No description, website, or topics provided.
Switch branches/tags
Nothing to show
Clone or download
Latest commit 8e317ea Aug 26, 2018
Permalink
Failed to load latest commit information.
appendixes add figure Jul 18, 2018
pytorch update Aug 2, 2018
utils new version v2 Jul 25, 2018
LICENSE.txt update Jul 16, 2018
README.md add cite Aug 26, 2018
runme.sh update Aug 2, 2018

README.md

DCASE 2018 Task 3 Bird audio detection

DCASE 2018 Task 3 bird audio detection is a challenge to detect the presence or the absence of birds in 10 second audio clips. We provide a convolutional neural network (CNN) baseline system implemented with PyTorch in this code base. More details about this challenge can be found in http://dcase.community/challenge2018/task-bird-audio-detection

DATASET

The dataset is downloadable from http://dcase.community/challenge2018/task-bird-audio-detection

The development data consists of audio clips from freefield1010, warblrb10k and BirdVox-DCASE-20k. The evaluation data consists of audio clips from warblrb10k, Chernobyl and PolandNFC dataset.

Statistics of development data

Dataset name Number of audio clips
freefield1010 7690
warblrb10k 8000
BirdVox-DCASE-20K 20000
Total 35690

Statistics of test data

Dataset name Number of audio clips
warblrb10k 2000
Chernobyl 6620
PolandNFC 4000
Total 12620

The log mel spectrogram of the scenes are shown below:

alt text

The names of the audios are:

No. 0, 00053d90-e4b9-4045-a2f1-f39efc90cfa9.wav
No. 1, 000db435-a40f-4ad9-a74e-d1af284d2c44.wav
No. 2, 001059c0-e04f-42fc-a8e2-11aad24dc6fb.wav
No. 3, 00106202-f61e-467d-a80f-070d90421952.wav
No. 4, 00129593-77ca-40b2-a512-75d178071250.wav
No. 5, 00143c1f-bcac-47f6-a83d-81b2975ccca3.wav
No. 6, 00160fdf-5231-461b-acd7-1db41abf3ee5.wav
No. 7, 00162d26-57e6-4924-a247-5f58963f1403.wav
No. 8, 001ac3fe-c23a-4366-a16d-8d59f021b17e.wav
No. 9, 001ac895-0e9c-41d8-a76c-65c73c4a8d11.wav
No. 10, 001b8d8a-4247-4c46-a11b-b868fa3edb0a.wav
No. 11, 001d5212-6378-4a5d-aa3c-b1115d02ee79.wav

Run the code

0. Prepare data Unzip all development wavs to 'wav' folder, unzip all testing wavs to 'test_wav' folder. The data looks like:

.
├── wav (35690 audios for development)
│    └── ...
├── test_wav (12620 audios for testing)
│    └── ...
├── BirdVoxDCASE20k_csvpublic.csv
├── ff1010bird_metadata_2018.csv
├── warblrb10k_public_metadata_2018.csv
└── dcase2018_task3_bird_examplesubmission.csv

1. (Optional) Install dependent packages. If you are using conda, simply run:

$ BACKEND="pytorch"

$ conda env create -f $BACKEND/environment.yml

$ conda activate py3_dcase2018_task3

(We developed this system with python 3. If you are using pytorch as backend then pytorch 0.4.0 is required.)

2. Then simply run:

$ ./runme.sh

Or run the commands in runme.sh line by line, including:

(1) Modify the paths of data and your workspace

(2) Extract features

(3) Train model

(4) Evaluation

The training looks like:

Load hdf5 time: 7.787177562713623 s
Training audios: 15690
Validation audios: 20000
iteration: 0, train time: 0.005 s, validate time: 40.426 s
tr_acc: 0.574, tr_auc: 0.691, 
va_acc: 0.510, va_auc: 0.532
------------------------------------
iteration: 500, train time: 99.674 s, validate time: 41.741 s
tr_acc: 0.896, tr_auc: 0.959, 
va_acc: 0.551, va_auc: 0.746
------------------------------------
......
------------------------------------
iteration: 1000, train time: 99.984 s, validate time: 42.196 s
tr_acc: 0.914, tr_auc: 0.970, 
va_acc: 0.596, va_auc: 0.735
------------------------------------
......

Result

We apply a convolutional neural network on the log mel spectrogram feature to solve this task. Training takes around 200 ms / iteration on a GTX Titan X GPU. The model is trained for 5000 iterations. The result is shown below.

In development, we split the data to 3 fold, each fold contains the audios from a dataset. The cross validation result is shown as below:

Dataset Validation AUC
freefield1010 0.799
warblrb10k 0.782
BirdVoxDCASE-20K 0.882
Average 0.854

Summary

This codebase provides a convolutional neural network (CNN) for DCASE 2018 challenge Task 3.

Cite

"Kong, Qiuqiang, Turab Iqbal, Yong Xu, Wenwu Wang, and Mark D. Plumbley. "DCASE 2018 Challenge baseline with convolutional neural networks." arXiv preprint arXiv:1808.00773 (2018)."

FAQ

If you met running out of GPU memory error, then try reduce batch_size.

External link

The official baseline system implemented using Keras can be found in https://github.com/DCASE-REPO/dcase2018_baseline