
0 preface preface 6

1 preface acknowledgements 8

2 preface authors 11

3 ch01-meetqt meet-qt 14

4 ch01-meetqt blocks 16

5 ch01-meetqt intro 19

6 ch02-start quick-start 25

7 ch02-start install 26

8 ch02-start hello-world 27

9 ch02-start app-types 30

10 ch02-start summary 41

11 ch03-qtcreator qt-creator 42

12 ch03-qtcreator user-interface 43

13 ch03-qtcreator kit-registry 45

14 ch03-qtcreator projects 46

15 ch03-qtcreator editor 47

16 ch03-qtcreator locator 48

17 ch03-qtcreator debugging 49

18 ch03-qtcreator shortcuts 50

19 ch04-qmlstart quick-start 52

20 ch04-qmlstart qml-syntax 53

21 ch04-qmlstart core-elements 60

22 ch04-qmlstart components 67

23 ch04-qmlstart transformations 71

24 ch04-qmlstart positioning 75

25 ch04-qmlstart layout 81

26 ch04-qmlstart input 84

27 ch04-qmlstart advanced 91

28 ch05-fluid fluid-elements 92

29 ch05-fluid animations 93

30 ch05-fluid states-transitions 113

31 ch05-fluid advanced 118

32 ch06-controls controls2 119

33 ch06-controls introduction 120

34 ch06-controls image-viewer 128

35 ch06-controls common-patterns 144

36 ch06-controls imagine-style 162

37 ch06-controls summary 168

38 ch07-modelview model-view 169

39 ch07-modelview concept 170

40 ch07-modelview basic-models 171

41 ch07-modelview dynamic-views 177

42 ch07-modelview delegate 190

43 ch07-modelview advanced 204

44 ch07-modelview summary 219

45 ch08-canvas canvas-element 220

46 ch08-canvas convenience-api 224

47 ch08-canvas gradients 225

48 ch08-canvas shadows 226

49 ch08-canvas images 228

50 ch08-canvas transformation 230

51 ch08-canvas composition-modes 232

52 ch08-canvas pixel-buffer 234

53 ch08-canvas canvas-paint 236

54 ch08-canvas port-from-html 239

55 ch09-shapes shapes 246

56 ch09-shapes basics 247

57 ch09-shapes paths 250

58 ch09-shapes gradients 254

59 ch09-shapes animations 260

60 ch09-shapes summary 263

61 ch10-effects effects 264

62 ch10-effects particles 265

63 ch10-effects simple-simulation 266

64 ch10-effects particle-parameters 269

65 ch10-effects directed-particles 271

66 ch10-effects affecting-particles 276

67 ch10-effects particle-groups 282

68 ch10-effects particle-painters 291

69 ch10-effects opengl-shaders 293

70 ch10-effects shader-elements 294

71 ch10-effects fragment-shaders 297

72 ch10-effects wave-effect 302

73 ch10-effects vertex-shader 305

74 ch10-effects curtain-effect 316

75 ch10-effects summary 321

76 ch11-multimedia multimedia 322

77 ch11-multimedia playing-media 323

78 ch11-multimedia sound-effects 330

79 ch11-multimedia video-streams 334

80 ch11-multimedia capturing-images 336

81 ch11-multimedia summary 341

82 ch12-qtquick3d intro 342

83 ch12-qtquick3d basics 343

84 ch12-qtquick3d assets 352

85 ch12-qtquick3d materials-and-light 361

86 ch12-qtquick3d animations 368

87 ch12-qtquick3d mixing-2d-and-3d 373

88 ch12-qtquick3d summary 376

89 ch13-networking networking 377

90 ch13-networking serve-qml 378

91 ch13-networking templates 384

92 ch13-networking http-requests 385

93 ch13-networking local-files 389

94 ch13-networking rest-api 392

95 ch13-networking authentication 400

96 ch13-networking web-sockets 416

97 ch13-networking summary 422

98 ch14-storage storage 423

99 ch14-storage settings 424

100 ch14-storage local-storage 426

101 ch15-dynamicqml dynamic-qml 431

102 ch15-dynamicqml loading-components 432

103 ch15-dynamicqml dynamic-objects 439

104 ch15-dynamicqml tracking-objects 444

105 ch15-dynamicqml summary 447

106 ch16-javascript javascript 448

107 ch16-javascript html-qml 450

108 ch16-javascript js-language 451

109 ch16-javascript js-objects 453

110 ch16-javascript js-console 456

111 ch17-qtcpp qtcpp 461

112 ch17-qtcpp boilerplate 463

113 ch17-qtcpp qobject 469

114 ch17-qtcpp build-system 472

115 ch17-qtcpp common-classes 477

116 ch17-qtcpp cpp-models 484

117 ch18-extensions extending-qml 497

118 ch18-extensions qml-runtime 498

119 ch18-extensions plugin-content 502

120 ch18-extensions create-plugin 504

121 ch18-extensions fileio-demo 506

122 ch18-extensions using-fileio 508

123 ch18-extensions summary 517

124 ch19-python qt-python 518

125 ch19-python introduction 519

126 ch19-python installing 520

127 ch19-python build-app 522

128 ch19-python limitations 537

129 ch19-python summary 538

130 ch20-qtformcu qtformcu 539

131 ch20-qtformcu setup 540

132 ch20-qtformcu helloworld 543

133 ch20-qtformcu cpp 550

134 ch20-qtformcu models 556

135 ch20-qtformcu summary 561

Welcome!

Welcome to The Qt 6 Book - A book about QML. This text will guide you through QML, Qt's language

for creating dynamic user interfaces.

I believe that the ability to build declarative, reactive, hardware accelerated user interfaces executing at

native performance across all major platforms (and some not so major) is a game changer. When

starting with Qt, it was almost as if I had my secret weapon to building software quickly. QML takes

that to the next level.

How is this book different from the Qt documentation? I hear you ask. The intention is to build a

complement. This book is meant as a book that you can read from front to back where each chapter

builds on what you've previously learned. But it can also be used as a way for the experienced reader to

get oriented in a new topic. Each chapter focuses on a specific topic and introduces the concepts from

Qt and QML. However, the Qt documentation will always provide the full picture and is a great

reference to look up the details about all elements, properties, enumerations, and more.

