
Point 1: Configuration of Number of LED Drivers.

The GMMK PRO has 2 LED drivers on board, while other keyboards can have 1, 2, or even more.

Therefore, the SW drivers must be scalable to any number of HW LED drivers.

AW20216 AW20216S (Glorious)
Configuration of new LED drivers is done in the
file aw20216.c

The SW driver does not have the same schema to
add new LED drivers as the existing LED drivers
(e.g., IS31FL3731).

Configuration of new LED drivers is done in the
file rgb_matrix_drivers.c

The SW driver follows the same schema as the
existing LED drivers (e.g., IS31FL3731).

Point 2: Send Brightness (PWM Value) to the LEDs.

The MCU periodically sends the value of the brightness to every LED, these transfers must be done as

fast as possible.

AW20216 AW20216S (Glorious)
The function AW20216_update_pwm sends so
many SPI transfers as LED values to update.

There is an overhead of 2 bytes per byte sent.

The function AW20216S_write_pwm_buffer
sends only one SPI transfer per driver.

The overhead is minimum (2 bytes per 256 bytes
sent).

Point 3: Initialization Timing

The MCU must wait a minimum amount of time before communicating with the HW LED driver. This is

clearly stated in the datasheet:



The sequence to be implemented is:

- Wait for at least 2ms. (POR)

- Set enable pin to high level.

- Wait for at least 100us. (ENABLE)

- The LED driver is ready.

AW20216 AW20216S (Glorious)
No implementation of start-up timing. The function AW20216S_enable implements

these delays:
- For the POR delay, it waits for 5ms.

- For the EN delay, it waits for 500us

Point 4: CS Set High Before Any Communication.

It is usual to have multiple SPI slaves connected to the same SPI instance in the MCU (as for gmmk/pro

keyboard), that means that all those SPI slaves share the signals MOSI, MISO and SCK.

Before any communication to any SPI slave connected to the same SPI instance of the MCU, all CS signals

must be de-asserted (in this case set to high level).

AW20216 AW20216S (Glorious)
The function AW20216_init initializes every HW
LED driver one after another, de-asserting the
corresponding CS signal before the transfer, but it

The function init in the file rgb_matrix_drivers.c
split the init process into two parts, the first part
enables the SPI slaves and de-assert the CS signals



does not care about the CS state of the other SPI
slaves.

and the second part transfers the configuration to
the SPI slaves in a safe way.

Point 5: Delay Between Register Writes

The SPI transfers must be separated for a minimum amount of time. This amount of time is normally

specified in the datasheet of the SPI slave, but this LED driver does not specify it at all.

It does not mean that this time is 0, simply that is not specified in the datasheet.

A similar time parameter is present in the datasheet, labelled as Tcsns, that is the minimum time to

disregard a clock edge outside the SPI transfer.

AW20216 AW20216S (Glorious)
It assumes that the delay is 0. As the delay between register writes is only used

in the init phase, this delay does not affect the
performance of the driver.
As no info is present in the datasheet, a value of
100us is used.

Point 6: Configuration of the Number of LED Lines Controlled

by the LED Driver

The register GCR has a bitfield named SWSEL to select how many lines of LED are active. The gmmk/pro

has 12 active lines for the first LED driver and 11 active lines for the second LED driver. Another keyboard



can have a different number of active lines per driver, and as you can see can be different between LED

drivers.

AW20216 AW20216S (Glorious)
Uses a constant value for the register GCR inside
the file AW20216.c that is applied to all drivers,
not allowing the asymmetric configuration of the
gmmk/pro keyboard.

In the file config.h (part of the gmmk/pro
keyboard configuration) there are 2 constant to
define the active lines:

- SW_LINES_ENABLE_DRIVER_1

- SW_LINES_ENABLE_DRIVER_2

This allows maximum flexibility to the driver.


