm5CDB6o9jujoUgur7duhqOjQ5mOxWMoT6vbUFODECuo6eustlhKT3PDwyt/0HQ5HibLb7XRSEBFBk5Oy6HrbWq446RP+xT10mzeZiNO64Z71XbXH4bOwys83qw7rTW6x1Aw1kU8jBmOGa7EApZZVjRtXriBv2vS4cmXR0flcd9sS3E8+zaDwNNbnt+GmB5qyaNGhjSUqyqw80tONviNUp0SLxRKcyvJpnAqc7lc0XER6BjSLAq4E1tX80CxHMw6HiZAbEWEU01FRRpj4EBEuvviPfPbZq2XOa9asJSNG/BGHQxgwoA9/vGUhy1cI31wC357yJ06+ojuFf7i+6iQfAWOJizNBDzdvNtF7mzWjwlwfFoulYirLpzGC0jSuCjxYQbt9wPiaHJSl4dCkiREc27YZ3UJUlClXVdLSZpGRsYs3rytN1ZKRsYu0tFn0759Mp07CjC+FZ56ByS8UoL/8Svwvz7H/g3cpfP5V3Cd2qdZYIiLMtllmJmRmKgkJpYLHP6+HxWKpmMq2p57D6CtOwGxPXeL97n+0Blqo6hfV6VREbhGRjSKSLyJLROSsStpOFBGt4GhRnX4tR4aoKKMgDwsr1XOICC5XRNDYUy5XRMkDPDwcHngA3v80gnFtv2M8r8Gvv9JsyClET3qi2lpuEVi9OpVffklh+3alqAjy85WUlBRSU1NrYLYWS8OmsiRMB1R1s6puwgiIr7zf/Y90rWYyZxEZDUzCBD08DZgPfF1JePV/Aa0CjrlAqqrurk7fliOHy2VMcn16Drdb2bZtPRkZu+jRox/XX/8wPXr0IyNjF9u2rS8XRiQxEWZ/KxSMGU83VvGZ+2LC/vUEWxbtqtY4VJXCwnxWrkxjxYoUPB749NMU0tLSyMvLt7nJLZYqCNVPY7M3zhQiEuFdKbwgIn8VkdbV7PNuYKqqTlbVVap6Oybc+s0V9J3tFU7pXh8RF3AWMLma/VqOMD49R+vWeMOj+2ok4DM4cXHwz3/Cv95O4M6ED+nuWc6Qa9vy8n+VqCkvIblVB8ISEfr3T6ZHj0SWL08jI2Mn69al0bVrIieemMzBg2KtrCyWSpCK3qxE5FHgUlXt4VcWAaQBJ1P6H74Hkwq2ypwaIhKO8Sy/SlU/8it/EeipqoNDuMZE4HagtaqWy+cmIjcANwC0bNmy97Rp06q6ZFCys7OJjY09pHOPVupyzqrGCTA39yD5+aUP+8jIGGJjG1V5flZWGK+8ciKzZrWiPwtYwBlkNW/FunvuYl+ffpWem5ubjcfjIT8/h4iICAoKCoiMjMHhcBAZGYuI2UqrKi/60Yr92z42OJw5DxkyZImq9glWV5nQmA/MU9V7/cruxmwX/RP4ByY0+qdAiqpWqQz3rkq2A4NV9Xu/8oeBMaratcKTTTsHsAn4RFX/VFV/ffr00cWLF1fVLCipqakkJSUd0rlHK3U9Z7cbdu1SJk9+tKTs+usfrpZC+rvv4L774MT0H3mNCZzEarJGXUvOo8/iaRZfrr0vpawv4VOXLl1Yu3YtAD169GPAgKEUFQn5+WZlc9xxRq/SkLB/28cGhzNnEalQaFT2LnUiEJgXfCRmK+kBVc3y5g1/GjinmmMKlFQSpCwYFwDHA69Vsz9LPcThUH77LaVM2U8/pVRLr3DOOTBnDnQYcyan8jOP8n9EfDaNyBHJFXrzbdy4qtLy8PCyjoG7d9tsgRaLj8qERmOgRMvo3VrqB8wJUH7/ilFOh8JewA0kBJS38O+rEm4A5qvqihD7s9RTVI3FUlpaGomJidx338OcdJLRM1RXcDRqZHQd734cydSOj3I6Sxm+4Tn+8oBwcE8Bzm2by/RbWGg8/MZOmcLZf/97SV1hYVlFeFRUaej3DRtg//7QI/laLA2VyoTGdqCD3/dEIBxj7eSPCwgpFY+qFgJLgPMCqs4Lct0yeLe2LsIqwBsEIkJkZCSJiYkkJycTFSVcemkyJ5+ciMcTicdTfZ+JAQNg9mw4546epLnO4u23YfrAf9LsrB5ET54EbjciQufOpwY9v3PnU8ttjYkYj/LoaNizx6w8qpM/xGJpaFQmNH4A7hKRJmL+k+4APMBXAe1OA7ZVo89ngXEicr2IdBORSRh/j5cBROQJEQkWbOiPGOH0YTX6stRjkpKSSE5OLnlQh4UJo0YlM3RoEnl51Usn6yMqCu6/H1JSoG9f+G/OH5hdOIgmE+8iNvkMwlYtK5d/3EdF5abOrDrCw2HnTiM8ylqAWSzHBpUJjb9hVhq7gEzgUuBVVd0c0G4c8GOoHarqB8BdwEPAL8CZwIV+121FQHBEr9AaD7yrqjbNTgOi/Ju9EBdnnAFdLhPm/FAezF27wqefwp3PtOeaJl9xFe9RsGoD8cm9afrxhzidYTjdbly5ucRkZeF0hrFv384qlfBOp1GQO53Gy33zZpP4yQoPy7FCZc59GzH5Mp4C3gLGquot/m28W0bfUc0ot6r6kqp2UNUIVe3tb0mlquNUtUNAe1XVjoH9Wxou4eHGGfC444zgCDVHhz8OB1x5JXz/g+C4+iq6sYq3PWOY+NUfaTwjnTbbt9Nk61bunDSJ7kuXsH//3pDSzEJpxkCArVvNcSgrI4vlaKOy2FOo6hbg4Urqd2B8JiyWGkfEBBaMjjZbQtnZJmdHdUNENWsGTz8NV10Vz4MPTmHXb7sYv/B1HCio4vB4GD5jBi926VrpFlUwwsPN4QuGGBMD8fGlMbYsloZGA3VfsjQkIiOhfXvz8M/KOvSkSqefDjNmwI3nfUZRQG5y8SidD2Qd8hgjIowVV3GxCcFuVx6WhooVGpajAofDvMG3b2+cArOzD02PEBYm3PjkCKJdZZ/oTo+b8ya/TtiXnx/WOCMizLaVT3hs2WKFh6VhYYWG5ajCFzG3adND03WoKgs2/saMYcPwiFAsYeRJJH/mad51X8nwR/swYwY4Nm1ADmQe8jh9wsPtNttWVmFuaShUqtOwWOojDodRkMfGVl/X4QvJvnnI+WxftIgYp5M3LruM3JxuPPLVzWzdGsOim+D02PH04lfyb/0zOePvQGMOLYZPRIQ5CgvNqiMy0qyYDkU3Y7HUB+xKw3LU4lt1NG9uVh0F5cJXlke1NCR7ZKOm0LgJHfqfS0LCYu69dxpPPqkcdxxMyP4332SfSaOnHqR5vxOIeeXZw9pn8oUmEYGtWz0lToIeD3ism7nlKMIKDctRjcNhhEbHjubnrKyqQ33k5BwESoOdqZoT8vMPcM01MG8enHvPqVwV/QWJ/ERq5qk0fvQeil54+bDH+803U/nuu8k4HB7S0+H33z3897+TmTJl6mFf22KpCyrLEf6/alxHVbW6QQstlhojIgLatTNv77t2GQESHR28bUxMI3Jzs/jvFZeaKLcrF5WUm0+4+2649lp47rlELnpnFgOKv2fZi7255CA8eMoMmhXvJvfysWUTn1eBx+OhqKiAffvS+fLLyYwcOYHPPptMRkY6TZokkJ7uoVkzR4OLqmtpWFS20nBgos/6jpOAJIyXeJT3MwnoSlXZcyyWOkDEZAbs2NE8+Csyz23Rok3Q8wPLjzsO/vEPmDsX4kcN4kBxDG+8AYvvfo8mf76e5oO6E/XZe0bbHQIOh4ORIyfQrFlL9u1L5/XX/05GRjrNmrXkkksmkJ3tYONG2L7d7IRZpbmlPlKZR3iSqg5R1SGY9KxFmGRLJ6jqAFU9ARjgLZ9UN8O1WKrG5YJWrYxHuc8817dl5cvcFyw3ef/+yUHDiHToAC+8YIIhDh0Koz3vcTGfs3ZLFE1vG0Ozs3sR8f3skMb21VdvlRMGqjBz5ltERxuLq4ICozTfvLlU72Gx1BdC1Wn8Hfg/b/6MElQ1DZgIPFbD47JYDpvoaPPAP+44Y+5q3t6Vn35KISOjbCT+jIxdVYZk79YNXn8dvvpKyDn7Ynrpz1zBB2xZX8yMKXvJyMA4aFRwDY/HQ0FBPvv3l+17//5dFBTklyjEIyON8BAx1mEbNsC+fYfu1Gix1CShCo3OmLSuwdgNdKqZ4VgsNYvDYXw6OnY0QsToPLYHbbt7d/DyQE49Fd5+Gz7/wsGepCvorsv546zRJCbCwiv+ReMLBxL+Y3CVYF6e8TofO2UKY6dMKVfujy++VWSkyeWxYQPs2GH9PSxHllCFxkbgxgrqbsSkYLVY6i2+Lav27UvLunXrR3x8K3r0qDyneEX07g3vvgvTZ4Rx9jkOcnPh47S27P9tK/GjzyH24rMJXzSvpL2I4HA4g17L4XBWGGHXp9SPizPZBLduNaHZDxywGQUtdU+oQuNvwHARWS4iE0XkZu/nckxipIm1NkKLpQaJjha6d+/Eqaf247TThuLxQGLiUHr06Mfxx3eqVn5yH6efDm+9BTNnQsYF19CJddzBJHKXrCR+5JkU3vsgYITGlVfeSXh42WiG4eFRXHnlnSH17du6CgszVmIbNkB6ulWcW+qOkOwFVXWaiOzFCI8HMNn6ioBFQLKqBkuaZLHUS4YMSUJV8XiELVsgN1fo1Wso0dGHZwTYqxe89hqsWRPJCy/cQZfp47nJ8yI/vHcWsbvhziu2c2DDKxRGOnG63YQVFxOTlUVOHHz++WuMHDkh5Ci7YWHGI17VJIM6cMCsppo3N5Zj1bAEtliqRch/Wqr6LfCtiDiAeGCv+ryiLJajDBHB6TTJlE44ATIyhMxM87A93LDmXbvC88/DlntjeOWV+/hlGuR/C8O+/Se38zy/N+9Cm33bQeDOSZP4ZtSl7DinXbXDspt5lI63uNisPsAIlCZNTJ0NV2KpSar9V6qqHlXdbQWGpaHgckHLlsbSKjIy9JAkVdGunfHzSEuDP/0JJjV+mOe5jc771uBAcajiKi5m6GefEJ6RUanlVij4Vh+xsaW6D5/lVUEB5a5/uP1Zjk1CXmmIyAnAFUA7IDKgWlV1fE0OzGKpayIioE0box/Ys8dYWkVFGaFyOMTHw5//DLfc0ow3b+pB9nexxJFdUp+vEbh/z0NysiE27jBnYYiMNIfHAxkZMGdOKh5PPsnJyYARGCkpKURGRpKUlFQjfVqODUISGiIyAvgIszLZDQS+h9lXFkuDISrKOAbm5hrhkZVlHsCHKzyio4Uzr40n8vsCoxH04nR7+PiN3lz9Zmu2DfkDjR64Fc9J3Q+vMy/G8koRyWfVqjTcbmjaNJJPPklhxYo0+vVLRFUPyQDAcmwS6vbUY0Aq0EpVW3vzdfsfJ9TeEC2WukfEKJTbtzerD7fbCI/DMXFVVbJjY0pyebhFKHS6eLzdA2wN68CH7ktp9+3rJJzTg/yBZ+P+6NMasan1ecH36NGPtWvT2L9/JytWpNG5cz9OPDGZXbvE+n5YQiZUoXEC8C9VrcjBz2JpkIgYHUHHjtC6tXmGH6rwEBH27NnJytN7s71NG3a3bMl/7rqDyAkOrnviZ9b8ZSp9E7ZxP0/i3LSeuLv+yF/+VMDSpaBFhyc8li6dS2CIuPBwYfXqueTkGP3H77/D7t3WfNdSOaEKjdVA89ociMVSnxEx/hH+wuPgweqF9nC73Rw4sBe3uxi300lBRAQ5cXHmu3s7t9ziZubCeE56437GnbWBgczj7U9jGD5cye7am4wLx1A0d361n+iqSkFBPitWpJUpX7EijcLCfCIjlbg4sy2XlWXiXq1fD3v3GoW6FSAWf0IVGvcBf/Uqwy2WYxZ/4dG2rVE0h5p21ul00rXr6TidzgrLnU5IToZ3pzl59cce3HwztG6Sx9cFQzj+1y9pf/VA8nv2Jv0frxulS8hU9OQvLXc4jODwhS45cMAETVy/3uh27ArEAqELjYmYlcYqr1f49wHH3NobosVS//BtW3XoYISHiFl55OdXfI6qsmPHRtxuN29edx1vXncdYFYgO3ZsLGcC27EjPPQQ/Lg0moiXnuOy/tu5kZfJzizm9Jeu54mBX/LCC5C+s/InuYgQERFFt259y5R369aXiIiooErwQAFy8KBZgfi2sHJzbfTdY5VQTW7dwJraHIjFcjTiU5jHxJg38X37zAPW5TIP28DncUW+EZX5TEREwIgRMGJELBs33sjk929gy3s/MnN3f4qfAJ58koub/si+K2/lpLuGEhVT/l1wx46N7N+/l7FTphAVHc3a0aPZsGEFTZvG07t3UqVz9AkQKF1Z7d9fuupq1MjM1Rk8rFbJ/PyFk7XYOnoJNYxIUi2Pw2I56omKMquOggLzUD1wwDxIIyPNg9eELgmesMnjcYf0IO3YER74q1B831lcmgoffAC538TSPmMp/V+6iI3/PYE5p95Mozv/yGnnNMPhMCuZzMy9FBTk4nA4cbnCiYyMJj8/l8zMvbjd7nJbZhXhL0BUjaA8aLLnEh1tBEhUFGWyD6amppKfb3xERMT6iBzl2BzhFksNExEBCQkmPEmTJubBahJBOQgPjwyaACo8PLJaYUTCwuDcc2HyZLj+19uZ8shm7ms3ja3ahjE/30vRuOvp3x+eeALWrXNy0km9CQ+PwuNxU1RUSH5+LuHhUZx0Uu+QBUYgIqUBFOPijFnyrl0mAq/PEz03V8nLyyctLY2UlJQSgZGWlkZ+fr71Sj8KCdW5b1BVbVT1+8MfjsXScHC5jDd406ZGaOzbB4MHj+WXX74pkwQqIaE9Z5wx9JD7adYMxt0QDjeMZt260Tzx8m/8738mbeyXL2xk9AvXMrvJH9jWfwBJ+Z/QlV3EZGUR3q4F6elbamKqgFld+FYYbrdZbe3dK5x4YjK5uZCWlkZamrHgSkxMLFl5WI4uQtVppFK11/ehva5YLA0cp9PkLo+LU2bOTGHNmoV06ZJInz7J/Pqr8cx2OKTCdLPVoXNn6PzMKVzrgYULYcXL20j4bjcvZN7IgW/iiCaPQsK5/d/P89G5l7H97FPxeDyHFCyxMpxOs10FoCqcemoyy5eXmvz26ZNMfr4QEWG2vCxHD6H+uoYAZwcclwNvYhIwDatOpyJyi4hsFJF8EVkiImdV0V5E5C4RWS0iBSKyU0SerE6fFsuRxuEQYmMjSUxM5JJLkmnaVDjllGS6dEnE6Yys0bduhwP694fxU89CVq/g+YG3E0sOLoqJIZcITyGXzPqMmc/2478vKVtqbsERBOWXX1LKlHz7bQpbtii//w7bthn9jwmqWJvjsNQEoSrCKzKp/VRE/g0MB74O5VoiMhqYBNwC/Oj9/FpEuqtqRX+6z2AE073AMqAx0CqU/iyW+kRSUlKJwjsiApo2FVq2TGb/fiEry+gqglldHQ6R0WE0OxWKFrtw+oXvLcTF87tvI+aJXKY/MZL/dhxJwiVnMPQiJ1261MwYfDnZly9Po2fPRPr3Ty757nJBYmIyRUXC7t1GYDgcpZF6IyIOP96XpeapiYXhV5jot6FyNzBVVSer6ipVvR3YCdwcrLGIdAVuB0ao6uequkFVf1bVmYc9covlCOC/ojBbV0KHDibOVVycSaqUnV09b/Oq+mvW+yyc7rKWWzFhuWweksz+lidxGy/w5sZB3PNMK744+9+cdRY89hgsWmT0E4fT99696TRvnkBi4vmICImJ59O8eQJ796bjcBjhGRNjBEVkpPEB2bHDKNM3bDB+ITk5NXc/LIeHHK71gojcCjyiqi1CaBsO5AJXqepHfuUvAj1VdXCQc+4DxgMvY4SHA5gL3Kuqu4O0vwG4AaBly5a9p02bdkjzys7OJjY29pDOPVqxc64/eDwmVInv3/Nw9/337dtF++/n0v/ll1ERPGFhLBo/ns2DBtO8eUs8mXlkf7yCZt/P46PMi/hv/vXEs4f/cjOzooaRMSCRHme66d17P1FR1ZMiOTkHycvLISoqhpiYRuW+V4W/E6GIuRcOh/k51NVQff091yaHM+chQ4YsUdU+wepCtZ76Q5DicKAn5oH+aYhjiccozHcFlO8Czq3gnBOA9sCVwDiMQv5fwAwRGRCYDEpVXwVeBejTp48eqh14amrqMWdDbudc/ygoMM50mZnmjT883GzbVAdV5d13n2VNy5a0bdOGGKeTNy67jJy4OKK2bOOss64wq5+BFwB/5i/FcM4iWPfmOs76aj6X5X1C0f/CmPu/wXzpHMn6/mPof0FTzj7brI6qYvHiOezdu4PhzzwAwJvXXUezZi1p3z6BHj2SqjUXt9uEbHG7jUANCyt1rvRtZ/kEib9/yNy5cxk8ePAx5R9SW3/boVpPTa2gvAD4ALizmv0GLm8kSJkPBxABXKuqawFE5FqMh3pfIK2C8yyWo56ICHM0a2b8PTIzzdaVry7UPf/Y2Mbk5WXjdjopio4mJy6upDyQsDAYMAAGDDiDYvc2Fn+xiKx3pnPiz9N5ruB2OswbxpfzmnIyv9HmeCdtz+/O2ecIiYlme8kfVWXbtvVlTIwBMjJ24XSG0bt3UrUMAJzOsul4PR6zneVzMBQxVlsxMUp2dj5LlpjHQ2RkZIl/SGJi3eQQaahe8KEKjY5ByvJVNXDFUBV7MSFJEgLKW1B+9eFjJ1DsExhe1gHFmCyCVmhYGjwOR+kbdXGx2ePfv988LH1e5xX56IkIbdueWBLzqkuXLrB2Lc2aJdC27YmVPsjE6aD1qEQYlQg8wepfN/CntR349lu44ZuJDN/6Gete78T010cyOXwkzoH9OSvJyeDB0KmTuUaLFm3Ys2d7uWu3aNGmRu6Lv6BSNSuRnByhc+dksrKMf0iXLl1Yu3Ytffsmcv75te8f0pC94EO1ntpcE52paqGILAHOw2QC9HEe8EkFp80DwkTkRFVd7y07ATP2GhmXxXI0ERZm/D4aNzYPyOxsswLJzS0btsSHqlJUVEBGRjo9eybSqFEk4eFNWb48jdat21frDbhRrxO4vBdcfjl4tr/Iz68nE/H1dO7aOol7C//FnDlJnD1nDgCtEzycNViIjIzguONicLrdhBUXE5OVRU5cHLt2bavxeyNSujoDYdCgZNauLX2vPPHEZDZsEKKiym5phYWc+LpqVJX8/PwSR8bk5OQ6X+XUJtW6VSIyDBgMNAP2AXNV9atq9vks8LaILMQIhJuA1hhFNyLyBNBPVc/xtv8WWAq8ISJ3ecuew6wwFlezb4ulQREebraumjY1+o/sbOPzUFxsHoTGeU4ID48sMXlduXIu/fsne88/dP8QR5tWtHz4Rnj4RvZmHaRg+tfkrnZwyUH4aW4BC9NPYN4HA5nOSA4QSzx7UBzc/tzzTB86gn0XHv5KozJ85r7+LF+eQmJiMoWFUhKpV8Tcq+hoc4SHG0FyiNFVEJGSXOwN0Qs+VEV4HPAlcBZmW2gfJlT6PSLyAzBMVbNDuZaqfiAizYGHML4Wy4EL/VYzrYAT/dp7vMLqP8D3QB4wG7g7UAlusRyr+OJARUZC8+YmRHtOTqkCvVu3JMLDPSUPLJ/pa015gmtcI8KvHc1pwPMAe7NwPzCcC77/nCuyP0LxyxvohuFffcnAJQ/x22/GCTEx0aycaopA/xD/1RVA//7JRESUPrzdbrNSy8oqtdZyuQ5dkPgEh09gAA1CYEDoK43HgdOBa4FpquoWESfGoum/3vo7Qu1UVV8CXqqgblyQsp0YD3SLxVIFIkZZHBVVKkDmzEklKyufXr2Svea8yqJFswgPj6wyNPohER+Pc/LLZBY9T+rtl3HBzK8I83P4UISZ6ecz75UzWfRKX96mLzkn9abnwMYkJhohEh9/6N2LmNVVjx79yqyuVDXo6srpLC8Q/AWJz/Q5LMzcV58gCQszR7AQ+CkpZVc5KSkpDUJwhCo0LgUeUtV3fQWq6gbeFZF4TGa/kIWGxWKpG8wKRHE48lm9Oo2YGIiKimTBghRWr06ja9dECguV8PDaeZA5wsLYO+As9OuyvrgRzgJ2tzuZpH0/c9lBrzpzNZy4+ndef/1EerCcbm0OEjXgNE47I4o+fUzU4Oo+bwPd0KrjlhZMkHg8RghnZ5dey7fKi44224FhYcqcOSksXJhWsiXl02lA7a84attqK1Sh0RxYWUHdSmz+cIul3hK4x+6zJOrTJ5GBA5M5cMCEMPHt7UdE1GwYk7zGjZkxfDgjp09HAY/TyYzhw0k/9wJGjLienfsz0EWL2TtrKZe07siCNBj/0ySu2/4axR87Wf5xTxbRl0+i+7Fq4PX07iP07g29epUGRQxEVdm69Xf27NmOCDRuHMWCBd+wcuVCjjuuDaefPviQHqQOh7+i3deX8Vb3bQWqCrm5kZx0UiKnnJJMZqZw1lnJuN0QEVGzMcYC8bfaMmOreautUIXGRkzsp9lB6i701lsslnpKsD32Cy80b7xNmhjFeX6+MeH1vUU7nebheKgKYR+qsKxXL/ouWkRYcTHvjhlDTlwc8d43dW3WHJKTiU9O5k/AnwD39r+z+Ith5M5dRMyqRVy27xOSclPpMnsCs2bDE/yFHZLLjtZ98Zzeh4TBXTmtt4MTTyw/3sQ/3VDi0IjXP6UmESmbdApgwIAkiouVggIhJ8cIkhNPTMbhEDZuNCsTX7Iq3xbX4aqXAq22ass3JVSh8QrwjIjEAu9ifCcSMDqN6zHxpCwWSz2lqj32sLDSQIEej7HEyskxQiQ31zwYXS7zkKvOc0dVcbuLAXA7nbidzhLHQre7uMIHmbNNAq1vHgE3jwAg16McWLaX59fD4sVw+mfrOePg18Rufx62w8EZcUxlHMNj/8PJJ8OgzjvZG9aewdtSabN9O4hw56RJ3hVO60O8i9XD4VDCwqRkVeLxKA6H4HaXJubybXGplqYIjooyP/tMgaurfIeyK8qattoK1U/j3yJyHOYlYJxvjBiP8CdVdVKNjMZisdQ4/tnyEhMTiYyMpGnTphXusftSukZFGWV0UVHpQ873oHM4Si2KKkNEKCjIC1pXUJAX8oNMHELrXsdxSS+45BLg8Y/Yle3mp69Xc/B/iwj/dRH79p9A9kFYvKCQOQs6kkUsTcnEgYIqDo+Hi774in+2GoheXLNbcIHMmDGVwsICRo2agMPhwOPx8NlnkwkPj2D48HFBBYHbbYS1zxTYh+9eR0aW9SsJtjoREc4///wyK8rzzz+/7nUaItIYeBR4GuiP8dPIAH5S1f01NhqLxVLjiAiRkZElb5xz584teSONjKx6j9331tuokXmYFRaW5gbPyjJtwsLMgy3wYSgidO16Gps3r+HN664rKTexp7oe1sMsKtZJ98t7wOU9gHGcDozaDcsWuvl82r9pnvYxSbllszrkuaP46aWTOGHydWS07on7pJ7E9u9J+zPa0LmLlNtmOhQ8Hg8HDuwlLy8HhpxE8/jWvHr1VWRkpBMVFVNh0qtgincwQrq4uDQGmT8+HUtkpLn/aWlz+P33NWXavPrqq3Tt2pUhQ4Yc/uQIQWiISBjGL2OUqs4gxLwZFoul/uCfxwNKtzKq+9D2he2IjDQOhf5vx76tLCgVIg6Hzxt9V7l8Gq1bd6hxy54WLeCcYVF4LryJD/+zhUH//gFncelre4QUEBZRxJD8WbTe/KaJKZECmTTmGuc0NnQZyhknpHNGs9U0HtiTE/rF06JF9VYlIkLHjt1ZuXIRxUWF7Ny5iYyMdAA6duxe7fn6tgaDreo8HvM7OHgQioo8LF26hIKCHBo3bknz5q1o2fIAu3btIjs7m8GDB9eIX06VQkNVi0VkFyZmlMViOUoJfFjVxMPal9Y1OtpsZRUXl+pDTE4QYdeudJo2TaBPn9J8Gjt3bmbv3vRatSTKiYstsdpCBLfDwdfDL6DPacvZeeE2fkjbT+aPy/EsW07c5uX8ntWRNaug36pv+CPXwduwkwTWhPUk/biepA26j4TTWtG1i9KlqzEgCIaIcMYZF3i/TSkp7969L2eccUGNZ2h0OHz6EKFRoybs2ZPDgQO72LevMbt2mZB+TZo0qVudBvAORuFtEx9ZLJYK8e21x8SYt/6iImXt2gSWLk0jLW0WvXols3TpLPbtS6dbt9qNwxQeHlFiteUfDj4yPIKWLaHVyOYwcjAmMhIk5sDq1bBh8cU8PT+F8LXLabZzOV2LljN856vc8cED7PkAHuAJejGZ5eE92d2iJ7kn9sR5Sk8an3kynbs6iI83eqQdOzaXibe1Y8fmWp2viOBwOImIiObKl18kKjqataNHEx0djdPprHOhsQm4WkQWAZ9jrKfKuMmo6hs1MiKLxdJgcLmEYcOScbmMRc+qVUZB26tXIqedlkxOjm+7zAgbl+vwTU8DeeP66+nSpQs5a9dW2i4mBnr3ht69m8GN5wPnowo7d8L0VR5uXOtgzRrIXdSDhVsH0K1wOUnbUgjfVkT+3Ahin8/GjYPboibT0bWaBNcOEvaloyLc8dx/+OKi4UzN2s+4cX+psfAt/ng8HoqKCigoyC1TnpubS0FBQYW6lOoSqtB40fvZBugdpF4BKzQsFks5gvmIjBhh9Ck+xboJZ24On+WQb9slWJiOUPp0OILbqjocob91i0Dr1tC6tYMhvhCqjMDjGcG2bfDByiIy0taRs2oLp2SH8fvvMCBrDlfmvV+aS1sBN1z4xdc8NPcxWr3xOG1iD+Bs24roE1vT+KRWND21PdKxQ/UmGWTOIsGFgsPhqPOVRrB8GhaLxVIllfmIOBxSolhv5M38WlRUaubrEyQ+nM7QQ5nHxMSRm5sVtPxwcTigXTto184FQ7sD3U1aUYX09Hd54bEeTJjxGFHu/JJzCgmn6YFM2h2Yy5n8SNSy0rrv5BwmdPiWDh1g0pqhxIYX4kloRVi71sSc2ApOP53CM5JM47y8spmovKgqubkmG5XT7caVm1sShv7gwYN169xXU/k0LBbLsUWgj0gocZh8lkLR0Sbgoi9Mh8/U16dk9w8iGFyQmOv26JFI48aRuFxNWbEiraS8NhCBVq2Eyx/+I66Zj5YxH4oNz+Nf73VgzYHZ/GO9snvdAbLX7qBoy0527o9g40bYuBGW0pITWU/rTQto8dNOoshnWsRYnu6RRLvjlQ+/bIrHFUFBs1Z4EloTdnxrCi8YQf7wy+na5TSa//tR2mzbBg4Hd06axMwRI4i75ZYa2xKrduoRKb/+UdXqhAGzWCzHCoE+Iv5ey6H4iJhrGPPd8HDjsX7ccWYLy39FkptbmgbXhEARWrfuRIsWbRkwwES5HTDA9Fvb8Z8Apv/0Na2GD+fiTz8tibf11fDh7Nz9NSNG/BEjuJp4j+7k5cGWLbBpE2zY9CZzNsPmzbBls5K1NRMtKGbvUvh1qZuH+But3TtotWMnrXfsoPXS+Xz8XVc+ek1pn1vAxyu/N4PweHB4PFz4+ee8368fnqSk2tVpiEgC8Drwgaq+5S1zAoUBTbNFpMshpH61WCzHADXlI+KPf+DA2FhT5luRFBWZOFp9+iSRl6fk5BjdSU6OcNppybhctSswiouL2bNnG7tPPpneaWll4m3Jnm0UFxcTFrAsioqCrl3NURbB7W5KeroRKlu2hLF16/38uBW2bTNl6engyQYWQzTRZBNNLKXKcLfTSbMDB+pkpXELJofGZeVmAZOBHd6fR2Oy7/2tRkZksVgaHLXhI1K+j9IVSUxMSSnFxbB9OyQkQF6elIRE8T/Ppys53OCMYJTODkcYbndRuXhbDkdYtR/eTie0aWOOAQPK1xcV4RUqyrfvbCfsSzf4hSFxut1sc7nqRKcxFJisqoGBYxR4RVWXAojIHuAPWKFhsVjqIT7rq0aNSpXtvlVJcbH5zM01q5O8vNJ6nxmwL2hgqM9bh8PBKacMYMOGVWVCpzRufBwnnNCtxs1tXS44/nho00bZuHEnM50Xljg0epxOZgwbRnZsbJ0Ija7Aw0HKA3td621rsVgsRwX+qxIoTTUbKEzy882Rm1s2gZPDYQRJRVFoTz99MJs3l40B5XQ6OP30wbU0IyOsrr76bj6LimW7n0NjbKdO3H3DDXWyPRUJlMn77U3z2grY61ec721rsVgsRzWVCRO32wgTX6iU/HzzGbg6EfHw9devsn9/WTVvRsYuPvvsVUaNqrkHeCA///w9CQntcDudFEVHkxMXR/d27fj+++/rJAnTbuAE4Ef/wiAK747AnhoZjcVisdRD/LeqoFT5DqVRaIuLjWDJz5cSr+zOnfvRu/dQFi/+ht9/X0heXi4FBVKyQqlJ2WGSMOWycuUi+vqVL1q0iL59+9bJ9tSPwLXAW1Vc4w/AvMMeicVisRyFBEahjY0V+vY9nby8PJKTh+LxCO3aDWX2bAgPjyI2VkpWKv55M3x5Snwh0qsrVFSV9PStALx53XV06dIFvKFTtm7dWidC4z/AjyLyL+AvqlrsX+kNmf5PIAk467BHYrFYLA0EfzNjhwPCwoThw4eWe2j7Qpv7tr58Toy+o7i4/LV9wsT36RMsDoeDgoI8IiKiy8Sfio6OJi8vr/Z1Gqq6QETuwwiGa0RkNrDFW90OOA+IBx5Q1QU1MhqLxWJpIIRiZuwf2jwYPl2K/+EvVPxXK6pK69ZdWbduYZlr5Obm0q9fv7oJI6Kqz4jIUuB+4FJKFd75wPfAP1X1f4c9CovFYrGUI1CXEgx/Jf3atcGFQp2me1XVOcAcrzd4c4zJ7V5VtUmZLBaL5QhTKliEuDgTssU/orAvL3xNCY6QN7lU1a2qu1V1lxUYFovFUv8YPHgwgaEAVZXBg2vOP6TaAQstFovFUv/wRRReuHBhyeqiadOmpKWl1Ui8Lx+142FisVgsljolMKIwmNDzNb09ZVcaFovF0kCojYjCgRyRlYaI3CIiG0UkX0SWiEiFfh4i0kFENMgxtC7HbLFYLEcDtR1RuM6FhoiMBiYBjwOnAfOBr0WkXRWnDgVa+R3W1NdisVjqmCOx0rgbmKqqk1V1lareDuwEbq7ivH2qmu53BCaDslgsFkstU6dCQ0TCgd7ArICqWcAZVZz+qYjsFpF5IhKYGMpisVgsdYDUZXpvEWkNbAcGq+r3fuUPA2NUtXyyQ5F4YCwmKGIxcDHwIDBWVd8J0v4G4AaAli1b9p42bdohjTU7O5tY/1CWxwB2zscGds7HBocz5yFDhixR1T7B6o6U0Bikqj/4lT8CXKWqJ4V4nZeAM1X1lCra7QE2H+Jw4ymbN+RYwM752MDO+djgcObcXlWPC1ZR1ya3ewE3kBBQ3gIIzNNRGWnAdVU1qmjSoSAiiyuStA0VO+djAzvnY4PamnOd6jS8yuslmAi5/pyHsaIKlVMxynOLxWKx1CFHwrnvWeBtEVmI0VPcBLQGXgYQkSeAfqp6jvf7WKAI+BnwAMOBWzGRdy0Wi8VSh9S50FDVD0SkOfAQxt9iOXChqvp0D62AEwNOewhoj9naWgv8MZgSvIZ5tZavXx+xcz42sHM+NqiVOdepItxisVgsRzc2YKHFYrFYQsYKDYvFYrGEjBUaFovFYgkZKzQCqE4E3vqOiAwSkS9EZLs3MvC4gHoRkYkiskNE8kQkVUR6BLSJEJHnRWSviOR4r9e2TidSDUTkARFZJCIHRWSPiMwQkZ4BbRrUvEXkVhH5zTvngyKyQEQu8qtvUPMNRET+6v37fsGvrMHN2TufwGjf6X71dTJnKzT8kEOPwFtficVYp90J5AWpvw+4B7gd6AvsBmaLSJxfm+eAS4GrgLOARsCXYnLG10eSgJcwsczOxoSe+VZEmvm1aWjz3oYxQT8d6IOJAD1dRHwRExrafEsQkf7ABOC3gKqGOuc1lI32fbJfXd3MWVXt4T0wnuaTA8rWAU8c6bHVwNyygXF+3wXjIPmgX1kUkAXc6P3eGCjExAXztTke4y+TfKTnFOK8YzGm2sOPsXlnADc25Pl6x70e83KQCrzQkH/HwERgeQV1dTZnu9LwIocXgfdopCMmnEvJfFU1D/ie0vn2BlwBbbYCqzh67kkcZkW93/u9Qc9bRJwiciVGWM6nYc/3VeBjVQ3MrdOQ53yCd7t5o4hME5ETvOV1NmcrNEqJB5yUj4G1i/KxshoCvjlVNt8EzFt6YNCzo+meTAJ+ARZ4vzfIeYvIySKSDRRgoiuMUtVlNNz5TgA6Af8XpLpBzhmzEzIOuACzJZcAzBfjLF1nc7Y5wssT6O0oQcoaEocy36PinojIs8CZmIjI7oDqhjbvNZiYbE0we9ZvikiSX32Dma+IdMXoHc/SypOxNZg5A6jq1/7fReQnYAMmdcRPvmYBp9X4nO1Ko5SaisB7tOCzuqhsvumY1Vd8JW3qJSLyb4yy72xV3eBX1SDnraqFqvq7qi5W1Qcwq6s/0TDnOwAz1uUiUiwixcBg4Bbvz/u87RrSnMuhqtnACqAzdfh7tkLDi9ZcBN6jhY2YP6KS+YpIJMaiwjffJZhgkf5t2gLdqMf3REQmAVdjBMbqgOoGO+8AHEAEDXO+0zFWQ6f6HYuBad6f19Lw5lwO75xOwijA6+73fKQtAurTAYzGWBdc772RkzBWR+2P9NgOcT6xlP5T5QIPe39u562/HzgIXAL0xPzT7QDi/K7xX0zirHMxZshzMG+xziM9vwrm/KJ3Tmdj3rp8R6xfmwY1b+BJ78OhA+Zh+gTGIuaChjjfCu5BKl7rqYY6Z+BfmBVVRyAR+NI7x/Z1OecjfiPq2wHcAmzCKBSXYLIMHvFxHeJckjB7lYHHVG+9YMz4dgL5wFygZ8A1IoHnMUv+XGAGcPyRnlslcw42XwUm+rVpUPMGpmIyVBZgbPO/xc+EsqHNt4J7ECg0Gtyc/YRAoffB/wnQva7nbKPcWiwWiyVkrE7DYrFYLCFjhYbFYrFYQsYKDYvFYrGEjBUaFovFYgkZKzQsFovFEjJWaFgsFoslZKzQsNRbRGSAiHzoTSpTKCL7RGS2iIz1xf8XkXHeZDQd/M7bJCJTA641XESWiUmupSLSREQcIvKciOwUEY+ITK/FuXSQIImwgrTzzadTbY3lUBGRkSJyd5DyJO+Yzz0S47LULTZgoaVeIiJ3Ac9iEgrdj3Feawqcj/FqzQQ+r+D0URjPWN+1woB3MaESbsU4R2UBl2ESVN2DiYK7r9yVLP6MxHgSP3uEx2E5glihYal3iMggzIPpBVW9I6D6c2/02piKzlfVnwOK2mDyanyoqt/79dPN++NzquqpgXFHqGrB4V7HYqnP2O0pS33kL5jMc/cFq1TV9aoamN6zBP/tKRGZiAkLA/C6dxslVUQ2YUIuALj9t45EpJWIvOXNo1wgJv/2NQF9+LaRBonIRyKSicl3gIhEi8hL3u20bBH5AqjR3NMiMkFEfvVut+0VkdcDUtriHd9jInKHN2lPlojMlfJ5o53edjtFJFdE/iciJ3nPn+htMxUTgruNlOan3hQwrGgRecE7nj0i8o6INKnJeVuOPHalYalXeHUVScB0Vc2vgUu+hsmT/hHwGPAVZusqArgDk9RmgLftehGJwcTsaQr8FdgKXAO8LSLRqvpqwPXfBd7HbHX5/p9ewQS//BuwCBNV9L0amAsAIvIkZkvtP8C9mJXUY0BPETlDy+YOuQaTa+NOIBx4GrNaO0lVi71t/uad69OYuFWnA18EdPt34DhM7umLvWWBq6pJmCB6VwNdgX9i0g2MPZz5WuoXVmhY6hvxmNzGm2viYqq6TUR+8X5dr6q+ZDWIyHZvG/+y2zD5CYaoaqq3+GsRaQk8JiKvBzyUP1bV+/zO74p5aD6oqk96i2eJSCxw0+HOx6vwvxf4m6o+6le+FvgRGI4JHe6jCBimqkXedmAEaD9M1remwF3Ay6p6v/ec2SJSBDzju4iqrheRPUCh//0K4HtVvd378yzvvbheRMapDXLXYLDbUxZLWQYB2/0Eho93MG/a3QPKPwv4noj5v/owoHxaDY3vPO/13xWRMN+B2Ro7iBm/P7N9AsPLMu9nO+/nyRj90EcB5318CGP7KuD7MsyKruUhXMtST7ErDUt9Yx+QB7Q/Qv03w4SWDiTdr96fwLatvJ/BcjXXBC28n79XUN884HtGwHffllKk99M33t0B7Q5lvFX1ZWkAWKFhqVeoarGIpALnHSFrpAzMfnwgvjSagWa5gdsuPiHSEpO/Gb/vNYGv//OB/ZXUh4pvvC0wqUN92NWBJSh2e8pSH3kS88b8dLBKEekoIqfUUt9zgbYiMjCg/GrM2/iqKs5Pw2TNuyKg/MqaGR6zvddvpyYfeOCxsZrXWwbkAJcHlAd+B7NyiKr+kC0NCbvSsNQ7VPV7r+fxs15fiqnAFoxF0zmYdLxXAxWa3R4GUzGWRp+KyIPANmAMRpdwY4ASPNjY14jIe8CjIuKg1HrqwmqOY6iIpAeUHVDV2SLyFPCCV9E8F5Ol7XhvP6+p6pxQO1HV/SLyHPBXEcmi1HpqvLeJv//KSqCZiNyMycmdr6rLsBxTWKFhqZeo6nMishD4EyY3cjzGi3sxcCMmTWVt9JsjIoMx5qJPYpwC1wDXquo7IV7mRkxu+T9jzFz/hxFyP1ZjKM8HKVuBSd/5VxFZhfFuvxWzRbYV+A5YV40+fDyCSRU6HmOGnIYxRZ4HHPBr9xrQH3gcaIKxcOtwCP1ZjmJsuleLxVIOEbkcYwE2SFV/ONLjsdQfrNCwWI5xRCQRuAizwsgHemO88tcAZ1gfC4s/dnvKYrFkY/w7bgUaYRT+HwIPWIFhCcSuNCwWi8USMtbk1mKxWCwhY4WGxWKxWELGCg2LxWKxhIwVGhaLxWIJGSs0LBaLxRIy/w/jme9YpqcOQwAAAABJRU5ErkJggg==\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAf0AAAFGCAYAAABgwUY+AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAACAkUlEQVR4nO3dd3iUVdrA4d+ZSTKplFASQgcFhKBCIhCU5mJFxbaKFVwbdtcuFuxrd1nLIrqKBexYPxsWEKQmgBCaSA+9k15mnu+Pk5nMpIdUyHNf13tl5m1z5hDyvKcbEUEppZRSRz5HfSdAKaWUUnVDg75SSinVSGjQV0oppRoJDfpKKaVUI6FBXymllGokNOgrpZRSjURQfSegNrVs2VI6depUY/fLzMwkIiKixu7XGGke1gzNx+rTPKw+zcOaUdP5mJKSsltEWpV27IgO+p06dSI5ObnG7jdjxgyGDh1aY/drjDQPa4bmY/VpHlaf5mHNqOl8NMZsLOuYVu8rpZRSjYQGfaWUUqqR0KCvlFJKNRIa9JVSSqlGQoO+Ukop1Uho0FdKKaUaCQ36SimlVCNxRI/TV6q+nH322Wzbtq3W7p+Tk0NoaGit3b8x0DysvoaQh23atOHrr7+u1zQcTjToK1ULtm3bVqMTQxWXnp5OVFRUrd2/MdA8rL6GkIeJiYn1+vmHG63eV0oppRoJDfpKKaVUI6FBXymllGokNOgrpZRSjYQG/SrKz6/vFChVN37++WcGDhxIVFQUsbGx3HvvvRQUFJR7zY4dOxgzZgxxcXGEh4dz+umns2bNGt/xvXv3csstt9CjRw/CwsJo3749N9xwA3v27Am4z59//sm5555Ly5YtiYqKYsCAAXz//fc18r1ee+01OnfuTKtWrUhISGDWrFkBxydNmsSwYcNo1qwZxhg2bNhQI59bluuvvx5jDM8//3yF586cOZOEhARCQ0Pp0qULEydODDj+yCOPYIwJ2GJjYwPOKX7cu910003V/i7Lli1jyJAhhIWF0bZtWx577DFEpNRzP/jgA4wxnHXWWdX+XFV5dR70jTGDjTFfGWO2GGPEGDOmEtf0NsbMNMZkF173sDHG1EFyA4jAtm3g8dT1JytVt/744w/OPPNMTjnlFBYvXsxHH33EV199xX333VfmNSLCueeey5o1a/jiiy9YvHgxHTt2ZPjw4WRmZgKwdetWtmzZwrPPPsuyZct4//33+e2337jkkksC7nXWWWeRk5PDzz//zOLFiznppJMYOXIka9eurdb3+uijj7jtttsYN24cs2fPZuDAgZxxxhls2rTJd05WVhannnoqjzzySKXve6gPB59++ikLFiwgLi6uwnPXr1/PmWeeycCBA1m8eDH3338/t9xyC5999lnAed27d2fbtm2+bdmyZQHH/Y9t27bNN9ztoosuqnL6/R08eJBTTjmFmJgYFi5cyIQJE3juued48cUXS5y7bt067r77bgYNGlStz1SHQETqdAPOBJ4CLgSygDEVnN8E2A58DMQXXpcO3FnRZyUkJEhN+uWXXyU1VWTfvhq9baPy66+/1ncS6sSh/u5lZGTItddeK02aNJEWLVrIuHHjJD09XcLDw2XDhg2+8w4ePFhTSS3V/fffL8cff3zAvq+++kpCQ0PL/OzVq1cLIEuWLPHtc7vd0qpVK3njjTfK/Kz/+7//E2OMHDhwQEREdu3aJYD88ssvvnPy8/PF4XDIJ5984tu3fPlyOfPMMyUyMlJatWolo0aNkm3btpX7vfr16yfXXHONiBTl4VFHHSX33XdfiXMXLlwogKxfv77ce4pIpc/zt2HDBomLi5MVK1ZIx44d5bnnniv3/HvuuUeOOuqogH1XX321DBgwwPd+/Pjx0qtXryql45prrpFu3boF7MvNzZV77rlH2rZtK2FhYZKYmCjff/99iWv9fxdee+01iYqKkqysLN++xx9/XOLi4sTj8fj25eXlSb9+/WTy5MkyevRoGTFiRJXSW1xN/52vDzX9dxFIljLiYp2X9EXkWxEZJyKfApUpM18GhAOjRSS18LpngDvqo7TvcMCuXeB21/Unq8bgH//4B7/88gs//fQTH3zwARMmTODmm2+mR48edOzYsczrzjjjDCIjI8vdqiI3N7fEpCthYWHk5OSQkpJS5jVAwHUOhwOXy8Xs2bPL/KyDBw/icrkIDw8HoEWLFhxzzDG89957ZGRk4Ha7mTRpElFRUZx44omALa0OHjyY+Ph4FixYwE8//URGRgYjR47EU0ZVXF5eHikpKZx66qkB+0899VTmzJlTQY7UrIKCAi655BIefPBBjjnmmEpdM3fu3BJpP+2000hOTibfr91x3bp1xMXF0blzZ0aNGsW6devKvGdGRgYffvgh1157bcD+q666ipkzZzJ16lRSU1MZPXo0Z599Nn/88Ue56Rs0aBBhYWEB6du6dWtALcgDDzxAp06dGD16dKW+t6pZh8PkPEnALBHJ9tv3A/A40AlYXxeJ2LPHw+7d8MUX0KoVXHSRh27dtEuEqjm7d+/mk08+4Z133uGEE04AbJXr22+/zeOPP17utW+++SbZ2dnlnlMVp512Gi+99BLvv/8+o0aNYseOHTz22GMAZc402KNHDzp06MC4ceN44403iIyM5KWXXiItLa3Ma/bv389DDz3EtddeS1CQ/XNkjGH69Omcd955NGnSBIfDQXR0NN999x1t2rQB4L///S/HHXcczzzzjO9e7777LtHR0SQnJ9OvX78Sn7V7927cbjcxMTEB+2NiYvjpp5+qlD+9evVi48aNJfZ5yyEdO3Zk+fLlZV4/fvx4WrZsyQ033FDpz9y+fTvDhw8P2BcTE0NBQQG7d++mTZs29O/fn8mTJ9OjRw927tzJE088wcCBA1m+fDktWrQocc+pU6eSl5cXEIDXrl3LBx98wIYNG+jQoQMAN998Mz/99BOvv/46r732Wpnpa9euXYn0eY917tyZH3/8kY8//pglS5ZU+nurmnU4BP1YIK3Yvh1+xwKCvjHmOuA6sL9wM2bMqHYC1q3LYf/+UNq1y6BDhxk4HPDNN9C0aQ5du+o0nlWRkZFRI/8mDV1OTg7p6elVuuaPP/5AROjdu7fv2uOOOw6wQdj/fm63O+B9kyZNaNKkSbn3r0p6kpKSePLJJ7npppsYM2YMLpeLe+65h1mzZpGbm1vmvd577z1uvvlmWrRogdPpZOjQoZxyyil4PJ4S12RkZHDBBRcQGxvLQw895DsuIlx33XU0bdqUH374gdDQUN555x3OP/98ZsyYQVxcHPPnz+e3334rtQYjNTWVffv2ccEFF/j2/fvf/2bw4MGAbbNPT0/35WFubm6p6fP2Q8jIyChx7OOPPw4oXffp04dPP/3U91ASHBxcZh7NmjWLt99+m99//z3gO5eXrwAej6fEOVlZWQFpPOmkk3zHOnfuzAcffMCxxx7LpEmTuPnmm0vcc+LEiYwYMYLQ0FDffX///XdEhJ49ewacm5uby+DBg0lPT6dfv35s3rwZsL8r06ZNo6CggPz8/ID0ZWRk+PJy/fr1jB49mrfeegun00l6ejr5+fkUFBRU+f+Kv5ycnMP+b0qd/l0sq96/LjYgg4rb9H8E3iq2rwMgQFJ519ZEW88DD7glODhXQOT5538V253PbkFBefLAA+5qf0Zjom36ZVu0aJEAsnHjRt++zz//XJo3b17i3OLt6qeffrpERESUux0Kj8cjW7ZskaysLFmxYoUAsmDBggqv279/v+zcuVNEbDv6jTfeGHA8PT1dBg0aJCeddJKkp6cHHPvpp5/EGCP7inWeOeqoo+Txxx/3fd+RI0fKmjVrSmwHDx6UrKysEvtyc3PF6XTKxx9/LCJFeXjjjTfK4MGDS3yH2mrTHz9+vBhjxOl0+jZAHA6HtG3btszrBg0aVCIfP/74YwkKCpK8vLwyrxs6dKiMHTu2xP7FixcLID/++GPA/g8//FCMMbJixYoSeZuWliYitj/CmjVrZPHixb59V1xxhZx55pkB91qwYIEAsm7dOvn1118FCPjehZ25xel0yqpVq8rPuDJom35JlNOmfziU9LcDMcX2xfgdqzX79sELLxjy80NKPV5QEMwLLwh33QXNmtVmSlRj0LlzZxwOB2vWrPFVq3711Vfs27ePAwcO0LRp0zKvrenqfS9jjK9n+QcffED79u3p27dvhdd507pmzRqSk5MDmifS09M544wzEBG+//77EqV1b+nV4QhsPnM4HL72+r59+/Lxxx/TsWNHgoODS03DUUcdVWJfQkIC06dP5+9//7tv3/Tp0wNqBWrbjTfeyIUXXhiw77TTTuOSSy4p0bbuLykpic8//zxg3/Tp00lMTCwzD3Jycli1ahXDhg0rcWzSpEl07ty5RJNBnz59EBG2b99e6nWAr3+J/9z7SUlJ3HvvvQGL8EyfPp24uDg6depE69atS4wkePDBB9m3bx+vvvoqnTt3LvO7qxpU1tNAXWxUrqR/A3AQCPXbNw7YApjyrq3uE+CkSSIRER5fyT4hYVtASR9EwsM9MmlStT6mUdGSfvkuvPBCOfnkkyUzM1NWrVolUVFREhcXJ++9917AebXde19E5Nlnn5WlS5dKamqqPPbYYxIcHCyff/6573haWpp0795dpk2b5tv38ccfyy+//CJr166VL774Qjp27Cjnn39+QLoHDBggPXv2lD///FO2bdvm23Jzc0XE9t5v0aKFnH/++bJkyRJZvXq13HXXXRIUFCQpKSkiIrJlyxZp1aqVnHfeeTJv3jxZu3atTJ8+Xa699tpy8+bDDz+U4OBgeeONN2ThwoVy6623SkRERMDIiG3btsnixYtlypQpAsj//d//yeLFi2XPnj2+c3bu3BmQ9uKbt5ajskrrvX/FFVfIFVdc4Xu/bt06CQ8Pl9tuu01WrFghb7zxhgQHB8unn37qO+fOO++UGTNmyLp162TevHkyYsQIiYqKCvh+IiKZmZnSpEkTeeKJJ0pNz2WXXSYdOnSQTz75RNauXSsLFy6U5557Tj777LOA8/zzev/+/RITEyMXX3yxLFu2TD777DOJioqS559/vszvrb33rbos6ddHoI8Eji/csoCHC193KDz+L+Bnv/ObYkv0H2KH7J1f+BBQ60P2HntMxBhPiUDvvxnjkYceqtbHNCoa9Mu3Y8cOOffccyU6Olqio6PlhRdekG+//Vbi4uJk/PjxvvPqIugPGzZMmjZtKqGhodK/f3/59ttvA46vX79eAHn77bd9+yZMmCDt2rWT4OBg6dChgzz44IO+YC4ivire0jb/342FCxfKqaeeKtHR0RIVFSX9+vWTb775JuDz//zzT7ngggukWbNmEhoaKt26dZObb7454PNK8+qrr0rHjh0lJCRE+vbtKzNnzgw4Pn78+FLT5/89O3bsWOb3AKRjx46Vy2S/+xUP+kOGDJEhQ4YE7JsxY4b06dNHQkJCpFOnTvLf//434PjFF18sbdq0keDgYImLi5Pzzz9fli9fXuLz3nrrLXE6nbJly5ZS05OXlyfjx4+Xzp07S3BwsMTExMjZZ58tycnJAecV/z1cunSpDBo0SFwul8TGxsojjzwSMFyvOA361pEe9IeW8R9lcuHxycCGYtf0Bn4DcoBtwPiKSvlSCyX9tm0Plgj6YWEeeeopkXJ+r5UfDfo1oy6C/pFO87D6GkIeatAvqbygXx/j9GeIiCllG1N4fIyIdCp2zTIRGSwioSLSRkQeLfxiterCCwPH459xRsnRgR4PDB8O1eh8qpRSStUJHWhejubN4a67IDg4D4Du3fcGHA8KymfsWIiJsRP26PS8SimlGjIN+hV49FE466w1BAXl43B4WyIAhCFDNnDXXRAUZGsE9u+vx4QqpZRSFdCgXwFjYNSo5Tz88Ou0bp3HrbdC+/ZZgMHhMHgnAg4Ph927dRU+pZRSDdfhME6/Xhlj6Nq1K+3atSM3N49+/Qynnx7GmWfCb791YccOQ2ysnZPf4YC9e211v1JKKdXQaEm/EhISEkhKSvK9P+44wxlnCLm5Dv7zn6LzwsLshD45OfWQSNXgjRkzptR1zAcMGOA7p1OnTr794eHhxMfHM2nSpID75OXlMWHCBPr06UN4eDjR0dEMGDCA119/3bfoTV2YOXMmAwcOpEWLFoSFhdGjR49KrQkP8MMPP5CUlER4eDjNmjXj5JNPDji+adMmzj77bCIiImjZsiW33noreXl5Aefk5eXx8MMP07lzZ1wuFx06dOA//v8hD9G+ffu44ooraNq0KU2bNuWKK65gv1/b3YoVKxg2bBgxMTG+de3HjRtXIn3V8ccff3DJJZfQvn17wsLC6N69O88++2yZiwl5iQiPPPIIcXFxhIWFMXTo0DLXAMjJyeG4447DGENycrJv/65duzjttNOIi4vD5XLRvn17brrpJg4cOFDt71UT6VPVo0G/koov6HfPPQaHA6ZMgfXrveeAywU7d9oBfUoVN3z48BLrmX/77bcB5zz88MNs27aNpUuXcu6553L99dfz0UcfATbQnXbaaTz//PNcddVV/P7776SkpHDHHXfw9ttvM3fu3Dr7LpGRkdx666389ttvrFixggcffJDx48eXuSCL1xdffMGoUaO44oorWLx4MXPnzuXqq6/2HXe73YwYMYL09HRmzZrFBx98wKeffsqdd94ZcJ9Ro0bx/fffM2nSJFavXs0nn3zCscceW+3vdemll7Jo0SK+//57vv/+exYtWsQVV1zhOx4SEsLo0aP58ccfWb16Nf/+97/53//+x4MPPljmPSdPnszQoUMrnYaUlBRatWrFe++9x/Lly3n00Ud5/PHHefrpp8u97tlnn+WFF17g5ZdfZuHChbRu3ZpTTjml1Lnt77rrrhIL5ICd+fC8887j66+/5s8//2Ty5Mn8/PPP5c4WWFk1kT5VTWWN5TsStpoev/nLL7/KqlUiW7bY7eKL7Vj9c84p2rdli8iqVSINYPhqg9SYx+lXZiKS0iZpOfroo2XUqFEiIvLMM8+IMUZmzJhR4lq32+1bk76+nHfeeb60lqagoEDat28vk8qZxvLbb78VY4xs2rTJt++9994Tl8vl+34//PCDNGnSRHbt2lVuet566y055phjxOVyydFHHy0vvviiuN12vYzSxph71xeYPXu2b9+sWbMEKHdu+H/+858B69oX9/bbb5eYaKeq7r77bunbt2+Zxz0ej8TGxgbMspeVlSWRkZEyceLEgHO/+OIL6dmzp+/7Lly4sNzPnjBhgsTGxgbs+/333+XEE0+UsLAwiYuLk7Fjx5b7+1db6dNx+iXRkMbpH86MgdBQ8Nbi3Xmnff/VV+C/UmRYmC3t6xA+VRNCQ0N9K7pNmTKF4cOHlzr/vcPhKHelvcjIyHK3M844o1rpXLx4MXPmzGHIkCFlnpOSksLmzZsJCQmhb9++xMbGcuqpp7J48WLfOXPnzuWYY46hffv2vn2nnXYaubm5pKSkALa24IQTTuDFF1+kXbt2HH300dx6662+Vd0A3njjDcaNG8djjz3GypUreeGFF3jmmWfKrYmYO3cukZGRDBw40LfvxBNPJCIigjlz5pR6zV9//cX3339f7veuCQcPHqR58+ZlHl+/fj3bt2/n1FNP9e0LCwtj8ODBAWlPS0vjhhtuYOrUqYSFhVX4uVu3bmXatGkB32/ZsmWceuqpnHnmmfzxxx9MmzaNJUuW8I9//KPO06eqRjvyVVGrVrB5M4SEQNu28I9/wGuvwZNPwscf2weDoCDbrr9/P0RH13eKVUNS2gIzN910U8C68F4FBQW8//77LFu2zLfu+po1a6pUTeyvojXMD/UPbLt27di1axcFBQWMHz+esWPHlnnuunXrANuE8cILL9C5c2deffVVhg4dyqpVq2jTpg3bt28vseZ9y5YtcTqdbN++3Xef2bNn43K5+Oyzz9i/fz+33HILW7du5dNPPwXg8ccf59lnn/UtbtO5c2fuu+8+XnvttVKXmQW77nurVq0CmvOMMbRu3dr32V4DBw5k0aJF5Obmcu211/LUU0/5js2aNSvgIcq77Kz/v/24ceMYN25c2RnrZ9GiRUyePJkpU6aUeY43fcXzLiYmhi1btgC26eSyyy7jzjvv5LjjjmPDhg1l3u+SSy7hyy+/JDs7m7POOou3337bd+y5557j4osv5pZbbvEtuPPf//6XPn36sHPnTlq3bl3r6VOHRoN+FYWH25J8bq5tv7/pJtuuP2cOzJgB3kWpwsPthD1RUVDGAliqERo8eHCJjnnNii3R+MADD/DII4+Qm5tLSEgId999N9dffz2Ad1rqQ1LaqnM1YdasWWRkZDBv3jzuvfdeOnfuHNAG7s/bEe2BBx7wBeNJkybx008/8e6773LvvfdW6jM9Hg/GGKZOnepb0e+VV17htNNOY8eOHTgcDjZv3sz111/ve2ACG3y9eXj77bf7+koAAbUElfHRRx+Rnp7OH3/8wd13380zzzzD/fffD0BiYmLAQ9a0adP47LPPAoJ2dCVLBKtXr2bEiBHcfvvt1V4N8KmnniIkJIQ77rijwnNfeuklxo8fz59//sn999/P7bffzuuvvw7YGpu//vorIP+8+bp27VqmT5/u+50F+O6773A6nTWaPnVoNOgfgpYtYdMmG/SbNYNbboEnnrCl/SFDiobvBQXZsfsxMZ6AZUI9Hk+JZUNV4xAeHl5h8L3jjju4+uqrCQ8Pp02bNgGlzm7durFy5cpD+uziNQzFDRo0iO+++67K9/Uuidq7d2927NjBI488UmbQb9OmDQA9e/b07QsKCuLoo49m06ZNAMTGxvL7778HXLd7927cbjexsbG++7Rt2zZgueFjjjkGsD3/vUsTT5w4MaCq3t8DDzzgC9JesbGx7Nq1CxHx5buIsHPnTt9ne3mbH3r27Inb7eaaa67h7rvvJigoiLCwsIB/59atW5fYVxneZXFHjRpVYSc+b/p27Njh+/7e995jP//8M7NmzSqxFO+AAQO4+OKLAx5KYmNjiY2NpUePHkRHRzNo0CAefPBB2rdvj8fj4ZprruHaa68t8XvVtm1b4uPj6d+/f8C+bdu21Wj61KHRoH8IwsPt5i3tX3UVvPUWrFwJn38O3ofxsDD45JMfiYrax+jRf/etB/7hhx8SGhrK+eefX79fRDVILVq0KDM4XHrppdx///0sWrSoRBuyx+MhIyOjzHb92qreL56G8oYNJiQk4HK5WL16NSeddJLvmrVr13LaaacBdl32J554grS0NF/v7enTp+NyuUhISABsO/snn3xCRkaGL+j8+eefgF3rvXXr1sTFxbF27VquvPLKUtPSqlUrX9W0V1JSEhkZGcydO9f3sDB37lwyMzPLfHjwfoeCggLcbjdBQTXzZ3XFihWcfPLJXHTRRbz00ksVnt+5c2diY2OZPn06J5xwAmCHvc2aNYvnnnsOgLfffpvMzEzfNVu3buW0005jypQpnHjiiWXe21tD4/237du3L8uXL6dr164l8tCr+P7aTJ+qgrJ6+B0JW0336vTvYZmVJbJyZVGP/RdflMKV+ETWrrX7Nm92y4QJn8udd74s7703Rdxut0yZMkWefPJJmTJliq8XcWPS2HvvDx8+vNy110vrve8vJydHBg0aJM2aNZMJEybI4sWLZd26dfLZZ59JUlJSnebvf/7zH/n666/lzz//lD///FPefPNNiYqKknvvvdd3zrRp06R79+6Slpbm23fbbbdJ27Zt5fvvv5dVq1bJzTffLE2aNJGtW7eKiO3hHx8fL8OGDZNFixbJ9OnTJS4uTm6++WbfPdLT06Vdu3Zy4YUXSmpqqsyePVt69eolF154oe+cN954Q0JDQ+XFF1+UVatWybJly+Sdd96Rp556SkTKXiHu9NNPl/j4eJkzZ47MmTNH4uPj5ayzzvIdf/fdd+Xjjz+WlStXytq1a+Wjjz6SuLg4ufjii33n5Obmlvh3Lr6lp6eXmbepqanSunVrufjii0tc55WWlibdu3eXadOm+fY9/fTT0qRJE/nss89k2bJlvqV2y/qu3uWR/XvHf/311zJ58mRZtmyZrF+/Xr755hs55phjAkYn/PHHHxIWFib/+Mc/ZNGiRbJmzRr5+uuv5brrrivzO9VU+orT3vsl0ZCW1q3LrTaDvojIxo0i69bZAL9pk8gxx9gcHTeu6GFg82a3PPfcV/LAA8/Lk08+2agDvogGfUpZVrpt27a+cyoK+iI28D/66KNy7LHHSmhoqDRr1kz69+8vEydOrHAt+Zr00ksvSc+ePSU8PFyaNGkiffr0kVdffTXgd/vtt98WQNavX+/bl5eXJ3fffbfExMRIVFSUDBkyRFJSUgLuvXHjRhkxYoSEhYVJdHS03HLLLZKTkxNwzqpVq+SUU07xDRm78cYbSwSPqVOnSp8+fcTlckmzZs3kxBNPlA8++EBEyg76e/fulcsuu0yioqIkKipKLrvsMtm3b1+Je0ZGRkpERIT07NlTnnzyScnKyvKd8+uvv5b6b+2/jR8/vsy8HT9+fJnXeXkD4ttvv+3b5/F4ZPz48RIbGysul0sGDx4sy5YtK/NzSguq06dPlwEDBkjTpk0lNDRUjj76aLnnnntk7969AdcuXLhQ/va3v0lUVJSEh4dLfHy8PPTQQ2V+Vk2lrzgN+iWVF/SNPX5kSkxMlJqcyWnGjBkBPaezs23bvrcW67ff4JJLIDISfv/dtv0DFBR4+Pe/X6d58wM4nR7uu+++RtumXzwPj1SJiYm1OotYenp6mdWqqnI0D6uvIeRhbf9fqws1/XfRGJMiIomlHWuckaeGhIXZtn3vtLuDB8PJJ0NGBrzwgt3n8Xj4+usvASEz07aZfvjhhxVOp6mUUkrVNA361dSqVeDKeg89BE4nvP8+rFrl4csvv2Tz5s107dqGK6+8hbi4rmzYsEEDv1JKqTqnQb+aQkNtdX52tn3frRtcdpmdje/JJx2+BStGjhxJeLiDwYP/TocOnQgNDW20VfxKKaXqh0adGtCyJRQUFL2/807bzv/LLxAZeSYjR47k7393cMklkJ/v4IwzRulwPaWUUnVOg34NcLmgadOi0n7LlnbCHoDHHgO3u2hylYgI2LXLUIOrcCpVrjFjxnDWWWfVdzIOW/Hx8TzyyCP1nQylaoQG/RoSHW1L+97BEFdfDe3b2wl7HnlkMzt2CGlpMHWqMGfOEn7+eWn9JlgdUcaMGYMxpsS2ZMkSJkyYwPvvv+87d+jQoWXOPa8ajtdee43OnTsTGhpKQkICs2bNKvf8bdu2cemll9KjRw+cTidjxowpcc7y5cu58MIL6dKlC8aYUh9m0tPTuf322+nYsSNhYWEMHDiQhQsXBpyzY8cOxowZQ7du3QgPD+f0009nzZo11fm6qo5o0K8hISHQvHlRaT80FB580D4BTJ7cnvXrIS1NePhhD9df35t//cvBgQNH7nBJVfeGDx/Otm3bArb4+HiaNm1aYn7/xibvMKta++ijj7jtttsYN24cixcvZuDAgZxxxhm+qYpLk5ubS8uWLbnvvvsCpsD1l5WVRadOnXjiiSd80ycXd8011/DDDz/wzjvv+FbTGz58uG9RHBHh3HPPZc2aNUydOpXFixfTsWNHhg8fHjCbnmqgyhrAfyRstT05T3F5eSKrVomkpdmJeW65xS3GuMWW/wO34OB8ufFGtxQU1GgSG7zGPDlPTSo+sczo0aNlxIgRpZ7rf6y0CYL8J87xGjNmjLRs2VKefPJJ375169ZJcHCwvPfee2Wm67PPPpPevXtLaGioNG/eXAYPHizbt2/3HX/mmWckJiZGIiIi5IorrpDx48dLx44dy/0e48ePl169evneL1iwQE455RRp0aKFREVFyYknnihz5swJuAaQV155Rc477zwJDw+XO++8U0REvvrqK+nbt6+4XC7p2LGjjBs3LmBCox07dsg555wjoaGh0qFDB/nf//4nvXr1KncindrQr18/ueaaawL2HXXUUXLfffdV6voRI0bI6NGjyz2ntO+VlZUlTqdTvvjii4D9ffv2lQceeEBERFavXi2ALFmyxPd76Ha7pVWrVvLGG29UKn01SSfnKYlyJufRkn4NCg6GFi0gK8suqztpkgOR0rM4Pz+I//3Pwfr1dZtG1bhNmDCBpKQkrrrqKl9tgP+69V4vvvgi//rXv3jooYdYvXo1YJfD7d69O5deemmp996+fTujRo1i9OjRrFy5kt9++y1g4Z2PP/6YBx98kEcffZRFixbRvXt3XnzxxSp/h/T0dK644gpmzZrFggULOP744znzzDPZs2dPwHmPPvooZ555JsuWLeOmm27ihx9+4LLLLuPmm29m+fLlvPrqq3z66acBy9uOGTOGv/76i59++okvvviCd999t8LlXWfNmkVkZGS5m/+yuxXJy8sjJSUlYN15gFNPPTVg3fna4F0/IDQ0NGB/WFgYs2fPBorm3/c/x+GwI5W856iGSxfcqWHNm8O+ffD11+B0CmDKPNfpFKZONdxzj20OUKo6vv/++4AVz0pbNa9p06aEhIQQHh5eYtU4f82bN+eaa67h008/5d133+WSSy5h6tSpTJs2rcyhplu3biU/P58LL7yQjh07ArYTnNe///1vRo8e7Vty9YEHHuDXX3/lr7/+qtL3PPnkkwPev/zyy3z22Wd89913XH755b79F198Mddcc43v/ejRo7n77ru56qqrALvy3TPPPMPll1/Oc889x5o1a/juu++YPXu2b3GXd955hy5dupSbnuLL6JamssvoQtGKgqWtO//TTz9V+j6HIioqyrfgUXx8PLGxsXzwwQfMnTvXtwhUjx496NChA+PGjePFF1/E5XLx0ksvkZaW5ltJTzVcGvRrmNMJrVvD1q1F7ftlyc62NQLbt0OHDnY5XqUO1eDBg5k0aZLvfU2smnfllVdy//33s2zZMk444QRGjhwJwJQpU0qslz5w4ECGDx9OfHy8rx34wgsvpFWrVgCsXLkyIAiDXdWuqkF/586dPPTQQ/z666/s2LEDt9tNdnZ2ifbuxMTAWUhTUlJYsGABzzzzjG+fx+MhOzub7du3s3LlShwOB/369fMd79ixI3FxceWm51CWzG3I3nvvPf7xj3/Qrl07nE4nffv25ZJLLiElJQWA4OBgpk2bxtVXX02nTp1wOp0MHz6cM844AzmCp3U/UmjQrwVRURATY0vv5QX+0FBo0wby8mzwr0JhQKkSwsPDazz4nHvuuYwdO5avv/46oJR5zjnnlFgv3el08uOPPzJv3jx+/PFH/ve//3H//fczc+ZMjjvuuEp9nsPhKBE48v2nvMSW2Hfs2MFLL71Ep06dcLlc/O1vfyvRWS8iIiLgvcfjYfz48fz9738HCFiW1/tgAmBM2bVzpZk1axZnnHFGueeMGzcuoBmhPC1btsTpdLJjx46A/f7rztemrl27MnPmTDIzMzl48CBt2rTh4osvDqjxSEhIYMmSJaSlpeFyuWjVqhX9+/cv8aClGh4N+rXA4YDLL4fHHiv/j4fHYzjrLDt//65ddma/kJA6SqRqtEJCQnC73ZU6Nzw8nKOPPhpjDH/72998+6OiokpdaMUYQ1JSEklJSTz88MP06tWLjz76iOOOO45jjjmGefPm8Y9//MN3/rx58wKub9WqVYmq8uLvZ8+ezX/+8x9GjBgB2GBYmWrlvn37smrVKt+DUfHFYnr06IHH42HBggUMHDgQgE2bNrF169Zy71vT1fshISEkJCQwffp03wMKwPTp07ngggsqfZ/qioiIICIign379vHDDz/w7LPPljinadOmREVFsWbNGpKTk3n88cfrLH3q0GjQryXt28O11wpvvOEhN9dZ4nhIiJuxYx00bWofDIKDbTV/+/ZQxYKGUlXSqVMnFixYwIYNG4iMjCQ6OrrMdvrp06ezaNEiIiMjycrKIjw8vMz7zps3j59++onTTjuNmJgYFi9ezObNm+nZsycAt912G1deeSUnnHACQ4cO5dNPP2X+/PkBAfHkk0/m2Wef5a233mLw4MFMmzaN33//nXbt2vnO6datG++//z79+/cnMzOTe+65h5BKPC0//PDDnHXWWXTs2JGLLrqI3Nxc1q9fz4IFC3j22Wfp3r07p59+Otdffz2TJk0iLCyMO+64o8Jmktqo3r/jjju44oor6NevHyeeeCITJ05k69atjB071nfOlVdeCcC7777r2+d9+Dh48CAOh4MlS5YQEhLi+zfIy8tjxYoVAOTk5LB9+3aWLFlCZGSk7zv88MMPeDweevTowV9//cXdd99Njx49fH0hAD755BNatmxJixYtWL9+Pbfddhvnnntuic6HqgEqq1v/kbDV9ZC94tLTPTJ8+J8SFJRfOHTPI8YUCIi0apUumzZ5ZMsW8W2rVons31+jSW5wdMhezTjUIXsidsjVgAEDJCwsrMwhe14nnHCCjBw5Ujp06FDuUD0RkRUrVsjpp58urVu3lpCQEOnatas888wzAec89dRT0qpVK4mIiJBLLrmkxJA9EfGtt96kSRO54YYb5P777w8YsrdkyRLp16+fhIaGSpcuXeTdd98tMfwMkE8++aREGn/44Qc56aSTJCwsTKKioiQhIUFefvll3/Ht27fL2WefLaGhodKuXTt544036mXInojIq6++Kh07dpSQkBDp27evzJw5M+D4kCFDZMiQIQH7KDYcEwjIX+/69MU3//t89NFH0qVLFwkJCZHY2Fi56aabZH+xP0wTJkyQdu3aSXBwsHTo0EEefPDBgKGPdUmH7JVEOUP2jBzBHS8SExOlJtdZruqaxx6Ph6effo9Nm3KYNu1SXK5IEhKW8d133cnLc/G//3k4/XSH3/l2uF/nzrbkfySq6XWjG6raXuO7LtYx//zzz7nwwgtZunQpU6dOZeHChfz44481+hnPP/88r7zySoXD4mpDQ1gL/nDXEPKwtv+v1YWa/rtojEkRkVI7WGh/8VrkcDjo2rUpXbu2ISUlgvnzDa+8Es/ZZ68CYPx4R0BHP4fD9v7fubNoOl+l6oPH4+Ghhx7ikksuoVevXlx55ZX8/PPP/Pe//2X37t31nTyl1CHSoF/LLr74XK644ixyc21WOxwOnn++N8ccA2lp8PLLgeeHhUFGBqSn10NilSo0ZcoUVq9ezaOPPgpA9+7defzxx3nooYe4++676zl1SqlDpUG/DrRoYRCx1fcAwcGGf/3Lvv7vf2Ht2sDzw8Ntp75iI5WUqjNXXHEF+fn5dO3a1bdv3Lhx7N69m7fffrvGPueuu+6ql6p9pRorDfq1LCUlhYUL59KihZCVZTtOJicn43It5aKL7Bj9++4LrM53OrWaXymlVM2rl6BvjLnRGLPeGJNjjEkxxgyq4PybjDErjTHZxpjVxpgr6yqt1SEi5ObmkpqayooVc3E6hfnzk1m9ejW5ubk8+KDQvDnMmQOffhp4bViYreLXan6llFI1pc6DvjHmYmAC8BTQB5gDfGeM6VDG+TcAzwCPAb2A8cCrxpiz6ybFh847UUl8fDwrVqTy7bdvs2zZOrp3705iYiItWhgeftie++ijsHdv4PUREbBjh1bzK6WUqhn1MTnPHcBkEXmj8P0txpjTgRuA+0s5/wrgDRH5oPD9OmPMCcC9wNe1ntpq8gb+1NRUQkIKcLnyiY9P9E31+fe/wyef2NL+E0+A/6JjTqft0b9jh9C2rfFN2iMiVZ4qVNWtNm3a1OqUpDk5OSVWQlNVo3lYfQ0hD9u0aVOvn3+4qdOgb4wJARKA54sd+hEYWMZlLiCn2L5soJ8xJlhEGnQ5WESYO3cuYGfai4rKYeHCxZx0Uh8cDhvIn34ahg+Hjz6CCy+EgX45sWbNUvbtK+CMM/rQrJnx3c/lcpGQkFBP30pV5Ouva/d5tLHMd1CbNA+rT/Pw8FOnk/MYY+KALcAQEfnNb//DwGUi0r2Ua54CrgbOApKxDw3fADFAnIhsK3b+dcB1ADExMQkffvhhjaXff4GOysrMzCQ7O5uwsDAiIiLIzMwkIyOHkJAwIiOLpjR9//2OvPtuZ9q1y2LixIWEhNh/l6ysLLKzcwgJCaV583CysgLvd7g5lDxUJWk+Vp/mYfVpHtaMms7HYcOGlTk5z+Ew9/7jQCy27d8AO4B3gHsAT/GTRWQSMAnsjHw1+RR6KE+1KSkp5ObmkpSUhDG2pD579lx27YqiR4/eOAun5X/kEfj9d1i7Npyffx7CXXf5vg/Jycmkpq7B6dxH8+aZ9O4d77vf4UZLBjVD87H6NA+rT/OwZtRlPtZ1R77dgBtbSvcXA2wv7QIRyRaRfwDhQCegA7ABSAd21VZCa0pCQkJAgDbGcNJJSQwf3pusrKLzXC547jn7+uWXoXBNDIwxJCYmEhzsIS/PSVZW8GEb8JVSStWvOg36IpIHpACnFDt0CrYkX961+SKSJiJuYBTwjYiUKOk3RMUDtDGGqCgb6P2XAO/fH0aPhoICuOsu+9Nb0gcICSkgPT2MmTPnlVhzXCmllKpIfVTvvwi8Z4xZAPwOjAXigIkAxph3AUTkysL33YD+wDygObb3fzwwus5TXoOMgZgY2LgR/FcFvf9+mD4d/vgD3nxTSEiw4/q9w/zmzk1hzpzVBAUJJ56oJX6llFKVV+fj9EXkI+B24EFgCXAScKaIbCw8pUPh5uXEBvo/gOlAKDBQRDbUTYprT1gYNGtGQDV/VJTtzQ/w3HOGPXuifAHfDv9LoEuXHmRnh2vAV0opVSX10pFPRF4DXivj2NBi71diJ/E5IrVsaWfd83jsmHyAv/0Nzj8fpk2DN9/swUcfSbE+AX3JyDBkZtoJfJRSSqnK0Ln361lQELRuDZmZgfsffRRatIC5c2HKlMBjxthFebZts+3+SimlVGVo0G8AmjSxnfpyc4v2RUfDk0/a148+6mHjRttxz9uxb8WKpRhjp+nVPn1KKaUqQ4N+A2AMxMbaoO8fwM86S+jbdws5OU6GDvXQr5/w1FMb+P33VDZs2EBoqJCeDgcO1F/alVJKHT4Oh8l5GoXQUFu6P3CgqJ1eBEJCdgFx5OU52bJFeOONdng8VzBw4B+cdRZERtrSfmio3ZRSSqmyaEm/AWnRwpb63W77/rnnhJSUXtiJCAEM+fnBuN1BzJt3LM89Jzgctmlg69ai65RSSqnSaNBvQJxOO3Y/MxP274fXX7dBvjT5+cG8/rrhwAE7zt/thl0Nfn5CpZRS9UmDfgMTGWnH6n/+Ob55+cvidMI339jXERH2QeHgwVpPolJKqcOUBv0Gxhho1Qp27oTs7PLPzc6253lFRNhhfP5T+yqllFJeGvQboJAQ6Ny54o55Lpcd4+/ldNprt261k/0opZRS/jToN1BXXllx4M7Ph7POCtznctn92r6vlFKqOA36DVR0NPzznwaXq6zIL7jdxrcEr7+ICNi3T9v3lVJKBdKg34A99RTcdJMDl0swxgMIwcF5uFxCv352GN9tt5Ue3CMjbfu+/yx/SimlGjednKcBMwYuumghQUFrWby4NdnZYUREZJKYuIN+/Xrx0EPHs3QpPPAAvPxy4LXe8ftbtkDHjhWPBFBKKXXk05J+A+Z2u0lOXkBIyDr699/KlCn9GDRoMzk5O1i2bDH//rebsDC7Gt+nn5a8PiTE9gvYuVPn51dKKaVBv0FzOp20adOG2NimNG3q5p13PiYoKIjmzZsTExND9+5OHnvMnjtuHKxfX/Ie4eF2at/9++s06UoppRogDfoN3Pnnn8/YsWOJjMzD4QCPx8GVV17JmWeeCcAll9ge/JmZcPPNpY/Rj4qy8/NnZdVx4pVSSjUoGvQbOBFh/vz5OBxC06ZZ5Oc7SUlZhBTW1xsDzz4LbdvCkiXw3HMl72GMLfFv2WKH8ymllGqcNOg3YCLC3LlzSU1NJT4+nptu+gd9+3Zh2bK/SE5O9gX+pk3h1Vdt573XXoPffit5r6Ag25lvyxaduEcppRorDfoNmDEGl8tFfHw8SUlJGGM4/fQT6NGjG06nC2OM79wTToA77rCvb701cHpeAI/HQ2iorf7ftcu+V0op1bho0G/gEhISfAEfICjIMGJEX4466tgSPfJvvRWSkmxQv/nmoqV2v/32W7788ks8Hg+RkbBnj4c33/yMadOm1fG3UUopVZ806B8G/Ev0AOHhhpYtS3bMczptNX/LlvD77zBhgi3R5+bmsnnzZl/g//nnL1m5cg8HDuRriV8ppRoRDfqHqeho205ffMa9mBg7UY8x8OKLMGeOg5EjR9K+fXs2b97MK6+8wpYtm+ncOZaBA/9OQYH+CiilVGOhf/EPUw4HtGljg37xav7Bg+H22+3+m2+G3bsdnHPOOQHnnHfe2YSEONiypagZQCml1JFNp+E9jIWG2qV1d+2yY/H9/fOfMH8+zJkDo0enM2LE17z++hV4PA6Skhby+usfMnBgL7p1O57t2yEuztYOKKWUOnJp0D/MNW8OGRmQnQ1hYUX7ve37p54qLF0axbJlowAQMfzyyxB++snQv/8iPvjATUaGk927oVWrevoSSiml6oRW7x/mjLHV/G53yWr61q1h8GABBBEHIg7AkJ8fjNsdxIIFfXjhBVPYo99O16uUUurIpUH/CBAcbAN/Zmbg/v374ZtvDFB6vX1BQTCvv244eLBoKV6dqlcppY5cGvSPEFFRdmY+/6D9f/9X8ZK6Tid8843tGBgeDmlppc/fr5RS6vCnQf8I0rq1Dd7e+fV37rRt/eXJzi6avS8oyNYapKVBQUHtplUppVTd06B/BHE6bTV/To4drte6te3hXx7vCAAvl8teu3WrztGvlFJHGg36R5iwMNsLPyMDRoyoOHB7PHZp3uL3yM21y/EWnwNAKaXU4UuD/hGoeXOIiLCl9uuvF4KDy1pPV7j4YqFp05JHIiJsb/7du2s1qUoppeqQBv0jkDEQG2tL6Xfc4eDUUzcQFFRQGPyFoKB8jPEAhvnzHWRklH6fqCg7lG/fPnzL+HoVf6+UUqrh08l5jlBBQXaWvY0bhWuu2U9Cwqfs3t2f8PBOZGWlERWVzJQpZ7F6dRi33w6TJtlOgP6MsUP5fv45laZNMxg+vD/GGESEuXPn4nK5SEhIqJfvp5RSqurqpaRvjLnRGLPeGJNjjEkxxgyq4PxLjTFLjDFZxpjtxpj3jTGxdZXew1V4OLRqZXC7Q+nbtyvjxnXin/80jBvXiaSkTowfv5EmTeC77+D550u/hzGCw5HN3Lkb+fXX+b6An5qaSm5urpb4lVLqMFLnJX1jzMXABOBGYHbhz++MMT1FZFMp558IvAfcBXwBxACvAVOAv9VRsg9bLVpAv369ycnx+JboNcaQkJCAw+EgIgKuuMIuw3vUUXD++YHXG2Po3z8RgN9/X8vKlcsJDnbTq1cvkpKSSiz7q5RSquGqj5L+HcBkEXlDRFaKyC3ANuCGMs5PAtJE5CURWS8i84CXgf51lN7DmjGwdWsKixYtJi/PlspFhJSUFJYuXcqQIfDoo/bcu+6C5OSS91i2bBlOJzgcbvbtiyA/32CMYdGiRXX4TZRSSlVXnQZ9Y0wIkAD8WOzQj8DAMi77HWhjjDnbWC2BUcC3tZfSI4eI4HbnsmvXEubOXYzbLSQnJ7N69Wpf9fxVV8Ho0XaY3tVX28l5/K/Pzc1l0aJF5OVlYIybLVsMv/8+X6v3lVLqMFPXJf2WgBPYUWz/DqDUNnoRmYsN8lOAPGAXdjL50bWXzCOHMYakpCT69j2G7dv/4O23P2b16tV0796dxMREX/X8o4/CoEF2iN6YMZCeHngfb3APDrY/9++PpKBAA75SSh1OTF2W1IwxccAWYIiI/Oa3/2HgMhHpXso1PYHpwL+BH4A2wHPAEhG5spTzrwOuA4iJiUn48MMPayz9GRkZREZG1tj96tru3btxuw0ej6Fly+gSx9PTg7jttr6kpYWTmLiXxx5bRlCQcODAQUQ87Nhhv3vLlgcxxoHD4aBVqyZVSsPhnocNheZj9WkeVp/mYc2o6XwcNmxYiogklnasroN+CJAFXCIin/jtfxWIF5EhpVzzHhApIuf57TsJmAW0F5G04td4JSYmSnJpjdSHaMaMGQwdOrTG7ldX/HvcezyGvXsj6NatG0lJCSU64m3YAGefDXv3wmWXwdNPC9988zWbNm1iypTzcDqdXH75FxQUFBAT05nzzz+Ttm1NieF+ZTlc87Ch0XysPs3D6tM8rBk1nY/GmDKDfp1W74tIHpACnFLs0CnAnDIuCweKrRTve6+TC1XAP+DHx8dz/fXXMHBgZ1asWMv8+ckl2uQ7dYLJk+2c/FOmwKuvCm63m/z8fN+UvAUFBeTn5xMUlEdmprB9u07Xq5RSh4P6CJovAmOMMdcYY44xxkwA4oCJAMaYd40x7/qd/zUw0hhzgzGmS+EQvv8Ai0ob4qcCGWNwuVzEx8f7htgNGTKApKSOiIRiu0cESkiA//zH9vx/+mkHS5Z0xOVqTXp6OHv2hLFoUQ9crtaEhITQpImd0a+iefp1Rj+llKp/dT5OX0Q+Msa0AB7Ets+nAmeKyMbCUzoUO3+yMSYKuBl4ATgA/ALcW3epPrwlJCQgIgHj9IcP78+ePYY9e+x0u8WNGAEPPQSPPQZvvdUHOA4Rg4jhl18G8/PPDs47bwdnnCFERhoOHLAPCa1b25/+UlJSyM3NJSkpCUBn9FNKqXpSL9Pwishr2Al2Sjs2tJR9L2PH5qtDVLzt3hhDixZ2mF5Wlp29r7jrroMvvxT++MNgB11Y+fkhAHz5ZQxxcXDPPfbBYf9+e9w/8HuH/KWmpvqu929u8H8YUUopVbu0TbwR8y7M43DY4F/cgQOwcmXZ1+flBTFxoj0P7Dz9+/bZYX/e2nvvkMH4+HhSU1PZvXu3L+DrjH5KKVW3NOg3ck4ntGsH+flQUBB47P/+D4KCyg/KTqfhm2/sa2OKVuYrLfD704CvlFJ1T4O+IiTEBv6sLPB4ivbv3AnZ2eV3uMvOFnbuLHpfWuD3tuH7mzt3rnbmU0qpOqZL6yrAtunHxsL27TZoezvlhYXZh4GyhIXZ8/z5B34RYc2auSxfbqv08/LyiIuL87Xxa4lfKaXqjpb0lU+zZtC8OWRm2vcjRoC7+AwJxRQUwFlnldzvDfx79xqyssLp1SveV8XvbeN3uVwa8JVSqg5pSV8FaNUK8vIgO9s+BIwda5g40U1urrPU8486ytCkjJl4vYG/ffvjiY4WvHMCeNv4NeArpVTdqlJJ3xgzwBjziDHme2PMUmPMGmPMXGPMZGPMVcaY5rWVUFU3HA6Ii7M/c3LgrruEk0/+i6CgAozxAEJwcD5OZwEOh4cVK+xY/rKa572Bf98+U6ztXwO+UkrVtUoFfWPMaGPMMuxUuf/ETo27BpgP7MOubf8msKXwAaBzLaVX1QGnE9q2tZ368vOFQYPmMXbsJFq2zKRdO7jggmXccMMkrrzyZ4KDhUmT4MUXy75fUeC3zQHaf08ppepHhdX7xpilQCvgXeBK7Op2Jf5sG2OaAmcBlwErjDFjROSjGk6vqiPeHv0bNzro3ft4oqLWEhmZiTGZHH/8ciIiYunatTUDBhhuvNEGfZcLbr657Hs2aWL7CGzfDjExVHqRHqWUUjWjMm36/wNeF5Gc8k4SkQPYNe+nGGOOA2JrIH2qHoWG2qp+j+c4jj22N1lZUwuPGM4991wcDgfHHWcn9rn9dvjXv2zgv/basu/pcEB6uq1FaNNGA79SStWlCv/kisiEigJ+Kdf8ISI/HHqyVEMRFQUxMcLs2X8EVMunpKT4xtlfeCE884zd/8gj8O67Je/jLzLSDgPcsqXi0QFKKaVqjpazVLlEhFWr5rJt21I6duzJZZddRvfu3Vm9ejXJyUVL8152GTzxhL3m/vvhgw/Kv29EhB0lsHlzyZkAlVJK1Y5KD9kzxpwLjAR6AtGFu/cCK4AvReSLmk6cqn/epXkHDDiaLl36kJ5uSExMBCgxzv6qq2xV/+OPw1132Q57l15a9r3DwuzQwE2boH17CA6u7W+jlFKNW4UlfWNMc2PMbGAaMAzYDcwr3HYDQ4FpxpjfdcjekUxo3dqW0MuboW/sWHjwQfv67rthypTCq0W44AJYu7boPdjADzbwl7boj1JKqZpTmZL+C9g17oeIyKzSTjDGnAS8DzwPXF1zyVP1zbs07vLlyzHG0K9fEl9+mcLKlX/Ru/dRpS6Ne8MNdpje44/bZXc3b06jf/+d7NjRh/x8eP99oW3bxbRoEcSxxx5LaKit6t+40Zb4vQ8CSimlalZlgv45wI1lBXwAEZltjLkXeA0N+kcU/xXyUlNTSU1Nxe029OjRl/j4vmVOsjN2rA38jz0GL7/cjldfbYOIDe4PP+zB7T6WU05Zy6RJgsNhCAmxPfk3bbIjBqKi6vJbKqVU41CZjnwu7AQ8FdkPhFQrNapBKr40rtMpnHNOX8CUWyV//fUwaJCtxvd4nIjYB4TcXCcFBUH8/HNXnn++6PygILvwz5YtsH9/LXwRpZRq5CoT9OcCDxhjyix7FR67HztjnzrClLY0bnLyXNq1E9xuW3ovzf79sGBB4L6ffuroe52XF8TEiXDgQNFxp9MO6du2DXbt0tn7lFKqJlWmev92YAaw0Rjzf0AqRSX/5kAvYATgxnb0U0cQb8BPTbVL4yYlJfneA/Ttm8SmTQZjSva+/7//A6czsPr/++8DZ2h2Og3ffGOH/Hk5HHb2vr177XA+nb1PKaVqRoVBX0RWFM6wdw9wNnAp3uXSQIAN2Cl6nxORrbWUTlVPvEP2vAHfv6rf5XIRGmpo396OtzfGVtF77dwJ2dlFq+sBOByCx1P0Pjtb2LmzZL8A73z9GRm2JqFt28B7K6WUqrpK/RkVkW3YhXb+aYwJxZbwAfaLSHZtJU41DAkJCQG99IsvjRsWZnvdb9pkX3uDc+vW9r3/EL8rr0xl8uTevvehofa8skREFI3lb9vWTvOrlFLq0FS50lREckRkW+GmAb+RKN5Lv/h7b+DPzi6aWnfEiJLT7MbH7wl4n5sLw4eX/9lhYbbkv3Fj+XMEKKWUKl9lJuc5v6o3Nca0McYMOLQkqcNVeLhdmS8z0wb7Zs3s0L2QkLLm2bVV/TfcENiZrzQul60V2LTJLtGrlFKq6ipT0n/ZGLPEGDPWGBNd3onGmEHGmEnAX8CxNZJCdViJiAgM/P/8p5vExEU4nQUY4wEgODgPp7OA449fRmysMH8+XHCBXXK3PEFBtmf/jh22v4DHUwdfSCmljiCVadM/GrgLeAz7ALAS+APYBeRi2/e7AIlAU+A34BQR0eF7jVRkpA38aWkQHu5k6NCF9O2bzNSpl+B0ejj11Ll07rycJk2Ec87pzaWXwsqVcM45dtreo48u+94Oh+3gt3+/bRpo00Y7+CmlVGVVZmndLBF5DGgHXA6kAAnAP7Cd+84GnMAEoJeIDNOAr7yBPyvLcN11N9C9eyzXXvserVrtJj7+D7p3j+WGG26gfXvDl19C3752Up5zz4WFC8u/tzH2/t6pe3OqtPCzUko1XpXuyCciecDPwA0i0lNEmolIqIi0FZG/icijIrKq9pKqDjeRkdC2rTBnzhLS07NwuVwEBQXhcrnIzMwkJSUFESE6Gj7+GE491ZbgR42C776r+P5hYXYyn40bIT291r+OUkod9irTkc9pjHnEGLMP2AEcNMZ8ZoxpVuupU4e9qChD27YQEtKE0NBIACIiIoiMjCQkJCRg2N8bb9hJenJy4Npr7fuKZuQLCSmauldn8FNKqfJVpqQ/FngYWIxdRe9LYCTwUi2mSx0hRISgoBxcrl107tyD5s2j6d69O5mZmeTl5fmW2AXbNv/MM3ZlPhF45BG7TG9BWZ3/Czmdtp1/3z7bj6Ci85VSqrGqTNC/FnhDRE4WkXtF5O/ATcDlxhhdYEeVyzujX9++x3DOOX0RgeOOS6R79+64XK5Sxv/DbbfBq6/aUvzkyXDVVXZmvvI/J7CdP1tnkFBKqRIqE/S7AJ8U2/cRtvNex5KnKxUoISGBpKQkwsPtErr5+YZjj03k2GPLHtV57rnw0UfQvDn88ot9v2VLxZ/lnRFw40Zb8q9Kdb8UO7n4e6WUOtxVJuhHAgeL7fN2m9JVz1WlFE3hCx06gNttKux1368ffP01dO5sh/SdeWbFPfvBLvzjHc+/fXvJWQFLk5KSwty5c32B3rvQUEpKSsUXK6XUYaKyvffbGmO6eDds6b/E/sJjSpXL5bKBHyquhu/c2Qb+k06C3bvhootsT/+KeFfqy8yseFifiJCbm0tqaqov8HtXEszNzdUSv1LqiFHZaU0+LWP/F6Xscx5aUlRjEhJiA39amg38YWFln9u8Obz/Pjz6KLz9Nvzzn7B6NYwbZzvxlSc8vKidPzbWPggU60YQsHJgamqqb9lg/5UFlVLqSFCZoH9VradCNUpBQXaRnq1bbUe9yMiyzw0OhieegG7d4KGHYOJEW+X/6qv2oaA8ISH2s7Zts58TE1NyFj9jDAMGDPAFfIABAwZowFdKHVEqDPoi8k5Nf6gx5kbgbqANsBy4XURmlXHuZGB0KYeyRCSiptOm6pbTaZfM3bEDDh60gb+8OHvllXDUUXD99TBzpl3J7803oWfP8j/HW92fnW1L/XFxgbULycnJ/Pnnn74lhEWEDz/8kG7dupGYmFgzX1YppepZlZfWrS5jzMXYKXufAvoAc4DvjDEdyrjkNuzDgf+2DqhEy646HDgctuo9OtrOrFdRE/rAgfD999C7tw3g55wDX31Vuc/y792/d6/9LI/Hw59//smGDRuIiorimmuuISoqig0bNvDnn3/i0ZV9lFJHiDoP+sAdwGQReUNEVorILcA24IbSThaRAyKy3bsBXbEdCd+ouySr2mYMtGplq97T0yvucd+2LXz+uV2dLzsbbrjBtvnn51f8WcHBdjKfXbvsUr0FBQ66detGp06dyMjI4M033yQjI4NOnTrRrVs3HI76+G+ilFI1r07/mhVO5pMA/Fjs0I/AwEre5lpguS7qc2Rq3twG9MzMigN4WBhMmACPPWZL75Mm2d79FS3RC/YhIyrKPlysXw/duiVy8cWjAs4ZNWqUVu0rpY4opi6HIxlj4oAtwBAR+c1v/8PAZSLSvYLrm2JrBe4XkQllnHMdcB1ATExMwocfflhTyScjI4PI8nqbqQpVNg9FbK97Y8pv4/davrwJTzzRiz17XDRrlse4cSs4/vj9lU6X2w25uVnk5WX5Pi8sLIyIiIbZbUR/F6tP87D6NA9rRk3n47Bhw1JEpNQSy+EW9G8CXgDiRGRvRZ+XmJgoycnJ1Ux1kRkzZjB06NAau19jVJU8zMuzQ/pEyh/S57V7N9x0E8yebfsJ3HEH3HprxcP6RITk5GSWLfuLqVNHEB0dxbPP2nH6DXXYnv4uVp/mYfVpHtaMms5HY0yZQb+uGyt3A24gptj+GKASlbJcC3xWmYCvDn8hIdCxo/1Z0dz7AC1bwtSpNtCLwPPPw6WXws6d5V/nXR+gd++jaNIkitxcQ6dOSRxzTHyp6wMopdThqk6DvojkASnAKcUOnYLtxV8mY0w/4Di0A1+j4h3S17SpHdJXUUd6pxPuvRemTIEWLWyp/5RT4Lffyr/u2GOPJTExEWMMQUGQlWWIjU2iR4+EmvsySilVz+qjW/KLwBhjzDXGmGOMMROAOGAigDHmXWPMu6Vcdx2wRkRm1F1SVUPgcNhe/W3a2A5+lVk6d8gQmD7dDu/bvduW+P/1r/I7B+7d62bHDtuk8PnnkJHhZvNmO6mPLterlDoS1HnQF5GPgNuBB4ElwEnAmSKysfCUDoWbjzEmChgFvFlnCVUNTtOmdga/3Nzy59L3iomBDz+EO++0nQFfecWu1rd+feB5InDJJYvo2xc2bhTS0mD8eKFfP7j++kVkZsKGDXYooVJKHc7qZQCyiLwmIp1ExCUiCf6d+kRkqIgMLXZ+uohEisizdZ5Y1aCEh9t2fofDlvor4nTaDn2ffWabCZYsgVNPtcv2evuwPvOMmzlzelNQEITHY9vvs7MNBQVBzJnTm//8x43LZZf23bKlcnMBKKVUQ6SzjqjDTkiILfFHRlaunR/sMr3Tp8PIkZCVZR8ErrvOlvonTXJQUBBc6nUFBcFMmuQgI8NO45uTY685cKDimQOVUqqh0aCvDktOp526NybG9uyvTOm7aVO7QM+//20fGL79Fk4/HaD83vlOp+Gbb+zrsDBb27B9u53NrzLNDEop1VBo0FeHLWPsDH4dO9qgn51duWv+/nf46ScYMMA+MOTmln9NdnbgsD+Hw87m5/HYOfx37ap42mCllGoINOirw15YWNF4/sos2AO2eeDjj+0qfVD+BaGhQuvWJfe7XLbGYP/+oo5+WuWvlGrINOirI0JwMLRrZ8fmp6dXboid0wnPPmuvLY/HA2edVfoxYyAiwt5jyxY73K+imgOllKovGvTVEcMYOyufd1hfZar7mzWDG280BAeX/pQQElLA2LGGpk3Lv09QkO3ol59vS/27d2uVv1Kq4dGgr444ERHQqVPlq/vvuksYPnwtQUEF2Kr+ogtat87gmmsqX2cfGmqr/Pfts738Dx7UKn+lVMOhQV8dkbzV/a1a2cBfXu9+Y+D66w/yz3++R3T0fpo1y6B79/U4nW7S0ppx8snw9deVD97eKn+XC7ZutZ39KlProJRStU2DvjpiGQPR0baTX0FB2YHXGENiYiInnhhPREQmUVEHOPfcr5kwYQX9+wu7dhnGjoWrrrJt9pXldNoqf7CBf9s2ndhHKVW/NOirI563d394uK1ur2xbe7t2OXzyCTz9tB2iN306DB0KEydWLXiHhNjgn5Vlq/y1vV8pVV806KtGISjILtgTF2dL/P6lfhEhOTmZRYsWcdVV/8dNN/2Ky+Vi0aJFLFqUzOWXCzNmwNln2+sefxzOOAOSk6uWhrAwW+2/bx+sW2dn9avMbIJKKVVTNOirRqVJk8BOft6gu23bNgD69u3L5ZdfTt++fQP2x8baEv7770OHDrBypZ3S9447bMm9srzt/aGhdlY/Hd+vlKpLGvRVoxMSYjv5tW5tF+3JzTV06tSJvn37kpiY6Gvj79u3L506dcKYoml6hw2DX36BW2+19/noIxg0CN56q2rL7zqdtskgKMiO79+40Vb/K6VUbdKgrxol7xS+nTrZAJyZaSpd1R4WBvfeCz//DCefbPsJPPSQncd/9uyqpcM7vh/sXP6bNmlPf6VU7dGgrxo1lwvatxfCw7NYtmwtc+ak+Nr4V69eTW5uLlJG3XuXLvDuu7aU3769rfK/+GK45hpbcq8Kb2c/t9tem5ZW+mI+xdNSVtqUUqo0GvRVo+dwGE4/vR+DB3fkr79W87//fczKlavp3r27r7q/LMbAaafBr7/C3XfbWoDvvrO9/P/1L9teXxUulw3+eXk2+G/ZUhT8U1JSmDt3ri/Qiwhz584lJSXlEL+5Uqqx0aCvFHas/pAhA4iOziQqKou8vGB69So/4PsLC4Pbb4dZs+CCC2zQfuUVOPFEmDy56uPzQ0Ntm39Oju3sl5YmHDyYR2pqKnPnzgVg7ty5pKamllsboZRS/jToK0VRqdn2rs+nZct0li9P5sABqVIHvTZt4D//sTP4nXAC7NkDDzwAf/sb/Phj1Xvph4XZkn9uriE2dgAxMX1YvHglu3fvJjU1lfj4eJKSkir9cKKUatw06KtGzxvwvUH02muv5fjje7J9+2LS0uaTmytkZVUtYPftC59/Dm+8YTsLrl1rZ/Q77zxYuLDqaQwLg6ZNDb16JbBnTwQFBQ7y8pwMGDBAA75SqtI06KtGzxiDy+UKKDUnJSXRu3c80dHBdOliiIqy7fNVWTbXGDjzTNve/9hjdkrghQvh3HNhzBhYtapq6fzjjz/44YcvCQ21VQ9790byyitfMmvWIh3nr5SqFA36SgEJCQkB1eTewJ+QkIDTCTExtsRujA3+VZlGNyQErr4a5syx7f7h4XZK3+HD4ZZb7NS8FfF4PCxZsoQNGzYQERFBixbRtGgRwoYNm/j551WsW+cJmGxIKaVKo0FfqULFq8mLvw8NtXP4x8baDnZVrfKPirI9/OfMsSX9oCCYNg2GDLH7t2wpP23NmjUjKCiIHTt2sHfvXnbs2IHL5SAmJgKn07B1q32AOHBA5/ZXSpVOg75SVWAMNG0KnTtzSFX+YJf7ffJJ29N/1Ci7b+pU29P//vtLD/7G2FkD27ZtS25uLgUFBeTm5tK2bVs6depESIhtgggJgR077Nz+u3frqn5KqUAa9JU6BEFBRVX+TqcN/lXp5Q92Qp8XXrBt/ueea69/910b/O+7LzD4iwh5eXns2rWLqVPPZ+/e5ng8Hnbt2kVeXp5vyJ7TCZGRtuOfd2GfrVt1lj+llKVBX6lqCA21wTsuzpaqMzKq3q7etSu8+qqd03/kSBv833vPBv+77w5s8z940EFGRgRut4OlS+M5eLD0/8IOh13YJyrKBvxNm+x4/0NJn1LqyBFU3wlQ6nBnjA2uERG2PX3XLht0w8Lsscrq1g1eew3++U+YMAG++MJW+3/4oV3Wd8+elsybdxVutwO328mvvw7ml18Mq1evJSGh7M8KC7M/8/Nt7YHTaUcSREVBcHC1v75S6jCiJX2laojDYRfx6dLFTqiTnn5o1epHH21n85s5087l73DAl18aZs/uTEFBECL2v21+fjAFBUH8/HNXnn++4qeL4GAb6ENDYe/ewKp/HfKnVOOgQV+pGhYUZJft7dLFlrIPpbMf2Gr/F1+0c/k7HIFR+ZVX+vhe5+UFMXGicOBA5e7rcNhhg95pfjdtKur1X9V+CcXpgkBKNWwa9JWqJSEhtq2/Y0f7IJCebufkr6rFiyE0NLAkv2FD04D3Dofhm2+qfm/vHP9BQbbX/9q1sH37oZX+dUEgpRo+DfpK1TJvZ7/27e379PSqDaXbuROyswMj8MiRawLeZ2cL06bZwH0ogoJsr//ISMjMLCr979tXubSKCLm5ub4FgfynNtYFgZRqOLQjn1J1JDzclvqzsmwgP3jQVv9X1JmudWt7XlZW0b5Bg7bw5ZdH+51lmDcP+ve3nf7+8Q/o06fErSpkTFHHP7fbjvXfudN2Umze3B5zlFJU8M5gCJCamkpqaiqALgikVAOjJX2l6pBdxc+O72/XzgbWikr+I0ZUPMNecLBwyin2vGnT4Kyz7DZt2qH1JwDby9877C8/H9LSiib9yckpWf2/aNGiUtv0Fy1adGgJUErVOA36StUDY2xVeufONvh7PGUH/2bNYOxYQ3Bw6b3sgoMLuPFGw+TJMHcu3HijvWbxYju3/wknwL/+BZs3H3p6Xa6inv/798PGjYHV/yJCTk4O8+fPJyMjA4CMjAzmz59PTk6OVu8r1UBo0FeqHhUv+YvYav/iHf7uuMPNiSem4nQWYIydXSc4OA+ns4ATT0zljjtsVUC7dvDAA5CcDM8+Cz17wp49dghgUhJceSX8+OOh99L37/kfFGRL/evX2z4AWVlO3G5bje8f5LVqX6mGQ9v0lWoAvME/PNz2nN+925b8g4Nt6drpdHDRRRuJj5/D+++Pwul0M2zYTLp1W0PPnm1xOo8LuF9YGFx2GVx6qX0AePdd+OYb+Plnu7VpA5dcYuf+b9v20NIcFGQ3gLw8Q3p6BO3aDWHDhuUEBeUTFhbJccfF43K5NPAr1UDUS0nfGHOjMWa9MSbHGJNijBlUwfkhxpjHCq/JNcZsMsbcWlfpVaquGGMDf4cOdgsJsSX/nBxDUFAw3bvHcu2179Kq1R6OO2453bvHEhwcXGZQNcZW77/8sg3+Dz5oaxW2bbNzAAwYAJdfbh8IDrXtH2w6+/ePJzzcjYiT/fvD2b27Cbt2BdG9e19d9U+pBqLOS/rGmIuBCcCNwOzCn98ZY3qKyKYyLvsQaAdcB6wBYoCwOkiuUvUmLMxW1+fmwr59QmRkDKtXLwSKxsFv3bqV/v37IyIVlqZbtIAbboCxY+3yvu+/D99/bxf8+fVX2zv//PPhoosgPr5qaRURkpOTWb16Nb16dScxMZGFC5NJTV1DdnYQffr0ISrK0LSpt+biEDNFKVUt9VG9fwcwWUTeKHx/izHmdOAG4P7iJxtjTgX+BnQVkd2FuzfURUKVaghcLmjdWsjLW01QUAYFBZE4HME4nSHk5+exefNmEhISKl2FboxdzOfEE+10vJ9/Dh98ACtXwv/+Z7djjoG//90+BLRqVZl7GlwuF926dePppxMBw6efJgJCaGgQkZGGnBy74A/YpgzvA0CQNjIqVWfqtHrfGBMCJAA/Fjv0IzCwjMvOBRYCdxhj0owxa4wx/zHGRNZeSpVqWBwOB1FRofTu3YajjnLidHqIioqmdesuOJ3hOEobPF8J0dFw9dUwfTp8+y2MGWN7/q9cCY89BgkJcMUV9sHAf56A0qSlpbHFbz1gEWHLli2kpaVhjA3wkZE24Ofl2Xn/1661owoOHqzahEXVoVMFq8bM1OUvvDEmDtgCDBGR3/z2PwxcJiLdS7nme2Ao8DPwGNAMeBlYKiIXlnL+ddhmAGJiYhI+/PDDGkt/RkYGkZH6rFEdmofVk5mZSXZ2Nk6nE7fbjcsVRmhohG+53EOM/QHy8gwLFrRg+vRYFiyIxu22Nw0NdXPiibsYNmwnffvuIygo8G/Hnj17KChws39/NEFBQbRosZ/c3DyCgpy0aNGizM8TKRrzb4yt+nc4qrZCYWVlZWUhIkRERPh+FzMzMzHGEB4eXvMfeITT/881o6bzcdiwYSkikljascMh6P8IDAJiReRA4b5TgR8K95U58WhiYqIkJyfXWPpnzJjB0KFDa+x+jZHm4aHxn9Y2Pj6evLw8QkJCfO8TEpJITzfs22cDqMtVM8vm7t0LX31lJ/nxn0K/WTM7adDIkbYzoMMhLFy4kJkz/2Dy5AvweJwMGLCAnj03MGTIcZxwwgmVan4oKLB9GDweG/ybNLG1Ay5X9fsBVJSHOnNg1en/55pR0/lojCkz6Nd1a9puwI3tiOcvBthexjXbgC3egF9oZeHPDsAhzjau1OHD22buDU4zZ870TXvrcrlwuQwul+2Ml5lpg3V6um0vDw099FJzdLSt8h8zBjZsgC++gC+/hD//hClT7NaqFZx5piEj4wS+/DIRtxtEDL/+OoRff/0bIoYTTqhcAvyHAXonLNq3r2h64CZN7M+QkKp/l+JTBUdHR7N3714N+KpRqdOgLyJ5xpgU4BTgE79DpwCflXHZ78DfjTGRIlLYDYhuhT831k5KlWp4EhISAnrpe4OYf7Dylo6bNLFT5R48aGfQg+qX/jt1gttvt9uqVfYB4Ouv7cPAO+8AmMLNys+3kXnSJFubeM89Vfs8h6NoHQCw/QB27rQPA8HBRQsEVaUWoLypghMSEqqWQKUOQ/UxTv9FYIwx5hpjzDHGmAlAHDARwBjzrjHmXb/zpwJ7gLeNMb2MMSdih/x9KiI76zrxStWn4qXR8kqnoaF2sZ6uXSE21lb7p6fbDnnePgCHqkcPuO8+mD0bPv0UnM6ymwmzsw3//a9w4ECZp1RKSEjRWgAhIfa7bN4Mf/1lZwTct88+6JT13XSqYKXqYcieiHxkjGkBPAi0AVKBM0XEW2rvUOz8DGPMcGznvYXAPuAL4L46S7RShzH/0n9urg2W+/fbxXlCQmxJ+VAZYxfhcbnK792flwcXXGBHCpxyCrRseeifCSVrAfLz7SyGHk/R7IZRUTZdISFFzRtlT2KkVfuqcaiXEbIi8hrwWhnHhpaybzVwai0nS6kjnstlt+hoO93vvn1FY+cPtfp/505bmi+fYeVKuOsuG4CPP94G/+HD7foA1Y25wcFFaRexDxnbC3sJORz2ISAy0rB06SqCg0MICbEnR0REkJ+fz4oVKxg4sKxRw0odOXRaDKUaIW8gjIiwPeYzM+0DQHq6PVaVWfNat4awMCErq7ymBuHMMw3798Pvv9sVABcvtosCtWkDJ59st5NOsu301WFM0cMN2NJ/djYcOOAhPb0FaWkZfP75CO65ZyX796/H7c7mqKO64vF4Dnm+A6UOFxr0lWrkgoLs7HhNm9rq/8xMW/2flWUDf2ho+eP/R4yAhx4q/zNE4Ikn7GdkZtq+AD/9ZLdt24pGAgQHQ79+MHQoDBlSM7UA3ocYl8vQrVsce/duxuMRPB7YtSuc4OAmREQczcGDhtBQ2xygsV8dqTToK6V8vCXk5s3tA0BGBhw4YGsDgoLsseIBsVkzGDvWMGmSlFrNHxYmXHednXcfbO3CaafZzeOB5cvtyn+//gqLFtmagN9/hyeftLUIgwfDoEF2iyk+2LcKvMMee/VKIjMzEo/HwerV3bnssuY4HCHs2mV8kwR5Zw/0PgToVMHqSKG/ykqpErzT5oaG2oV6vA8A3g6AxWsA7r7b9o7/7389FBQYRAzBwfmAk2uvNdx9d+nFdYcDeve22+232/kFZs2CmTPttn27HR3w6af2/O7dbRPASSfZSYGaNKn8dxKBd96J4dNPW+B2O3C7nfzyy0B+/tnBhRfu4fnni2oV8vNtWryrAwYHFy19HBJi32ttgDocadBXSpWr+ANATo6tovfWADidEBzs4eijv+D667czZcolQBADBiyka9dVHH10LCLnYkzFUTI62s7yN3KkDdKrV8Nvv9kHgblz7fvVq+2iQA4HHHccDBwISUl2CeHy+gM8+6yHzz6LpqCg6M+edy6Bzz6LpnVrD/fea9Po3zEQbPD3fmeRon4DxWsDdBCAaug06CulKs07M15YWFENgO0DYNizJ5eQEAdt2jhp0iSS66+PYv58j29u+0P5rB497HbddbZHfkpKUfX/okVFHQJffdU+fBx7rH0A6N/fPgR4mxT274fXX3eQn1/6g0d+fjCvv26XHfZe48/pLNmxMT+/qObDP28iIopGQuiDgGpoNOgrpQ5JYA2AoUePUA4edDB7dhQFBYbu3RNYt24LkZEhNTIOPiTEBvSkJDv0LzMTFi60DwBz58LSpUUPAa+9ZtN3zDH2ASA3t+Lg63TCN9/AZZdVLj3FawNE7IPAnj1FDwLe+QTCw4seBIKDK06L/8yLpb2vbw09fapsGvSVUtUmIrRvH8PSpUt56aW5nHBCEjNnLiA39wBt2vQmPV1wOk2NLJzjFRFhe/l71ynJyLAPAfPmwfz5sGQJrFhht9KkpQW2BWRnCzt3HnrgMsY+mPivC+B9ENi7t2imQG/TQHi4fWDyPgh4+wikpKSQm5vrm2LZu1CQy+VqEFMFp6SkkJOT45vXQESYM2cOoaGhDSJ9qnwa9JVS1WaMISQkhCZNmrBs2TJSU1MRETp0iKJLFw8dOhgyM+1aAN6Z+7wBsqYKiJGRMGyY3cCOzV+yxD4AfPUVrF4t+K8N8O9/By5CFhxcvdkJS1PWg0BBge0fsGdP0fe3iyMJe/YU8OefKykoMJx00gDmzStaGbC+S9Qiwtq1a0lLS/PtmzNnDvPnz6ddu3b07dtXS/wNnAZ9pVS1iQh5eXlkZGSQmZlJRESEry2/oCCP0FAhLMzQsqUt+ebk2ImAMjNtCdjhKOoVX1PCwoqaA8aMgT59DHl5Rcdbtsxi9+5w3/u8PMOTT9pOgn362E6Cxx9vf1ZllEBFjCnZNAC2SSA319CpUz/27g1m5sw/mTFjI8HBbnr37kOvXonk5BjfSoT1FVvbtWtHWloa8+fPp0OHDmzatMm3XzV8GvSVUtVmjGHAgAFs2LCB3bt3k5OTA0BsbCwDBgwIKP15A15UlA34eXm2VH7woH0QABvUvB3hakKzZnDDDTBxopvcXNu+cN99C7jrrqEAOJ0e2rZ1sG+fHSb43Xd28+rc2XYSPPbYoiGGNfkgYNNgN5fLMGhQHzZtWoEIeDyGHj0S2bHD5qFI0UOSt0+FN09r+2HAW6MTGxvLhg0bKCgoICcnh06dOhESUjN9N1Tt0qCvlKo2EWHevHmkp6cTGhpKZGQkGRkZpKenM2/evDLXq/fOlhcaaicEsqVd2wSQnm4fBoyxwTAkpHr9Ae6808OiRUuYM+c4PB7bgB4SUoDbDQMH/sGUKX0wxsHatbZZ4I8/ivoFrF9vty+/LLpfx44QH1+09expJw+qbtwTEZKTkwHvdxeWL08mMTHRl4cigcMI/QUHF+WpN8+8tQPVJSLk5uaybds23IW9Fd1uN9u2baNjx4713vygKqZBXylVbd4SYFRUlO+PfmRkJJGRkVUqATqdtoNbeLhdia+gIPAhwNsf4FBqAoyBYcOS6d17Lh98cBlOp4eTT/6NLl1W0LJlMMb0weGAo4+229//bq/Lz7dzAyxbZh8Eli2DlSth40a7/d//FX1GixY2+Hu3Hj3svSrbV8Ab8FetWkWPHj1ITEz0vQd8gd+YsgO52100l4K382BptQPe64OCqv4wlZeXx1tvXcEdd/zpe9/Q6AiD0mnQV0pVm3+bfnx8PElJScydazug5eXlHfIfXG9QioiAVq2KHgKys21vfW9zgMNR8XA4Ywx9+vRh/vz5XHXVW7Rs2Y6ePdMICQmhT58+ZaYvOLioNH/JJXZffj789Zd9AEhNtbUBy5fbjnmzZtnN/zt07WpnE/TOO9C9O3ToUHJWP2MMu3btIjIykoSEBIwxJCQkkJaWxq5duyqVh6XNKQCBtQMHDxYtQ2w/t2iZZf85BrwPBP4fm5qaSk5OKBkZTfB4gli6tD89ey4nNTW1waxU2NBHQNQnDfpKqWrzzmvvDfjGGJKSkgBwuVw1VsLyfwho2dIGsbw8W7LNyLABzTtjXlBQ4OI5xhgSExPZvHkzGzZs8N0zLi4uoOq8MoKD7RwAxxwDF11k94nAli02+K9YYWsDVq60zQLemQS/+qroHqGhcNRR0K2bfQg4+mg46ighOroVf/21mjPOyCAyMor77kshMzOTdu3aVau0Wl7tgPeBICvL5qO3hsDLu+5CUBB8+mk/ZsyIx+12UlDg4KuvhvLFF8M49dSlXHtt/U9G5G2CSE1NBQh4AG0IIyD81UdthAZ9pVSNSEhICPij5Q38tflHzOksmiGweXMbvPLyipoEsrJsqRzA4RCWLElh69ZtAffYtm0bycnJnHDCCdVKqzHQrp3dTjutaH92Nvz5J6xaZQO/9+f27baWoDA2ee9CSEgirVvHs3NnEA5HHk880Zyzz06ke/futZaX5T0QgH0gyM+Hp54SZs7sHTCVcV6eHY84ffqx3Hmn8MgjxldD4N3qcp0C7++dx+MhNTXVF/x79uxZ67+PVeFfGwHUWW2EBn2lVI0p/ge1rv/Aeie+cbmKetcXFHhHCAhr1qwgK0sICorE6QzG4YggOzuHFStWVrm0X1lhYXbY33HHBe4/cMA+DHi3v/6yP7duNaSlhfnOS04+iuRkGD/eNnF07QpdutgRBd6tY0f7ObXF6bRNKf/7nyE/v/SwkZ8fzH//K1x+uR2Z4c/b/OKds8C/6aA2Hgw+//xzcnJy8Hg8OBwOPB4PmzZtYufOnZx//vk190GHqLT5DubOncu8efNqfb4DDfpKqSOaN8CEhRlatMjBmEwGDOiLSD5DhrRh1qxF5OeHkJFhcDgCe7vX5jNL06Z2fYATTija98wzHl591Y3bXdqEBcKuXYZdu+ysg8XFxtoHgE6d7ENAx472dYcOdshidf3f/1Xc4c/phF9+KTmVsbf5ICfH1r643UXNMF7evPd/MAgOLnog8P6s6OHA4/GQk5PD2rVrCQ4OplmzZuzfv59du3bRtWtX34NAfWvbti1paWnMmzcvYL6Dtm3b1urnatBXSjUK3jb97OxsTjxxIDNnzmTEiAE0a+YmNDSMLl2Mb+Igb9OAt23b4SgKQrUVL+yiQKaMgA+26l947TXDjh2wbh1s2GD7DGzaZJsLtm+36xAU17SpDf7t29vN+7pDB9scUZlagp07bVNFebKz7XklUl5B8wFQOCdB0eRN3vfF+T8cePttBAUV7TfG0LZtBzZs2Eh+fj579+7F7XYTFBREhw4dGkT1vjHG1+lx5syZvvkOhgwZwsCBA2s1jRr0lVKNRmn9Dk488UTf+5AQ20mwRYui6XLz84tGDOTkFPUR8M4fUFO1ApUpSQcF2Xn8x4wJ3F9QYDsRbtxoHwI2bLAPAt5hhQcO2JEGy5aVft+WLW3wb9vWbv6v27a1/SVat7YPB95hk6UJC7PnHQpvflaUB/4PB7m5ttkh8OHAsGxZJsHBPXnttQSMgUsu+YwOHeL46699HHusCag18N/q+nmgPprDNOgrpRqVyv6h9Z8uNzzcBj4o6tRWUGAfBLKzbSAUKRoP760ZqMrDgC1Jl39ydrYptSQdFFRUpT94cOAxEdi92z4EbN4c+DMtzT4s7N5ttyVLSv/c0FDbfFC8pL9iRXTAe7cbzjqrgi9aTRU9HIgITmcOmzdvJTNzEG63k8WLe5GRsY5u3eLYtq3sHvL+NTr+8xiU9oBQnQcFb6e9efPmERoaSlBQEKGhocwrbLepzQ6HGvSVUqoK/ANOZOFCfd42a/+HAW8zgUjJa72BxJ8tSQtZWWX/sQ8LE1q3rlowMMZ2AGzVCkrrFO7xwI4dRQ8A/j+3bbOvDx60tQf+CxYBvPXWsX7vBJfL1kLExtrZCWNj7feKibFb69a2k19tFmjdbg9Tp7Zl7twReDwORAwzZw7m11+HkpS0hPPP9xAUVPoTg8cTWIvgrVXw/ht6+yH490fw7wdS2k9jAh8QvD83b7ad+Pr3709+fj5t2rRh/vz5AZ37aoMGfaWUqqbibdbe3uveh4GCArvl5NgtN9fu979++HB46KHyP6c2StIOB7RpYzf/ToX+0tNh61a7TZhwgOTkKEQM3bvvY/XqZtiHAcPBg7BgQfmfFxpa9ADQunXRA0nr1raZwfu+ZUt7blW9+KKD+fOPx+0uCm/5+XZY4fz5x/Piiw7uuaf0ayvTUbA474OBx1P0wAdFDwvFOyza94bg4GOIi+tCmzYJbNgw09fGHxoaqm36Sil1OCr+MOCtGQAbwL0PBPn5dojhtdfCxIn5FBSU7MwXFJTP9dcH0bRpHSXeT1SUnUCoe3cYNqwpe/a4GTLkAGPHLub77+H554ficjnZsaOoQ+H27bYGYedO+9O7ZWcX9TWozOe2aGEfAFq2tK+9W8uWEB1tX0dH2y07GyZOLG9YYRATJ8L111Nj+VjZvgjFhYcLDocwahRcfXXRktC1TYO+UkrVA2+gCLGFUJo2hf/8x5CdvYv33ouhoMCBx2MIDxcKCoTzztvLzTfHkJFR8j7eKubiU+bWBo/Hw2+/fcV1122mVatYjj9+OzNnHmTkyJF06eKgS5eyrxWxsyZ6HwZ27bLbzp122727aN+ePbaGIT3d27RQMZcL8vKE4s0QxVLB668bLr3U9tMID6/7DnzeWQNXr15FRkZ3AN+sgb17967Vmfk06CulVANhDLz5ZhzPPit89plh+3aIjTVceCE0bx4DFFUje2sJ8vKKZiH0tkP78+9YWN2HAo/Hw5dffsnmzZtp3749rVs3p337YDZv3syXX37JyJEjyx0Db4yt7YiMtJMMlUfEDmPcs8du3geCvXuL9u3ZY997t9xcKD/gQ26uYcIEmDDBvg8OtvMYeLemTe3m/7pJE/u+SRO7efdHRBxafnoXqIqMjCQrK5v8/HyWLVtNVFRUrS9RrEFfKaUamOhow7XX+u8pCgLe1fLK4m02KP5QYGclDOxLAEXV05WZAMfhcOByuWjfvj0jR45k5crfGDlyJF9++SUul6tGJ70xxpbEmze3axRURATefBOeflrIySk7aDocQkyMPb5vn+1j4a1dqCqHwz4EREUVPRBERRW9j4wM3OfdIiKEzZth40bDgQMuCgqc/PZbF5KSttCp06EvUFUZGvSVUuoIUlH7ssdT8sHA/+EgJydw3Lu3I5q313lMTHvy8rLxPojYyXDaEnoove5qkDF2OeR//av8YBkcbPj556I2/ZwcO4/B/v12K/764EH7+uDBovfen1lZRedWMbXAcYUbfPZZN+bPb80XXzi45x4HSUla0ldKKVUDvCX54LIm/qOoN7r3wcA7jC0vT/B4cli9eg0FBU6aNoVZsxbx55/r6N69G+npgsNhfA8I/jUHddFu3qwZjB0LkyaVPntgWBhcd11gJ77Q0KIRBVWVn2/7HBw8WLR532dkFL33LgPtPbZhg7BnD3gfnIKDPb4RBi+84MYY4fHHtaSvlFKqDvj3AwhkOOecRFq1yic1NQWHI5p9+9YweHA8/fr1weMxASMSvPMWeB8cyvos/7Hs1X1IuPtu+OuvNfzwQ2fcbjtOPySkAI/HcPLJ67n77qMP7calCA4uGjlQWfv3Q9++gV/u9NPX8+uvHQDIyXHy/PNw5501s2ZCcRr0lVKqgamPddYry7t0bWpqamFpXhgyZECF6fPWHvjXIng7JRbfyntIgKKHgtIeFjweN0lJs+nU6Uc+/PAywsKakpCwgHbtltCmTTgeTxecVR1fV4PsdMuBIwzsewLef/JJ8X4dNUODvlJKNSD+66wbY+psnfXK8qbH39y5cyucOraqE9/4T3pTfPN/QPC+z8uzP8FJkyZxHDiwicsvn4rDYRCB4OAQmjRpQ26uM+CBofjP2laZhYuysuw8B7VBg75SSjUQ3vHbqampgJ2D3Tt+Oz4+vt5L/N6A701PXl4ecXFxAemtqfQd6qQ3brdw/PFRGONh1679OBxBFBS4iY5uSffuzYmOFtxuU+LhoXjtQvEpd4tPvVv8tf/Dg3crjZ1u2ZS7cFF4uCE2tmrfu7I06CulVAPhrToHSE1N9QXT+Pj4Wl2EpbKMMbhcLl96Zs6c6Uuvy+Wq9/QBOJ2GgQP7s3TpYpzOAqCA4GAICcnjb39LxOmsuBnCf8790n56HxD8Ozp6Hx68qzP6839gGDq05LDJ4txuOxKhNmjQV0qpBsS/zdyrIQR8r9KWJ25I6fN4PHz00UccOHCAkJAQmjVrxv79+zlw4AAfffQRo0aNKnc+Ae+h6jb7e+fd939g8G633+7hxRfd5OeXHEIREpLPnXc6adasdtoa6qAFoyRjzI3GmPXGmBxjTIoxZlA55w41xkgpW4+6TLNSStWFstrMpfhUe/WoPtaBryyHw0FoaChNmzalWbNmOBwOmjVrRtOmTQkNDa3RCYTK463udzoprGmw0wSHhsKTT8KQIckEBeVjjG1TCA7OIygon8GDk3n00dpLV52X9I0xFwMTgBuB2YU/vzPG9BSRTeVc2gvY6/f+EOZPUkqphqt4m7l/mz40rBJ/QyUixMbGsnPnTo499lhfHi5dupTY2Nh67xcB4HAYLrxwKSecMJtJk67C6XRz+uk/EB+/ko4dm+JwDKi1z66P6v07gMki8kbh+1uMMacDNwD3l3PdThHZXeupU0qpelK8zdy/jb+htJk3dN489Ab8hpqH8fHx7Nkzk8jIDJxONwkJiwgODiY+Pr5WP7dOg74xJgRIAJ4vduhHYGAFlycbY1zACuAJEfm1FpKolFL1qqG3mR8ODoc89KbvqqveoWXLbuzdi2+IZm0yddlOZIyJA7YAQ0TkN7/9DwOXiUj3Uq7pDgwDFgIhwBXA2MJ7zCrl/OuA6wBiYmISPvzwwxpLf0ZGBpH+C2KrKtM8rBmaj9WneVh9moeHbt++feTm5iIihIaGkpOT46ulaN68ebXuPWzYsBQRSSztWIPvvS8iq4HVfrvmGmM6AXcDJYK+iEwCJgEkJibK0KFDaywtM2bMoCbv1xhpHtYMzcfq0zysPs3DQyMifPLJJ2zYsIGQkBA6dOjAtm3byMvLo0uXLgwZMqTWaiXquvf+bsANFF/aIAaoyvxD84Gam0BZKaWUqmMhISH079+fli1b0r9/f0LKWzO5htRpSV9E8owxKcApwCd+h04BPqvCrY4HttVg0pRSSqk6YYyha9eutG3bloEDBzJz5kwGDrTd2kJDQ2u170F9VO+/CLxnjFkA/I5tn48DJgIYY94FEJErC9/fDmwAlmPb9C8HzgUuqNtkK6WUUjWjtM6GAwcOrPXOhnUe9EXkI2NMC+BBoA2QCpwpIhsLT+lQ7JIQ4DmgHZCNDf4jROTbOkqyUkopVePqY5KjeunIJyKvAa+VcWxosffPAs/WQbKUUkqpI1q9TMOrlFJKqbqnQV8ppZRqJDToK6WUUo2EBn2llFKqkdCgr5RSSjUSGvSVUkqpRkKDvlJKKdVIaNBXSimlGgkN+koppVQjoUFfKaWUaiQ06CullFKNhAZ9pZRSqpHQoK+UUko1Ehr0lVJKqUZCg75SSinVSGjQV0oppRoJIyL1nYZaY4zZBWyswVu2BHbX4P0aI83DmqH5WH2ah9WneVgzajofO4pIq9IOHNFBv6YZY5JFJLG+03E40zysGZqP1ad5WH2ahzWjLvNRq/eVUkqpRkKDvlJKKdVIaNCvmkn1nYAjgOZhzdB8rD7Nw+rTPKwZdZaP2qavlFJKNRJa0ldKKaUaCQ36SimlVCOhQb8SjDE3GmPWG2NyjDEpxphB9Z2mhsQYM9gY85UxZosxRowxY4odN8aYR4wxW40x2caYGcaYXsXOaW6Mec8Yc6Bwe88Y06wuv0d9Mcbcb4xZaIw5aIzZZYz52hgTX+wczcMKGGNuMsYsLczHg8aYucaYEX7HNQ+rqPB3U4wxr/jt03wsR2HeSLFtu9/xes0/DfoVMMZcDEwAngL6AHOA74wxHeo1YQ1LJJAK3AZkl3L8HuBO4BbgBGAnMN0YE+V3zlSgL3B64dYXeK8W09yQDAVeAwYCJwMFwE/GmGi/czQPK5YG3Iv93onAL8AXxphjC49rHlaBMWYAcB2wtNghzceKrQba+G29/Y7Vb/6JiG7lbMB84I1i+9YA/6rvtDXEDcgAxvi9N8A24AG/fWFAOnB94ftjAAFO9DvnpMJ93ev7O9VDHkYCbuBszcNq5+Ve4HrNwyrnW1NgLTAMmAG8Urhf87HivHsESC3jWL3nn5b0y2GMCQESgB+LHfoRWypTFesMxOKXhyKSDfxGUR4mYR8W5vhd9zuQSePM5yhsLdy+wveah1VkjHEaY0ZhH6DmoHlYVZOAT0Xk12L7NR8rp0th9f16Y8yHxpguhfvrPf806JevJeAEdhTbvwP7D6cq5s2n8vIwFtglhY+0AIWvd9I483kCsASYW/he87CSjDG9jTEZQC4wEThPRJaheVhpxphrgaOAB0s5rPlYsfnAGGy1/LXY7zzHGNOCBpB/QdW9gVKq5hhjXsRW5Z0kIu76Ts9haDVwPLZ6+kLgHWPM0HpMz2HFGNMd23/pJBHJr+/0HI5E5Dv/98aYecA6YDQwr14S5UdL+uXbjW1bjSm2PwbYXvJ0VQpvPpWXh9uBVsYY4z1Y+Lo1jSifjTEvAZcAJ4vIOr9DmoeVJCJ5IvKXiKSIyP3YGpN/onlYWUnYGs7lxpgCY0wBMAS4sfD1nsLzNB8rSUQygOXA0TSA30MN+uUQkTwgBTil2KFTCGxvUWVbj/1F9eWhMSYUGERRHs7Ftr0m+V2XBETQSPLZGDOBooC/qthhzcND5wBcaB5W1hfYnubH+23JwIeFr/9E87FKCvOnB7YDX/3/HtZ3T8eGvgEXA3nANdhelROwnSw61nfaGspW+At6fOGWBTxc+LpD4fF7gQPA+UA89g/IViDK7x7fAcsKf7mTCl9/Xd/frY7y71XgIHa4XqzfFul3juZhxfn4NPaPZyds4PoX4AHO0DysVr7OoLD3vuZjpfLreWztSGegP/BN4f/vjg0h/+o9gw6HDbgR2IDtHJQCDK7vNDWkDTvOXErZJhceN9hhLNuAHGAmEF/sHs2B9wv/cxwsfN2svr9bHeVfaXknwCN+52geVpyPk4GNhf9PdwI/AadpHlY7X4sHfc3H8vPLG8TzgC3AZ0DPhpJ/uuCOUkop1Uhom75SSinVSGjQV0oppRoJDfpKKaVUI6FBXymllGokNOgrpZRSjYQGfaWUUqqR0KCvVD0wxiQZYz4uXIkrzxizxxgz3Rgz2hjjLDxnjDFGjDGd/K7bYIyZXOxeZxtjlhljcgrPb2aMcRhj/m2M2WaM8RhjvqjF79Kp8HPHVHCe9/scVVtpOVTGmHONMXeUsn9oYZqH10e6lKppuuCOUnXMGHM78CLwC3Z2ro3YyThOBf4L7Ae+LOPy87CTdXjvFQRMwU7PeRN2QpB07GIztwF3Yqf13FPiTsrfucBw7L+LUkcsDfpK1SFjzGBsYHlFRG4tdvjLwlX2Isq6XkQWF9vVFogCPhaR3/w+55jCl/8WEU8NpNslIrnVvY9Sqn5p9b5SdeteYC9wT2kHRWStiCwt62L/6n1jzCPY6aEB/ldYDT3DGLMBO80ngNu/6t0Y08YY864xZrcxJtcYs9QYc3mxz/BWww82xnxijNmPXSMcY0y4Mea1wuaIDGPMV0C7Q8iHMhljrjPG/FHYXLHbGPM/Y0x0sXPEGPOEMeZWY8x6Y0y6MWamMaZXsfOchedtM8ZkGWN+Mcb0KLz+kcJzJmOXPW1buF8K89BfuDHmlcL07DbGvG+MaVaT31upuqAlfaXqSGFb/TDgCxHJqYFbvgmkAp8ATwD/h636dwG3AmMoWqlrrTEmAjvPd3NgHLAZuBx4zxgTLiKTit1/CvABtqnA+7fidewiVI8CC7GrhU2tge8CgDHmaWyTxH+Au7E1GU8A8caYgSLi9jv9cmA1thkjBHgOW1vSQ0QKCs95tPC7Poediz8B+KrYxz4OtAJOAM4p3Fe8VmMCduGUS4HuwLPYZbdHV+f7KlXXNOgrVXdaAmHYNvxqE5E0Y8ySwrdrRWSe95gxZkvhOf77bsau6T1MRGYU7v7OGBMDPGGM+V+xoPqpiNzjd313bNB7QESeLtz9ozEmEhhb3e9T2GHxbuBREXnMb/+fwGzgbOzSr175wFkikl94HtgHoH7AHGNMc+B2YKKI3Ft4zXRjTB7wgvcmIrLWGLMLyPPPr2J+E5FbCl//WJgX1xhjxoguYKIOI1q9r1TjMRjY4hfwvd7HlnR7Ftv/ebH3/bF/Mz4utv/DGkrfKYX3n2KMCfJu2KaFdGz6/U33BvxCywp/dij82RvbP+KTYtd9eghp+79i75dha1RiDuFeStUbLekrVXf2ANlAx3r6/Gjscp7Fbfc77q/4uW0Kf+4otr/4+0PVuvDnX2Ucb1Hs/d5i771V8qGFP73p3VnsvENJb0WfpdRhQYO+UnVERAqMMTOAU+qpN/xebHt0cbF+x/0Vr7b2PgTEAOv89tdUadc7rPBUYF85xyvLm97WwHK//Vo6V42WVu8rVbeexpZYny3toDGmszHm2Fr67JlAO2PMicX2X4otDa+o4Pr5gAe4qNj+UTWTPKYX3r+DiCSXsq2v4v2WAZnA34vtL/4ebMk9rOpJVurwoiV9peqQiPxWOPPbi8aYnsBkYBO2R/3fgGuwQbjMYXvVMBnb032aMeYBIA24DNuWfn2xTnylpX21MWYq8JgxxoHtvX8qcGYV03G6MWZ7sX0HRGS6MeYZ4JXCjnIzgRygfWEa3xSRXyv7ISKyzxjzb2CcMSYd23u/L3B14Sn+8xesAKKNMTcAyUCOiCxDqSOMBn2l6piI/NsYswD4J/A8tld/OjbYXA98XUufm2mMGYKtZXgaO6nPauAKEXm/kre5HsgA7sIOk/sF+5AyuwpJebmUfcuBeBEZZ4xZiZ1d8CZsE8Nm4GdgTRU+w2s8YLCB/lZsbcUY4HfggN95bwIDgKeAZtgRFp0O4fOUatCMjjZRSjUmxpgLsT36B4vIrPpOj1J1SYO+UuqIZYzpD4zAlvBzsJPz3Iet4RioY+xVY6PV+0qpI1kGdnz/TUATbIfFj4H7NeCrxkhL+koppVQjoUP2lFJKqUZCg75SSinVSGjQV0oppRoJDfpKKaVUI6FBXymllGokNOgrpZRSjcT/A4wrH/NdqXqFAAAAAElFTkSuQmCC\n", "text/plain": [ - "