I wish you a pleasant read!

Johan Thelin

Structure

The book can be said to be split into three parts. The split is not clear cut enough to motivate a strict

division of chapters, but more of a guideline that we've tried to follow when writing it.

The first few chapters, let's say until somewhere around chapter 5 - 7 can be considered an

introduction. If you want to learn QML, you should make sure to read these chapters.

The following chapters, 6-14, can be seen as fairly separate chapters introducing independent topics,

even though the models from chapter 7 are used in many more places. Feel free to dive into these in

the order that you like and learn about the topics that you are curious about.

The remainder of the book focuses on more advanced topics such as details of JavaScript, mixing C++

and QML, and the Qt for Python bindings and QML. These are important topics and I really want you to

read them. To build a full application with QML you need to understand these topics, but their main

focus is not on QML.

Never Ending Work in Progress

The Qt 6 Book is a never ending work in progress. We welcome contributors and are planning to open

up our infrastructure to let you contribute both by reporting issues and by contributing fixes and new

content. The end goal is to present you with a printed book when the material has reached a maturity

level that we are happy with, but we want to share this with you already now and to learn from your

feedback what to improve, and what additional content to add.

Acknowledgements

This book would not have been possible to create without the kind sponsorship from The Qt Company.

It is a privilege to be able to work on a project such as this, and their help has been invaluable. I would

like to give a special mention to (alphabetically):

empenzes

Fabian K

Luca Di sera

magoldst-qt

Maurice Kalinowski

Mitch Curtis

nezticle

Tino Pyssysalo

Ulf Hermann

Vladimir Minenko

Contributors

This book was made possible by the great community contributors. I would like to thank them all

(alphabetically):

alexshen

arky

DavidAdamsPerimeter

delvianv

guoci

nittwitt

oleksis

LorenDB

paulmasri

QtSCH

ruudschouten

task-jp

topecongiro

VideoCarp

wangchunlin5013

History

This book is based on The QML Book (https://qmlbook.github.io/) , originally written for Qt 5. I would

like to thank all contributors to that book (alphabetically):

aamirglb

alexeRadu

andreabedini

amura11

bakku

cibersheep

dbelyaev

danielbaak

DocWicking

empyrical

Ge0

gillesfernandez

gitter-badger

gsantner

hckr

iitaka1142

jiakuan

justinfx

maggu2810

marco-piccolino

mariopal

mark-summerfield

mhubig

micdoug

Mihaylov93

moritzsternemann

RossRogers

Swordfish90

sycy600

trolley

29jm

I would also like to give a special mention to Pelagicore, The Qt Company and Felgo for help the

development of The QML Book by sponsoring our work and being generally awesome when it comes to

https://qmlbook.github.io/

feedback and support.

Authors

The Qt 6 Book has been written by a team of authors. They are:

Johan Thelin

Johan works as a system architect building automotive solutions. He has a background from over

twenty years of device creation based on Linux, Qt and more. He has written for various papers and

blogs, presented at numerous conferences, and provides advice on how to build software, and software

organizations. As an avid believer in free and open source solutions, he founded and organizes the foss-

north conference (https://foss-north.se) .

You can find out more about Johan at LinkedIn (https://www.linkedin.com/in/johanthelin) , his blog

(http://www.thelins.se/johan/blog/) , and his homepage (http://e8johan.se) .

Jürgen Bocklage-Ryannel

https://foss-north.se/
https://www.linkedin.com/in/johanthelin
http://www.thelins.se/johan/blog/
http://e8johan.se/

Jürgen is the CEO of ApiGear, which is a collaborative machine interface design tool that enables teams

to collaborative design software interfaces
with automated monitoring and simulation solutions.

He was the co-founder of Pelagicore AG and was responsible there as Chief User Interface Architect for

the early versions of the Daimler MBUX.

He focuses currently on an API driven workflow to design and create the interfaces between the user

experience and the underlying services for different platforms.

You can find out more about Jürgen at LinkedIn (https://www.linkedin.com/in/jryannel/) .

Cyril Lorquet

https://www.linkedin.com/in/jryannel/

Co-Founder and CEO of the belgian company Eunoia Studio (https://www.eunoia.be) , Cyril helps

organizations turn their know-how into software products. Since 2009, he has been working on

software products in various contexts (construction, healthcare, hydrology, marketing, ...) - several of

them involving Qt. Software engineer at heart, he has a passion for design processes, software

development and change management.

You can find out more about Cyril at LinkedIn (https://www.linkedin.com/in/cyrillorquet) .

https://www.eunoia.be/
https://www.linkedin.com/in/cyrillorquet

Qt and Qt Quick

This book provides you with a walk through of the different aspects of application development using

the new Qt 6. It focuses on the Qt Quick technology, but also provides necessary information about

writing C++ back-ends and extensions for Qt Quick.

This chapter shall provide a high-level overview of Qt 6. It shows the different application models

available for developers, as well as a showcase application, as a sneak preview of things to come.

Additionally, the chapter aims to provide a wide overview of the Qt content and how to get in touch

with the makers of Qt the Qt Company.

Qt 6 Focus

Qt 5 was released many years ago and introduced a new declarative way of writing stunning user

interfaces. Since then a lot has changed in the world around us.

Qt 6 will be a continuation of what has been done with Qt 5 and should not be disruptive to the majority

of users. What makes Qt valuable to its users?

Its cross-platform nature

Its scalability

World class APIs and documentation

Maintainability, stability and compatibility

A large developer ecosystem

Qt 6 evolves the Qt product to new markets while keeping close to the users values.

The desktop market is the root of the Qt offering. It is where most users get the first contact with Qt

and it forms the base for the Qt tools and its success.

It is expected that Qt 6 will grow most in the embedded and connected devices market from high-end

near desktop performing devices to low-end devices like microcontrollers. Touch screens will come to

an exponential increasing number to these devices. Many of these devices will have relatively simple

functionality but require a polished and smooth user interface.

At the other end of the spectrum there is a demand for more complex and 2D/3D integrated user

interfaces. The 3D content with 2D elements based interfaces will be common, as will be the use of

augmented and virtual reality.

