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Differentiable learning of quantum circuit Born machines
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Quantum circuit Born machines are generative models which represent the probability distribution of classical
dataset as quantum pure states. Computational complexity considerations of the quantum sampling problem
suggest that the quantum circuits exhibit stronger expressibility compared to classical neural networks. One can
efficiently draw samples from the quantum circuits via projective measurements on qubits. However, similar
to the leading implicit generative models in deep learning, such as the generative adversarial networks, the
quantum circuits cannot provide the likelihood of the generated samples, which poses a challenge to the training.
We devise an efficient gradient-based learning algorithm for the quantum circuit Born machine by minimizing
the kerneled maximum mean discrepancy loss. We simulated generative modeling of the BARS-AND-STRIPES
dataset and Gaussian mixture distributions using deep quantum circuits. Our experiments show the importance
of circuit depth and the gradient-based optimization algorithm. The proposed learning algorithm is runnable on
near-term quantum device and can exhibit quantum advantages for probabilistic generative modeling.
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I. INTRODUCTION

Unsupervised generative modeling is at the forefront of
deep learning research [1]. Unlike the extremely successful
discriminative tasks, such as supervised classification and
regression, the goal of generative modeling is to model the
probability distribution of observed data and generate new
samples accordingly. Generative modeling finds wide appli-
cations in computer vision [2], speech synthesis [3], as well
as chemical design [4]. And it is believed to be a crucial
component towards artificial general intelligence. However,
generative modeling is more challenging than discriminative
tasks since it requires one to efficiently represent, learn, and
sample from high-dimensional probability distributions [1].

In parallel to the rapid development of deep learning, there
is heated ongoing research to fabricate intermediate-scale
quantum circuits [5–7]. Quantum hardware may show greater
potential than their classical counterparts in generative tasks.
Multiple schemes have been proposed to boost the perfor-
mance of classical generative models using quantum devices.
For example, quantum Boltzmann machines [8–11] generalize
the energy function of classical Boltzmann machines [12] to
quantum Hamiltonian for possible stronger representational
power and faster training. A concern which may prevent the
quantum Boltzmann machine from surpassing its classical
counterpart is the limited connectivity on the actual quantum
hardware [13]. Reference [14] introduces a quantum general-
ization of the probabilistic graphical model [15], which can
be exponentially more powerful than its classical counterpart
and has exponential speedup in training and inference, at
least, for some instances under reasonable assumptions in
computational complexity theory.
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Another class of arguably simpler quantum generative
models, named Born machines [16–18], directly exploit the
inherent probabilistic interpretation of quantum wave func-
tions [19]. Born machines represent probability distribution
using a quantum pure state instead of the thermal distri-
bution, such as the Boltzmann machines [12]. Therefore,
Born machines can directly generate samples via projective
measurement on the qubits, in contrast to the slow mixing
Gibbs sampling approach. Moreover, computational complex-
ity considerations on quantum sampling problems suggest that
a quantum circuit can produce probability distribution that
is P-hard [20–23], which is infeasible to simulate efficiently
using classical algorithms. The same reasoning underlines
the current efforts towards “quantum supremacy” experiments
by sampling outcomes of random quantum circuits [24].
Reference [16] performed a classical simulation of the Born
machine using the matrix product state representation of the
quantum state. It will be even more promising to realize
the Born machines using quantum circuits since one can,
at least, efficiently prepare some of the tensor networks on
a quantum computer [25]. Recently, Ref. [18] demonstrated
experimental realization of the Born machine on a four-qubit
shallow quantum circuit trained by gradient-free optimization
of measurement histograms.

To further scale up the quantum circuit Born machine
(QCBM) to larger numbers of qubits and circuit depth, one
needs to devise an appropriate objective function for the
generative tasks without explicit reference to the model prob-
ability. Unlike the tensor network simulation [16], QCBM
belongs to implicit generative models since one does not have
access to the wave function of an actual quantum circuit.
Thus, the QCBM can be used as a simulator to generate
samples without access to their likelihoods, which is similar to
the notable generative adversarial networks (GANs) [26,27].
Compared to generative models with explicit likelihoods, such
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as the Boltzmann machines [28], normalizing flows [29–33],
and variational autoencoders [34,35], the implicit generative
models can be more expressive due to less restrictions in their
network structures. On the other hand, having no direct access
to the output probability also poses challenges to the scalable
training of quantum circuits.