" + "
" ] }, "metadata": { @@ -370,9 +360,9 @@ }, { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAY0AAAEPCAYAAAC+35gCAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/d3fzzAAAACXBIWXMAAAsTAAALEwEAmpwYAABe/UlEQVR4nO2dd3hUVdrAf+9MeqGEklCkiSAEQQFDUYoIgkoUXTsW7O5aYHVtu6tiW9vqWj6xK/a2VhQVUIKgFA249N5L6CUhfeb9/jgzycxkEiYwKSTn9zz3Sebcc+8552Yy75y3iqpisVgsFksoOGp6AhaLxWI5erBCw2KxWCwhY4WGxWKxWELGCg2LxWKxhIwVGhaLxWIJmYiankBV0rRpU23Xrt1hXXvw4EHi4+PDO6Fajl1z/cCuuX5wJGvOzMzcparNgp2r00KjXbt2/P7774d1bUZGBoMHDw7vhGo5ds31A7vm+sGRrFlENpR3zqqnLBaLxRIydXqnYanbtGvXjg0byv1CZLFUG23btmX9+vU1PY1qwQoNy1HLhg0bsBkNLLUBEanpKVQbVj1lsVgslpCpdqEhIgNF5GsR2SIiKiJjDtF/sIh8JSLbRCRXRBaKyDXVNF2LxWKx+FATO40EYDEwFsgLoX9/YBFwAdANeAl4VUQuq7IZWiwWiyUo1W7TUNXJwGQAEZkYQv9/BTS9JCKnAX8CPgj7BC0Wi8VSLkerTaMBsLemJ2Gpv0yYMIH27dsTExNDr169mDlz5iGv+eSTTzjxxBOJi4ujbdu2PPXUU2X6vPjii3Tp0oXY2Fg6d+7MO++8U6bPc889x/HHH09sbCytW7fm5ptvJicnJ+iY//rXvxARbrnllsovspLs3buXK664goYNG9KwYUOuuOIK9u3bd8jrDvUsVZXx48fTsmVLYmNjGTx4MEuWLPHrU1BQwK233krTpk2Jj4/nnHPOYfPmzX592rVrh4j4Hffcc88Rr7u+cdR5T4nISOB04JRyzt8A3ACQnJxMRkbGYY2TnZ3DtGkZOJ1QXxwjcnJyDvt51Sc+/vhjxo4dy4QJEzj11FOZMGECZ555JkuXLqVNmzZBr/nuu++47LLLeP755xkxYgTLli3j+uuvJzY2tuQD/aWXXuLuu+/mtddeo0+fPsybN4/rr7+exo0bk56eDsAHH3zAXXfdxeuvv86AAQNYu3Yt1157Lfn5+bzxxht+Y86ZM4fXXnuN7t27V3qNGRkZjBkzplJupJdddhkbN27ku+++Q0S47rrruOKKK5g0aVK514TyLJ988kmefvppJk6cSOfOnXnooYcYNmwYK1asIDExEYBx48bx1Vdf8eGHH9KkSRNuv/12Ro4cSWZmJk6ns2S8+++/nz//+c8lrxMSEir5ZMqntv3vVNn/s6rW2AHkAGMq0f8U4ADw51D69+rVSw+Xn36arosXqy5frrpypeq2bao5OarFxYd9y1rP9OnTa3oKlcK8fQ+fgwcP6vXXX68NGjTQJk2a6N///nfNzs7W2NhYXb9+fbnXpaWl6XXXXefX1rFjR73nnnvKvebSSy/VUaNG+bU9//zz2rp1a3W73aqq2q9fPx03bpxfn9tvv11POeWUktc333yzDhw40K/P/fffr6mpqX5t+/bt0w4dOuiPP/6ogwYN0ptvvrncuQVj+vTp2rZt25D7L126VAGdNWtWSdvMmTMV0OXLl5d73aGepdvt1pSUFH3kkUdKzufm5mpCQoK+/PLLqmrWGhkZqe+9915Jn40bN6qI6Pfff1/S1rZtW33qqadCXlNlONL3YlVwJP/PwO9azufqUaOeEpFTge+A+1X1peoYMzISEhMhLg5yc2HzZlizBrZsgZwcKC6ujllYqoqrr76an376iWnTpvHhhx/y3HPPccstt9ClSxfatm0LwPr16xERJk6cCEBhYSGZmZmcccYZfvc644wz+PXXX8sdq6CggJiYGL+22NhYNm/eXBKgWF6fefPmUVRUBMCpp57KH3/8wZw5cwDYuHEjX3/9NWeddZbfdTfccAMXXHABQ4YMqeRTOTxmz55NQkIC/fv3L2k75ZRTiI+PL/e5hPIs161bR1ZWll+f2NhYBg4cWNInMzOToqIivz7HHHMMXbp0KTP2v//9b5o0acKJJ57Io48+SmFh4ZEtvB5yVKinRGQg8C0wXlWfrf7xISbGHKpQWAhbt5rfY2OhYUPzMyqqumdmOVx27drFp59+yttvv83JJ58MwEUXXcRbb73Fww8/XNIvMjKSzp0707Bhw5LrXC4XycnJfvdLTk5m2rRp5Y43fPhwxo4dy5QpUxg6dCirV6/m6aefBmDbtm20a9eO4cOH88Ybb3D++efTu3dvMjMzef311ykqKmLXrl20aNGCSy65hN27dzNw4EBUleLiYq644gqeeOKJkrFee+01Vq9ezbvvvhvy89i4cSNdu3Ytee1yuSgoKPBT31x++eW8/PLLQa/PysqiWbNmfkFuIkLz5s3JysoKek0oz9J7bbA+W7ZsKenjdDpp2rRpmT6+Y992222cdNJJNGnShHnz5nHPPfewbt06Xn/99eAPxRKUkIWGiFwFXAq0AWICTquqHhvifRKAjp6XDqCNiJwI7FHVjSLyGJCmqqd7+g/GCIwJwPsikuK51qWqO0Odf7gQgehocwAUFcGOHeB2m51Jo0ZmZxIdXX9sIUcjq1evRlXp169fSVufPn146623OP/880vaWrVqxfLly8tcHxgBrKoVRgVff/31rFmzhnPPPZeioiIaNGjA2LFjGT9+fInO/b777iMrK4v+/fujqiQnJ3PVVVfx5JNPlvSZMWMGDz/8MBMmTKBPnz6sXr2asWPH8sADD/DQQw+xYsUK/v73vzNz5kyiKvEtpmXLlvzxxx8lr+fOncvdd9/tpxNv0KBBhfcItv5DPZdg1wW7prLPO1if22+/veT37t2706BBAy6++GKeeOIJmjRpUuG9LKWEpJ4SkfuAt4CWwB/AjIDj50qM2RtY4DligQc9vz/kOd8C8BVAY4A44G/ANp/jt0qMWWVERkJ8vFFjRUTA7t2wYYNRY+3YYdRabndNz9ISSLRH6vt+sCYnJ9O4cWO/b9yBNG3aFKfTWebb844dO8p8G/ZFRHjiiSfIyclhw4YNZGVlkZaWBhivHjBqlzfffJPc3FzWr1/Pxo0badeuHYmJiSXfov/5z39y6aWXct1113HCCSdw3nnn8a9//Ysnn3yS4uJiZs+eza5du+jWrRsRERFEREQwY8YMJkyYQEREBAUFBUHnFxERQceOHUuOVq1alWlr3rx5uetLSUlhx44dfmldVJWdO3eW+1xCeZYpKeY74qH6uFwudu3aVW6fYPTp0wcwXyAsoROqTeNa4DlV7a6ql6nq1YFHqAOqaoaqSpBjjOf8GFVt59N/TDn925UzRI0REVEqQGJiIDsbNm2C1auNOsvaQWoP7du3x+FwsGrVqpK2r7/+mr1797J///5yr4uKiqJXr15MnTrVr33q1Kl++vzycDqdtGrViqioKD788EP69etX5sM4MjKS1q1b43Q6+eijjxg5ciQOh/lXzc3N9fMG8t7T+2E9atQoFi1axB9//FFy9O7dm0suuYQ//vijUruPytCvXz9ycnKYPXt2Sdvs2bM5ePBguc8llGfZvn17UlJS/Prk5+czc+bMkj69evUiMjLSr8/mzZtZtmxZhX8T786qRYsWlVtsfac8C7nvAWQDQ0LpW5uOI/WeWrFCdcuWIz82b1Zds8Z4Yi1frrphg+q+faoFBYc9vSqhvnlPXXDBBTpkyBA9ePCgLl++XBMTE7Vly5b67rvvlvTZvHmzdu7cWT///POSto8++kgjIyP1tdde06VLl+ptt92m8fHxfh5X99xzjw4ZMqTk9c6dO3XChAm6dOlSXbBggd52220aExOjc+fOLemzYsUKfeedd3TlypU6d+5cvfjiizUpKUnXrVtX0ueBBx7QxMRE/fDDD3Xt2rU6ZcoUPfbYY/X8888vd52heE8VFxfrtm3bKjz27dtX4T1GjBih3bp109mzZ+uvv/6q3bp105EjR/r16dy5s77wwguVepaPP/64JiYm6meffaaLFi3Siy++WFu0aKEHDhwo6XPTTTdpy5YtderUqTp//nwdPHiw9ujRQ4s97o6//vqrPvPMM7pgwQJdu3atfvzxx9qyZUs955xzKlxTqBzpe7EqqCrvqVCFxjfAX0PpW5uO2iI0Ao9164wb7/LlRpjs2qWal6fq8bysMeqb0Ni+fbuOGjVKk5KSNCkpSZ9++mmdPHmytmzZUh944AFVVV23bp0C+tZbb/ld++KLL2rbtm01KipKe/bsqTNmzPA7f9VVV/m5rO7cuVP79u2r8fHxGhcXp6effrrOmTPH75qlS5fqiSeeqLGxsdqgQQM999xzy7irFhUV6fjx47Vjx44aExOjrVu31j//+c+6Z8+ectcZitDwrrOi46qrrqrwHrt379bRo0drYmKiJiYm6ujRo3Xv3r1+fYCSZ+vlUM/S7XbrAw88oCkpKRodHa0DBw7URYsW+fXJy8vTW265RZOSkjQ2NlZHjhypGzduLDmfmZmpffr00YYNG2pMTIx27txZH3jgAT148GCFawqV+iQ0RPXQqaVFpCPwOfBvTAqQPUF2LLVOc9+7d2893Mp906dn0KrVYMIY+xMUlwsKCsxPh8OotrzqrQAtRJVztFU3ExFCef9aLFVNbXwvHmHlvkxV7R3sXKjeUys9P98q57xW4l4WH5xO420FxmB+8CDs3288r7zuvDEx1p3XYrHUDkL9oH8IIxgsVYjDYQSFl8JCyMoy8SCRkUaAxMdbd16LxVJzhCQ0VHV8Fc/DEoSoqNIdhssFe/fCrl1GuCQkQIMGRoBE2D2exWKpJir9ceMJzmuMCcY7GP4pWYLhq8ZShbw8OHCgNFq9QYPSqHS7C7FYLFVFyLmnRGS4iPwO7APWA/tFZJ6IDKuiuVnKwSsoEhPNjkMVdu4sG1ToctX0TC0WS10j1Ijw4ZhUHgnAw8BfgEeARGCyFRw1izcqPSHBP6hwzRqTZPHAAWMfqQ+MGTOmTM0EEaFv374lfXzrKsTFxdGtWzdeeeUVv/sUFhby1FNPcdJJJxEfH09SUhJ9+/bllVdeKTequjxmzJhBr169iImJoUOHDuXmb/IllNoUGzduJD09nfj4eJo2bcptt91WJgHfokWLGDRoELGxsbRq1YqHHnqojJfPBx98UFLnIyUlhcsvv7zcfFHhQvXQNTKCEcqz/Oyzz+jatSvR0dF07dqVL774okyfimp4FBUVcffdd9O9e3fi4+Np0aJFSdp3S+g7jfHAFKCrqj6oqq947BypwFRMKhBLLcBrTPfuQoqLjTF9/XpYu9bYRPLy6nZqk6FDh7Jt2za/Y/LkyX597r//frZt28bChQsZNWoUN910Ex9//DFgBMbw4cN59NFHufrqq5k1axaZmZncfvvtvPXWW35Rz4di3bp1nHXWWfTv358FCxZw7733cuutt/LZZ59VeN1ll13G/Pnz+e677/j++++ZP38+V1xxRcl5l8vF2WefTXZ2NjNnzuTDDz/kv//9L3fccUdJnwMHDjBs2DCSk5P57bffeP7553nqqad45plnSvr88ssvXHHFFVx11VUsWbKEL7/8kqVLlzJ69OiQ1wjG5bQytTe8NTJeeOEFfvvtN5o3b86wYcPIzs4u95pQnuXs2bO5+OKLGT16NH/88QejR4/mwgsvZO7cuSV9vDU8/v73v7NgwQL69+/PmWeeWSIUcnNzmT9/Pv/4xz+YP38+X331FZs2bWLEiBEU25QOIQf35QJnl3NuJJAbyn2q+6itwX01dWzcqLp6dWmNkE2bVPfvL41MrwvBfVdddZWeffbZFV4XrK7Ccccdp5dccomqqj7xxBMqIvrbb7+Vudblcun+/ftDnuNdd92lHTt29Gu79tprtW/fvuVeE0ptismTJ6uI+AWwvfvuuxodHV0yvwkTJmhiYqLm5uaW9Hn44Ye1ZcuWJTU8nnrqKW3Tpo3f+G+++abGx8eHvEZV87fwjVyviFBqZAQjlGd50UUX6dChQ/36nH766SV/W9XDq4eyZMkSBXThwoVBzwd7L9Y0NV1PowBTYjUYiZ7zllqO01m6C4mLMxl6s7Jg3TqzCykurvu7kPKIiYkpqVnx/vvvM3ToUHr3Lhvb5HA4SrK9Tpw48ZDfsGfPnl2mXsTw4cP5/fffS8YLds2halPMnj2bLl26cMwxx/jdt6CggMzMzJI+AwYMINbHj3v48OFs3bq1ZM6nnHIK27ZtY9KkSagqu3bt4qOPPipTnyOchFIjIxihPMvy+njve7j1UA4cOABA48aNQ1hh3SZUoZEBPCwi7X0bRaQNRnU1PbzTslQ13hTvCQlGiERGGsP5xo0mweLRbAv5/vvvSUhI8DvuvvvuoH2Li4uZOHEiixYt4vTTTwdg1apVdOnS5ZDjNGzYkM6dOxMZGVlun6ysrKC1IIqLi8tkZfW95lC1KYLdNzBrbHlje8+BSTT44YcfMnr0aKKiomjWrBmqyttvv13h2lNTU/2eb2Bbampqhc/Edy6+c6vIlhLKsyyvj/e+FdXwKG/swsJC7rjjDtLT02ndunW586svhOpyezfwC7BCROZgUpOnAH0x3lTB/yMtRw1OZ2kaE9XSXYg3sDAxsTSwsLrTm1SWgQMH8uqrr/q1NWrUyO/1P/7xD8aPH09BQQFRUVHceeed3HjjjQAhp4M477zzOO+88w7ZL1gtiGDtFV3jvS5QkBzq2kONvXTpUm677Tbuu+8+hg8fzrZt20qexTvvvFPu/CZPnuy3UzruuOOYPHkyrVq1AqhQkFY0t8OpvRHYHs76HMXFxVx++eXs27ePr7/+usK51RdCDe5bKSLdgTuAAUBPTP6p54D/qOq2qpuipboRKRtYeOAA7NlT6u7rm96ktsWFxMXF0bFjxwr73H777Vx77bXExcXRokULvw+MTp06sWzZsrDMJSUlJWgtiIiIiHIL//jWpvDOS9W/NkVKSgq//PKL33WB36LLGxtKv+U/9thjpKWlceeddwKUeAwNGDCARx991E/95Yu3HG5gm7c2SEX41sjwvf+h6l+E8izL6+O9b2XqoRQXF3PppZeyaNEiMjIybKEmDyHHaajqNlX9m6r2UdXjPD/vsgKj7uNrC0lIMDaPHTuMR9aaNWZHcrTVCmnSpAkdO3akZcuWZb5hXnbZZUybNo1gyS7dbneJfjsU+vXrV6YM7NSpU+ndu3e538ZDqU3Rr18/li1bxubNm/3uGx0dTa9evUr6zJw5k/z8fL8+LVu2LPlwL68+B4S+46osodTICEYoz7Jfv34V1ucItR5KUVERF198MQsXLmT69Oklgs5SCaFhsXiJivIvNpWbC1u2GAGybp2pXliTBvWCggKysrL8jp07Q68MPG7cOAYMGMCwYcN4/vnn+eOPP1i3bh2ff/45p556KvPnzwfgiy++4Pjjjy+pVR2Mm266ic2bNzNu3DiWLVvG66+/zsSJE/nb3/5W0ifwPl26dGHEiBHceOONzJkzh9mzZ3PjjTcycuRIOnfuDBjDbWpqKldeeSULFixg2rRp3HnnnVx//fUlhvrLLruMuLg4xowZw+LFi/n88895/PHHuf3220sEZXp6Ol999RUvvfQSa9eu5ZdffuG2226jZ8+etGnTptx17dy50+/5btu2jZiYmJCet4gwbtw4Hn/8cT7//HMWL17MmDFjSEhI4LLLLivpd+WVV3LllVdW6lmOHTuWn376iccee4zly5fz2GOPMX36dMaNG1fS5/bbb2fixIm8/vrrLFu2jLFjx7J161ZuuukmwOwwLrzwQubMmcOHH36IiJSsKy8vr9x11RvKc6sCfgKO9/m9ouPH8u5Tk4d1ua3cMWXK9CO+x4YNqqtWqa5YYY5Nm0oLToW7XgjluNwSpBZEq1atSvoEc7kNJD8/Xx9//HHt3r27xsTEaKNGjbRPnz768ssva4HHR/mtt94KydU0IyNDTzrpJI2KitJ27drpSy+95Hc+2H1CqU2xYcMGPfvsszU2NlaTkpL0lltu0fz8fL8+Cxcu1AEDBmh0dLSmpKTo+PHjS9xtvTz//PPatWtXjY2N1ZSUFL300kt106ZNFa6pbdu2Fdbe8K0lEoxQamQMGjRIBw0a5Nd2qGepqvrpp59q586dNTIyUo8//nj97LPPyvSpqIZHRbVFAuuqeAn2Xqxpqr2ehohMB/6sqstFJINDZLlV1dMqJ66qnqOhnkZtYsmSDFJTB4ftfl6DelGR2XU4naUqrnAkWqyNNQws9ZPa+F6s9noavkJAVQ9vZEu9JtCg7nYb24c3G0ZUlEm0GBdnhIjDKkstllpPSN/1RORK4FtV3R3kXBIwUlXL98+zWChbL6S4uDTdu7foVIMGtdcry2KxhB6n8RbQDygjNID2nvNWaFgqRUSEv4qqsNB4ZbndpTVDvKosW7nQYqkdhCo0KvrOFw8cRc6WltqKrypLPTVDsrNLAwwTEkoDDG3hKYulZij3X09ETsQE8XlJF5FuAd1igUuAVeGfmqU+4w0i9OJ2GwGyb58RInbnYbHUDBV9XzsXeMDzuwL/KKffbuDacE7KYgkkmD2kdeu2h0w7YbFUB8Ei5OsqFQmNZ4GJGNXUWuB8YEFAnwJgu9Y2XzNLnSciAubOXV/yuqjI2ES870SvUT062hzlyZYjcUs8WrFrthwJFbnc7gf2A3iy225T1aMw56mlPhAZaQ4ojQ/Zvr30vG9lQ+uZZbEcPqEmLNxQ1ROxWMJFYHyIalnPLK8QUTWHFSIWS2iE7IMiIjcAfwY6A9GB51W1lifMttRXvLVDoj3vWlUoKDCBhoWFJmeWV4hER5sdixUiFktwKhPc9wLwNtADeBOIBM4BdgLvV9UELZZw4ytEvAZ2X/dep9MKEYulPELdaYwDHgMeBq4DJqjqfBFpjKnqFyzoz2I5Kgjm3muFiMUSnFCFxnHAz4Dbc0QBqOpeEXkUeBT4vyqZocVSzTgcVohYLOURqtDIAxyqqiKSBXQA5njO5QAtq2JyFktt4FBCxNew7k15YoWIpa4SqtBYBHQEpgEzgb+LyDpM+pDxwPIqmZ3FUgsJFCK+hnUwAiMuzrr4WuomoQqNVzG7C4D7MMJjlud1NjAqvNOyWI4egnlneV18vcGGgULEpoG3HK2EGqfxsc/vq0UkFZP1Ng74VVV3VdH8LJajjmBCpKgIdu4sLYHrrbnuFSJO67BuOUo4rFyhqnoQs9uwWCyHIDDYEIwQ2b0bXC7zOjra7ETi4kw/m8XXUlupKMtt+VXlg6CqG498OhZL/cA37QmYBIz798OePf6p4L1CxHpoWWoLFX2fWc8h6oIHYDfYFsthEliQyuUqTQUPpR5a3noikZHWLmKpGSoSGtdQOaFhsVjChNPpnwre7Yb8fOOh5XaXlsf1Na5bu4ilOqgoy+3EapyHxWKpAIcjuHF9165S43pUVFmVlsUSbqy5zWI5CglmXC8uhgMHjF0ESiPXrUrLEk5CTVj45iG6qKra6n0WSw0SaBcJjFz3qrRcLtMeGWm9tCyVJ9S3zBDK2jeSgERgn+ewWCy1iGCR60VFZkeyaZNpi4go3Y1YLy1LKIQa3NcuWLuIDAReBkaHcU4Wi6UK8Kq0HA5j+wCz68jJMe6+3jxasbFGiFgDuyUYR7Q5VdWfReQ/mFobp4ZnShaLpboI9NIqz8AeH29jRiyGcGg01wInheE+FoulhglmYPeNGbG7EcsRCQ0RiQDGAJvDMhuLxVLrONRuRKTUNuLdjdjMvnWXUL2nfgrSHAV0ApoAN4VzUhaLpfZS3m7EaxvxEhNjBElsbNm0KZajl1C9th2ABBzZwOfA6ar6WqgDishAEflaRLaIiIrImBCuOUFEZohInue6+0Xs9xiLpbbg3Y0kJJgjPt7sSPbuhc2bYd06WL0atm41giU/vzRZo+XoIlTvqcFhHDMBWAy84zkqREQaAFMx5WZPBjoDE4GDwNNhnJfFYgkTImV3F263f7EqVX8je2SkVWsdDVR7aI+qTgYmA4jIxBAuGY2p23GVquYBi0WkC3C7iDyjqmHPjxV4S1XFbmwsliMjMBUKlDWye2uR+ObUioiwgqQ2EbLQEJHjgH9iii+1ArYAvwKPqOrqqpkeeMab6REYXn4AHgbaAevCOVhGRgY5OTnExRlHdlVl1qxviYtLoFevweEcymKp9wQzshcXGyFSXGyEhbd8blxcaQ12G8lec0goX9RFZDBmd5AHfAtsB5KBszG7gBGqOqPSg4vkALdUlBxRRKYAm1X1Gp+2NsAGoL+qzg7ofwNwA0BycnKvjz76qFJz2rZtGwCxsXHExjYkN3c/+fm5ADRt2qJS9zrayM/PISYmoaanUa3YNR8dqJaWzvXicJQeh9qJ5OTkkJBwdK35SDmSNZ922mmZqto72LlQ5fXTwAJguKrmeBtFJBGY4jkfdIAwESjZpJx2VPVVTE1zevfurYMHDw55kOLiYh599FEAujdvzubMSext1IiDiYkAnHLKhUTU4a84S5ZkkJo6uKanUa3YNR+duN3G7beoqLQtIqJ0R+INQvTGj2RkZFCZz4K6QFWtOdRPwK7Axb4CA0BVs0XkCeDDsM+slCwgJaCtuefn9nAOJCI4nU66/D6fs7+djNsJTpeLSenpLD6xp7VrWCy1hPLsI7m5xkbijR+JjDRCxFuPxJtGxXL4hCo0NmPiMoIRhbFvVBWzgSdEJEZV8z1tw4CtmOqCYcPhcNAuJoaR33xDlKsIik37yK+/Yf/J/XEEebe5XC6cPuGwga8tFkv14HSWjUz3xo8UFcFGT0HqyMjS+BHvjsQKktAJ9VE9ATwoIq18Gz2vHwD+FeqAIpIgIieKyIme8dt4XrfxnH9MRH70ueQDIBeYKCLdROR84B4g7J5TqkpsVhYuh78sjXAV0/Shn/nmvjlszyod8oMPnuWdd57E5XE4d7lcvPPOk3zwwbMVjlHRa4vFEj68hnZvksaEBNOWnQ3btsGGDSZ+ZN062LHDtBcUlObdspQl1J3GIEwa9DUiModSQ3hfz++DPcZyMLU1rqrgXr2B6T6vH/Qcb2NSkrQAjvWeVNX9IjIMeBH4HdiLsaE8E+LcQ8btdrMOiNQi/3aEYfk/UPhWBi0mbidtUCwXnbmfvftziYoq4rMX7+PSvmfxyZzJFMdGU1xcGHTHkZmZQWFhPn37DkdEUFXmzPmBqKgY65llsVQTgXVHwHhq+dZkh1LVljeGxNdGUp8JVWicCriAbUBbz4HnNcAAn74VfnVW1QxKDdnBzo8J0rYIGBjiXA8bEeFgYiKT0tM559tvKRbB6XLx1Vnn8o3jbJpu6UDRH7FkZCgvZvQjV+LIatCcM3Km4Y54hps99o9FPXoE3VEUFuazePFcAPr2Hc6cOT+wePFcunXrY2NBLJYapDxBEpgaxZtjy1e1Vd8ESagR4e2reiK1AYfDQWRkJIt69ECGDWNPZmaJ91RH5zau/r8xjNkL33zp4odXruH0zW8zcv935mJPSoSRX3/Dps5dy9g/RITIyGiSkpJZvHhuifBISkomMjLaCgyLpZYRTJC4XHDwoCmr61VhRUYaIeLrtVWHnSxDtmnUG5o3N45ZjpatOPXO12jXdygASUnNPT/hymsiuGjOHSwbewO5jli/63NdcSx45QR++stnbFxRGo+oqqxYsYA9e/wdvvbs2c6KFQsqtG1YO4jFUjtwOksTMSYmmiMy0pTP3b7dGNvXrDF2ki1bTO6t3FxjiK8r/7aViQiPA67B2DeSgN1ABjBRVXOrZHbVjIjQsWNHWrduTVRUDCJCv37DAYiOjvHbDbjdbrZGbyPSUQQ+RrMoCjlm7wqunPQAByYl8nPSeRwYeSldbhlCdHQcubnZxGdn03jfvpJdTHR0XLnqKWsHsVhqN8G8ttxuKCw0AsO7I/GW342LMz+9dpKjTckQamr0FIyA6ISJxM4COgAXALeKyGBVDWvMRE0xePBgVJWMDBPg7hUcgR/oqsqBuGgmpaeTPmkSLqcTp8vF5LPPZH1ce8Zv/IH2cz7m3D2f0eidd9j6Tgte7TCN6xq9wm0LXgDA5XQyKT2dZb16BxUY1g5isRydBIsj8dYh2bvX3zsrOtqot3xTyNdmO0moO40ngcbAAFX9xdsoIv2BzzAuuWPCPrsaIvCDONgHs9dmsahHD9Z26OC3c+jIWq59cjT5+Wfw0bcTyHrrO1yLFrNrbRI38BoOj6+Ao7iY9EmTWHdsR9xudxlvKxGhb1+z0/G1g3Tr1qdk5xGMQGFihYvFUvMEq0MCwT23IiLK2kmcztqxKwlVaJwJ3O0rMABU9VcR+SfweNhnVssREeLiEsnNzaZtnyH0738mv/76HUuX/kZcXKLnPJxzYTRcOIrdu88h78/PUPyr08+/TIsh98MofkqFQYPLvqFEhJNPHloiMABOPnlouULAqrMslqOL8gzueXnGe8trC/HuXrzqrYiImglMDFVoJGAisIOx2XO+XiEiHH98T/Lzc+nf/0xEhP79zwQgJiauzId6w4ZuWvTbTuzc/JJIc4BIirlvy6Ncd3U7xjW6jjPPhHPOgf79zZvigw/+Q17eQb97vf3248TGxnPZZX/1a7fqLIulbhDMTlKeessbT+Kr3qpK761Qb70CuAL4Psi5y4HlYZvRUUSvXoP9Poi9giPYB3NERATRbTuVsYH8d+Cf2LOzHUvyz2PfKsj58GsWfbiI+xvfSJ+zk3A6G9O2bTYREU6uuuoe3n77cdxuFwcPHqC4uNgvgaJXnaXqr85KTa1YnWWxWGo/Fam3vG7A3mzATqdprwpCFRr/Bt4RkWRMWo9tmCSClwBDMQKlXhKK/QNMipGcnH1BbSDR0XF8MroRq1eD3JHB4AX/4Z97H+Hd967gOcbyWcKfuEbfYNV/hhFzdS9yGyTidEYEzYU1f/4MysZXKvPnz7DqKYulDhJMveV2GxWXt7BVWMcLpZOqvudxuX0IeN3n1HbgJlX9ILzTqns4HA5cLpOe5GBiYkm6dQCXqwiHw0HnzsA3z7B9+bUUPv08Y354hxtcrzE1ZwinMJvCg5H0e2YOT3a4Cx0zBNWyHl0FBXksWTLPr33JknmkpqaVq56yhnOLpW5RlXaOkG/tqVPREkjFpA1JBVqp6mtVNLc6haoSGWn2lUlJKVx77X0kJZmM75GRUX4Be67jU3G+9gp7/tjEivMu4TTHDOLIoxEHiCOfe9c+xsf3J5CWJtx/P8yb56vjLO/DvnzD+ezZ35eMr6rMnv09mZkZYVi1xWKpa1QoNERkjIj8ISI5IrIZeApYo6q/qOoyVbW5IEPE4XDQsGFTkpJSOO+863E4HJx33vUkJaXQsGHToKqmwgaNmJUUT3Gk/4YwmiIW051vsnrR7o1/cvN5W+jdG+67T/jxx2wiIuKIz86m9aZNxGdnExUVy/r1y4PGmmzatJolS+Yxe7YxV82e/T1Llsxj06bVNvLcYrGUoVz1lIhcCrwJrMaUeO0A/BWjMP9btcyujpGePga3210iILyCI5jAAGMf2duoEU5P6nUvxU4ns/v0JXWv8vflj/FD8hhmZcHqt36mAwfZHSk8VvQCIoo41VNE6iS/sb3s3bsTMCqsTp06sXLlSr92i8Vi8aUim8Y44AvgIlV1AYjIA8A9InK3t81SOQI/tMsTGN5zBY2TmJSezqgvv0QBt08UeYcx91JwYD8fNWjEwoWQ8Lf3GLD0NfBmdlegGM76cjJTdSh5eW7i40vH8wYUBvOycDqdQQMOLRZL/aYiodEJeCBAOEzAFF1qA6yryolZDI0aNQvqcdW0UTMAtGEjBOjRA9zfv8SX4/Zw9ldfEekqlQT5GsMfX57E09+9S4uTWtDm0lM49cxE4uOddO7ck4ULf+Ga118n3ulkywUXcDAxkc6de1qBYbFYylCR0GgI7Alo875ujBUa1UJycmt27dpaxuMqObl1mb7icOAYMQq+/sqvPcaRT3GLJjy05W6az9lJ8Rwn88f1JrPtIJZ1bkMX51JabdkCIox97jkmpaezOSmZk08eUuFOyGKx1D8O9YngEJGSA3AGa/ecs1QBO3YEL78erF1VWZd7gEnp6bhFcIlQFBHB5HPP4vI7p7Fm2lomjp7K2yn3UKgR/Gn9MzT5YTnnTJ6EQxWH202kJx+WY8c263ZrsVjKcKg4jV/KaZ8b8FpDuJelkogIrVsfi8tV7FeHIykpmdatjw3qDbV//y72BVFnyf5dtO4US9snhwJDycqC/3x1gKWvfk5R1jtAae0PZ7GLXhO+Z7d0penlZ5vCyhaLxULFH/QPVtssLEFRVYqKCtizZ3tJZltvLqmWLduVCcIzCQrN74HqLBMZWto3JQUuv7EBH+YuIfbZPL98WG4cdN6zgsYPX8L5r/1K83P7cd5J6+netRg9tmOVr9tisdReyhUaqmqFRg0jIkRFxfilQvemSvcWiQrsHxeXQG5uNqmpafTrN6Ik7iIuLqFMf5fLRV7DRnyTPpJRX34JIrgcDl7tdT0TC66l2ZpcfshKw/0KdOUZhvMCWxI7s6ffSJKuHImceorJjnYE2Gh0i+XowqqUajnBkiKWl3zQm3m3oCCPfv1GeApIjQAgOjq2zDUOh8PPO6t7YiILs7M5mJjIVU0yOeec68nMFL7/Hj759nZWbTmOkdnfMHjKC0RPeZpNcZ346IHlDB0mJDcq8K84EwKZmRl+c/VGo0dHx9o8WRZLLcUKjaOAUJMiQnAh4/1QDkZKSht2797GwcREdnfqxEFPcF9KShucTujTxxx6fztWrryVH364lYe/y6bZwmkk5e7hzbsF7lY2RqVS3LwFxcNH0uCykbg6d60wU5o3Gn3nTmPQ990VNWvWip49B9kdh8VSC7FCow4SqpAx6q9ooqPjKCgoLfMeHR1HVFR0gL0EOnc2x223JbJ9+3lMmwan/wDzZhXxZsFoRm7+hl5v3ANv3MPOhHasvOIRWvxtNDExwed58OABwESj+yZZ9LZbLJbah3WVrce43W42bFjhJzAACgpy2bBhBW53+anFkpNh9Gh45x2YvziKtm89yNOXZtI9aTPX8yq/5nTn8ZcacMIJ8ODFSzk4/DyKXnkDx/ZtQGlGXsAvT5YZP8/mvbJYail2p1GPERHy843A6No1jUaNYomIaMTSpfPIz88NWT0UFwdnnGEO95Ot+N//rmfq1OtZNw1yl8D6WZuIJpM2i7+Eh2Bjcm/yTj+buPbQbulCY4QHXJ4UKSvT+lbRii0Wy5FihUY9prRkbR79+49g6dIZ9O9vDOcxMWUN56HgcMBJJ5njrrtgyxaYNm0410zbwL5ZixlW+A3p2ydx0gdPMDF2DvPyH8fh2VU4PIGF/3dcp7Cu02KxhI+QhYaItALuAAYCScA5qrpYRMYBs1U1MODPchQQvGRt+YbzytKqFVx1FVx1lZCXdwK//HICr/x4L3Om7Ccpayn5RBNDQUl/cSldpy2AC7dBy1ZhmYPFYgkfIdk0RCQVWIQp67oVaAt4K9W2BcZWyews1UJlvLOOhNhYGDoUHnsMps5NYPCYmcQ48v36ONTN8PlTWHPq1dx9N0yZAoXL1kCYbRyB9pqK7DcWi6WUUHcaTwPLgOFAPlDoc+5X4Ikwz8tSx3E4hPhji5h87tmkT5pEscOJw6U81OKfTNt9Bu48B7+/B9+/t5PtHEdWdFs29DiH2IvOodmfBiJRhx9UOGnSRIqKChg16nrACIwvv3yNyMho0tPHhGmFFkvdJFShcSpwqarmiEhgvuztQEp4p2Wp64gIkZHRZdK+RyW6GRU1kx497mD6dJgzNYYb//cq6QVfM2zeq8TOe579dzbklUEfkjT6TE49FRo0CH1ct9tNUVEBu3dn8eWXr9G5c2e+/PI1du/OokmTlKCFqiwWSymhCo2K9u5N8c12Z7GEgLGjmN8D82Q5ndC9u3LiiQJ/TWTPnuv4+efruHZKLo6fpjE4+2tezOjKxgy4XN5nXMLrbO19Dg0uP4djzziWij7zHQ4Ho0ZdzxdfvMru3Vns2tWA3buzSEpKZtSo8qsoWiwWQ6j/IfOAq8s5dxHlZ8O1WIIiIngz6nftejLXXXc/Xbue7Dnn8LOrJCXBqFHw7wlxPL70HI75/nUuuastffqY5IpR2btIn347g67tyMG2XZkz+B4+/bCYrKzgYy9Y8DPJycf4tSUnH8OCBT9XyVotlrpEqDuNh4FpIjIF+ACTCn2oiIwFzsN4VFksIVPq7ptL//5nery2zgQgJiauXGO8wwEnnGCOsWPhwIFL+eWXS3nz67U0mDGJgfu/pt2qKfzpb48D8GDyBJr1aEmTS4bRa2A8MTHK8uWZ5Obm+FUrXLbsd+LiEmz6EovlEIQkNFR1hoiMAp4F3vQ0Pw6sB0ZZd1vL4RDc3ffMSn1oN2gAZ54JZ57ZAdWxrFkzlsk/FXP6LJj9i5urtj9B2ykbyZ8SzXTH6SxuP5LMlq04I+KHMtUKF/XogcvlIiKiasOXbGZfy9FMyP8dqvot8K2IdASaA7tVdUWVzcxSLwinu68IdOwIHTtGcM0NUFDg4Lc5q/nqk1k0njWJ/ru+4sw1k3luza1cwsc4UPBULBw56RvWdji2ym0amZkZFBbml2QqVlXmzPmBqKgYm9nXclQQapzG/SLSEkBVV6vqr16BISItROT+qpykxXI4REdD/0GRXPDiaZz+v2fI/d9qPvznYnZ1O4Ei/F12pVhp+NJBXvnLQr771s2+feGfj6pSWJjP4sVzmTPnhxKBsXjxXAoL822+LctRQag7jQeA7zGBfYG09Jx/KFyTsliqgiZNhYE3dSU35lvixuf6VSt04uL63Jdg0kucPGkeNzhO5qzOa+h7UgHHjuzCyWlCbOyRje91M05KSmHx4rksXmy0uklJKURGRlsVleWoIFShUdG7uTH45IGwWGoxbrebLa58JqWn+1Ur/OrsdObF9ufEfc2I3nsSzvkwbNlz3LbsBbI+SOZnx2DWtzsNGXIax6cfR48ThcqaPlSVzZvXsGePv1vXnj1ZOJ1OevUabAWHpdZT7tteRAYDQ3yabhSRkQHdYoGzgSVhn5nFUkWoatBqhfEcZMA1f2Ww00luLiz65g7e+bIHSX9M55T907lo7cdsW5tCy9e3kpAA13WeSdtTjyH17HZ06UKF8SFemjVrWVJ4KrDdYjkaqOi70iDgn57fleBxGoXAUuC2MM/LYqkSHA4HcXGJ5OZml6lWGBeXWGIIj4uDPhe1hYuuBa5lz25l5ucr2TBrE+3XCOvWKeMyL6dt5kbWPdeOGVGnsa3LaUQNH0L3M1tx3HHBCxd6Y1NCbQ8ngdHuNvrdcjiU+45R1QdV1aGqDox6qq/3tc8Ro6o9VXV29U3ZYjl8RITOnU+icePmfu2NGzenc+eTylUPJTURBl7fmSveHsqsWTBvLvx892TeOPEFlsWcxIjCr/jb/64k6smHOe006Hmim/fO+YTPJ2SxerXJtygirF+/DKczgmtef50bXn6Z+OxsnM4I1q9fVqWqqUmTJvLll6+VJGb05tuaNGlilY1pqZuEGqdhv45Y6gReD6a9e3f4te/du4OWLduFHDPRqrXQ6rZUuC0V1VtYsc7Nqs8WsnhRDM0XQcqORdy162LIhKWPdmFK7Gns6DaYRc3bcEbBlyZGBEpiRFam9cPlcuF0BqZ2O3Jsvi1LOKl0FJOINAfKVH1W1Y1hmZHFUsXs2GE+sFNT+9CwYQyRkY1ZsmRuSXtlEYF2HRy0u/NEhgH3KqxZkcrEz+bB9Okcs3o6F+a9TcJvE7icd7mAz0yMCKbw1Mivv+G93v2q7IPb5tuyhJOQhIYYhesjwI1Ao3K6hf8rksUSZkSEY47pSPPmrenXbzhLl86gX7/hAERHx4RFRSQCHY+PoOM/ToZ/nIzqXWQuK2L9p78R9cNyijZE4pvj0+FyE33/H0z4+ifizhxEn1MiOP740AzrobJgwc+kpLRlz57tJW0pKW1ZsOBnG1RoqRSh7jTGATdj6mY8AjyKyXw72vPz8aqYnMVSFQRLX9Kv3/AqsymIwHFdI2n/jzR2NfiCuGf9Y0QENxe7PqJw7hc0nruXQiJIj/+J9l1jaXzGyZzcL4Ju3SDyMEuIqCr5+XksXTrPr33p0nl07Zpm05hYKkWoQuNqTPDesxih8YWqzheRR4ApQJuqmZ7FUjVUV7XCwDHyGzUpiRFRwO10MmlkOvNaDqIraYzMimb2bLhv292c/NvvHPgtkZ8ZyITI09l2whkkD0klLQ169iTkYENVJStrQ9BzWVkbrNCwVIpQhUYH4HdVdYlIMSY+A1UtEpFngReA8VUyQ4uljuB0OmnaNJllvdI4+bffiCgu5v3Roylo3JT2TRswNL0fQzGeVtsWTubbTzKInvUj3db/yMiib/li/ijOn/8FAJc7P+TA8Wm0GtCBtD7CySdD48bBx3U4HERFxdC4cXPOeeYJYuPiWHnxxTRu3JyoqJhqsWnYJI11h1CFxn5Kjd9bgc6U1tCIAJLCPC+LpU5y5plX8M47T/DmddeVtDnVxZlnXlHyWgRa9mhGyx4XAhcCsOR/Gyn8LZdrNsDaWVt5d+VlsAQ2LGnDjy+fzr84nbXHnsGxfZuRlgZpaXDMMaWxIi1atGX9+sD8okKLFm2reMU2SWNdI1ShsQDoCvzgOR4UkTyMZvZRYH7VTM9iqTsUFxfzzjtP4HIV+7W7XKb9yivvLjcte+MebRjQAwYAaAvW/m8Zuz7+kehZP3LBhi+4xvUWY9a8xdtrxvDT+1vpw1yWNR/McWmN6d3bze7dm2nUaAdR4iC2sIjWETFs3rud/PwcevYcVGW7Dd8kjQB9+w4vSdLYrVsfu+M4CglVaDyLUVGBSU7YE3jf83oDcEt4p2Wx1D2cTmdJcN3xx/fi1FPPZtasb1m+PBO32x16jIYIMSceT+sTjwduJsflInvBH1x0oD2tl0Ozz75m7PI/49rhYP43PfnpmyEs53TaSB5JuhUV4fIH7uPLEaPYMLBPlX5oiwh9+w5HVf2SNKamppXsPCxHF6EG9031+T1LRNKAY4E4YJmqFlVmUBH5C3An0AKTt2qcqs6soP9wjM2kGyY54i/Anaq6sjLjWiw1iYhw0kkDyM3N4dRTz0ZEOPXUswGIi0s4/A9QpxPp3YsTgROHANddw47MVHIn/UiLGT9yx4ZnuFufJE9jiKHAJAVywTnffs3A+Q+zcCH07g29ekGHDsHTnxwJ33zzNgUFeX5tW7eu55tv3iY9fUx4B7NUOaHGaVwJfKuquwHUJP5f7TmXJCIjVfWdEO91MfAc8BdglufndyLSNViAoIi0B74CngeuABKAJ4HJQMdQxrRYagvB3H29AiRsREVR3G8AUf0GAOPZeTCH6E/fIe6hv/nlo46lgJnburPo/e788v4pDORZGjeGvifm0z0thl694MQTIT7+8KfidrvZt28X+fkH/dr37t1BTEy8jUY/CglVPfUW0A/YHeRce8/5kIQGcDswUVVf87y+VURGAH8G7g3SvxcQCdyrqi4AEXkM+ElEmqrqrhDHtVhqBdXt7uuOi+cryeNyl79CoNjhZH63wSQfcNE3dx3NgR074MHpA2gxfRsL6c7ndGd3q+5w8sm0Pu04evaE9u0rtxuJi0soIzS87ZajDwmlWpiIuDEJC+cFOTcQmKqq0SHcJwrIBS5V1U992l8EuqnqoCDXtAOWA2OB1zEqsReArqqaFqT/DcANAMnJyb0++uijQ64vGNnZOURFJYQ1Kre2k5+fQ0xM/fpHri9r3rUri3Yzf6bvyy+jIrgjIvjt2mtZP2AgTZumAMbVNysrhkbvTqLB8uWk7FhJh8IVRFHEJ1zIxXwCwMuRN5OfkkxB53bE9DmGNr0jiI93lTt2bm42BQX5DBr/AAA/3XcfTmcE0dExxMUlVv3iqT9/Z1/y8nJo0ODw1nzaaadlqmrvYOcqqqdxIsbg7SVdRLoFdIsFLgFWhTiXpph0I9sD2rcDQ4NdoKrrRWQY8CnwIiYz7wLgzHL6vwq8CtC7d28dPHhwiFPzZ/r0DFq1GkxCPXqfLVmSQWrq4JqeRrVSH9bsdrt5++3HWZmcTOtWrYh3Onnzggs4mJhIxNq1DBhwUYmKqFs3YGjfkms37itk/Q8r2LZUGL4Jlv+ew8jdX9Jq01bYBEyDLJJ5udn9LB/yF3p1L+LUxktoNbQLEfHme+Tvv09nzZql9MvOJqK4mC2ZmRQ1aUZqalq1Pfv68HcOZNGiDAYNGhx2G1VF6qlzMZ5SYExn/yin327g2kqOG7i9kSBt5oRICvAGRv31IZCIiU7/RESGqKq7kmNbLPUKb5nZ4uIiXE4nRXFxHEw03/APVWY2rlEUXS8+ga6YiBHVBDZv3sIPGTvZM2MRLFxI020Lydx5DN98DEs/XsadnEQREWyIPZ7drU4gO85Jlwb7y2T2Xegq5qSTBlZJZl8vNqgw/FQkNJ4FJmI+0NcC52O+4ftSAGzXUHRchl2AC0gJaG9O2d2Hl5uBg6p6l7dBRC7HfM/pjzGmWyyWCmjfvgtLl/4WtL0yiJigwWOuaAZXDAGGUFAATZdA2gJYOfcYbpn3ES12LqR73kJ6rJ5FHzZRQJRfZt/0r75mfeP2VfoBnpmZQUFBHv36jQCMwJg9+3uio2NtUOERUK7QUNX9mEhwrwfT1sq61ga5Z6GIZAJedZOXYcBn5VwWhxE0vnhf1yOLg8VyJJgP57evvppOnTrBypV+7UdCdLTJhdWzJ3BtY+Bi9uy5mAUL4NkFyv5P3uaZLbcRTWHJNZFuF7e/+QzL3p3Gyjans/RP93N830accIKpmnikqCqbNq0uKa3bsGEss2d/z5Il82jWrBU9ew6q8h1HXd3lhBqnUZLtTESiMeqorpiUIhNVdWslxnwGeFdE5mHiLW4CWgIve+7/GJCmqqd7+n8L/FVEHgA+wKin/oXZaWRWYlyLpd4SrC55Re1HSlISnH46DBkCU5rtIu7+PL/MvgVE8R/5K72Lfqf/mne54MknKAZulhfplrSNnScMIfq0/nTrHUOXLkYwHS5LlsyjU6dOrFxZfWFddTl1SkWG8IeAP6lqqk9bNDAXOIHSryhjRaSvqq4LZUBV/VhEmmDqj7cAFgNn+QimFpjAQW//n0TkMuAuTEBgHjAHGKGqZf34LBZLrUFV2S5aJrPvt+ln4+rVDFfvKby9wM3FiyNYsABOXvYbo3e/R0TGo+RlxPALp/Afx3nM6HYz3btD9+7Qowd07nzoVPHNm7cKKhSbN29VNYv1UNOpU6p6h1PRTmMoJoDOl5uB7pjgukeBLsDnGAEQsjFcVScAE8o5NyZI20fA4fnOHgEulzmq0E5nsVQrqalpNGwYS2RkI5YsKeNBXyWICIt69PDL7HswMZGYCCU1FU44IYLLPH3z8iYy5bfnOfDNzyTM/ZFjN/7EKYU/88LCm1m4EF7hBr4llXsiT0e7pnJCdykRJr6CRETYtSsLp9OJy1Wq3XY6nezalVUtqVMAv9Qp3br1qfLUKb47HDACY8qUH4iJieFwPUkDqUhoHAv8J6BtFLANE2inwDwReQr4a1hmU4sQgZQU2LsXcnMhIgJiYsKfYsFiqWpKqxW2ol+/EZ5qhcY4HB0dW+UfoAkJDcnPP+iX2RcgIaFhmbFjY+HEgQ1g4EhgJAAn7i3mv8th+dz9pE/4iRsOvgZFsP1/zfnpf0N4iT9zJwOJjobjj4cTToBu3dxs3uykUSO49t23StLBu1wu9u3bVWX12H3XnZY2rERgAKSlDavyHYbvDichIYYpU35g7ty59OkTvh1ORUKjIT4eTZ7AvDTgvwHeUv/DqJTqHI0bQ6NGUFAABw6Yw+WCqKgj07FaLNVN8GqFI6qt+FRl2gNJbBxBv37Qr19DdNxqtm/egHvaTxR+9yMj//iRbZ1GsnkvRKxbyS3/e5Kf/jeE/zCE7VyJw+HiZ+epDI76lTUz2xDTroC2bXOqPHXJpElvsXevf7KK999/hsaNm5KefnWVjBmYHNJrx0lLS2P48PDtcCoSGluAdsDPntd9gCjg14B+kUCdtS2ImB1GTAw0bQp5ebB/P2Rnm3PR0YdfhtNiqU5qolphVeBq3RbGXE3kmKvJVuUSl4tLIsD11UqS7/yM6w6+AcAy5/FsdLVmoHsWBUVRRP1YxI28wgNyK+++awIZfY9GjcI0P5eLnTu34nIVEx0dx+jRt/P++89QUJDraa+6Xc78+TMI9IgTEWbMmFEt6qmZwDgR+Rrjensbph74twH9TgI2h2U2tRyHwyRvi4+H4mKjttqzxwgQh8MIFmv/sFiCk5qaRr9+I0pcX8OCiNEdA85zR7Jr5C4iFy8getaPNPj0Tc5YNQ0BYskH4G2u4lL9gCWrurFm1bHM+aIDjzAUxUHr1pCaagRIaqo5WrWqvEra4XDQqFEzdu/exiUvv4jr5RcpuNrsLho1alaltUsKCvJZsmSuX3t1qqcexLi0bgfyMa6uL/u633oYA2Qc8UyOMiIioEEDcxQWwsGDpfYPp9MIkPqUt8piCUagPcWrFoMqsqc4nRT16E1+t5PI2LuJCzduIKagNLWvOoT+iXMZnjsdZ1EBeREJnNLtAMuWwy2b7+akzQtY88OxLOFYJtGBrMROyAnd6Nq1VJAcd5xRUVe05sjISCIjY/zaIyNjiIyMrOIdXvA469Djrw9NRcF96zz5p64DGgPzVPVd3z4i0hL4kdAz3NZJoqLM4bV/5OQYFVZxsTWgWyw1YU9xOp3sbpCI0+UfF+x2OJh4041cdMujOLK24tyZxTc9hOJicN8fS2zGPvpnfUJCwR4AlmZ3IfXXpfz6KzzHbWSxlzmOY8lN6YCz07E06HUcbU9uTmqqiU0Bk+uroCCfoqJ8nC4XEcXFxGdnczARCgryqywdvIgQHR1Lamqa304uLS2N2NjwCegKg/s89S3ur+D8VuDWsMykDuBr/2jSBPLzS+0fbrexfURHWwFiqX9Utz3F5XKRk5BQEh+CCC6Hg0np6eQkJOBShZatcbdsDXg0XP8aj4vxHACy9+/DuX4Nzi25vB0FS5bACe/tptP2WbRwvY9jq8JW+CHjDEbwAwBvx95EbNN4XO07cFB2c0LhH2Xyba3q079K192z5yB+/fU7rnqr1GNMVRk0qEwC8cMm1HoalkoiYtwHY2OhefNSA3pOjklBbT2wLJaqw2tXWNSjB2s7dKB7YiILs7M5mJhIkxDsCtqwEcU9epHYwwSsDR0KjDUVrtfsKWDDzxvYPW8Nq7fE0nMPLF+mnJA3l86bVhC3Ka/M/RzFxZzz5Vd8vc5BQcw3JJ7UieJj2of1Q0BV+eCD/5Cbm82g+AZEOB2cfHIav/02j+XLl/PXv/61ym0aljDha0B3uYwA2bev1APLq96yWCzhIyWlDbt3b+NgYiK7O3XioCeNSEpKmyO6b3xSNF1HdYJRnRgAXA243cKGDQt4f4my+bdtOL95jTuzHi8xwAM41M35f3wG40yaPRcOPuvzFJsvup1ux+yn5/zXkc7H4WrXkeI2HYzKohKoKt6k34WF+UTExrFxozFBu93uajGEW6oApxMSEsxRXFwqQLw7kOhoK0AsliNFRIiKiiY6Oo6CgtyS9ujoOKKiKk4Hfzg4HKaiYfv2QvGI5nyWlEfEM8V++bYKJZqzk7+FA3G0yF1DR1YzdW4ffp0LaSxnLn8r6etGOJh0DOvufImGl55F9N4soubPobhdR4rbHmtUGGXm4KBBgyQKCvLR/DwoKiRn9WqcjRqRlJQUNjuKFRo1SEQEJCaaw+vCa3cgFsuR43a72bBhhZ/AACgoyGXDhhX07DmoylxfIyIiiGnXiW/S0znXJ9/Wd+lnccGwDZxzzjVs2dKPZctg4HJovhyWL+9D81W7aedaTUdWcxyr6LhnNc/c24KlD8Bfms3kP1suKl1H89bosR058K8XKe7UFcf2bciu7eTuyiJ1wXxjSxEpsaWsjYkJmwHeCo1agq8Lb1GRVWFZLEeCiJCfbwRG165pNGoUS0REI5YunUd+fm6Vp/No3rwlC3v0oHdAvq1uzVsCSuvWQuvWMGxY6XWFhUmsWZPGihVpLFsG7yyHPSuhcCO8uuUsZvJbqUDZsZrOu1bx4J/jSOgGV+/7kLOm3cHtGKdbMRPB4XaTPmkSM84/v3q8pyw1Q2SkOawAsVgODxHh+ON7kp+fR//+Jt9W//4mPiQmpurzbUVERBETE4fL6cTldJoEjTFxRERElTt2VBR06WKOUaNK23NyYOXKeFau7M3y5b35eQW8vhKysoDl5pjHn+hDa4bwI9fwFlGUlj5yOZ3kLFpU9TYNEfmpEvdRn/oXljDiK0C8KizfNCZeN16LxeJPsPiQ/v2rPt+W2+1m06ZV5Ofn8s3f7mXUqOtp8uVr7N6dxaZNq+jVa3Cl1EQJCT5FrnzYtw9WrDDHqlVtWbGiLU8t6M2Vue/6CQ2ny8X2uLhqsWk48A8v7Iwp07oeEyWejMlNtQ1YEZbZWCrEV4VVXGziQHyN6DYOxGLxpybybTkcDiIjo2nSJIVRo67H4XAwatT1fPnla0RGRoftw7tRI+jTxxxgYlPef/8zvp6ZzgWTP8MlThxON5PS0zkQFxe2nFcVRYQP9v4uIqOA54C+qjrPp70P8LHnnKUaiYgo9cLyuvEeOGDSmbjdNhLdYqlJ0tPH4HK5SgSEw+Hg3HOvq9J07A6HA5eriBVpXdm28FfinU7evOACDiYmEllUFDZhFepdHgbu8xUYAKo6FxgPPBKW2VgOC68bb8uWcOyxcMwxJiYkN9fsQvLyjCCxWCzVQ2ZmBvPmTS3J+aSqzJs3lczMjCodt3Hj5oCxYxTFxXEwMRGA5s2bh22MUIXGccDOcs7tADqGZzqWI8XhgLg4U0DKK0AaNjQ5sbKzzU6kuPjQ97FYLIeHbzGkOXN+KKkPvnjxXAoL88OaPNAXEeGcc64hKSnFrz0lJYVrrrmm2r2n1gE3At8FOXcjxs5hqWU4HKWpTJo0Mdl4vbEgeXnWE8tiqQpqqtyrqjJ37hT27Mni7auvplOnTrByJVlZWUyZMiVshZhCFRoPAu+LyGLgv5Qawi8AjgdGH/FMLFWKt2BUdLSpSFhY6F9QCowxXdXaQSyWI8UrOHzLvVZ1fXCTkj2apKRk9uwpKbpKcnIy0dHhi4IPST2lqh8BwzHFmO4FXvT83AcMV9WPwzIbS7URFWXUVm3aGDVW69ZGWHjtILm5xsBusVgqj1cl5YtXVVWVY27evIY9e7aTmtqHpKQWpKX1Yfv27axZsyZsY4cc3Keq04BpIuIAmgK71Jsdy3JUExFhjshII0AKCozt48ABIzwcDnPOqrEslkPja8PwqqS8r6HqdxyeWQT8DB+Vjgj3CIodYZ+JpVbgawdp2rSsGkuktDKhVWNZLGUxyRJj/GwYXhtHVFRMlQkMEeHcc68tKafbqVMnVq5cSVpaGiNGhC+oMWShISIdgIuANkBgzl5V1WvDMiNLrcJrKG/Y0Kir8vON8MjOLrV/REeXlGm2WCwEj0avjh2Gtyqib+W+cAoMCFFoiMi5wKcYG8gOoCCgS9Up6iy1BqeztC5IcrJRYwXuQiIibFS6xQI1E40ezJbyww8/hM1zCkLfaTwCZACjVbW8eA1LPcK3tG3jxqVpTbKzjSHd7TaqLrsLsViqh0BbSkJCDH36NGbuXGNLqW6X2w7AHVZgWMrDN62JatldCJQa06uojIHFUq8JtKUsXjyDM84wtpSYmPDZUkIVGsuBJmEZ0VLnKW8XkpNjDpfLemRZLFVBMFtKOFVTELrQuAt4VkTmqurasI1uqRcE7kIKC40Q2b/fCBEw9pKoKPPTYrEcPlVtSwlVaIzH7DSWicgqYE/AeVXVQeGcmKVu4huZ7vXIKigw8SAHDhiVFliDusVSWwlVaLiwNTMsVYDTaRIsxsWZuJCiotLkit46Id5iU5GRVohYLDVNSELDt7aGxVKVeIVDoCrLm6FX1dhDoqJMP4vFUr1YZ0hLrSVQleV2m11Ifr5RZfnaQyIjrWuvxVIdhBrcN/BQfVT15yOfjsVSPr4pTho39reHZGcbYQLWqG6xVCWhfjfL4NBR3/Zf1FKtBNpDiov9hUhurukXEWGFiMUSLkIVGqcFaWsCjAQGAbeEbUYWy2HizdYbHw/NmpUKkYMHS8veqlohYrEcCaEawmeUc+pzEfkPkE7wqn4WS43hK0SaNzeeWYWF/kLE7TY/rRCxWEIjHAkdvsVkv7VYajWRkaUCpEMHaN/etDVoYASKN3tvXp6to26xlEc4/E06A7YYk+WoIzLSGNebNStVZ3nrqHuFh0hpyhPr4muxhO49dWWQ5iigG3At8Hk4J2Wx1ARedZbXsO5ylRah8ubN8gYbeuNEbLChpb4R6k5jYjntBcDHwNiwzMZiqUU4naUuvklJxv5RWGiM69466t6yy17jus3ga6nrhCo02gdpy1fV7eGcjMVSm3E4SrP3NmxYGrHuNa7n5pbaQmzAoaWuEqr31IaqnojFcrThG7GemGjavB5awVRa3lTwVqVlOZqp1PcgEfHGZSQBu4EZqvptVUzMYjka8RrM4+ONXSRQpeV18wW7G7EcnYRqCE8EvgEGAMUYgdEEuENEZgIjVTWnymZpsRylBFNpFRWZIze3NGbEi1foWNuIpbYS6necfwE9gSuAj1TVJSJO4BLgJc/526pmihZL3cHreRUVVRq57nKVpoT32kZcLuvua6mdhCo0/gT8U1Xf9zaoqgt4X0SaYir7WaFhsRwGTqc5vLsRKLWN5OeX3Y3YhIyWmiRUodEEWFrOuaXY+uEWS1jxtY00aWLsIIFqLW8uLYejVJBYtZalqglVaKzDJCecGuTcWZ7zFoulinA4Sj21EhJMm69aKzfXCJGiotL+ERHWPmIJP6EKjVeAp0UkAXgf2AakYGwa1wG3V2ZQEfkLcCfQAlgCjFPVmRX0F0wA4U2YmJE9wNuqek9lxrVY6hLB1FrFxf6JGXNzS721RKynluXICTVO4z8i0gz4KzDG0yyYiPDHVfW5UAcUkYuB54C/ALM8P78Tka6qurGcy57G7HTuBBYBDTECx2Kx+OBNhRIb6y9IvG6/XiHitZF4BYndkVhCJVSX24bAQ8BTQF9MnMYeYI6q7q3kmLcDE1X1Nc/rW0VkBPBn4N4gY3cGbgW6q+oyn1MLKjmuxVIv8c2p1bgxrFplsvz6CpK8vFKPLStILBVxSKEhIhGYuIzzVHUSR1A3Q0SigF7AvwNOTQH6l3PZucBaYISIfItJ5z4DuFNVdxzuXCyW+kygIAF/1ZZXkHjTooiUBiNar636zSGFhqoWi8h2wBWG8ZpiysIG5qzaDgwt55oOQFuM/WQMpuzsv4FJItJPVf3SsovIDcANAMnJyWRkZBzWRHNycg772qMVu+b6QWXXrGoOt9scGlD42bs7qc3k5+ewZElGTU+jWikoyGHGjIyw3zdUs9h7GIP35DCNG1hvXIK0eXEA0cAVqroSQESuAFYAJwNz/W6s+irwKkDv3r118ODBhzXBjIwMDvfaoxW75vrBka7Z1/03L88cBQWlwqQ2qreWLMkgNXVwTU+jWlm0KINBgwaHXaCHKjTWA5eJyG/AVxjvKb8PeVV9M4T77MLsWFIC2ptTdvfhZRtQ7BUYHlZh0pm0IUBoWCyWqiWY+69qqXqroMAIkvx80+ZN2Oir3qrtOxNL+YQqNF70/GyFsUkEosAhhYaqFopIJjAM+NTn1DDgs3Iu+wWIEJFjVXWNp60DZu42+67FUgvwZvGNjPS3k3hjSXx3JQcPmnPewESvfcXaSo4OjqSexuHyDPCuiMzDCISbgJbAywAi8hiQpqqne/pPA+YDb4rIOE/bs5gdxu9hnJfFYgkzvrEk3vTx3qSNXldgrzDxRrh7c255hUltUXFZDNVeT0NVPxaRJsA/MbEWi4GzfMZoARzr09/tScn+PPAzkIeJTL890AhusVhqP75JG+PioFEj0+5rK/FVcXmN714Vl1eYWBVXzVDp+FARCZT7qhroT1ExqjoBmFDOuTFB2rYBF1ZmDIvFcnQRzFYCZkfitZfk55vDN64ErDCpTsoVGiKSArwBfKyq73janEBhQNccEelkS79aLJaqwCsMfFVcUCpIiotLBYlv3XYoFSaW8FHR4/wLpobGBQHtArwGbPX8fjHGLvFgVUzQYrFYguEVJuBvL3G5yu5MvKlTvALFa3i3NpPKU5HQGAG8pqp5Ae0KvKKq8wFEZCdwJVZoWCyWGsYbIxK4M1mzxqRO8aq6CgpKBYrLE7ZsvblCoyKh0Rm4P0h7oMZwpaevxWKx1Fp8dya+NhPvzsTrzeVrN/ES6NFVn+0mFQmNGMCv7renzGsLTJCel3xPX4vFYjnq8LoFR0eboldevAGL3sNXmHjTzfsWwfLuTuq6QKlIaOzABNHN8m0MYvBuD+wM87wsFoulRvENWAR/I3yw3UlBgX86FSgrUOoCFQmNWcAVwDuHuMeVmCA9i8ViqRdUtDspT6B4gxehNObEq/I6mgRKRULjeWCWiPwbuEdVi31PelKmPwkMBgZU2QwtFovlKMHXEB+Ir7rL5So1xvsKFK9qqzbvUMoVGqo6W0TuwgiGy0VkKuCtrNcGky+qKXCvqs6u8plaLBbLUUygusvXGB9MoHgPr0HeN8WK7w6lum0oFYa9qOrTIjIfuBv4E6UG73xMSo8nVfWnqp2ixWKx1G0OJVC8Ki+Xq7TioleguAOSKXlVZ1VFKEWYpgPTPdHgTTAut7tUNRxFmSwWi8VSAYEqL18bCvgLFG/lxcJCsxupil1IyAH2HiFhy6taLBZLLaK8ncWqVVUzng2gt1gsFkvIWKFhsVgslpCxQsNisVgsIWOFhsVisVhCxgoNi8VisYSMFRoWi8ViCRkrNCwWi8USMlZoWCwWiyVkRH3z+NYxPFUFNxzm5U3xrxtSH7Brrh/YNdcPjmTNbVW1WbATdVpoHAki8ruq9q7peVQnds31A7vm+kFVrdmqpywWi8USMlZoWCwWiyVkrNAon1dregI1gF1z/cCuuX5QJWu2Ng2LxWKxhIzdaVgsFoslZKzQsFgsFkvIWKFhsVgslpCxQiMAEfmLiKwTkXwRyRSRATU9p8NFRAaKyNciskVEVETGBJwXERkvIltFJE9EMkQkNaBPtIi8ICK7ROSg536tq3UhlUBE7hWR30TkgIjsFJFJItItoE+dWreI3CwiCz1rPiAis0XkbJ/zdWq9gYjI3z3v7//zaatza/asRwOOLJ/z1bJmKzR8EJGLgeeAfwEnAb8C34lImxqd2OGTACwGxgJ5Qc7fBdwB3AqcjCnnO1VEEn36PAv8CbgUGAA0AL7x1IyvjQwGJgD9gSFAMTBNRJJ8+tS1dW8G7gZ6Ar2Bn4AvRaS753xdW28JItIXuB5YGHCqrq55BdDC5zjB51z1rFlV7eE5gLnAawFtq4DHanpuYVhbDjDG57UA24B/+LTFAtnAjZ7XDYFCYLRPn2MANzC8ptcU4roTABeQXs/WvQe4sS6v1zPvNZgvBxnA/9XlvzEwHlhczrlqW7PdaXgQkSigFzAl4NQUzLfWukZ7IAWf9apqHvAzpevtBUQG9NkELOPoeSaJmB31Xs/rOr1uEXGKyCUYYfkrdXu9rwL/VdWfAtrr8po7eNTN60TkIxHp4GmvtjVboVFKU8AJbA9o3475Y9Q1vGuqaL0pmG/pgUnPjqZn8hzwBzDb87pOrltEThCRHKAAeBk4T1UXUXfXez3QEbgvyOk6uWaMJmQMcCZGJZcC/CoiTajGNUdUasr1g8BoRwnSVpc4nPUeFc9ERJ4BTgVOVVVXwOm6tu4VwIlAI4zO+m0RGexzvs6sV0Q6Y+yOA1S1sIKudWbNAKr6ne9rEZkDrAWuAuZ4uwVcFvY1251GKbswUjhQ4janrPSuC3i9LipabxZm99W0gj61EhH5D8bYN0RV1/qcqpPrVtVCVV2tqr+r6r2Y3dVfqZvr7YeZ62IRKRaRYmAQ8BfP77s9/erSmsugqjnAEuA4qvHvbIWGB883lkxgWMCpYRjdcF1jHeZNVLJeEYnBeFR415sJFAX0aQ10oRY/ExF5DrgMIzCWB5yus+sOwAFEUzfX+yXGa+hEn+N34CPP7yupe2sug2dNx2MM4NX3d65pj4DadAAXY7wLrvM8yOcwXkdta3puh7meBEr/qXKB+z2/t/Gcvxs4AJwPdMP8020FEn3u8RKwBRiKcUOejvkW66zp9ZWz5hc9axqC+dblPRJ8+tSpdQOPez4c2mE+TB/DeMScWRfXW84zyMDjPVVX1wz8G7Ojag/0Ab7xrLFtda65xh9EbTuAvwDrMQbFTGBgTc/pCNYyGKOrDDwmes4Lxo1vG5APzAC6BdwjBngBs+XPBSYBx9T02ipYc7D1KjDep0+dWjcwEVOhsgDjmz8NHxfKurbecp5BoNCoc2v2EQKFng/+z4Cu1b1mm+XWYrFYLCFjbRoWi8ViCRkrNCwWi8USMlZoWCwWiyVkrNCwWCwWS8hYoWGxWCyWkLFCw2KxWCwhY4WGpdYiIv1E5BNPUZlCEdktIlNF5Cpv/n8RGeMpRtPO57r1IjIx4F7pIrJITHEtFZFGIuIQkWdFZJuIuEXkyypcSzsJUggrSD/vejpW1VwOFxEZJSK3B2kf7Jnz0JqYl6V6sQkLLbUSERkHPIMpKHQ3JnitMXAGJqp1H/BVOZefh4mM9d4rAngfkyrhZkxwVDZwAaZA1R2YLLi7y9zJ4ssoTCTxMzU8D0sNYoWGpdYhIgMxH0z/p6q3BZz+ypO9Nr6861V1QUBTK0xdjU9U9Wefcbp4fn1WVd1hmHe0qhYc6X0sltqMVU9ZaiP3YCrP3RXspKquUdXA8p4l+KqnRGQ8Ji0MwBseNUqGiKzHpFwAcPmqjkSkhYi846mjXCCm/vblAWN41UgDReRTEdmHqXeAiMSJyASPOi1HRL4Gwlp7WkSuF5H/edRtu0TkjYCStnjm94iI3OYp2pMtIjOkbN1op6ffNhHJFZGfROR4z/XjPX0mYlJwt5LS+tTrA6YVJyL/55nPThF5T0QahXPdlprH7jQstQqPrWIw8KWq5ofhlq9j6qR/CjwCfItRXUUDt2GK2vTz9F0jIvGYnD2Ngb8Dm4DLgXdFJE5VXw24//vAhxhVl/f/6RVM8ssHgd8wWUU/CMNaABCRxzEqteeBOzE7qUeAbiLSX/1rh1yOqbUxFogCnsLs1o5X1WJPnwc9a30Kk7eqJ/B1wLAPA80wtafP8bQF7qqewyTRuwzoDDyJKTdw1ZGs11K7sELDUttoiqltvCEcN1PVzSLyh+flGlX1FqtBRLZ4+vi23YKpT3CaqmZ4mr8TkWTgERF5I+BD+b+qepfP9Z0xH5r/UNXHPc1TRCQBuOlI1+Mx+N8JPKiqD/m0rwRmAemY1OFeioCRqlrk6QdGgKZhqr41BsYBL6vq3Z5rpopIEfC09yaqukZEdgKFvs8rgJ9V9VbP71M8z+I6ERmjNsldncGqpywWfwYCW3wEhpf3MN+0uwa0fxHwug/m/+qTgPaPwjS/YZ77vy8iEd4Doxo7gJm/L1O9AsPDIs/PNp6fJ2DsQ58GXPffw5jbtwGvF2F2dMmHcS9LLcXuNCy1jd1AHtC2hsZPwqSWDiTL57wvgX1beH4Gq9UcDpp7fq4u53yTgNd7Al57VUoxnp/e+e4I6Hc48z3UWJY6gBUallqFqhaLSAYwrIa8kfZg9PGBeMtoBrrlBqpdvEIkGVO/GZ/X4cA7/hnA3grOh4p3vs0xpUO92N2BJShWPWWpjTyO+cb8VLCTItJeRLpX0dgzgNYickpA+2WYb+PLDnH9XEzVvIsC2i8Jz/SY6rl/GzX1wAOPdZW83yLgIHBhQHvgazA7h9jKT9lSl7A7DUutQ1V/9kQeP+OJpZgIbMR4NJ2OKcd7GVCu2+0RMBHjafS5iPwD2AyMxtgSbgwwggeb+woR+QB4SEQclHpPnVXJeYwQkayAtv2qOlVEngD+z2NonoGp0naMZ5zXVXV6qIOo6l4ReRb4u4hkU+o9da2ni2/8ylIgSUT+jKnJna+qi7DUK6zQsNRKVPVZEZkH/BVTG7kpJor7d+BGTJnKqhj3oIgMwriLPo4JClwBXKGq74V4mxsxteX/hnFz/Qkj5GZVYiovBGlbginf+XcRWYaJbr8ZoyLbBPwIrKrEGF4ewJQKvRbjhjwX44r8C7Dfp9/rQF/gX0AjjIdbu8MYz3IUY8u9WiyWMojIhRgPsIGqOrOm52OpPVihYbHUc0SkD3A2ZoeRD/TCROWvAPrbGAuLL1Y9ZbFYcjDxHTcDDTAG/0+Ae63AsARidxoWi8ViCRnrcmuxWCyWkLFCw2KxWCwhY4WGxWKxWELGCg2LxWKxhIwVGhaLxWIJmf8Hofdfjsdt4lIAAAAASUVORK5CYII=\n", + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAgUAAAFGCAYAAAD6uOxSAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/Z1A+gAAAACXBIWXMAAAsTAAALEwEAmpwYAACMj0lEQVR4nOydd3xTVfvAv0+SJl1saBkyHWxQWkXwFUFZgrgVBBkqCk6U1wUKCk4EUX8qL4IK4kLFgeAAFcpQFCkiyKjsWcqG7pGc3x+nSdPQBU2bjvP9fO6nzbnnnpx7ktz73GeKUgqDwWAwGAwGS6AnYDAYDAaDoWxghAKDwWAwGAyAEQoMBoPBYDBkY4QCg8FgMBgMgBEKDAaDwWAwZGOEAoPBYDAYDADYAj2BQFO7dm3VpEkTv42XmJiMwxGGiN+GLLMoBS4XWCwQFITfzjk5OZmwsDD/DFZJMWvoH8w6Fh+zhsWnJNYwNjb2iFKqjm97pRcKmjRpwpo1a/w23uLFMbRs2RWr1W9DlnnS0iArC+rUgerViy8cxMTE0LVrV39MrdJi1tA/mHUsPmYNi09JrKGI7M6rvdILBYbiExysNQaHDkFSEkRGgt0e6FkZDAaD4UwxPgUGv2CxQJUqkJkJO3fCyZPavGAwGAyG8oMRCgx+JTgYwsLg4EHYtw8yMgI9I4PBYDAUFSMUGPyOW2uQkWG0BgaDwVCeMEKBocQICTFaA4PBYChPGKHAUKJ4+xrs2gXHjxutgcFgMJRVjFBgKBWCgyE0VEco7N1rtAYGg8FQFjEhiYZSw601SEvTvgYREf7Ja1Be6devH/Hx8SUydlpaGsHBwSUydmXCrGPxKQtrWK9ePRYsWBDQOZQXSl0oEJEuwKNAFFAfuEMpNbuQY9oCbwGXAMeAd4DnlMpRRIvITcBzwLnAduAppdTXJXEOhuIRHKzzGBw6pJ0Q69UDhyPQsyp94uPj/Zo4y5vExESqVKlSImNXJsw6Fp+ysIbR0dEBff/yRCDMB+HAP8AoILWwziJSFfgJSAAuzj7uMWC0V59OwGfAx8CF2X+/EJGOfp67wU+4tQZKaa3BsWM6AZLBYDAYAkepawqUUt8D3wOIyOwiHDIICAWGKqVSgX9EpAUwWkSmZmsLHgaWKqVeyD7mBRHplt1+m3/PwOBPHA6tNThyJEdrYDAYDIbAUB4cDTsBK7IFAjeL0KaHJl59FvsctwjoXOKzMxQbEQgP13937dJ1FJzOQM/KYDAYKh/lQSioizYdeJPgta+gPnUxlBvsdm1ScDph925ISQn0jAwGg6FyUSmjD0TkHuAegMjISGJiYvw2dlpaElu2+G+8ykhGRhLbtsXw779gs+mtIpKWlkZiYmKJjO10OktsbG9iYmJ4/vnn2bRpE6GhoQwcOJDx48djK+BDO3ToEOPHj2fJkiWcPHmSzp07M3nyZM477zwAdu/eTdu2bfM89rnnnmPUqFEA7Nixg6effppVq1aRkZFB9+7dmTx5MhEREcU+r/nz5/P888+zc+dOmjZtyvjx4+nXr59n/7fffsv777/P33//zdGjR/nuu++4/PLLi/2+3syYMYNZs2axZ88eAFq0aMFjjz1G79698z1mxYoVvP3228TGxnLq1CmaNWvGfffdx+DBgz19Vq5cybPPPsvWrVtJTU2lYcOGDB06lIceesjTp0+fPqxcufK08Vu0aMHq1avP6Dx8v4vHjx/n8ccf54cffgDg6quvZvLkyVSvXv20Y7dt20aXLl1QShUrUictLc2v1/nSJikpqdTmXx4utweBSJ+2SK99BfU5SB4opWYAMwCio6OVP0tSLl4cQ4sWlat0sr/ZuDGG1q27AjnagshIrUWoSAQHB5eYV3ZpeHz//fff3HzzzTz55JN8/PHH7N+/n5EjR2K1WpkyZUqexyil6NmzJxaLhfnz51OtWjWmTp3K9ddfz6ZNmwgLC6Nly5an3QC+/vpr7r//fgYNGkSVKlVITk7mxhtvpG3btixduhSAcePGcdttt/H7779jsZy9EnTVqlUMGzaMCRMm0KtXLxYtWsSQIUP49ddf6dhR+y67XC66dOnCsGHDGDJkCKGhoYWud5MmTZg9e3aRS+Ced955TJ48mfPPPx+Xy8UHH3zAwIEDiY2NpV27dnkes27dOi666CLGjh1LvXr1WLRoEQ8++CDVq1dn4MCBAERERPDII4/Qtm1bQkND+fXXXxkxYgQ1atTgvvvuA7RQlOGVTCQ9PZ22bdsyYMCAM/5e+X4Xb731Vvbs2cOPP/4IwPDhw7nvvvtOCxnMyMhg+PDhdOnShWXLlhXr+xwcHFyuyzeXavlppVTANiAJGFZIn3uBU0CwV9tYYD8g2a8/Axb7HLcY+LSwOURFRSl/smjRUrVnj1L795vtbLfFi5fmer17t1KbNyu1b59SGRl+/bgCytl+95KSktTdd9+tqlatqmrVqqXGjh2rEhMTVWhoqNq1a5dSSqlTp075c6p5MmbMGHXhhRfmavv2229VcHBwvu8fFxenALVu3TpPm9PpVHXq1FEzZ87M9726d++uevTo4Xm9aNEiJSLq2LFjnrYTJ04oEVE//fSTp23fvn2qf//+qnr16qp69eqqT58+6t9//y3wvG699VbVvXt3pVTOOl511VVqwIABp/U9fPiwAtTSpUsLHFMppRo3blykfgVRo0YNNX369DM65pZbblE33nhjgX1uuOGGPM/PzUcffaSsVqvas2dPrvb3339ftWzZUjkcDnX++eerqVOnKqfTmauP93dh06ZNClArV670tK1YsUIBasuWLbmOe/jhh9WwYcPUrFmzVFhYWKHnWRD+vs6XNsX93uQFsEblcU8sdZ8CEQkXkQtF5EK0T0Oj7NeNsve/JCK/eB3yCZACzBaRNiJyI/Ak4I48AHgDuFJEnhSRFiIyBugGvF5Kp2UoQWw2qFo1J+lRZS+wdOedd7JkyRJ+/vlnPv30U9544w0eeOABWrRoQePGjfM97uqrryY8PLzA7UxIT08/LSlNSEgIaWlpxMbG5nsMkOs4i8WCw+HIU10N2kzwyy+/cM899+QaR0RyjRMcHIzFYvGMk5KSQrdu3QgODmbZsmWsWrWKevXq0b17d1IKcFhZtWoVPXv2zNXWq1cvfvvtt3yPKWmcTidz584lKSmJzp3PzH/61KlT1KhRI9/9f/31F7/99htXXHFFvn1mzpxJ7969adiwYa62sWPHMnHiRDZv3syrr77KpEmTmDZtWr7jrFq1ivDw8FzncNlllxEWFpZrfb/77jsWLlzIm2++WdTTNPiJQJgPooGlXq8nZG8fAMOAeugERAAopU6KSA/gbWANcBx4FZjq1ec3ERkAPA9MRCcv6q+U+qNEz8QHp4/LvNPpxGrsCH4jJETnMjh4EE6cgLp1K1/SoyNHjvDFF1/wwQcfcPHFFwNaHTtr1iyee+65Ao999913SU0tNDVIkenVqxevvfYaH330EQMGDCAhIYGJEycC5Gv/bdGiBY0aNWLs2LHMnDmT8PBwXnvtNfbt25fvMe+++y516tThuuuu87RdeumlhIeH89hjjzFp0iQAnnzySZxOp2ecuXPnopRi1qxZSHbazHfeeYeIiAgWLlzIrbfemuf7HTx4kMjI3NbIyMhIDh7M0xqZL1dffTUrVqzwvE5JSeHqq6/OdU1ISkoqcIwNGzbQqVMn0tLSCA8P5+uvv87X3yIvFi5cyC+//MKvv/562r5zzjmHw4cPk5WVxTPPPMPIkSPzHOPff/9l2bJlfPPNN7nan3vuOV555RVuvvlmAJo2bcqTTz7JtGnTeOCBB/Ic6+DBg9SpU8fzeQCICBEREZ71PXDgAHfffTdff/31GQuqhuITiDwFMUC+iW2VUsPyaNsAdClk3HnAvGJO76x59913OXZM0ajR+bzxBtSp4yIxcS7Vq4vHlmcoPu6kR+npWmtQuzbUrKnbKwPbtm1DKUWnTp08bR07dmTWrFnceOONBR7boEEDv86lZ8+eTJkyhfvvv59hw4bhcDgYN24cK1asyNemHxQUxFdffcVdd91FrVq1sFqtdO/enauvvhqVh/onKyuLWbNmMXToUIKCgjztderU4YsvvuDee+9l2rRpWCwWbrvtNjp06OB579jYWHbu3HmaLTolJYXt27ezZ88eWrVq5WkfO3YsY8eO9cfSAKcLYV27dmXSpEkev4Si0Lx5c9atW8fJkyeZN28eQ4cOJSYmhjZt2hR67K+//srAgQP5v//7Py655JLT9q9YsYKkpCR+//13nnjiCZo2bZrLIdHNzJkzqVevHn379vW0HT58mL179zJixAjuvfdeT3tWVpbncxw5ciQfffSRZ19hApCbwYMHc++9957ROhn8R3lwNCzzZGU5mTu3NcuWRTNp0kqmTlXYbE5crv506rSOW291YrMZjYE/cSc9OnYMTp3SWoPQ0EDPquRxZKtG7Ha7py0yMpIaNWrkusHlhe+Ta14U9cLtZvTo0TzyyCPEx8dTo0YNdu3axZgxY2jWrFm+x0RFRXludBkZGdSpU4eOHTvmmYp2wYIFHDx4kOHDh5+2r2fPnmzfvp0jR45gs9moXr06devW9by3y+XiwgsvZO7cuacdW7NmTapWrcq6detytQHUrVuXhITcEc4JCQnUrXtmEc6+QpjNZqNBgwaeKIuiYLfbPf2joqL4888/ee2113jvvfcKPG7lypX06dOHiRMn5rppe9O0aVMA2rZtS0JCAs8+++xpQkFGRgYffPABd999d66IEld2+tHp06fna86YOHEijz76KElJSZ4n/rp163L48GGUUh5tgVKKQ4cOedZ3yZIlLFu2jAkTJnj2u1wubDYb06ZNy2VGMvgfIxT4gQkTLCxfHkVWVhBOp6CUkJmpn2r++KM9U6daePzxAE+yAuJOepSZCXv26OJKtWtX3BBG0Bdyi8XC1q1badSoEaDD444fP87JkyepVq1avsf623zgRkSoX78+AJ9++ikNGzakQ4cOhR7nnuvWrVtZs2ZNnuaPmTNncsUVV3DBBRfkO07t2rUBfTM5dOgQ1157LQAdOnTg008/pXbt2nmGuwF53qA7derETz/9xGOPPeZp++mnn87Yll8SuFwuj19Gfixfvpy+ffsyYcIEHn744WKN+80333DkyBHuuuuuXO2RkZHUr1+f7du3M2TIkDzHjIiIICIiIlf0QadOnUhKSmLVqlWe9Vy1ahXJycme1xs2bMg1zvz583nhhRdYvXq137VdhtOpwJfP0uH4cZgyBTIz9ZPb66/nftrJzAxi+nTFiBFQwPXaUAyCgvSWlASJiTnhixWx+mL16tW58cYbefHFF+nUqRN79+5l3rx51K9fnwULFnD77bfne2xJXFAnT55M7969sVgsfPXVV7z88st8/vnnHrv5/v37ueqqq3jppZe44YYbAPjiiy+oXbs2jRs3ZsOGDYwaNYrrr7/+NOe+PXv2sGjRIubMmZPne8+aNYsWLVoQERHBqlWrGDVqFI888gjNmzcHYNCgQUyZMoXrrruOiRMn0qhRI/bu3cv8+fMZOXIk559/fp7jjho1ii5duvDyyy/To0cPFi9ezNKlS3M5Qh47dow9e/Zw4sQJQJt13JoK9xPvsWPHcoX1/f777wC5fBMK0j48+eST9O3bl4YNG5KYmMgnn3xCTEwM3333nafPmDFjWL16Nb/8on2zY2Ji6Nu3L/fddx8DBw70vJfVaqVOnToAvPnmmzRt2tSzTsuXL2fKlCmecERvZsyYwVVXXZWn5mfChAmecMc+ffqQmZnJ2rVr2b9/P2PGjMnznFq2bEnv3r0ZMWIEM2bMAGDEiBFcc801nvn4mkbWrFmDxWIpksnEUHyMUFBM5s0jV06CAwdOd4yxWmHhQhg0KP9xvNVpeb02FE5oqM6GeOAAhIXp0swV0RHx7bffZsSIER5P8GeffZaWLVsyfPhwtm3bxrPPPltqc/nhhx944YUXSE9Pp3379syfP5+rr77asz8zM5O4uDhOnjzpaYuPj2f06NEkJCRQr149hgwZwrhx404b+7333qNatWrcdNNNeb53XFwcY8aM4dixYzRp0oSnnnqKRx55xLM/NDSU5cuX8+STT3LLLbdw8uRJ6tevT7du3Qr0xu/cuTNz587l6aefZvz48Zx77rl89tlnuWzc3377LXfccYfn9d133w3AM88841n/G2+8kWXLlhW4fnn5Ubg5ePAgt99+OwcPHqRatWq0a9eOH374gV69enn6xMfHs337ds/r2bNnk5KSwpQpU3LlimjcuDG7du0CtAP0E088wa5du7DZbJx77rm8/PLLpzka7tixgyVLluRpfgGdXyAsLIzJkyczZswYQkJCaN26db5Ohm4++eQTHnzwQc95XHvttbz11lsFHmMoPaSgL2VlIDo6WhWnfO1zz8EzzyiU0jfwK67Yy7JlDXP1EVH897+C1/UqF+vXryc9PZ3o6GhEBKUUa9asweFw5JukpCLjnbzobElL02aFWrXKriNidHS0KZ1cxjHrWHzKwhqW5G+tNCiJ5EUiEquUOs2RpwxeKssXvg5u/fptP61PcLB+as0LpRTp6enExcWxZs0aj0AQFxdHenp6gU8ShvwJDtb+BseP6yJLpo6CwWAwFI4xHxSTm28Gr5TheZKaCvmYLxERj9d1XFwccXFxgA5FcmsODGeHiDYjuB0Rq1XTjohekW0Gg8Fg8MJoCopJjRrw6KMQFJSR534RFyAMHAhe/kG5+OGHH9i7d2+utr1793oKhhiKR1CQzoiYnGwyIhoMBkNBGKHAD0yYAP36bcVmy0RE+xA4HE5stix69NjGjTcqUlPhnntg8mSdlc+Ny+UiLS2N3bt389Zb3Xjnne6cOHGC3bt3k5aW5okHNhSf0FC9HTyoSzOnpQV6RgaDwVC2MOYDP2CxCGPHpnH33Ws5cQJGjxYiIiw0aPAXtWrZaNtWaNMGnn8eXn8dNm2C//s/d9ickJycDIBSLjIyFJmZmQAkJycb84Gf8c6IuGuX1vTUqlWxcxsYDAZDUTGaAj8RFRVFr16XULMmjBoFt98udO16Ee3atUMERoyAjz/WCXYWL4ZrroFt23KydaWkBJGUFMapU1VYt641KSlBuFwu42hYQjgcWjhITNTCwalTZcOkMGzYMETktO3SSy/19GnSpImnPTQ0lDZt2nhivt1kZGQwefJkLrroIkJDQ6lZsyaXXnop77zzTqHJb/xJfHw8AwcOpEWLFlitVoYNG1ak444fP87gwYOpVq0a1apVY/DgwZ6cAG6UUrz++uu0aNECh8NBvXr1ePLJJ4v93v6Y36ZNm+jWrRuRkZEEBwfTrFkzxo4dmytvgT8YNWoU0dHRBAcH06RJkyIf9++//3LjjTdSvXp1QkND6dChA5s3bwZ0foUHH3yQFi1aEBISQsOGDbn33ns5evSo5/hdu3Zx11130axZM0JCQmjWrBljxozxW3KsadOm0bRpU4KDg4mKiso3E6dSiquvvhoRYd68gGW5r1AYocCP+D7V+77u0kX7FbRooQWCa66BX36xsHJlJ955ZyQnT1bn1KmqLFvWlXfeGcnKlZ0QMR9RSSGizQkOh85tsHev1iAEmu7duxMfH59r+/7773P1GT9+PPHx8axfv57rr7+eESNG8NlnnwFaILjhhht44YUXuOOOO/j111+JjY1l9OjRzJo1i1WrVpXauaSnp1O7dm2efPLJM8plP3DgQNauXcuPP/7Ijz/+yNq1a09Lwfvf//6XadOmMWnSJDZv3sz3339Ply45JVLO9r39MT+73c7QoUNZvHgxcXFxvP7667z33ns8/fTT+Y45e/bsMw47c7lcDB06NN+sgnmxc+dOLrvsMpo2bcqSJUv4559/eP755z2piA8cOMD+/ft55ZVX2LBhAx999BHLly/ntttu84yxZcsWnE4n//vf/9i4cSNvvvkmc+bMYdSoUWc0/7z47LPPGDVqFGPHjuWvv/6ic+fOXH311ezZs+e0vq+++mq+dTYMZ0le9ZQr0+bvOtuLFi1Ve/YotX9//tu//yrVp49S+tnUpSyWrOz/c29BQRnqwQezChyrIm6LFy8NyPvu2KHUli1KHTqkVFaWX78WeZLXd2/o0KGqb9++BR7XuHFjNXny5Fxt559/vhowYIBSSqlJkyYpEVF//vnnacc6nU518uTJYsz67Onbt68aOnRoof02bdqkALVy5UpP24oVKxSgtmzZopRSasuWLcpms6lNmzYV+73ff/991bJlS+VwONT555+vpk6dqpxOp1JKqVOnTp3V/PLikUceUZdeemm++2fNmqWuuOKKIp2PL5MnT1aNGzcuUt/bbrtNDRw48IzG/+6775SIFPjdefvtt1XNmjVztW3cuFH17NlThYeHqzp16qgBAwao+Pj4At/rkksuUcOHD8/Vdt5556knn3wyV9vq1avVOeecoxISEhSgvvjii3zH9Pd1vrRZunSp38cE1qg87olGxAoAYWEwY4Y2M4DgcuVdLCkzM4gZM6x4JYMzlCAOh85tcOKEjlJITCwbJoWiEBwc7PFF+fjjj+natWueBYYsFgtVq1bNd5zw8PACN+9shSXFqlWrCA8Pz1Vr4LLLLiMsLIzffvsN0PnwmzVrxo8//kizZs1o0qQJQ4cO5dChQ2f0XjNnzmTs2LFMnDiRzZs38+qrrzJp0iSmTZtWrPn5sm3bNn788UeuuOKKM5qfv3G5XCxYsIBWrVrRu3dv6tSpw8UXX+zRMuXHqVOncDgchBZQdezUqVO5MkXGx8fTpUsXWrVqxerVq/n5559JSkriuuuuy9eBOiMjg9jY2NNSXvfs2TPX2iYmJjJw4EBmzJhBRH5JYAxnhXGvChAi0KABOByK9PT8nQmtVsXChVJgimQwaZL9hTu3gTtdckiIrqVQmumSf/zxx9PqyN9///1MmjTptL5ZWVl89NFHbNiwwVMNb+vWrWddvMe7amBehISEnNW4Z8LBgwepU6dOru+viBAREeHJ5b9jxw52797N3LlzmT17NiLCo48+Sr9+/Vi1alWRVcrPPfccr7zyCjfffDOgC049+eSTTJs2Ld90vUWZn5vOnTuzdu1a0tPTufvuu3nxxRc9+1asWJFLyMrKyiIzMzPXZ+/vcs6HDh0iKSmJF198keeee46XX36ZJUuWMGjQIMLDw3OVR3Zz4sQJxo0bd1qlRG92797NlClTcs31f//7H+3bt2fixImejIZz5syhZs2arFmzJs9yzkeOHMHpdBIZGZmrPTIykp9//tnzeuTIkfTu3btUhNTKhhEKAsihQ1CY31Fqqu5XECZNsv+xWrUjYlqadkSsWVNv1lKogN2lS5fTHAd9q/w99dRTPPvss6Snp2O323nssccYMWIEUHA+/cI4k7K+gcRd1e/DDz/0VFD88MMPad68OX/++WeRfAgOHz7M3r17GTFiRK7ywllZWZ41fPjhh3M9RZ9paenPPvuMxMRE/v77bx577DEmTZrkKRYUHR2dSwj76quv+PLLL/n44489be5yzv7C/YR+3XXXMXr0aAAuvPBC1qxZw1tvvXWaUJCUlES/fv1o0KABr7zySp5jJiQk0Lt3b3r06JGr9kRsbCzLly+nXr16px2zfft20tPTc93U33nnHbp161boOXz44Yf8/fff5TptcVnGCAUBJCJCP4kWlII3JCT/FMmgbwC7du0iPj4eyMnxvXbtWurVq0fbtm2NxqAYBAdrLcGJEzrpUUREyVdgDA0NLfTmPHr0aO666y5CQ0OpV69ers/4ggsu8GTGPFN8NRS+XH755SWeVKtu3bocPnw4l7ZLKcWhQ4c8VQXr1auHzWbLVVL5/PPPx2q1smfPniIJBe4b5PTp0/PVrDz11FOnVfwryvzcuItWtWrVCqfTyfDhw3nsscew2WyEhITk+pwjIiJOa/M3tWvXxmaz0apVq1ztLVu2PK3wUVJSEn369AFg4cKFBAcHnzbewYMHufLKK2nTpg0ffvhhru+hy+Wib9++PPvss6d9ryIjI7HZbLmEosjISBwOB1arlYSEhFz9ExISPGv7yy+/sGnTptPG7N+/P506dcpVzdJw5hihIID07QvjxhV8d8nKEq65puBx6tWrR3x8PGvXriUuLs6T9yAvCd1w5uRnUsjjGllq1KpVK9+bx8CBAxkzZgxr1qw5za/A5XKRlJSUr19BWTAfdOrUiaSkJFatWuW5Wa9atYrk5GTP68suu4ysrCy2b9/OueeeC2iTgtPppHHjxkV6n8jISOrXr8/27dvz9d6vU6fOacV8ijK/vHC5XGRlZeF0OvNVw5c0drudiy+++DSh8d9//821bomJiVx99dUopfI0Z4H2GejWrRutW7fm008/Pe2cOnTowOeff06jRo3y1Xjk9R2Oiorip59+4pZbbvG0/fTTT55qmS+88AKPPvpormPatm3rKZNtKB5GKAgg1avDyJEwY4YiNTVv4cDh0Hn727bNewwRwW63U6dOHfbt2+eJQT/nnHOw2+1GS+BHrFadLrmkEx+lp6efZpu2Wq3UqVOnSMc//PDDfPvtt/To0YMJEybQpUsXqlWrxl9//cWUKVN48cUX8w19K4mnVLegcerUKSwWC+vWrcNut3ueVr/++mvGjBnDL7/8QoMGDWjZsiW9e/dmxIgRHjPKiBEjuOaaa2jevDmgwzY7dOjAnXfeyeuvv+45744dO+YShAp77wkTJvDggw9SvXp1+vTpQ2ZmJmvXrmX//v2naQjcFGV+H374IcHBwbRt2xa73c6aNWsYM2YMN998M45sB5WMjAyOHTvmGbd379707t0712fvdvDMj23btpGUlMSBAwfIyMjwnG+rVq2w2+3s37+fq666ipdeeokbbrgBgMcff5xbb72Vyy+/nCuvvJKlS5cyd+5cvvnmG0ALBD179uTUqVN88803JCcnex40atasid1u58CBA3Tt2pX69evz+uuvc+TIEc+c6tSpg9Vq5f7772fmzJkMGzaMp556ijp16rBjxw4+//xzXn311XwrJ44ePZrBgwdzySWXcNlllzF9+nQOHDjgKe3coEEDGjRocNpxDRs2pFmzZvmulaFoGKEgwDz6qOLAgQN8/XUkTqcVpcDhcJGVpaha1cXx43auuw5eegn69z/9eKUUGRkZHD58GKfTidVqxel0cvjwYRo2bGgcDksAhwPsdh2dcOqUNilUreo/k8LPP/98mpanQYMG7Nu3r4jzczB//nzee+893nvvPZ544gmCg4Np3rw5d9xxx1k7IZ4tF110Ua7XCxYsoHHjxuzatQuAkydPEhcX54meAPjkk0948MEH6dWrFwDXXnstb731lme/xWJh4cKFPPTQQ3Tp0oWQkBB69OjB1KlTczkZFvbew4cPJywsjMmTJzNmzBhCQkJo3bp1vk6GRZ2fzWbjpZdeYuvWrSilaNy4Mffff38um/tvv/1WqA39mWee4dlnn813//Dhw1m2bNlp57tz506aNGlCZmYmcXFxnPQKYbr++uuZMWMGL774IqNGjeL8889nzpw5Hn+C2NhYfv/9d4Bc5hmApUuX0rVrVxYvXszWrVvZunUrjRo1ytXH/d7169fn119/5bHHHqN3796kpaXRqFEjevbs6RGM8qJ///4cPXqU559/nvj4eNq0acP3339fZA2QoXhIcZySKgLR0dHKnw4rixfH0LJl1zNySFu/fj1Hj2YxbtxFZGYKDz6oaNDgL6pUCeLzz9vi9jsaNAgmTsyttnY7Ff7xxx9kZmZisVhwuVwEBQV5nprKm1CwcWMMrVt3DfQ0ioTTqX1C7HZdRvtMtOslWeO9LNSwrwiYdSw+ZWENS/K3VhrExMSccWKrwhCRWKXUaXHLRlNQBmjXrh0ul4uVK903b8HluhCLxUJ0NERFwZgxOk3yhg0wcyacc07O8Vu2bCE11cGcOYNwuWxcdtlazj//X7Zs2ZJnrLrBf7ijFDIydJElU57ZYDCUZ0zyojLA+vXriY2N9YRBKaWIjY1l/fr1gDYbzJ8PDRvC+vXQqxcsXUp2X1i27BLeeusOjh+vxokT4Sxe3Jm33rqDZcsuKTfJd8o7drs2IaSk6MRHx47lroZpMBgM5YGACAUicp+I7BSRNBGJFZHLC+l/v4hsFpFUEYkTkSE++4eJiMpjC6B/eNFQSpGenk5cXBxr1qzxmAPi4uJIT0/3CApt28IPP8CVV+rwuMGDYcoUeOUV+OWXc8nKsqGUBRAyM4PIyrLxyy/nMmVKQE+v0hESoiMVjhwpf1kRDQaDodTNByLSH3gDuA9Ymf33BxFppZQ6reKFiNwLTALuBv4ALgFmishxpdQCr64pwLnexyql0krmLPyHiHhU/HFxcZ5QoebNm5/mD1CjBnzwgS67PGUKvPaadm5TKu+PMSPDxvTpihEjtFrbUDqI6HTJWVk5IYwREYENYTQYDIaiEAhNwWhgtlJqplJqs1LqQSAeuDef/oOBmUqpT5VSO5RSc4EZwBM+/ZRS6qD3VnKn4F82bNhQ5HaLBR5+GD75RD+RKlWwE6HVCgsX+mOWhjPFZtP+Bk6nDmFMSNCCQllk2LBhXFNYQgxDvrRp06bAKAGDobxQqkKBiNiBKGCxz67FQH5xUg7A94k/FbhERLzduUJEZLeI7BORhSJyEeUAt/lg7dq1nljg5ORkT770/KJDunSB228HKFg3XZQ0yYaSxeHQwkFiIuzYAcePB8bfYNiwYYjIadu6det44403+Oijjzx9u3btWmhYniHwTJs2jaZNmxIcHExUVBQrVqwosH98fDwDBw6kRYsWWK1Whg0blme/N954gxYtWhASEsI555zD/fffnyvFs9PpZNy4cZ73btq0KU8//TRZ2VJvZmYmTzzxBO3ataNu3brUq1ePgQMH5ln+2FC2KG3zQW3ACiT4tCcA3fM5ZhFwl4h8BaxBCxXDgaDs8eKBOOBO4G+gCjAK+FVE2iultvoOKCL3APeAzmoWExNTvLPyIi0tiS1bznS8FJo3rwWQHVLo1jMfZtOmZfke1a0bnHeesGBBM5Yv1+lU27Y9zK23biEkxJk9HtSvDxs3nuGUAkhaWhIbN8YEeholxs6d2sSQlpZGYmJiibyH0+k8bezMzEy6det2Wl2FWrVqeWL73cc4nU4yMjJKbH5lkYyMDOx2e662vNYxL9y1GEpzvb788ktGjRrF1KlT6dSpEzNnzuTqq69m9erVnvTKvhw9epSqVavy8MMPM2vWLDIzM0+b8+eff87jjz/Om2++SefOndm1axcPPPAAiYmJvP322wBMmTKFt956i3feeYdWrVqxceNGT3KhJ554gpMnT/Lnn38yevRoWrduTVJSEk899RQ9e/Zk1apVpZ7RMS0tza/X+dImKSmp1OZfHkISnwPqAr8BghYgPgAeB1wASqlVwCr3ASLyG7AOeBB4yHdApdQMtAmC6Oho5c/4z8WLY2jR4szzFEA6W7Zs8RQ0atGiBQ6Hg9at8y9odOIEDB2au8rihg112LAhJ/Odw6H46y8p1KegLBVVKk95Cs6WrCywWoOx26sQFKSFN3+SV2x4UFBQvnUVhg0bxpEjR1i4cCHDhg1j5cqVrFy5kpkzZwI5CWm8ueOOO1i4cCGPPPKIpzrezp07ad68Oe+//z63a1XWaXz11Vc8++yzbN26lZCQENq2bcvnn3/uqYz3yiuvMHXqVJKSkrjxxhtp1qwZs2fP9iQc8p6rm2effZZ58+bxzz//APDnn3/y1FNPsXbtWjIyMmjXrh2TJ0+mU6dOnmNEhLfeeotffvmFRYsWce+99zJlyhQWLFjAs88+y8aNG6lbty6DBg3imWee8QgMhw4d4u6772bx4sVERETwzDPPYLFYcDgcpRqP/7///Y9hw4bx4IMPAjoWf8mSJXz44Ye89NJLeR7Tpk0bpk+fDuh6BkFBQafN+a+//uLSSy/lnnvu8Rzz559/8uWXX3r6xsbGcu2113Lrrbd6+nz//fesW7eOKlWqUKVKFZYsWQLkfBffffddWrduzb59+2ibX4rWEiI4ONjvcf6lSUnkKciP0vYpOAI4gUif9kggTx8ApVSqUupOIBRoAjQCdgGJwOF8jnGitQrn+2PSJY37B+J2KnT/LeyH406TbLfnbai2Wp1FcjJ0mzC2bNmSKwJiy5YtBZowDGePzZYjCKSnQ2Zm2QlhfOONN+jUqRN33HEH8fHxxMfH5/nkOXXqVF566SXGjRvncZAdP348zZs3Z+DAgXmOffDgQQYMGMDQoUPZvHkzy5cvZ/DgwZ79n3/+OU8//TQTJkxg7dq1NG/enKlTp57xOSQmJjJ48GBWrFjB6tWrufDCC+nTpw9Hjx7N1W/ChAn06dOHDRs2cP/997No0SIGDRrEAw88wMaNG3n77beZN29erpLAw4YNY9u2bfz888988803zJkzxyOw5MeKFSs8KYvz27zLKhdGRkYGsbGx9OzZM1d7z549+e2334o8Tl785z//Yd26dZ6shnv27OHbb7/1FEdy91m6dClbtmwBYNOmTSxZsiRXH19OnToFQI0aNYo1P0PJUqqaAqVUhojEAj2AL7x29QC+LOTYTGAfgIgMABYqpfK8jIq+q7ZDmxPKNN4hiO6IA/droNCMhI8+Cv/+u52ffjoXp9OCUoLF4sLlsuJ0Wtm9W5GUpL3h88NdPyE8PJwtW7YQFxeHUorw8HBTP6GEEdHOoE6n3mw2/bqklty3uE1eVQ+rVauG3W4nNDT0tKp/3tSoUYPhw4czb9485syZw2233cYnn3zCV199lSvVsDcHDhwgMzOTm2++2ZO2tk2bNp79r7/+OkOHDvWUgX7qqadYunQp27ZtO6PzvPLKK3O9fvPNN/nyyy/54Ycfcmkw+vfvz/Dhwz2vhw4dymOPPcYdd9wB6MqFkyZN4vbbb2fy5Mls3bqVH374gZUrV3LZZZcB8MEHHxSac9+3THJenEmZ5CNHjuB0Oj3aFTeRkZH8/PPPRR4nLwYMGMDRo0fp0qULSimysrIYPHgwkyZN8vR54oknSExMpFWrVlitVrKysnjqqae477778hwzIyOD//73v/Tr149zvDOvGcocgTAfTAU+FJHVwK/ASKA+MB1AROYAKKWGZL++AOgI/A7UQEcvtAGGugcUkWey928FqqJNBu3IP6KhzCAiOByOXCGI7hBFh8NR6A1ZBK64YjXNmy/ns89ux2oN5tpr97Bz5w5++aUL8+cHsWEDTJ8OrVvnPYa7fkJycjIpKSmEhoaSkpKCiJCRkWHqJ5QC7ntoVpbe3CYFfy97ly5dcvkU+KPq4ZAhQxgzZgwbNmzg4osv9lSq+/jjjz03d4AffviBzp070717d9q0aUPPnj3p3r07N998s6fY0+bNm3PdpEFXJTxToeDQoUOMGzeOpUuXkpCQgNPpJDU19TRHN9+Mn7GxsaxevTrXDdDlcpGamsrBgwfZvHkzFouFSy65xLO/cePG1K9fv8D5lHRJZH+ybNkynnvuOaZNm0bHjh3Ztm0bo0aN4plnnmHixIkAfPbZZ8yZM4dPPvmE1q1bs27dOkaNGkXTpk256667co2XlZXFXXfdxYkTJ/j2228DcUqGM6DUhQKl1GciUgt4GqgH/AP0UUrtzu7SyOcQK1oQaA5kAkuBzkqpXV59qqN9BOoCJ4G/gC5KqdUldBp+pV27drluvG7BoKg34mrVqpGcnMz//vdPtqbhCLGxW7nkEvjssyvZskXo1w8mTNARC77DighRUVHs27ePY8eOeSotRkREEBUVZQSCUsQtHGRm6s/JrTnwF/n5FBSH66+/npEjR7JgwYJcT6nXXnstHTt29Lxu0KABVquVxYsX8/vvv7N48WLee+89xowZw7Jly2jfvn2R3s9isZxm0vIupgT6iT8hIYHXXnuNJk2a4HA4uOqqq8jIyMjVLywsLNdrl8vFM8884ynbm5SU5NGseFepPNPfxIoVK7j66qsL7DN27NhcZoqCqF27NlarlYSE3D7bCQkJBWp3isLTTz/Nbbfd5hHO2rZtS3JyMsOHD2f8+PHYbDYee+wxHn30UQYMGODps3v3bl566aVcQkFWVhZ33nknmzdvJiYmhlq1ahVrboaSJyCOhkqpacC0fPZ19Xm9GSgwvFAp9QjwSEF9yjq+F5miXnREhH79+nlMDm6zQ1RUFNHR0QweLDzzjK6b8OST8NtvOguit2+RO61yUlISDoeDsLAwkpOTSUpKIjY2tlwWVSrvWCw6E2JGhhYKvH0QSgO73Y7T6SxS39DQUM4//3xEhKuuusrT7nY480VE6NSpE506dWL8+PG0bt2azz77jPbt29OyZUt+//137rzzTk9/t23bTZ06dU5Txfu+XrlyJf/3f//nqfyXkJBAfHx8oefSoUMHtmzZ4hGcfB02W7RogcvlYvXq1Z5qk3v27OHAgQMFjutv84HdbicqKoqffvrJI8AA/PTTT9x0001FHicvUlJSsPpIolarNZcgll8fl5djTGZmJgMGDOCff/5h+fLlxRZWDKVDeYg+MBRCQcmP2rVrxyuvQOfO8Pjj8O23un7C9Ok6dTLoi/ShQ4dITLTwzjsDcDotdOu2kZYtt3Po0CEjEAQIt7+By6WdEW02vZXGx9GkSRNWr17Nrl27CA8Pp2bNmvn6Cfz000+sXbuW8PBwj/kpP37//Xd+/vlnevXqRWRkJH/99Rd79+6lVatWAIwaNYohQ4Zw8cUX07VrV+bNm8cff/yR64Z55ZVX8sorr/D+++/TpUsXvvrqK3799ddctuoLLriAjz76iI4dO5KcnMzjjz9+WrhhXowfP55rrrmGxo0bc+utt5Kens7OnTtZvXo1r7zyCs2bN6d3796MGDGCGTNmEBISwujRows1w5SE+WD06NEMHjyYSy65hMsuu4zp06dz4MABT2ggaNMOwJw5czxtbuHk1KlTWCwW1q1bh91u93wG/fr1Y+rUqURHR3vMB+PGjeOaa67xhBL269ePl19+maZNm9K6dWv++usvpk6d6nm/rKwsbrnlFv7880/mzp2LiHDwoPYlr1atml/MVoaSwQgF5Rzv5EeA5yl/7dq1dOjQwWOWuP56LQSMHAmbNkG/fvD003DXXVpl+umn57B8eS9cLu2suHBhNPPnR9Oly0Z693ZhtZraWYHCfS8uLWdEgEcffZShQ4fSqlUrUlNT8wxJdPPUU09x3XXX8ddff/HVV1/lG4oI+obw66+/8uabb3LixAkaNmzIuHHjPMf079+fHTt28NRTT5GSksK1117L6NGjmT17tmeMXr168cwzz3j6DBo0iPvuuy+Xvfr999/nnnvuISoqivr16/Pss89y+HCewUq56NWrF9999x3PPfccU6ZMwWazccEFF+RK8jN79mzuvvturrzySmrXrs0zzzzDoQBkCOvfvz9Hjx7l+eefJz4+3hMW6HbgBPJMFnTRRbkVrwsWLKBx48aeCIqnn34aEWHcuHHs27eP2rVr069fP1544QXPMW+++Sbjxo3jvvvu49ChQ9SrV4+7776b8ePHA7Bv3z7mz58PaD8Wb2bNmpVv0iRD4JHKHm4WHR2t/Flne/HiGFq2PLM8BcXBHb3gFgrcToKgVaG+qv+0NHjuOXBfY3v2hCZNFLNmZZGZeXq936CgTO67z8bjj5eetqAy5CkA6Ns3mj/+OPPvnltDW5AzYmnVsP/666+5+eabWb9+PZ988gl//vknixf7JiwtHu5EOYWF/ZUEpbWOFZmysIbuqK7ySknkKRCRWKVUtG+7efwr57ijFzp06EBoaCgiQmhoKB06dMgzeiE4GF54AWbO1PkLFi+GGTPIUyAA3T59Opw8WRpnYygKFoveMjO1z0ERTf9+x+VyMW7cOG677TZat27NkCFD+OWXX/jf//7HkSNHAjMpg8FQLIxQUAE4m+RHffrAokXQqBHoRJH5Y4oqlU28IxUyMko/+dHHH39MXFwcEyZMAHRlz+eee45x48bx2GOPle5kDAaDXzBCQTnHN/nRoEGDaN68OXFxcZ7shPnRsCFoR2VTVKm8IpITqZCeXrrCweDBg8nMzOTcc3Mqlo8dO5YjR44wa9Ysv73Po48+GhDTgcFQGTGOhuWc4iY/qlcPQkMh2w0hT0JCICKi8Ln4JjkySY9KD+9IhYwMLSQoVTqRCgaDoeJgNAUVgHbt2uVyKHQLBkUpZNS3b+E2aacTrrmm4D7r16/PpZlwazB0sSdDaeH2N3BrDrKy9P8Gg8FQFIxQUEE42+RH7qJKQUF5F1UCxc03F1xUyR0W6W2ycJs0TEGlwOA2K2RlGeHAYDAUHWM+MPDYY0JCwlG+/LI2WVmCUoLNlkVWlg0Q5s2Dli1h2LC81dHeJgvvrIreJg3D6URE1KNjx9MigvxCZmYaQUHBQG5TQknnN6hopKWlERwcHOhplGvKwhrWq1cvoO9fnjBCgQFQDBiwh3PO+Y73378Bl8vGf/6zlnPP3c3GjVfz8891ePppiImBV1+F2rVPH8FdP8EtEACmbkIhzJq1oMTGzivXQ1aWdhp1OLSPSAGJBw3ZlGYd+4qKWcPyhTEfGACIj48nNDST99/fxj//hDN8eCjVqqVy002rmD5dUa0a/PwzdO+uhQNf/v77b7755ptcbd988w1//1306tW+ZgZjdvAvNltOzYs9e/SWmhrYORkMhrKFEQoMiAhNmjTJlQExOjqaDh060KRJE/r1E376CTp1gsOHYdAgGD9eZ0cEncRmxYoV7Ny5k9DQUAYOHEhoaCg7d+5kxYoVuYqk5IdxVCw97HaoWlU7kO7eDfv3a78Dg8FgMEKBASg8gqFBA/jsMxgzRj9xvveejlzYtEnfwG02G2lpDsaN60bbtsksWFCVtDQHNput0Cd+X0dFwDgqlgIOhxYO0tJg1y44eFCHMxoMhsqL8SkwFBmrFR54AC6/XP/dskULBk8+aeXff6/nyy9r43TqgkpLl3ZhyZKu3HzzESyWggtB+DoqNm4cyu7d+4yjYinhLliXnKzTWdeoobegvDNfGwyGCozRFBiAM1Pft2+vUyQPGqSfLCdOhM8/jyQry4ZSFkDIzLSTlWXj66/rMHly4U/63oKBGyMQlC4hIRAeDqdOwY4dcOSIdk40GAyVByMUGM4qz0BoKLzyCrz5JoBCqbxv3unp1iIVVHK/pzeFpWk2+B8R/dmGh8OJE1o4OHYscEWXDAZD6WLMB4Zi5RlITdWVF91Oh3lhseiCSoMG5b3ft35DaGgywcENPfMwGoPSxy0cuFxw9KjeatfWPgilVRbcYDCUPkZTYADOXn1/6FDhnutpaQUXVPKt3+B+7+bNmxepfoOh5LBYICxMmxaOHIGdO7XWp7QrMhoMhtLBCAUG4OzV9xERWlNQEO5kOYbyi1s4cDggIcEIBwZDRcUIBYZilV/u2xdcroKf5NPThWbNCn5/E5JYPrBatb+B3a5DGHfu1I6JRjgwGCoGRigw5Ft+uSjqe3dBpZCQvG/cIgqlYMAAeP31vL3Zvd8vLi6OY8eOeQQU409QNrFadXbEoCAtHOzapYUDI78ZDOUbIxQYgOKVX370UcU11xzAZssiKCgDcBEUlIHNlsX118czbJgiKwsmT4brr4dt204fQ0To0KFDrrYOHToYgaCMY7NpzYHNBvHxWnOQmGiEA4OhvBIQoUBE7hORnSKSJiKxInJ5If3vF5HNIpIqInEiMiSPPjeJyCYRSc/+e0PJnUHF5GzLL4Pioot+ZsSId7j55o38979w880bGTHiHS6++Ceee07x6adQvz789Rf06gXvvptb5fz9998zZ84cpk/vzuHDVXG5XMyZM4fvv//efydoKDHcdRVsNjhwwAgHBkN5pdSFAhHpD7wBvAhcBPwG/CAijfLpfy8wCZgItAaeAd4WkX5efToBnwEfAxdm//1CRDqW3JkY3FgsFoKCgqhXL5RJk9oxerSFSZPaUa9eKEFBQVgsFrp0gV9+gVtu0dEIzzwDt96qi/I4nU4SEhI4fvy4J2Wy0+nk+PHjJCQk4DRB8uUGIxwYDOWbQGgKRgOzlVIzlVKblVIPAvHAvfn0HwzMVEp9qpTaoZSaC8wAnvDq8zCwVCn1QvaYLwAx2e2GEkYpxfnnn09QUBBr165FKcXatWsJCgri/PPP9zgKVq2q/Qref1/HvK9apasufvqplQsvvIjg4EhOngwmLc3JihWNCA6O5KKLLsJqAuPLHUY4MBjKJ6WavEhE7EAUMMVn12Kgcz6HOQDf1DipwCUiEqSUygQ6AW/69FkEPFC8GRuKwpkmP+rVCy6+WBdXWrgQnngCGjW6kIMH25OZqXA6rSxZ0pmYmCBGjhTat9fJdAzlD7dwkJmphYOgIKhTR/shmM/UYCh7SGmGe4lIfWA/cIVSarlX+3hgkFKqeR7HvAjcBVwDrEELFQuBSKC+UipeRDKA4UqpOV7HDUFrGBx5jHkPcA9AZGRk1Ny5c/12jqdOJRESEu638cobx44d8/xfs2bNQvvHxNThjTcuIDk5iODgLK69dhs33LCN/fv1GlosWqtQt26JTblCkpaWRHBw2fseKqU3ES0wWMq4q3NSUhLh4WVvHcsTZg2LT0msYbdu3WKVUtG+7eUhzfFzQF2074EACcAHwOPAWUVHK6VmoE0QREdHq65du/plogCLF8fQokXXSpcK1p3rYPfufZ624OCGhYYUNmgAU6ZowTQtzcbnn7dg/fo6bNlSy9PH4VD89ZdQrVrJzb+isXFjDK1bdw30NPIlK0unyA4K0kJfeHjZFBBiYmLw5/WhMmLWsPiU5hqW9s/wCOBEP+V7EwkczOsApVSqUupOIBRoAjQCdgGJwOHsbgfPZEyDfylO8qPvvgObLbfQ4C0QAFitwsKFJTJ1Q4Dw9jmIj8/Jc2CSIBkMgaVUhQKlVAYQC/Tw2dUDrQko6NhMpdQ+pZQTGAAsVEq5LyGrzmZMg38oTvKjQ4cgNTW30NCy5ZFcr1NSVIG1EwzlF1/hwKRPNhgCSyDMB1OBD0VkNfArMBKoD0wHEJE5AEqpIdmvLwA6Ar8DNdDRC22AoV5jvgEsF5EngW+AG4BuwH9K/nQMoJMfKaVOS35UWK6DiAhdbCclJaftzjv/4bHHuubqt2tXji3aUPFwCwdOp66tcPiwNitUqWKqMhoMpUmpW/GUUp+hQwWfBtahb9x9lFK7s7s0yt7cWNGCwN/AT0Aw0FkptctrzN/Q2oNhwHpgCNBfKfVHyZ2JwZezSX7Ut6++EeQ+7rSRmTdPl17et893n6Ei4a6t4HBoLdLOnXD8+OnfEYPBUDIExLVHKTVNKdVEKeVQSkV5RyIopboqpbp6vd6slLpIKRWqlKqmlLpeKRWXx5jzlFItlFJ2pVRLpdRXpXQ6hmKgaycIdnseRRGAoKAsevXS/ZYtgyuvhNmzjXq5ouMWDoKDtdZgxw44dizv2hkGg8F/lEF/X0NlY/RoJ5dcsg6rNQsRfbcPCsrAas2iY8d1zJjhJCZGaxWSk+Gpp3RmxJ07AztvQ8ljsWjhICQEjh7VwsGRIzrvgcFg8D9GKDAEHItF6N17AyNGTKdatRNYLE6uuCKGESOm07v3BiwWoU4dmDED3nlH25p//11nQ5w+3Tw9VgYsFggL09vx41ogPHQIMjICPTODoWJhhIISwKRyPTNEhFq1alGtGtx55yzq1DlCu3YbqFYNatWqlcs34ZprYOlSuPFGXUPhuefg2mth06YAnoCh1BDJEQ4SE7XmID4e0tMDPTODoWJghAI/Y7VqFbdxjCo6IkLjxo0JCwvL1R4WFkbjxo1Pc1isWRPefBM+/FBXXvz7b7j6anjlFXNzqCyIaJNC1ao6cmXnTu2Empoa6JkZDOUbIxT4GasVGjbUFyej2iwaLpeLHTt2cPz4cRwOBzZbEA6Hg+PHj7Njxw5c+XgVXnml1hoMG6ZNCG+8AT17wurVpTt/Q2BxCwcZGbrq5p49WlAwGjuD4cwxQkEJEB4OjRppbYF5cikcESEpKQm73U7Hjh2pVasmHTt2xG63k5SUVGBoY3g4vPACfP01nHsubNsGN9ygiy0lJvp/rr7ZGUuzdoihYIKDdV4Dl0sLBrt2mcqMBsOZYoSCEiI4WAsGNps2JxjyR0Ro3749HTt29FRbjI6OpmPHjrRv375I+Q4uuQQWL4ZRo/Saz5kDXbvCjz/6b57r16/PlbbZnd55/fr1/nsTQ7Gx27XmwGLJKdtssiQaDEXDCAUlSFCQNiWEh5snlsJo165drgyI7oyI7dq1K/IYwcHw+ONaELjoIjh4EO66C+6+W/9fHJRSpKen56rn4K73kJ6ebjQGZZCgIK05CArSWRJ37NCRCyZaxWDIHyMUlDAWiy77W7u2FgyMA2L+nE1GxLxo2RLmz4eJEyE0FL7/XmsN5sw5+6dF73oOcXFxfPzxx54CUEVJ52wIHN6JkI4cycl1YHx+DIbTMUJBKSACtWrpMsEpKSbxSmlgtWotQUyMzmeQmKj9DG64AbZsObsxRYSoqKhcbVFRUUYgKCd45zo4cUKbFeLjdWirwWDQGKGgFKlSBRo31kKBcUAsHRo00GmRp0/XxZfWrIFeveDll8/8M/j777+ZP39+Lp+C+fPn8/fff/t/4oYSQ0RrkMLDtZC+ezfs3WsiFgwGMEJBqRMcrAUDmw2SkgI9m8qBCPTrp7UGQ4ZoE86bb2oNwvLlhR4O5IRN7tmzh/DwcAYOHEh4eDh79uwpMGzSUHZx5zqoUkX7GezdmxOxYD5OQ2XFCAUBwO2AWKUKnDplnk5Ki2rV4KWX4JtvoEULfQO47Ta4/36dMrcgLBYLdrudqlWrkpyczCeffEJycjJVq1bFbrdjsZifUnnG4dC/R++IhePHAz0rg6H0MVeyAOF2QIyI0E8mxiO69IiO1hEKY8dqzc0338AVVxTsiKiUIiIigoyMEFasaMjPP7dlxYqGZGSEEBERYaIPKgjuiAW7XVdnTE83BZgMlQtboCdQmRHRKXsdDti/X1+QHI5Az6pyEBSkNQT9+umqi0uWaEfEzz/X/gZt2vgeIcycWZ1Fi27G6bSglBAUlMmPP1ro1Wsn0dHG2bAi4Y5YsFi0U+LRozr3QY0aWpA0GCoqRlNQBggL034GShkHxNKmUSOtIXjnHa25+esvXUfhmWdy+3y88oqLxYubkJVlQykLIGRm2snKsrF4cRNeecUYoSsqoaFae+B2StyzRyckM8ohQ0XECAVlBIdDCwbBwSbRUWkjoqsvxsTA8OG67d13tUlhwQJtW37nHQuZmUF5Hp+ZGcQ771g4ebL05mwofdxOiS6XLr7kzpRoco8YKhJGKChDWK266l+tWtoB0VxsSpcqVWDCBPjhh5yMiCNH6twGIgVLaVarYuHCUpqoIaDY7fq7YrPlZEo0fgeGioIRCsoYIjr74TnnmEqLgaJNG/j2W5g0CapXh61bIS2tYJ+B1FQpNILBULGw2bTfQUiI1ibt2KEjF0wyJEN5xggFZRR3oiOXS9syDaWLxQK3367zGFx8ceH9g4MVERElPy9D2cOdKbFKFS3I796tw12Tkky+A0P5wwgFZRiHQzvCGT+DwFGrls6IGBRU8OK7XNovwVC5cfsdiOiIIne+AxNybCgvGKGgjGOz6VS9xs8gcFSvDvfeq7DZ8jYa22yZjBihqFatdOdlKLt45zs4cgS2b9f+B+npgZ6ZwVAwRigoB3j7GaSkmAtLIHjsMaF79+1YrVnYbBlAjuYgKEjRrp0YTY7hNKxWbVoID9fmhF27TEijoWwTEKFARO4TkZ0ikiYisSJyeSH9B4rIOhFJEZGDIvKRiNT12j9MRFQeW4VKM1KlCjRpoi8mxs+gdBGBkSMTefDBWXTtGkPnzr8RFbWa2rWPkppqZ/hwYfBg/URoMPjiXWfBHdK4Y4cxLRjKHqWe0VBE+gNvAPcBK7P//iAirZRSe/LofxnwIfAo8A0QCUwDPgau8uqaApzrfaxSqsL5AbvzGRw8qP0MwsP1BcdQ8sTHxxMSkk779v9gtVpxOp3YbH+ya9fl/PBDW5YuFVauhLvvhlGj9GdjMPhit+vN6dSplA8f1iaqatVMRlND4AmEpmA0MFspNVMptVkp9SAQD9ybT/9OwD6l1GtKqZ1Kqd+BN4GOPv2UUuqg91ZypxBY3PkM6tQxdRNKG6UUoaGh1KxZk9DQUERcdO26i+XLdXGlrCyYNk0nPvrqK6MiNuSPO5VyWJj+HXubFkzUgiFQlKpQICJ2IApY7LNrMdA5n8N+BeqJSD/R1AYGAN/79AsRkd0isk9EForIRX6dfBnDXTehUSPtY2Bio0uHoKAgoqKiuP3224mKiiIoSGc5rF0bpkyBhQtzEh89+KBOfLRhQ4AnbSjT5GVaMFELhkAhpVndTUTqA/uBK5RSy73axwODlFLN8znuRmA2EII2efwEXKeUSs3e3wm4APgbqAKMAvoA7ZVSW/MY7x7gHoDIyMiouXPn+usUSUpKIryU9cZK6WxqSumY6fJOWloSwcFlT/eemprq0RS4SUlJQUQICQnxtLlc8NNPdXnvvWacOGFHRNG7dzzDhu2kRo3SSXtXVtewvBHIdXRrCywWHYVUXs2EgbgmVjRKYg27desWq5SK9m0v80KBiLRCCwGvA4uAesBkYJ1Sakg+72MF1gFLlVIPFTSn6OhotWbNmrM6n7yIiYmha9eufhuvqLhc2jZ5/LhWR1qtpT4Fv7FxYwytW3cN9DTyRCmFeF2dfV97c+oUvP46vPeefuKrWhUeeQSGDdM25ZKkLK9heSLQ66iU1gJmZenvTK1a5e/3HahrYkWiJNZQRPIUCkr7ufII4EQ7C3oTCeTnAzAGWK2UmqyUWq+UWoR2ThwsIufkdYBSygmsAc73z7TLPhYLREZqX4OUFJMeuaTwFQDyEwhACwHjx8Mvv0C3blpImDABunfXpZoNhsLwNi1YLNos5a61YH7jhpKgVIUCpVQGEAv08NnVA/gtn8NC0YKEN+7Xec5f9JW6HdqBsVJRtaoOWzTpkcsO550HH36oMyM2barDFgcP1tu2bYGenaG8EBSkHRNDQ+HECe13YBwTDf4mEBboqcAwERkuIi1F5A2gPjAdQETmiMgcr/4LgOtE5F4RaZYdovh/wFp3CKOIPCMivbL3Xwi8hxYKppfieZUZ3GGLYWH66dRcMAKPCPTooTUE48frJ78lS+Cqq/Tr48cDPUNDeUFECwZVquiwRrdj4rFjplKjofiUulCglPoMeBh4Gm33/w/QRym1O7tLo+zN3X82OozxAeAfYB7wL3Cd17DVgRnAZnQkQwOgi1JqdYmdSBnHaoW6dbVJISnJXCzKCnY7jBgBK1fCoEFaYHvvPfjPf2DWLPM5Gc4MhyMnnfLRozmVGlNSTDis4ewIiK+6UmqaUqqJUsqhlIrydjpUSnVVSnX16f+mUqq1UipUKVVPKTVIKbXPa/8jSqnG2eNFKKV6KaVWleIplUlEoEYNrTXIyjLmhLJE7drwyivw44/QubNWBz/9tNYm/PKLuaAbzgx3OuUqVbRj4t69JqzRcHZUgAA2Q2GEhGjBICREJ0kx5oSyQ+vW8Pnn8P772hdk61YYMkRrEbZsCfTsDOWR4GAtHAQF6Yik7du19iA11QibhsI5I6FARC4VkWdF5EcRWS8iW0VklYjMFpE7RKRGSU3UUDxsNh2ZEBFhzAllDRHo1QuWLtX+BVWrwrJlWmvwxBP6wm4wnCnujInh4Vog2LNHaw9OnjTaA0P+FEkoEJGhIrIBHSHwCDoiYCvwB3AcnXL4XWB/toDQtITmaygGxpxQtnH7G/z6K9xxh/68PvpI+xv83//pC7vBcKZ4hzXabLqE8/btOrzRaA8MvhQqFIjIeuBldFrhKKC6UqqLUuompdTtSqk+SqmWQE3gbiAC2JRd+MhQBjHmhLJNzZrw/PPat6B7d63ZmTQJunSBL78s+PPyTUZWmsnJDGUfmy1He5CcbLQHhtMpiqbgPaCpUuoJpdRfKp+rjFLqpFLqY6VUH+BS4IQf52nwM8acUPY5/3z44AP47DPte3DgADz0EPTpo7UJvqxfv541a9Z4BAGlFGvWrGH9+vWlPHNDWSc/7YHxPTAUKhQopd440xLESqm/szMPGsowxpxQPvjPf3SUwmuv6TDTDRvg1lu1Q+K//+o+SinS09OJi4vDnbZ7zZo1xMXFkZ6ebjQGhnzx1h6kpeVoD44fNw8LlRETfWAgJER7vptkR2UXi0ULAitXaufD8HBtXrjqKnj8cUhIEKKjo2nevDlxcXEcO3aMuLg4mjdvTnR0dIHpmA0G0A8J3pELR47ovAf79mlTg5ErKwdFFgpE5HoRmSUif2RHHWzN/n+WiFxfgnM0lALuZEf16ukLgMmrXjYJCdEmhF9/haFD9YX844+1NmHyZOGCC6Jy9Y+KijICgeGM8c57kJmpBYMdO3SCJHNtqNgUxdGwhoisBL4CuqGLGv2evR0BugJficivJiSxfCMC1arl1E5ITg70jAz5Ubs2vPiiTpXcp4+2A7/xBlxySSa//noBWVmCUor58+fz999/B3q6hnKMO2uiw6FTKbtrLiQlGa1iRcRWhD6votMOX6GUWpFXBxH5D/ARMAW4y3/TMwQCh0MLBhWlFHNF5rzzYOZMWL3axX//e5wdO2rx7beXsGZNKr16baBWLV1nrG3btlgsxlpoOHssFn0tAK0t2L9ft1WrpnNrOBz6wcJQvinKVeJa4NH8BAIApdRK4Angej/NyxBg3KWYGzTQT6FpZ+RqaihtLrnEwogRP9Kv309YrU4OHAhh1qxL+PDDQaxfX8UIBAa/Yrdr7UFoqA5r3r3bhDZWFIpypXCgExQVxgnAXqzZGMocVaporYHVqn/8xtmobOJ0uli4sAXff98Np1O4+eY4QJGQUIcZM7ozYIBiw4ZAz9JQ0cgrtHHHDq1FMCWdyydFEQpWAU+JSJX8OmTvG4POeGioYNjt0KiRtmMnJpowpbLIlCnw++/tcDptgIVLL40H3LpcxYoVQu/ecO+9+onOYPA33qGN6enaOXH7dq05SE8P9OwMRaUoPgUPAzHAbhH5Dl2+2K05qAG0BvoCTrQjoqECIgK1aml14YEDWjAIDQ30rAygKyy+846QmRmUTw/BalVYrcK338L338OAAfDIIzrixGDwN8HBenO5wOmEXbu0z0GNGtovwVaUO48hIBT60SilNolIe+BxoB8wEO9HENgFzAEmK6UOlNA8DWUEd06DQ4e0/dA4IQae774r/DNwOGDUKK3a/eILXVNh3jxdY+H++/XFurRQSuUKk/R9bag4WCx6c4c2JiRoE2SVKtpBMSRE7zeUHYr0cSil4pVSjyilzgPCgAbZW7hS6tzsfUYgqCRYrTqfQf36xgmxLHDoUOHFklJT9UV56tScMMa0NPjf/6BTJ3j9dR1iVtKYVMyVl6AgbVqoUkV/9/bv10LqkSPmGlKWOGMZTSmVli0kxCulTN22SkzVqsYJsSwQEaGfuAoiJET3A11TYeZMrWG4/HL92U2eDJ076/aSukD7pmJ2CwQmFXPlIzhYCwjBwdr8tXu3FhBOnjQ+S4GmKMmLbjzTQUWknohcenZTMpQn3E6IderoJ02T7az06dtX220LwumEa67J3XbhhTB3Lnz+OURF6Wx1zz6rsyN+9JH/L84iuVMxf/zxxyYVcyXHYtG+Sb7RC/v26etJYd9rg/8piqbgTRFZJyIjRaRmQR1F5HIRmQFsA9r5ZYaGMo+ILvfbuLHJhBgIqleHESMUQUF538WDgjIZMUJRrVrex192GcyfD7NnQ8uWEB+v6ytccYX2O/DnhdktGHhjBAID5EQvuP0P3OaFgwdN5cbSpChCwfnoFMcTgQQRWS8iH4rIVBF5SUSmi8hiETmGjlI4H+ihlJpRctM2lEWCg7VgULWqLqxkkpiUHo8/buGmm44RFOTEbtfCgd2eSVCQk5tuOsbjjxf8UxeBHj1g8WLtZ3DuuVqlO2qULrq0YIF/Ys7dJgNvvH0MDAbISa0cGqofMtzmhSNHTHhjSVOU6IMUYKKIvAzcAPQGOgL1gWDgKLAFeAP4TCm1peSmayjrWK06E2J4uH7izMgwoYulgQgMHZrANdfs56uv0qlaNZVrrlnDjTc6qFXLhkhkkcaxWODaa7Uj4ldfacfErVth5EitRXjsMejZ8+zS2Sql+Oijjzh58iQdO3YkOjqaNWvW8Mcff7BlyxZuv/12ozEw5MKdHCkkRAulJ05oM5fdrrWToaHagdHgP4ocLaqUyhCRX4D5SinjK2ookLAw7YSYkKC1BiZ0sWRxO/H9++9a2rSBKlXq0KbNHv79Fzp06HDGYX82my7VfP318NlnOjph82a4805o3x7++1+48sozEw6UUrhcLjIzM/nvf5tQpw4MGrSXzMxMXC5XmQpNNGGTZQ+3/wFoLeShQ1pQCAnRIbWhoeYa4w+K4mhoFZFnReQ4kACcEpEvRaT62b6piNwnIjtFJE1EYkXk8kL6D8z2a0gRkYMi8pGI1PXpc5OIbBKR9Oy/N5zt/Az+wWbTYYvu0MXCwuYM/sNf9y+7HQYP1qWaJ07UDqV//w1DhkC/frBsWdFtvRaLhcGDB9O4cWMyMtLZv38/+/bto3HjxgwePLjM1GcwYZNlH5stp7Szy6W1ktu368RqJr1y8SjKr3AkMB74C10FcT5wHfDa2byhiPRHmxpeBC5Cp0b+QUQa5dP/MuBD4AN09sTrgVbAx159OgGfZbddmP33CxHpeDZzNPgPEe1j0LSpvsEkJpofbEkgIjgcDjp06EBYdim7sLAwOnTogMPhKPZTbnAw3HUXrFoF48bp7JZ//QUDB8INN8Dy5UUTDiwWC9dee22utmuvvbbMCAS+YZOACZss49jt2lwZFqbDafftg23bcvJ3mI/szCjKL/FuYKZS6kql1BNKqVuA+4HbReRsCiCNBmYrpWYqpTYrpR4E4oF78+nfCdinlHpNKbVTKfU78Cbar8HNw8BSpdQL2WO+gHZ6fPgs5mcoAYKC4JxztL9BSopJVlIStG3b9ozaz4aQEO1fsGoVjB2rIx/+/BNuuw1uvBFWrCj4Ivz9998zY8YMTx+Xy8WMGTP4/vvv/TbH4uAbNnns2DETNllOENHCa5UqWkBITIQ9e7QGwZ0gyQgIhVMUoaAZ8IVP22eAFWh8Jm+WLUREAYt9di0GOudz2K9APRHpJ5rawADA+yrSKY8xFxUwpiEAiOibSOPGJuGRv/FOBNS8eXNq1qzpubGVhHd/WJhOj/zHH/Dkk/pzXb1a11S46aa8hYOsrCy2b99OamoqFotQv34D7HY7qampbN++nawyEq5iwibLP97VG70TJO3cCceOmQiGgiiKUBAOnPJpS8z+m2/lxHyojRYmEnzaE4A8S7MopVahhYCPgQzgMLr2wlCvbnXPZExDYHE4cic8Mj/Q4uM2H7ifaAHPE68/zAf5ER4ODz4Iv/+ucxtUr64FhQEDTjcrWK1WqlatSnp6MKdOhbB58yn+/PN80tODqVq1KtYy4iVmwiYrFt4JkoKCdPTCrl1aQDhxwiRc80UK+6KLiAu4Cfjbq9kKxKF9CzZ691dK7ShgrPrAfuAKpdRyr/bxwCClVPM8jmkF/AS8jn76rwdMBtYppYZk98kAhiul5ngdNwRt9nDkMeY9wD0AkZGRUXPnzi1gBc6MpKQkwsPD/TZeRUcpnahEqZzCKGlpSQQHmzUsDoFaw+RkK99+24B58xqSmKhjxVq1OsmgQbuJjj5GQgIcPpwjKIgoQKhTp+xUbExJSSEtLY3g4GAsFhcul8XzOtTE154xZfX3rJT391BrLy0W/znp+pOSuK9069YtVikV7dteVKEgr06SV7tSKl9xP9t8kALcppT6wqv9baCNUuqKPI75EF146Qavtv8AK4CGSql9IrIHeFMpNdmrz2PAA0qpAk0c0dHRyvepoDjExMTQtWtXv41XGXDHHx86pLUI27bF0Lp110BPq1yzcWNg1zApSWdInD4djmcXWo+IgBMnFBkZp191Q0IU99wjPP546c4zL77//nvS09O57rrr2Lx5OS1bdmH+/Pk4HA769OkT6OmVOwL9XSwKmZlaY6mUNjtUr661C2WlxHNJ3FdEJE+hoCinfIe/JpGd6yAW6EFuP4UewJf5HBYK+CZadb92mz9WZY8x2atPD3Rkg6GMY7HkJCI5eFALCUqVTYndUDTCw+GBB3Rp5jlzYNo0LfTlVF3PTWqqMH26YsQIyTcdc2mglCIrK4uEhARiY2MJDYXY2FgSEhKoX7++yVdQQQkKykmClJGhr0Ogr0nuEs9lRUAoaYqS0fADP7/nVOBDEVmNdiIcic6OOB1AROZkv++Q7P4LgJkici855oPXgbVKqT3Zfd4AlovIk8A36MyL3YD/+HnuhhIkOFj7Gmzfrp0QHQ69GcovYWFw7736s50wQZGZmf8N1WqFhQth0KBSnGAe1KtXj/j4eNauXUurVnXYtCkOEaFevXqBnZihVLDb9QZaQIiP1w8pYWFagxASUrGTJJW67KOU+kxEagFPo2/w/wB9lFK7s7s08uk/W0SqAA8ArwIngSXAE159fhORAcDz6BoN24H+Sqk/Svp8DP7FYtE/uCZNtLSelKR/jObhrHxz4kThtTBSUtzahMDhHXmwatUqsrKySE9Pp1OnTiYCoRLiLSCkp+vkSKA1CBVVQAiIQkQpNQ2Yls++rnm0vYnOTVDQmPOAef6YnyHwuLUG3r4GRmtQfomIgJAQISUl/z4iwtatOuFMSEjpzc1gKAre16D0dF3FUUQ/tLhNDBVBQCgbacQMhjxw+xo0bap/fCYbYvmlb9/CSzArpUs4d+qkfRASEwvuXxK4wxHXrl3L3Lk3cfx4TRwOB2vXrjVhiQYP7iqOYWHaxLB/vzZ77tuntZv+LDde2hihwFDmcTh0wqOICJ3X3GRDLH9Ur64zIToceV8t7XYnfftC27Y6ZPGFF6BjR5g8WSebKU3i4+MBCA+vgs1mo0OHDrnaDQY3IrkFhMxMLSBs25YjIJSRnFxFxggFhnKBiK6E1rSp9gI2WoPyx3//66Jbt63YbFm4I53t9ixstiyuvHIr//ufix9+gI8+gksvhZMndXXGSy6B8eP1xbakERGaNGlChw4dqFJF52aLjo6mQ4cONGnSxPgUGPLFW0CoUkULCAcOaA3C3r26Wmx5EBAqSZCFoaJgt0PDhvoHlpCgbXjG/lw+sFotPPRQOlde+SOvvHI5TqeFbt02cumlR2jTpiFWq35G6dZNb6tXw5tvwpIl8N57OrTxxhvhvvvgvPNKbp7t2rXLNhNoAcDtfGgEAsOZ4O2D4A5z9M6DEBKSEwZZljCaAkO5Q0Q79jRtqh0ST50q3za8ykT79u257bY+VK2aSo0ayXTsuI3bbutD+/btT+t7ySXw4YewaBFcd53+jD/7DLp21RUbY2NLbp6+AoARCAzFwV3J0V3q+eBBnWZ51y6tEStLqZaNUGAotwQFQf360KCB9gZOTQ30jAyFoZQi1uduHhsbW6ADX5s22vFwxQq4/Xb9uf/4I1x7Ldx8s9Yk+Nv/z3c+xsHQ4C/cAkJ4uH7AOXRICwg7dujsn+7MioHCCAWGco2Ilr6bNNGOPqdOaVueoeyhlGLBggWsXbuW0NBQIiIiad68OWvXrmXBggWF3nibNIFJk3TBpQce0J/7qlUweDD06AFffumfz379+vXZBZGUZ95r1qxh/fr1xR/cYPAiKEhft6pU0b5SR47kVHMMVLlnIxQYKgQ2my6o06iRVjMnJZmyzGWZ55+PY95ZZhWJiIAxY+DPP+HppyEyEjZvhocegs6dYcYM/fmfDUop0tPT+euvnezZk0ZmJrz44i7++msn6enpRmNgKDFsNi0ghIdrYcFd7nn79tI1jxpHQ0OFIjRUP1EeO6ZLpNrtJulRWUFE6NevH2vWrCEuLo64uDgAOnTocFaOfFWq6BTKd94JX38N//ufDgWbMEFHLQwerPdFRp7RLFm6NJpp06LIytK23nffPQelGnPffUJ0tPEtMJQ8Vqu+loEWCEpTKDCaAkOFw2KB2rV1bgOLxYQvliW80wi7Ka5nv8MBAwbA0qUwaxZcfLF23nrrLR3a+N//wr//Fm2syZNhxgwhM9OCUvrymJERRGamhRkzhMmTCxnAYPAzpe3jaoQCQ4XFnSq5bl2dV984IgYet33eG39lCrRYoGdP+OYbnRmxTx/tYzB3rg5xHDwYVq7M36x04oQu9Zzf9yQ1Ve8/ebLYUzUYyixGKDBUaLzDF0NCyk8CkYqIWyCIi4ujefPmDBo0iObNmxMXF+f3FMLR0TBzpo5YGDJEC4hLlkD//tC7d95Oid99B1ZrwXOwWhULF/ptmgZDmcMIBYZKgTt8sWFDfTMwjoilj4jgcDho3ry5x2QQHR1N8+bNcTgcJZILoGlTeOkl7ZT46KNQqxb88492Srz0Uh3qeOKE7nvoEKSmFjyH1FQJeCVHg6EkMUKBoVIRFqYdEWvW1L4Gpo5C6dKuXbtcPgRuwaBdu3Yl+r41a8Ijj+gsia+8ojMiHjyoayxcfDGMG+fOjlmwpBgSooiIKNGpFgmTR8FQUpjoA0Olw2rVjohVquhUyadOaWGhIpQ9NRRMcDAMGgS33QYxMTp8ccUKeP99bWoqTFvhdArXXFM6c82P9evXk56e7hGu3GYZh8NR4sKVoeJjNAWGSovDoc0J9etrjUFKijEplDTuxEDuJ9tAJQayWODKK7UT4uLFcOut2sTkG6WSlZUjJDgcTkaOVFSrVqpTzYU7j4K3H4bbT8PkUTD4AyMUGCo1IlC1qrY9V6miTQplKQ95RaKs3tBat4bXXtOZEh9+GOz2HE/UF17ohNXqxGrNonv3HTz2WGDzFHj7YcTFxfHxxx97HDdN0SaDPzDmA4MBnU0sMlJHKhw8qIWDsDD9RGnwD945CryTF5WVG1pEhC7v3Ljxd3z3XTWWLr2cxEQ7AFarkyNH7GzY4KJdu8B+Kdzr6F4/KH6uB4PBjbnkGQxeBAfrpEd16+q49JSUQM+oYlESyYv8icViISzMRteuO2nU6DAPPhhLq1Z7cbks/PFHY66+2sINN8DChYELbS3JXA8Gg9EUGAw+uHMbhIXpVMknTmj/A7s90DMr/+R3QysrgoFSioiICI4ePYrL5eSCC45To8YaUlLqEBfXmZiYSFavFlav1r4oQ4Zox8WaNUtvft65HqKjoz2voWwJWIbyidEUGAz54DYpNGqkXycmlm4O8opGaSYvOltEhKioKKpUqYLLpTx+EE2aCNOmRbBmjfD889CsGRw4AC+/rBMlPfKIzn9QGvMr7VwPhsqFEQoMhkIICckxKZgohbOnPNzQlFLExsaSnJyMxSKeOScnJxMbG0tYmOKOO2DZMvjoIx3BkJEBn38OvXrBddfpNMvGWdVQXjHmA4OhCHibFI4d05vDYSownint2rVDKXVa8qKyIBCAno/dbicsLAyLRSeuCA0NJSwsDLvd7pmnxaLrKXTrBjt3wuzZWjBYs0ZvderA7bdr00K9ev6bn3cEB5DLfNC8efNca2swnA0B0RSIyH0islNE0kQkVkQuL6DvbBFReWzJXn265tOnRemckaGyYLNpL/UmTXSyo8REU0vhTPG9aZWlm5hSit27d3Pw4EFCQ0Ox2Wy0aNGCgwcPsnv37jxNHE2b6nLNa9Zoc0KLFnD4sA5z7NgR7rkHfvvNP9olb6Fl9OiGdOmSQFxc3GlCi8FwtpS6UCAi/YE3gBeBi4DfgB9EpFE+h4wC6vlsO4DP8+jb2qffVr9O3mDIJjg4J/GRqaVQsTh58iROp5MXXojj3HN1m9Pp5GQh5RHDwnQlxp9/hi++gL59dft338Ett8BVV2mNQmLi2c9NKcX69evZt28fzmwHl+TkZPbt28f69evLhF+GoXwTCE3BaGC2UmqmUmqzUupBIB64N6/OSqmTSqmD7g04F2gGzMyj+yHvvkop4xZmKDFEdMIjdy2FpCRTnrki0KJFC4KCgli7di1Hjx5j7dq1BAUF0aJF0RSPItC5s06h/Mcf2gkxIgLi4uCppyAqCp58EjZtOvO5KaUIDQ0lMzMTp9NFZmYWycnJZGZmEhoaWqaEAlOfoXxSqkKBiNiBKGCxz67FQOciDnM3sFEp9Vse+9aISLyI/CIi3YoxVYOhyLhrKTRtqjUIJiti+cXt49ChQwfS09NxOrNIT0+nQ4cOZ+X7UK+ers74xx/wv/9Bp06QnAwffgg9emjHxC+/LHphLhGhUaNG2O12lMITIWG322nUqFGZMR+UlXTWhjNHSlN6E5H6wH7gCqXUcq/28cAgpVTzQo6vhtYqjFFKveHV3hzoBvwJ2IHBwMjs91mRxzj3APcAREZGRs2dO7e4p+YhKSmJ8PBwv41XGSnva+hyaT8DpQKXETEtLYng4PK7hoEmJSWFpKQkQkKCSE3NJDw8nNDQUL+MvWtXKAsXNuDnnyNJSdG+3lWrZtKzZzx9+8bToEHB6qbU1FRSUzOIj9efb1hYMlWrKkJC7ISEhPhljsUlJSWFtLQ0goODsVhcuFwWz2t/rWNlIjU1iapV/ft77tatW6xSKtq3vbwJBfcDrwL1lVLHCun7PZCllLq2oH7R0dHKN5lKcYiJiaFr165+G68yUhHWUCldffHwYf1/aKhWK5cWGzfG0Lp119J7wwqC+4l27dq1ALRqVYdNmw4DnLW2ID+Sk+Hrr2HOHNi4Maf98su1b0LPnrpIkzcul+Kee/5l8eJzcbksKCUEBWXiclno2XM7M2ZcgMUSeG2Bd06Kxo1D2b07pcyksy5vuFywaVMMPXt29eu4IpKnUFDazzFHACcQ6dMeCRwswvF3A18WJhBk8wdw/plNz2DwD+4QxqZNoUYN429QnoiPjwe0EFCzZk06dOiQq91fhIXpsMVFi2DBAl2pMThYl3K+5x645BIdzbB3b84xkycrfv65GU6nDaUsgJCZacfptPHzz82YPLls2O3LejprQ/6UqlCglMoAYoEePrt6oKMQ8kVELgHak7eDYV5ciDY1GAwBw/gblC9EhCZNmni0AoDHx6BJkyYlclMTgQ4ddAhjbCxMnAjnnw+HDsGbb2o/hEGDYN48mD7dQmZmUJ7jZGYG8c47FgoJkigVTH2G8ksgkhdNBT4UkdXAr2jbf31gOoCIzAFQSg3xOe4eYKtSKsZ3QBF5GNgFbET7FNwOXA/cVALzNxjOGLsdGjTQ2oKEBC0chIZqocFQtghkgqXq1eGuu+DOO2H1ap018bvvICZGb4VhtepiTYMGlfBEC8A3nXVoaDLBwQ1NfYZyQqkLBUqpz0SkFvA0OpfAP0AfpdTu7C6n5SsQkSrAAGBiPsPagcnAOUAqWjjoq5T63s/TNxiKhTtlcmKi9jdwOrVwYEo0ly0CnWBJRCc+6thRaw7mzYP/+z+dSbMgUlO1hiGQ+Kaz3rRpmUfrUlbSWRvyJyBpjpVS04Bp+ezrmkdbIpCv66VS6hXgFX/Nz2AoSUSgalVtUz55Eo4c0UJBSEjpOiMaygc1asDdd+vvx/jxivT0/L8kISGKiIjAf4nKejprQ/6Y5xODIUBYrTrpUdOmOglSUlLR49UNlY9rrgEo+Kaamiqkp+vIhkATaG2L4ewwQoHBEGCCgnSJ5iZNtO/BqVPGGdFwOtWrw8iRWmOQH0rBuHFw0UU6adKaNSb9tuHMMEKBwVBGcDjgnHOgUbZXzalTptiSITePPQbXX5+A3e7CYtF3+9BQhd3u4pZbEpg6VYcyJifDp5/qjIldu+psioH2NTCUD0zpZIOhjBEaqp0Rk5K0M2JamnFGNLhR9O+/hwsuWMbMmf2wWIK59tpdRESs5sILmxEdHUH//sK2bTB3rnZQ3LYNnn8eXnpJF2Xq31//9U2MZDCA0RQYDGUS72JLkZHaqzw52aiCKztuh72LLmpKcPBJ7PYEGjf+NVsgyHHkO+88ePpp+PNPmDVLZ0cEWLxYhzxGR+tyz1u2BPBkDGUSIxQYDGUYi0VnRmzWLCczYkqKEQ4qMxs2bChye1CQFghmzdL+BePGwQUX6IiXGTO0xqBPH13SubBwR0PlwAgFBkM5wJ0ZsVkzrUFITDRpkysjSinS09OJjY3F6dSV4ZOTk4mNjSU9Pb3AjIEREdpRcckSnVb59tt1aOzff+uSzh066NDHxYshM7O0zshQ1jBCgcFQjnBHKjRrpr3QExNNGGNlY8uWLaSlpTFkyALuuecnlFKkpaWxpYi2AHda5UmTYO1amDYNunXTibS+/x7uuEObF555Bv75p4RPJsD4ClEmDbMRCgyGcondDvXra4fEoCATxlhZUErhcrlQSpGZmZnrr7v9TAgJ0REKH32k0yqPHavrLhw5Au++C716QffuMH26Ts99pnMt6HWgWb9+fa56DO70zOvXrw/wzAKLEQoMhnJMcDA0bKjDGEW0cGBUvxUXi8XC7bffTvXq1cnMzOTIkSNkZmZSvXp1br/9dizFCFGpVw/uvx+WLtX1FoYN07kRNm+G557T2oPbb9flngszXblvuDfdpNi+vezdcN1mmLi4OI9g4K7XUJgZpqJjhAKDoQIQGqoFg4YNdf11l8vkOKiIKKVYu3YtVqsVEcFmsyEiWK1W1q5d65ebmQhceCG88AL89ZfWGPTurf1ali6FBx6A9u3h4Yd1meds14Zcc3TfcJOSEgHK3A1XRLDb7YSFhREXF8fHH39MXFwcYWFh2O32Sp190QgFBkMFQUTXU2jSRJsUsrK0z4HvRdtQfhERgoKCcDqdWLNLbFqtVpxOJ0FBQX6/mdntcPXV8N572v/ghRd0tsTkZPjiCxgwQCdLev552LQpZ47uG25KSgpZWVll7oarlCIjI4OkpCSSs3NCJycnk5SUREZGRpkQXAKFEQoMhgqGiA5lbNJEq4QzMnQooxEOyj8ul4udO3eSmJhIw4YNeeCBB2jYsCGJiYns3LkTl8tVYu9ds6Y2KSxcCMuXa01Bo0Zw8KDOmNijh/Y/eOstxf79cOhQOidOOMjKsrBiRUMOHUovMzdcESEqKorw8HDS09M5duwY6enphIeHExUVVSYEl0BhMhoaDBUUi0WHnIWH55RqdrlMdsTyjMViweFw0LBhQ6677josFgvXXXcd8+fPx+FwFMun4Ew491ydctldX+Grr+Dbb7X/webNArTL3hSJiXYWLbqEH3+0cPPNR4iODvwNVylFbGwsycnJOBwOQkNDSUlJ8YR3VuaKjkYoMBgqOO4ESFWq6FLNR48a4aA806dPH1wul0cAcAsGpSUQeCMCF1+stwkTICYGXnxRsXUr6IqOwoQJnXE69dy+/LI2EREunngisF88bxOHu8RzaGhomTJxBApzSTAYKgkWi86K2LQp1KmjPciTkrSAYChf+AoAgRAIfLHbtX/Bnj1aGHDjcuX8n5lp4623LCxYENgoGaUUu3fvJiEhgRYtWjBo0CBatGhBQkICu3fvLhMmjkAR+G+SwWAoVaxWLRw0a6azJLrrKhjhwFBcvvsOrNbcN9Rx41bleu1y6cyKHTrAmDHwxx+B/e49/XRzbr45cO9f1jDmA4OhkmK1auexatVyzAqgE9qUgQdPQznk0CFITc2teq9a9fSsWjVr6loLc+borW5duPZanUipfXttlihJRITGjRvjdDpJTk4hJSWFLVu2EBkZSePGjY35wGAwVF7cwkGzZlCrltEcGM6eiAgIDi5Y9R4SonjiCV1j4f774ZxzdATDjBnQty9cdpku87xxY8kV/nKHJCYnJ+NyOVEKj6NhWYmQCBRGKDAYDIARDgzFp2/f3D4EeeFyCf36QevWOq3y77/ryIW77tJCxe7d8NZburpj167w6qvw77/+nac7JDEsLAyXS5GVlUV6ejphYWGVPiTRCAUGgyEXeQkHxiHRUBSqV4cRI1zY7Xmn07TbsxgxwkW1ajltIhAVBRMn6vDGL77Q6ZRr1oRt22DqVF2w6aqr4LXXdFtxcYckJiUlYbEIQUE2HA4HSUlJxMbGGk2BwWAw+OItHJhoBUNRefxxCzfeeASbLQsR/WUJCsrAZsvixhuP8Pjj+d92rFbo3DmnguPHH+usidWrw5YtMGUKXHGFTpL0+uuwffvZzdEdkmix1CA5OZzjx8P455/2WCw1Kn1IonE0NBgMBeKOVqhaVRdccuc5CAnR+wwGb5Ry8Z//rKJ27Xg+/vg2rFYX3buv5Nxzt9CiRT2Uug6Rwp9Hg4K0+aBrV+1jsHKlNjMsWuROkgSTJ0PLlnDNNXo777yizdHlUsyaVZuvv26N02lFKfjuu4v59lvFDTckMHWqwmKpnIJBQDQFInKfiOwUkTQRiRWRywvoO1tEVB5bsk+/K7LHShORHSIysuTPxGCoPHiHMkZG6vTJiYmm8JIhNxaLhSNHjhAWlkX16unYbC6uuGI/YWFZHDly5KxyKtjtcOWVWjuwbh188AHccosWVN3CwRVXaBPD1KkQF1ewk+KUKcL8+ZFkZdlQSudVSE+3kpVlY/78SKZMKRsCQSDKT5e6UCAi/YE3gBeBi4DfgB9EpFE+h4wC6vlsO4DPvcZsCnyfPdZFwEvAmyJyUwmdhsFQaXFnSGzaVNdWcBdeMsKBAcDpdGKz2cjMzEQphc1mIysri8zMTGw2G85iFuFwOHLMB94CQrVq2sTw6qtagLjiCm2G+Oef3ALCiRMwfboiIyNvRXlGho3p0xUnTxZrmsXGXX7aLQgopVi1ahWxsbEl+r6B0BSMBmYrpWYqpTYrpR4E4oF78+qslDqplDro3oBzgWbATK9uI4EDSqkHs8ecCXwAPFqyp2IwVF7ctRWaNoX69XOEg0BmqjMEHqvVSocOHahZsya33vo5Vaoc4tSpU9SsWZMOHTp4qjv6A18B4cMPc3wQtm+H//s/6NVLhzk+9xzExsKCBYWbvaxWXfgpUHiXn9aCAaxatYp//vmnxMtPl6pPgYjYgShgis+uxUDnIg5zN7BRKfWbV1un7DG8WQQMFZEgpZS5TBkMJYSIrqsQHg4pKbrwUmKiVvk6HIGenSEQtG/fnjZt2vD2228D2rFvyJAhfhUIfHGbGK68El5+GVat0hkWf/xRhzlOn643/T0t2DyQmiocOlRiUy0UESE6OhqAzZvjaNIklN27j9CmTRs6depUoo6QUpqhFyJSH9gPXKGUWu7VPh4YpJRqXsjx1dBahTFKqTe82v8FPlJKTfRq6wIsA+orpeJ9xrkHuAcgMjIyau7cucU+NzdJSUmEh4f7bbzKiFnD4hPoNXS5tOZAKS00lFdn7rS0JIKDzXfxbDhx4gQZGRmEhASRmpqJ3W6nevXqpT4PpxM2barGypV1WLmyNocPB3v2hYZm0rr1Edq0OcIFFxwnKEhHS1gsWvtVs2apT/c0jh49hsNhwenMonbt2n4bt1u3brFKqWjf9vIWfXA72uTxYXEGUUrNAGYAREdHq65duxZ/ZtnExMTgz/EqI2YNi09ZWcO0NB2tkJQENhsEB5cvAWHjxhhat+4a6GmUK1wuF/Pnz2fv3r00bNiQiIgaxMcfZ+/ePTRsqAJS0bFdO21WUApWrIDbb1c4nUJKShB//lmPP/+sl6u/3a5Yt05y5VMobZRSrFmzhl279tGkSSinTh2jfv36Ja4pKG2fgiOAE4j0aY8EDhbh+LuBL5VSx3zaD+YzZlb2exoMhgAQHAwNGkCTJhAWpoWD5OSSS19rCDwWiwWHw0HDhg257rrrALjuuuto2LAhDocjoBUdRaBLF7j/foXNlr9VOSsL7rtP12U4WJQ7k59xCwRxcXE0b96cGjVq0qZNG/755x9WrVpVcXwKlFIZIhIL9AC+8NrVA/iyoGNF5BKgPfBwHrtXATf4tPUA1hh/AoMh8DgcuuhNrVq6+NKxbLE+NNQUX6qI9OnTB5fL5REALBZLQDQE+fH44xYOHTrMl1/WJitLUEoICsrC6bRSq1YWR4/aiYmBmBhdyfGii7TDYu/eOhdCaRRscjgcNG/enA4dotm8eRmdOnUCwOFwVChNAcBUYJiIDBeRliLyBlAfmA4gInNEZE4ex90DbFVKxeSxbzrQQERezx5zODCM0x0aDQZDAAkK0uWazz1XZ0lMSzPhjBUVXwGgrAgEoG/qr74aSWysolatRGrUSKJfv1jWrXOxbp2ddet0voOePbW266+/tPNi165w+eU6kuGPP7S/QmlSGj6Ape5ToJT6TERqAU+jcw78A/RRSu3O7nJavgIRqQIMACb67ssec6eI9AFeQ4c2HgAeUkoVqH0wGAyBwZ0IqVo1bVI4ckSnUXY4tBe5wVDSfP/99yQkJFClytWIwMUX/8u3324mMjKSPn360L8/9O+vI2qWLdOZFH/+GXbuzIlkqFFDh0T27KnzIoSF+Wdu7pDEzZs389RTzXngAR2SuGHDBtq1a4dSqsS0BQFxNFRKTQOm5bOvax5tiUCBLsBKqWVAB3/Mz2AwlA7uXAdVquiL79GjWnMQFKSf0AyGksDpdJKQkMDx48dRShERURen08nx48c9+93hk6GhcPXVesvK0kWbFi3SpZ937dIFnL74Qguzl10GPXrorX79s5+fiHD48GGcTifJySlkZmaxfv0WnE4nBw8erHDmA4PBYMiFiH7KatQIGjfWAsGpU1pQME6JBn9jtVq56KKLqFGjBk6nkwMH9pOYmEiNGjW46KKL8s2nYLPBpZfCM8/oWgxLl8KTT+oqj5mZ+vXYsXDxxVp7MHmyTqp0pkXEXC4X6enpJCYmkpWlbRQnTpzg5MmTpKWl4SrBqmTlLSTRYDBUcIKD9VNW7do6Je2JE7rdFGAy+JMLL7yQtm3b8s47OWlsziTBkghccIHeHnxQm8B++UVrEJYvh40b9fb66xARoesydO+ufRIKMzNYLBauvfZa5syZg1IulFJkZGRQq1Yt+vfvX6L+GUZTYDAYyiR2u76Yuks3uwswmTTKBn/gcrn49ttvGTjwKwYO/AqAb7/99qyfwmvX1j4I770HGzbARx/B0KFawD10CD79FO66C9q0gYEDdb9du/IeSynFd999x/HjLpKTw3C5LMTGduDoURdffvlliTocGqHAYDCUaWw27dDlrrGglDYtpKUFemaG8opvgqUHHniAhg0bsnfvXubPn19s9XxwMHTrBi++CKtXw08/wRNP5JgZli2D8eO1D8IVV8DEidockZGhj1cK5s+/gNdfH8rJk9VxOq388ENPnntuJHPntipRk5oxHxgMhnKBxZJTYyEtDY4f18KBzaZNC+UpU6IhsPgmWHLnUZg/f77fEyyJQKtWenvoIe1Mu2SJNjUsWwbbtuntnXf0d7tLF0hPVyxffh5OZ84tOjNTh+V8910Lxo9XPP98BYo+MBgMhrNFRAsBISFaZXvqlBYQlNJPaDZzVTMUgUAlWKpVS5d6vuUWrTVYsyZHSIiLg++/B63Ez5nHzp05+ZYzMmy8+io8+qiuBulvjPnAYDCUW+x2LRg0awaRkTnlm9PTAz0zQ3nAN7SvJEP98iIoCDp1gqee0oLBH3/ADTeAxZLbPvD22xflem21Kr74ghLBCAUGg6HcY7XqREhNm0LDhlpbYEIaDQWxfv161qxZ43Hac9cbWL9+fcDmdM45Otun73e2Tp2UXK9TUkquJoMRCgwGQ4VBRCebadhQCwhVq+oCTElJJpWyIQd3xsC4uDiPYOAuQJSenl4q6YTzIyJCm8a8eeKJ1bleh4bqWiIlgbG+GQyGConDoS+wtWppoeDoUZ1K2W7X+wyVFxEhOjoagLi4OOLi4gBo3rw50dHRpW5G8KZvXxg3ruA+Tqf2SSgJjKbAYDBUaHxNC0FB2u8gOfnMM80ZKg7egoGbQAsEoJ0HR44EhyPvakvBwc4SczIEIxQYDIZKgtu0cM45WkCoUUNrDkxCpMqJ22TgjbePQSB59FG48spt2GxZiGjJNSgoA5stkz59tjBhQsm9tzEfGAyGSoc7aqFmTW1aOHZMCwc2mw5rNDkPKjbePgRuk4H7NQReYyAC/fptoXnzZcyZcwtWq4vrr19GixYbaN26ASKtSuy9jVBgMBgqLe4qjVWr6oRIJ07oqAUwVRorMiKCw+HI5UPgNiU4HI6AmxBAz7FqVUW9elaCgy08/HAwv/9e8mGTRigwGAwGtBBQt67WICQna8dEl0sLC0ZAqHi0a9cOpZTnJusWDMqKQNCkSRPq1avHokVVAOjUqRNQ8kKLEQoMBoPBC5tNOyZWrQq7d2uBIDFRaxWCg02lxopEoJMXFYRbaJk3T9i0Sc+tU6dORlNgMBgMgUBEb/Xra0dEt+9BVpaOYDDaA0NJIyK5EhmVhtBihAKDwWAohKAgHa1QvbqOWDh+3GgPDBUTIxQYDAZDEXGHNYaGGu2BoWJihAKDwWA4C3y1BydOaCEBdJpaoz0wlEeMUGAwGAzFwFt74K7SePy4Llpj8h4YyhtGKDAYDAY/YbPlaA/S0uDkyZy8Bw6H1i4YDEVFZ1eUXK9L2tkwIGmOReQ+EdkpImkiEisilxfS3y4iE7OPSReRPSLykNf+YSKi8tiMhc9gMJQ6ItqEULeuLoVbt64uh5uYqDUIpuaCoTDyKu28atUqYmNjS/R9S11TICL9gTeA+4CV2X9/EJFWSqk9+Rw2FzgHuAfYCkQCPsUlSQHO9W5QSqX5ceoGg8FwxlitOVkT09NzzAsul6nYaMgb79LOLpc2Ta1atYp//vmHNm3alKjGIBDmg9HAbKXUzOzXD4pIb+BeYIxvZxHpCVwFnKuUOpLdvCuPcZVS6mAJzNdgMBj8gsOht5o1Tw9tdDi0+cFg8E67vHlzHE2ahLJ79xHatGlT4gmMStV8ICJ2IApY7LNrMdA5n8OuB/4ERovIPhHZKiL/JyLhPv1CRGR3dp+FInKRXydvMBgMfsJigbAwXbGxWTOIiMhxUkxNhTJQqM8QYPIq7VwaGQ1L26egNmAFEnzaE4C6+RzTDPgP0B64CXgA6A3M9uoTB9wJXAfcBqQBv4rI+f6auMFgMJQEQUE6rXLTptC4MVSpklPSOT090LMzBIq8SjuvWrWqxEs7S2nWjhaR+sB+4Aql1HKv9vHAIKVU8zyOWQxcDtRVSp3MbusJLMpu8xUwEBErsA5YqpR6KI/996D9E4iMjIyaO3euH85Ok5SURHi4rxLDcCaYNSw+Zg39QyDX0eUCpzPHKdGddrm8kZaWRHCw+S6eKSkpKaSlpeFwBGOxuLBahdTUVEJCQggLCyv2+N26dYtVSkX7tpe2BesI4EQ7CnoTCeTnDxAP7HcLBNlszv7biNO1DiilnCKyBshTU6CUmgHMAIiOjlZdu3Yt6vwLJSYmBn+OVxkxa1h8zBr6h7KwjllZumrj8eNac2C16twHloDEjp05GzfG0Lp110BPo9yxfv16IJ0OHaLZvHkZPXpcwapVq3A4HERFRZXY+5aqUKCUyhCRWKAH8IXXrh7Al/kc9itwi4iEK6Wy84VxQfbf3XkdINro0g74u/izNhgMhsDhrtpYrVpO9MLJk1pYMMmRKi7uKolK5ZR2rqhVEqcCH4rIavQNfyRQH5gOICJzAJRSQ7L7fwKMA2aJyLNAdXRI4zyl1KHsY54BfkeHK1YFHkILBfeWyhkZDAZDKeCOXqhVKyc5UmKidkwMCjLhjRWNSlElUSn1mYjUAp4G6gH/AH2UUu6n/kY+/ZNEpDvwJjoK4TjwDfCkV7fqaHNAXeAk8BfQRSm1uuTOxGAwGAKDOzlSSIiOXEhJyV17wWRPNJwtAYmKVUpNA6bls69rHm1xQM8CxnsEeMRf8zMYDIbygsUC4eF6y8rSAsKxYyb/geHsMF8Vg8FgqCDYbDnZEzMychwU09JyBARTvdFQEEYoMBgMhgqI3a636tW1gODroOhwlJ8IBkPpYYQCg8FgqMCInO6g6BYQXC4TwWDIjREKDAaDoZLg7aBYp44WEE6d0gIC5ORAMAJC5cUIBQaDwVAJyU9ASEzUGgR3iKMRECoXRigwGAyGSo7FosvzhobqEMfUVK09SErKnQPBCAgVHyMUGAwGg8GDu4JjWJiuveBOkmQEhMqBEQoMBoPBkCdWa94CQnKyMTFUVIxQYDAYDIZCyUtAOHVKaxBMFEPFwQgFBoPBYDgjvAUElytHQDh1SpsYTB6E8osRCgwGg8Fw1vg6Kaalae2BOw+CezMCQvnACAUGg8Fg8AveAoI7zHHvXl3yOStL7w8ONqmWyzJGKDAYDAaD33HnQbDZoFkzLRi4qzmmpGgBwW431RzLGkYoMBgMBkOJIqI1BMHBULOmrsWQmqqLNSUm6j4OhxYSDIHFCAUGg8FgKFXcxZqqVYPMTC0guCMZIMdR0UQylD6ilAr0HAKKiBwGdvtxyNrAET+OVxkxa1h8zBr6B7OOxcesYfEpiTVsrJSq49tY6YUCfyMia5RS0YGeR3nGrGHxMWvoH8w6Fh+zhsWnNNfQBIkYDAaDwWAAjFBgMBgMBoMhGyMU+J8ZgZ5ABcCsYfExa+gfzDoWH7OGxafU1tD4FBgMBoPBYACMpsBgMBgMBkM2RigwGAwGg8EAGKHAb4jIfSKyU0TSRCRWRC4P9JzKEiLSRUS+FZH9IqJEZJjPfhGRZ0XkgIikikiMiLT26VNDRD4UkZPZ24ciUr00zyNQiMgYEflTRE6JyGERWSAibXz6mDUsBBG5X0TWZ6/jKRFZJSJ9vfabNTxDsr+bSkTe8moz61gA2WujfLaDXvsDtn5GKPADItIfeAN4EbgI+A34QUQaBXRiZYtw4B9gFJCax/7Hgf8CDwIXA4eAn0SkilefT4AOQO/srQPwYQnOuSzRFZgGdAauBLKAn0Wkplcfs4aFsw94An3e0cAS4BsRaZe936zhGSAilwL3AOt9dpl1LJw4oJ7X1tZrX+DWTylltmJuwB/ATJ+2rcBLgZ5bWdyAJGCY12sB4oGnvNpCgERgRPbrloACLvPq85/stuaBPqcArGE44AT6mTUs9loeA0aYNTzjdasGbAe6ATHAW9ntZh0LX7tngX/y2RfQ9TOagmIiInYgCljss2sx+qnOUDhNgbp4raFSKhVYTs4adkILE795HfcrkEzlXOcqaE3f8ezXZg3PEBGxisgAtID1G2YNz5QZwDyl1FKfdrOORaNZtnlgp4jMFZFm2e0BXT8jFBSf2oAVSPBpT0B/sIbCca9TQWtYFzisskVigOz/D1E51/kNYB2wKvu1WcMiIiJtRSQJSAemAzcopTZg1rDIiMjdwHnA03nsNutYOH8Aw9Bq/7vR5/ybiNQiwOtnqiQaDOUMEZmKVhX+RynlDPR8yiFxwIVo9ffNwAci0jWA8ylXiEhztP/Uf5RSmYGeT3lEKfWD92sR+R3YAQwFfg/IpLIxmoLicwRt2430aY8EDp7e3ZAH7nUqaA0PAnVEcoqpZv8fQSVaZxF5DbgNuFIptcNrl1nDIqKUylBKbVNKxSqlxqA1Lo9g1rCodEJrSDeKSJaIZAFXAPdl/380u59ZxyKilEoCNgLnE+DvoREKiolSKgOIBXr47OpBbnuPIX92or/InjUUkWDgcnLWcBXa9tvJ67hOQBiVZJ1F5A1yBIItPrvNGp49FsCBWcOi8g3aU/5Cr20NMDf7/38x63hGZK9PC7SDYWC/h4H2wqwIG9AfyACGo71C30A7gTQO9NzKypb9Bb4we0sBxmf/3yh7/xPASeBGoA36AnMAqOI1xg/Ahuwvf6fs/xcE+txKaf3eBk6hwxHrem3hXn3MGha+ji+jL65N0De2lwAXcLVZw2KtawzZ0QdmHYu0XlPQ2pWmQEdgYfbvu3Gg1y/gi1NRNuA+YBfaeSkW6BLoOZWlDR1nr/LYZmfvF3SYTjyQBiwD2viMUQP4KPvHcyr7/+qBPrdSWr+81k4Bz3r1MWtY+DrOBnZn/04PAT8DvcwaFntdfYUCs44Fr5f7Jp8B7Ae+BFqVhfUzBZEMBoPBYDAAxqfAYDAYDAZDNkYoMBgMBoPBABihwGAwGAwGQzZGKDAYDAaDwQAYocBgMBgMBkM2RigwGAwGg8EAGKHAYCiziEgnEfk8u5JahogcFZGfRGSoiFiz+wwTESUiTbyO2yUis33G6iciG0QkLbt/dRGxiMjrIhIvIi4R+aYEz6VJ9vsOK6Sf+3zOK6m5nC0icr2IjM6jvWv2nLsHYl4Ggz8xBZEMhjKIiDwMTAWWoLOb7UYnK+kJ/A84AczP5/Ab0MlM3GPZgI/R6U/vRydMSUQXAxoF/BedNvXoaSMZvLke6I7+XAyGCokRCgyGMoaIdEHfeN5SSj3ks3t+dpXEsPyOV0r95dPUAKgCfK6UWu71Pi2z/31dKeXyw7wdSqn04o5jMBgChzEfGAxljyeAY8Djee1USm1XSq3P72Bv84GIPItOvw3wXraaO0ZEdqHTqAI4vVX7IlJPROaIyBERSReR9SJyu897uNX8XUTkCxE5ga4Rj4iEisi0bHNHkoh8C5xzFuuQLyJyj4j8nW0OOSIi74lITZ8+SkSeF5GHRGSniCSKyDIRae3Tz5rdL15EUkRkiYi0yD7+2ew+s9FlbRtkt6vsNfQmVETeyp7PERH5SESq+/O8DYaSxmgKDIYyRLavQDfgG6VUmh+GfBf4B/gCeB74Dm1acAAPAcPIqbS2XUTC0HnWawBjgb3A7cCHIhKqlJrhM/7HwKdoU4T7evIOukjYBOBPdLW3T/xwLgCIyMtok8f/AY+hNSHPA21EpLNSyunV/XYgDm0msQOT0dqWFkqprOw+E7LPdTK6FkIU8K3P2z4H1AEuBq7NbvPViryBLmwzEGgOvIIuqz60OOdrMJQmRigwGMoWtYEQtA9BsVFK7RORddkvtyulfnfvE5H92X282x5A13TvppSKyW7+QUQigedF5D2fm+48pdTjXsc3R98Un1JKvZzdvFhEwoGRxT2fbIfKx4AJSqmJXu3/AiuBfujSvm4ygWuUUpnZ/UALSJcAv4lIDeBhYLpS6onsY34SkQzgVfcgSqntInIYyPBeLx+WK6UezP5/cfZaDBeRYcoUmTGUE4z5wGAweNMF2O8lELj5CP2k3Mqn/Wuf1x3R15XPfdrn+ml+PbLH/1hEbO4NbbpIRM/fm5/cAkE2G7L/Nsr+2xbtn/GFz3HzzmJu3/m83oDWyESexVgGQ0AwmgKDoWxxFEgFGgfo/Wuiy7X6ctBrvze+fetl/03wafd9fbZEZP/dls/+Wj6vj/m8dqv8g7P/uud7yKff2cy3sPcyGMo8RigwGMoQSqksEYkBegTIm/8Y2h7uS12v/d74qsXdQkIksMOr3V9Py+6wyZ7A8QL2FxX3fCOAjV7t5uneUCkx5gODoezxMvqJ95W8dopIUxFpV0LvvQw4R0Qu82kfiH6a3lTI8X8ALuBWn/YB/pkeP2WP30gptSaPbecZjrcBSAZu8Wn3fQ36yT/kzKdsMJQfjKbAYChjKKWWZ2fOmyoirYDZwB50RMBVwHD0TTrfsMRiMBvtqf+ViDwF7AMGoW35I3ycDPOae5yIfAJMFBELOvqgJ9DnDOfRW0QO+rSdVEr9JCKTgLeyHfmWAWlAw+w5vquUWlrUN1FKHReR14GxIpKIjj7oANyV3cU7f8MmoKaI3AusAdKUUhswGCoQRigwGMogSqnXRWQ18AgwBR2VkIi+GY0AFpTQ+yaLyBVoLcXL6KRHccBgpdRHRRxmBJAEPIoOA1yCFmJWnsFU3syjbSPQRik1VkQ2o7Mz3o82YewFfgG2nsF7uHkGELQg8BBa2zEM+BU46dXvXf6/nTs2TiCGoih61YDHJdAFHgI34JQuaAA34GJog5YcOFsH2oSUAJjZcxqQwjdfer8+qp/qvdkQ2d1xHrysoSkDcGuMcWw2Ej6XZbk++z7wKEIBsGljjH311ZwQ/DWXF52bE5KDHQNsiecDYOt+m/sNTtVb80PlpfoWCNgakwIAoFJJBABWQgEAUAkFAMBKKAAAKqEAAFgJBQBAVf802y6Ke78qnQAAAABJRU5ErkJggg==\n", "text/plain": [ - "
" + "
" ] }, "metadata": { @@ -384,7 +374,7 @@ "source": [ "lengths = [1, 20, 40, 60, 80, 100, 150, 200, 250, 300, 350, 400, 450, 500]\n", "num_samples = 10\n", - "seed1 = 1010\n", + "seed = 1010\n", "\n", "exps = [rb.RBExperiment([i], lengths, num_samples=num_samples, seed=seed + i)\n", " for i in range(5)]\n", @@ -416,107 +406,92 @@ "text": [ "---------------------------------------------------\n", "Experiment: RBExperiment\n", - "Experiment ID: 6ca546fc-b1c2-42b6-904b-b8b1bf465d4b\n", + "Experiment ID: a0fa8768-71cd-40a4-8438-931cdd9b9eea\n", "Status: DONE\n", "Circuits: 140\n", "Analysis Results: 1\n", "---------------------------------------------------\n", "Last Analysis Result\n", - "- popt: [0.46693859 0.99874811 0.51804455]\n", - "- popt_keys: ['a', 'alpha', 'b']\n", - "- popt_err: [0.13640766 0.00047292 0.13743453]\n", - "- pcov: [[ 1.86070504e-02 6.41705166e-05 -1.87442876e-02]\n", - " [ 6.41705166e-05 2.23655594e-07 -6.47148737e-05]\n", - " [-1.87442876e-02 -6.47148737e-05 1.88882507e-02]]\n", - "- reduced_chisq: 0.11803581788941118\n", + "- a: 0.48179621388397165 ± 0.09442477018477685\n", + "- alpha: 0.9982837081083952 ± 0.0004687374781179952\n", + "- b: 0.5059960643224992 ± 0.09600953406995398\n", + "- reduced_chisq: 0.19535039815566677\n", "- dof: 11\n", "- xrange: [1.0, 500.0]\n", - "- EPC: 0.0006259460054571786\n", - "- EPC_err: 0.00023675759358046116\n", + "- EPC: 0.0008581459458024132\n", + "- EPC_err: 0.00023477167578252162\n", "- success: True \n", "\n", "---------------------------------------------------\n", "Experiment: RBExperiment\n", - "Experiment ID: d3414e4d-90f1-4a19-8b44-4da6972e10fb\n", + "Experiment ID: 48bdf15a-3c8c-4b7f-bdff-87150897fe21\n", "Status: DONE\n", "Circuits: 140\n", "Analysis Results: 1\n", "---------------------------------------------------\n", "Last Analysis Result\n", - "- popt: [0.5002357 0.99904187 0.49014021]\n", - "- popt_keys: ['a', 'alpha', 'b']\n", - "- popt_err: [0.1822092 0.00043693 0.18345169]\n", - "- pcov: [[ 3.32001915e-02 7.93933245e-05 -3.34245179e-02]\n", - " [ 7.93933245e-05 1.90904465e-07 -7.99713221e-05]\n", - " [-3.34245179e-02 -7.99713221e-05 3.36545220e-02]]\n", - "- reduced_chisq: 0.1070511551604703\n", + "- a: 0.4644044949493171 ± 0.09896602652728038\n", + "- alpha: 0.9985514173179291 ± 0.00039834142468434035\n", + "- b: 0.5266142231114757 ± 0.09950372547952774\n", + "- reduced_chisq: 0.2004720802914708\n", "- dof: 11\n", "- xrange: [1.0, 500.0]\n", - "- EPC: 0.00047906273060688287\n", - "- EPC_err: 0.00021867259321739114\n", + "- EPC: 0.0007242913410354657\n", + "- EPC_err: 0.00019945964613132802\n", "- success: True \n", "\n", "---------------------------------------------------\n", "Experiment: RBExperiment\n", - "Experiment ID: 8c888438-1d75-483c-9d8f-fdd2b2a34560\n", + "Experiment ID: 454d15f5-0455-4d85-abc1-c46f268e0685\n", "Status: DONE\n", "Circuits: 140\n", "Analysis Results: 1\n", "---------------------------------------------------\n", "Last Analysis Result\n", - "- popt: [0.55973516 0.99912126 0.42700616]\n", - "- popt_keys: ['a', 'alpha', 'b']\n", - "- popt_err: [0.27152143 0.00050462 0.27233487]\n", - "- pcov: [[ 7.37238867e-02 1.36774520e-04 -7.39434311e-02]\n", - " [ 1.36774520e-04 2.54645379e-07 -1.37208230e-04]\n", - " [-7.39434311e-02 -1.37208230e-04 7.41662805e-02]]\n", - "- reduced_chisq: 0.12636835483455555\n", + "- a: 0.463676502224092 ± 0.10165801492643219\n", + "- alpha: 0.9984919545907562 ± 0.00044156271975226197\n", + "- b: 0.5239921150635326 ± 0.10277174994074663\n", + "- reduced_chisq: 0.07676654927497478\n", "- dof: 11\n", "- xrange: [1.0, 500.0]\n", - "- EPC: 0.00043937121868359297\n", - "- EPC_err: 0.00025253391107906575\n", + "- EPC: 0.0007540227046218817\n", + "- EPC_err: 0.00022111481105185354\n", "- success: True \n", "\n", "---------------------------------------------------\n", "Experiment: RBExperiment\n", - "Experiment ID: b686a25a-bfc2-497a-8ce2-afc32648d2f0\n", + "Experiment ID: e7f28773-a077-4bfd-8445-1dd875b56ee7\n", "Status: DONE\n", "Circuits: 140\n", "Analysis Results: 1\n", "---------------------------------------------------\n", "Last Analysis Result\n", - "- popt: [0.48003187 0.99469758 0.51095063]\n", - "- popt_keys: ['a', 'alpha', 'b']\n", - "- popt_err: [0.01282506 0.0003712 0.01354442]\n", - "- pcov: [[ 1.64482244e-04 3.76084285e-06 -1.64591939e-04]\n", - " [ 3.76084285e-06 1.37790112e-07 -4.53772965e-06]\n", - " [-1.64591939e-04 -4.53772965e-06 1.83451314e-04]]\n", - "- reduced_chisq: 0.03699962727664218\n", + "- a: 0.48244135430423285 ± 0.009481242006547387\n", + "- alpha: 0.9927883100023426 ± 0.00040568366270580185\n", + "- b: 0.5114197178601058 ± 0.009488345070577987\n", + "- reduced_chisq: 0.11986347176123821\n", "- dof: 11\n", "- xrange: [1.0, 500.0]\n", - "- EPC: 0.0026512122080561418\n", - "- EPC_err: 0.00018658983090838707\n", + "- EPC: 0.003605844998828711\n", + "- EPC_err: 0.0002043152898853355\n", "- success: True \n", "\n", "---------------------------------------------------\n", "Experiment: RBExperiment\n", - "Experiment ID: 09597176-8112-422b-894f-c95a20dd15e9\n", + "Experiment ID: 08354cff-6a8c-438f-84ee-61d1a2400716\n", "Status: DONE\n", "Circuits: 140\n", "Analysis Results: 1\n", "---------------------------------------------------\n", "Last Analysis Result\n", - "- popt: [0.46814847 0.99839983 0.52017324]\n", - "- popt_keys: ['a', 'alpha', 'b']\n", - "- popt_err: [0.10497103 0.00047757 0.10608133]\n", - "- pcov: [[ 1.10189166e-02 4.97107495e-05 -1.11326896e-02]\n", - " [ 4.97107495e-05 2.28073402e-07 -5.03167306e-05]\n", - " [-1.11326896e-02 -5.03167306e-05 1.12532482e-02]]\n", - "- reduced_chisq: 0.043914308686492876\n", + "- a: 0.4695517787058582 ± 0.04993631327375763\n", + "- alpha: 0.9978783659580331 ± 0.0003236755966567879\n", + "- b: 0.517213471801888 ± 0.05043149884050479\n", + "- reduced_chisq: 0.18823926367791033\n", "- dof: 11\n", "- xrange: [1.0, 500.0]\n", - "- EPC: 0.0008000826861901955\n", - "- EPC_err: 0.00023916786387579025\n", + "- EPC: 0.001060817020983429\n", + "- EPC_err: 0.00016218188894497008\n", "- success: True \n", "\n" ] @@ -527,13 +502,20 @@ "for i in range(par_exp.num_experiments):\n", " print(par_expdata.component_experiment_data(i), '\\n')" ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] } ], "metadata": { "kernelspec": { - "display_name": "Python [conda env:qiskit-dev]", + "display_name": "Python 3", "language": "python", - "name": "conda-env-qiskit-dev-py" + "name": "python3" }, "language_info": { "codemirror_mode": { @@ -545,7 +527,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.7.7" + "version": "3.8.0" } }, "nbformat": 4, diff --git a/qiskit_experiments/analysis/__init__.py b/qiskit_experiments/analysis/__init__.py index ef1f2d29ee..719c9c55c2 100644 --- a/qiskit_experiments/analysis/__init__.py +++ b/qiskit_experiments/analysis/__init__.py @@ -30,6 +30,7 @@ process_curve_data process_multi_curve_data + Plotting ======== .. autosummary:: @@ -38,7 +39,35 @@ plot_curve_fit plot_errorbar plot_scatter + + +Fit Functions +============= +.. autosummary:: + :toctree: ../stubs/ + + fit_function.cos + fit_function.exponential_decay + fit_function.gaussian + fit_function.sin + + +Utility +======= +.. autosummary:: + :toctree: ../stubs/ + + get_opt_error + get_opt_value """ +from .curve_analysis import CurveAnalysis, SeriesDef -from .curve_fitting import curve_fit, multi_curve_fit, process_curve_data, process_multi_curve_data +from .curve_fitting import ( + CurveAnalysisResult, + curve_fit, + multi_curve_fit, + process_curve_data, + process_multi_curve_data, +) from .plotting import plot_curve_fit, plot_errorbar, plot_scatter +from .utils import get_opt_error, get_opt_value diff --git a/qiskit_experiments/analysis/curve_analysis.py b/qiskit_experiments/analysis/curve_analysis.py new file mode 100644 index 0000000000..a73dc95047 --- /dev/null +++ b/qiskit_experiments/analysis/curve_analysis.py @@ -0,0 +1,849 @@ +# This code is part of Qiskit. +# +# (C) Copyright IBM 2021. +# +# This code is licensed under the Apache License, Version 2.0. You may +# obtain a copy of this license in the LICENSE.txt file in the root directory +# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. +# +# Any modifications or derivative works of this code must retain this +# copyright notice, and modified files need to carry a notice indicating +# that they have been altered from the originals. + +""" +Analysis class for curve fitting. +""" +# pylint: disable=invalid-name + +import dataclasses +import inspect +from typing import Any, Dict, List, Tuple, Callable, Union + +import numpy as np +from qiskit.providers.options import Options + +from qiskit_experiments.analysis import plotting +from qiskit_experiments.analysis.curve_fitting import multi_curve_fit, CurveAnalysisResult +from qiskit_experiments.analysis.data_processing import probability +from qiskit_experiments.analysis.utils import get_opt_value, get_opt_error +from qiskit_experiments.base_analysis import BaseAnalysis +from qiskit_experiments.data_processing import DataProcessor +from qiskit_experiments.data_processing.exceptions import DataProcessorError +from qiskit_experiments.exceptions import AnalysisError +from qiskit_experiments.experiment_data import AnalysisResult, ExperimentData + + +@dataclasses.dataclass(frozen=True) +class SeriesDef: + """Description of curve.""" + + fit_func: Callable + filter_kwargs: Dict[str, Any] = dataclasses.field(default_factory=dict) + name: str = "Series-0" + plot_color: str = "black" + plot_symbol: str = "o" + + +class CurveAnalysis(BaseAnalysis): + """A base class for curve fit type analysis. + + The subclasses can override class attributes to define the behavior of + data extraction and fitting. This docstring describes how code developers can + create a new curve fit analysis subclass inheriting from this base class. + + Class Attributes: + + __series__: A set of data points that will be fit to the same parameters + in the fit function. If this analysis contains multiple curves, + the same number of series definitions should be listed. + Each series definition is SeriesDef element, that may be initialized with: + + fit_func: The function to which the data will be fit. + filter_kwargs: Circuit metadata key and value associated with this curve. + The data points of the curve are extracted from ExperimentData based on + this information. + name: Name of the curve. This is arbitrary data field, but should be unique. + plot_color: String color representation of this series in the plot. + plot_symbol: String formatter of the scatter of this series in the plot. + + See the Examples below for more details. + + + Examples: + + A fitting for single exponential decay curve + ============================================ + + In this type of experiment, the analysis deals with a single curve. + Thus filter_kwargs and series name are not necessary defined. + + .. code-block:: + + class AnalysisExample(CurveAnalysis): + + __series__ = [ + SeriesDef( + fit_func=lambda x, p0, p1, p2: + exponential_decay(x, amp=p0, lamb=p1, baseline=p2), + ), + ] + + + A fitting for two exponential decay curve with partly shared parameter + ====================================================================== + + In this type of experiment, the analysis deals with two curves. + We need a __series__ definition for each curve, and filter_kwargs should be + properly defined to separate each curve series. + + .. code-block:: + + class AnalysisExample(CurveAnalysis): + + __series__ = [ + SeriesDef( + name="my_experiment1", + fit_func=lambda x, p0, p1, p2, p3: + exponential_decay(x, amp=p0, lamb=p1, baseline=p3), + filter_kwargs={"experiment": 1}, + plot_color="red", + plot_symbol="^", + ), + SeriesDef( + name="my_experiment2", + fit_func=lambda x, p0, p1, p2, p3: + exponential_decay(x, amp=p0, lamb=p2, baseline=p3), + filter_kwargs={"experiment": 2}, + plot_color="blue", + plot_symbol="o", + ), + ] + + In this fit model, we have 4 parameters `p0, p1, p2, p3` and both series share + `p0` and `p3` as `amp` and `baseline` of the `exponential_decay` fit function. + Parameter `p1` (`p2`) is only used by `my_experiment1` (`my_experiment2`). + Both series have same fit function in this example. + + A fitting for two trigonometric curves with the same parameter + ============================================================= + + In this type of experiment, the analysis deals with two different curves. + However the parameters are shared with both functions. + + .. code-block:: + + class AnalysisExample(CurveAnalysis): + + __series__ = [ + SeriesDef( + name="my_experiment1", + fit_func=lambda x, p0, p1, p2, p3: + cos(x, amp=p0, freq=p1, phase=p2, baseline=p3), + filter_kwargs={"experiment": 1}, + plot_color="red", + plot_symbol="^", + ), + SeriesDef( + name="my_experiment2", + fit_func=lambda x, p0, p1, p2, p3: + sin(x, amp=p0, freq=p1, phase=p2, baseline=p3), + filter_kwargs={"experiment": 2}, + plot_color="blue", + plot_symbol="o", + ), + ] + + In this fit model, we have 4 parameters `p0, p1, p2, p3` and both series share + all parameters. However, these series have different fit curves, i.e. + `my_experiment1` (`my_experiment2`) uses the `cos` (`sin`) fit function. + + + Notes: + This CurveAnalysis class provides several private methods that subclasses can override. + + - Customize figure generation: + Override :meth:`~self._create_figures`. For example, here you can create + arbitrary number of new figures or upgrade the default figure appearance. + + - Customize pre-data processing: + Override :meth:`~self._pre_processing`. For example, here you can + take a mean over y values for the same x value, or apply smoothing to y values. + + - Customize post-analysis data processing: + Override :meth:`~self._post_processing`. For example, here you can + calculate new entity from fit values. Such as EPC of RB experiment. + + - Customize fitting options: + Override :meth:`~self._setup_fitting`. For example, here you can + calculate initial guess from experiment data and setup fitter options. + + See docstring of each method for more details. + + Note that other private methods are not expected to be overridden. + If you forcibly override these methods, the behavior of analysis logic is not well tested + and we cannot guarantee it works as expected (you may suffer from bugs). + Instead, you can open an issue in qiskit-experiment github to upgrade this class + with proper unittest framework. + + https://github.com/Qiskit/qiskit-experiments/issues + """ + + #: List[SeriesDef]: List of mapping representing a data series + __series__ = None + + def __new__(cls) -> "CurveAnalysis": + """Parse series data if all fit functions have the same argument. + + Raises: + AnalysisError: + - When fit functions have different argument. + + Returns: + CurveAnalysis instance with validated series definitions. + """ + obj = object.