The growth of connected devices and the higher demand for smooth user interfaces require a simpler

workflow to create applications and devices. Integrating UX designers into the development workflow

is one of the goals of the Qt 6 series.

Qt 6 brings us:

Next generation QML

Next generation graphics

Unified and consistent tooling

Enhanced Qts C++ APIs

Component Marketplace

Qt Building Blocks

Qt 6 consists of a large number of modules. In general, a module is a library for the developer to use.

Some modules are mandatory for a Qt-enabled platform and form the set called Qt Essentials

Modules. Other modules are optional, and form the Qt Add-On Modules. The majority of developers

may not need to use the latter, but it’s good to know about them as they provide invaluable solutions to

common challenges.

Qt Modules

The Qt Essentials modules are mandatory for any Qt-enabled platform. They offer the foundation to

develop modern Qt 6 Applications using Qt Quick 2. The full list of modules is available in the Qt

documentation module list (https://doc.qt.io/qt-6/qtmodules.html#qt-essentials) .

Core-Essential Modules

The minimal set of Qt 6 modules to start QML programming.

Qt Core - Core non-graphical classes used by other modules.

Qt D-BUS - Classes for inter-process communication over the D-Bus protocol on linux.

Qt GUI - Base classes for graphical user interface (GUI) components. Includes OpenGL.

Qt Network - Classes to make network programming easier and more portable.

Qt QML - Classes for QML and JavaScript languages.

Qt Quick - A declarative framework for building highly dynamic applications with custom user

interfaces.

Qt Quick Controls - Provides lightweight QML types for creating performant user interfaces for

desktop, embedded, and mobile devices. These types employ a simple styling architecture and are

very efficient.

Qt Quick Layouts - Layouts are items that are used to arrange Qt Quick 2 based items in the user

interface.

Qt Quick Test - A unit test framework for QML applications, where the test cases are written as

JavaScript functions.

Qt Test - Classes for unit testing Qt applications and libraries.

Qt Widgets - Classes to extend Qt GUI with C++ widgets.

https://doc.qt.io/qt-6/qtmodules.html#qt-essentials

QtCore

QtNetwork QtGui QtQml QtTest

QtQuick

QtQuickTest QtQuickLayout QtQuickControls

Qt Add-On Modules

Besides the essential modules, Qt offers additional modules that target specific purposes. Many add-

on modules are either feature-complete and exist for backwards compatibility, or are only applicable to

certain platforms. Here is a list of some of the available add-on modules, but make sure you familiarize

yourself with them all in the Qt documentation add-ons list (https://doc.qt.io/qt-

6/qtmodules.html#qt-add-ons) and in the list below.

Network: Qt Bluetooth / Qt Network Authorization

UI Components: Qt Quick 3D / Qt Quick Timeline / Qt Charts / Qt Data Visualization / Qt Lottie

Animation / Qt Virtual Keyboard

Graphics: Qt 3D / Qt Image Formats / Qt OpenGL / Qt Shader Tools / Qt SVG / Qt Wayland

Compositor

Helper: Qt 5 Core Compatibility APIs / Qt Concurrent / Qt Help / Qt Print Support / Qt Quick Widgets

/ Qt SCXML / Qt SQL / Qt State Machine / Qt UI Tools / Qt XML

TIP

As these modules are not part of the release, the state of each module may differ depending on

how many contributors are active and how well it’s tested.

Supported Platforms

Qt supports a variety of platforms including all major desktop and embedded platforms. Through the

Qt Platform Abstraction, it’s now easier than ever to port Qt to your own platform if required.

Testing Qt 6 on a platform is time-consuming. A subset of platforms was selected by the Qt Project to

build the reference platforms set. These platforms are thoroughly tested through the system testing to

https://doc.qt.io/qt-6/qtmodules.html#qt-add-ons

ensure the best quality. However, keep in mind that no code is error-free.

Qt Project

From the Qt Wiki (http://wiki.qt.io/) :

“The Qt Wiki is a meritocratic consensus-based community interested in Qt. Anyone who shares that

interest can join the community, participate in its decision-making processes, and contribute to Qt’s

development.”

The Qt Wiki is a place where Qt users and contributors share their insights. It forms the base for other

users to contribute. The biggest contributor is The Qt Company, which holds also the commercial

rights to Qt.

Qt has an open-source aspect and a commercial aspect for companies. The commercial aspect is for

companies which can not or will not comply with the open-source licenses. Without the commercial

aspect, these companies would not be able to use Qt and it would not allow The Qt Company to

contribute so much code to the Qt Project.

There are many companies worldwide, which make the living out of consultancy and product

development using Qt on the various platforms. There are many open-source projects and open-source

developers, which rely on Qt as their major development library. It feels good to be part of this vibrant

community and to work with this awesome tools and libraries. Does it make you a better person?

Maybe:-)

Contribute here: http://wiki.qt.io/

http://wiki.qt.io/

Qt 6 Introduction

Qt Quick

Qt Quick is the umbrella term for the user interface technology used in Qt 6. It was introduced in Qt 4

and now expanded for Qt 6. Qt Quick itself is a collection of several technologies:

QML - Markup language for user interfaces

JavaScript - The dynamic scripting language

Qt C++ - The highly portable enhanced c++ library

Similar to HTML, QML is a markup language. It is composed of tags, called types in Qt Quick, that are

enclosed in curly brackets: Item {} . It was designed from the ground up for the creation of user

interfaces, speed and easier reading for developers. The user interface can be enhanced further using

JavaScript code. Qt Quick is easily extendable with your own native functionality using Qt C++. In short,

the declarative UI is called the front-end and the native parts are called the back-end. This allows you to

separate the computing intensive and native operation of your application from the user interface part.

In a typical project, the front-end is developed in QML/JavaScript. The back-end code, which interfaces

with the system and does the heavy lifting, is developed using Qt C++. This allows a natural split

between the more design-oriented developers and the functional developers. Typically, the back-end is

tested using Qt Test, the Qt unit testing framework, and exported for the front-end developers to use.