Moreover, one also needs better learning algorithm than
the gradient-free optimization scheme [18] especially given
the noisy realization of current quantum circuits. Similarly,
scalability of the optimization scheme is also a crucial concern
in deep learning in which deep neural networks can even reach
billions of parameters [36]. In the history of machine learning,
gradient-free algorithms were employed to optimize small-
scale neural networks [37]. However, they failed to scale up
to a larger number of parameters. It is the back-propagation
algorithm [38] which can efficiently compute the gradient
of the neural network output with respect to the network
parameters enables scalable training of deep neural nets. It
is thus highly demanded to have scalable quantum algorithms
[39,40] for estimating gradients on actual quantum circuits.

Recently, gradient-based learning of quantum circuits has
been devised for quantum control [41] and discriminative
tasks [42,43]. Although they are still less efficient compared
to the back-propagation algorithm for neural networks, these
unbiased gradient algorithms can already greatly accelerate
the quantum circuit learning. Unfortunately, direct application
of these gradient algorithms [41–43] to QCBM training is
still nontrivial since the output of the generative model is
genuinely bit strings which follow high-dimensional proba-
bility distributions. The previous method to get the gradient
requires the target function being an expectation value of some
observable, this restriction can make almost every meaningful
loss function in generative modeling fail to differentiate since
even simplest mean-square loss (with respect to probabilities)
contains exponentially many observables which makes it im-
possible to implement. In fact, it is even an ongoing research
topic in deep learning to perform differentiable learning of an
implicit generative model with discrete outputs [27,44].

In this paper, we develop an efficient gradient-based learn-
ing algorithm to train the QCBM. In what follows, we first
present a practical quantum-classical hybrid algorithm to train
the quantum circuit as a generative model in Sec. II, thus
realizes a Born machine. Then, we apply the algorithm on 3 ×
3 BARS-AND-STRIPES and double Gaussian peak datasets
in Sec. III. We show that the training is robust to moderate
sampling noise and is scalable in circuit depth. Increasing
the circuit depth significantly improves the representational
power for generative tasks. Finally, we conclude and discuss
caveats and future research directions about the QCBM in
Sec. IV.

II. MODEL AND LEARNING ALGORITHM

Given a dataset D = {x} containing independent and iden-
tically distributed (i.i.d.) samples from a target distribution
π (x), we set up a QCBM to generate samples close to the
unknown target distribution. As shown in Fig. 1, the QCBM
takes the product state |0〉 as an input and evolves it to a
final-state |ψθ 〉 by a sequence of unitary gates. Then we can
measure this output state on a computation basis to obtain a

FIG. 1. Illustration of the differentiable QCBM training scheme.
The top left is the quantum circuit which produces bit string samples.
The dashed box on the right denotes the two-sample test on the gen-
erated samples and training samples with the loss function [Eq. (1)]
and corresponding gradients [Eq. (2)] as outputs. �θ is the amount
of update applied to the circuit parameters, which are computed by
a classical optimizer. The outcome of the training is to produce a
quantum circuit which generates samples according to the learned
probability distribution on the computational basis.

sample of bits x ∼ pθ (x) = |〈x|ψθ 〉|2. The goal of the training
is to let the model probability distribution pθ approach π .

We employ a classical-quantum hybrid feedback loop as
the training strategy. The setup is similar to the quantum ap-
proximate optimization algorithm [45–47] and the variational
quantum eigensolver [48–50]. By constructing the circuits and
performing measurements repeatedly, we collect a batch of
samples from the QCBM. Then we introduce two-sample test
as a measure of distance between the generated samples and
the training set, which is used as our differentiable loss. Using
a classical optimizer which takes the gradient information of
the loss function, we can push the generated sample distribu-
tion towards the target distribution.

A. Quantum circuit architecture design

The overall circuit layout is similar to the IBM variational
quantum eigensolver [50] where one interweaves single qubit
rotation layers and entangler layers shown in Fig. 1. The
rotation layers are parametrized by rotation angles θ = {θα

l }
where the layer index l runs from 0 to d with d as the
maximum depth of the circuit. α is a combination of qubit
index j and an arbitrary rotation gate index where the arbitrary
rotation gate has the form U (θj

l ) = Rz(θj,1
l )Rx (θj,2

l )Rz(θj,3
l )

with Rm(θ ) ≡ exp ( −iθσm

2 ). The total number of parameters in
this QCBM is (3d + 1)n with n as the number of qubits [51].

