0 preface preface

1 preface acknowledgements

2 preface authors

3 ch01-meetqgt meet-qt

4 ch01-meetqt blocks

5 chO1-meetqt intro

6 ch02-start quick-start
7 ch02-start install

8 ch02-start hello-world

9 ch02-start app-types

10 ch02-start summary

11 ch03-qgtcreator gt-creator

12 ch03-gtcreator user-interface

13 ch03-qgtcreator kit-registry

14 ch03-gtcreator projects

15 ch03-qgtcreator editor

16 ch03-qgtcreator locator

17 chO3-qgtcreator debugging

18 ch03-qgtcreator shortcuts

19 ch04-gmistart quick-start

20 ch04-gmlstart gml-syntax

21 chO4-gmilstart core-elements

22 ch04-gmlstart components

23 ch04-gmilstart transformations

24 ch04-gmilstart positioning

25 ch04-gmilstart layout

26 ch04-gmilstart input

27 ch04-gmilstart advanced
28 ch05-fluid fluid-elements

29 chO05-fluid animations

10
13
15
18
24
25
26
29
40
41
42
44
45
47
48
50
51
53
54
61
68
72
76
82
85
92
93
94

30 chO05-fluid states-transitions

31 ch05-fluid advanced

32 ch06-controls controls2

33 ch06-controls introduction

34 ch06-controls image-viewer

35 ch06-controls common-patterns

36 ch06-controls imagine-style

37 ch06-controls summary

38 ch07-modelview model-view

39 ch07-modelview concept

40 chO7-modelview basic-models

41 ch07-modelview dynamic-views

42 ch07-modelview delegate

43 ch07-modelview advanced

44 ch07-modelview summary

45 ch08-canvas canvas-element

46 ch08-canvas convenience-api

47 ch08-canvas gradients

48 ch08-canvas shadows

49 ch08-canvas images

50 ch08-canvas transformation

51 ch08-canvas composition-modes

52 ch08-canvas pixel-buffer

53 ch08-canvas canvas-paint

54 ch08-canvas port-from-htmi

55 ch09-shapes shapes

56 ch09-shapes basics

57 ch09-shapes paths
58 ch09-shapes gradients

59 ch09-shapes animations

114
120
121
122
131
147
165
171
172
173
174
180
193
207
223
224
228
230
232
234
236
238
240
242
245
252
253
256
260
266

60 ch09-shapes summary

61 chl10-effects effects

62 ch10-effects particles

63 ch10-effects simple-simulation

64 ch10-effects particle-parameters

65 ch10-effects directed-particles

66 ch10-effects affecting-particles
67 ch10-effects particle-groups

68 ch10-effects particle-painters

69 ch10-effects opengl-shaders

70 ch10-effects shader-elements

71 ch10-effects fragment-shaders

72 ch10-effects wave-effect

73 ch10-effects vertex-shader

74 ch10-effects curtain-effect

75 ch10-effects summary
76 ch1l1l-multimedia multimedia

77 chll-multimedia playing-media

78 ch1l1l-multimedia sound-effects

79 chl1l-multimedia video-streams

80 ch11-multimedia capturing-images
81 ch1ll-multimedia summary

82 ch12-networking networking

83 ch12-networking serve-gml

84 ch12-networking templates

85 ch12-networking http-requests

86 chl12-networking local-files

87 chl12-networking rest-api

88 chl12-networking authentication

89 chl12-networking web-sockets

269
270
271
272
275
277
282
288
298
300
301
305
310
313
324
329
330
331
338
342
344
350
351
352
357
359
364
367
375
390

90 ch12-networking summary

91 ch13-storage storage

92 ch13-storage settings

93 ch13-storage local-storage

94 ch14-dynamicgml dynamic-gml

95 ch14-dynamicgml loading-components
96 ch14-dynamicgml dynamic-objects

97 ch14-dynamicgml tracking-objects

98 ch14-dynamicgml summary

99 ch15-javascript javascript

100 ch15-javascript html-gml

101 ch15-javascript js-language

102 ch15-javascript js-objects

103 ch15-javascript js-console

104 ch16-qgtcpp qtcpp

105 ch16-qgtcpp boilerplate

106 chl16-gtcpp gobject
107 ch16-gtcpp build-system

108 ch16-gtcpp common-classes

109 ch16-gtcpp cpp-models

110 ch17-extensions extending-gml
111 ch17-extensions gml-runtime

112 chl7-extensions plugin-content

113 ch17-extensions create-plugin

114 chl17-extensions fileio-demo

115 chl7-extensions using-fileio

116 chl7-extensions summary

117 ch18-python gt-python
118 ch18-python introduction

119 ch18-python installing

397
398
399
401
406
407
414
419
423
424
426
427
429
432
437
440
446
449
454
461
474
475
479
481
483
485
494
496
497
498

120 ch18-python build-app

121 ch18-python limitations

122 ch18-python summary

123 ch19-gtformcu gtformcu

124 ch19-gtformcu setup
125 ch19-gtformcu helloworld

126 ch19-gtformcu cpp
127 ch19-gtformcu models

128 ch19-gtformcu summary

500
515
516
517
518
522
529
535
540

Welcome!

Welcome to The Qt 6 Book - A book about QML. This text will guide you through QML, Qt's language

for creating dynamic user interfaces.

| believe that the ability to build declarative, reactive, hardware accelerated user interfaces executing at
native performance across all major platforms (and some not so major) is a game changer. When
starting with Qt, it was almost as if | had my secret weapon to building software quickly. QML takes

that to the next level.

How is this book different from the Qt documentation? | hear you ask. The intention is to build a
complement. This book is meant as a book that you can read from front to back where each chapter
builds on what you've previously learned. But it can also be used as a way for the experienced reader to
get oriented in a new topic. Each chapter focuses on a specific topic and introduces the concepts from
Qt and QML. However, the Qt documentation will always provide the full picture and is a great

reference to look up the details about all elements, properties, enumerations, and more.
| wish you a pleasant read!

Johan Thelin

Structure

The book can be said to be split into three parts. The split is not clear cut enough to motivate a strict

division of chapters, but more of a guideline that we've tried to follow when writing it.

The first few chapters, let's say until somewhere around chapter 5 - 7 can be considered an

introduction. If you want to learn QML, you should make sure to read these chapters.

The following chapters, 6-14, can be seen as fairly separate chapters introducing independent topics,
even though the models from chapter 7 are used in many more places. Feel free to dive into these in

the order that you like and learn about the topics that you are curious about.

The remainder of the book focuses on more advanced topics such as details of JavaScript, mixing C++
and QML, and the Qt for Python bindings and QML. These are important topics and | really want you to
read them. To build a full application with QML you need to understand these topics, but their main

focus is not on QML.

Never Ending Work in Progress

The Qt 6 Book is a never ending work in progress. We welcome contributors and are planning to open
up our infrastructure to let you contribute both by reporting issues and by contributing fixes and new

content. The end goal is to present you with a printed book when the material has reached a maturity

level that we are happy with, but we want to share this with you already now and to learn from your

feedback what to improve, and what additional content to add.

Help us improve this page!
Last Updated: 10/4/2021, 5:46:02 AM

Acknowledgements »

http://localhost:8080/preface/acknowledgements.html
https://github.com/qmlbook/qt6book/edit/main/docs/preface/preface.md

Acknowledgements

This book would not have been possible to create without the kind sponsorship from The Qt Company.

It is a privilege to be able to work on a project such as this, and their help has been invaluable. | would

like to give a special mention to (alphabetically):

e empenzes

e FabianK

e LucaDisera

e magoldst-qt

e Maurice Kalinowski
¢ Mitch Curtis

e Tino Pyssysalo

o Ulf Hermann

¢ Vladimir Minenko

History

This book is based on The QML Book
to that book (alphabetically):

e aamirglb

o alexeRadu

¢ andreabedini
e amurall

e bakku

o cibersheep

o dbelyaev

¢ danielbaak

e DocWicking
e empyrical

e GeO

o gillesfernandez
o gitter-badger
e gsantner

e hckr

e iitaka1142

e jiakuan

, originally written for Qt 5. | would like to thank all contributors

https://qmlbook.github.io/

e justinfx

¢ maggu2810

e marco-piccolino
e mariopal

e mark-summerfield
e mhubig

e micdoug

e Mihaylov93

e moritzsternemann
e RossRogers

e Swordfish90

e sycy600

e trolley

e 29im

| would also like to give a special mention to Pelagicore, The Qt Company and Felgo for help the
development of The QML Book by sponsoring our work and being generally awesome when it comes to

feedback and support.

Help us improve this page!
Last Updated: 9/25/2021, 4:01:32 PM

<« Welcome! Authors >

http://localhost:8080/preface/authors.html
https://github.com/qmlbook/qt6book/edit/main/docs/preface/acknowledgements.md
http://localhost:8080/preface/preface.html

Authors

The Qt 6 Book has been written by a team of authors. They are:

Johan Thelin

Johan works as a system architect building automotive solutions. He has a background from over
twenty years of device creation based on Linux, Qt and more. He has written for various papers and
blogs, presented at numerous conferences, and provides advice on how to build software, and software
organizations. As an avid believer in free and open source solutions, he founded and organizes the foss-

north conference

You can find out more about Johan at LinkedIn(7 , his blog , and his homepage

Jiirgen Bocklage-Ryannel

https://foss-north.se/
https://www.linkedin.com/in/johanthelin
http://www.thelins.se/johan/blog/
http://e8johan.se/

Jurgen is the CEO of ApiGear, which is a collaborative machine interface design tool that enables teams

to collaborative design software interfaces with automated monitoring and simulation solutions.

He was the co-founder of Pelagicore AG and was responsible there as Chief User Interface Architect for

the early versions of the Daimler MBUX.

He focus currently on an API driven workflow to design and create the interfaces between the user

experience and the underlying services for different platforms.

You can find out more about Jiirgen at LinkedIn

Cyril Lorquet

https://www.linkedin.com/in/jryannel/

Co-Founder and CEO of the belgian company Eunoia Studior , Cyril helps organizations turn their
know-how into software products. Since 2009, he has been working on software products in various
contexts (construction, healthcare, hydrology, marketing, ...) - several of them involving Qt. Software
engineer at heart, he has a passion for design processes, software development and change

management.

You can find out more about Cyril at LinkedIn .

Help us improve this page! &
Last Updated: 9/30/2021, 5:57:27 AM

< Acknowledgements Qt and Qt Quick »

http://localhost:8080/ch01-meetqt/meet-qt.html
https://www.eunoia.be/
https://www.linkedin.com/in/cyrillorquet
https://github.com/qmlbook/qt6book/edit/main/docs/preface/authors.md
http://localhost:8080/preface/acknowledgements.html

Qt and Qt Quick

This book provides you with a walk through of the different aspects of application development using
the new Qt 6. It focuses on the Qt Quick technology, but also provides necessary information about

writing C++ back-ends and extension for Qt Quick.

This chapter shall provide a high-level overview of Qt 6. It shows the different application models
available for developers, as well as a showcase application, as a sneak preview of things to come.
Additionally, the chapter aims to provide a wide overview of the Qt content and how to get in touch

with the makers of Qt the Qt Company.

Qt 6 Focus

Qt 5 was released many years ago and introduced a new declarative way of writing stunning user

interfaces. Since then a lot has changed in the world around us. The

Qt 6 will be a continuation of what has been done with Qt 5 and should not be disruptive to the majority

of users. What make Qt valuable to the users?

e lts cross-platform nature

e lts scalability

» World class APIs and documentation

¢ Maintainability, stability and compatibility

o Alarge developer ecosystem
Qt 6 adjust the Qt product to new markets while keeping close to the users values.

The desktop market is the root of Qts offering. It is where most users get the first contact with Qt and it

forms the base for the Qt tools and its success.

It is expected that Qt 6 will grow most in the embedded and connected devices market from high-end
near desktop performing devices to low-end devices like microcontrollers. Touch screens will come to
an exponential increasing number to these devices. Many of these devices will have relatively simple

functionality but require a polished and smooth user interface.

At the other end of the spectrum there is a demand for more complex and 2D/3D integrated user
interfaces. These 3D content with 2D elements based interfaces will be common, as will be the usage

of augmented and virtual reality.

The growth of connected devices and the higher demand for smooth user interfaces require a simpler
workflow to create applications and devices. Integrating UX designers into the development workflow

and is one of the goals of the Qt 6 series.

Qt 6 does bring us:

e Next generation QML

» Next generation graphics

e Unified and consistent tooling
e Enhanced Qts C++ APIs

o Component Marketplace

Help us improve this page!
Last Updated: 10/21/2021, 2:19:28 AM

< Authors Qt Building Blocks »

http://localhost:8080/ch01-meetqt/blocks.html
https://github.com/qmlbook/qt6book/edit/main/docs/ch01-meetqt/meet-qt.md
http://localhost:8080/preface/authors.html

Qt Building Blocks

Qt 6 consists of a large number of modules. In general, a module is a library for the developer to use.
Some modules are mandatory for a Qt-enabled platform and form the set called Qt Essentials
Modules. Other modules are optional, and form the Qt Add-On Modules. The majority of developers
may not need to use the latter, but it's good to know about them as they provide invaluable solutions to

common challenges.

Qt Modules

The Qt Essentials modules are mandatory for any Qt-enabled platform. They offer the foundation to
develop modern Qt 6 Applications using Qt Quick 2. The full list of modules is available in the Qt

documentation module list

Core-Essential Modules

The minimal set of Qt 6 modules to start QML programming.

e Qt Core - Core non-graphical classes used by other modules.

e Qt D-BUS - Classes for inter-process communication over the D-Bus protocol on linux.

e Qt GUI - Base classes for graphical user interface (GUI) components. Includes OpenGL.

e Qt Network - Classes to make network programming easier and more portable.

e Qt QML - Classes for QML and JavaScript languages.

e Qt Quick - A declarative framework for building highly dynamic applications with custom user
interfaces.

e Qt Quick Controls - Provides lightweight QML types for creating performant user interfaces for
desktop, embedded, and mobile devices. These types employ a simple styling architecture and are
very efficient.

¢ Qt Quick Layouts - Layouts are items that are used to arrange Qt Quick 2 based items in the user
interface.

e Qt Quick Test - A unit test framework for QML applications, where the test cases are written as
JavaScript functions.

e QtTest - Classes for unit testing Qt applications and libraries.

¢ Qt Widgets - Classes to extend Qt GUI with C++ widgets.

https://doc.qt.io/qt-6/qtmodules.html#qt-essentials

QtQuickTest QtQuickLayout QtQuickControls

y

QtQuick
QtNetwork QtGui QtQml QtTest

QtCore

Qt Add-On Modules

Besides the essential modules, Qt offers additional modules that target specific purposes. Many add-
on modules are either feature-complete and exist for backwards compatibility, or are only applicable to
certain platforms. Here is a list of some of the available add-on modules, but make sure you familiarize

yourself with them all in the Qt documentation add-ons list@ and in the list below.

* Network: Qt Bluetooth / Qt Network Authorization

e Ul Components: Qt Quick 3D / Qt Quick Timeline / Qt Charts / Qt Data Visualization / Qt Lottie
Animation / Qt Virtual Keyboard

e Graphics: Qt 3D / Qt Image Formats / Qt OpenGL / Qt Shader Tools / Qt SVG / Qt Wayland
Compositor

e Helper: Qt 5 Core Compatibility APIs / Qt Concurrent / Qt Help / Qt Print Support / Qt Quick Widgets
[Qt SCXML /[Qt SQL / Qt State Machine / Qt Ul Tools / Qt XML

TIP

As these modules are not part of the release, the state of each module may differ depending on

how many contributors are active and how well it's tested.

Supported Platforms

Qt supports a variety of platforms including all major desktop and embedded platforms. Through the

Qt Application Abstraction, it's now easier than ever to port Qt to your own platform if required.

Testing Qt 6 on a platform is time-consuming. A subset of platforms was selected by the Qt Project to
build the reference platforms set. These platforms are thoroughly tested through the system testing to

ensure the best quality. However, keep in mind that no code is error-free.

https://doc.qt.io/qt-6/qtmodules.html#qt-add-ons

Qt Project

From the Qt Wiki[7 :

“The Qt Wiki is a meritocratic consensus-based community interested in Qt. Anyone who shares that
interest can join the community, participate in its decision-making processes, and contribute to Qt's

development.”

The Qt Wiki is a place where Qt users and contributors share their insights. It forms the base for other
users to contribute. The biggest contributor is The Qt Company, which holds also the commercial

rights to Qt.

Qt has an open-source aspect and a commercial aspect for companies. The commercial aspect is for
companies which can not or will not comply with the open-source licenses. Without the commercial
aspect, these companies would not be able to use Qt and it would not allow The Qt Company to

contribute so much code to the Qt Project.

There are many companies worldwide, which make the living out of consultancy and product
development using Qt on the various platforms. There are many open-source projects and open-source
developers, which rely on Qt as their major development library. It feels good to be part of this vibrant
community and to work with this awesome tools and libraries. Does it make you a better person?
Maybe:-)

Contribute here: http://wiki.qt.io/

Help us improve this page! @
Last Updated: 11/18/2021, 7:04:51 AM

< Qt and Qt Quick Qt 6 Introduction >

http://localhost:8080/ch01-meetqt/intro.html
http://wiki.qt.io/
https://github.com/qmlbook/qt6book/edit/main/docs/ch01-meetqt/blocks.md
http://localhost:8080/ch01-meetqt/meet-qt.html

Qt 6 Introduction

Qt Quick

Qt Quick is the umbrella term for the user interface technology used in Qt 6. It was introduced in Qt 5

and now expanded for Qt 6. Qt Quick itself is a collection of several technologies:

e QML - Markup language for user interfaces
e JavaScript - The dynamic scripting language

e Qt C++ - The highly portable enhanced c++ library

QML Document

QML visual elements
Rectangle, Image, Text, MouseArea, ...

NEYE
Extensions

Declarative engine

Quick FW, JavaScript FW, C++ Extension FW

Similar to HTML, QML is a markup language. It is composed of tags, called types in Qt Quick, that are
enclosed in curly brackets: 1tem {} .|t was designed from the ground up for the creation of user
interfaces, speed and easier reading for developers. The user interface can be enhanced further using
JavaScript code. Qt Quick is easily extendable with your own native functionality using Qt C++. In short,
the declarative Ul is called the front-end and the native parts are called the back-end. This allows you to

separate the computing intensive and native operation of your application from the user interface part.

In a typical project, the front-end is developed in QML/JavaScript. The back-end code, which interfaces
with the system and does the heavy lifting, is developed using Qt C++. This allows a natural split
between the more design-oriented developers and the functional developers. Typically, the back-end is

tested using Qt Test, the Qt unit testing framework, and exported for the front-end developers to use.

Digesting a User Interface

Let’s create a simple user interface using Qt Quick, which showcases some aspects of the QML

language. In the end, we will have a paper windmill with rotating blades.

We start with an empty document called main.gml . All our QML files will have the suffix .gml .Asa
markup language (like HTML), a QML document needs to have one and only one root type. In our case,

thisis the Image type with a width and height based on the background image geometry:

import QtQuick

Image {
id: root

source: "images/background.png"

As QML doesn't restrict the choice of type for the root type, we use an 1Image type with the source

property set to our background image as the root.

TIP

Each type has properties. For example, an image has the properties width and height , each
holding a count of pixels. It also has other properties, such as source . Since the size of the
image type is automatically derived from the image size, we don't need to set the width and

height properties ourselves.

The most standard types are located in the QtQuick module, which is made available by the import

statement at the start of the .gm1 file.

The id isaspecial and optional property that contains an identifier that can be used to reference its
associated type elsewhere in the document. Important: An id property cannot be changed after it has
been set, and it cannot be set during runtime. Using root as the id for the root-type is a convention

used in this book to make referencing the top-most type predictable in larger QML documents.

The foreground elements, representing the pole and the pinwheel in the user interface, are included as

separate images.

|

We want to place the pole horizontally in the center of the background, but offset vertically towards

the bottom. And we want to place the pinwheel in the middle of the background.

Although this beginners example only uses image types, as we progress you will create more

sophisticated user interfaces that are composed of many different types.

Image {

id: root

Image {

id: pole
anchors.horizontalCenter: parent.horizontalCenter

anchors.bottom: parent.bottom

source: "images/pole.png"

Image {

id: wheel
anchors.centerIn: parent

source: "images/pinwheel.png"

To place the pinwheel in the middle, we use a complex property called anchor . Anchoring allows you
to specify geometric relations between parent and sibling objects. For example, place me in the center
of another type (anchors.centerIn: parent). There are left, right, top, bottom, centerln, fill,
verticalCenter and horizontalCenter relations on both ends. Naturally, when two or more anchors are
used together, they should complement each other: it wouldn’t make sense, for instance, to anchor a

type’s left side to the top of another type.

For the pinwheel, the anchoring only requires one simple anchor.

TIP

Sometimes you will want to make small adjustments, for example, to nudge a type slightly off-
center. This can be done with anchors.horizontalCenteroffset or with
anchors.verticalCenterOffset .Similar adjustment properties are also available for all the

other anchors. Refer to the documentation for a full list of anchors properties.

TIP

Placing an image as a child type of our root type (the 1Image)illustrates animportant concept
of a declarative language. You describe the visual appearance of the user interface in the order
of layers and grouping, where the topmost layer (our background image) is drawn first and the

child layers are drawn on top of it in the local coordinate system of the containing type.