Digesting a User Interface

Let’s create a simple user interface using Qt Quick, which showcases some aspects of the QML

language. In the end, we will have a paper windmill with rotating blades.

We start with an empty document called main.qml . All our QML files will have the suffix .qml . As a

markup language (like HTML), a QML document needs to have one and only one root type. In our case,

this is the Image type with a width and height based on the background image geometry:

As QML doesn’t restrict the choice of type for the root type, we use an Image type with the source

property set to our background image as the root.

import QtQuick

Image {

 id: root

 source: "images/background.png"

}

TIP

Each type has properties. For example, an image has the properties width and height , each

holding a count of pixels. It also has other properties, such as source . Since the size of the

image type is automatically derived from the image size, we don’t need to set the width and

height properties ourselves.

The most standard types are located in the QtQuick module, which is made available by the import

statement at the start of the .qml file.

The id is a special and optional property that contains an identifier that can be used to reference its

associated type elsewhere in the document. Important: An id property cannot be changed after it has

been set, and it cannot be set during runtime. Using root as the id for the root-type is a convention

used in this book to make referencing the top-most type predictable in larger QML documents.

The foreground elements, representing the pole and the pinwheel in the user interface, are included as

separate images.

We want to place the pole horizontally in the center of the background, but offset vertically towards

the bottom. And we want to place the pinwheel in the middle of the background.

Although this beginners example only uses image types, as we progress you will create more

sophisticated user interfaces that are composed of many different types.

Image {

 id: root

 ...

 Image {

 id: pole

To place the pinwheel in the middle, we use a complex property called anchor . Anchoring allows you

to specify geometric relations between parent and sibling objects. For example, place me in the center

of another type (anchors.centerIn: parent). There are left, right, top, bottom, centerIn, fill,

verticalCenter and horizontalCenter relations on both ends. Naturally, when two or more anchors are

used together, they should complement each other: it wouldn’t make sense, for instance, to anchor a

type’s left side to the top of another type.

For the pinwheel, the anchoring only requires one simple anchor.

TIP

Sometimes you will want to make small adjustments, for example, to nudge a type slightly off-

center. This can be done with anchors.horizontalCenterOffset or with

anchors.verticalCenterOffset . Similar adjustment properties are also available for all the

other anchors. Refer to the documentation for a full list of anchors properties.

TIP

Placing an image as a child type of our root type (the Image) illustrates an important concept

of a declarative language. You describe the visual appearance of the user interface in the order

of layers and grouping, where the topmost layer (our background image) is drawn first and the

child layers are drawn on top of it in the local coordinate system of the containing type.

To make the showcase a bit more interesting, let’s make the scene interactive. The idea is to rotate the

wheel when the user presses the mouse somewhere in the scene.

We use the MouseArea type and make it cover the entire area of our root type.

 anchors.horizontalCenter: parent.horizontalCenter

 anchors.bottom: parent.bottom

 source: "images/pole.png"

 }

 Image {

 id: wheel

 anchors.centerIn: parent

 source: "images/pinwheel.png"

 }

 ...

}

Image {

 id: root

 ...

The mouse area emits signals when the user clicks inside the area it covers. You can connect to this

signal by overriding the onClicked function. When a signal is connected, it means that the function (or

functions) it corresponds to are called whenever the signal is emitted. In this case, we say that when

there’s a mouse click in the mouse area, the type whose id is wheel (i.e., the pinwheel image)

should rotate by +90 degrees.

TIP

This technique works for every signal, with the naming convention being on + SignalName in

title case. Also, all properties emit a signal when their value changes. For these signals, the

naming convention is:

For example, if a width property is changed, you can observe it with onWidthChanged: print(width) .

The wheel will now rotate whenever the user clicks, but the rotation takes place in one jump, rather

than a fluid movement over time. We can achieve smooth movement using animation. An animation

defines how a property change occurs over a period of time. To enable this, we use the Animation

type’s property called Behavior . The Behavior specifies an animation for a defined property for

every change applied to that property. In other words, whenever the property changes, the animation is

run. This is only one of many ways of doing animation in QML.

 MouseArea {

 anchors.fill: parent

 onClicked: wheel.rotation += 90

 }

 ...

}

 `on${property}Changed`

Image {

 id: root

 Image {

 id: wheel

 Behavior on rotation {

 NumberAnimation {

 duration: 250

 }

 }

 }

}

js

Now, whenever the wheel’s rotation property changes, it will be animated using a NumberAnimation

with a duration of 250 ms. So each 90-degree turn will take 250 ms, producing a nice smooth turn.

TIP

You will not actually see the wheel blurred. This is just to indicate the rotation. (A blurred wheel

is in the assets folder, in case you’d like to experiment with it.)

Now the wheel looks much better and behaves nicely, as well as providing a very brief insight into the

basics of how Qt Quick programming works.

Quick Start
This chapter will introduce you to developing with Qt 6. We will show you how to install the Qt SDK and

how you can create as well as run a simple hello world application using the Qt Creator IDE.

Installing Qt 6 SDK
The Qt SDK includes the tools you need to build desktop or embedded applications. You can grab the

latest version from the Qt Company (https://qt.io) ’s homepage. There is an offline and online

installer. The author personally prefers the online installer package as it allows you to install and

update multiple Qt releases. This is the recommended way to start. The SDK itself has a maintenance

tool, which allows you to update the SDK to the latest version.

The Qt SDK is easy to install and comes with its own IDE for rapid development called Qt Creator. The

IDE is a highly productive environment for Qt coding and recommended to all readers. Many

developers use Qt from the command line, however, and you are free to use the code editor of your

choice.

When installing the SDK, you should select the default option and ensure that at least Qt 6.2 is enabled.

Then you’re ready to go.

Update Qt

The Qt SDK comes with an own maintenance tool located under the ${install_dir} . It allows to add

and/or update Qt SDK components.

Build from Source

To build Qt from source you can follow the guide from the Qt Wiki

(https://wiki.qt.io/Building_Qt_6_from_Git) .

https://qt.io/
https://wiki.qt.io/Building_Qt_6_from_Git

Hello World

To test your installation, we will create a small hello world application. Please, open Qt Creator and

create a Qt Quick UI Project (File ‣ New File or Project ‣ Other Project ‣ Qt Quick UI Prototype)

and name the project HelloWorld .