We employ CNOT gates with no learnable parameters for
the entangle layers to induce correlations between qubits. In
light of experimental constraints on the connectivity of the
circuits, we make the connection of the entangle layers to be
sparse by requiring its topology as a tree (i.e., the simplest
connected graph). From the classical probabilistic graphi-
cal model’s perspective [15], the tree graph that captures
information content of the dataset most efficiently is the
Chow-Liu tree [52]. Since controlled unitary gates have a
close relation with classical probability graphical models [53],
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we employ the same Chow-Liu tree as the topology of CNOT

gates. To construct the Chow-Liu tree, we first compute
mutual information between all pairs of the bits for samples
in the training set as weights and then construct the maximum
spanning tree using, for example, Kruskal’s algorithm. The
assignment of the control bit and the target bit on a bond is
random since the Chow-Liu algorithm treated directed and
undirected graphs the same. In the case where this connection
structure is not directly supported by the hardware, a combi-
nation of SWAP gates and CNOT gates can be used to efficiently
simulate the required structure [54].

The performance of entangle layers constructed in this
procedure is better than most random connections with the
same number of gates. This data-driven quantum circuit ar-
chitecture design scheme that puts more entanglers between
highly correlated bits, captures the correlation between qubits
better, and may alleviate issues of vanishing gradients for
large-scale applications [25].

B. Loss function and gradient-based optimization

Viewing the QCBM as an implicit generative model [55],
we train it by employing the kernel two-sample test [56]. The
idea is to compare the distance in the kernel feature space on
the samples drawn from the target and the model distributions.
We refer the following loss function as the squared maximum
mean discrepancy (MMD) [57,58]:

L =
∥∥∥∥∥
∑

x

pθ (x)φ(x) −
∑

x

π (x)φ(x)

∥∥∥∥∥
2

= E
x ∼ pθ , y ∼ pθ

[K (x, y)] − 2 E
x ∼ pθ , y ∼ π

[K (x, y)]

+ E
x ∼ π, y ∼ π

[K (x, y)]. (1)

The summation in the first line runs over the whole Hilbert
space. The expectation values in the second line are for the
corresponding probability distributions. The function φ maps
x to a high-dimensional reproducing kernel Hilbert space [59].
However, as common in the kernel methods, by defining a
kernel function K (x, y) = φ(x)T φ(y), one can avoid working
in the high-dimensional feature space. We employ a Gaussian
kernel K (x, y) = exp (− 1

2σ
|x − y|2) to reveal differences be-

tween the two distributions under various scales. Here, σ is the
bandwidth parameter which controls the width of the Gaus-
sian kernel. The sample x can either be a bit string (vector) or
be an integer (scalar) depending on the representation. When
x is a bit string, |x| stands for the �2 norm in the vector
space. The MMD loss with Gaussian kernels asymptotically
approaches zero if and only if the output distribution matches
the target distribution exactly [57,58]. The same loss function
was used to train the generative moment matching networks
(GMMNs) [60–62].

Previous methods to get gradients with respect to circuit
parameters in Ref. [43] requires the target function being an
observable. However, a statistic functional, such as our MMD
loss cannot be expressed as a combination of finite (i.e., not
exponentially many) observables. To learn the QCBM as a
generative model, we formulated the unbiased gradient of

MMD loss Eq. (1) in Appendix A as

∂L
∂θα

l

= E
x ∼ pθ+ , y ∼ pθ

[K (x, y)]

− E
x ∼ pθ− , y ∼ pθ

[K (x, y)]

− E
x ∼ pθ+ , y ∼ π

[K (x, y)]

+ E
x ∼ pθ− , y ∼ π

[K (x, y)]. (2)

Here, pθ+ (x) and pθ− (x) are output probabilities of the
QCBM under circuit parameters θ± = θ ± π

2 eα
l , where eα

l is
the (l, α)th unit vector in parameter space (i.e., θα

l ← θα
l ± π

2 ,
with other angles unchanged). In contrast to the finite differ-
ence methods, such as simultaneous perturbation stochastic
approximation (SPSA) [63], Eq. (2) is an unbiased estimator
of the exact gradient.

