diff --git a/Modelica/Magnetic/FluxTubes/Shapes/HysteresisAndMagnets/GenericHystTellinenHard.mo b/Modelica/Magnetic/FluxTubes/Shapes/HysteresisAndMagnets/GenericHystTellinenHard.mo index 3cd6ed8fa7..f847144dd7 100644 --- a/Modelica/Magnetic/FluxTubes/Shapes/HysteresisAndMagnets/GenericHystTellinenHard.mo +++ b/Modelica/Magnetic/FluxTubes/Shapes/HysteresisAndMagnets/GenericHystTellinenHard.mo @@ -13,15 +13,15 @@ model GenericHystTellinenHard protected final parameter SI.MagneticFluxDensity eps = Br/1000; //final parameter Real mu0(final unit="N/A2") = K*mu_0; - final parameter SI.MagneticFieldStrength H0= 0.5*log((1+mu0*Hc/Br)/(1-mu0*Hc/Br)) + M*Hc; + final parameter Real H0= 0.5*log((1+mu0*Hc/Br)/(1-mu0*Hc/Br)) + M*Hc; constant SI.MagneticFieldStrength unitH = 1; Real tanhR; Real tanhF; equation - tanhR = tanh((M*H - H0)/unitH); - tanhF = tanh((M*H + H0)/unitH); + tanhR = tanh(M*H - H0); + tanhF = tanh(M*H + H0); hystR = Br*tanhR + mu0*H - eps/2; hystF = Br*tanhF + mu0*H + eps/2; diff --git a/Modelica/Magnetic/FluxTubes/Shapes/HysteresisAndMagnets/GenericHystTellinenSoft.mo b/Modelica/Magnetic/FluxTubes/Shapes/HysteresisAndMagnets/GenericHystTellinenSoft.mo index 2460730869..8089d87f4d 100644 --- a/Modelica/Magnetic/FluxTubes/Shapes/HysteresisAndMagnets/GenericHystTellinenSoft.mo +++ b/Modelica/Magnetic/FluxTubes/Shapes/HysteresisAndMagnets/GenericHystTellinenSoft.mo @@ -17,8 +17,8 @@ protected constant SI.MagneticFieldStrength unitH = 1; equation - hystR = Js*tanh((M*Hstat - H0)/unitH) + mu0*Hstat - eps/2; - hystF = Js*tanh((M*Hstat + H0)/unitH) + mu0*Hstat + eps/2; + hystR = Js*tanh(M*Hstat - H0) + mu0*Hstat - eps/2; + hystF = Js*tanh(M*Hstat + H0) + mu0*Hstat + eps/2; annotation (defaultComponentName="core", Documentation(info="
Flux tube element for modeling soft magnetic materials with ferromagnetic and dynamic hysteresis (eddy currents). The ferromagnetic hysteresis behavior is defined by the Tellinen hysteresis model. The shape of the limiting hysteresis loop (see Fig. 1) is described by simple hyperbolic tangent functions with 4 parameters. Therefore, the hysteresis shape variety is limited but the parameterization of the model is very simple and the model is relatively fast and robust. The rising (hystR) and falling (hystF) branches of the limiting hysteresis loop are defined by the following equations.