TIP

The Qt Creator IDE allows you to create various types of applications. If not otherwise stated,

we always use a Qt Quick UI prototype project. For a production application you would often

prefer a CMake based project, but for fast prototyping this type is better suited.

TIP

A typical Qt Quick application is made out of a runtime called the QmlEngine which loads the

initial QML code. The developer can register C++ types with the runtime to interface with the

native code. These C++ types can also be bundled into a plugin and then dynamically loaded

using an import statement. The qml tool is a pre-made runtime which is used directly. For the

beginning, we will not cover the native side of development and focus only on the QML aspects

of Qt 6. This is why we start from a prototype project.

Qt Creator creates several files for you. The HelloWorld.qmlproject file is the project file, where the

relevant project configuration is stored. This file is managed by Qt Creator, so don’t edit it yourself.

Another file, HelloWorld.qml , is our application code. Open it and try to understand what the

application does before you read on.

// HelloWorld.qml

import QtQuick

import QtQuick.Window

Window {

 width: 640

 height: 480

 visible: true

 title: qsTr("Hello World")

}

The HelloWorld.qml program is written in the QML language. We’ll discuss the QML language more

in-depth in the next chapter. QML describes the user interface as a tree of hierarchical elements. In this

case, a window of 640 x 480 pixels, with a window title “Hello World”.

To run the application on your own, press the

Run tool on the left side, or select Build > Run from the menu.

In the background, Qt Creator runs qml and passes your QML document as the first argument. The

qml application parses the document, and launches the user interface. You should see something like

this:

Qt 6 works! That means we’re ready to continue.

TIP

If you are a system integrator, you’ll want to have Qt SDK installed to get the latest stable Qt

release, as well as a Qt version compiled from source for your specific device target.

TIP

Build from Scratch

If you’d like to build Qt 6 from the command line, you’ll first need to grab a copy of the code

repository and build it. Visit Qt’s wiki for an up-to-date explanation of how to build Qt from git.

After a successful compilation (and 2 cups of coffee), Qt 6 will be available in the qtbase

folder. Any beverage will suffice, however, we suggest coffee for best results.

If you want to test your compilation, you can now run the example with the default runtime that

comes with Qt 6:

$ qtbase/bin/qml

Application Types

This section is a run through of different application types one can write with Qt 6. It’s not limited to the

selection presented here, but it will give you a better idea of what you can achieve with Qt 6 in general.

Console Application

A console application does not provide a graphical user interface, and is usually called as part of a

system service or from the command line. Qt 6 comes with a series of ready-made components which

help you create cross-platform console applications very efficiently. For example, the networking file

APIs, string handling, and an efficient command line parser. As Qt is a high-level API on top of C++, you

get programming speed paired with execution speed. Don’t think of Qt as being just a UI toolkit - it has

so much more to offer!

String Handling

This first example demonstrates how you could add 2 constant strings. Admittedly, this is not a very

useful application, but it gives you an idea of what a native C++ application without an event loop may

look like.

// module or class includes

#include <QtCore>

// text stream is text-codec aware

QTextStream cout(stdout, QIODevice::WriteOnly);

int main(int argc, char** argv)

{

 // avoid compiler warnings

 Q_UNUSED(argc)

 Q_UNUSED(argv)

 QString s1("Paris");

 QString s2("London");

 // string concatenation

 QString s = s1 + " " + s2 + "!";

 cout << s << Qt::endl;

}

Container Classes

This example adds a list, and list iteration, to the application. Qt comes with a large collection of

container classes that are easy to use, and has the same API paradigms as other Qt classes.

Here is a more advanced list function, that allows you to join a list of strings into one string. This is very

handy when you need to proceed line based text input. The inverse (string to string-list) is also possible

using the QString::split() function.

File IO

In the next snippet, we read a CSV file from the local directory and loop over the rows to extract the

cells from each row. Doing this, we get the table data from the CSV file in ca. 20 lines of code. File

reading gives us a byte stream, to be able to convert this into valid Unicode text, we need to use the text

stream and pass in the file as a lower-level stream. For writing CSV files, you would just need to open

the file in write mode, and pipe the lines into the text stream.

QString s1("Hello");

QString s2("Qt");

QList<QString> list;

// stream into containers

list << s1 << s2;

// Java and STL like iterators

QListIterator<QString> iter(list);

while(iter.hasNext()) {

 cout << iter.next();

 if(iter.hasNext()) {

 cout << " ";

 }

}

cout << "!" << Qt::endl;

QString s1("Hello");

QString s2("Qt");

// convenient container classes

QStringList list;

list << s1 << s2;

// join strings

QString s = list.join(" ") + "!";

cout << s << Qt::endl;

This concludes the section about console based applications with Qt.

C++ Widget Application

Console based applications are very handy, but sometimes you need to have a graphical user interface

(GUI). In addition, GUI-based applications will likely need a back-end to read/write files, communicate

over the network, or keep data in a container.

In this first snippet for widget-based applications, we do as little as needed to create a window and

show it. In Qt, a widget without a parent is a window. We use a scoped pointer to ensure that the

widget is deleted when the pointer goes out of scope. The application object encapsulates the Qt

runtime, and we start the event loop with the exec() call. From there on, the application reacts only

to events triggered by user input (such as mouse or keyboard), or other event providers, such as

networking or file IO. The application only exits when the event loop is exited. This is done by calling

quit() on the application or by closing the window.

When you run the code, you will see a window with the size of 240 x 120 pixels. That’s all.

QList<QStringList> data;

// file operations

QFile file("sample.csv");

if(file.open(QIODevice::ReadOnly)) {

 QTextStream stream(&file);

 // loop forever macro

 forever {

 QString line = stream.readLine();

 // test for null string 'String()'

 if(line.isNull()) {

 break;

 }

 // test for empty string 'QString("")'

 if(line.isEmpty()) {

 continue;

 }

 QStringList row;

 // for each loop to iterate over containers

 foreach(const QString& cell, line.split(",")) {

 row.append(cell.trimmed());

 }

 data.append(row);

 }

}

// No cleanup necessary.