To make the showcase a bit more interesting, let's make the scene interactive. The idea is to rotate the

wheel when the user presses the mouse somewhere in the scene.

We use the MouseArea type and make it cover the entire area of our root type.

Image {

id: root

MouseArea {

anchors.fill: parent

onClicked: wheel.rotation += 90

The mouse area emits signals when the user clicks inside the area it covers. You can connect to this
signal by overriding the onclicked function. When a signalis connected, it means that the function (or
functions) it corresponds to are called whenever the signal is emitted. In this case, we say that when
there’s a mouse click in the mouse area, the type whose id is wheel (i.e., the pinwheelimage)

should rotate by +90 degrees.

TIP

This technique works for every signal, with the naming convention being on + SignalName in

title case. Also, all properties emit a signal when their value changes. For these signals, the

naming convention is:

“on${property}Changed’

For example, ifa width property is changed, you can observe it with onwidthChanged: print(width) .

The wheel will now rotate whenever the user clicks, but the rotation takes place in one jump, rather
than a fluid movement over time. We can achieve smooth movement using animation. An animation
defines how a property change occurs over a period of time. To enable this, we use the Animation
type's property called Behavior .The Behavior specifiesan animation for a defined property for
every change applied to that property. In other words, whenever the property changes, the animation is

run. This is only one of many ways of doing animation in QML.

Image {
id: root
Image {
id: wheel

Behavior on rotation {

NumberAnimation {
duration: 250

Now, whenever the wheel's rotation property changes, it will be animated usinga NumberAnimation

with a duration of 250 ms. So each 90-degree turn will take 250 ms, producing a nice smooth turn.

TIP

You will not actually see the wheel blurred. This is just to indicate the rotation. (A blurred wheel

is in the assets folder, in case you'd like to experiment with it.)

Now the wheel looks much better and behaves nicely, as well as providing a very brief insight into the

basics of how Qt Quick programming works.

Help us improve this page!
Last Updated: 10/5/2021, 3:58:03 AM

< Qt Building Blocks Quick Start »

http://localhost:8080/ch02-start/quick-start.html
https://github.com/qmlbook/qt6book/edit/main/docs/ch01-meetqt/intro.md
http://localhost:8080/ch01-meetqt/blocks.html

Quick Start

This chapter will introduce you to developing with Qt 6. We will show you how to install the Qt SDK and

how you can create as well as run a simple hello world application using the Qt Creator IDE.

Help us improve this page!
Last Updated: 6/27/2021, 6:16:57 PM

< Qt 6 Introduction Installing Qt 6 SDK »

http://localhost:8080/ch02-start/install.html
https://github.com/qmlbook/qt6book/edit/main/docs/ch02-start/quick-start.md
http://localhost:8080/ch01-meetqt/intro.html

Installing Qt 6 SDK

The Qt SDK includes the tools you need to build desktop or embedded applications. You can grab the
latest version from the Qt Company[@ 's homepage. There is an offline and online installer. The author
personally prefers the online installer package as it allows you to install and update multiple Qt
releases. This is the recommended way to start. The SDK itself has a maintenance tool, which allows

you to update the SDK to the latest version.

The Qt SDK is easy to install and comes with its own IDE for rapid development called Qt Creator. The
IDE is a highly productive environment for Qt coding and recommended to all readers. Many
developers use Qt from the command line, however, and you are free to use the code editor of your

choice.

When installing the SDK, you should select the default option and ensure that at least Qt 6.2 is enabled.

Then you're ready to go.

Update Qt

The Qt SDK comes with an own maintenance tool located under the ${install dir} . It allows to add

and/or update Qt SDK components.

Build from Source

To build Qt from source you can follow the guide from the Qt Wiki

Help us improve this page!
Last Updated: 6/27/2021, 6:16:57 PM

< Quick Start Hello World »

http://localhost:8080/ch02-start/hello-world.html
https://qt.io/
https://wiki.qt.io/Building_Qt_6_from_Git
https://github.com/qmlbook/qt6book/edit/main/docs/ch02-start/install.md
http://localhost:8080/ch02-start/quick-start.html

Hello World

To test your installation, we will create a small hello world application. Please, open Qt Creator and
create a Qt Quick Ul Project (File » New File or Project » Other Project * Qt Quick UI prototype)

and name the project HelloWorld .

TIP

The Qt Creator IDE allows you to create various types of applications. If not otherwise stated,
we always use a Qt Quick Ul prototype project. For a production application you would often

prefera cMmake based project, but for fast prototyping this type is better suited.

TIP

A typical Qt Quick application is made out of a runtime called the @mlEngine which loads the
initial QML code. The developer can register C++ types with the runtime to interface with the
native code. These C++ types can also be bundled into a plugin and then dynamically loaded
using an import statement. The gml toolis a pre-made runtime which is used directly. For the
beginning, we will not cover the native side of development and focus only on the QML aspects

of Qt 6. This is why we start from a prototype project.
Qt Creator creates several files for you. The Helloworld.gmlproject fileis the project file, where the
relevant project configuration is stored. This file is managed by Qt Creator, so don’t edit it yourself.

Another file, HelloWorld.gml ,is our application code. Open it and try to understand what the

application does before you read on.

// HelloWorld.gml

import QtQuick
import QtQuick.Window

Window {

width: 640

height: 480

visible: true

title: gsTr("Hello World")

The HelloWord.gml program is written in the QML language. We'll discuss the QML language more in-
depth in the next chapter. QML describes the user interface as a tree of hierarchical elements. In this

case, a window of 640 x 480 pixels, with a window title if “Hello World".

To run the application on your own, press the I Run tool on the left side, or select Build > Run from the

menu.

In the background, Qt Creator runs gml and passes your QML document as the first argument. The
gml application parses the document, and launches the user interface. You should see something like

this:

Hello World

Qt 6 works! That means we're ready to continue.

TIP

If you are a system integrator, you'll want to have Qt SDK installed to get the latest stable Qt

release, as well as a Qt version compiled from source for your specific device target.

TIP

Build from Scratch

If you'd like to build Qt 6 from the command line, you'll first need to grab a copy of the code
repository and build it. Visit Qt's wiki for an up-to-date explanation of how to build Qt from git.

After a successful compilation (and 2 cups of coffee), Qt 6 will be available in the gtbase

folder. Any beverage will suffice, however, we suggest coffee for best results.

If you want to test your compilation, you can now run the example with the default runtime that

comes with Qt 6:

$ gtbase/bin/qgml

Help us improve this page!
Last Updated: 10/6/2021, 5:05:39 AM

< Installing Qt 6 SDK Application Types »

http://localhost:8080/ch02-start/app-types.html
https://github.com/qmlbook/qt6book/edit/main/docs/ch02-start/hello-world.md
http://localhost:8080/ch02-start/install.html

Application Types

This section is a run through of different application types one can write with Qt 6. It's not limited to the

selection presented here, but it will give you a better idea of what you can achieve with Qt 6 in general.

Console Application

A console application does not provide a graphical user interface, and is usually called as part of a
system service or from the command line. Qt 6 comes with a series of ready-made components which
help you create cross-platform console applications very efficiently. For example, the networking file
APlIs, string handling, and an efficient command line parser. As Qt is a high-level APl on top of C++, you
get programming speed paired with execution speed. Don’t think of Qt as being justa Ul toolkit - it has

so much more to offer!

String Handling

This first example demonstrates how you could add 2 constant strings. Admittedly, this is not a very

useful application, but it gives you an idea of what a native C++ application without an event loop may
look like.

// module or class includes

include <QtCore>

// text stream is text-codec aware
QTextStream cout(stdout, QIODevice: :WriteOnly);

int main(int argc, char** argv)
{
// avoid compiler warnings
Q_UNUSED(argc)
Q_UNUSED(argv)
QString si1("Paris");
QString s2("London");
// string concatenation
QString s = s1 + " " + s2 + "I";

cout << s << endl;

Container Classes

This example adds a list, and list iteration, to the application. Qt comes with a large collection of

container classes that are easy to use, and has the same API paradigms as other Qt classes.

QString s1("Hello");
QString s2("Qt");
QList<QString> list;

// stream into containers

list << sl << s2;

// Java and STL like iterators
QListIterator<QString> iter(list);

while(iter.hasNext()) {
cout << iter.next();
if(iter.hasNext()) {

cout << " ";

}

cout << "I" << endl;

Here is a more advanced list function, that allows you to join a list of strings into one string. This is very
handy when you need to proceed line based text input. The inverse (string to string-list) is also possible

using the Qstring::split() function.

QString s1("Hello");

QString s2("Qt");

// convenient container classes
QStringlList list;

list << s1 << s2;

// join strings

QString s = list.join(" ") + "!I";

cout << s << endl;

File 1O

In the next snippet, we read a CSV file from the local directory and loop over the rows to extract the
cells from each row. Doing this, we get the table data from the CSV file in ca. 20 lines of code. File
reading gives us a byte stream, to be able to convert this into valid Unicode text, we need to use the text
stream and pass in the file as a lower-level stream. For writing CSV files, you would just need to open

the file in write mode, and pipe the lines into the text stream.

QList<QStringlList> data;
// file operations
QFile file("sample.csv");
if(file.open(QIODevice: :ReadOnly)) {
QTextStream stream(&file);
// loop forever macro
forever {
QString line = stream.readlLine();
// test for null string 'String()’
if(line.isNull()) {
break;
}
// test for empty string 'QString("")'
if(line.isEmpty()) {
continue;
}
QStringlList row;
// for each loop to iterate over containers
foreach(const QString& cell, line.split(",")) {
row.append(cell.trimmed());

}
data.append(row);

}

// No cleanup necessary.

This concludes the section about console based applications with Qt.

C++ Widget Application

Console based applications are very handy, but sometimes you need to have a graphical user interface
(GUI). In addition, GUI-based applications will likely need a back-end to read/write files, communicate

over the network, or keep data in a container.

In this first snippet for widget-based applications, we do as little as needed to create a window and
show it. In Qt, a widget without a parent is a window. We use a scoped pointer to ensure that the
widget is deleted when the pointer goes out of scope. The application object encapsulates the Qt
runtime, and we start the event loop with the exec() call. From there on, the application reacts only
to events triggered by user input (such as mouse or keyboard), or other event providers, such as
networking or file IO. The application only exits when the event loop is exited. This is done by calling

quit() on the application or by closing the window.

When you run the code, you will see a window with the size of 240 x 120 pixels. That's all.

include <QtGui>

int main(int argc, char** argv)

{
QApplication app(argc, argv);
QScopedPointer<QWidget> widget(new CustomWidget());
widget->resize(240, 120);
widget->show();
return app.exec();

}

Custom Widgets

When you work on user interfaces, you may need to create custom-made widgets. Typically, a widget is
a window area filled with painting calls. Additionally, the widget has internal knowledge of how to
handle keyboard and mouse input, as well as how to react to external triggers. To do this in Qt, we need

to derive from QWidget and overwrite several functions for painting and event handling.

#pragma once
include <QtWidgets>

class CustomWidget : public QWidget
{
Q_OBIJECT
public:
explicit CustomWidget(QWidget *parent = 0);
void paintEvent(QPaintEvent *event);
void mousePressEvent(QMouseEvent *event);
void mouseMoveEvent(QMouseEvent *event);
private:
QPoint m_lastPos;

};

In the implementation, we draw a small border on our widget and a small rectangle on the last mouse
position. This is very typical for a low-level custom widget. Mouse and keyboard events change the
internal state of the widget and trigger a painting update. We won't go into too much detail about this
code, but it is good to know that you have the possibility. Qt comes with a large set of ready-made

desktop widgets, so it's likely that you don’t have to do this.

include "customwidget.h"

CustomWidget: :CustomiWidget(QWidget *parent) :
QWidget(parent)

void CustomWidget::paintEvent(QPaintEvent *)

{
QPainter painter(this);
QRect rl = rect().adjusted(10,10,-10,-10);
painter.setPen(QColor("#33B5E5"));

painter.drawRect(rl);

QRect r2(QPoint(0©,0),QSize(40,490));
if(m_lastPos.isNull()) {
r2.moveCenter(rl.center());
} else {
r2.moveCenter(m_lastPos);

}
painter.fillRect(r2, QColor("#FFBB33"));

void CustomWidget: :mousePressEvent(QMouseEvent *event)

{

m_lastPos = event->pos();
update();

void CustomWidget::mouseMoveEvent(QMouseEvent *event)

{

m_lastPos = event->pos();
update();

Desktop Widgets

The Qt developers have done all of this for you already and provide a set of desktop widgets, with a
native look on different operating systems. Your job, then, is to arrange these different widgetsin a
widget container into larger panels. A widget in Qt can also be a container for other widgets. This is
accomplished through the parent-child relationship. This means we need to make our ready-made

widgets, such as buttons, checkboxes, radio buttons, lists, and grids, children of other widgets. One

way to accomplish this is displayed below.

Here is the header file for a so-called widget container.

class CustomWidget : public QWidget

{
Q_OBJECT

public:

explicit CustomWidget(QWidget *parent = 0);
private slots:
void itemClicked(QListWidgetItem* item);
void updateItem();
private:
QListWidget *m_widget;
QLineEdit *m_edit;
QPushButton *m_button;
}s

In the implementation, we use layouts to better arrange our widgets. Layout managers re-layout the

widgets according to some size policies when the container widget is re-sized. In this example, we have
a list, a line edit, and a button, which are arranged vertically and allow the user to edit a list of cities. We

use Qt's signal and slots toconnectsenderand receiver objects.

CustomWidget: :CustomWidget(QWidget *parent) :
QWidget (parent)

QVBoxLayout *layout = new QVBoxLayout(this);
m_widget = new QListWidget(this);
layout->addWidget(m _widget);

m_edit = new QLineEdit(this);
layout->addWidget(m_edit);

m_button = new QPushButton("Quit", this);
layout->addWidget(m_button);
setLayout(layout);

QStringlList cities;

cities << "Paris" << "London" << "Munich";

foreach(const QString& city, cities) {
m_widget->addItem(city);

connect(m_widget, SIGNAL(itemClicked(QListWidgetItem*)), this,
SLOT(itemClicked(QListWidgetItem*)));

connect(m_edit, SIGNAL(editingFinished()), this, SLOT(updateItem()));

connect(m_button, SIGNAL(clicked()), gApp, SLOT(quit()));

void CustomWidget::itemClicked(QListWidgetItem *item)

{
Q ASSERT(item);

m_edit->setText(item->text());

void CustomWidget::updateItem()

QListWidgetItem* item = m _widget->currentItem();
if(item) {
item->setText(m_edit->text());

Drawing Shapes

Some problems are better visualized. If the problem at hand looks remotely like geometrical objects,
Qt graphics view is a good candidate. A graphics view arranges simple geometrical shapes in a scene.
The user can interact with these shapes, or they are positioned using an algorithm. To populate a
graphics view, you need a graphics view and a graphics scene. The scene is attached to the view and is

populated with graphics items.

Here is a short example. First the header file with the declaration of the view and scene.

class CustomWidgetV2 : public QWidget

{
Q_OBJECT

public:

explicit CustomWidgetV2(QWidget *parent = 0);
private:

QGraphicsView *m_view;

QGraphicsScene *m_scene;

In the implementation, the scene gets attached to the view first. The view is a widget and gets arranged
in our container widget. In the end, we add a small rectangle to the scene, which is then rendered on

the view.

include "customwidgetv2.h"

CustomWidget: :CustomWidget(QWidget *parent) :
QWidget(parent)

m _view = new QGraphicsView(this);
m_scene = new QGraphicsScene(this);

m_view->setScene(m_scene);

QVBoxLayout *layout = new QVBoxLayout(this);
layout->setMargin(9);
layout->addWidget(m_view);
setLayout(layout);

QGraphicsItem* rectl = m_scene->addRect(90,0, 40, 40, Qt::NoPen, QColor("#FFBB33"));

rectl->setFlags(QGraphicsItem: :ItemIsFocusable|QGraphicsItem: :ItemIsMovable);

Adapting Data

Up to now, we have mostly covered basic data types and how to use widgets and graphics views. In
your applications, you will often need a larger amount of structured data, which may also need to be
stored persistently. Finally, the data also needs to be displayed. For this, Qt uses models. A simple

model is the string list model, which gets filled with strings and then attached to a list view.

m_view = new QListView(this);
m _model = new QStringlListModel(this);

view->setModel(m_model);

QList<QString> cities;
cities << "Munich" << "Paris" << "London";

m_model->setStringlList(cities);

Another popular way to store and retrieve data is SQL. Qt comes with SQLite embedded, and also has
support for other database engines (e.g. MySQL and PostgreSQL). First, you need to create your

database using a schema, like this:

CREATE TABLE city (name TEXT, country TEXT);

INSERT INTO city value ("Munich", "Germany");

INSERT INTO city value ("Paris", "France");

INSERT INTO city value ("London", "United Kingdom");

To use SQL, we need to add the SQL module to our .pro file

QT += sql

And then we can open our database using C++. First, we need to retrieve a new database object for the
specified database engine. With this database object, we open the database. For SQLite, it's enough to
specify the path to the database file. Qt provides some high-level database models, one of which is the
table model. The table model uses a table identifier and an optional where clause to select the data.

The resulting model can be attached to a list view as with the other model before.

QSglDatabase db = QSqglDatabase::addDatabase("QSQLITE");

db.setDatabaseName("cities.db");

if(!'db.open()) {
gFatal("unable to open database");

m_model = QSqlTableModel(this);
m_model->setTable("city");
m_model->setHeaderData(@, Qt::Horizontal, "City");

m_model->setHeaderData(1, Qt::Horizontal, "Country");

view->setModel(m_model);

m_model->select();

For a higher level model operations, Qt provides a sorting file proxy model that allows you sort, filter,

and transform models.

QSortFilterProxyModel* proxy = new QSortFilterProxyModel(this);
proxy->setSourceModel (m_model);
view->setModel (proxy);

view->setSortingEnabled(true);

Filtering is done based on the column that is to be filters, and a string as filter argument.

proxy->setFilterKeyColumn(9);
proxy->setFilterCaseSensitive(Qt::CaseInsensitive);

proxy->setFilterFixedString(QString)

The filter proxy model is much more powerful than demonstrated here. For now, it is enough to

remember it exists.

' hote

This has been an overview of the different kind of classic applications you can develop
with Qt 5. The desktop is moving, and soon the mobile devices will be our desktop of
tomorrow. Mobile devices have a different user interface design. They are much more
simplistic than desktop applications. They do one thing and they do it with simplicity and
focus. Animations are an important part of the mobile experience. A user interface needs
to feel alive and fluent. The traditional Qt technologies are not well suited for this

market.

Coming next: Qt Quick to the rescue.

Qt Quick Application

There is an inherent conflict in modern software development. The user interface is moving much
faster than our back-end services. In a traditional technology, you develop the so-called front-end at

the same pace as the back-end. This results in conflicts when customers want to change the user

interface during a project, or develop the idea of a user interface during the project. Agile projects,

require agile methods.

Qt Quick provides a declarative environment where your user interface (the front-end) is declared like

HTML and your back-end is in native C++ code. This allows you to get the best of both worlds.

This is a simple Qt Quick Ul below

import QtQuick

Rectangle {
width: 240; height: 240
Rectangle {
width: 40; height: 40
anchors.centerIn: parent
color: '#FFBB33'

The declaration language is called QML and it needs a runtime to execute it. Qt provides a standard
runtime called gml .You can also write a custom runtime. For this, we need a quick view and set the

main QML document as a source from C++. Then you can show the user interface.

#include <QtGui>
#include <QtQml>

int main(int argc, char *argv[])

{
QGuiApplication app(argc, argv);
QQmlApplicationEngine engine("main.gml");

return app.exec();

Let's come back to our earlier examples. In one example, we used a C++ city model. It would be great if

we could use this model inside our declarative QML code.

To enable this, we first code our front-end to see how we would want to use a city model. In this case,

the front-end expects an object named cityModel which we can use inside a list view.

import QtQuick

Rectangle {

width: 240; height: 120
ListView {
width: 180; height: 120

anchors.centerIn: parent

model: cityModel
delegate: Text { text: model.city }

To enable the cityModel , we can mostly re-use our previous model, and add a context property to our

root context. The root context is the other root-element in the main document.

m_model = QSqlTableModel(this);

. // some magic code
QHash<int, QByteArray> roles;
roles[Qt::UserRole+1] = "city";
roles[Qt::UserRole+2] = "country"”;

m_model->setRoleNames(roles);

engine.rootContext()->setContextProperty("cityModel”, m_model);

Help us improve this page!
Last Updated: 10/6/2021, 5:05:39 AM

< Hello World Summary -

http://localhost:8080/ch02-start/summary.html
https://github.com/qmlbook/qt6book/edit/main/docs/ch02-start/app-types.md
http://localhost:8080/ch02-start/hello-world.html

Summary

We have seen how to install the Qt SDK and how to create our first application. Then we walked you
through the different application types to give you an overview of Qt, showing off some features Qt
offers for application development. | hope you got a good impression that Qt is a very rich user
interface toolkit and offers everything an application developer can hope for and more. Still, Qt does
not lock you into specific libraries, as you can always use other libraries, or even extend Qt yourself. It is
also rich when it comes to supporting different application models: console, classic desktop user

interface, and touch user interface.