In order to estimate the gradient [Eq. (2)] on an actual
quantum circuit, one can repeatedly send rotation and entangle
pulses to the device according to the circuit parameters θ (±)

and then perform projective measurements on the computa-
tional basis to collect binary samples x ∼ pθ (±) . Whereas for
x ∼ π , one can simply take a batch of data from the training
dataset [64]. The sampling noise in the estimated gradient
is controlled by the number of measurements N , denoted as
the batch size. After one has obtained a sufficiently accurate
gradient, one can use a classical optimizer to update the circuit
parameters similar to the stochastic gradient descent training
of deep neural nets.

Parameter learning of quantum circuits is adaptive in the
sense that the implementation of quantum gates can even
be nonideal. One can obtain gradients with high accuracy
as long as the parametrized single-qubit rotation gates are
precise, which is relatively easier to achieve experimentally.
The optimization scheme is independent of the detailed form
of nonparametrized entangle gates. Thus, the CNOT gate in the
setup can be replaced by any gate which can generate desired
quantum entanglements.

It is instructive to compare the training of the QCBM
to that of classical implicit generative models, such as the
GAN [26,27] and the GMMN [60–62]. Classically, one does
not have access to the likelihood either. The gradient is thus
obtained via the chain rule ∂L

∂θ
= ∂L

∂x
∂x
∂θ

, which then does not
apply for discrete data. On the other hand, the unbiased
gradient estimator of the QCBM takes advantage of the known
structure of the unitary evolution and the MMD loss (see
Appendix A), despite that the probability of the outcome
is unknown. In this sense, quantum circuits exhibit a clear
quantum advantage over classical neural nets since they fill the
gap of differentiable learning of implicit generative models of
discrete data.

III. NUMERICAL EXPERIMENTS

We carry out numerical experiments by simulating the
learning of the QCBM on a classical computer. These exper-
iments reveal advantages of gradient based optimization over
gradient-free optimization and demonstrate stronger express-
ibility of deep circuits over shallow ones. The code can be
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found in Ref. [65], and the correpondng julia version can be
found in Ref. [66].

A. Bars-and-stripes dataset

We first train a QCBM on the BARS-AND-STRIPES
dataset [16,18,67], which is a prototypical image dataset
consisting of vertical bars and horizontal stripes. On a grid
of 3 × 3, the dataset contains 14 valid configurations. We
model the pixels with a quantum circuit of nine qubits. The
Chow-Liu tree for this dataset is shown in Fig. 2(a). Bonds
are either rowwise or columnwise since correlations of pixels
sharing the same row or column index are dominant in this
dataset. The bandwidth used in Gaussian kernels of the MMD
loss is σ = 2.

For circuit depth d = 10, our gradient-based training is
able to reduce the MMD loss efficiently. The loss function for
different iteration steps is shown in Fig. 3(a). We first perform
L-BFGS-B [68] optimization (black dashed line) using the
exact gradient computed via the wave function (N = ∞)
to test the expressibility of the quantum circuit. A loss of
3.3 × 10−6 can be achieved, showing that the circuit is quite
expressive in terms of the two-sample test.

In practice, one has to perform projective measurements
on the qubits to collect statistics of the gradient since the
wave function is inaccessible. This situation is similar to the
minibatch estimate of the gradient in deep learning [1]. As is
well known in the deep learning applications [1], the L-BFGS-
B algorithm is not noise tolerant. Thus, it is unsuitable for
quantum circuit learning in a realistic situation. One needs to
employ an alternate optimizer which is robust to the sampling
noise to train the quantum circuit with the noisy gradient
estimator.

We employ the stochastic gradient optimizer Adam [69]
with the learning rate 0.1. The sampling noise in the gra-
dients can be controlled by tuning the batch size N =
2000, 20 000,∞ of the measurements. The solid lines in
Fig. 3(a) show that, as the sample size increases, the final
MMD loss reduces systematically. The scatters in the inset
confirmed that the model probability of the learned quantum

FIG. 2. (a) Connectivity of the CNOT gates for the 3 × 3 BARS-
AND-STRIPES dataset generated via the Chow-Liu tree algorithm.
The qubits are arranged on a 3 × 3 grid with some of them shifted a
bit in order to visualize the edges clearly. (b) The Chow-Liu tree for
the double-Gaussian peak model; the numbers represent the position
of a bit in the digit, 0 for the big end and 9 for the little end. In
this plot, the darkness of the edges indicates the amount of mutual
information between two sites.