Custom Widgets

When you work on user interfaces, you may need to create custom-made widgets. Typically, a widget is

a window area filled with painting calls. Additionally, the widget has internal knowledge of how to

handle keyboard and mouse input, as well as how to react to external triggers. To do this in Qt, we need

to derive from QWidget and overwrite several functions for painting and event handling.

In the implementation, we draw a small border on our widget and a small rectangle on the last mouse

position. This is very typical for a low-level custom widget. Mouse and keyboard events change the

internal state of the widget and trigger a painting update. We won’t go into too much detail about this

code, but it is good to know that you have the possibility. Qt comes with a large set of ready-made

desktop widgets, so it’s likely that you don’t have to do this.

include <QtGui>

int main(int argc, char** argv)

{

 QApplication app(argc, argv);

 QScopedPointer<QWidget> widget(new CustomWidget());

 widget->resize(240, 120);

 widget->show();

 return app.exec();

}

#pragma once

include <QtWidgets>

class CustomWidget : public QWidget

{

 Q_OBJECT

public:

 explicit CustomWidget(QWidget *parent = 0);

 void paintEvent(QPaintEvent *event);

 void mousePressEvent(QMouseEvent *event);

 void mouseMoveEvent(QMouseEvent *event);

private:

 QPoint m_lastPos;

};

include "customwidget.h"

CustomWidget::CustomWidget(QWidget *parent) :

 QWidget(parent)

Desktop Widgets

The Qt developers have done all of this for you already and provide a set of desktop widgets, with a

native look on different operating systems. Your job, then, is to arrange these different widgets in a

widget container into larger panels. A widget in Qt can also be a container for other widgets. This is

accomplished through the parent-child relationship. This means we need to make our ready-made

widgets, such as buttons, checkboxes, radio buttons, lists, and grids, children of other widgets. One

way to accomplish this is displayed below.

Here is the header file for a so-called widget container.

{

}

void CustomWidget::paintEvent(QPaintEvent *)

{

 QPainter painter(this);

 QRect r1 = rect().adjusted(10,10,-10,-10);

 painter.setPen(QColor("#33B5E5"));

 painter.drawRect(r1);

 QRect r2(QPoint(0,0),QSize(40,40));

 if(m_lastPos.isNull()) {

 r2.moveCenter(r1.center());

 } else {

 r2.moveCenter(m_lastPos);

 }

 painter.fillRect(r2, QColor("#FFBB33"));

}

void CustomWidget::mousePressEvent(QMouseEvent *event)

{

 m_lastPos = event->pos();

 update();

}

void CustomWidget::mouseMoveEvent(QMouseEvent *event)

{

 m_lastPos = event->pos();

 update();

}

class CustomWidget : public QWidget

{

 Q_OBJECT

public:

 explicit CustomWidget(QWidget *parent = 0);

In the implementation, we use layouts to better arrange our widgets. Layout managers re-layout the

widgets according to some size policies when the container widget is re-sized. In this example, we have

a list, a line edit, and a button, which are arranged vertically and allow the user to edit a list of cities. We

use Qt’s signal and slots to connect sender and receiver objects.

private slots:

 void itemClicked(QListWidgetItem* item);

 void updateItem();

private:

 QListWidget *m_widget;

 QLineEdit *m_edit;

 QPushButton *m_button;

};

CustomWidget::CustomWidget(QWidget *parent) :

 QWidget(parent)

{

 QVBoxLayout *layout = new QVBoxLayout(this);

 m_widget = new QListWidget(this);

 layout->addWidget(m_widget);

 m_edit = new QLineEdit(this);

 layout->addWidget(m_edit);

 m_button = new QPushButton("Quit", this);

 layout->addWidget(m_button);

 setLayout(layout);

 QStringList cities;

 cities << "Paris" << "London" << "Munich";

 foreach(const QString& city, cities) {

 m_widget->addItem(city);

 }

 connect(m_widget, SIGNAL(itemClicked(QListWidgetItem*)), this,

SLOT(itemClicked(QListWidgetItem*)));

 connect(m_edit, SIGNAL(editingFinished()), this, SLOT(updateItem()));

 connect(m_button, SIGNAL(clicked()), qApp, SLOT(quit()));

}

void CustomWidget::itemClicked(QListWidgetItem *item)

{

 Q_ASSERT(item);

 m_edit->setText(item->text());

}

void CustomWidget::updateItem()

{

Drawing Shapes

Some problems are better visualized. If the problem at hand looks remotely like geometrical objects,

Qt graphics view is a good candidate. A graphics view arranges simple geometrical shapes in a scene.

The user can interact with these shapes, or they are positioned using an algorithm. To populate a

graphics view, you need a graphics view and a graphics scene. The scene is attached to the view and is

populated with graphics items.

Here is a short example. First the header file with the declaration of the view and scene.

In the implementation, the scene gets attached to the view first. The view is a widget and gets arranged

in our container widget. In the end, we add a small rectangle to the scene, which is then rendered on

the view.

 QListWidgetItem* item = m_widget->currentItem();

 if(item) {

 item->setText(m_edit->text());

 }

}

class CustomWidgetV2 : public QWidget

{

 Q_OBJECT

public:

 explicit CustomWidgetV2(QWidget *parent = 0);

private:

 QGraphicsView *m_view;

 QGraphicsScene *m_scene;

};

include "customwidgetv2.h"

CustomWidget::CustomWidget(QWidget *parent) :

 QWidget(parent)

{

 m_view = new QGraphicsView(this);

 m_scene = new QGraphicsScene(this);

 m_view->setScene(m_scene);

 QVBoxLayout *layout = new QVBoxLayout(this);

 layout->setMargin(0);

 layout->addWidget(m_view);

 setLayout(layout);

Adapting Data

Up to now, we have mostly covered basic data types and how to use widgets and graphics views. In

your applications, you will often need a larger amount of structured data, which may also need to be

stored persistently. Finally, the data also needs to be displayed. For this, Qt uses models. A simple

model is the string list model, which gets filled with strings and then attached to a list view.