__new__(cls) + + fsigs = set() + for series_def in obj.__series__: + fsigs.add(inspect.signature(series_def.fit_func)) + if len(fsigs) > 1: + raise AnalysisError( + "Fit functions specified in the series definition have " + "different function signature. They should receive " + "the same parameter set for multi-objective function fit." + ) + obj.__fit_params = list(list(fsigs)[0].parameters.keys())[1:] + + return obj + + def __init__(self): + """Initialize data fields that are privately accessed by methods.""" + + #: Iterable[int]: Array of series index for each data point + self._data_index = None + + #: Iterable[float]: Concatenated x values of all series + self._x_values = None + + #: Iterable[float]: Concatenated y values of all series + self._y_values = None + + #: Iterable[float]: Concatenated y sigmas of all series + self._y_sigmas = None + + #: int: Number of qubits + self._num_qubits = None + + # Add expected options to instance variable so that every method can access to. + for key in self._default_options().__dict__: + setattr(self, f"_{key}", None) + + @classmethod + def _default_options(cls): + """Return default analysis options. + + Options: + curve_fitter: A callback function to perform fitting with formatted data. + This function should have signature: + + .. code-block:: + + def curve_fitter( + funcs: List[Callable], + series: ndarray, + xdata: ndarray, + ydata: ndarray, + p0: ndarray, + sigma: Optional[ndarray], + weights: Optional[ndarray], + bounds: Optional[ + Union[Dict[str, Tuple[float, float]], Tuple[ndarray, ndarray]] + ], + ) -> CurveAnalysisResult: + + See :func:`~qiskit_experiment.analysis.multi_curve_fit` for example. + data_processor: A callback function to format experiment data. + This function should have signature: + + .. code-block:: + + def data_processor(data: Dict[str, Any]) -> Tuple[float, float] + + This can be a :class:`~qiskit_experiment.data_processing.DataProcessor` + instance that defines the `self.__call__` method. + normalization: Set ``True`` to normalize y values within range [-1, 1]. + p0: Array-like or dictionary of initial parameters. + bounds: Array-like or dictionary of (min, max) tuple of fit parameter boundaries. + x_key: Circuit metadata key representing a scanned value. + plot: Set ``True`` to create figure for fit result. + axis: Optional. A matplotlib axis object to draw. + xlabel: X label of fit result figure. + ylabel: Y label of fit result figure. + fit_reports: Mapping of fit parameters and representation in the fit report. + return_data_points: Set ``True`` to return formatted XY data. + """ + return Options( + curve_fitter=multi_curve_fit, + data_processor=probability(outcome="1"), + normalization=False, + p0=None, + bounds=None, + x_key="xval", + plot=True, + axis=None, + xlabel=None, + ylabel=None, + ylim=None, + fit_reports=None, + return_data_points=False, + ) + + def _create_figures(self, analysis_results: CurveAnalysisResult) -> List["Figure"]: + """Create new figures with the fit result and raw data. + + Subclass can override this method to create different type of figures. + + Args: + analysis_results: Analysis result containing fit parameters. + + Returns: + List of figures. + """ + fit_available = all(key in analysis_results for key in ("popt", "popt_err", "xrange")) + + if plotting.HAS_MATPLOTLIB: + + axis = self._get_option("axis") + if axis is None: + figure = plotting.pyplot.figure(figsize=(8, 5)) + axis = figure.subplots(nrows=1, ncols=1) + else: + figure = axis.get_figure() + + ymin, ymax = np.inf, -np.inf + for series_def in self.__series__: + + # plot raw data + + xdata, ydata, _ = self._subset_data( + name=series_def.name, + data_index=self._data_index, + x_values=self._x_values, + y_values=self._y_values, + y_sigmas=self._y_sigmas, + ) + ymin = min(ymin, *ydata) + ymax = max(ymax, *ydata) + plotting.plot_scatter(xdata=xdata, ydata=ydata, ax=axis, zorder=0) + + # plot formatted data + + xdata, ydata, sigma = self._subset_data(series_def.name, *self._pre_processing()) + + if np.all(np.isnan(sigma)): + sigma = None + else: + sigma = np.nan_to_num(sigma) + + plotting.plot_errorbar( + xdata=xdata, + ydata=ydata, + sigma=sigma, + ax=axis, + label=series_def.name, + marker=series_def.plot_symbol, + color=series_def.plot_color, + zorder=1, + linestyle="", + ) + + # plot fit curve + + if fit_available: + plotting.plot_curve_fit( + func=series_def.fit_func, + result=analysis_results, + ax=axis, + color=series_def.plot_color, + zorder=2, + ) + + # format axis + + if len(self.__series__) > 1: + axis.legend(loc="center right") + axis.set_xlabel(self._get_option("xlabel"), fontsize=16) + axis.set_ylabel(self._get_option("ylabel"), fontsize=16) + axis.tick_params(labelsize=14) + axis.grid(True) + + # automatic scaling y axis by actual data point. + # note that y axis will be scaled by confidence interval by default. + # sometimes we cannot see any data point if variance of parameters is too large. + + height = ymax - ymin + axis.set_ylim(ymin - 0.1 * height, ymax + 0.1 * height) + + # write analysis report + + fit_reports = self._get_option("fit_reports") + if fit_reports and fit_available: + # write fit status in the plot + analysis_description = "" + for par_name, label in fit_reports.items(): + try: + # fit value + pval = get_opt_value(analysis_results, par_name) + perr = get_opt_error(analysis_results, par_name) + except ValueError: + # maybe post processed value + pval = analysis_results[par_name] + perr = analysis_results[f"{par_name}_err"] + analysis_description += f"{label} = {pval: .3e}\u00B1{perr: .3e}\n" + chisq = analysis_results["reduced_chisq"] + analysis_description += f"Fit \u03C7-squared = {chisq: .4f}" + + report_handler = axis.text( + 0.60, + 0.95, + analysis_description, + ha="center", + va="top", + size=14, + transform=axis.transAxes, + ) + + bbox_props = dict( + boxstyle="square, pad=0.3", fc="white", ec="black", lw=1, alpha=0.8 + ) + report_handler.set_bbox(bbox_props) + + return [figure] + else: + return list() + + def _setup_fitting(self, **options) -> Union[Dict[str, Any], List[Dict[str, Any]]]: + """An analysis subroutine that is called to set fitter options. + + Subclasses can override this method to provide their own fitter options + such as initial guesses. + + To create initial guesses from the raw data, you can access these data by + `self._x_values` and `self._y_values`. If your analysis contains multiple series, + you can extract specific x or y values with the `self._subset_data` method using + the name of the series of interest. + You can also access the defined analysis options with the `self._get_option` method: + + .. code-block:: + + sub_x_vals, sub_y_vals = self._subset_data( + name="my_experiment1", + data_index: self._data_index, + x_values: self._x_values, + y_values: self._y_values, + y_sigmas: self._y_sigmas, + ) + + if self._get_option("my_option1") == "abc": + p0 = ... + bounds = ... + else: + p0 = ... + bounds = ... + + return {"p0": p0, "bounds": bounds} + + Note that this subroutine can generate multiple fit options. + If multiple options are provided, fitter runs multiple times for each fit option, + and find the best result measured by the reduced chi-squared value. + + .. code-block:: + + fit_1 = {"p0": p0_1, "bounds": bounds, "extra_fit_parameter": "option1"} + fit_2 = {"p0": p0_2, "bounds": bounds, "extra_fit_parameter": "option2"} + + return [fit_1, fit_2] + + Note that you can also change fitter options (not only initial guesses) in each + fit condition. This might be convenient to fit parameter with multiple fit algorithms + or different fitting options. By default, this class uses `scipy.curve_fit` + as the fitter function. See Scipy API docs for more fitting option details. + + Args: + options: User provided extra options that are not defined in default options. + + Returns: + List of FitOptions that are passed to fitter function. + """ + fit_options = {"p0": self._get_option("p0"), "bounds": self._get_option("bounds")} + fit_options.update(options) + + return fit_options + + def _pre_processing(self) -> Tuple[np.ndarray, ...]: + """An optional subroutine to perform data pre-processing. + + Subclasses can override this method to apply pre-precessing to data values to fit. + Otherwise the analysis uses extracted data values as-is. + + For example, + + - Take mean over all y data values with the same x data value + - Apply smoothing to y values to deal with noisy observed values + + Returns: + Numpy array tuple of pre-processed (x_values, y_values, y_sigmas, series). + """ + return self._data_index, self._x_values, self._y_values, self._y_sigmas + + def _post_processing(self, analysis_result: CurveAnalysisResult) -> CurveAnalysisResult: + """Calculate new quantity from the fit result. + + Subclasses can override this method to do post analysis. + + Args: + analysis_result: Analysis result containing fit result. + + Returns: + New CurveAnalysisResult instance containing the result of post analysis. + """ + return analysis_result + + def _extract_curves( + self, experiment_data: ExperimentData, data_processor: Union[Callable, DataProcessor] + ): + """Extract curve data from experiment data. + + This method internally populate `self._x_values`, `self._y_values`, `self._y_sigmas` + and `self._data_index` with given `experiment_data`. + + .. notes:: + The target metadata properties to define each curve entry is described by + the class attribute __series__ (see `filter_kwargs`). + This function returns concatenated x, y, and sigma values with data index array + with the same length as other extracted data. + The i-th `self._data_index` value represent the series index of i-th + `self._x_values`, `self._y_values`, and `self._y_sigmas`. + The helper function `self._subset_data` is available to extract + (x values, y values, y sigmas) set of the specific series distinguished by `name`. + + Args: + experiment_data: ExperimentData object to fit parameters. + data_processor: A callable or DataProcessor instance to format data into numpy array. + This should take list of dictionary and returns two tuple of float values + that represent a y value and an error of it. + Raises: + DataProcessorError: + - When `x_key` specified in the analysis option is not + defined in the circuit metadata. + """ + + def _is_target_series(datum, **filters): + try: + return all(datum["metadata"][key] == val for key, val in filters.items()) + except KeyError: + return False + + # Extract X, Y, Y_sigma data + data = experiment_data.data() + + x_key = self._get_option("x_key") + try: + x_values = [datum["metadata"][x_key] for datum in data] + except KeyError as ex: + raise DataProcessorError( + f"X value key {x_key} is not defined in circuit metadata." + ) from ex + + y_values, y_sigmas = zip(*map(data_processor, data)) + + # TODO this should be handled in data processor. + # Future data processor may take full sequence of data rather than datum. + # The CurveAnalysis can pass series filter_kwargs to the processor + # so that it can filter data to extract. + if self._get_option("normalization"): + y_min, y_max = min(y_values), max(y_values) + scale = 1 / (y_max - y_min) + else: + scale = 1.0 + + # Format data + self._x_values = np.asarray(x_values, dtype=float) + self._y_values = np.asarray(y_values, dtype=float) * scale + self._y_sigmas = np.asarray(y_sigmas, dtype=float) * scale + + # Find series (invalid data is labeled as -1) + self._data_index = -1 * np.ones(self._x_values.size, dtype=int) + for idx, series_def in enumerate(self.__series__): + data_index = np.asarray( + [_is_target_series(datum, **series_def.filter_kwargs) for datum in data], dtype=bool + ) + self._data_index[data_index] = idx + + def _format_fit_options(self, **fitter_options) -> Dict[str, Any]: + """Format fitting option args to dictionary of parameter names. + + Args: + fitter_options: Fit options generated by `self._setup_fitting`. + + Returns: + Formatted fit options. + + Raises: + AnalysisError: + - When fit functions have different signature. + - When fit option is dictionary but key doesn't match with parameter names. + - When initial guesses are not provided. + - When fit option is array but length doesn't match with parameter number. + """ + # Validate dictionary keys + def _check_keys(parameter_name): + named_values = fitter_options[parameter_name] + if not named_values.keys() == set(self.__fit_params): + raise AnalysisError( + f"Fitting option `{parameter_name}` doesn't have the " + f"expected parameter names {','.join(self.__fit_params)}." + ) + + # Convert array into dictionary + def _dictionarize(parameter_name): + parameter_array = fitter_options[parameter_name] + if len(parameter_array) != len(self.__fit_params): + raise AnalysisError( + f"Value length of fitting option `{parameter_name}` doesn't " + "match with the length of expected parameters. " + f"{len(parameter_array)} != {len(self.__fit_params)}." + ) + return dict(zip(self.__fit_params, parameter_array)) + + if fitter_options.get("p0", None): + if isinstance(fitter_options["p0"], dict): + _check_keys("p0") + else: + fitter_options["p0"] = _dictionarize("p0") + else: + # p0 should be defined + raise AnalysisError("Initial guess p0 is not provided to the fitting options.") + + if fitter_options.get("bounds", None): + if isinstance(fitter_options["bounds"], dict): + _check_keys("bounds") + else: + fitter_options["bounds"] = _dictionarize("bounds") + else: + # bounds are optional + fitter_options["bounds"] = {par: (-np.inf, np.inf) for par in self.__fit_params} + + return fitter_options + + def _subset_data( + self, + name: str, + data_index: np.ndarray, + x_values: np.ndarray, + y_values: np.ndarray, + y_sigmas: np.ndarray, + ) -> Tuple[np.ndarray, ...]: + """A helper method to extract reduced set of data. + + Args: + name: Series name to search for. + data_index: An integer array representing a mapping of data location to series index. + x_values: Full data set of x values. + y_values: Full data set of y values. + y_sigmas: Full data set of y sigmas. + + Returns: + Tuple of x values, y values, y sigmas for the specific series. + + Raises: + AnalysisError: + - When name is not defined in the __series__ definition. + """ + for idx, series_def in enumerate(self.__series__): + if series_def.name == name: + sub_x_values = x_values[data_index == idx] + sub_y_values = y_values[data_index == idx] + sub_y_sigmas = y_sigmas[data_index == idx] + + return sub_x_values, sub_y_values, sub_y_sigmas + + raise AnalysisError(f"Specified series {name} is not defined in this analysis.") + + def _arg_parse(self, **options) -> Dict[str, Any]: + """Parse input kwargs with predicted input. + + Args: + options: User-input keyword argument options. + + Returns: + Keyword arguments that not specified in the default options. + """ + extra_options = dict() + for key, value in options.items(): + private_key = f"_{key}" + if hasattr(self, private_key): + setattr(self, private_key, value) + else: + extra_options[key] = value + + return extra_options + + def _get_option(self, arg_name: str) -> Any: + """A helper function to get specified field from the input analysis options. + + Args: + arg_name: Name of option. + + Return: + Arbitrary object specified by the option name. + + Raises: + AnalysisError: + - When `arg_name` is not found in the analysis options. + """ + try: + return getattr(self, f"_{arg_name}") + except AttributeError as ex: + raise AnalysisError( + f"The argument {arg_name} is selected but not defined. " + "This key-value pair should be defined in the analysis option." + ) from ex + + def _run_analysis( + self, experiment_data: ExperimentData, **options + ) -> Tuple[List[AnalysisResult], List["pyplot.Figure"]]: + """Run analysis on circuit data. + + Args: + experiment_data: the experiment data to analyze. + options: kwarg options for analysis function. + + Returns: + tuple: A pair ``(analysis_results, figures)`` where + ``analysis_results`` may be a single or list of + AnalysisResult objects, and ``figures`` is a list of any + figures for the experiment. + + Raises: + AnalysisError: if the analysis fails. + """ + analysis_result = CurveAnalysisResult() + analysis_result["analysis_type"] = self.__class__.__name__ + figures = list() + + # pop arguments that are not given to fitter + extra_options = self._arg_parse(**options) + + # TODO update this with experiment metadata PR #67 + try: + self._num_qubits = len(experiment_data.data(0)["metadata"]["qubits"]) + except KeyError: + pass + + # + # 1. Setup data processor + # + data_processor = self._get_option("data_processor") + if isinstance(data_processor, DataProcessor) and not data_processor.is_trained: + # Qiskit DataProcessor instance. May need calibration. + try: + data_processor.train(data=experiment_data.data()) + except DataProcessorError as ex: + raise AnalysisError( + f"DataProcessor calibration failed with error message: {str(ex)}." + ) from ex + + # + # 2. Extract curve entries from experiment data + # + try: + self._extract_curves(experiment_data=experiment_data, data_processor=data_processor) + except DataProcessorError as ex: + raise AnalysisError( + f"Data extraction and formatting failed with error message: {str(ex)}." + ) from ex + + # + # 3. Run fitting + # + try: + curve_fitter = self._get_option("curve_fitter") + + # Format fit data + _data_index, _xdata, _ydata, _sigma = self._pre_processing() + + # Generate fit options + fit_candidates = self._setup_fitting(**extra_options) + + # Fit for each fit parameter combination + if isinstance(fit_candidates, dict): + # Only single initial guess + fit_options = self._format_fit_options(**fit_candidates) + fit_result = curve_fitter( + funcs=[series_def.fit_func for series_def in self.__series__], + series=_data_index, + xdata=_xdata, + ydata=_ydata, + sigma=_sigma, + **fit_options, + ) + analysis_result.update(**fit_result) + else: + # Multiple initial guesses + fit_options_candidates = [ + self._format_fit_options(**fit_options) for fit_options in fit_candidates + ] + fit_results = [ + curve_fitter( + funcs=[series_def.fit_func for series_def in self.__series__], + series=_data_index, + xdata=_xdata, + ydata=_ydata, + sigma=_sigma, + **fit_options, + ) + for fit_options in fit_options_candidates + ] + # Sort by chi squared value + fit_results = sorted(fit_results, key=lambda r: r["reduced_chisq"]) + analysis_result.update(**fit_results[0]) + + except AnalysisError as ex: + analysis_result["error_message"] = str(ex) + analysis_result["success"] = False + + else: + # + # 4. Post-process analysis data + # + analysis_result = self._post_processing(analysis_result=analysis_result) + + finally: + # + # 5. Create figures + # + if self._get_option("plot"): + figures.extend(self._create_figures(analysis_results=analysis_result)) + + # + # 6. Optionally store raw data points + # + if self._get_option("return_data_points"): + raw_data_dict = dict() + for series_def in self.__series__: + sub_xdata, sub_ydata, sub_sigma = self._subset_data( + name=series_def.name, + data_index=self._data_index, + x_values=self._x_values, + y_values=self._y_values, + y_sigmas=self._y_sigmas, + ) + raw_data_dict[series_def.name] = { + "xdata": sub_xdata, + "ydata": sub_ydata, + "sigma": sub_sigma, + } + analysis_result["raw_data"] = raw_data_dict + + return [analysis_result], figures diff --git a/qiskit_experiments/analysis/curve_fitting.py b/qiskit_experiments/analysis/curve_fitting.py index c8acc1c2b3..c42ee17219 100644 --- a/qiskit_experiments/analysis/curve_fitting.py +++ b/qiskit_experiments/analysis/curve_fitting.py @@ -23,6 +23,54 @@ from qiskit_experiments.analysis.data_processing import filter_data +class CurveAnalysisResult(AnalysisResult): + """Analysis data container for curve fit analysis. + + Class Attributes: + __keys_not_shown__: Data keys of analysis result which are not directly shown + in `__str__` method. By default, `pcov` (covariance matrix), + `raw_data` (raw x, y, sigma data points), `popt`, `popt_keys`, and `popt_err` + are not displayed. Fit parameters (popt) are formatted to + + .. code-block:: + + p0 = 1.2 ± 0.34 + p1 = 5.6 ± 0.78 + + rather showing raw key-value pairs + + .. code-block:: + + popt_keys = ["p0", "p1"] + popt = [1.2, 5.6] + popt_err = [0.34, 0.78] + + The covariance matrix and raw data points are not shown because they output + very long string usually doesn't fit in with the summary of the analysis object, + i.e. user wants to quickly get the over view of fit values and goodness of fit, + such as the chi-squared value and computer evaluated quality. + + However these non-displayed values are still kept and user can access to + these values with `result["raw_data"]` and `result["pcov"]` if necessary. + """ + + __keys_not_shown__ = "pcov", "raw_data", "popt", "popt_keys", "popt_err" + + def __str__(self): + out = "" + + if self.get("success"): + popt_keys = self.get("popt_keys") + popt = self.get("popt") + popt_err = self.get("popt_err") + + for key, value, error in zip(popt_keys, popt, popt_err): + out += f"\n- {key}: {value} \u00B1 {error}" + out += super().__str__() + + return out + + def curve_fit( func: Callable, xdata: np.ndarray, @@ -31,7 +79,7 @@ def curve_fit( sigma: Optional[np.ndarray] = None, bounds: Optional[Union[Dict[str, Tuple[float, float]], Tuple[np.ndarray, np.ndarray]]] = None, **kwargs, -) -> AnalysisResult: +) -> CurveAnalysisResult: r"""Perform a non-linear least squares to fit This solves the optimization problem @@ -105,6 +153,15 @@ def fit_func(x, *params): " (len(ydata) - len(p0)) is less than 1" ) + # Format non-number sigma values + if np.all(np.isnan(sigma)): + sigma = None + else: + sigma = np.nan_to_num(sigma) + if np.count_nonzero(sigma) != len(sigma): + # Sigma = 0 causes zero division error + sigma = None + # Override scipy.curve_fit default for absolute_sigma=True # if sigma is specified. if sigma is not None and "absolute_sigma" not in kwargs: @@ -143,7 +200,7 @@ def fit_func(x, *params): "xrange": xdata_range, } - return AnalysisResult(result) + return CurveAnalysisResult(result) def multi_curve_fit( @@ -156,7 +213,7 @@ def multi_curve_fit( weights: Optional[np.ndarray] = None, bounds: Optional[Union[Dict[str, Tuple[float, float]], Tuple[np.ndarray, np.ndarray]]] = None, **kwargs, -) -> AnalysisResult: +) -> CurveAnalysisResult: r"""Perform a linearized multi-objective non-linear least squares fit. This solves the optimization problem diff --git a/qiskit_experiments/analysis/data_processing.py b/qiskit_experiments/analysis/data_processing.py index 7760ff5ef8..b2858d21b9 100644 --- a/qiskit_experiments/analysis/data_processing.py +++ b/qiskit_experiments/analysis/data_processing.py @@ -14,7 +14,7 @@ """ # pylint: disable = invalid-name -from typing import List, Dict, Tuple, Optional +from typing import List, Dict, Tuple, Optional, Callable import numpy as np from qiskit.exceptions import QiskitError @@ -48,7 +48,7 @@ def filter_data(data: List[Dict[str, any]], **filters) -> List[Dict[str, any]]: def mean_xy_data( xdata: np.ndarray, ydata: np.ndarray, sigma: Optional[np.ndarray] = None, method: str = "sample" -) -> Tuple[np.ndarray]: +) -> Tuple[np.ndarray, ...]: r"""Return (x, y_mean, sigma) data. The mean is taken over all ydata values with the same xdata value using @@ -159,7 +159,7 @@ def multi_mean_xy_data( ) -def level2_probability(data: Dict[str, any], outcome: str) -> Tuple[float]: +def level2_probability(data: Dict[str, any], outcome: str) -> Tuple[float, float]: """Return the outcome probability mean and variance. Args: @@ -178,7 +178,17 @@ def level2_probability(data: Dict[str, any], outcome: str) -> Tuple[float]: :math:`\\sigma^2 = p (1-p) / N`. """ counts = data["counts"] + shots = sum(counts.values()) p_mean = counts.get(outcome, 0.0) / shots p_var = p_mean * (1 - p_mean) / shots return p_mean, p_var + + +def probability(outcome: str) -> Callable: + """Return probability data processor callback used by the analysis classes.""" + + def data_processor(data): + return level2_probability(data, outcome) + + return data_processor diff --git a/qiskit_experiments/analysis/fit_function.py b/qiskit_experiments/analysis/fit_function.py new file mode 100644 index 0000000000..c7f04c0888 --- /dev/null +++ b/qiskit_experiments/analysis/fit_function.py @@ -0,0 +1,75 @@ +# This code is part of Qiskit. +# +# (C) Copyright IBM 2021. +# +# This code is licensed under the Apache License, Version 2.0. You may +# obtain a copy of this license in the LICENSE.txt file in the root directory +# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. +# +# Any modifications or derivative works of this code must retain this +# copyright notice, and modified files need to carry a notice indicating +# that they have been altered from the originals. + +""" +A library of fit functions. +""" +# pylint: disable=invalid-name + +import numpy as np + + +def cos( + x: np.ndarray, + amp: float = 1.0, + freq: float = 1 / (2 * np.pi), + phase: float = 0.0, + baseline: float = 0.0, +) -> np.ndarray: + r"""Cosine function. + + .. math:: + y = {\rm amp} \cos\left(2 \pi {\fm freq} x + {\rm phase}\right) + {\rm baseline} + """ + return amp * np.cos(2 * np.pi * freq * x + phase) + baseline + + +def sin( + x: np.ndarray, + amp: float = 1.0, + freq: float = 1 / (2 * np.pi), + phase: float = 0.0, + baseline: float = 0.0, +) -> np.ndarray: + r"""Sine function. + + .. math:: + y = {\rm amp} \sin\left(2 \pi {\fm freq} x + {\rm phase}\right) + {\rm baseline} + """ + return amp * np.cos(2 * np.pi * freq * x + phase) + baseline + + +def exponential_decay( + x: np.ndarray, + amp: float = 1.0, + lamb: float = 1.0, + base: float = np.e, + x0: float = 0.0, + baseline: float = 0.0, +) -> np.ndarray: + r"""Exponential function + + .. math:: + y = {\rm amp} {\rm base}^{\left( - \lambda x + {\rm x0} \right)} + {\rm baseline} + """ + return amp * base ** (-lamb * x + x0) + baseline + + +def gaussian( + x: np.ndarray, amp: float = 1.0, sigma: float = 1.0, x0: float = 0.0, baseline: float = 0.0 +) -> np.ndarray: + r"""Gaussian function + + .. math:: + y = {\rm amp} \exp \left( - (x - x0)^2 / 2 \sigma^2 \right) + {\rm baseline} + """ + return amp * np.exp(-((x - x0) ** 2) / (2 * sigma ** 2)) + baseline diff --git a/qiskit_experiments/analysis/plotting.py b/qiskit_experiments/analysis/plotting.py index fdaf0733ef..2736ec053a 100644 --- a/qiskit_experiments/analysis/plotting.py +++ b/qiskit_experiments/analysis/plotting.py @@ -122,6 +122,8 @@ def plot_scatter( plot_opts["c"] = "grey" if "marker" not in plot_opts: plot_opts["marker"] = "x" + if "alpha" not in plot_opts: + plot_opts["alpha"] = 0.8 # Plot data ax.scatter(xdata, ydata, **plot_opts) diff --git a/qiskit_experiments/analysis/utils.py b/qiskit_experiments/analysis/utils.py new file mode 100644 index 0000000000..09837306af --- /dev/null +++ b/qiskit_experiments/analysis/utils.py @@ -0,0 +1,72 @@ +# This code is part of Qiskit. +# +# (C) Copyright IBM 2021. +# +# This code is licensed under the Apache License, Version 2.0. You may +# obtain a copy of this license in the LICENSE.txt file in the root directory +# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. +# +# Any modifications or derivative works of this code must retain this +# copyright notice, and modified files need to carry a notice indicating +# that they have been altered from the originals. + +"""Analysis utility functions.""" + + +from qiskit_experiments.experiment_data import AnalysisResult + + +def get_opt_value(analysis_result: AnalysisResult, param_name: str) -> float: + """A helper function to get parameter value from analysis result. + + Args: + analysis_result: Analysis result object. + param_name: Name of parameter to extract. + + Returns: + Parameter value. + + Raises: + KeyError: + - When analysis result does not contain parameter information. + ValueError: + - When specified parameter is not defined. + """ + try: + index = analysis_result["popt_keys"].index(param_name) + return analysis_result["popt"][index] + except KeyError as ex: + raise KeyError( + "Input analysis result has not fit parameter information. " + "Please confirm if the fit is successfully completed." + ) from ex + except ValueError as ex: + raise ValueError(f"Parameter {param_name} is not defined.") from ex + + +def get_opt_error(analysis_result: AnalysisResult, param_name: str) -> float: + """A helper function to get error value from analysis result. + + Args: + analysis_result: Analysis result object. + param_name: Name of parameter to extract. + + Returns: + Parameter error value. + + Raises: + KeyError: + - When analysis result does not contain parameter information. + ValueError: + - When specified parameter is not defined. + """ + try: + index = analysis_result["popt_keys"].index(param_name) + return analysis_result["popt_err"][index] + except KeyError as ex: + raise KeyError( + "Input analysis result has not fit parameter information. " + "Please confirm if the fit is successfully completed." + ) from ex + except ValueError as ex: + raise ValueError(f"Parameter {param_name} is not defined.") from ex diff --git a/qiskit_experiments/base_analysis.py b/qiskit_experiments/base_analysis.py index f88b737d88..f5abc3244c 100644 --- a/qiskit_experiments/base_analysis.py +++ b/qiskit_experiments/base_analysis.py @@ -16,11 +16,11 @@ from abc import ABC, abstractmethod from typing import List, Tuple -from qiskit.providers.options import Options from qiskit.exceptions import QiskitError +from qiskit.providers.options import Options -from qiskit_experiments.experiment_data import ExperimentData, AnalysisResult from qiskit_experiments.exceptions import AnalysisError +from qiskit_experiments.experiment_data import ExperimentData, AnalysisResult class BaseAnalysis(ABC): @@ -87,12 +87,13 @@ def run( analysis_options = analysis_options.