Help us improve this page!
Last Updated: 5/21/2021,10:52:10 AM

< Application Types Qt Creator IDE »>

http://localhost:8080/ch03-qtcreator/qt-creator.html
https://github.com/qmlbook/qt6book/edit/main/docs/ch02-start/summary.md
http://localhost:8080/ch02-start/app-types.html

Qt Creator IDE

Qt Creator is the default integrated development environment for Qt. It's written from Qt developers
for Qt developers. The IDE is available on all major desktop platforms, e.g. Windows/Mac/Linux. We
have already seen customers using Qt Creator on an embedded device. Qt Creator has a lean efficient
user interface and it really shines in making the developer productive. Qt Creator can be used to run
your Qt Quick user interface but also to compile c++ code and this for your host system or for another

device using a cross-compiler.

WARNING

Update screenshots!

Help us improve this page! &
Last Updated: 6/28/2021, 5:04:33 AM

< Summary The User Interface »

http://localhost:8080/ch03-qtcreator/user-interface.html
https://github.com/qmlbook/qt6book/edit/main/docs/ch03-qtcreator/qt-creator.md
http://localhost:8080/ch02-start/summary.html

The User Interface

When starting Qt Creator you are greeted by the Welcome screen. There you will find the most
important hints on how to continue inside Qt Creator and your recently used projects. You will also see
the sessions list, which might be empty for you. A session is a collection of projects and configurations

stored for fast access. This comes really handy when you have several customers with larger projects.

On the left side, you will see the mode-selector. The mode selectors support typical steps from a

developer workflow.

¢ Welcome mode: For your orientation.

o Edit mode: Focus on the code

o Design mode: Focus on the Ul design

o Debug mode: Retrieve information about a running application
* Projects mode: Modify your projects run and build configuration
e Analyze mode: For detecting memory leaks and profiling

e Help mode: Easy access to the Qt documentation

Below the mode-selectors, you will find the actual project-configuration selector and the run/debug

Qt Creator

File Edit 2uld Debug Analyze Tools Window Help

e To T
I
"—| ABC DEF GHI I l \ / File Edit Help
| | : LBE &
» Qt User The Keys, H
- All the standard features of|
Debug Peter Rabbit | The Lake Di S
New to Qt? Address Book Example Analog Clock Window Exam... Application Example Bars Example

Learn how to develop Tags: a E widget Tags: ar 1 K Tags tion widget Tags: bars data visualization
your own applications and
0 explore Qt Creator.

et Started Now

. man. tir. ons.

Bluetooth Low © hart Themes Example Editable Tree Model Example

Server name: | TIIIE The server is running.

Run the Fortune Client exam| |~

Thic avamnlac raniirac that

2 Search Results 3 Application Out Co e Output 5 Debugger Cons

Most of the time you will be in the edit mode with the code-editor in the central panel. From time to

time, you will visit the Projects mode when you need to configure your project. And then you press

Run . Qt Creator is smart enough to ensure your project is fully built before running it.

In the bottom are the output panes for issues, application messages, compile messages, and other

messages.

Help us improve this page! @
Last Updated: 6/28/2021, 5:04:33 AM

< Qt Creator IDE Registering your Qt Kit >

http://localhost:8080/ch03-qtcreator/kit-registry.html
https://github.com/qmlbook/qt6book/edit/main/docs/ch03-qtcreator/user-interface.md
http://localhost:8080/ch03-qtcreator/qt-creator.html

Registering your Qt Kit

The Qt Kit is probably the most difficult aspect when it comes to working with Qt Creator initially. A Qt
Kit is a set of a Qt version, compiler and device and some other settings. It is used to uniquely identify
the combination of tools for your project build. A typical kit for the desktop would contain a C++
compiler and a Qt version (e.g. Qt 6.xx.yy) and a device (“Desktop”). After you have created a project
you need to assign a kit to a project before Qt Creator can build the project. Before you are able to
create a kit first you need to have a compiler installed and have a Qt version registered. A Qt version is
registered by specifying the path to the gmake executable. Qt Creator then queries gmake for
information required to identify the Qt version. This is also true for Qt 6 where CMake is the preferred
build tool.

Adding a kit and registering a Qt version is done in the Settings » Build & Run entry. There you can

also see which compilers are registered.

TIP

Please first check if your Qt Creator has already the correct Qt version registered and then
ensure a Kit for your combination of compiler and Qt and device is specified. You can not build

a project without a kit.

Help us improve this page!
Last Updated: 10/5/2021, 3:58:03 AM

< The User Interface Managing Projects »

http://localhost:8080/ch03-qtcreator/projects.html
https://github.com/qmlbook/qt6book/edit/main/docs/ch03-qtcreator/kit-registry.md
http://localhost:8080/ch03-qtcreator/user-interface.html

Managing Projects

Qt Creator manages your source code in projects. You can create a new project by using File » New
File or Project . When you create a project you have many choices of application templates. Qt
Creator is capable of creating desktop, embedded, mobile applications and even python projects using
Qt for Python. There are templates for applications which uses Widgets or Qt Quick or even bare-bone
projects just using a console. For a beginner, it is difficult to choose, so we pick three project types for

you.

e Other Project / QtQuick Ul Prototype: Great for playing around with QML as there is no C++ build
step involved. Mostly suitable for prototyping only.

e Applications (Qt Quick) / Qt Quick Application (Empty): Creates a bare C++ project with cmake
support and a QML main document to render an empty window. This is the typical default starting

point for all native QML application.

e Libraries / Qt Quick 2.0 Extension Plug-in: Use this wizard to create a stub for a plug-in for your Qt
Quick Ul. A plug-in is used to extend Qt Quick with native elements. This is ideally to create a re-

usable Qt Quick library.

* Applications (Qt) / Qt Widgets Application: Creates a starting point for a desktop application using
Qt Widgets. This would be your starting point if you plan to create a traditional C++ widgets based

application.

o Applications (Qt) / Qt Console Application: Creates a starting point for a desktop application
without any user interface. This would be your starting point if you plan to create a traditional C++

command line tool using Qt C++.

TIP

During the first parts of the book, we will mainly use the QtQuick Ul Prototype type or the Qt
Quick Application, depending on whether we also use some C++ code with Qt Quick. Later to
describe some c++ aspects we will use the Qt Console Application type. For extending Qt

Quick with our own native plug-ins we will use the Qt Quick 2.0 Extension Plug-in wizard type.

Help us improve this page!
Last Updated: 10/5/2021, 3:58:03 AM

https://github.com/qmlbook/qt6book/edit/main/docs/ch03-qtcreator/projects.md

< Registering your Qt Kit Using the Editor »

http://localhost:8080/ch03-qtcreator/editor.html
http://localhost:8080/ch03-qtcreator/kit-registry.html

Using the Editor

When you open a project or you just created a new project Qt Creator will switch to the edit mode. You
should see on the left of your project files and in the center area the code editor. Selecting files on the

left will open them in the editor.

The editor provides syntax highlighting, code-completion, and quick-fixes. Also, it supports several
commands for code refactoring. When working with the editor you will have the feeling that everything

reacts immediately. This is thanks to the developers of Qt Creator which made the tool feel really

snappy.

helloworld.gml @ helloworld - Qt Creator

File Edit Build Debug Analyze

~ E= helloworld
=y helloworld.qmlprojet 2
A helloworld.gml!

import QtQuick.Window 2,12

* Window {
visible: true

4
z [
6 width: 640
7 height: 4880 Source Code
8 title: gsTr("Hello viofld") \
Design :

W

Debug

Open Documents General Messages | &= ~ =

helloworld.gml
helloworld

(Il 2. Type to locate (Ctrl+K)

1 Issues 2 Search Results 3 Application Out... 4 Compile Output 5 Debugger Cons... 6 General Messa 8 Test Results #

Help us improve this page!

Last Updated: 6/28/2021, 5:04:33 AM

< Managing Projects Locator »

http://localhost:8080/ch03-qtcreator/locator.html
https://github.com/qmlbook/qt6book/edit/main/docs/ch03-qtcreator/editor.md
http://localhost:8080/ch03-qtcreator/projects.html

Locator

The locator is a central component inside Qt Creator. It allows developers to navigate fast to specific

locations inside the source code or inside the help. To open the locator press ctrl+k .

£- Type to locate (2K) | 1ssues i3] Search Results

A pop-up is coming from the bottom left and shows a list of options. If you just search a file inside your
project just hit the first letter from the file name. The locator also accepts wild-cards, so *main.gml

will also work. Otherwise, you can also prefix your search to search for the specific content type.

! Execute Custom Commands

C++ Symbols in Current Document

C++ Classes, Enums and Functions

Help Index Ak
Files in Any Project

C++ Classes

Files in File System

Line in Current Document

C++ Functions

OML Functions

Open Documents

Files in Current Project

Web Search

rm Macros

OmlExample999.gml ~ftemp/OQmlExample993/QmlExample999.gml

R A A S A A A A A B E R
-..ccag—-hnm.d..-

Please try it out. For example to open the help for the QML element Rectangle open the locator and
type ? rectangle . While you type the locator will update the suggestions until you found the

reference you are looking for.

Help us improve this page! @

https://github.com/qmlbook/qt6book/edit/main/docs/ch03-qtcreator/locator.md

Last Updated: 5/21/2021, 10:52:10 AM

< Using the Editor Debugging »

http://localhost:8080/ch03-qtcreator/debugging.html
http://localhost:8080/ch03-qtcreator/editor.html

Debugging

Qt Creator is an easy to use and well designed IDE to code your Qt C++ and Q<: projects. It has world
class cMake supportand is pre-configured for Qt C++ development. Due to it's excellent C++ support

it can also be used for any other vanilla C++ projects.

TIP

Hmm, | just realized | have not used debugging a lot. | hope this is a good sign. Need to ask

someone to help me out here. In the meantime have a look at the Qt Creator documentation .

Help us improve this page! &
Last Updated: 10/5/2021, 3:58:03 AM

¢ Locator Shortcuts »

http://localhost:8080/ch03-qtcreator/shortcuts.html
http://http//doc.qt.io/qtcreator/index.html
https://github.com/qmlbook/qt6book/edit/main/docs/ch03-qtcreator/debugging.md
http://localhost:8080/ch03-qtcreator/locator.html

Shortcuts

Shortcuts are the difference between a nice-to-use editor and a professional editor. As a professional
you spend hundreds of hours in front of your application. Each shortcut which makes your work-flow
faster counts. Luckily the developers of Qt Creator think the same and have added literally hundreds of

shortcuts to the application.
To get started we have collection some basic shortcuts (in Windows notation):

e Ctrl+B - Build project

e Ctrl+R - Run Project

e Ctrl+Tab - Switch between open documents

e Ctrl+k - Open Locator

e Esc - Go back (hit several times and you are back in the editor)
e F2 -Follow Symbol under cursor

e F4 -Switch between header and source (only useful for c++ code)

List of Qt Creator shortcuts from the documentation.

Configure Shortcuts

You can configure the shortcuts from inside creator using the settings dialog.

http://doc.qt.io/qtcreator/creator-keyboard-shortcuts.html

Options

|Filter | Environment

@ xits Imterface | System | Keyboard

External Tools

MIME Types

Locator

Update

T Keyboard Shortcuts

Text Editor |Filter

FakeVim SETIENT

~ Label

Shortcut

Analyzer
Help

AutoTest
Cligs Runall
. RunDebugUnderCursor

Qt Quick RunFile
RunSelected
RunUnderCursor
ScanAction

Bazaar
Action.Commit
Action.CreateRepository
Action . DiffMulti
Action.Logmulti
Action.Pull
Action,Push
Action.RevertALL
Action. StatusMulti
Action.UnCommit
Action Update
AddsingleFile

Build & Run
Debugger
Designer
Analyzer
Version Control
Cd Devices
[Code Pasting

& Testing

| ResetAll |

Shortcut

Menu.StartAnalyzer.QMLProfilerOptions.LoadQMLTrace Load QML Trace
Menu.StartAnalyzer.QMLProfilerOptions.SaveQMLTrace Save QML Trace

Run All Tests

Debug Test Under Cursor
Run Tests for Current File
Run Selected Tests

Run Test Under Cursor
Rescan Tests

Commit...
Create Repository...
Diff

Log

Pull...
Push...
Revert...
Status
Uncommit...
Update...
Add

Alt+Shift+T, Alt+A

Alt+Shift+T, Alt+F
Alt+Shift+T, Alt+R

Alt+Shift+T, Alt+S

Alt+Z, Alt+C

| Import...

Key sequence: |Enter key sequence as text

Record

|| Export.. |

Help us improve this page! ™
Last Updated: 5/21/2021,10:52:10 AM

< Debugging

vok || vapply || ©cancel |

Quick Starter »

http://localhost:8080/ch04-qmlstart/quick-start.html
https://github.com/qmlbook/qt6book/edit/main/docs/ch03-qtcreator/shortcuts.md
http://localhost:8080/ch03-qtcreator/debugging.html

Quick Starter

This chapter provides an overview of QML, the declarative user interface language used in Qt 6. We will
discuss the QML syntax, which is a tree of elements, followed by an overview of the most important
basic elements. Later we will briefly look at how to create our own elements, called components and
how to transform elements using property manipulations. Towards the end, we will look at how to
arrange elements together in a layout and finally have a look at elements where the user can provide

input.

Help us improve this page!
Last Updated: 7/8/2021, 5:50:03 AM

< Shortcuts QML Syntax »

http://localhost:8080/ch04-qmlstart/qml-syntax.html
https://github.com/qmlbook/qt6book/edit/main/docs/ch04-qmlstart/quick-start.md
http://localhost:8080/ch03-qtcreator/shortcuts.html

QML Syntax

QML is a declarative language used to describe how objects relate to each other. QtQuick is a
framework built on QML for buidling the user interface of your application. It breaks down the user
interface into smaller elements, which can be combined into components. QtQuick describes the look
and the behavior of these user interface elements. This user interface description can be enriched with
JavaScript code to provide simple but also more complex logic. In this perspective, it follows the HTML-
JavaScript pattern but QML and QtQuick are designed from the ground up to describe user interfaces,

not text-documents.

In its simplest form, QtQuick lets you create a hierarchy of elements. Child elements inherit the

coordinate system from the parent. An x,y coordinate is always relative to the parent.

TIP

QtQuick builds on QML. The QML language only knows of elements, properties, signals and
bindings. QtQuick is a framework built on QML. Using default properties, the hierarchy of

QtQuick elements can be constructed in an elegant way.

Rectangle
width. height, color

Image
X. Y, source

Text
X, Y, text

| Image | | Text |

Triangle

Let's start with a simple example of a QML file to explain the different syntax.

// RectangleExample.qgml
import QtQuick

// The root element is the Rectangle

Rectangle {

// name this element root

id: root

// properties: <name>: <value>
width: 120; height: 240

// color property
color: "#A4A4A4A"

// Declare a nested element (child of root)
Image {

id: triangle

// reference the parent
x: (parent.width - width)/2; y: 40

source: 'assets/triangle_red.png'

// Another child of root
Text {

// un-named element

// reference element by id

y: triangle.y + triangle.height + 20

// reference root element

width: root.width

color: 'white'
horizontalAlignment: Text.AlignHCenter

text: 'Triangle'

The import statementimportsa module. An optional version in the form of <major>.<minor> can
be added.

Comments can be made using // forsingle line comments or /* */ for multi-line comments.
Just like in C/C++ and JavaScript

Every QML file needs to have exactly one root element, like HTML

An element is declared by its type followed by { }

Elements can have properties, they are in the form name: value

Arbitrary elements inside a QML document can be accessed by using their id (an unquoted

identifier)
Elements can be nested, meaning a parent element can have child elements. The parent element can

be accessed using the parent keyword

With the import statementyouimporta QML module by name. In Qt5 you had to specify a major and
minor version (e.g. 2.15), thisis now optional in Qt6. For the book content we drop this optional
version number as normally you automatically want to choose the newest version available from your
selected Qt Kit.

TIP

Often you want to access a particular element by id or a parent element using the parent
keyword. So it's good practice to name your root element “root” using id: root .Thenyou

don't have to think about how the root element is named in your QML document.

TIP

You can run the example using the Qt Quick runtime from the command line from your OS like
this:

$ $QTDIR/bin/gml RectangleExample.gml

Where you need to replace the $QTDIR to the path to your Qtinstallation. The gml

executable initializes the Qt Quick runtime and interprets the provided QML file.

In Qt Creator, you can open the corresponding project file and run the document

RectangleExample.gml .

Properties

Elements are declared by using their element name but are defined by using their properties or by
creating custom properties. A property is a simple key-value pair, e.g. width: 100 , text:

'‘Greetings' , color: '#FF@eee' .A property has a well-defined type and can have an initial value.

Text {
// (1) identifier
id: thislLabel

// (2) set x- and y-position
X: 24; y: 16

// (3) bind height to 2 * width
height: 2 * width

// (4) custom property

property int times: 24

// (5) property alias
property alias anotherTimes: thisLabel.times

// (6) set text appended by value

text: "Greetings " + times

// (7) font is a grouped property
font.family: "Ubuntu"
font.pixelSize: 24

// (8) KeyNavigation is an attached property

KeyNavigation.tab: otherlLabel

// (9) signal handler for property changes
onHeightChanged: console.log('height:', height)

// focus is need to receive key events

focus: true

// change color based on focus value

color: focus ? "red" : "black"

Let's go through the different features of properties:

e (1) id isavery special property-like value, it is used to reference elements inside a QML file (called
“document” in QML). The id is not a string type but rather an identifier and part of the QML syntax.
An id needs to be unique inside a document and it can't be reset to a different value, nor may it be

queried. (It behaves much like a reference in the C++ world.)

e (2) A property can be set to a value, depending on its type. If no value is given for a property, an initial
value will be chosen. You need to consult the documentation of the particular element for more

information about the initial value of a property.

e (3) A property can depend on one or many other properties. This is called binding. A bound property
is updated when its dependent properties change. It works like a contract, in this case, the height

should always be two times the width .

e (4) Adding new properties to an element is done using the property qualifier followed by the type,
the name and the optional initial value (property <type> <name> : <value>). If noinitial valueis

given, a default initial value is chosen.

TIP

You can also declare one property to be the default property using default keyword. If

another element is created inside the element and not explicitly bound to a property, it is bound

to the default property. For instance, This is used when you add child elements. The child
elements are added automatically to the default property children of type list if they are

visible elements.

e (5) Another important way of declaring properties is using the alias keyword (property alias
<name>: <reference>). The alias keyword allows us to forward a property of an object or an object
itself from within the type to an outer scope. We will use this technique later when defining
components to export the inner properties or element ids to the root level. A property alias does not

need a type, it uses the type of the referenced property or object.

e (6) The text property depends on the custom property times oftypeint. The int based valueis
automatically converted toa string type. The expression itself is another example of binding and

results in the text being updated every time the times property changes.

e (7) Some properties are grouped properties. This feature is used when a property is more structured
and related properties should be grouped together. Another way of writing grouped properties is

font { family: "Ubuntu"; pixelSize: 24 } .

* (8) Some properties belong to the element class itself. This is done for global settings elements
which appear only once in the application (e.g. keyboard input). The writing is <Element>.

<property>: <value> .

» (9) For every property, you can provide a signal handler. This handler is called after the property
changes. For example, here we want to be notified whenever the height changes and use the built-in

console to log a message to the system.

WARNING

An element id should only be used to reference elements inside your document (e.g. the
current file). QML provides a mechanism called "dynamic scoping", where documents loaded
later on overwrite the element IDs from documents loaded earlier. This makes it possible to
reference element IDs from previously loaded documents if they have not yet been overwritten.
It's like creating global variables. Unfortunately, this frequently leads to really bad code in
practice, where the program depends on the order of execution. Unfortunately, this can’t be
turned off. Please only use this with care; or, even better, don’t use this mechanism at all. It's
better to export the element you want to provide to the outside world using properties on the

root element of your document.

Scripting

QML and JavaScript (also known as ECMAScript) are best friends. In the JavaScript chapter we will go

into more detail on this symbiosis. Currently, we just want to make you aware of this relationship.

Text {
id: label

X: 24; y: 24

// custom counter property for space presses

property int spacePresses: ©

text: "Space pressed: + spacePresses + " times™

// (1) handler for text changes. Need to use function to capture parameters
onTextChanged: function(text) {

console.log("text changed to:", text)

// need focus to receive key events

focus: true

// (2) handler with some 3JS
Keys.onSpacePressed: {

increment()

// clear the text on escape
Keys.onEscapePressed: {
label.text = "'

// (3) a 1S function
function increment() {

spacePresses = spacePresses + 1

e (1) The text changed handler onTextChanged prints the current text every time the text changed due
to the space bar being pressed. As we use a parameter injected by the signal, we need to use the
function syntax here. It's also possible to use an arrow function ((text) => {}), but we feel

function(text) {} is more readable.

e (2) When the text element receives the space key (because the user pressed the space bar on the

keyboard) we call a JavaScript function increment() .

» (3) Definition of a JavaScript function in the form of function <name>(<parameters>) { ... } , which

increments our counter spacePressed . Every time spacePressed isincremented, bound properties

will also be updated.

Binding

The difference between the QML : (binding) and the JavaScript = (assignment) is that the binding is
a contract and keeps true over the lifetime of the binding, whereas the JavaScript assignment(=)isa

one time value assignment.