FIG. 3. The MMD loss [Eq. (1)] as a function of training steps
under different sampling errors that governed by batch size N .
(a) Gradient-based training, solid colored lines are for Adam, and
the dashed black line is for Limited-memory Broyden–Fletcher–
Goldfarb–Shanno with Box constraints (L-BFGS-B) with N = ∞.
The inset is a comparison of probability distribution between the
training set and the QCBM output; the points on the dashed line
mean exact matches. (b) The gradient-free CMA-ES training coun-
terpart where each point on the graph represents a mean loss of its
population.

circuit and the target probability aligns better with the lower
MMD loss.

To visualize the quality of the samples, we generated a few
samples from the QCBM trained under different measurement
batch size N in Fig. 4. Here, we define a valid rate χ ≡
p(x is a bar or a stripe) as a measure of generation quality.
The valid rate increases as the batch size increases. However,
even with a moderate number of measurement N = 2000,
one can achieve a valid rate of χ = 74.4%. Here, we should
mention that the best valid rate of a d = 10 layer circuit is

FIG. 4. 3 × 3 BARS-AND-STRIPES samples generated from
the QCBMs. The circuit parameters used here are from the final
stages of Adam training with different batch sizes N in Fig. 3(a).
χ is the rate of generating valid samples in the training dataset. For
illustrative purposes, we only show 12 samples for each situation
with batch size N .
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FIG. 5. Losses as a function of training step for circuit depth d =
1, . . . , 10 (the darker the color of a line, the deeper the circuit). (a)
The MMD loss Eq. (1) and (b) the corresponding Kullback-Leibler
(KL) divergence. Here, we use the Adam optimizer with an exact
gradient.

achieved by the L-BFGS-B optimizer with N = ∞, which is
χ = 99.0%.

To highlight the importance of using a gradient-based
optimizer, we compare our approach to the covariance matrix
adaptation evolution strategy (CMA-ES) [70,71], a state-of-
the-art gradient-free stochastic optimizer. The input of the
CMA-ES is the scalar loss function measured on the circuit
instead of the vector gradient information. The CMA-ES opti-
mizer is able to optimize nonsmooth nonconvex loss functions
efficiently [71] and thus, in general, performs better than other
gradient-free methods, such as the SPSA [63] in training noisy
quantum circuits. We have confirmed this in our simulation.

In the absence of sampling noise N = ∞ in Fig. 3(b), we
do observe that the CMA-ES optimizer is able to achieve a
similar performance as the Adam optimizer after 104 steps of
optimization with a population size of 50. The total number
of generated samples is 104 × 50 × N , which is comparable
to the Adam training in Fig. 3(a) [72].

However, the performance of the CMA-ES deteriorates
significantly once taking sampling noise into consideration as
shown for N = 2000 and N = 20 000 in Fig. 3(b). A possible
explanation is that, in each step of the CMA-ES, its evolution
strategy chooses the direction to go by inspecting the center
of top 20% instances. This process can be understood as
an effective finite difference gradient estimation based on
the losses of its population. However, extracting gradient
information from noisy losses is difficult, even when one has
plenty of them.

Another advantage of using gradient-based learning is the
efficiency comparing with gradient-free methods, which gets
particularly significant when circuits get deeper and the num-
ber of parameters increases. In the following, we address the
necessity for using deep circuits. Figure 5(a) shows the MMD
loss as a function of Adam training steps for different circuit
depths. One obtains lower loss for deeper quantum circuit
after 2000 optimization steps. Figure 5(b) shows theKL di-
vergence [73] calculated using the circuit parameters in (a) at
different training steps. Note that this quantity is inaccessible
for large-scale problems since one has no access to the target
nor the output probability. We compute the KL divergence for
the toy model to demonstrate that the MMD loss is a good

FIG. 6. (a) The MMD loss as a function of the Adam training
step. (b) Histogram for samples generated by a trained QCBM with a
bin width of 20 (green bars) in comparison with the exact probability
density function (black dashed line).

surrogate for practical training. The result, indeed, shows a
consistency between MMD loss and KL divergence. And it
also supports the observation that deep circuits have stronger
representational power. Similar to deep neural networks, deep
circuits can achieve better performance also due to that one
is less prone to be trapped in a poor local minima with larger
amounts of parameters [74].

Another advantage of the QCBM over traditional deep
neural networks is that its training does not suffer from
gradient vanishing or the exploding problem as the circuit
goes deeper. Gradient vanishing or exploding is a common
problem for a traditional deep neural network [75] which
originates from multiplications of a long chain of matrices in
the back-propagation algorithm. Training of the deep quantum
circuits naturally circumvented this problem due to the unitary
property of the time evolution. A similar idea was exploited in
constructing classical recurrent neural networks with unitary
building blocks [76]. More numerical simulation and analyti-
cal explanations can be found in Appendix B.