Another popular way to store and retrieve data is SQL. Qt comes with SQLite embedded, and also has

support for other database engines (e.g. MySQL and PostgreSQL). First, you need to create your

database using a schema, like this:

To use SQL, we need to add the SQL module to our .pro file

And then we can open our database using C++. First, we need to retrieve a new database object for the

specified database engine. With this database object, we open the database. For SQLite, it’s enough to

specify the path to the database file. Qt provides some high-level database models, one of which is the

table model. The table model uses a table identifier and an optional where clause to select the data.

The resulting model can be attached to a list view as with the other model before.

 QGraphicsItem* rect1 = m_scene->addRect(0,0, 40, 40, Qt::NoPen, QColor("#FFBB33"));

 rect1->setFlags(QGraphicsItem::ItemIsFocusable|QGraphicsItem::ItemIsMovable);

}

m_view = new QListView(this);

m_model = new QStringListModel(this);

view->setModel(m_model);

QList<QString> cities;

cities << "Munich" << "Paris" << "London";

m_model->setStringList(cities);

CREATE TABLE city (name TEXT, country TEXT);

INSERT INTO city VALUES ("Munich", "Germany");

INSERT INTO city VALUES ("Paris", "France");

INSERT INTO city VALUES ("London", "United Kingdom");

QT += sql

QSqlDatabase db = QSqlDatabase::addDatabase("QSQLITE");

db.setDatabaseName("cities.db");

if(!db.open()) {

For a higher level model operations, Qt provides a sorting file proxy model that allows you sort, filter,

and transform models.

Filtering is done based on the column that is to be filters, and a string as filter argument.

The filter proxy model is much more powerful than demonstrated here. For now, it is enough to

remember it exists.

!!! note

Coming next: Qt Quick to the rescue.

Qt Quick Application

 qFatal("unable to open database");

}

m_model = QSqlTableModel(this);

m_model->setTable("city");

m_model->setHeaderData(0, Qt::Horizontal, "City");

m_model->setHeaderData(1, Qt::Horizontal, "Country");

view->setModel(m_model);

m_model->select();

QSortFilterProxyModel* proxy = new QSortFilterProxyModel(this);

proxy->setSourceModel(m_model);

view->setModel(proxy);

view->setSortingEnabled(true);

proxy->setFilterKeyColumn(0);

proxy->setFilterCaseSensitivity(Qt::CaseInsensitive);

proxy->setFilterFixedString(QString)

This has been an overview of the different kind of classic applications you can develop

with Qt 5. The desktop is moving, and soon the mobile devices will be our desktop of

tomorrow. Mobile devices have a different user interface design. They are much more

simplistic than desktop applications. They do one thing and they do it with simplicity and

focus. Animations are an important part of the mobile experience. A user interface needs

to feel alive and fluent. The traditional Qt technologies are not well suited for this

market.

There is an inherent conflict in modern software development. The user interface is moving much

faster than our back-end services. In a traditional technology, you develop the so-called front-end at

the same pace as the back-end. This results in conflicts when customers want to change the user

interface during a project, or develop the idea of a user interface during the project. Agile projects,

require agile methods.

Qt Quick provides a declarative environment where your user interface (the front-end) is declared like

HTML and your back-end is in native C++ code. This allows you to get the best of both worlds.

This is a simple Qt Quick UI below

The declaration language is called QML and it needs a runtime to execute it. Qt provides a standard

runtime called qml . You can also write a custom runtime. For this, we need a quick view and set the

main QML document as a source from C++. Then you can show the user interface.

Let’s come back to our earlier examples. In one example, we used a C++ city model. It would be great if

we could use this model inside our declarative QML code.

To enable this, we first code our front-end to see how we would want to use a city model. In this case,

the front-end expects an object named cityModel which we can use inside a list view.

import QtQuick

Rectangle {

 width: 240; height: 240

 Rectangle {

 width: 40; height: 40

 anchors.centerIn: parent

 color: '#FFBB33'

 }

}

#include <QtGui>

#include <QtQml>

int main(int argc, char *argv[])

{

 QGuiApplication app(argc, argv);

 QQmlApplicationEngine engine("main.qml");

 return app.exec();

}

import QtQuick

Rectangle {

To enable the cityModel , we can mostly re-use our previous model, and add a context property to our

root context. The root context is the other root-element in the main document.

 width: 240; height: 120

 ListView {

 width: 180; height: 120

 anchors.centerIn: parent

 model: cityModel

 delegate: Text { text: model.city }

 }

}

m_model = QSqlTableModel(this);

... // some magic code

QHash<int, QByteArray> roles;

roles[Qt::UserRole+1] = "city";

roles[Qt::UserRole+2] = "country";

m_model->setRoleNames(roles);

engine.rootContext()->setContextProperty("cityModel", m_model);

Summary

We have seen how to install the Qt SDK and how to create our first application. Then we walked you

through the different application types to give you an overview of Qt, showing off some features Qt

offers for application development. I hope you got a good impression that Qt is a very rich user

interface toolkit and offers everything an application developer can hope for and more. Still, Qt does

not lock you into specific libraries, as you can always use other libraries, or even extend Qt yourself. It is

also rich when it comes to supporting different application models: console, classic desktop user

interface, and touch user interface.

Qt Creator IDE
Qt Creator is the default integrated development environment for Qt. It’s written from Qt developers

for Qt developers. The IDE is available on all major desktop platforms, e.g. Windows/Mac/Linux. We

have already seen customers using Qt Creator on an embedded device. Qt Creator has a lean efficient

user interface and it really shines in making the developer productive. Qt Creator can be used to run

your Qt Quick user interface but also to compile c++ code and this for your host system or for another

device using a cross-compiler.

WARNING

Update screenshots!

The User Interface
When starting Qt Creator you are greeted by the Welcome screen. There you will find the most

important hints on how to continue inside Qt Creator and your recently used projects. You will also see

the sessions list, which might be empty for you. A session is a collection of projects and configurations

stored for fast access. This comes really handy when you have several customers with larger projects.

On the left side, you will see the mode-selector. The mode selectors support typical steps from a

developer workflow.

Welcome mode: For your orientation.