The lifetime of a binding ends when a new binding is set on the property or even when a JavaScript
value is assigned to the property. For example, a key handler setting the text property to an empty

string would destroy our increment display:

Keys.onEscapePressed: {

label.text = "'

After pressing escape, pressing the space bar will not update the display anymore, as the previous

binding of the text property (text: “Space pressed: ” + spacePresses + ” times”) was destroyed.

When you have conflicting strategies to change a property as in this case (text updated by a change to a
property increment via a binding and text cleared by a JavaScript assignment) then you can’t use
bindings! You need to use assignment on both property change paths as the binding will be destroyed

by the assignment (broken contract!).

Help us improve this page!

Last Updated: 10/20/2021, 11:58:44 AM

< Quick Starter Core Elements »

http://localhost:8080/ch04-qmlstart/core-elements.html
https://github.com/qmlbook/qt6book/edit/main/docs/ch04-qmlstart/qml-syntax.md
http://localhost:8080/ch04-qmlstart/quick-start.html

Core Elements

Elements can be grouped into visual and non-visual elements. A visual element (like the Rectangle)
has a geometry and normally presents an area on the screen. A non-visual element (likea Timer)

provides general functionality, normally used to manipulate the visual elements.

Currently, we will focus on the fundamental visual elements, such as Item , Rectangle , Text ,
Image and MouseArea .However, by using the Qt Quick Controls 2 module, it is possible to create

user interfaces built from standard platform components such as buttons, labels and sliders.

Item Element

Item isthe base element for all visual elements as such all other visual elements inherits from Item .
It doesn’t paint anything by itself but defines all properties which are common across all visual

elements:

e Geometry- x and y todefine the top-left position, width and height for the expansion of the
element, and z for the stacking order to lift elements up or down from their natural ordering.

o Layout handling - anchors (left, right, top, bottom, vertical and horizontal center) to position
elements relative to other elements with optional margins .

e Key handling - attached key and KeyNavigation propertiesto control key handling and the

focus property to enable key handling in the first place.

e Transformation - scale and rotate transformation and the generic transform property list for
x,y,z transformation, as well asa transformorigin point.

e Visual- opacity tocontroltransparency, visible toshow/hide elements, clip to restrain paint
operations to the element boundary, and smooth to enhance the rendering quality.

o State definition - states list property with the supported list of states, the current state

property, and the transitions list property to animate state changes.

To better understand the different properties we will try to introduce them throughout this chapterin
the context of the element presented. Please remember these fundamental properties are available on

every visual element and work the same across these elements.

TIP

The 1tem elementis often used as a container for other elements, similar to the divelement
in HTML.

Rectangle Element

Rectangle extends Item and adds afill color to it. Additionally it supports borders defined by

border.color and border.width . To create rounded rectangles you can use the radius property.

Rectangle {
id: rectl
x: 12; y: 12
width: 76; height: 96
color: "lightsteelblue"

}
Rectangle {

id: rect2

x: 112; y: 12

width: 76; height: 96
border.color: "lightsteelblue"
border.width: 4

radius: 8

TIP

Valid color values are colors from the SVG color names (see http://www.w3.0org/TR/css3-
color/#svg-color@). You can provide colors in QML in different ways, but the most common

way is an RGB string (‘#FF4444') or as a color name (e.g. ‘white’).

A random color can be created using some JavaScript:

color: Qt.rgba(Math.random(), Math.random(), Math.random(), 1)

Besides a fill color and a border, the rectangle also supports custom gradients:

http://www.w3.org/TR/css3-color/#svg-color

Rectangle {
id: rectl
x: 12; y: 12
width: 176; height: 96
gradient: Gradient {

GradientStop { position: ©.0; color: "lightsteelblue" }

GradientStop { position: 1.09; color: "slategray" }
}

border.color: "slategray"

A gradient is defined by a series of gradient stops. Each stop has a position and a color. The position
marks the position on the y-axis (O = top, 1= bottom). The color of the GradientStop marks the color

at that position.

TIP

A rectangle with no width/height set will not be visible. This happens often when you have
several rectangles width (height) depending on each other and something went wrong in your

composition logic. So watch out!

TIP

It is not possible to create an angled gradient. For this, it's better to use predefined images.
One possibility would be to just rotate the rectangle with the gradient, but be aware the
geometry of a rotated rectangle will not change and thus will lead to confusion as the geometry
of the element is not the same as the visible area. From the author's perspective, it's really

better to use designed gradient images in that case.

Text Element

To display text, you can use the Text element. Its most notable property is the text property of type

string . The element calculates its initial width and height based on the given text and the font used.

The font can be influenced using the font property group (e.g. font.family , font.pixelSize ,...). To

change the color of the text just use the color property.

Text {

text: "The quick brown fox"
color: "#303030"
font.family: "Ubuntu"
font.pixelSize: 28

The quick brown fox

Text can be aligned to each side and the center using the horizontalAlignment and
verticalAlignment properties. To further enhance the text rendering you can use the style and

styleColor property, which allows you to render the text in outline, raised and sunken mode.

For longer text, you often want to define a break position like A very ... long text, this can be achieved
using the elide property. The elide property allows you to set the elide position to the left, right or

middle of your text.

In case you don't want the '..." of the elide mode to appear but still want to see the full text you can also

wrap the text using the wrapMode property (works only when the width is explicitly set):

Text {
width: 40; height: 120
text: 'A very long text'
// '..." shall appear in the middle
elide: Text.ElideMiddle
// red sunken text styling
style: Text.Sunken
styleColor: '#FF4444'
// align text to the top

verticalAlignment: Text.AlignTop

// only sensible when no elide mode

// wrapMode: Text.WordWrap

A Text element only displays the given text, and the remaining space it occupies is transparent. This
means it does not render any background decoration, and so it's up to you to provide a sensible

background if desired.

TIP

Be aware that the initial width of a Text item is dependant on the font and text string that
were set. A Text element with no width set and no text will not be visible, as the initial width
will be 0.

TIP

Often when you want to layout Text elements you need to differentiate between aligning the
text inside the Text element boundary box and aligning the element boundary box itself. In
the former, you want to use the horizontalAlignment and verticalAlignment properties, and

in the latter case, you want to manipulate the element geometry or use anchors.

Image Element

An Image elementisable to display images in various formats (e.g. PNG , JPG , GIF , BMP , WEBP).
For the full list of supported image formats, please consult the Qt documentation(” . Besides the
source property to provide the image URL, it containsa fillMode which controls the resizing

behavior.

Image {

x: 12; y: 12

// width: 72

// height: 72

source: "assets/triangle red.png"
}
Image {

X: 12+64+12; y: 12

// width: 72

height: 72/2

source: "assets/triangle red.png"

fillMode: Image.PreserveAspectCrop

clip: true

TIP

https://doc.qt.io/qt-6/qimagereader.html#supportedImageFormats

A URL can be a local path with forward slashes (“./images/home.png”) or a web-link (e.g.

“http://example.org/home.png).

TIP

Image elementsusing PreserveAspectCrop should also enable clipping to avoid image data
being rendered outside the Image boundaries. By default clipping is disabled (clip: false).
You need to enable clipping (clip: true)to constrain the painting to the elements bounding

rectangle. This can be used on any visual element, but should be used sparingly

TIP

Using C++ you are able to create your own image provider using QQuickImageProvider . This

allows you to create images on the fly and make use of threaded image loading.

MouseArea Element

To interact with these elements you will often use a MouseArea . It's a rectangular invisible item in
which you can capture mouse events. The mouse area is often used together with a visible item to

execute commands when the user interacts with the visual part.

Rectangle {
id: rectl
x: 12; y: 12
width: 76; height: 96
color: "lightsteelblue"
MouseArea {

id: area

width: parent.width

height: parent.height

onClicked: rect2.visible = !rect2.visible

Rectangle {
id: rect2
x: 112; y: 12
width: 76; height: 96
border.color: "lightsteelblue"
border.width: 4

radius: 8

http://example.org/home.png
https://doc.qt.io/qt-6/qtquick-performance.html#clipping

TIP

This is an important aspect of Qt Quick: the input handling is separated from the visual
presentation. This allows you to show the user an interface element where the actual

interaction area can be larger.

TIP

For more complex interaction, see Qt Quick Input Handlersr% . They are intended to be used
instead of elements such as MouseArea and Flickable and offer greater control and
flexibility. The idea is to handle one interaction aspect in each handler instance instead of
centralizing the handling of all events from a given source in a single element, which was the

case before.

Help us improve this page! @
Last Updated: 9/15/2021, 5:25:59 AM

< QML Syntax Components >

http://localhost:8080/ch04-qmlstart/components.html
https://doc.qt.io/qt-6/qtquickhandlers-index.html
https://github.com/qmlbook/qt6book/edit/main/docs/ch04-qmlstart/core-elements.md
http://localhost:8080/ch04-qmlstart/qml-syntax.html

Components

A component is a reusable element. QML provides different ways to create components. Currently, we
will look only at the simplest form - a file-based component. A file-based component is created by

placing a QML element in a file and giving the file an element name (e.g. Button.gml). You can use the
component like every other element from the Qt Quick module. In our case, you would use this in your

codeas Button { ... } .

For example, let’s create a rectangle containing a text component and a mouse area. This resembles a

simple button and doesn’t need to be more complicated for our purposes.

Rectangle { // our inlined button ui
id: button
x: 12; y: 12
width: 116; height: 26
color: "lightsteelblue"
border.color: "slategrey"
Text {
anchors.centerIn: parent
text: "Start"
}
MouseArea {
anchors.fill: parent
onClicked: {
status.text = "Button clicked!"

Text { // text changes when button was clicked

id: status
x: 12; y: 76
width: 116; height: 26

text: "waiting ...

horizontalAlignment: Text.AlignHCenter

The Ul will look similar to this. In the first image, the Ul is in its initial state, and in the second image the

button has been clicked.

Start

waiting ...

Start

Button clicked!

Now our task is to extract the button Ul into a reusable component. For this, we should think about a
possible API for our button. You can do this by imagining how someone else should use your button.

Here's what | came up with:

// minimal API for a button
Button {

text: "Click Me"
onClicked: { /* do something */ }

| would like to set the text usinga text property and toimplement my own click handler. Also, |
would expect the button to have a sensible initial size, which | can overwrite (e.g. with width: 24e for

example).

To achieve this we create a Button.gml file and copy our button Ul inside. Additionally, we need to

export the properties a user might want to change at the root level.
// Button.gml
import QtQuick
Rectangle {
id: root

// export button properties
property alias text: label.text

signal clicked

width: 116; height: 26
color: "lightsteelblue"

border.color: "slategrey"

Text {
id: label

anchors.centerIn: parent
text: "Start"

}

MouseArea {
anchors.fill: parent
onClicked: {

root.clicked()

We have exported the text property and the clicked signal at the root level. Typically we name our root

element root to make referencing it easier. We use the alias feature of QML, which is a way to export

properties inside nested QML elements to the root level and make this available for the outside world.

It is important to know that only the root level properties can be accessed from outside this file by

other components.

To use our new Button element we can simply declare itin our file. So the earlier example will

become a little bit simplified.

Button { // our Button component
id: button
x: 12; y: 12
text: "Start"
onClicked: {

status.text = "Button clicked!"

Text { // text changes when button was clicked
id: status
x: 12; y: 76
width: 116; height: 26
text: "waiting ..."

horizontalAlignment: Text.AlignHCenter

Now you can use as many buttons as you like in your Ul by just using Button { ... } .Arealbutton

could be more complex, e.g providing feedback when clicked or showing a nicer decoration.

TIP

If you want to, you could even go a step further and use an Item asarootelement. This
prevents users from changing the color of the button we designed, and provides us with more

control over the exported API. The target should be to export a minimal API. Practically, this

means we would need to replace the root Rectangle withan Item and make the rectangle a

nested element in the root item.

Item {
id: root
width: 116; height: 26

property alias text: label.text

signal clicked

Rectangle {
anchors.fill parent
color: "lightsteelblue"

border.color: "slategrey"

With this technique, it is easy to create a whole series of reusable components.

Help us improve this page!
Last Updated: 10/20/2021, 11:58:44 AM

< Core Elements Simple Transformations -

http://localhost:8080/ch04-qmlstart/transformations.html
https://github.com/qmlbook/qt6book/edit/main/docs/ch04-qmlstart/components.md
http://localhost:8080/ch04-qmlstart/core-elements.html

Simple Transformations

A transformation manipulates the geometry of an object. QML Items can, in general, be translated,

rotated and scaled. There is a simple form of these operations and a more advanced way.
Let's start with the simple transformations. Here is our scene as our starting point.

A simple translation is done via changing the x,y position. A rotation is done using the rotation
property. The value is provided in degrees (0 .. 360). A scaling is done using the scale property anda
value <1 means the element is scaled downand >1 means the element is scaled up. Rotation and
scaling do not change an item's geometry: the x,y and width/height haven't changed; only the

painting instructions are transformed.

Before we show off the example | would like to introduce a little helper: the clickableImage element.
The ClickableImage isjustanimage with a mouse area. This brings up a useful rule of thumb - if you

have copied a chunk of code three times, extract it into a component.

// ClickableImage.qgml

// Simple image which can be clicked

import QtQuick

Image {
id: root

signal clicked

MouseArea {
anchors.fill: parent

onClicked: root.clicked()

We use our clickable image to present three objects (box, circle, triangle). Each object performs a

simple transformation when clicked. Clicking the background will reset the scene.

// TransformationExample.gml

import QtQuick

Item {
// set width based on given background
width: bg.width
height: bg.height

Image { // nice background image
id: bg

source: "assets/background.png"

MouseArea {
id: backgroundClicker
// needs to be before the images as order matters
// otherwise this mousearea would be before the other elements
// and consume the mouse events
anchors.fill: parent
onClicked: {
// reset our little scene
circle.x = 84
box.rotation = @
triangle.rotation = ©

triangle.scale = 1.0

ClickableImage {
id: circle
X: 84; y: 68
source: "assets/circle_blue.png"
antialiasing: true
onClicked: {
// increase the x-position on click

X += 20

ClickableImage {
id: box
x: 164; y: 68
source: "assets/box_green.png"
antialiasing: true
onClicked: {

// increase the rotation on click

rotation += 15

ClickableImage {

id: triangle

X: 248; y: 68
source: "assets/triangle red.png"
antialiasing: true
onClicked: {
// several transformations
rotation += 15
scale += 0.05

The circle increments the x-position on each click and the box will rotate on each click. The triangle will
rotate and scale the image up on each click, to demonstrate a combined transformation. For the scaling
and rotation operation we set antialiasing: true to enable anti-aliasing, which is switched off (same
as the clipping property clip) for performance reasons. In your own work, when you see some

rasterized edges in your graphics, then you should probably switch smoothing on.

TIP

To achieve better visual quality when scaling images, it is recommended to scale down instead
of up. Scaling an image up with a larger scaling factor will result in scaling artifacts (blurred
image). When scaling an image you should consider using smooth: true to enable the usage

of a higher quality filter at the cost of performance.

The background MouseArea covers the whole background and resets the object values.

TIP

Elements which appear earlier in the code have a lower stacking order (called z-order). If you

click long enough on circle you will see it moves below box . The z-order can also be

manipulated by the z property of an Item.

This is because box appears laterin the code. The same applies also to mouse areas. A mouse
area later in the code will overlap (and thus grab the mouse events) of a mouse area earlier in

the code.

Please remember: the order of elements in the document matters.

Help us improve this page!
Last Updated: 10/20/2021, 11:58:44 AM

< Components Positioning Elements »

http://localhost:8080/ch04-qmlstart/positioning.html
https://github.com/qmlbook/qt6book/edit/main/docs/ch04-qmlstart/transformations.md
http://localhost:8080/ch04-qmlstart/components.html

Positioning Elements

There are a number of QML elements used to position items. These are called positioners, of which the
Qt Quick module provides the following: Row , Column , Grid and Flow . They can be seen showing

the same contents in the illustration below.

TIP

Before we go into details, let me introduce some helper elements: the red, blue, green, lighter
and darker squares. Each of these components contains a 48x48 pixel colorized rectangle. As a

reference, here is the source code for the RedSquare :

// RedSquare.gml

import QtQuick

Rectangle {

width: 48

height: 48

color: "#ea7025"

border.color: Qt.lighter(color)

Please note the use of Qt.lighter(color) to produce alighter border color based on the fill color. We
will use these helpers in the next examples to make the source code more compact and readable.

Please remember, each rectangle is initially 48x48 pixels.

The column element arranges child items into a column by stacking them on top of each other. The

spacing property can be used to distance each of the child elements from each other.

// ColumnExample.qgml
import QtQuick

DarkSquare {
id: root
width: 120
height: 240

Column {
id: row
anchors.centerIn: parent
spacing: 8
RedSquare { }
GreenSquare { width: 96 }
BlueSquare { }

The Row element places its child items next to each other, either from the left to the right, or from the
right to the left, depending on the layoutDirection property. Again, spacing is used to separate

child items.

// RowExample.gml

import QtQuick

BrightSquare {

id: root
width: 400; height: 120

Row {
id: row
anchors.centerIn: parent
spacing: 20
BlueSquare { }
GreenSquare { }
RedSquare { }

The Grid elementarranges its childrenin a grid. By setting the rows and columns properties, the
number of rows or columns can be constrained. By not setting either of them, the other is calculated
from the number of child items. For instance, setting rows to 3 and adding 6 child items will result in 2

columns. The properties flow and layoutDirection are used to controlthe orderin which the items

are added to the grid, while spacing controls the amount of space separating the child items.

// GridExample.qgml

import QtQuick

BrightSquare {
id: root
width: 160
height: 160

Grid {
id: grid
rows: 2
columns: 2
anchors.centerIn: parent
spacing: 8
RedSquare { }
RedSquare { }
RedSquare { }
RedSquare { }

The final positioneris Flow . It adds its child items in a flow. The direction of the flow is controlled
using flow and layoutDirection . It canrun sideways or from the top to the bottom. It can also run
from left to right or in the opposite direction. As the items are added in the flow, they are wrapped to
form new rows or columns as needed. In order for a flow to work, it must have a width or a height. This

can be set either directly, or though anchor layouts.

// FlowExample.qgml

import QtQuick

BrightSquare {
id: root
width: 160
height: 160

Flow {
anchors.fill: parent
anchors.margins: 20
spacing: 20
RedSquare { }

BlueSquare { }

GreenSquare { }

An element often used with positioners is the Repeater . It works like a for-loop and iterates over a

model. In the simplest case a model s just a value providing the number of loops.

// RepeaterExample.gml

import QtQuick

DarkSquare {
id: root
width: 252
height: 252
property variant colorArray: ["#00bde3", "#67c111", "#ea7025"]

Grid{
anchors.fill: parent
anchors.margins: 8
spacing: 4
Repeater {
model: 16
delegate: Rectangle {

required property int index

property int colorIndex: Math.floor(Math.random()*3)

width: 56; height: 56
color: root.colorArray[colorIndex]

border.color: Qt.lighter(color)

Text {
anchors.centerIn: parent
color: "#fofefo"

text: "Cell " + parent.index

In this repeater example, we use some new magic. We define our own colorArray property, which is
an array of colors. The repeater creates a series of rectangles (16, as defined by the model). For each
loop, it creates the rectangle as defined by the child of the repeater. In the rectangle we chose the color
by using JS math functions: Math.floor(Math.random()*3) . This gives us a random number in the
range from 0..2, which we use to select the color from our color array. As noted earlier, JavaScript is a

core part of Qt Quick, and as such, the standard libraries are available to us.

A repeater injects the index property into the repeater. It contains the current loop-index. (0,1,..15).
We can use this to make our own decisions based on the index, or in our case to visualize the current

index with the Text element.

TIP

While the index property is dynamically injected into the Rectangle, it is a good practice to
declare it as a required property to ease readability and help tooling. This is achieved by the

required property int index line.

TIP

More advanced handling of larger models and kinetic views with dynamic delegates is covered
in its own model-view chapter. Repeaters are best used when having a small amount of static

data to be presented.

Help us improve this page!
Last Updated: 10/20/2021, 11:58:44 AM

< Simple Transformations Layout Items »

http://localhost:8080/ch04-qmlstart/layout.html
https://github.com/qmlbook/qt6book/edit/main/docs/ch04-qmlstart/positioning.md
http://localhost:8080/ch04-qmlstart/transformations.html

Layout Items

QML provides a flexible way to layout items using anchors. The concept of anchoring is fundamental to
Item ,and is available to all visual QML elements. Anchors act like a contract and are stronger than
competing geometry changes. Anchors are expressions of relativeness; you always need a related

element to anchor with.

horizontalCenter
left right
top

verticalCenter

bottom

An element has 6 major anchor lines (top , bottom , left , right , horizontalCenter ,
verticalCenter). Additionally, there is the baseline anchor for textin Text elements. Each anchor
line comes with an offset. In the case of the top , bottom , left ,and right anchors, theyare

called margins. For horizontalCenter , verticalCenter and baseline they are called offsets.

B
(n
[

e (1) An element fills a parent element.

GreenSquare {
BlueSquare {
width: 12
anchors.fill: parent

anchors.margins: 8
text: '(1)°'

e (2) An element is left aligned to the parent.

GreenSquare {
BlueSquare {
width: 48
y: 8
anchors.left: parent.left
anchors.leftMargin: 8
text: "(2)'

¢ (3) An element's left side is aligned to the parent’s right side.