B. Mixture of Gaussians

Next, we train a QCBM to model a mixture of Gaussian
distributions,

π (x) ∝ e−(1/2)[(x−μ1 )/ν]2 + e−(1/2)[(x−μ2 )/ν]2
. (3)

Here, x = 1, . . . , xmax is an integer encoded by the qubits with
xmax = 2n and n is the number of qubits. It is different from
the BARS-AND-STRIPES dataset in which case a sample x is
represented as a bit string. We choose ν = 1

8xmax, the centers
μ1 = 2

7xmax, and μ2 = 5
7xmax. The distribution is shown as the

dashed line in Fig. 6(b).
In the following discussion, we use n = 10 qubits and

set circuit depth d = 10. Unlike the case of BARS-AND-
STRIPES, the Gaussian mixture distribution is smooth and
nonzero for all basis states. Here, we generate 105 i.i.d.
samples from the target distribution as the training set. Its
Chow-Liu tree is shown in Fig. 2(b). In this graph, we see the
main contributions of mutual information are from bits near
the big end (most significant bits labeled by small indices).
This is because the bit near the little end only determines
the local translation of the probability on data axis. But for

062324-5



JIN-GUO LIU AND LEI WANG PHYSICAL REVIEW A 98, 062324 (2018)

a smooth probability distribution, the value of the little end is
nearly independent from values of the rest bits. For example,
the value of the big-end 0th bit being 0/1 corresponds to the
global left or right peak in Fig. 6(b). Whereas the probability
for the little end being 0/1 corresponds to x being even or odd.

Figure 6(a) shows the MMD loss as a function of the Adam
optimization steps with a sample size of N = ∞. Here, the
bandwidth of the Gaussian kernel in the MMD loss is σ = 2.

After 2000 training steps, the MMD loss decreased from
1.8 × 10−3 to 7 × 10−5. To see whether this low MMD loss
represents a good generative model, we then generate 20 000
samples from the QCBM and plot its binned histogram in
Fig. 6(b). We see an excellent match between the histogram
(green bars) and the exact probability distribution (black
dashed curve). Thus, we conclude that the MMD loss with the
Adam optimizer can also learn a smooth probability distribu-
tion over the qubit index of a QCBM. Here, we acknowledge
that the unbinned histogram appears more spiky, partly due
to the MMD loss not capturing the local variation of the
probability distribution. Better circuit architecture design for
representing continuous distribution may help alleviate this
problem.

IV. DISCUSSIONS

We presented a practical gradient-based learning scheme
to train quantum circuit Born machine as a generative model
of discrete data. With a hardware efficient quantum circuit,
the key component of the learning algorithm is to measure the
gradient of the MMD two-sample test loss function Eq. (2)
on a quantum computer unbiasedly and efficiently. Quantum
circuits turn out to be very suited for generative modeling
with discrete latent space. As training generative models with
discrete output in a classical setup cannot be easily performed
(usually, we need inefficient one-shot encoding), it provides a
strong motivation to embrace the quantum world.

Our results exemplify the extensibility and noise tolerance
of our learning scheme, which underlines the experimental
achievability for the quantum advantage. With the ability to
scale up, we simulated the training of intermediate-size deep
circuits. Results show strong evidence that building deeper
circuits will increase the representation power consistently
without suffering from the notorious gradient vanishing or
exploding problem in classical deep learning. Our paper also
inspires an approach for quantum state preparation. By chang-
ing measuring bases randomly, we can learn how to generate
target a quantum wave function by fitting measuring outcomes
in every basis.

A recent work [77] pointed out that the quantum circuit
also faces a gradient vanishing problem as the number of
qubits increases. They found that the variance of gradient
amplitudes decreases exponentially as the number of qubits
increases in a random quantum circuit. However, it is reason-
able to believe that with a better circuit structure design and a
parametrization strategy, such as in Sec. II A and Ref. [25], or
using shared weights, such as performed in the convolutional
neural networks [1], the gradient vanishing problem can be
alleviated. How gradient vanishing really affects gradient-
based training in a large-scale QCBM needs further system-
atic investigation.