__dict__ # Run analysis - # pylint: disable=broad-except try: analysis_results, figures = self._run_analysis(experiment_data, **analysis_options) - analysis_results["success"] = True + for res in analysis_results: + if "success" not in res: + res["success"] = True except AnalysisError as ex: - analysis_results = AnalysisResult(success=False, error_message=ex) + analysis_results = [AnalysisResult(success=False, error_message=ex)] figures = None # Save to experiment data diff --git a/qiskit_experiments/characterization/qubit_spectroscopy.py b/qiskit_experiments/characterization/qubit_spectroscopy.py index 5aaf3f2480..ef2e5cb3b6 100644 --- a/qiskit_experiments/characterization/qubit_spectroscopy.py +++ b/qiskit_experiments/characterization/qubit_spectroscopy.py @@ -12,236 +12,124 @@ """Spectroscopy experiment class.""" -from typing import List, Optional, Tuple, Union -import numpy as np +from typing import List, Dict, Any, Union, Optional +import numpy as np +import qiskit.pulse as pulse from qiskit import QuantumCircuit from qiskit.circuit import Gate, Parameter from qiskit.exceptions import QiskitError from qiskit.providers import Backend -import qiskit.pulse as pulse -from qiskit.qobj.utils import MeasLevel from qiskit.providers.options import Options +from qiskit.qobj.utils import MeasLevel -from qiskit_experiments.analysis.curve_fitting import curve_fit -from qiskit_experiments.base_analysis import BaseAnalysis +from qiskit_experiments.analysis import ( + CurveAnalysis, + CurveAnalysisResult, + SeriesDef, + fit_function, + get_opt_value, + get_opt_error, +) from qiskit_experiments.base_experiment import BaseExperiment -from qiskit_experiments import AnalysisResult -from qiskit_experiments import ExperimentData from qiskit_experiments.data_processing.processor_library import get_to_signal_processor -from qiskit_experiments.analysis import plotting - - -class SpectroscopyAnalysis(BaseAnalysis): - """A class to analyze a spectroscopy experiment. - - Analyze a spectroscopy experiment by fitting the data to a Gaussian function. - The fit function is: - - .. math:: - - a * exp(-(x-x0)**2/(2*sigma**2)) + b - - Here, :math:`x` is the frequency. The analysis loops over the initial guesses - of the width parameter :math:`sigma`. The measured y-data will be rescaled to - the interval (0,1). - - Analysis options: - - * amp_guess (float): The amplitude of the Gaussian function, i.e. :math:`a`. If not - provided, this will default to -1 or 1 depending on the measured values. - * sigma_guesses (list of float): The guesses for the standard deviation of the Gaussian - distribution. If it is not given this will default to an array of ten points linearly - spaced between zero and width of the x-data. - * freq_guess (float): A guess for the frequency of the peak :math:`x0`. If not provided - this guess will default to the location of the highest or lowest point of the y-data - depending on the y-data. - * offset_guess (float): A guess for the magnitude :math:`b` offset of the fit function. If - not provided, the initial guess defaults to the median of the y-data. - * amp_bounds (tuple of two floats): Bounds on the amplitude of the Gaussian function as a - tuple of two floats. The default bounds are (-1, 1). - * sigma_bounds (tuple of two floats): Bounds on the standard deviation of the Gaussian - function as a tuple of two floats. The default values are (0, frequency range). - * freq_bounds (tuple of two floats): Bounds on the center frequency as a tuple of two - floats. The default values are (min(frequencies) - df, max(frequencies) - df). - * offset_bounds (tuple of two floats): Bounds on the offset of the Gaussian function as a - tuple of two floats. The default values are (-2, 2). - """ - @classmethod - def _default_options(cls): - return Options( - meas_level=MeasLevel.KERNELED, - meas_return="single", - amp_guess=None, - sigma_guesses=None, - freq_guess=None, - offset_guess=None, - amp_bounds=(-1, 1), - sigma_bounds=None, - freq_bounds=None, - offset_bounds=(-2, 2), - ) - # pylint: disable=arguments-differ, unused-argument - def _run_analysis( - self, - experiment_data: ExperimentData, - data_processor: Optional[callable] = None, - amp_guess: Optional[float] = None, - sigma_guesses: Optional[List[float]] = None, - freq_guess: Optional[float] = None, - offset_guess: Optional[float] = None, - amp_bounds: Tuple[float, float] = (-1, 1), - sigma_bounds: Optional[Tuple[float, float]] = None, - freq_bounds: Optional[Tuple[float, float]] = None, - offset_bounds: Tuple[float, float] = (-2, 2), - plot: bool = True, - ax: Optional["AxesSubplot"] = None, - **kwargs, - ) -> Tuple[AnalysisResult, None]: - """Analyze the given data by fitting it to a Gaussian. +class SpectroscopyAnalysis(CurveAnalysis): + r"""A class to analyze spectroscopy experiment. - Args: - experiment_data: The experiment data to analyze. - data_processor: The data processor with which to process the data. If no data - processor is given a singular value decomposition of the IQ data will be - used for Kerneled data and a conversion from counts to probabilities will - be done if Discriminated data was measured. - amp_guess: The amplitude of the Gaussian function, i.e. :math:`a`. If not - provided, this will default to -1 or 1 depending on the measured values. - sigma_guesses: The guesses for the standard deviation of the Gaussian distribution. - If it is not given this will default to an array of ten - points linearly spaced between zero and width of the x-data. - freq_guess: A guess for the frequency of the peak :math:`x0`. If not provided - this guess will default to the location of the highest or lowest point of - the y-data depending on the y-data. - offset_guess: A guess for the magnitude :math:`b` offset of the fit function. - If not provided, the initial guess defaults to the median of the y-data. - amp_bounds: Bounds on the amplitude of the Gaussian function as a tuple of - two floats. The default bounds are (-1, 1). - sigma_bounds: Bounds on the standard deviation of the Gaussian function as a tuple - of two floats. The default values are (0, frequency range). - freq_bounds: Bounds on the center frequency as a tuple of two floats. The default - values are (min(frequencies) - df, max(frequencies) - df). - offset_bounds: Bounds on the offset of the Gaussian function as a tuple of two floats. - The default values are (-2, 2). - plot: If True generate a plot of fitted data. - ax: Optional, matplotlib axis to add the plot to. - kwargs: Trailing unused function parameters. + Overview + This analysis takes only single series. This series is fit by the Gaussian function. - Returns: - The analysis result with the estimated peak frequency and the plots if a plot was - generated. + Fit Model + The fit is based on the following Gaussian function. - Raises: - QiskitError: - - If the measurement level is not supported. - - If the fit fails. - """ + .. math:: - meas_level = experiment_data.data(0)["metadata"]["meas_level"] - meas_return = experiment_data.data(0)["metadata"]["meas_return"] - - # Pick a data processor. - if data_processor is None: - data_processor = get_to_signal_processor(meas_level=meas_level, meas_return=meas_return) - data_processor.train(experiment_data.data()) - - y_sigmas = np.array([data_processor(datum) for datum in experiment_data.data()]) - min_y, max_y = min(y_sigmas[:, 0]), max(y_sigmas[:, 0]) - ydata = (y_sigmas[:, 0] - min_y) / (max_y - min_y) - - # Sigmas may be None and fitting will not work if any sigmas are exactly 0. - try: - sigmas = y_sigmas[:, 1] / (max_y - min_y) - if any(sigmas == 0.0): - sigmas = None - - except TypeError: - sigmas = None - - xdata = np.array([datum["metadata"]["xval"] for datum in experiment_data.data()]) - - # Set the default options that depend on the y-data. - if not offset_guess: - offset_guess = np.median(ydata) - if not amp_guess: - amp_guess = -1 if offset_guess > 0.5 else 1 - if not freq_guess: - peak_idx = np.argmin(ydata) if offset_guess > 0.5 else np.argmax(ydata) - freq_guess = xdata[peak_idx] - if not sigma_guesses: - sigma_guesses = np.linspace(1e-6, abs(xdata[-1] - xdata[0]), 20) - if sigma_bounds is None: - sigma_bounds = (0, abs(xdata[-1] - xdata[0])) - if freq_bounds is None: - dx = xdata[1] - xdata[0] - freq_bounds = (xdata[0] - dx, xdata[-1] + dx) - - # Perform fit - best_fit = None - bounds = {"a": amp_bounds, "sigma": sigma_bounds, "freq": freq_bounds, "b": offset_bounds} - - def fit_fun(x, a, sigma, freq, b): - return a * np.exp(-((x - freq) ** 2) / (2 * sigma ** 2)) + b - - for sigma_guess in sigma_guesses: - init = {"a": amp_guess, "sigma": sigma_guess, "freq": freq_guess, "b": offset_guess} - try: - fit_result = curve_fit(fit_fun, xdata, ydata, init, sigmas, bounds) - - if not best_fit: - best_fit = fit_result - else: - if fit_result["reduced_chisq"] < best_fit["reduced_chisq"]: - best_fit = fit_result - - except RuntimeError: - pass - - if best_fit is None: - raise QiskitError("Could not find a fit to the spectroscopy data.") - - best_fit["value"] = best_fit["popt"][2] - best_fit["stderr"] = (best_fit["popt_err"][2],) - best_fit["unit"] = experiment_data.data(0)["metadata"].get("unit", "Hz") - best_fit["label"] = "Spectroscopy" - best_fit["xdata"] = xdata - best_fit["ydata"] = ydata - best_fit["ydata_err"] = sigmas - best_fit["quality"] = self._fit_quality( - best_fit["popt"][0], - best_fit["popt"][1], - best_fit["popt"][2], - best_fit["popt"][3], - best_fit["reduced_chisq"], - xdata, - ydata, - best_fit["popt_err"][1], + F(x) = a \exp(-(x-f)^2/(2\sigma^2)) + b + + Fit Parameters + - :math:`a`: Peak height. + - :math:`b`: Base line. + - :math:`f`: Center frequency. This is the fit parameter of main interest. + - :math:`\sigma`: Standard deviation of Gaussian function. + + Initial Guesses + - :math:`a`: The maximum signal value with removed baseline. + - :math:`b`: A median value of the signal. + - :math:`f`: A frequency value at the peak (maximum signal). + - :math:`\sigma`: Calculated from FWHM of peak :math:`w` + such that :math:`w / \sqrt{8} \ln{2}`. + + Bounds + - :math:`a`: [-2, 2] scaled with maximum signal value. + - :math:`b`: [-1, 1] scaled with maximum signal value. + - :math:`f`: [min(x), max(x)] of frequency scan range. + - :math:`\sigma`: [0, :math:`\Delta x`] where :math:`\Delta x` + represents frequency scan range. + + """ + + __series__ = [ + SeriesDef( + fit_func=lambda x, a, sigma, freq, b: fit_function.gaussian( + x, amp=a, sigma=sigma, x0=freq, baseline=b + ), + plot_color="blue", ) + ] - if plot and plotting.HAS_MATPLOTLIB: - ax = plotting.plot_curve_fit(fit_fun, best_fit, ax=ax) - ax = plotting.plot_scatter(xdata, ydata, ax=ax) - self._format_plot(ax, best_fit) - figures = [ax.get_figure()] - else: - figures = None - - return best_fit, figures - - @staticmethod - def _fit_quality( - fit_amp: float, - fit_sigma: float, - fit_freq: float, - fit_offset: float, - reduced_chisq: float, - xdata: np.array, - ydata: np.array, - fit_sigma_err: Optional[float] = None, - ) -> str: + @classmethod + def _default_options(cls): + """Return default data processing options. + + See :meth:`~qiskit_experiment.analysis.CurveAnalysis._default_options` for + descriptions of analysis options. + """ + default_options = super()._default_options() + default_options.p0 = {"a": None, "sigma": None, "freq": None, "b": None} + default_options.bounds = {"a": None, "sigma": None, "freq": None, "b": None} + default_options.fit_reports = {"freq": "frequency"} + default_options.normalization = True + + return default_options + + def _setup_fitting(self, **options) -> Union[Dict[str, Any], List[Dict[str, Any]]]: + """Fitter options.""" + user_p0 = self._get_option("p0") + user_bounds = self._get_option("bounds") + + b_guess = np.median(self._y_values) + peak_idx = np.argmax(np.abs(self._y_values - b_guess)) + f_guess = self._x_values[peak_idx] + a_guess = self._y_values[peak_idx] - b_guess + + # calculate sigma from FWHM + halfmax = self._x_values[np.abs(self._y_values - b_guess) > np.abs(a_guess / 2)] + fullwidth = max(halfmax) - min(halfmax) + s_guess = fullwidth / np.sqrt(8 * np.log(2)) + + max_abs_y = np.max(np.abs(self._y_values)) + + fit_option = { + "p0": { + "a": user_p0["a"] or a_guess, + "sigma": user_p0["sigma"] or s_guess, + "freq": user_p0["freq"] or f_guess, + "b": user_p0["b"] or b_guess, + }, + "bounds": { + "a": user_bounds["a"] or (-2 * max_abs_y, 2 * max_abs_y), + "sigma": user_bounds["sigma"] or (0.0, max(self._x_values) - min(self._x_values)), + "freq": user_bounds["freq"] or (min(self._x_values), max(self._x_values)), + "b": user_bounds["b"] or (-max_abs_y, max_abs_y), + }, + } + fit_option.update(options) + + return fit_option + + def _post_processing(self, analysis_result: CurveAnalysisResult) -> CurveAnalysisResult: """Algorithmic criteria for whether the fit is good or bad. A good fit has: @@ -253,47 +141,35 @@ def _fit_quality( square root of the median y-value less the fit offset, greater than a threshold of two, and - a standard error on the sigma of the Gaussian that is smaller than the sigma. - - Args: - fit_amp: Amplitude of the fitted peak. - fit_sigma: Standard deviation of the fitted Gaussian. - fit_freq: Frequency of the fitted peak. - fit_offset: Offset of the fit. - reduced_chisq: Reduced chi-squared of the fit. - xdata: x-values, i.e. the frequencies. - ydata: y-values, i.e. the measured signal. - fit_sigma_err: Errors on the standard deviation of the fit. - - Returns: - computer_bad or computer_good if the fit passes or fails the criteria, respectively. """ - min_freq = xdata[0] - max_freq = xdata[-1] - freq_increment = xdata[1] - xdata[0] + max_freq = np.max(self._x_values) + min_freq = np.min(self._x_values) + freq_increment = np.mean(np.diff(self._x_values)) + + fit_a = get_opt_value(analysis_result, "a") + fit_b = get_opt_value(analysis_result, "b") + fit_freq = get_opt_value(analysis_result, "freq") + fit_sigma = get_opt_value(analysis_result, "sigma") + fit_sigma_err = get_opt_error(analysis_result, "sigma") - snr = abs(fit_amp) / np.sqrt(abs(np.median(ydata) - fit_offset)) + snr = abs(fit_a) / np.sqrt(abs(np.median(self._y_values) - fit_b)) fit_width_ratio = fit_sigma / (max_freq - min_freq) - # pylint: disable=too-many-boolean-expressions - if ( - min_freq <= fit_freq <= max_freq - and 1.5 * freq_increment < fit_sigma - and fit_width_ratio < 0.25 - and reduced_chisq < 3 - and (fit_sigma_err is None or (fit_sigma_err < fit_sigma)) - and snr > 2 - ): - return "computer_good" + criteria = [ + min_freq <= fit_freq <= max_freq, + 1.5 * freq_increment < fit_sigma, + fit_width_ratio < 0.25, + analysis_result["reduced_chisq"] < 3, + (fit_sigma_err is None or fit_sigma_err < fit_sigma), + snr > 2, + ] + + if all(criteria): + analysis_result["quality"] = "computer_good" else: - return "computer_bad" + analysis_result["quality"] = "computer_bad" - @classmethod - def _format_plot(cls, ax, analysis_result): - """Format curve fit plot.""" - ax.tick_params(labelsize=14) - ax.set_xlabel(f"Frequency ({analysis_result['unit']})", fontsize=16) - ax.set_ylabel("Signal [arb. unit.]", fontsize=16) - ax.grid(True) + return analysis_result class QubitSpectroscopy(BaseExperiment): @@ -372,10 +248,11 @@ def __init__( if unit not in self.__units__: raise QiskitError(f"Unsupported unit: {unit}.") + super().__init__([qubit]) + self._frequencies = [freq * self.__units__[unit] for freq in frequencies] self._absolute = absolute - - super().__init__([qubit]) + self.set_analysis_options(xlabel=f"Frequency [{unit}]", ylabel="Signal [arb. unit]") def circuits(self, backend: Optional[Backend] = None): """Create the circuit for the spectroscopy experiment. @@ -394,6 +271,14 @@ def circuits(self, backend: Optional[Backend] = None): - If relative frequencies are used but no backend was given. - If the backend configuration does not define dt. """ + # TODO this is temporarily logic. Need update of circuit data and processor logic. + self.set_analysis_options( + data_processor=get_to_signal_processor( + meas_level=self.run_options.meas_level, + meas_return=self.run_options.meas_return, + ) + ) + if not backend and not self._absolute: raise QiskitError("Cannot run spectroscopy relative to qubit without a backend.") @@ -438,8 +323,6 @@ def circuits(self, backend: Optional[Backend] = None): "sigma": self.experiment_options.sigma, "width": self.experiment_options.width, "schedule": str(sched), - "meas_level": self.run_options.meas_level, - "meas_return": self.run_options.meas_return, } if not self._absolute: diff --git a/qiskit_experiments/characterization/t1_experiment.py b/qiskit_experiments/characterization/t1_experiment.py index 510742cc97..2dd2738c57 100644 --- a/qiskit_experiments/characterization/t1_experiment.py +++ b/qiskit_experiments/characterization/t1_experiment.py @@ -69,7 +69,7 @@ def _run_analysis( offset_bounds=None, plot=True, ax=None, - ) -> Tuple[AnalysisResult, List["matplotlib.figure.Figure"]]: + ) -> Tuple[List[AnalysisResult], List["matplotlib.figure.Figure"]]: """ Calculate T1 @@ -153,7 +153,7 @@ def fit_fun(x, a, tau, c): else: figures = None - return analysis_result, figures + return [analysis_result], figures @staticmethod def _fit_quality(fit_out, fit_err, reduced_chisq): diff --git a/qiskit_experiments/characterization/t2star_experiment.py b/qiskit_experiments/characterization/t2star_experiment.py index cc580b8fde..e7f8082847 100644 --- a/qiskit_experiments/characterization/t2star_experiment.py +++ b/qiskit_experiments/characterization/t2star_experiment.py @@ -45,7 +45,7 @@ def _run_analysis( plot: bool = True, ax: Optional["AxesSubplot"] = None, **kwargs, - ) -> Tuple[AnalysisResult, List["matplotlib.figure.Figure"]]: + ) -> Tuple[List[AnalysisResult], List["matplotlib.figure.Figure"]]: r"""Calculate T2Star experiment. The probability of measuring `+` is assumed to be of the form @@ -127,7 +127,7 @@ def _format_plot(ax, unit): analysis_result["fit"]["circuit_unit"] = unit if unit == "dt": analysis_result["fit"]["dt"] = conversion_factor - return analysis_result, figures + return [analysis_result], figures def _t2star_default_params( self, diff --git a/qiskit_experiments/composite/composite_analysis.py b/qiskit_experiments/composite/composite_analysis.py index 33258c78bd..1c80d2ac5e 100644 --- a/qiskit_experiments/composite/composite_analysis.py +++ b/qiskit_experiments/composite/composite_analysis.py @@ -44,12 +44,6 @@ def _run_analysis(self, experiment_data: CompositeExperimentData, **options): if not isinstance(experiment_data, CompositeExperimentData): raise QiskitError("CompositeAnalysis must be run on CompositeExperimentData.") - # Run analysis for sub-experiments - for expr, expr_data in zip( - experiment_data._experiment._experiments, experiment_data._components - ): - expr.run_analysis(expr_data, **options) - # Add sub-experiment metadata as result of batch experiment # Note: if Analysis results had ID's these should be included here # rather than just the sub-experiment IDs @@ -61,7 +55,12 @@ def _run_analysis(self, experiment_data: CompositeExperimentData, **options): for i in range(comp_exp.num_experiments): # Run analysis for sub-experiments and add sub-experiment metadata expdata = experiment_data.component_experiment_data(i) - comp_exp.component_analysis(i).run(expdata, **options) + sub_expriment = comp_exp.component_experiment(i) + + # Reflect sub instance's analysis option + analysis_options = sub_expriment.analysis_options.__dict__.copy() + analysis_options.update(**options) + comp_exp.component_analysis(i).run(expdata, **analysis_options) # Add sub-experiment metadata as result of batch experiment # Note: if Analysis results had ID's these should be included here @@ -77,4 +76,4 @@ def _run_analysis(self, experiment_data: CompositeExperimentData, **options): "experiment_qubits": sub_qubits, } ) - return analysis_result, None + return [analysis_result], None diff --git a/qiskit_experiments/composite/composite_experiment.py b/qiskit_experiments/composite/composite_experiment.py index 70b1583b2d..829390a8fe 100644 --- a/qiskit_experiments/composite/composite_experiment.py +++ b/qiskit_experiments/composite/composite_experiment.py @@ -52,6 +52,6 @@ def component_experiment(self, index): """Return the component Experiment object""" return self._experiments[index] - def component_analysis(self, index, **analysis_options): + def component_analysis(self, index): """Return the component experiment Analysis object""" - return self.component_experiment(index).analysis(**analysis_options) + return self.component_experiment(index).analysis() diff --git a/qiskit_experiments/experiment_data.py b/qiskit_experiments/experiment_data.py index 13580fffde..c6569894b0 100644 --- a/qiskit_experiments/experiment_data.py +++ b/qiskit_experiments/experiment_data.py @@ -33,6 +33,16 @@ class AnalysisResult(dict): """Placeholder class""" + __keys_not_shown__ = tuple() + + def __str__(self): + out = "" + for key, value in self.items(): + if key in self.__keys_not_shown__: + continue + out += f"\n- {key}: {value}" + return out + class ExperimentData: """Qiskit Experiments Data container class""" @@ -363,6 +373,5 @@ def __str__(self): ret += "\n" + line if n_res: ret += "\nLast Analysis Result" - for key, value in self._analysis_results[-1].items(): - ret += f"\n- {key}: {value}" + ret += str(self._analysis_results[-1]) return ret diff --git a/qiskit_experiments/randomized_benchmarking/interleaved_rb_analysis.py b/qiskit_experiments/randomized_benchmarking/interleaved_rb_analysis.py index 65c2ae58ff..366b228104 100644 --- a/qiskit_experiments/randomized_benchmarking/interleaved_rb_analysis.py +++ b/qiskit_experiments/randomized_benchmarking/interleaved_rb_analysis.py @@ -12,83 +12,177 @@ """ Interleaved RB analysis class. """ -from typing import Optional, List +from typing import List, Dict, Any, Union + import numpy as np -from qiskit_experiments.analysis.curve_fitting import ( - process_multi_curve_data, - multi_curve_fit, -) -from qiskit_experiments.analysis.data_processing import ( - level2_probability, - multi_mean_xy_data, -) -from qiskit_experiments.analysis import plotting +from qiskit_experiments.analysis import ( + CurveAnalysisResult, + SeriesDef, + fit_function, + get_opt_value, + get_opt_error, +) from .rb_analysis import RBAnalysis class InterleavedRBAnalysis(RBAnalysis): - r"""Interleaved RB Analysis class. - According to the paper: "Efficient measurement of quantum gate - error by interleaved randomized benchmarking" (arXiv:1203.4550) - - The epc estimate is obtained using the equation - :math:`r_{\mathcal{C}}^{\text{est}}= - \frac{\left(d-1\right)\left(1-p_{\overline{\mathcal{C}}}/p\right)}{d}` - - The error bounds are given by - :math:`E=\min\left\{ \begin{array}{c} - \frac{\left(d-1\right)\left[\left|p-p_{\overline{\mathcal{C}}}\right|+\left(1-p\right)\right]}{d}\\ - \frac{2\left(d^{2}-1\right)\left(1-p\right)}{pd^{2}}+\frac{4\sqrt{1-p}\sqrt{d^{2}-1}}{p} - \end{array}\right.` + r"""A class to analyze interleaved randomized benchmarking experiment. + + Overview + This analysis takes only two series for standard and interleaved RB curve fitting. + From the fit :math:`\alpha` and :math:`\alpha_c` value this analysis estimates + the error per Clifford (EPC) of interleaved gate. + + The EPC estimate is obtained using the equation + + + .. math:: + + r_{\mathcal{C}}^{\text{est}} = + \frac{\left(d-1\right)\left(1-\alpha_{\overline{\mathcal{C}}}/\alpha\right)}{d} + + The error bounds are given by + + .. math:: + + E = \min\left\{ + \begin{array}{c} + \frac{\left(d-1\right)\left[\left|\alpha-\alpha_{\overline{\mathcal{C}}}\right| + +\left(1-\alpha\right)\right]}{d} \\ + \frac{2\left(d^{2}-1\right)\left(1-\alpha\right)} + {\alpha d^{2}}+\frac{4\sqrt{1-\alpha}\sqrt{d^{2}-1}}{\alpha} + \end{array} + \right. + + See the reference[1] for more details. + + + + Fit Model + The fit is based on the following decay functions. + + .. math:: + + F_1(x_1) &= a \alpha^{x_1} + b ... {\rm standard RB} \\ + F_2(x_2) &= a (\alpha_c \alpha)^{x_2} + b ... {\rm interleaved RB} + + Fit Parameters + - :math:`a`: Height of decay curve. + - :math:`b`: Base line. + - :math:`\alpha`: Depolarizing parameter. + - :math:`\alpha_c`: Ratio of the depolarizing parameter of + interleaved RB to standard RB curve. + + Initial Guesses + - :math:`a`: Determined by the average :math:`a` of the standard and interleaved RB. + - :math:`b`: Determined by the average :math:`b` of the standard and interleaved RB. + Usually equivalent to :math:`(1/2)**n` where :math:`n` is number of qubit. + - :math:`\alpha`: Determined by the slope of :math:`(y_1 - b)**(-x_1)` of the first and the + second data point of the standard RB. + - :math:`\alpha_c`: Estimate :math:`\alpha' = \alpha_c * \alpha` from the + interleaved RB curve, then divide this by the initial guess of :math:`\alpha`. + + Bounds + - :math:`a`: [0, 1] + - :math:`b`: [0, 1] + - :math:`\alpha`: [0, 1] + - :math:`\alpha_c`: [0, 1] + + References + [1] "Efficient measurement of quantum gate error by interleaved randomized benchmarking" + (arXiv:1203.4550). """ - # pylint: disable=invalid-name - def _run_analysis( - self, - experiment_data, - p0: Optional[List[float]] = None, - plot: bool = True, - ax: Optional["matplotlib.axes.Axes"] = None, - ): - - data = experiment_data.data() - num_qubits = len(data[0]["metadata"]["qubits"]) - - # Process data - def data_processor(datum): - return level2_probability(datum, num_qubits * "0") - - # Raw data for each sample - series_raw, x_raw, y_raw, sigma_raw = process_multi_curve_data(data, data_processor) - - # Data averaged over samples - series, xdata, ydata, ydata_sigma = multi_mean_xy_data(series_raw, x_raw, y_raw, sigma_raw) - - # pylint: disable = unused-argument - def fit_fun_standard(x, a, alpha, alpha_c, b): - return a * alpha ** x + b - - def fit_fun_interleaved(x, a, alpha, alpha_c, b): - return a * (alpha * alpha_c) ** x + b - - p0 = self._p0_multi(series, xdata, ydata, num_qubits) - bounds = {"a": [0, 1], "alpha": [0, 1], "alpha_c": [0, 1], "b": [0, 1]} - - analysis_result = multi_curve_fit( - [fit_fun_standard, fit_fun_interleaved], - series, - xdata, - ydata, - p0, - ydata_sigma, - bounds=bounds, + + __series__ = [ + SeriesDef( + name="Standard", + fit_func=lambda x, a, alpha, alpha_c, b: fit_function.exponential_decay( + x, amp=a, lamb=-1.0, base=alpha, baseline=b + ), + filter_kwargs={"interleaved": False}, + plot_color="red", + plot_symbol=".", + ), + SeriesDef( + name="Interleaved", + fit_func=lambda x, a, alpha, alpha_c, b: fit_function.exponential_decay( + x, amp=a, lamb=-1.0, base=alpha * alpha_c, baseline=b + ), + filter_kwargs={"interleaved": True}, + plot_color="orange", + plot_symbol="^", + ), + ] + + @classmethod + def _default_options(cls): + """Return default data processing options. + + See :meth:`~qiskit_experiment.analysis.CurveAnalysis._default_options` for + descriptions of analysis options. + """ + default_options = super()._default_options() + default_options.p0 = {"a": None, "alpha": None, "alpha_c": None, "b": None} + default_options.bounds = { + "a": (0.0, 1.0), + "alpha": (0.0, 1.0), + "alpha_c": (0.0, 1.0), + "b": (0.0, 1.0), + } + default_options.fit_reports = {"alpha": "\u03B1", "alpha_c": "\u03B1$_c$", "EPC": "EPC"} + + return default_options + + def _setup_fitting(self, **options) -> Union[Dict[str, Any], List[Dict[str, Any]]]: + """Fitter options.""" + user_p0 = self._get_option("p0") + user_bounds = self._get_option("bounds") + + std_xdata, std_ydata, _ = self._subset_data( + name="Standard", + data_index=self._data_index, + x_values=self._x_values, + y_values=self._y_values, + y_sigmas=self._y_sigmas, + ) + p0_std = self._initial_guess(std_xdata, std_ydata, self._num_qubits) + + int_xdata, int_ydata, _ = self._subset_data( + name="Interleaved", + data_index=self._data_index, + x_values=self._x_values, + y_values=self._y_values, + y_sigmas=self._y_sigmas, ) + p0_int = self._initial_guess(int_xdata, int_ydata, self._num_qubits) + + fit_option = { + "p0": { + "a": user_p0["a"] or np.mean([p0_std["a"], p0_int["a"]]), + "alpha": user_p0["alpha"] or p0_std["alpha"], + "alpha_c": user_p0["alpha_c"] or min(p0_int["alpha"] / p0_std["alpha"], 1), + "b": user_p0["b"] or np.mean([p0_std["b"], p0_int["b"]]), + }, + "bounds": { + "a": user_bounds["a"] or (0.0, 1.0), + "alpha": user_bounds["alpha"] or (0.0, 1.0), + "alpha_c": user_bounds["alpha_c"] or (0.0, 1.0), + "b": user_bounds["b"] or (0.0, 1.0), + }, + } + fit_option.update(options) + return fit_option + + def _post_processing(self, analysis_result: CurveAnalysisResult) -> CurveAnalysisResult: + """Calculate EPC.""" # Add EPC data - nrb = 2 ** num_qubits + nrb = 2 ** self._num_qubits scale = (nrb - 1) / nrb - _, alpha, alpha_c, _ = analysis_result["popt"] - _, _, alpha_c_err, _ = analysis_result["popt_err"] + alpha = get_opt_value(analysis_result, "alpha") + alpha_c = get_opt_value(analysis_result, "alpha_c") + alpha_c_err = get_opt_error(analysis_result, "alpha_c") # Calculate epc_est (=r_c^est) - Eq. (4): epc_est = scale * (1 - alpha_c) @@ -108,99 +202,4 @@ def fit_fun_interleaved(x, a, alpha, alpha_c, b): analysis_result["EPC_systematic_err"] = systematic_err