GreenSquare {
BlueSquare {
width: 48
anchors.left: parent.right
text: "(3)°

e (4) Center-aligned elements. Bluel is horizontally centered on the parent. Blue2 isalso

horizontally centered, but on Bluel ,andits topis aligned tothe Bluel bottom line.

GreenSquare {
BlueSquare {
id: bluel
width: 48; height: 24
y: 8
anchors.horizontalCenter: parent.horizontalCenter
}
BlueSquare {
id: blue2
width: 72; height: 24
anchors.top: bluel.bottom
anchors.topMargin: 4
anchors.horizontalCenter: bluel.horizontalCenter
text: '(4)'

e (5) An element is centered on a parent element

GreenSquare {

BlueSquare {

width: 48
anchors.centerIn: parent
text: "(5)°'

* (6) An element is centered with a left-offset on a parent element using horizontal and vertical center

lines

GreenSquare {
BlueSquare {
width: 48
anchors.horizontalCenter: parent.horizontalCenter

anchors.horizontalCenterOffset: -12

anchors.verticalCenter: parent.verticalCenter
text: '(6)"'

Hidden Gems

Our squares have been magically enhanced to enable dragging. Try the example and drag around some
squares. You will see that (1) can’t be dragged as it's anchored on all sides (although you can drag the
parent of (1), as it's not anchored at all). (2) can be vertically dragged, as only the left side is anchored.
The same applies to (3). (4) can only be dragged vertically, as both squares are horizontally centered. (5)
is centered on the parent, and as such, can’t be dragged. The same applies to (7). Dragging an element
means changing its x,y position. As anchoring is stronger than setting the x,y properties, dragging

is restricted by the anchored lines. We will see this effect later when we discuss animations.

Help us improve this page!
Last Updated: 9/15/2021, 6:58:03 AM

< Positioning Elements Input Elements >

http://localhost:8080/ch04-qmlstart/input.html
https://github.com/qmlbook/qt6book/edit/main/docs/ch04-qmlstart/layout.md
http://localhost:8080/ch04-qmlstart/positioning.html

Input Elements

We have already used the MouseArea asa mouse input element. Next, we'll focus on keyboard input.

We start off with the text editing elements: TextInput and TextEdit .

Textlnput

TextInput allows the user to enter a line of text. The element supports input constraints such as

validator , inputMask ,and echoMode .

// textinput.gml

import QtQuick

Rectangle {
width: 200
height: 80

color: "linen"

TextInput {
id: inputl
X: 8; y: 8
width: 96; height: 20
focus: true

text: "Text Input 1"

TextInput {
id: input2
x: 8; y: 36
width: 96; height: 20
text: "Text Input 2"

Text Input 1

Text Input 2

The user can click inside a TextInput to change the focus. To support switching the focus by keyboard,

we can use the KeyNavigation attached property.

// textinput2.gml
import QtQuick

Rectangle {
width: 200
height: 80

color: "linen"

TextInput {
id: inputl
X: 8, y: 8
width: 96; height:
focus: true
text: "Text Input
KeyNavigation.tab:

TextInput {
id: input2
X: 8; y: 36
width: 96; height:
text: "Text Input
KeyNavigation.tab:

The KeyNavigation attached property supports a preset of navigation keys where an element id is

bound to switch focus on the given key press.

A text input element comes with no visual presentation beside a blinking cursor and the entered text.

For the user to be able to recognize the element as an input element it needs some visual decoration;
for example, a simple rectangle. When placing the TextInput inside an elementyou need make sure

you export the major properties you want others to be able to access.

We move this piece of code into our own component called TLineEditvi for reuse.

// TLineEditvi.gml
import QtQuick
Rectangle {

width: 96; height: input.height + 8
color: "lightsteelblue"

border.color: "gray"

property alias text: input.text

property alias input: input

TextInput {
id: input
anchors.fill: parent
anchors.margins: 4

focus: true

TIP

If you want to export the TextInput completely, you can export the element by using
property alias input: input .Thefirst input isthe property name, where the 2ndinputis

the element id.

We then rewrite our KeyNavigation example with the new TLineEditvi component.

Rectangle {

TLineEditVl {
id: inputl

}

TLineEditVvl {
id: input2

Text Input 1

Text Input 2

Try the tab key for navigation. You will experience the focus does not change to input2 . The simple
use of focus: true is not sufficient. The problem is that when the focus was transferred to the
input2 element, the top-level item inside the TlineEditvi (our Rectangle)received focus, and did

not forward the focus to the TextInput .To prevent this, QML offers the FocusScope .

FocusScope

A focus scope declares that the last child element with focus: true receives the focus when the focus
scope receives the focus. So it forwards the focus to the last focus-requesting child element. We will
create a second version of our TLineEdit component called TLineEditV2, using a focus scope as the root

element.

// TLineEditV2.gml
import QtQuick

FocusScope {
width: 96; height: input.height + 8
Rectangle {
anchors.fill: parent
color: "lightsteelblue"

border.color: "gray"

property alias text: input.text

property alias input: input

TextInput {
id: input
anchors.fill: parent
anchors.margins: 4

focus: true

Our example now looks like this:

Rectangle {

TLineEditv2 {
id: inputl

}
TLineEditv2 {

id: input2

Pressing the tab key now successfully switches the focus between the 2 components and the correct

child element inside the component is focused.

TextEdit

The Textkdit isverysimilarto TextInput ,and supportsa multi-line text edit field. It doesn’t have
the text constraint properties, as this depends on querying the painted size of the text (paintedHeight ,
paintedwidth). We also create our own component called TTextEdit to provide an editing

background and use the focus scope for better focus forwarding.

// TTextEdit.gml
import QtQuick

FocusScope {
width: 96; height: 96
Rectangle {
anchors.fill: parent
color: "lightsteelblue"

border.color: "gray"

property alias text: input.text

property alias input: input

TextEdit {
id: input
anchors.fill: parent
anchors.margins: 4

focus: true

You can use it like the TLineEdit component

// textedit.gml

import QtQuick

Rectangle {
width: 136
height: 120

color: "linen"

TTextEdit {

id: input

X: 8; y: 8

width: 120; height: 104
focus: true

text: "Text Edit"

Text Edit|

Keys Element

The attached property keys allows executing code based on certain key presses. For example, to
move and scale a square, we can hook into the up, down, left and right keys to translate the element,

and the plus and minus keys to scale the element.

// keys.gml

import QtQuick

DarkSquare {
width: 400; height: 200

GreenSquare {
id: square
X: 8, y: 8
}
focus: true
Keys.onLeftPressed: square.x -= 8
Keys.onRightPressed: square.x += 8
Keys.onUpPressed: square.y -= 8
Keys.onDownPressed: square.y += 8
Keys.onPressed: function (event) {
switch(event.key) {
case Qt.Key Plus:
square.scale += 0.2
break;
case Qt.Key Minus:
square.scale -= 0.2

break;

Help us improve this page!

Last Updated: 10/20/2021, 11:58:44 AM

< Layout ltems

Advanced Techniques =

http://localhost:8080/ch04-qmlstart/advanced.html
https://github.com/qmlbook/qt6book/edit/main/docs/ch04-qmlstart/input.md
http://localhost:8080/ch04-qmlstart/layout.html

Advanced Techniques

Performance of QML

QML and Javascript are interpreted languages. This means that they do not have to be processed by a
compiler before being executed. Instead, they are being run inside an execution engine. However, as

interpretation is a costly operation, various techniques are used to improve performance.

The QML engine uses just-in-time (JIT) compilation to improve performance. It also caches the
intermediate output to avoid having to recompile. This works seamlessly for you as a developer. The

only trace of this is that files ending with gmlc and jsc can be found next to the source files.

If you want to avoid the initial start-up penalty induced by the initial parsing you can also pre-compile
your QML and Javascript. This requires you to put your code into a Qt resource file, and is described in

detail in the Compiling QML Ahead of Time[” chapter in the Qt documentation.

Help us improve this page!
Last Updated: 10/6/2021, 6:15:22 AM

< Input Elements Fluid Elements »

http://localhost:8080/ch05-fluid/fluid-elements.html
https://doc.qt.io/qt-6/qtquick-deployment.html#ahead-of-time-compilation
https://github.com/qmlbook/qt6book/edit/main/docs/ch04-qmlstart/advanced.md
http://localhost:8080/ch04-qmlstart/input.html

Fluid Elements

Until now, we have mostly looked at some simple graphical elements and how to arrange and

manipulate them.
This chapter is about how to make these changes more interesting by animating them.

Animations are one of the key foundations for modern, slick user interfaces, and can be employed in
your user interface via states, transitions and animations. Each state defines a set of property changes
and can be combined with animations on state changes. These changes are described as a transition

from one state to another state.

Besides animations being used during transitions, they can also be used as standalone elements

triggered by some scripted events.

Help us improve this page!
Last Updated: 9/15/2021, 8:18:16 AM

< Advanced Techniques Animations -

http://localhost:8080/ch05-fluid/animations.html
https://github.com/qmlbook/qt6book/edit/main/docs/ch05-fluid/fluid-elements.md
http://localhost:8080/ch04-qmlstart/advanced.html

Animations

Animations are applied to property changes. An animation defines the interpolation curve from one
value to another value when a property value changes. These animation curves create smooth

transitions from one value to another.

An animation is defined by a series of target properties to be animated, an easing curve for the
interpolation curve, and a duration. All animations in Qt Quick are controlled by the same timer and are

therefore synchronized. This improves the performance and visual quality of animations.

Animations control how properties change using value interpolation

This is a fundamental concept. QML is based on elements, properties, and scripting. Every
element provides dozens of properties, each property is waiting to get animated by you. In the

book, you will see this is a spectacular playing field.

You will catch yourself looking at some animations and just admiring their beauty, and your
creative genius, too. Please remember then: animations control property changes and every

element has dozens of properties at your disposal.

Unlock the power!

// AnimationExample.qgml
import QtQuick

Image {
id: root

source: "assets/background.png"

property int padding: 40
property int duration: 4000

property bool running: false

Image {

id: box
x: root.padding;
y: (root.height-height)/2

source: "assets/box_green.png"

NumberAnimation on x {
to: root.width - box.width - root.padding
duration: root.duration
running: root.running
}
RotationAnimation on rotation {
to: 360
duration: root.duration

running: root.running

MouseArea {

anchors.fill: parent

onClicked: root.running = true

The example above shows a simple animation applied onthe x and rotation properties. Each
animation has a duration of 4000 milliseconds (msec) and loops forever. The animation on x moves
the x-coordinate from the object gradually over to 240px. The animation on rotation runs from the

current angle to 360 degrees. Both animations run in parallel and are started as soon as the Ul is
loaded.

You can play around with the animation by changing the to and duration properties, or you could
add another animation (for example, on the opacity oreventhe scale). Combining these it could

look like the object is disappearing into deep space. Try it out!

Animation Elements

There are several types of animation elements, each optimized for a specific use case. Here is a list of

the most prominent animations:

e PropertyAnimation - Animates changes in property values
e NumberAnimation - Animates changes in greal-type values
e ColorAnimation - Animates changesin color values

e RotationAnimation - Animates changes in rotation values

Besides these basic and widely used animation elements, Qt Quick also provides more specialized

animations for specific use cases:

e PauseAnimation - Provides a pause for an animation

e SequentialAnimation - Allows animations to be run sequentially

e ParallelAnimation - Allows animations to be runin parallel

e AnchorAnimation - Animates changes inanchor values

e ParentAnimation - Animates changes in parentvalues

e SmoothedAnimation - Allows a property to smoothly track a value

e SpringAnimation - Allows a property to track a value in a spring-like motion
e PathAnimation - Animatesan item alongside a path

e Vector3dAnimation - Animates changesin QVector3d values

Later we will learn how to create a sequence of animations. While working on more complex
animations, there is sometimes a need to change a property or to run a script during an ongoing
animation. For this Qt Quick offers the action elements, which can be used everywhere where the other

animation elements can be used:
e PropertyAction - Specifiesimmediate property changes during animation
e ScriptAction - Defines scripts to be run during an animation

The major animation types will be discussed in this chapter using small, focused examples.

Applying Animations

Animation can be applied in several ways:

e Animation on property - runs automatically after the element is fully loaded
» Behavior on property - runs automatically when the property value changes

e Standalone Animation - runs when the animation is explicitly started using start() or running is

set to true (e.g. by a property binding)

Later we will also see how animations can be used inside state transitions.

Clickable Image V2

To demonstrate the usage of animations we reuse our Clickablelmage component from an earlier

chapter and extended it with a text element.

// ClickableImageV2.qgml

// Simple image which can be clicked
import QtQuick

Item {
id: root
width: container.childrenRect.width
height: container.childrenRect.height
property alias text: label.text
property alias source: image.source

signal clicked

Column {

id: container

Image {
id: image

}

Text {
id: label
width: image.width
horizontalAlignment: Text.AlignHCenter
wrapMode: Text.WordWrap

color: "#ececec"

MouseArea {
anchors.fill: parent

onClicked: root.clicked()

To organize the element below the image we used a Column positioner and calculated the width and

height based on the column’s childrenRect property. We exposed text and image source properties,

and a clicked signal. We also wanted the text to be as wide as the image, and for it to wrap. We achieve

the latter by using the Text element's wrapMode property.

Parent/child geometry dependency

Due to the inversion of the geometry-dependency (parent geometry depends on child
geometry), we can’t seta width / height on the ClickablelmageV2, as this will break our

width / height binding.

You should prefer the child’'s geometry to depend on the parent’s geometry if the item is more

like a container for other items and should adapt to the parent's geometry.

The objects ascending

animation behavior
on on standalone
property property animation

The three objects are all at the same y-position (y=200). They all need to travel to y=40 , each of them

using a different method with different side-effects and features.

First object

The first object travels using the Animation on <property> strategy. The animation starts immediately.

ClickableImageV2 {
id: greenBox
X: 40; y: root.height-height
source: "assets/box_green.png"

text: gsTr("animation on property")

NumberAnimation on y {
to: 40; duration: 4000

When an object is clicked, its y-position is reset to the start position, and this applies to all of the

objects. On the first object, the reset does not have any effect as long as the animation is running.

This can be visually disturbing, as the y-position is set to a new value for a fraction of a second before

the animation starts. Such competing property changes should be avoided.

Second object

The second object travels usinga Behavior on animation. This behavior tells the property it should
animate each change in value. The behavior can be disabled by setting enabled: false on the

Behavior element.

ClickableImageV2 {
id: blueBox
x: (root.width-width)/2; y: root.height-height
source: "assets/box_blue.png"
text: gsTr("behavior on property")
Behavior on y {
NumberAnimation { duration: 4000 }

onClicked: y = 40
// random y on each click
// onClicked: y = 40 + Math.random() * (205-49)

The object will start traveling when you click it (its y-position is then set to 40). Another click has no

influence, as the position is already set.

You could try to use a random value (e.g. 4@ + (Math.random() * (205-40))for the y-position. You
will see that the object will always animate to the new position and adapt its speed to match the 4

seconds to the destination defined by the duration of the animation.

Third object

The third object uses a standalone animation. The animation is defined as its own element and can be

almost anywhere in the document.

ClickableImageV2 {
id: redBox
x: root.width-width-40; y: root.height-height
source: "assets/box_red.png"
onClicked: anim.start()

// onClicked: anim.restart()
text: gsTr("standalone animation")

NumberAnimation {
id: anim
target: redBox
properties: "y"
to: 40
duration: 4000

The click will start the animation using the animation's start() function. Each animation has start(),

stop(), resume(), and restart() functions. The animation itself contains much more information than the

other animation types earlier.

We need to define the target , which is the element to be animated, along with the names of the
properties that we want to animate. We also need to definea to value, and, in this case,a from

value, which allows a restart of the animation.

o

animation
on .
property behavior
an
property standalone
animation

A click on the background will reset all objects to their initial position. The first object cannot be

restarted except by re-starting the program which triggers the re-loading of the element.

Other ways to control Animations

Another way to start/stop an animation is to bind a property to the running property of an

animation. This is especially useful when the user-input is in control of properties:

NumberAnimation {
//[...]
// animation runs when mouse is pressed

running: area.pressed

}

MouseArea {

id: area

Easing Curves

The value change of a property can be controlled by an animation. Easing attributes allow influencing

the interpolation curve of a property change.

All animations we have defined by now use a linear interpolation because the initial easing type of an
animationis Easing.Linear . It's best visualized with a small plot, where the y-axis is the property to
be animated and the x-axis is the time (duration). A linear interpolation would draw a straight line from
the from value at the start of the animation to the to value at the end of the animation. So the

easing type defines the curve of change.

Easing types should be carefully chosen to support a natural fit for a moving object. For example, when
a page slides out, the page should initially slide out slowly and then gain momentum to finally slide out

at high speed, similar to turning the page of a book.

Animations should not be overused.

As with other aspects of Ul design, animations should be designed carefully to support the Ul
flow, not dominate it. The eye is very sensitive to moving objects and animations can easily

distract the user.

In the next example, we will try some easing curves. Each easing curve is displayed by a clickable image
and, when clicked, will set a new easing type on the square animation and then triggera restart()

to run the animation with the new curve.

SineCurve INOutCirc ~ InOutElastic | InOutBack @ InOutBounce

The code for this example was made a little bit more complicated. We first create a grid of
EasingTypes anda Box which is controlled by the easing types. An easing type just displays the curve

which the box shall use for its animation. When the user clicks on an easing curve the box moves in a

direction according to the easing curve. The animation itself is a standalone animation with the target

set to the box and configured for x-property animation with a duration of 2 seconds.

TIP

The internals of the EasingType renders the curve in real time, and the interested reader can

look it up in the EasingCurves example.

// EasingCurves.qgml

import QtQuick
import QtQuick.Layouts

Rectangle {
id: root
width: childrenRect.width
height: childrenRect.height

color: '#4adada’
gradient: Gradient {
GradientStop { position: ©0.0; color: root.color }
GradientStop { position: 1.0; color: Qt.lighter(root.color, 1.2) }

ColumnLayout {
Grid {

spacing: 8

columns: 5

EasingType {
easingType: Easing.Linear
title: 'Linear'’
onClicked: {

animation.easing.type = easingType

box.toggle = !box.toggle

}
EasingType {
easingType: Easing.InExpo
title: "InExpo"
onClicked: {
animation.easing.type = easingType

box.toggle = !box.toggle

}

EasingType {
easingType: Easing.OutExpo
title: "OutExpo"
onClicked: {

animation.easing.type = easingType

box.toggle = !box.toggle

}
EasingType {
easingType: Easing.InOutExpo
title: "InOutExpo"
onClicked: {
animation.easing.type = easingType

box.toggle = !box.toggle

}
EasingType {
easingType: Easing.InOutCubic
title: "InOutCubic"
onClicked: {
animation.easing.type = easingType

box.toggle = !box.toggle

}
EasingType {
easingType: Easing.SineCurve
title: "SineCurve"
onClicked: {
animation.easing.type = easingType
box.toggle = !box.toggle

}
EasingType {
easingType: Easing.InOutCirc
title: "InOutCirc"
onClicked: {
animation.easing.type = easingType

box.toggle = !box.toggle

}
EasingType {
easingType: Easing.InOutElastic
title: "InOutElastic”
onClicked: {
animation.easing.type = easingType

box.toggle = !box.toggle

}
EasingType {
easingType: Easing.InOutBack
title: "InOutBack"
onClicked: {
animation.easing.type = easingType

box.toggle = !box.toggle

}
EasingType {
easingType: Easing.InOutBounce
title: "InOutBounce"
onClicked: {
animation.easing.type = easingType

box.toggle = !box.toggle

}
Item {

height: 80
Layout.fillWidth: true
Box {
id: box
property bool toggle
x: toggle ? 20 : root.width - width - 20
anchors.verticalCenter: parent.verticalCenter
gradient: Gradient {
GradientStop { position: ©.0; color: "#2ed5fa" }
GradientStop { position: 1.0; color: "#2467ec" }
}
Behavior on x {
NumberAnimation {
id: animation
duration: 5600

Please play with the example and observe the change of speed during an animation. Some animations

feel more natural for the object and some feel irritating.

Besides the duration and easing.type ,you are able to fine-tune animations. For example, the

general PropertyAnimation type (from which most animations inherit) additionally supports

easing.amplitude , easing.overshoot ,and easing.period properties, which allow you to fine-tune

the behavior of particular easing curves.

Not all easing curves support these parameters. Please consult the easing table from the
PropertyAnimation documentation to check if an easing parameter has an influence on an easing

curve.

Choose the right Animation

http://doc.qt.io/qt-6/qml-qtquick-propertyanimation.html#easing-prop

Choosing the right animation for the element in the user interface context is crucial for the

outcome. Remember the animation shall support the Ul flow; not irritate the user.

Grouped Animations

Often animations will be more complex than just animating one property. You might want to run
several animations at the same time or one after another or even execute a script between two

animations.

For this, grouped animations can be used. As the name suggests, it's possible to group animations.
Grouping can be done in two ways: parallel or sequential. You can use the SequentialAnimation orthe
ParallelAnimation element, which act as animation containers for other animation elements. These

grouped animations are animations themselves and can be used exactly as such.

' Parallel Animation ,
! N,
Sequential Animation Xy

St St

Parallel animations

All direct child animations of a parallel animation run in parallel when started. This allows you to

animate different properties at the same time.