Our simulation of the quantum circuits Born machine is
limited to a small number of qubits, thus the training set
contains all patterns, and we are pushing the circuits towards
the memorization limit. In future applications, one will focus
on the generalization ability of the quantum circuits. In those
cases, the structure and depth of a quantum circuit provide
the means of regularization since they can be designed to
express inductive bias in the natural distributions. In terms of
the learning, the randomness in the stochastic gradient is also
in favor of the generalization [74].

Besides the two-sample test loss employed in this paper,
one can explore alternative training schemes, e.g., adversarial
training [26]. Alternatively, learning of the kernel function
used in Eq. (1) may also improve the generation quality [62].
Finally, differentiable learning of the QCBM may be used
for solving combinatorial optimization problems and structure
learning tasks where the outputs are encoded in discrete bit
strings.

ACKNOWLEDGMENTS

Simulations of quantum circuits were mainly performed
using the PROJECTQ library [78,79]. We thank A. Perdomo-
Ortiz, M. Stoudenmire, D. Steiger, X. Gao, and P. Zhang
for helpful discussions. The authors were supported by the
National Natural Science Foundation of China under Grant
No. 11774398 and research program of the Chinese Academy
of Sciences under Grant No. XDPB0803.

APPENDIX A: UNBIASED GRADIENT ESTIMATOR OF
THE PROBABILITY OF A QUANTUM CIRCUIT

1. MMD loss

In the following, we derive Eq. (2) in the main text, starting
from the partial derivative of Eq. (1),

∂L
∂θα

l

=
∑
x,y

K (x, y)

(
pθ (y)

∂pθ (x)

∂θα
l

+ pθ (x)
∂pθ (y)

∂θα
l

)

− 2
∑
x,y

K (x, y)
∂pθ (x)

∂θα
l

π (y). (A1)

The partial derivative on the right-hand side of this equa-
tion can be unbiasedly computed using the approach of
Refs. [41,43]. For a circuit containing a unitary gate
parametrized as U (η) = e−(i/2)η� with �2 = 1 (e.g., � can be
Pauli operators, CNOT, or SWAP), the gradient of the expected
value of an observable B with respect to the parameter η reads

∂〈B〉η
∂η

= 1

2
(〈B〉η+ − 〈B〉η− ), (A2)

where 〈·〉η(±) represents expectation values of observables with
respect to the output quantum wave function generated by
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the same circuit with circuit parameter η± ≡ η ± π
2 . Note

Eq. (A2) is an unbiased estimate of the gradient in contrast
to the finite difference approaches which are sensitive to the
noise of the quantum circuit.

Since the quantum circuit Born machine employs the same
parametrization, we identify |x〉〈x| as the observable and

apply Eq. (A2) to the output probability of the circuit,

∂pθ (x)

∂θα
l

= 1

2
[pθ+ (x) − pθ− (x)], (A3)

where θ± ≡ θ ± π
2 eα

l with eα
l the (l, α)th unit vector in pa-

rameter space. Substituting Eq. (A3) into Eq. (A1) we have

∂L
∂θ

= 1

2

(∑
x,y

K (x, y)pθ (y)pθ+ (x) −
∑
x,y

K (x, y)pθ (y)pθ− (x)

)
+ 1

2

(∑
x,y

K (x, y)pθ (x)pθ+ (y) −
∑
x,y

K (x, y)pθ (x)pθ− (y)

)

−
(∑

x,y

K (x, y)pθ+ (x)π (y) −
∑
x,y

K (x, y)pθ− (x)π (y)

)
. (A4)

Using the symmetric condition of the kernel K (x, y) =
K (y, x), we arrive at Eq. (2) in the main text. This gradient
algorithm for the QCBM scales as O(d2) where d is the
depth of the circuit, which is less efficient compared to the
linear scaling back-propagation algorithm for classical neural
networks. It is still unknown whether one can reach similar
scaling on a quantum computer since the back-propagation
algorithm requires cached intermediate results in the forward
evaluation pass. We have checked the correctness of the
gradient estimator Eq. (2) against numerical finite difference.