analysis_result["EPC_systematic_bounds"] = [max(systematic_err_l, 0), systematic_err_r] - if plot and plotting.HAS_MATPLOTLIB: - ax = plotting.plot_curve_fit(fit_fun_standard, analysis_result, ax=ax, color="blue") - ax = plotting.plot_curve_fit( - fit_fun_interleaved, - analysis_result, - ax=ax, - color="green", - ) - ax = self._generate_multi_scatter_plot(series_raw, x_raw, y_raw, ax=ax) - ax = self._generate_multi_errorbar_plot(series, xdata, ydata, ydata_sigma, ax=ax) - self._format_plot(ax, analysis_result) - ax.legend(loc="center right") - figures = [ax.get_figure()] - else: - figures = None - return analysis_result, figures - - @staticmethod - def _generate_multi_scatter_plot(series, xdata, ydata, ax): - """Generate scatter plot of raw data""" - idx0 = series == 0 - idx1 = series == 1 - ax = plotting.plot_scatter(xdata[idx0], ydata[idx0], ax=ax) - ax = plotting.plot_scatter(xdata[idx1], ydata[idx1], ax=ax, marker="+", c="darkslategrey") - return ax - - @staticmethod - def _generate_multi_errorbar_plot(series, xdata, ydata, sigma, ax): - """Generate errorbar plot of average data""" - idx0 = series == 0 - idx1 = series == 1 - ax = plotting.plot_errorbar( - xdata[idx0], - ydata[idx0], - sigma[idx0], - ax=ax, - label="Standard", - marker=".", - color="red", - ) - ax = plotting.plot_errorbar( - xdata[idx1], - ydata[idx1], - sigma[idx1], - ax=ax, - label="Interleaved", - marker="^", - color="orange", - ) - return ax - - @staticmethod - def _p0_multi(series, xdata, ydata, num_qubits): - """Initial guess for the fitting function""" - std_idx = series == 0 - p0_std = RBAnalysis._p0(xdata[std_idx], ydata[std_idx], num_qubits) - int_idx = series == 1 - p0_int = RBAnalysis._p0(xdata[int_idx], xdata[int_idx], num_qubits) - return { - "a": np.mean([p0_std["a"], p0_int["a"]]), - "alpha": p0_std["alpha"], - "alpha_c": min(p0_int["alpha"] / p0_std["alpha"], 1), - "b": np.mean([p0_std["b"], p0_int["b"]]), - } - - @classmethod - def _format_plot(cls, ax, analysis_result, add_label=True): - """Format curve fit plot""" - # Formatting - ax.tick_params(labelsize=14) - ax.set_xlabel("Clifford Length", fontsize=16) - ax.set_ylabel("Ground State Population", fontsize=16) - ax.grid(True) - - if add_label: - alpha = analysis_result["popt"][1] - alpha_c = analysis_result["popt"][2] - alpha_err = analysis_result["popt_err"][1] - alpha_c_err = analysis_result["popt_err"][2] - epc = analysis_result["EPC"] - epc_err = analysis_result["EPC_err"] - box_text = "\u03B1:{:.4f} \u00B1 {:.4f}".format(alpha, alpha_err) - box_text += "\n\u03B1_c:{:.4f} \u00B1 {:.4f}".format(alpha_c, alpha_c_err) - box_text += "\nEPC: {:.4f} \u00B1 {:.4f}".format(epc, epc_err) - bbox_props = dict(boxstyle="square,pad=0.3", fc="white", ec="black", lw=1) - ax.text( - 0.6, - 0.9, - box_text, - ha="center", - va="center", - size=14, - bbox=bbox_props, - transform=ax.transAxes, - ) - return ax + return analysis_result diff --git a/qiskit_experiments/randomized_benchmarking/interleaved_rb_experiment.py b/qiskit_experiments/randomized_benchmarking/interleaved_rb_experiment.py index 1ac6d1afd1..b2932d994c 100644 --- a/qiskit_experiments/randomized_benchmarking/interleaved_rb_experiment.py +++ b/qiskit_experiments/randomized_benchmarking/interleaved_rb_experiment.py @@ -66,16 +66,14 @@ def _sample_circuits(self, lengths, seed=None): element_lengths = [len(elements)] if self._full_sampling else lengths std_circuits = self._generate_circuit(elements, element_lengths) for circuit in std_circuits: - circuit.metadata["series"] = 0 - circuit.metadata["series_name"] = "standard" + circuit.metadata["interleaved"] = False circuits += std_circuits int_elements = self._interleave(elements) int_elements_lengths = [length * 2 for length in element_lengths] int_circuits = self._generate_circuit(int_elements, int_elements_lengths) for circuit in int_circuits: - circuit.metadata["series"] = 1 - circuit.metadata["series_name"] = "interleaved" + circuit.metadata["interleaved"] = True circuit.metadata["xval"] = circuit.metadata["xval"] // 2 circuits += int_circuits return circuits diff --git a/qiskit_experiments/randomized_benchmarking/rb_analysis.py b/qiskit_experiments/randomized_benchmarking/rb_analysis.py index 2e98b2b114..9552c40237 100644 --- a/qiskit_experiments/randomized_benchmarking/rb_analysis.py +++ b/qiskit_experiments/randomized_benchmarking/rb_analysis.py @@ -13,140 +13,139 @@ Standard RB analysis class. """ -from typing import Optional, List - -from qiskit.providers.options import Options -from qiskit_experiments.experiment_data import ExperimentData -from qiskit_experiments.base_analysis import BaseAnalysis -from qiskit_experiments.analysis.curve_fitting import curve_fit, process_curve_data -from qiskit_experiments.analysis.data_processing import ( - level2_probability, - mean_xy_data, +from typing import List, Tuple, Dict, Any, Union + +import numpy as np + +from qiskit_experiments.analysis import ( + CurveAnalysis, + CurveAnalysisResult, + SeriesDef, + fit_function, + get_opt_value, + get_opt_error, ) -from qiskit_experiments.analysis import plotting +from qiskit_experiments.analysis.data_processing import multi_mean_xy_data + + +class RBAnalysis(CurveAnalysis): + r"""A class to analyze randomized benchmarking experiment. + + Overview + This analysis takes only single series. + This series is fit by the exponential decay function. + From the fit :math:`\alpha` value this analysis estimates the error per Clifford (EPC). + Fit Model + The fit is based on the following decay function. -class RBAnalysis(BaseAnalysis): - """RB Analysis class. + .. math:: + + F(x) = a \alpha^x + b + + Fit Parameters + - :math:`a`: Height of decay curve. + - :math:`b`: Base line. + - :math:`\alpha`: Depolarizing parameter. This is the fit parameter of main interest. + + Initial Guesses + - :math:`a`: Determined by :math:`(y_0 - b) / \alpha^x_0` + where :math:`b` and :math:`\alpha` are initial guesses. + - :math:`b`: Determined by :math:`(1/2)^n` where :math:`n` is the number of qubit. + - :math:`\alpha`: Determined by the slope of :math:`(y - b)^{-x}` of the first and the + second data point. + + Bounds + - :math:`a`: [0, 1] + - :math:`b`: [0, 1] + - :math:`\alpha`: [0, 1] - Analysis Options: - p0: Optional, initial parameter values for curve_fit. - plot: If True generate a plot of fitted data. - ax: Optional, matplotlib axis to add plot to. """ + __series__ = [ + SeriesDef( + fit_func=lambda x, a, alpha, b: fit_function.exponential_decay( + x, amp=a, lamb=-1.0, base=alpha, baseline=b + ), + plot_color="blue", + ) + ] + @classmethod def _default_options(cls): - return Options( - p0=None, - plot=True, - ax=None, - ) + """Return default data processing options. - # pylint: disable = arguments-differ, invalid-name - def _run_analysis( - self, - experiment_data: ExperimentData, - p0: Optional[List[float]] = None, - plot: bool = True, - ax: Optional["plotting.pyplot.AxesSubplot"] = None, - ): - """Run analysis on circuit data. - - Args: - experiment_data: the experiment data to analyze. - p0: Optional, initial parameter values for curve_fit. - plot: If True generate a plot of fitted data. - ax: Optional, matplotlib axis to add plot to. - - Returns: - tuple: A pair ``(analysis_result, figures)`` where - ``analysis_results`` may be a single or list of - AnalysisResult objects, and ``figures`` may be - None, a single figure, or a list of figures. - - Raises: - AnalysisError: if the analysis fails. + See :meth:`~qiskit_experiment.analysis.CurveAnalysis._default_options` for + descriptions of analysis options. """ - data = experiment_data.data() - num_qubits = len(data[0]["metadata"]["qubits"]) - - # Process data - def data_processor(datum): - return level2_probability(datum, num_qubits * "0") - - # Raw data for each sample - x_raw, y_raw, sigma_raw = process_curve_data(data, data_processor) - - # Data averaged over samples - xdata, ydata, ydata_sigma = mean_xy_data(x_raw, y_raw, sigma_raw, method="sample") - - # Perform fit - def fit_fun(x, a, alpha, b): - return a * alpha ** x + b - - p0 = self._p0(xdata, ydata, num_qubits) - bounds = {"a": [0, 1], "alpha": [0, 1], "b": [0, 1]} - analysis_result = curve_fit(fit_fun, xdata, ydata, p0, ydata_sigma, bounds=bounds) - - # Add EPC data - popt = analysis_result["popt"] - popt_err = analysis_result["popt_err"] - scale = (2 ** num_qubits - 1) / (2 ** num_qubits) - analysis_result["EPC"] = scale * (1 - popt[1]) - analysis_result["EPC_err"] = scale * popt_err[1] / popt[1] - - if plot and plotting.HAS_MATPLOTLIB: - ax = plotting.plot_curve_fit(fit_fun, analysis_result, ax=ax) - ax = plotting.plot_scatter(x_raw, y_raw, ax=ax) - ax = plotting.plot_errorbar(xdata, ydata, ydata_sigma, ax=ax) - self._format_plot(ax, analysis_result) - figures = [ax.get_figure()] - else: - figures = None - return analysis_result, figures + default_options = super()._default_options() + default_options.p0 = {"a": None, "alpha": None, "b": None} + default_options.bounds = {"a": (0.0, 1.0), "alpha": (0.0, 1.0), "b": (0.0, 1.0)} + default_options.xlabel = "Clifford Length" + default_options.ylabel = "P(0)" + default_options.fit_reports = {"alpha": "\u03B1", "EPC": "EPC"} + + return default_options + + def _setup_fitting(self, **options) -> Union[Dict[str, Any], List[Dict[str, Any]]]: + """Fitter options.""" + user_p0 = self._get_option("p0") + user_bounds = self._get_option("bounds") + + initial_guess = self._initial_guess(self._x_values, self._y_values, self._num_qubits) + fit_option = { + "p0": { + "a": user_p0["a"] or initial_guess["a"], + "alpha": user_p0["alpha"] or initial_guess["alpha"], + "b": user_p0["b"] or initial_guess["b"], + }, + "bounds": { + "a": user_bounds["a"] or (0.0, 1.0), + "alpha": user_bounds["alpha"] or (0.0, 1.0), + "b": user_bounds["b"] or (0.0, 1.0), + }, + } + fit_option.update(options) + + return fit_option @staticmethod - def _p0(xdata, ydata, num_qubits): - """Initial guess for the fitting function""" + def _initial_guess( + x_values: np.ndarray, y_values: np.ndarray, num_qubits: int + ) -> Dict[str, float]: + """Create initial guess with experiment data.""" fit_guess = {"a": 0.95, "alpha": 0.99, "b": 1 / 2 ** num_qubits} + # Use the first two points to guess the decay param - dcliff = xdata[1] - xdata[0] - dy = (ydata[1] - fit_guess["b"]) / (ydata[0] - fit_guess["b"]) + dcliff = x_values[1] - x_values[0] + dy = (y_values[1] - fit_guess["b"]) / (y_values[0] - fit_guess["b"]) alpha_guess = dy ** (1 / dcliff) + if alpha_guess < 1.0: fit_guess["alpha"] = alpha_guess - if ydata[0] > fit_guess["b"]: - fit_guess["a"] = (ydata[0] - fit_guess["b"]) / fit_guess["alpha"] ** xdata[0] + if y_values[0] > fit_guess["b"]: + fit_guess["a"] = (y_values[0] - fit_guess["b"]) / fit_guess["alpha"] ** x_values[0] return fit_guess - @classmethod - def _format_plot(cls, ax, analysis_result, add_label=True): - """Format curve fit plot""" - # Formatting - ax.tick_params(labelsize=14) - ax.set_xlabel("Clifford Length", fontsize=16) - ax.set_ylabel("Ground State Population", fontsize=16) - ax.grid(True) - - if add_label: - alpha = analysis_result["popt"][1] - alpha_err = analysis_result["popt_err"][1] - epc = analysis_result["EPC"] - epc_err = analysis_result["EPC_err"] - box_text = "\u03B1:{:.4f} \u00B1 {:.4f}".format(alpha, alpha_err) - box_text += "\nEPC: {:.4f} \u00B1 {:.4f}".format(epc, epc_err) - bbox_props = dict(boxstyle="square,pad=0.3", fc="white", ec="black", lw=1) - ax.text( - 0.6, - 0.9, - box_text, - ha="center", - va="center", - size=14, - bbox=bbox_props, - transform=ax.transAxes, - ) - return ax + def _pre_processing(self) -> Tuple[np.ndarray, ...]: + """Average over the same x values.""" + return multi_mean_xy_data( + series=self._data_index, + xdata=self._x_values, + ydata=self._y_values, + sigma=self._y_sigmas, + method="sample", + ) + + def _post_processing(self, analysis_result: CurveAnalysisResult) -> CurveAnalysisResult: + """Calculate EPC.""" + alpha = get_opt_value(analysis_result, "alpha") + alpha_err = get_opt_error(analysis_result, "alpha") + + scale = (2 ** self._num_qubits - 1) / (2 ** self._num_qubits) + analysis_result["EPC"] = scale * (1 - alpha) + analysis_result["EPC_err"] = scale * alpha_err / alpha + + return analysis_result diff --git a/qiskit_experiments/randomized_benchmarking/rb_experiment.py b/qiskit_experiments/randomized_benchmarking/rb_experiment.py index 85cb6d9835..b253705103 100644 --- a/qiskit_experiments/randomized_benchmarking/rb_experiment.py +++ b/qiskit_experiments/randomized_benchmarking/rb_experiment.py @@ -24,6 +24,7 @@ from qiskit.circuit import Gate from qiskit_experiments.base_experiment import BaseExperiment +from qiskit_experiments.analysis.data_processing import probability from .rb_analysis import RBAnalysis from .clifford_utils import CliffordUtils @@ -66,6 +67,7 @@ def __init__( # Set configurable options self.set_experiment_options(lengths=list(lengths), num_samples=num_samples) + self.set_analysis_options(data_processor=probability(outcome="0" * self.num_qubits)) # Set fixed options self._full_sampling = full_sampling @@ -154,7 +156,6 @@ def _generate_circuit( rb_circ.metadata = { "experiment_type": self._type, "xval": current_length + 1, - "ylabel": self.num_qubits * "0", "group": "Clifford", "qubits": self.physical_qubits, } diff --git a/test/analysis/__init__.py b/test/analysis/__init__.py new file mode 100644 index 0000000000..96c0cf22be --- /dev/null +++ b/test/analysis/__init__.py @@ -0,0 +1,11 @@ +# This code is part of Qiskit. +# +# (C) Copyright IBM 2021. +# +# This code is licensed under the Apache License, Version 2.0. You may +# obtain a copy of this license in the LICENSE.txt file in the root directory +# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. +# +# Any modifications or derivative works of this code must retain this +# copyright notice, and modified files need to carry a notice indicating +# that they have been altered from the originals. diff --git a/test/analysis/test_curve_fit.py b/test/analysis/test_curve_fit.py new file mode 100644 index 0000000000..80eb55496b --- /dev/null +++ b/test/analysis/test_curve_fit.py @@ -0,0 +1,467 @@ +# This code is part of Qiskit. +# +# (C) Copyright IBM 2021. +# +# This code is licensed under the Apache License, Version 2.0. You may +# obtain a copy of this license in the LICENSE.txt file in the root directory +# of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. +# +# Any modifications or derivative works of this code must retain this +# copyright notice, and modified files need to carry a notice indicating +# that they have been altered from the originals. + +"""Test curve fitting base class.""" +# pylint: disable=invalid-name + +from typing import List + +import numpy as np +from qiskit.test import QiskitTestCase + +from qiskit_experiments import ExperimentData +from qiskit_experiments.analysis import CurveAnalysis, SeriesDef, fit_function +from qiskit_experiments.analysis.curve_fitting import multi_curve_fit +from qiskit_experiments.analysis.data_processing import probability +from qiskit_experiments.base_experiment import BaseExperiment +from qiskit_experiments.exceptions import AnalysisError + + +class FakeExperiment(BaseExperiment): + """A fake experiment class.""" + + def __init__(self): + super().__init__(qubits=(0,), experiment_type="fake_experiment") + + def circuits(self, backend=None): + return [] + + +def simulate_output_data(func, xvals, param_dict, **metadata): + """Generate arbitrary fit data.""" + __shots = 100000 + + expected_probs = func(xvals, **param_dict) + counts = np.asarray(expected_probs * __shots, dtype=int) + + data = [ + { + "counts": {"0": __shots - count, "1": count}, + "metadata": dict(xval=xi, qubits=(0,), experiment_type="fake_experiment", **metadata), + } + for xi, count in zip(xvals, counts) + ] + + expdata = ExperimentData(experiment=FakeExperiment()) + for datum in data: + expdata.add_data(datum) + + return expdata + + +def create_new_analysis(series: List[SeriesDef]) -> CurveAnalysis: + """A helper function to create a mock analysis class instance.""" + + class TestAnalysis(CurveAnalysis): + """A mock analysis class to test.""" + + __series__ = series + + return TestAnalysis() + + +class TestCurveAnalysisUnit(QiskitTestCase): + """Unittest for curve fit analysis.""" + + def setUp(self): + super().setUp() + self.xvalues = np.linspace(1.0, 5.0, 10) + + # Description of test setting + # + # - This model contains three curves, namely, curve1, curve2, curve3 + # - Each curve can be represented by the same function + # - Parameter amp and baseline are shared among all curves + # - Each curve has unique lamb + # - In total 5 parameters in the fit, namely, p0, p1, p2, p3 + # + self.analysis = create_new_analysis( + series=[ + SeriesDef( + name="curve1", + fit_func=lambda x, p0, p1, p2, p3, p4: fit_function.exponential_decay( + x, amp=p0, lamb=p1, baseline=p4 + ), + filter_kwargs={"type": 1, "valid": True}, + ), + SeriesDef( + name="curve2", + fit_func=lambda x, p0, p1, p2, p3, p4: fit_function.exponential_decay( + x, amp=p0, lamb=p2, baseline=p4 + ), + filter_kwargs={"type": 2, "valid": True}, + ), + SeriesDef( + name="curve3", + fit_func=lambda x, p0, p1, p2, p3, p4: fit_function.exponential_decay( + x, amp=p0, lamb=p3, baseline=p4 + ), + filter_kwargs={"type": 3, "valid": True}, + ), + ], + ) + self.err_decimal = 3 + + def test_cannot_create_invalid_series_fit(self): + """Test we cannot create invalid analysis instance.""" + invalid_series = [ + SeriesDef( + name="fit1", + fit_func=lambda x, p0: fit_function.exponential_decay(x, amp=p0), + ), + SeriesDef( + name="fit2", + fit_func=lambda x, p1: fit_function.exponential_decay(x, amp=p1), + ), + ] + with self.assertRaises(AnalysisError): + create_new_analysis(series=invalid_series) # fit1 has param p0 while fit2 has p1 + + def test_arg_parse_and_get_option(self): + """Test if option parsing works correctly.""" + user_option = {"x_key": "test_value", "test_key1": "value1", "test_key2": "value2"} + + # argument not defined in default option should be returned as extra option + extra_option = self.analysis._arg_parse(**user_option) + ref_option = {"test_key1": "value1", "test_key2": "value2"} + self.assertDictEqual(extra_option, ref_option) + + # default option value is stored as class variable + self.assertEqual(self.analysis._get_option("x_key"), "test_value") + + def test_data_extraction(self): + """Test data extraction method.""" + self.analysis._arg_parse(x_key="xval") + + # data to analyze + test_data0 = simulate_output_data( + func=fit_function.exponential_decay, + xvals=self.xvalues, + param_dict={"amp": 1.0}, + type=1, + valid=True, + ) + + # fake data + test_data1 = simulate_output_data( + func=fit_function.exponential_decay, + xvals=self.xvalues, + param_dict={"amp": 0.5}, + type=2, + valid=False, + ) + # merge two experiment data + for datum in test_data1.data(): + test_data0.add_data(datum) + + self.analysis._extract_curves( + experiment_data=test_data0, data_processor=probability(outcome="1") + ) + xdata = self.analysis._x_values + ydata = self.analysis._y_values + sigma = self.analysis._y_sigmas + d_index = self.analysis._data_index + + # check if the module filter off data: valid=False + self.assertEqual(len(xdata), 20) + + # check x values + ref_x = np.concatenate((self.xvalues, self.xvalues)) + np.testing.assert_array_almost_equal(xdata, ref_x) + + # check y values + ref_y = np.concatenate( + ( + fit_function.exponential_decay(self.xvalues, amp=1.0), + fit_function.exponential_decay(self.xvalues, amp=0.5), + ) + ) + np.testing.assert_array_almost_equal(ydata, ref_y, decimal=self.err_decimal) + + # check series + ref_series = np.concatenate((np.zeros(10, dtype=int), -1 * np.ones(10, dtype=int))) + self.assertListEqual(list(d_index), list(ref_series)) + + # check y errors + ref_yerr = ref_y * (1 - ref_y) / 100000 + np.testing.assert_array_almost_equal(sigma, ref_yerr, decimal=self.err_decimal) + + def test_get_subset(self): + """Test that get subset data from full data array.""" + + d_index = np.asarray([0, 1, 0, 2, 2, -1], dtype=int) + xdata = np.asarray([1, 2, 3, 4, 5, 6], dtype=float) + ydata = np.asarray([1, 2, 3, 4, 5, 6], dtype=float) + sigma = np.asarray([1, 2, 3, 4, 5, 6], dtype=float) + + subx, suby, subs = self.analysis._subset_data("curve1", d_index, xdata, ydata, sigma) + np.testing.assert_array_almost_equal(subx, np.asarray([1, 3], dtype=float)) + np.testing.assert_array_almost_equal(suby, np.asarray([1, 3], dtype=float)) + np.testing.assert_array_almost_equal(subs, np.asarray([1, 3], dtype=float)) + + subx, suby, subs = self.analysis._subset_data("curve2", d_index, xdata, ydata, sigma) + np.testing.assert_array_almost_equal(subx, np.asarray([2], dtype=float)) + np.testing.assert_array_almost_equal(suby, np.asarray([2], dtype=float)) + np.testing.assert_array_almost_equal(subs, np.asarray([2], dtype=float)) + + subx, suby, subs = self.analysis._subset_data("curve3", d_index, xdata, ydata, sigma) + np.testing.assert_array_almost_equal(subx, np.asarray([4, 5], dtype=float)) + np.testing.assert_array_almost_equal(suby, np.asarray([4, 5], dtype=float)) + np.testing.assert_array_almost_equal(subs, np.asarray([4, 5], dtype=float)) + + def test_formatting_options(self): + """Test option formatter.""" + test_options = { + "p0": [0, 1, 2, 3, 4], + "bounds": [(-1, 1), (-2, 2), (-3, 3), (-4, 4), (-5, 5)], + "other_value": "test", + } + formatted_options = self.analysis._format_fit_options(**test_options) + + ref_options = { + "p0": {"p0": 0, "p1": 1, "p2": 2, "p3": 3, "p4": 4}, + "bounds": {"p0": (-1, 1), "p1": (-2, 2), "p2": (-3, 3), "p3": (-4, 4), "p4": (-5, 5)}, + "other_value": "test", + } + self.assertDictEqual(formatted_options, ref_options) + + test_invalid_options = { + "p0": {"invalid_key1": 0, "invalid_key2": 2, "invalid_key3": 3, "invalid:_key4": 4} + } + with self.assertRaises(AnalysisError): + self.analysis._format_fit_options(**test_invalid_options) + + +class TestCurveAnalysisIntegration(QiskitTestCase): + """Integration test for curve fit analysis through entire analysis.run function.""" + + def setUp(self): + super().setUp() + self.xvalues = np.linspace(0.1, 1, 50) + self.err_decimal = 2 + + def test_run_single_curve_analysis(self): + """Test analysis for single curve.""" + analysis = create_new_analysis( + series=[ + SeriesDef( + name="curve1", + fit_func=lambda x, p0, p1, p2, p3: fit_function.exponential_decay( + x, amp=p0, lamb=p1, x0=p2, baseline=p3 + ), + ) + ], + ) + ref_p0 = 0.9 + ref_p1 = 2.5 + ref_p2 = 0.0 + ref_p3 = 0.1 + + test_data = simulate_output_data( + func=fit_function.exponential_decay, + xvals=self.xvalues, + param_dict={"amp": ref_p0, "lamb": ref_p1, "x0": ref_p2, "baseline": ref_p3}, + ) + results, _ = analysis._run_analysis( + test_data, + p0={"p0": ref_p0, "p1": ref_p1, "p2": ref_p2, "p3": ref_p3}, + curve_fitter=multi_curve_fit, + data_processor=probability(outcome="1"), + x_key="xval", + plot=False, + axis=None, + xlabel="x value", + ylabel="y value", + fit_reports=None, + return_data_points=False, + ) + result = results[0] + + ref_popt = np.asarray([ref_p0, ref_p1, ref_p2, ref_p3]) + + # check result data + np.testing.assert_array_almost_equal(result["popt"], ref_popt, decimal=self.err_decimal) + self.assertEqual(result["dof"], 46) + self.assertListEqual(result["xrange"], [0.1, 1.0]) + self.assertListEqual(result["popt_keys"], ["p0", "p1", "p2", "p3"]) + + def test_run_single_curve_fail(self): + """Test analysis returns status when it fails.""" + analysis = create_new_analysis( + series=[ + SeriesDef( + name="curve1", + fit_func=lambda x, p0, p1, p2, p3: fit_function.exponential_decay( + x, amp=p0, lamb=p1, x0=p2, baseline=p3 + ), + ) + ], + ) + ref_p0 = 0.9 + ref_p1 = 2.5 + ref_p2 = 0.0 + ref_p3 = 0.1 + + test_data = simulate_output_data( + func=fit_function.exponential_decay, + xvals=self.xvalues, + param_dict={"amp": ref_p0, "lamb": ref_p1, "x0": ref_p2, "baseline": ref_p3}, + ) + + # Try to fit with infeasible parameter boundary. This should fail. + results, _ = analysis._run_analysis( + test_data, + p0={"p0": ref_p0, "p1": ref_p1, "p2": ref_p2, "p3": ref_p3}, + bounds={"p0": [-10, 0], "p1": [-10, 0], "p2": [-10, 0], "p3": [-10, 0]}, + curve_fitter=multi_curve_fit, + data_processor=probability(outcome="1"), + x_key="xval", + plot=False, + axis=None, + xlabel="x value", + ylabel="y value", + fit_reports=None, + return_data_points=True, + ) + result = results[0] + + self.assertFalse(result["success"]) + + ref_result_keys = ["analysis_type", "error_message", "success", "raw_data"] + self.assertSetEqual(set(result.keys()), set(ref_result_keys)) + + def test_run_two_curves_with_same_fitfunc(self): + """Test analysis for two curves. Curves shares fit model.""" + analysis = create_new_analysis( + series=[ + SeriesDef( + name="curve1", + fit_func=lambda x, p0, p1, p2, p3, p4: fit_function.exponential_decay( + x, amp=p0, lamb=p1, x0=p3, baseline=p4 + ), + filter_kwargs={"exp": 0}, + ), + SeriesDef( + name="curve1", + fit_func=lambda x, p0, p1, p2, p3, p4: fit_function.exponential_decay( + x, amp=p0, lamb=p2, x0=p3, baseline=p4 + ), + filter_kwargs={"exp": 1}, + ), + ], + ) + ref_p0 = 0.9 + ref_p1 = 7.0 + ref_p2 = 5.0 + ref_p3 = 0.0 + ref_p4 = 0.1 + + test_data0 = simulate_output_data( + func=fit_function.exponential_decay, + xvals=self.xvalues, + param_dict={"amp": ref_p0, "lamb": ref_p1, "x0": ref_p3, "baseline": ref_p4}, + exp=0, + ) + + test_data1 = simulate_output_data( + func=fit_function.exponential_decay, + xvals=self.xvalues, + param_dict={"amp": ref_p0, "lamb": ref_p2, "x0": ref_p3, "baseline": ref_p4}, + exp=1, + ) + + # merge two experiment data + for datum in test_data1.data(): + test_data0.add_data(datum) + + results, _ = analysis._run_analysis( + test_data0, + p0={"p0": ref_p0, "p1": ref_p1, "p2": ref_p2, "p3": ref_p3, "p4": ref_p4}, + curve_fitter=multi_curve_fit, + data_processor=probability(outcome="1"), + x_key="xval", + plot=False, + axis=None, + xlabel="x value", + ylabel="y value", + fit_reports=None, + return_data_points=False, + ) + result = results[0] + + ref_popt = np.asarray([ref_p0, ref_p1, ref_p2, ref_p3, ref_p4]) + + # check result data + np.testing.assert_array_almost_equal(result["popt"], ref_popt, decimal=self.err_decimal) + + def test_run_two_curves_with_two_fitfuncs(self): + """Test analysis for two curves. Curves shares fit parameters.""" + analysis = create_new_analysis( + series=[ + SeriesDef( + name="curve1", + fit_func=lambda x, p0, p1, p2, p3: fit_function.cos( + x, amp=p0, freq=p1, phase=p2, baseline=p3 + ), + filter_kwargs={"exp": 0}, + ), + SeriesDef( + name="curve2", + fit_func=lambda x, p0, p1, p2, p3: fit_function.sin( + x, amp=p0, freq=p1, phase=p2, baseline=p3 + ), + filter_kwargs={"exp": 1}, + ), + ], + ) + ref_p0 = 0.1 + ref_p1 = 2 + ref_p2 = -0.3 + ref_p3 = 0.5 + + test_data0 = simulate_output_data( + func=fit_function.cos, + xvals=self.xvalues, + param_dict={"amp": ref_p0, "freq": ref_p1, "phase": ref_p2, "baseline": ref_p3}, + exp=0, + ) + + test_data1 = simulate_output_data( + func=fit_function.sin, + xvals=self.xvalues, + param_dict={"amp": ref_p0, "freq": ref_p1, "phase": ref_p2, "baseline": ref_p3}, + exp=1, + ) + + # merge two experiment data + for datum in test_data1.data(): + test_data0.add_data(datum) + + results, _ = analysis._run_analysis( + test_data0, + p0={"p0": ref_p0, "p1": ref_p1, "p2": ref_p2, "p3": ref_p3}, + curve_fitter=multi_curve_fit, + data_processor=probability(outcome="1"), + x_key="xval", + plot=False, + axis=None, + xlabel="x value", + ylabel="y value", + fit_reports=None, + return_data_points=False, + ) + result = results[0] + + ref_popt = np.asarray([ref_p0, ref_p1, ref_p2, ref_p3]) + + # check result data + np.testing.assert_array_almost_equal(result["popt"], ref_popt, decimal=self.err_decimal) diff --git a/test/test_qubit_spectroscopy.py b/test/test_qubit_spectroscopy.py index 73e1c2ee45..09b6a04a6f 100644 --- a/test/test_qubit_spectroscopy.py +++ b/test/test_qubit_spectroscopy.py @@ -20,6 +20,7 @@ from qiskit_experiments.characterization.qubit_spectroscopy import QubitSpectroscopy from qiskit_experiments.test.mock_iq_backend import TestJob, IQTestBackend +from qiskit_experiments.analysis import get_opt_value class SpectroscopyBackend(IQTestBackend): @@ -102,7 +103,9 @@ def test_spectroscopy_end2end_classified(self): spec.set_run_options(meas_level=MeasLevel.CLASSIFIED) result = spec.run(backend).analysis_result(0) - self.assertTrue(abs(result["value"]) < 1e6) + value = get_opt_value(result, "freq") + + self.assertTrue(abs(value) < 1e6) self.assertTrue(result["success"]) self.assertEqual(result["quality"], "computer_good") @@ -113,8 +116,10 @@ def test_spectroscopy_end2end_classified(self): spec.set_run_options(meas_level=MeasLevel.CLASSIFIED) result = spec.run(backend).analysis_result(0) - self.assertTrue(result["value"] < 5.1e6) - self.assertTrue(result["value"] > 4.9e6) + value = get_opt_value(result, "freq") + + self.assertTrue(value < 5.1e6) + self.assertTrue(value > 4.9e6) self.assertEqual(result["quality"], "computer_good") def test_spectroscopy_end2end_kerneled(self): @@ -125,7 +130,9 @@ def test_spectroscopy_end2end_kerneled(self): spec = QubitSpectroscopy(3, np.linspace(-10.0, 10.0, 21), unit="MHz") result = spec.run(backend).analysis_result(0) - self.assertTrue(abs(result["value"]) < 1e6) + value = get_opt_value(result, "freq") + + self.assertTrue(abs(value) < 1e6) self.assertTrue(result["success"]) self.assertEqual(result["quality"], "computer_good") @@ -135,15 +142,17 @@ def test_spectroscopy_end2end_kerneled(self): spec = QubitSpectroscopy(3, np.linspace(-10.0, 10.0, 21), unit="MHz") result = spec.run(backend).analysis_result(0) - self.assertTrue(result["value"] < 5.1e6) - self.assertTrue(result["value"] > 4.9e6) + value = get_opt_value(result, "freq") + + self.assertTrue(value < 5.1e6) + self.assertTrue(value > 4.9e6) self.assertEqual(result["quality"], "computer_good") - self.assertTrue(result["ydata_err"] is not None) spec.set_run_options(meas_return="avg") result = spec.run(backend).analysis_result(0) - self.assertTrue(result["value"] < 5.1e6) - self.assertTrue(result["value"] > 4.9e6) + value = get_opt_value(result, "freq") + + self.assertTrue(value < 5.1e6) + self.assertTrue(value > 4.9e6) self.assertEqual(result["quality"], "computer_good") - self.assertTrue(result["ydata_err"] is None) diff --git a/test/test_t1.py b/test/test_t1.py index 4b9c689c90..beb30c9b54 100644 --- a/test/test_t1.py +++ b/test/test_t1.py @@ -228,8 +228,8 @@ def test_t1_analysis(self): ) res = T1Analysis()._run_analysis(data)[0] - self.assertEqual(res["quality"], "computer_good") - self.assertAlmostEqual(res["value"], 25e-9, delta=3) + self.assertEqual(res[0]["quality"], "computer_good") + self.assertAlmostEqual(res[0]["value"], 25e-9, delta=3) def test_t1_metadata(self): """ @@ -275,7 +275,7 @@ def test_t1_low_quality(self): ) res = T1Analysis()._run_analysis(data)[0] - self.assertEqual(res["quality"], "computer_bad") + self.assertEqual(res[0]["quality"], "computer_bad") if __name__ == "__main__":