// ParallelAnimationExample.qgml
import QtQuick

BrightSquare {

id: root

property int duration: 3000

property Item ufo: ufo

width: 600
height: 400

Image {

anchors.fill: parent

source: "assets/ufo_background.png"

ClickableImageV3 {
id: ufo
X: 20; y: root.height-height
text: gsTr('ufo')
source: "assets/ufo.png"

onClicked: anim.restart()

ParallelAnimation {

id: anim

NumberAnimation {
target: ufo
properties: "y"
to: 20
duration: root.duration

}

NumberAnimation {
target: ufo
properties: "x"
to: 160

duration: root.duration

Sequential animations

A sequential animation runs each child animation in the order in which it is declared: top to bottom.

// SequentialAnimationExample.gml
import QtQuick

BrightSquare {

id: root

property int duration: 3000
property Item ufo: ufo

width: 600
height: 400

Image {
anchors.fill: parent

source: "assets/ufo_background.png"

ClickableImageV3 {
id: ufo
X: 20; y: root.height-height
text: gsTr('rocket")
source: "assets/ufo.png"

onClicked: anim.restart()

SequentialAnimation {
id: anim
NumberAnimation {
target: ufo
properties: "y"
to: 20
// 60% of time to travel up
duration: root.duration * 0.6
}
NumberAnimation {
target: ufo
properties: "x"
to: 400
// 40% of time to travel sideways

duration: root.duration * 0.4

A

-
ESEEEEEEEEEEEENEEEEEEEEEEEEEEEERE

Nested animations

Grouped animations can also be nested. For example, a sequential animation can have two parallel

animations as child animations, and so on. We can visualize this with a soccer ball example. The idea is

to throw a ball from left to right and animate its behavior.

To understand the animation we need to dissect it into the integral transformations of the object. We

need to remember that animations animate property changes. Here are the different transformations:

e An x-translation from left-to-right (x1)

o Avy-translation from bottom to top (Y1) followed by a translation from up to down (v2) with

some bouncing

o Arotation of 360 degrees over the entire duration of the animation (roT1)

The whole duration of the animation should take three seconds.

We start with an empty item as the root element of the width of 480 and height of 300.

QtQuick

Item {

id: root

property int duration: 3000

width: 480
height: 300
/] [...]

We have defined our total animation duration as a reference to better synchronize the animation parts.

The next step is to add the background, which in our case are 2 rectangles with green and blue

gradients.

Rectangle {
id: sky
width: parent.width
height: 200
gradient: Gradient {
GradientStop { position: ©.0; color: "#0080FF" }
GradientStop { position: 1.0; color: "#66CCFF" }

}
Rectangle {

id: ground

anchors.top: sky.bottom

anchors.bottom: root.bottom

width: parent.width

gradient: Gradient {
GradientStop { position: ©.0; color: "#00FF@0" }
GradientStop { position: 1.0; color: "#00803F" }

The upper blue rectangle takes 200 pixels of the height and the lower one is anchored to the top of the

sky and to the bottom of the root element.

Let's bring the soccer ball onto the green. The ball is an image, stored under “assets/soccer_ball.png”.

For the beginning, we would like to position it in the lower left corner, near the edge.

Image {
id: ball
X: 0; y: root.height-height

source: "assets/soccer_ball.png"

MouseArea {
anchors.fill: parent
onClicked: {
ball.x = ©
ball.y = root.height-ball.height
ball.rotation = ©

anim.restart()

The image has a mouse area attached to it. If the ball is clicked, the position of the ball will reset and

the animation is restarted.

Let's start with a sequential animation for the two y translations first.

SequentialAnimation {
id: anim
NumberAnimation {

target: ball

properties: "y"

to: 20

duration: root.duration * 0.4

}

NumberAnimation {
target: ball
properties: "y"
to: 240

duration: root.duration * 0.6

! 0

This specifies that 40% of the total animation duration is the up animation and 60% the down
animation, with each animation running after the other in sequence. The transformations are animated
on a linear path but there is no curving currently. Curves will be added later using the easing curves, at

the moment we're concentrating on getting the transformations animated.

Next, we need to add the x-translation. The x-translation shall run in parallel with the y-translation, so
we need to encapsulate the sequence of y-translations into a parallel animation together with the x-

translation.

ParallelAnimation {

id: anim

SequentialAnimation {
// ... our Y1, Y2 animation

}

NumberAnimation { // X1 animation
target: ball
properties: "x"
to: 400

duration: root.duration

In the end, we would like the ball to be rotating. For this, we need to add another animation to the

parallel animation. We choose RotationAnimation , as it’'s specialized for rotation.

ParallelAnimation {
id: anim
SequentialAnimation {
// ... our Y1, Y2 animation

}

NumberAnimation { // X1 animation

// X1 animation

}

RotationAnimation {
target: ball
properties: "rotation"
to: 720

duration: root.duration

That's the whole animation sequence. The one thing that's left is to provide the correct easing curves

for the movements of the ball. For the Y7animation, we use a Easing.OutCirc curve, as this should
look more like a circular movement. Y2is enhanced usingan Easing.OutBounce to give the ballits
bounce, and the bouncing should happen at the end (try with Easing.InBounce and you will see that

the bouncing starts right away).
The X7and ROT7animation are left as-is, with a linear curve.

Here is the final animation code for your reference:

ParallelAnimation {
id: anim
SequentialAnimation {
NumberAnimation {
target: ball
properties: "y"
to: 20
duration: root.duration * 0.4
easing.type: Easing.OutCirc
}
NumberAnimation {
target: ball
properties: "y"
to: root.height-ball.height
duration: root.duration * 0.6

easing.type: Easing.OutBounce

}

NumberAnimation {
target: ball
properties: "x"
to: root.width-ball.width
duration: root.duration
}
RotationAnimation {
target: ball
properties: "rotation"
to: 720

duration: root.duration

Help us improve this page!
Last Updated: 10/20/2021, 12:03:33 PM

¢ Fluid Elements States and Transitions >

http://localhost:8080/ch05-fluid/states-transitions.html
https://github.com/qmlbook/qt6book/edit/main/docs/ch05-fluid/animations.md
http://localhost:8080/ch05-fluid/fluid-elements.html

States and Transitions

Often parts of a user interface can be described in states. A state defines a set of property changes and

can be triggered by a certain condition.

Additionally, these state switches can have a transition attached which defines how these changes
should be animated or any additional actions that shall be applied. Actions can also be applied when a

state is entered.

States

You define states in QML with the state element, which needs to be bound to the states array of

any item element.

A state is identified through a state name, and in its simplest form, consists of a series of property
changes on elements. The default state is defined by the initial properties of the element and is named

(an empty string).

Item {
id: root
states: |
State {

name: "go"

PropertyChanges { ...

¥
State {
name: "stop"

PropertyChanges { ...

A state is changed by assigning a new state name to the state property of the element in which the

states are defined.

Control states using when

Another way to control states is using the when property of the State element.The when

property can be set to an expression that evaluates to true when the state should be applied.

Item {
id: root

states: |

Button {
id: goButton

onClicked: root.state = "go

For example, a traffic light might have two signaling lights. The upper one signaling stop with a red
color and the lower one signaling go with a green color. In this example, both lights should not shine at

the same time. Let's have a look at the state chart diagram.

start

. = light1: red light1: black

light2: black light2: green

stop) (g

W

When the system is switched on, it automatically goes into the stop mode as the default state. The stop

state changes 1lightl toredand 1light2 to black (off).

An external event can now trigger a state switch to the "go" state. In the go state, we change the
color properties from 1lighti to black (off)and 1light2 to green to indicate the pedestrians may now

Cross.

To realize this scenario we start sketching our user interface for the 2 lights. For simplicity, we use 2
rectangles with the radius set to the half of the width (and the width is the same as the height, which

means it's a square).

Rectangle {

id: lightl

x: 25; y: 15

width: 100; height: width
radius: width / 2

color: root.black
border.color: Qt.lighter(color, 1.1)

Rectangle {
id: light2
x: 25; y: 135
width: 100; height: width
radius: width/2
color: root.black
border.color: Qt.lighter(color, 1.1)

As defined in the state chart we want to have two states: one being the "go" state and the other the
"stop" state, where each of them changes the traffic light's respective color to red or green. We set

the state propertyto stop toensure theinitial state of our traffic lightis the stop state.

Initial state

We could have achieved the same effect with onlya "go" state and no explicit "stop" state
by setting the color of 1ighti toredand the colorof light2 to black. Theinitial state ""

defined by the initial property values would then act as the "stop" state.

state: "stop"

states: [

State {
name: "stop"
PropertyChanges { target: : root.red }
PropertyChanges { target: : root.black }

s

State {
name: "go"
PropertyChanges { target: lightil; : root.black }
PropertyChanges { target: light2; : root.green }

Using PropertyChanges { target: light2; color: "black" } is notreally requiredin this examples as
the initial color of 1ight2 is already black. In a state, it's only necessary to describe how the properties

shall change from their default state (and not from the previous state).

A state change is triggered using a mouse area which covers the whole traffic light and toggles

between the go- and stop-state when clicked.

MouseArea {

anchors.fill: parent

onClicked: parent.state = (parent.state == "stop" ? "go" : "stop")

stop-state go-state

We are now able to successfully change the state of the traffic lamp. To make the Ul more appealing
and natural, we should add some transitions with animation effects. A transition can be triggered by a

state change.

Using scripting

It's possible to create similar logic using scripting instead of QML states. However, QML is a
better language than JavaScript for describing user interfaces. Where possible, aim to write

declarative code instead of imperative code.

Transitions

A series of transitions can be added to every item. A transition is executed by a state change.

You can define on which state change a particular transition can be applied using the from: and to:
properties. These two properties act like a filter: when the filter is true the transition will be applied.

You can also use the wildcard “*”, which means “any state”.

For example, from: "*"; to: "*" means "from any state to any other state", and is the default value

for from and to .This means the transition will be applied to every state switch.

For this example, we would like to animate the color changes when switching state from “go” to
“stop”. For the other reversed state change (“stop” to “go”) we want to keep an immediate color

change and don’t apply a transition.

We restrict the transition with the from and to properties to filter only the state change from “go”
to “stop”. Inside the transition, we add two color animations for each light, which shall animate the

property changes defined in the state description.

transitions: [

Transition {
from: “"stop"; to: "go"
// from: "*"; to: "*"
ColorAnimation { target: lightl; properties: "color"; duration: 2000 }
ColorAnimation { target: light2; properties: "color"; duration: 2000 }

You can change the state though clicking the Ul. The state is applied immediately and will also change
the state while a transition is running. So, try to click the Ul while the state is in the transition from

“stop” to “go”. You will see the change will happen immediately.

You could play around with this Ul by, for example, scaling the inactive light down to highlight the
active light.

For this, you would need to add another property change for scaling to the states and also handle the

animation for the scaling property in the transition.

Another option would be to add an “attention” state where the lights are blinking yellow. For this, you
would need to add a sequential animation to the transition for one second going to yellow (“to”

property of the animation and one second going to “black”).

Maybe you would also want to change the easing curve to make it more visually appealing.

Help us improve this page!

Last Updated: 10/20/2021, 12:03:33 PM

https://github.com/qmlbook/qt6book/edit/main/docs/ch05-fluid/states-transitions.md

< Animations Advanced Techniques >

http://localhost:8080/ch05-fluid/advanced.html
http://localhost:8080/ch05-fluid/animations.html

Advanced Techniques

Nothing advanced here

Help us improve this page!
Last Updated: 7/8/2021, 8:18:09 AM

¢ States and Transitions

Ul Controls »

http://localhost:8080/ch06-controls/controls2.html
https://github.com/qmlbook/qt6book/edit/main/docs/ch05-fluid/advanced.md
http://localhost:8080/ch05-fluid/states-transitions.html

Ul Controls

This chapter shows how to use the Qt Quick Controls module. Qt Quick Controls are used to create

advanced user interfaces built from standard components such as buttons, labels, sliders and so on.

Qt Quick Controls can be arranged using the layout module and are easy to style. Also we will look into

the various styles for the different plaforms before diving into custom styling.

Help us improve this page!
Last Updated: 10/5/2021, 3:58:03 AM

< Advanced Techniques Introduction to Controls =»

http://localhost:8080/ch06-controls/introduction.html
https://github.com/qmlbook/qt6book/edit/main/docs/ch06-controls/controls2.md
http://localhost:8080/ch05-fluid/advanced.html

Introduction to Controls

Using Qt Quick from scratch gives you primitive graphical and interaction elements from which you can
build your user interfaces. Using Qt Quick Controls you start from a slightly more structured set of

controls to build from.

The controls range from simple text labels and buttons to more complex ones such as sliders and dials.
These elements are handy if you want to create a user interface based on classic interaction patterns,

as they provide a good foundation to stand on.

Qt Quick Controls come with a number of styles out of the box that are shown in the table below. The
Basic style is a basic flat style. The Universal style is based on the Microsoft Universal Design
Guidelines, while Materialis based on Google's Material Design Guidelines, and the Fusion style is a

desktop-oriented style.

Some of the styles can be tweaked by modifying palettes. The /magine style is based on image assets,
this allows a graphical designer to create a new style without writing any code at all, not even for

palette colour codes.

¢ Basic

Fusion

Ot Quick Controls 2

4 CheckBox

CheckBox presents an option button that can be
toggled on or off. Check boxes are typically used to
select one or more options from a set of options.

«/ | First

Second

Ot Quick Controls 2

4 CheckBox :

CheckBox presents an option button that can be toggled
on or off. Check boxes are typically used to select one
or more options from a set of options.

¥ | First

Second

| Third

macOS

Ot Quick Controls 2

CheckBox presents an option button that can be
toggled on or off. Check boxes are typically used to
select one or more options from a set of options.

First

Second

e Material

Ot Quick Controls 2

CheckBox

CheckBox presents an option button that can be
toggled on or off. Check boxes are typically used to
select one or more options from a set of options.

First

D Second

Third

¢ Imagine

Ot Quick Controls 2

CheckBox presents an option button that can be
toggled on or off. Check boxes are typically used to
select one or more options from a set of options.

First

Second

e Windows

Ot Quick Controls 2

CheckBox presents an option button that can be
toggled on or off. Check boxes are typically used to
select one or more options from a set of options.

First

Second

e Universal

Qt Quick Controls 2

4 CheckBox :

CheckBox presents an option button that
can be toggled on or off. Check boxes are
typically used to select one or more options
from a set of options.

First

[] Second

Qt Quick Controls 2 is available from the QtQuick.Controls import. The following modules are also of

interest:

e QtQuick.Controls - The basic controls.

e QtQuick.Templates - Providesthe behavioral, non-visual base types for the controls.

e QtQuick.Controls.Imagine - Imagine style theming support.

e QtQuick.Controls.Material - Material style theming support.

e QtQuick.Controls.Universal - Universal style theming support.

e (Qt.labs.platform - Support for platform native dialogs for common tasks such as picking files,

colours, etc, as well as system tray icons and standard paths.

Qt.Labs

Notice that the Qt.labs modules are experimental, meaning that their APIs can have breaking

changes between Qt versions.

Help us improve this page!

https://github.com/qmlbook/qt6book/edit/main/docs/ch06-controls/introduction.md

Last Updated: 9/16/2021, 7:40:11 AM

< Ul Controls An Image Viewer -»

http://localhost:8080/ch06-controls/image-viewer.html
http://localhost:8080/ch06-controls/controls2.html

An Image Viewer

Let's look at a larger example of how Qt Quick Controls are used. For this, we will create a simple

image viewer.

First, we create it for desktop using the Fusion style, then we will refactor it for a mobile experience

before having a look at the final code base.

The Desktop Version

The desktop version is based around a classic application window with a menu bar, a tool barand a

document area. The application can be seen in action below.

Image Viewer

Eile Help
M Open

We use the Qt Creator project template for an empty Qt Quick application as a starting point. However,

we replace the default window element from the template witha ApplicationWindow from the

QtQuick.Controls module. The code below shows main.gml where the window itself is created and

setup with a default size and title.

import QtQuick
import QtQuick.Controls

import Qt.labs.platform

ApplicationWindow {
visible: true
width: 640
height: 480

/) coc

The ApplicationWindow consists of four main areas as shown below. The menu bar, tool bar and status
bar are usually populated by instances of MenuBar , ToolBar or TabBar controls, while the contents
area is where the children of the window go. Notice that the image viewer application does not feature

a status bar; that is why it is missing from the code show here, as well as from the figure above.

Menu bar

Tool bar

Contents

Status bar

As we are targeting desktop, we enforce the use of the Fusion style. This can be done via a
configuration file, environment variables, command line arguments, or programmatically in the C++

code. We do it the latter way by adding the following line to main.cpp :

QQuickStyle::setStyle("Fusion");

We then start building the user interface in main.gml byaddingan 1Image element as the contents.
This element will hold the images when the user opens them, so for now it is just a placeholder. The

background property is used to provide an element to the window to place behind the contents. This

will be shown when there is no image loaded, and as borders around the image if the aspect ratio does

not let it fill the contents area of the window.

ApplicationWindow {

J oo

background: Rectangle {

color: "darkGray"

Image {
id: image
anchors.fill: parent
fillMode: Image.PreserveAspectFit

asynchronous: true

We then continue by adding the ToolBar . Thisis done using the toolBar property of the window.
Inside the tool bar we adda Flow element which will let the contents fill the width of the control

before overflowing to a new row. Inside the flow we place a ToolButton .

The ToolButton hasa couple of interesting properties. The text is straight forward. However, the

icon.name is taken from the freedesktop.org lcon Naming Specificationr . In that document, a list of

standard icons are listed by name. By refering to such a name, Qt will pick out the correct icon from the

current desktop theme.

Inthe onClicked signal handler of the ToolButton is the final piece of code. It calls the open

method on the fileOpenbDialog element.

ApplicationWindow {

/] cac

header: ToolBar {
Flow {
anchors.fill: parent
ToolButton {
text: gsTr("Open")
icon.name: "document-open"

onClicked: fileOpenDialog.open()

https://specifications.freedesktop.org/icon-naming-spec/icon-naming-spec-latest.html

The fileOpenDialog elementisa FileDialog controlfrom the Qt.labs.platform module. The file

dialog can be used to open or save files.

In the code we start by assigninga title . Then we set the starting folder using the SstandardsPaths

class. The standardsPaths classholds links to common folders such as the user’'s home, documents,

and so on. After that we set a name filter that controls which files the user can see and pick using the

dialog.

Finally, we reach the onAccepted signal handler where the 1Image element that holds the window
contents is set to show the selected file. There isan onRejected signal as well, but we do not need to

handle it in the image viewer application.

ApplicationWindow {

/] coc

FileDialog {
id: fileOpenDialog
title: "Select an image file"
folder: StandardPaths.writablelLocation(StandardPaths.DocumentsLocation)

nameFilters: [
"Image files (*.png *.jpeg *.jpg)",
]

onAccepted: {

image.source = fileOpenDialog.fileUrl

We then continue with the MenuBar . To create a menu, one puts Menu elements inside the menu bar,

and then populates each Menu with MenuItem elements.

In the code below, we create two menus, Fileand Help. Under File, we place Open using the same icon
and action as the tool button in the tool bar. Under Help, you find About which triggers a call to the

open method of the aboutDialog element.

Notice that the ampersands (“&”) inthe title property of the Menu andthe text property of the

MenuItem turn the following characterinto a keyboard shortcut; e.g. you reach the file menu by

pressing Alt+F, followed by Alt+Oto trigger the open item.

ApplicationWindow {

/] oo

menuBar: MenuBar {
Menu {
title: gsTr("&File")
MenuItem {
text: gsTr("&0pen...")
icon.name: "document-open"

onTriggered: fileOpenDialog.open()

Menu {
title: gsTr("&Help")
MenuItem {
text: gsTr("&About...")
onTriggered: aboutDialog.open()

The aboutDialog elementis based onthe Dialog controlfrom the QtQuick.Controls module,

which is the base for custom dialogs. The dialog we are about to create is shown in the figure below.

QML Image Viewer
A part of the QmiBook
http://gmlibook.org

The code for the aboutDialog can be splitinto three parts. First, we setup the dialog window with a

title. Then, we provide some contents for the dialog —in this case, a Label control. Finally, we opt to

use a standard Ok button to close the dialog.

ApplicationWindow {

Dialog {
id: aboutDialog
title: gsTr("About")
Label {
anchors.fill: parent
text: gsTr("QML Image Viewer\nA part of the QmlBook\nhttp://gmlbook.org")
horizontalAlignment: Text.AlignHCenter

standardButtons: StandardButton.Ok

The end result of all this is a functional, albeit simple, desktop application for viewing images.

Moving to Mobile

There are a number of differences in how a user interface is expected to look and behave on a mobile
device compared to a desktop application. The biggest difference for our application is how the actions
are accessed. Instead of a menu bar and a tool bar, we will use a drawer from which the user can pick
the actions. The drawer can be swiped in from the side, but we also offer a hamburger button in the

header. The resulting application with the drawer open can be seen below.

[ﬂ Image Viewer

Open...

About...

First of all, we need to change the style thatis setin main.cpp from Fusionto Material:

QQuickStyle:: ("Material™);

Then we start adapting the user interface. We start by replacing the menu with a drawer. In the code
below, the Drawer componentis added as a child to the ApplicationWindow .Inside the drawer, we

puta Listview containing ItemDelegate instances. Italso containsa ScrollIndicator used toshow

which part of a long list is being shown. As our list only consists of two items, the indicator is not visible

in this example.