2. Generalization to statistic functionals

To gain a better understanding of what kind of losses for a
quantum circuit can be easily differentiated, we generalize the
above result by considering an arbitrary function f (X) with a
sequence of bit strings X ≡ {x1, x2, . . . , xr} as its arguments.
Let us define the following expectation of this function:

Ef (�) ≡ E
{xi ∼ pθ+γ i

}ri=1

[f (X)]. (A5)

Here, � = {γ 1, γ 2, . . . , γ r} is the offset angles applied to
circuit parameters, which means the probability distributions
of generated samples is {pθ+γ 1

, pθ+γ 2
, . . . , pθ+γ r

}. Writing
out the above expectation explicitly, we have

Ef (�) =
∑

X

f (X)
∏

i

pθ+γ i
(xi ), (A6)

where index i runs from 1 to r . Its partial derivative with
respect to θα

l is

∂Ef (�)

∂θα
l

=
∑

X

f (X)
∑

j

∂pθ+γ j
(xj )

∂θα
l

∏
i 	=j

pθ+γ i
(xi ). (A7)

Again, using Eq. (A3), we have

∂Ef (�)

∂θα
l

= 1

2

∑
j,s=±

∑
X

f (X)pθ+γ j +s π
2 eα

l
(xj )

∏
i 	=j

pθ+γ i
(xi )

= 1

2

∑
j,s=±

Ef

({
γ i + sδij

π

2
eα
l

}r

i=1

)
(A8)

If f is symmetric, Ef (0) becomes a statistic functional [80],
then Eq. (A8) can be further simplified to

∂Ef (�)

∂θα
l

= r

2

∑
s=±

Ef

({
γ 0 + s

π

2
eα
l , γ 1, . . . , γ r

})
, (A9)

which contains only two terms. This result can be readily
verified by calculating the gradient of the MMD loss, noting
the expectation of a kernel function is a statistic functional
of degree 2. In practice, this expectation value is estimated
using the unbiased U statistics [81]. By repeatedly applying
Eq. (A8), we will be able to obtain higher-order gradients.

3. Gradient of the KL divergence

The KL divergence [73] reads

KL(π ‖ pθ ) = −
∑

x

π (x) ln

[
pθ (x)

π (x)

]
. (A10)

Its gradient is

∂KL

∂θα
l

= −
∑

x

π (x)
pθ+ (x) − pθ− (x)

2pθ (x)
, (A11)

where the pθ+ (x)−pθ− (x)
pθ (x) term cannot be transformed to a sam-

pling problem on the quantum circuit. Since minimizing the
negative logarithm likelihood is equivalent to minimizing the
KL divergence, it faces the same problem.

APPENDIX B: GRADIENT ANALYSIS

In this appendix, we analyze the effect of depth and sam-
pling error to gradients. For a nine-qubit quantum circuit of
depth d = 100 with random parameters used in generating the
BARS-AND-STRIPES dataset in the main text. A histogram
of the MMD loss gradient values in different layers are shown
in Fig. 7(a). Distributions of gradients in different layers have
no significant differences, thus a deep QCBM does not suffer
from vanishing or exploding gradients when the layers go
deeper. This property has its physical origin in how the wave
function changes when a perturbation is applied to θα

l of
the quantum circuit. Suppose we have a quantum circuit that
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FIG. 7. (a) The probability distribution of gradient elements in
different layers grouped by depth. The circuit parameters are chosen
randomly. (b) The variance of the MMD loss gradients as a function
of sample size N .

performing the following evolution:

|ψ〉 = UN :1|0〉. (B1)

Introduce a perturbation δ to θα
l ,

|ψ ′〉 = UN :ke
i[(θα

l +δ)/2]�kUk−1:1|0〉. (B2)

Its fidelity with respect to the unperturbed wave function is

F = |〈ψ |ψ ′〉|

=
∣∣∣∣1 − δ2

8
+ i

δ

2
〈φ|�k|φ〉

∣∣∣∣ + O(δ3)

�
√

1 − δ2

4
(1 − 〈φ|�k|φ〉2). (B3)

Here, |φ〉 ≡ Uk−1:1|0〉 can be assumed to be random in a deep
circuit. Thus we have the fidelity susceptibility [82,83] χF =
∂2 ln F

∂δ2 = 0.25(1 − 〈�k〉2) which is independent of θk . Since
we have �2

k = 1, χF is bounded by 0.25 and is independent
of the layer index.

Next, we show the error in gradient estimation will de-
crease systematically as the number of samples increases for
the MMD loss as can be seen from the curve of variance calcu-
lated using 100 copies of independent samples in Fig. 7(b). In
our case, to give a valid estimation of gradients, the standard
error should be lower than the typical amplitude of gradients.
As can be referred to from Fig. 7(a), the typical amplitude
of gradient is approximately 5 × 10−3, thus the sample size
should be larger than 103 in order to give a good estimation
for these gradients.
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