The drawer's Listview is populated froma ListModel where each ListItem correspondstoa menu

item. Each time an item is clicked, in the onClicked method, the triggered method of the

corresponding ListItem is called. Thisway, we can use a single delegate to trigger different actions.

ApplicationWindow {

/] coc

id: window

Drawer {

id: drawer

width: Math.min(window.width, window.height) / 3 * 2
height: window.height

ListView {
focus: true
currentIndex: -1

anchors.fill: parent

delegate: ItemDelegate {
width: parent.width
text: model.text
highlighted: ListView.isCurrentItem
onClicked: {
drawer.close()

model.triggered()

model: ListModel {
ListElement {
text: gsTr("Open...")
triggered: function() { fileOpenDialog.open(); }

}
ListElement {

text: gsTr("About...")
triggered: function() { aboutDialog.open(); }

ScrollIndicator.vertical: ScrollIndicator { }

The next change isin the header ofthe ApplicationwWindow .Instead of a desktop style toolbar, we

add a button to open the drawer and a label for the title of our application.

Image Viewer

The ToolBar contains two child elements:a ToolButton anda Label .

The ToolButton control opens the drawer. The corresponding close call can be foundinthe
Listview delegate. When anitem has been selected, the drawer is closed. The icon used for the
ToolButton comes from the Material Design Icons page

ApplicationWindow {

Ji a0

header: ToolBar {
ToolButton {

id: menuButton

https://material.io/tools/icons/?style=baseline

anchors.left: parent.left
anchors.verticalCenter: parent.verticalCenter
icon.source: "images/baseline-menu-24px.svg"

onClicked: drawer.open()

}
Label {
anchors.centerIn: parent
text: "Image Viewer"
font.pixelSize: 20
elide: Label.ElideRight
}
}
//

Finally we make the background of the toolbar pretty — or at least orange. To do this, we alter the
Material.background attached property. This comes from the QtQuick.Controls.Material module

and only affects the Material style.

import QtQuick.Controls.Material
ApplicationWindow {
1l ooc

header: ToolBar {

Material.background: Material.Orange

With these few changes we have converted our desktop image viewer to a mobile-friendly version.

A Shared Codebase

In the past two sections we have looked at an image viewer developed for desktop use and then

adapted it to mobile.

Looking at the code base, much of the code is still shared. The parts that are shared are mostly
associated with the document of the application, i.e. the image. The changes have accounted for the
different interaction patterns of desktop and mobile, respectively. Naturally, we would want to unify

these code bases. QML supports this through the use of file selectors.

Afile selector lets us replace individual files based on which selectors are active. The Qt documentation
maintains a list of selectors in the documentation for the QFileSelector class (link).In our case, we
will make the desktop version the default and replace selected files when the android selector is
encountered. During development you can set the environment variable QT_FILE_SELECTORS to

android to simulate this.

File Selector

File selectors work by replacing files with an alternative when a selectoris present.

By creating a directory named +selector (where selector representsthe name of a
selector) in the same directory as the files that you want to replace, you can then place files
with the same name as the file you want to replace inside the directory. When the selector is

present, the file in the directory will be picked instead of the original file.

The selectors are based on the platform: e.g. android, ios, osx, linux, gnx, and so on. They can
also include the name of the Linux distribution used (if identified), e.g. debian, ubuntu, fedora.

Finally, they also include the locale, e.g. en_US, sv_SE, etc.

It is also possible to add your own custom selectors.

The first step to do this change is to isolate the shared code. We do this by creating the
ImageViewerWindow element which will be used instead of the ApplicationWindow for both of our

variants. This will consist of the dialogs, the 1Image elementand the background. In order to make the

open methods of the dialogs available to the platform specific code, we need to expose them through

the functions openFileDialog and openAboutDialog .

import QtQuick
import QtQuick.Controls
import Qt.labs.platform

ApplicationWindow {
function openFileDialog() { fileOpenDialog.open(); }

function openAboutDialog() { aboutDialog.open(); }

visible: true

title: gsTr("Image Viewer")

background: Rectangle {

color: "darkGray"

Image {
id: image

anchors.fill: parent

https://doc.qt.io/qt-5/qfileselector.html

fillMode: Image.PreserveAspectFit

asynchronous: true

FileDialog {
id: fileOpenDialog

/] ...

}

Dialog {
id: aboutDialog
4 aon

}

Next, we create a new main.gml for our default style Fusion, i.e. the desktop version of the user

interface.

Here, we base the user interface around the ImageViewerWindow instead of the ApplicationWindow .

Then we add the platform specific parts to it, e.g. the MenuBar and ToolBar .The only changes to

these is that the calls to open the respective dialogs are made to the new functions instead of directly

to the dialog controls.

import QtQuick
import QtQuick.Controls

ImageViewerWindow {

id: window

width: 640
height: 480

menuBar: MenuBar {

Menu {
title: gsTr("&File")
MenuItem {
text: gsTr("&0pen...")
icon.name: "document-open"
onTriggered: window.openFileDialog()
}
}
Menu {

title: gsTr("&Help")

MenuItem {
text: gsTr("&About...")

onTriggered: window.openAboutDialog()

header: ToolBar {
Flow {
anchors.fill: parent
ToolButton {
text: gsTr("Open")
icon.name: "document-open"

onClicked: window.openFileDialog()

Next, we have to create a mobile specific main.gml . This will be based around the Material theme.

Here, we keep the Drawer and the mobile-specific toolbar. Again, the only change is how the dialogs

are opened.

import QtQuick
import QtQuick.Controls
import QtQuick.Controls.Material

ImageViewerWindow {

id: window

width: 360
height: 520

Drawer {

id: drawer

//

ListView {

I a0

model: ListModel {
ListElement {
text: gsTr("Open...")
triggered: function(){ window.openFileDialog(); }

}
ListElement {

text: gsTr("About...")
triggered: function(){ window.openAboutDialog(); }

header: ToolBar {

T

The two main.gml files are placed in the file system as shown below. This lets the file selector that the
QML engine automatically creates pick the right file. By default, the Fusion main.gml is loaded. If the

android selector is present, then the Material main.gml isloaded instead.

Froject Root

/\

main.gml .

(Fusion) +android
main.gml
(Material)

Until now the style has been setinin main.cpp . We could continue doing this and use #ifdef
expressions to set different styles for different platforms. Instead we will use the file selector
mechanism again and set the style using a configuration file. Below, you can see the file for the Material

style, but the Fusionfile is equally simple.

[Controls]

Style=Material

These changes has given us a joined codebase where all the document code is shared and only the
differences in user interaction patterns differ. There are different ways to do this, e.g. keeping the
document in a specific component that is included in the platform specific interfaces, or as in this

example, by creating a common base that is extended by each platform. The best approach is best

determined when you know how your specific code base looks and can decide how to separate the

common from the unique.

Native Dialogs

When using the image viewer you will notice that it uses a non-standard file selector dialog. This makes

it look out of place.

The Qt.labs.platform module can help us solve this. It provides QML bindings to native dialogs such
as the file dialog, font dialog and colour dialog. It also provides APIs to create system tray icons, as well
as system global menus that sits on top of the screen (e.g. as in OS X). The cost of this is a dependency
onthe Qtwidgets module, as the widget based dialog is used as a fallback where the native support is

missing.

In order to integrate a native file dialog into the image viewer, we need to import the
Qt.labs.platform module. As this module has name clashes with the QtQuick.Dialogs module

which it replaces, it is important to remove the old import statement.

In the actual file dialog element, we have to change how the folder property is set, and ensure that
the onAccepted handler usesthe file propertyinstead of the fileurl property. Apartfrom these

details, the usage is identical to the FileDialog from QtQuick.Dialogs .

import QtQuick
import QtQuick.Controls
import Qt.labs.platform

ApplicationWindow {
1) ooc
FileDialog {

id: fileOpenDialog

title: "Select an image file"

folder: StandardPaths.writablelLocation(StandardPaths.DocumentsLocation)

nameFilters: [

"Image files (*.png *.jpeg *.jpg)",
]
onAccepted: {

image.source = fileOpenDialog.file

In addition to the QML changes, we also need to alter the project file of the image viewer to include the

widgets module.

QT += quick quickcontrols2 widgets

And we need to update main.gml toinstantiatea QApplication objectinstead of a QGuiApplication
object. This is because the QGuiApplication class containsthe minimal environment needed for a
graphical application, while QApplication extends QGuiApplication with features needed to support

QtWidgets .

include <QApplication>

A oo

int main(int argc, char *argv[])

{

QApplication app(argc, argv);

I aoo

With these changes, the image viewer will now use native dialogs on most platforms. The platforms
supported are iOS, Linux (with a GTK+ platform theme), macOS, Windows and WinRT. For Android, it
will use a default Qt dialog provided by the Qtwidgets module.

Help us improve this page!

Last Updated: 10/6/2021, 4:47:19 AM

¢ Introduction to Controls Common Patterns >

http://localhost:8080/ch06-controls/common-patterns.html
https://github.com/qmlbook/qt6book/edit/main/docs/ch06-controls/image-viewer.md
http://localhost:8080/ch06-controls/introduction.html

Common Patterns

There a number of common user interface patterns that can be implemented using Qt Quick Controls.

In this section, we try to demonstrate how some of the more common ones can be built.

Nested Screens

For this example we will create a tree of pages that can be reached from the previous level of screens.

The structure is pictured below.

Home
Profile About
Edit Profile

The key component in this type of user interface is the Stackview . It allows us to place pageson a
stack which then can be popped when the user wants to go back. In the example here, we will show

how this can be implemented.

The initial home screen of the application is shown in the figure below.

Home

Home Screen

The application startsin main.gml , where we have an ApplicationWindow containinga ToolBar ,a
Drawer ,a StackView andahome page element, Home . We will look into each of the components

below.

import QtQuick
import QtQuick.Controls

ApplicationWindow {
1) coc
header: ToolBar {

T

Drawer {

//

StackView {
id: stackView
anchors.fill: parent

initialItem: Home {}

The home page, Home.gml consists of a Page , whichis n control element that support headers and
footers. In this example we simply centera Label with the text Home Screen on the page. This works
because the contents of a stackview automatically fill the stack view, so the page will have the right

size for this to work.

import QtQuick
import QtQuick.Controls

Page {
title: gsTr("Home")

Label {

anchors.centerIn: parent

text: gsTr("Home Screen")

Returning backto main.gml , we now look at the drawer part. This is where the navigation to the pages

begin. The active parts of the user interface are the ItemDelegate items.Inthe onClicked handler,

the next page is pushed onto the stackview .

As shown in the code below, it possible to push eithera component or a reference to a specific QML

file. Either way results in a new instance being created and pushed onto the stack.

ApplicationWindow {

G oo

Drawer {
id: drawer
width: window.width * 0.66
height: window.height

Column {
anchors.fill: parent

ItemDelegate {

text: gsTr("Profile")

width: parent.width

onClicked: {
stackView.push("Profile.gml")

drawer.close()

}
ItemDelegate {

text: gsTr("About")

width: parent.width

onClicked: {
stackView.push(aboutPage)

drawer.close()

d oo

Component {

id: aboutPage

About {}

Y

The other half of the puzzle is the toolbar. The idea is that a back button is shown when the stackview

contains more than one page, otherwise a menu button is shown. The logic for this can be seen in the

text property wherethe "\\u..." stringsrepresents the unicode symbols that we need.

Inthe onClicked handler, we can see that when there is more than one page on the stack, the stack is

popped, i.e. the top page is removed. If the stack contains only one item, i.e. the home screen, the

drawer is opened.

Below the ToolBar ,thereisa Label . This element shows the title of each page in the center of the

header.

ApplicationWindow {

G oo

header: ToolBar {
contentHeight: toolButton.implicitHeight

ToolButton {

id: toolButton
text: stackView.depth > 1 ? "\u25C0" : "\u2630"
font.pixelSize: Qt.application.font.pixelSize * 1.6
onClicked: {

if (stackView.depth > 1) {

stackView.pop()
} else {

drawer.open()

Label {

text: stackView.currentItem.title

anchors.centerIn: parent

Now we've seen how to reach the Aboutand Profile pages, but we also want to make it possible to
reach the Edit Profile page from the Profile page. This is done via the Button on the Profile page.

When the button is clicked, the EditProfile.qml fileis pushed ontothe Stackview .

- Profile

Profile

Edit

import QtQuick
import QtQuick.Controls

Page {
title: gsTr("Profile")

Column {

anchors.centerIn: parent

spacing: 10

Label {
anchors.horizontalCenter: parent.horizontalCenter
text: gsTr("Profile")

}

Button {

anchors.horizontalCenter: parent.horizontalCenter
text: gsTr("Edit");

onClicked: stackView.push("EditProfile.gml")

import QtQuick

import QtQuick.Controls

Page {
title: gsTr("Profile")

Column {

anchors.centerIn: parent

spacing: 10

Label {
anchors.horizontalCenter: parent.horizontalCenter
text: gsTr("Profile")

}

Button {
anchors.horizontalCenter: parent.horizontalCenter
text: gsTr("Edit");
onClicked: stackView.push("EditProfile.gml")

Side by Side Screens

For this example we create a user interface consisting of three pages that the user can shift through.
The pages are shown in the diagram below. This could be the interface of a health tracking app,

tracking the current state, the user’s statistics and the overall statistics.

Current

'

Your Statistics

'

Community Statistics

The illustration below shows how the Current page looks in the application. The main part of the screen
is managed by a swipeVview , which is what enables the side by side screen interaction pattern. The title
and text shown in the figure come from the page inside the Swipeview , while the PageIndicator (the
three dots at the bottom) comes from main.gml and sits under the Swipeview . The page indicator

shows the user which page is currently active, which helps when navigating.

Side-by-side

Current

Current activity

Diving into main.gml , it consists of an ApplicationWindow with the Swipeview .

import QtQuick
import QtQuick.Controls
ApplicationWindow {

visible: true

width: 640

height: 480

title: gsTr("Side-by-side")

SwipeView {

//

Inside the swipeview each of the child pages are instantiated in the order they are to appear. They are

Current , UserStats and TotalStats .

ApplicationWindow {

d oo

SwipeView {
id: swipeView

anchors.fill: parent

Current {

}

UserStats {
}

TotalStats {
}

Finally, the count and currentIndex properties of the Swipeview are boundtothe PageIndicator

element. This completes the structure around the pages.

ApplicationWindow {
7 oo

SwipeView {

id: swipeView

dil oo

PageIndicator {
anchors.bottom: parent.bottom

anchors.horizontalCenter: parent.horizontalCenter

currentIndex: swipeView.currentIndex

count: swipeView.count

Each page consists of a page witha header consistingofa Label andsome contents. For the

Currentand User Stats pages the contents consist of a simple Label , but for the Community Stats

page, a back button is included.

import QtQuick
import QtQuick.Controls

Page {
header: Label {
text: gsTr("Community Stats")

font.pixelSize: Qt.application.font.pixelSize * 2

padding: 10

Side-by-side

Community Stats

Community statistics

Back

The back button explicitly calls the setCurrentIndex ofthe Swipeview to settheindexto zero,
returning the user directly to the Current page. During each transition between pages the Swipeview

provides a transition, so even when explicitly changing the index the user is given a sense of direction.

TIP

When navigatingina sSwipeview programatically itisimportant notto setthe currentIndex
by assignment in JavaScript. This is because doing so will break any QML bindings it overrides.
Instead use the methods setCurrentindex , incrementCurrentIndex ,and

decrementCurrentIndex . This preserves the QML bindings.

Page {

G oo

Column {
anchors.centerIn: parent
spacing: 10
Label {
anchors.horizontalCenter: parent.horizontalCenter

text: gsTr("Community statistics")

}
Button {

anchors.horizontalCenter: parent.horizontalCenter
text: gsTr("Back")

onClicked: swipeView.setCurrentIndex(9);

Document Windows

This example shows how to implement a desktop-oriented, document-centric user interface. The idea
is to have one window per document. When opening a new document, a new window is opened. To the

user, each window is a self contained world with a single document.
#.Two document windows and the close warning dialog.

The code starts froman ApplicationWindow with a File menu with the standard operations: New,

Open, Save and Save As. We put this in the DocumentWindow.qgml .

We import Qt.labs.platform for native dialogs, and have made the subsequent changes to the project

fileand main.cpp asdescribed in the section on native dialogs above.

import QtQuick
import QtQuick.Controls
import Qt.labs.platform as NativeDialogs

ApplicationWindow {

id: root

/] ...

menuBar: MenuBar {
Menu {
title: gsTr("&File")
MenuItem {

text: gsTr("&New")
icon.name: "document-new"

onTriggered: root.newDocument()

}

MenuSeparator {}

MenuItem {
text: gsTr("&0pen")
icon.name: "document-open"
onTriggered: openDocument()

}

MenuItem {
text: gsTr("&Save")
icon.name: "document-save"
onTriggered: saveDocument()

}

MenuItem {
text: gsTr("Save &As...")
icon.name: "document-save-as"
onTriggered: saveAsDocument()

}

}
}
//

To bootstrap the program, we create the first DocumentWindow instance from main.gml , whichis the

entry point of the application.

import QtQuick

DocumentWindow {

visible: true

import QtQuick

DocumentWindow {

visible: true

In the example at the beginning of this chapter, each Menultem calls a corresponding function when

triggered. Let's start with the Newitem, which calls the newbocument function.

The function, in turn, relies on the createNewDocument function, which dynamically creates a new
element instance from the DocumentWindow.qml file,i.e.a new DocumentWindow instance. The reason

for breaking out this part of the new function is that we use it when opening documents as well.

Notice that we do not provide a parent element when creating the new instance using createObject .
This way, we create new top level elements. If we would have provided the current document as parent

to the next, the destruction of the parent window would lead to the destruction of the child windows.

ApplicationWindow {

di oo

function createNewDocument()

{
var component = Qt.createComponent("DocumentWindow.gqml");
var window = component.createObject();

return window;

function newDocument()

{

var window = createNewDocument();

window.show();

Looking at the Openitem, we see that it calls the openbDocument function. The function simply opens
the openDialog , which lets the user pick a file to open. As we don’t have a document format, file
extension or anything like that, the dialog has most properties set to their default value. In a real world

application, this would be better configured.
In the onAccepted handler a new document window is instantiated using the createNewDocument

method, and a file name is set before the window is shown. In this case, no real loading takes place.

TIP

We imported the Qt.labs.platform module as NativeDialogs . Thisis because it provides a

MenuItem that clashes with the Menultem provided bythe QtQuick.Controls module.

ApplicationWindow {

/] oo

function openDocument(fileName)

{

openDialog.open();

NativeDialogs.FileDialog {
id: openDialog
title: "Open"
folder:
NativeDialogs.StandardPaths.writablelLocation(NativeDialogs.StandardPaths.DocumentsLocation)
onAccepted: {
var window = root.createNewDocument();
window.fileName = openDialog.file;

window.show();

G oo

The file name belongs to a pair of properties describing the document: fileName and isDirty .The
fileName holds the file name of the document name and isbirty is set when the document has

unsaved changes. This is used by the save and save as logic, which is shown below.

When trying to save a document without a name, the saveAsDocument isinvoked. This resultsina

round-trip over the saveAsDialog , which sets a file name and then tries to save again in the

onAccepted handler.

Notice that the saveAsDocument and saveDocument functions correspond to the Save Asand Save

menu items.

After having saved the document, in the saveDocument function, the tryingToClose propertyis
checked. This flag is set if the save is the result of the user wanting to save a document when the
window is being closed. As a consequence, the window is closed after the save operation has been

performed. Again, no actual saving takes place in this example.

ApplicationWindow {

7 coc
property bool isDirty: true // Has the document got unsaved changes?
property string fileName // The filename of the document

property bool tryingToClose: false // Is the window trying to close (but needs a file

name first)?

d oo

function saveAsDocument()

{

saveAsDialog.open();

function saveDocument()

{
if (fileName.length === 0)
{
root.saveAsDocument();
}
else
{
// Save document here
console.log("Saving document")
root.isDirty = false;
if (root.tryingToClose)
root.close();
}
}

NativeDialogs.FileDialog {

id: saveAsDialog

title: "Save As"

folder:

NativeDialogs.StandardPaths.writablelLocation(NativeDialogs.StandardPaths.DocumentsLocation)

onAccepted: {
root.fileName = saveAsDialog.file
saveDocument();

}

onRejected: {
root.tryingToClose = false;

/] cac

This leads us to the closing of windows. When a window is being closed, the onClosing handleris
invoked. Here, the code can choose not to accept the request to close. If the document has unsaved

changes, we open the closeWarningDialog and reject the request to close.

The closeWarningDialog asks the user if the changes should be saved, but the user also has the option

to cancel the close operation. The cancelling, handled in onRejected , is the easiest case, as we

rejected the closing when the dialog was opened.

When the user does not want to save the changes, i.e.in onNoClicked ,the isbirty flagissetto
false and the window is closed again. This time around, the oncClosing will accept the closure, as

isbirty is false.

Finally, when the user wants to save the changes, we set the tryingToClose flag to true before calling

save. This leads us to the save/save as logic.

ApplicationWindow {

/] oo

onClosing: {
if (root.isDirty) {
closeWarningDialog.open();

close.accepted = false;

NativeDialogs.MessageDialog {
id: closeWarningDialog
title: "Closing document™
text: "You have unsaved changed. Do you want to save your changes?"
buttons: NativeDialogs.MessageDialog.Yes | NativeDialogs.MessageDialog.No |
NativeDialogs.MessageDialog.Cancel
onYesClicked: {
// Attempt to save the document
root.tryingToClose = true;
root.saveDocument();
}
onNoClicked: {
// Close the window
root.isDirty = false;
root.close()
}
onRejected: {
// Do nothing, aborting the closing of the window

The entire flow for the close and save/save as logic is shown below. The system is entered at the close

state, while the closed and not closed states are outcomes.

This looks complicated compared to implementing this using Qt widgets and C++. This is because the
dialogs are not blocking to QML. This means that we cannot wait for the outcome of a dialogin a
switch statement. Instead we need to remember the state and continue the operation in the

respective onYesClicked , onNoClicked , onAccepted ,and onRejected handlers.

FReqguest to close

onMoClicked
Set _isDirty to false

isDiry == true

closeWarningDialog

_isDirty == false
Window is closed

onesClicked
et _tryingToClose to frue

saveDocument

_fileMame is set
E&
_tryingToClose == true

onAccepted
fileMame is set

onRejected
Window is not closed

_fileMame is empty

closed saveAsDialog

onRejected
Window is not closed

Mot closed

The final piece of the puzzle is the window title. It is composed from the fileName and isDirty

properties.

ApplicationWindow {

//

title: (fileName.length===0?gsTr("Document"):fileName) + (isDirty?"*":"")

//

This example is far from complete. For instance, the document is never loaded or saved. Another
missing piece is handling the case of closing all the windows in one go, i.e. exiting the application. For
this function, a singleton maintaining a list of all current DocumentwWindow instances is needed.
However, this would only be another way to trigger the closing of a window, so the logic flow shown

here is still valid.

Help us improve this page!
Last Updated: 10/6/2021, 4:32:19 AM

< An Image Viewer The Imagine Style »

http://localhost:8080/ch06-controls/imagine-style.html
https://github.com/qmlbook/qt6book/edit/main/docs/ch06-controls/common-patterns.md
http://localhost:8080/ch06-controls/image-viewer.html

The Imagine Style

One of the goals with Qt Quick Controls is to separate the logic of a control from its appearance. For
most of the styles, the implementation of the appearance consists of a mix of QML code and graphical
assets. However, using the /magine style, it is possible to customize the appearance of a Qt Quick

Controls based application using only graphical assets.

The imagine style is based on 9-patch images @ . This allows the images to carry information on how
they are stretched and what parts are to be considered as a part of the element and what is outside; e.qg.
a shadow. For each control, the style supports several elements, and for each element a large number
of states are available. By providing assets for certain combinations of these elements and states, you

can control the appearance of each control in detail.

The details of 9-patch images, and how each control can be styled is covered in great detail in the
Imagine style documentation . Here, we will create a custom style for an imaginary device interface

to demonstrate how the style is used.

The application's style customizes the ApplicationWindow and Button controls. For the buttons, the
normal state, as well as the pressedand checked states are handled. The demonstration application is

shown below.

https://developer.android.com/guide/topics/graphics/drawables#nine-patch
https://doc.qt.io/qt-6/qtquickcontrols2-imagine.html

Hello World VoA @

Click me! Check me!] [Check me!
Click me! Check me!] [Check me!
Click me! Check me!] [Check me!

Click me! Check me!] [Check me!
Click me! Check me!] [Check me!

The code for this usesa column for the clickable buttons, anda Grid for the checkable ones. The

clickable buttons also stretch with the window width.

import QtQuick
import QtQuick.Controls

ApplicationWindow {

G oo

visible: true

width: 640

height: 480

title: gsTr("Hello World")

Column {
anchors.top: parent.top
anchors.left: parent.left
anchors.margins: 10

width: parent.width/2

spacing: 10

P e

Repeater {
model: 5
delegate: Button {
width: parent.width
height: 70
text: gsTr("Click me!")

Grid {
anchors.top: parent.top
anchors.right: parent.right

anchors.margins: 10
columns: 2

spacing: 10

1Y coc

Repeater {
model: 10

delegate: Button {
height: 70
text: gsTr("Check me!")

checkable: true

As we are using the /magine style, all controls that we want to use need to be styled using a graphical

asset. The easiest is the background for the ApplicationWindow . Thisis a single pixel texture defining

the background colour. By naming the file applicationwindow-background.png and then pointing the

style to it using the qtquickcontrols2.conf file, the file is picked up.

In the gtquickcontrols2.conf file shown below, you can see how we set the Style to Imagine ,and
then setupa Path for the style where it can look for the assets. Finally we set some palette properties

as well. The available palette properties can be found on the palette QML Basic Type[” page.

[Controls]
Style=Imagine

https://doc.qt.io/qt-6/qml-palette.html#qtquickcontrols2-palette

[Imagine]

Path=:images/imagine

[Imagine\Palette]

Text=#ffffff
ButtonText=#ffffff
BrightText=#ffffff

The assets for the Button controlare button-background.9.png , button-background-pressed.9.png
and button-background-checked.9.png . These follow the control-element-state pattern. The stateless
file, button-background.9.png is used for all states without a specific asset. According to the Imagine

style element reference tabler# , a button can have the following states:

e disabled

e pressed

e checked

e checkable

e focused

e highlighted
e flat

® mirrored

e hovered

The states that are needed depend on your user interface. For instance, the hovered style is never used

for touch-based interfaces.

https://doc.qt.io/qt-6/qtquickcontrols2-imagine.html#element-reference

Looking at an enlarged version of button-background-checked.9.png above, you can see the 9-patch
guide lines along the sides. The purple background has been added for visibility reasons. This area is

actually transparent in the asset used in the example.

The pixes along the edges of the image can be either white/transparent, black, or red. These have

different meanings that we will go through one by one.

o Black lines along the left and top sides of the asset mark the stretchable parts of the image. This
means that the rounded corners and the white marker in the example are not affected when the

button is stretched.

o Black lines along the right and bottom sides of the asset mark the area used for the control’s

contents. That means the part of the button that is used for text in the example.

* Red lines along the right and bottom sides of the asset mark inset areas. These areas are a part of
the image, but not considered a part of the control. For the checked image above, this is used for a

soft halo extending outside the button.

A demonstration of the usage of an inset area is shown in button-background.9.png (below)and

button-background-checked.9.png (above): the image seems to light up, but not move.

Help us improve this page!

Last Updated: 10/6/2021, 4:32:19 AM

http://localhost:8080/ch06-controls/summary.html
https://github.com/qmlbook/qt6book/edit/main/docs/ch06-controls/imagine-style.md
http://localhost:8080/ch06-controls/common-patterns.html

Summary

In this chapter we have looked at Qt Quick Controls 2. They offer a set of elements that provide more
high-level concepts than the basic QML elements. For most scenarios, you will save memory and gain
performance by using the Qt Quick Controls 2, as they are based around optimized C++ logic instead of

Javascript and QML.

We've demonstrated how different styles can be used, and how a common code base can be developed
using file selectors. This way, a single code base can address multiple platforms with different user

interactions and visual styles.

Finally, we have looked at the Imagine style, which allows you to completely customize the look of a
QML application through the use of graphical assets. In this way, an application can be reskinned

without any code change whatsoever.

Help us improve this page!
Last Updated: 9/17/2021, 5:44:54 AM

< The Imagine Style Model-View-Delegate »

http://localhost:8080/ch07-modelview/model-view.html
https://github.com/qmlbook/qt6book/edit/main/docs/ch06-controls/summary.md
http://localhost:8080/ch06-controls/imagine-style.html

Model-View-Delegate

As soon as the amount of data goes beyond the trivial, it is no longer feasible to keep a copy of the data
with the presentation. This means that the presentation layer, what is seen by the user, needs to be
separated by the data layer, the actual contents. In Qt Quick, data is separated from the presentation
through a so called model-view separation. Qt Quick provides a set of premade views in which each
data element is the visualization by a delegate. To utilize the system, one must understand these

classes and know how to create appropriate delegates to get the right look and feel.

Help us improve this page!
Last Updated: 6/28/2021, 7:55:07 AM

< Summary Concept »

http://localhost:8080/ch07-modelview/concept.html
https://github.com/qmlbook/qt6book/edit/main/docs/ch07-modelview/model-view.md
http://localhost:8080/ch06-controls/summary.html

Concept

A common pattern when developing user interfaces is to keep the representation of the data separate
from the visualization. This makes it possible to show the same data in different ways depending on
what task the user is performing. For instance, a phone book could be arranged as a vertical list of text
entries, or as a grid of pictures of the contacts. In both cases, the data is identical: the phone book, but
the visualization differs. This division is commonly referred to as the model-view pattern. In this

pattern, the data is referred to as the model, while the visualization is handled by the view.

In QML, the model and view are joined by the delegate. The responsibilities are divided as follows: The
model provides the data. For each data item, there might be multiple values. In the example above,
each phone book entry has a name, a picture, and a number. The data is arranged in a view, in which
each item is visualized using a delegate. The task of the view is to arrange the delegates, while each

delegate shows the values of each model item to the user.

This means that the delegate knows about the contents of the model and how to visualize it. The view
knows about the concept of delegates and how to lay them out. The model only knows about the data it

is representing.

Wiew

Creates and Places

Wisualizes Model Delegate

isualizes Model Rows

Model

Help us improve this page!
Last Updated: 7/15/2021, 5:34:15 PM

¢ Model-View-Delegate Basic Models »

http://localhost:8080/ch07-modelview/basic-models.html
https://github.com/qmlbook/qt6book/edit/main/docs/ch07-modelview/concept.md
http://localhost:8080/ch07-modelview/model-view.html

Basic Models

The most basic way to visualize data from a model is to use the Repeater element. Itis used to
instantiate an array of items and is easy to combine with a positioner to populate a part of the user
interface. A repeater uses a model, which can be anything from the number of items to instantiate, to a

full-blown model gathering data from the Internet.

Using a number

In its simplest form, the repeater can be used to instantiate a specified number of items. Each item will

have access to an attached property, the variable index , that can be used to tell the items apart.

In the example below, a repeater is used to create 10 instances of an item. The number of items is
controlled using the model property and their visual representation is controlled using the delegate
property. For each item in the model, a delegate is instantiated (here, the delegate isa BlueBox , which
is a customized Rectangle containinga Text element.Asyou can tell, the text propertyissetto

the index value, thus the items are numbered from zero to nine.

import QtQuick

import "../common"

Column {

spacing: 2

Repeater {
model: 10

delegate: BlueBox {

required property int index
width: 100
height: 32

text: index

Using an array

As nice as lists of numbered items are, it is sometimes interesting to display a more complex data set.

By replacing the integer model value with a JavaScript array, we can achieve that. The contents of the
array can be of any type, be it strings, integers or objects. In the example below, a list of strings is used.
We can still access and use the index variable, but we also have access to modelData containing the

data for each element in the array.

import QtQuick

import "../common"

Column {

spacing:

Repeater {

model: ["Enterprise", "Columbia", "Challenger", "Discovery", "Endeavour",

"Atlantis"]

delegate: BlueBox {
required property var modelData

required property int index
width: 100
height: 32

radius: 3

text: modelData + ' (' + index + ')'

Using a ListModel

Being able to expose the data of an array, you soon find yourself in a position where you need multiple

pieces of data per item in the array. This is where models enter the picture. One of the most trivial

models and one of the most commonly used is the ListModel . A list modelis simply a collection of
ListElement items. Inside each list element, a number of properties can be bound to values. For

instance, in the example below, a name and a color are provided for each element.

The properties bound inside each element are attached to each instantiated item by the repeater. This

means that the variables name and surfaceColor are available from within the scope of each

Rectangle and Text item created by the repeater. This not only makes it easy to access the data, it
also makes it easy to read the source code. The surfaceColor isthe color of the circle to the left of the

name, not something obscure as data from column i ofrow j .

import QtQuick

import "../common"

Column {

spacing: 2

Repeater {

model: ListModel {
ListElement { name: "Mercury"; surfaceColor: "gray" }
ListElement { name: "Venus"; surfaceColor: "yellow" }
ListElement { name: "Earth"; surfaceColor: "blue" }
ListElement { name: "Mars"; surfaceColor: "orange" }
ListElement { name: "Jupiter"; surfaceColor: "orange" }
ListElement { name: "Saturn"; surfaceColor: "yellow" }
ListElement { name: "Uranus"; surfaceColor: "lightBlue" }
ListElement { name: "Neptune"; surfaceColor: "lightBlue" }

}

delegate: BlueBox {

id: blueBox

required property string name

required property color surfaceColor

width: 120
height: 32
radius: 3

text: name

Box {
anchors.left: parent.left
anchors.verticalCenter: parent.verticalCenter

anchors.leftMargin: 4

width: 16
height: 16
radius: 8

color: blueBox.surfaceColor

(-
-

Using a delegate as default property

The delegate property of the Repeater isits default property. This means that it's also possible to

write the code of example Example 01 as follows:

import QtQuick

import "../common"

Column {

spacing: 2

Repeater {
model: 10

BlueBox {

required property int index
width: 100

height: 32

text: index

Help us improve this page!
Last Updated: 8/5/2021, 2:54:03 AM

< Concept Dynamic Views -

http://localhost:8080/ch07-modelview/dynamic-views.html
https://github.com/qmlbook/qt6book/edit/main/docs/ch07-modelview/basic-models.md
http://localhost:8080/ch07-modelview/concept.html

Dynamic Views

Repeaters work well for limited and static sets of data, but in the real world, models are commonly
more complex —and larger. Here, a smarter solution is needed. For this, Qt Quick provides the

Listview and Gridview elements. These are both based ona Flickable area, sothe user can move
around in a larger dataset. At the same time, they limit the number of concurrently instantiated

delegates. For a large model, that means fewer elements in the scene at once.

12 13 14 15

16 17 18 19

20 21 22 23

The two elements are similar in their usage. We will begin with the Listview and then describe the
Gridview with the former as the starting point of the comparison. Notice that the Gridview placesa
list of items into a two-dimensional grid, left-to-right or top-to-bottom. If you want to show a table of

data you need to use the Tableview which is described in the Table Models section.
The Listview issimilartothe Repeater element.ltusesa model ,instantiatesa delegate and

between the delegates, there can be spacing . The listing below shows how a simple setup can look.

import QtQuick

import "../common"
Background {
width: 80

height: 300

ListView {

anchors.fill: parent

anchors.margins: 20
clip: true
model: 100

delegate: GreenBox {

required property int index

width: 40
height: 40
text: index

}

spacing: 5

If the model contains more data than can fit onto the screen, the Listview only shows part of the list.
However, as a consequence of the default behavior of Qt Quick, the list view does not limit the screen
area within which the delegates are shown. This means that delegates may be visible outside the list
view and that the dynamic creation and destruction of delegates outside the list view is visible to the
user. To prevent this, clipping must be activated on the Listview element by settingthe clip
property to true . Theillustration below shows the result of this (left view), compared to when the

clip propertyis false (rightview).

To the user, the Listview isascrollable area. It supports kinetic scrolling, which means that it can be
flicked to quickly move through the contents. By default, it also can be stretched beyond the end of

contents, and then bounces back, to signal to the user that the end has been reached.

The behavior at the end of the view is controlled using the boundsBehavior property. Thisisan
enumerated value and can be conimaged from the default behavior,

Flickable.DragAndOvershootBounds , where the view can be both dragged and flicked outside its
boundaries, to Flickable.StopAtBounds , where the view never will move outside its boundaries. The
middle ground, Flickable.DragOverBounds lets the user drag the view outside its boundaries, but flicks

will stop at the boundary.

Itis possible to limit the positions where a view is allowed to stop. This is controlled using the

snapMode property. The default behavior, Listview.NoSnap , lets the view stop at any position. By
setting the snapMode propertyto ListView.SnapToItem ,the view will always align the top of an item
with its top. Finally, the Listview.SnapOneItem ,the view will stop no more than one item from the first
visible item when the mouse button or touch was released. The last mode is very handy when flipping

through pages.

Orientation

The list view provides a vertically scrolling list by default, but horizontal scrolling can be just as useful.
The direction of the list view is controlled through the orientation property. It can be set to either the

default value, ListVview.Vertical ,orto ListView.Horizontal .A horizontal list view is shown below.

import QtQuick

import "../common"

Background {
width: 480
height: 80

ListView {
anchors.fill: parent
anchors.margins: 20
spacing: 4
clip: true
model: 100

orientation: ListView.Horizontal

delegate: GreenBox {

required property int index
width: 40
height: 40

text: index

As you can tell, the direction of the horizontal flows from the left to the right by default. This can be
controlled through the 1layoutDirection property, which can be set to either Qt.LeftToRight or

Qt.RightToLeft , depending on the flow direction.

Keyboard Navigation and Highlighting

When usinga Listview inatouch-based setting, the view itself is enough. In a scenario with a

keyboard, or even just arrow keys to select an item, a mechanism to indicate the current item is needed.
In QML, this is called highlighting.

Views support a highlight delegate which is shown in the view together with the delegates. It can be
considered an additional delegate, only that it is only instantiated once, and is moved into the same

position as the current item.

In the example below this is demonstrated. There are two properties involved for this to work. First, the

focus property is set to true. This gives the Listview the keyboard focus. Second, the highlight
property is set to point out the highlighting delegate to use. The highlight delegate is giventhe x , y
and height of the currentitem. If the width is not specified, the width of the currentitem is also

used.

In the example, the Listview.view.width attached property is used for width. The attached properties
available to delegates are discussed further in the delegate section of this chapter, but it is good to

know that the same properties are available to highlight delegates as well.

import QtQuick

import "../common"

Background {
width: 240
height: 300

ListView {

id: view

anchors.fill: parent

anchors.margins: 20
focus: true
model: 100
delegate: numberDelegate
highlight: highlightComponent
spacing: 5
clip: true
Component {

id: highlightComponent

GreenBox {

width: ListView.view ? ListView.view.width : ©

Component {

id: numberDelegate

Item {

id: wrapper

required property int index

width: ListView.view ? ListView.view.width :

height: 40

Text {
anchors.centerIn: parent
font.pixelSize: 10

text: wrapper.index

When using a highlight in conjunction witha Listview , a number of properties can be used to control
its behavior. The highlightRangeMode controls how the highlight is affected by what is shown in the
view. The default setting, ListView.NoHighlightRange means that the highlight and the visible range of

items in the view not being related at all.

The value Listview.StrictlyEnforceRange ensures thatthe highlightis always visible. If an action
attempts to move the highlight outside the visible part of the view, the current item will change

accordingly, so that the highlight remains visible.

The middle ground is the Listview.ApplyRange value. It attempts to keep the highlight visible but does
not alter the current item to enforce this. Instead, the highlight is allowed to move out of view if

necessary.

In the default configuration, the view is responsible for moving the highlight into position. The speed of
the movement and resizing can be controlled, either as a velocity or as a duration. The properties
involved are highlightMoveSpeed , highlightMoveDuration , highlightResizeSpeed and
highlightResizeDuration . By default, the speed is set to 400 pixels per second, and the duration is set
to -1, indicating that the speed and distance control the duration. If both a speed and a duration is set,

the one that results in the quickest animation is chosen.

To control the movement of the highlight more in detail, the highlightFollowCurrentItem property
can be setto false . This means that the view is no longer responsible for the movement of the

highlight delegate. Instead, the movement can be controlled through a Behavior orananimation.

In the example below, the y property of the highlight delegate is bound to the
ListView.view.currentItem.y attached property. This ensures that the highlight follows the current
item. However, as we do not let the view move the highlight, we can control how the element is moved.
This is done through the Behavior on y .Inthe example below, the movement is divided into three
steps: fading out, moving, before fading in. Notice how SequentialAnimation and PropertyAnimation

elements can be used in combination with the NumberAnimation to create a more complex movement.

Component {

id: highlightComponent
Item {
width: ListView.view ? ListView.view.width : ©
height: ListView.view ? ListView.view.currentItem.height : ©

y: ListView.view ? ListView.view.currentItem.y : ©

Behavior on y {

SequentialAnimation {

PropertyAnimation { target: highlightRectangle; property: "opacity"; to: 0;
duration: 200 }

NumberAnimation { duration: 1 }

PropertyAnimation { target: highlightRectangle; property: "opacity"; to: 1;
duration: 200 }
}

GreenBox {
id: highlightRectangle
anchors.fill: parent

Header and Footer

At each end of the Listview contents,a header anda footer elementcan beinserted. These can
be considered special delegates placed at the beginning or end of the list. For a horizontal list, these
will not appear at the head or foot, but rather at the beginning or end, depending on the

layoutDirection used.

The example below illustrates how a header and footer can be used to enhance the perception of the
beginning and end of a list. There are other uses for these special list elements. For instance, they can

be used to keep buttons to load more contents.

import QtQuick

import "../common"

Background {
width: 240
height: 300

ListView {
anchors.fill: parent

anchors.margins: 20
clip: true

model: 4

delegate: numberDelegate
header: headerComponent
footer: footerComponent
spacing: 2

Component {

id: headerComponent

YellowBox {
width: ListView.view ? ListView.view.width
height: 20

text: 'Header'

Component {

id: footerComponent

YellowBox {
width: ListView.view ? ListView.view.width
height: 20

text: 'Footer’

Component {

id: numberDelegate

GreenBox {

required property int index

width: ListView.view.width
height: 40

text: 'Item #' + index

TIP

Header and footer delegates do not respect the spacing property ofa Listview ,instead
they are placed directly adjacent to the next item delegate in