Edit mode: Focus on the code

Design mode: Focus on the UI design

Debug mode: Retrieve information about a running application

Projects mode: Modify your projects run and build configuration

Analyze mode: For detecting memory leaks and profiling

Help mode: Easy access to the Qt documentation

Below the mode-selectors, you will find the actual project-configuration selector and the run/debug

Most of the time you will be in the edit mode with the code-editor in the central panel. From time to

time, you will visit the Projects mode when you need to configure your project. And then you press

Run . Qt Creator is smart enough to ensure your project is fully built before running it.

In the bottom are the output panes for issues, application messages, compile messages, and other

messages.

Registering your Qt Kit

The Qt Kit is probably the most difficult aspect when it comes to working with Qt Creator initially. A Qt

Kit is a set of a Qt version, compiler and device and some other settings. It is used to uniquely identify

the combination of tools for your project build. A typical kit for the desktop would contain a C++

compiler and a Qt version (e.g. Qt 6.xx.yy) and a device (“Desktop”). After you have created a project

you need to assign a kit to a project before Qt Creator can build the project. Before you are able to

create a kit first you need to have a compiler installed and have a Qt version registered. A Qt version is

registered by specifying the path to the qmake executable. Qt Creator then queries qmake for

information required to identify the Qt version. This is also true for Qt 6 where CMake is the preferred

build tool.

Adding a kit and registering a Qt version is done in the Settings ‣ Kits entry. There you can also see

which compilers are registered.

TIP

Please first check if your Qt Creator has already the correct Qt version registered and then

ensure a Kit for your combination of compiler and Qt and device is specified. You can not build

a project without a kit.

Managing Projects

Qt Creator manages your source code in projects. You can create a new project by using File ‣ New

File or Project . When you create a project you have many choices of application templates. Qt

Creator is capable of creating desktop, embedded, mobile applications and even python projects using

Qt for Python. There are templates for applications which uses Widgets or Qt Quick or even bare-bone

projects just using a console. For a beginner, it is difficult to choose, so we pick three project types for

you.

Other Project / QtQuick UI Prototype: Great for playing around with QML as there is no C++ build

step involved. Mostly suitable for prototyping only.

Applications (Qt Quick) / Qt Quick Application (Empty): Creates a bare C++ project with cmake

support and a QML main document to render an empty window. This is the typical default starting

point for all native QML application.

Libraries / Qt Quick 2.0 Extension Plug-in: Use this wizard to create a stub for a plug-in for your Qt

Quick UI. A plug-in is used to extend Qt Quick with native elements. This is ideally to create a re-

usable Qt Quick library.

Applications (Qt) / Qt Widgets Application: Creates a starting point for a desktop application using

Qt Widgets. This would be your starting point if you plan to create a traditional C++ widgets based

application.

Applications (Qt) / Qt Console Application: Creates a starting point for a desktop application

without any user interface. This would be your starting point if you plan to create a traditional C++

command line tool using Qt C++.

TIP

During the first parts of the book, we will mainly use the QtQuick UI Prototype type or the Qt

Quick Application, depending on whether we also use some C++ code with Qt Quick. Later to

describe some c++ aspects we will use the Qt Console Application type. For extending Qt

Quick with our own native plug-ins we will use the Qt Quick 2.0 Extension Plug-in wizard type.

Using the Editor
When you open a project or you just created a new project Qt Creator will switch to the edit mode. You

should see on the left of your project files and in the center area the code editor. Selecting files on the

left will open them in the editor.

The editor provides syntax highlighting, code-completion, and quick-fixes. Also, it supports several

commands for code refactoring. When working with the editor you will have the feeling that everything

reacts immediately. This is thanks to the developers of Qt Creator which made the tool feel really

snappy.

Locator

The locator is a central component inside Qt Creator. It allows developers to navigate fast to specific

locations inside the source code or inside the help. To open the locator press Ctrl+K .

A pop-up is coming from the bottom left and shows a list of options. If you just search a file inside your

project just hit the first letter from the file name. The locator also accepts wild-cards, so *main.qml

will also work. Otherwise, you can also prefix your search to search for the specific content type.

Please try it out. For example to open the help for the QML element Rectangle open the locator and

type ? rectangle . While you type the locator will update the suggestions until you found the

reference you are looking for.

Debugging

Qt Creator is an easy to use and well designed IDE to code your Qt C++ and QML projects. It has world

class CMake support and is pre-configured for Qt C++ development. Due to its excellent C++ support

it can also be used for any other vanilla C++ projects.

TIP

Hmm, I just realized I have not used debugging a lot. I hope this is a good sign. Need to ask

someone to help me out here. In the meantime have a look at the Qt Creator documentation

(http://http://doc.qt.io/qtcreator/index.html) .

http://http//doc.qt.io/qtcreator/index.html

Shortcuts

Shortcuts are the difference between a nice-to-use editor and a professional editor. As a professional

you spend hundreds of hours in front of your application. Each shortcut which makes your work-flow

faster counts. Luckily the developers of Qt Creator think the same and have added literally hundreds of

shortcuts to the application.

To get started we have collection some basic shortcuts (in Windows notation):

Ctrl+B - Build project

Ctrl+R - Run Project

Ctrl+Tab - Switch between open documents

Ctrl+K - Open Locator

Esc - Go back (hit several times and you are back in the editor)

F2 - Follow Symbol under cursor

F4 - Switch between header and source (only useful for c++ code)

List of Qt Creator shortcuts (http://doc.qt.io/qtcreator/creator-keyboard-shortcuts.html) from the

documentation.

Configure Shortcuts

You can configure the shortcuts from inside creator using the settings dialog.

http://doc.qt.io/qtcreator/creator-keyboard-shortcuts.html

Quick Starter
This chapter provides an overview of QML, the declarative user interface language used in Qt 6. We will

discuss the QML syntax, which is a tree of elements, followed by an overview of the most important

basic elements. Later we will briefly look at how to create our own elements, called components and

how to transform elements using property manipulations. Towards the end, we will look at how to

arrange elements together in a layout and finally have a look at elements where the user can provide

input.

QML Syntax

QML is a declarative language used to describe how objects relate to each other. QtQuick is a

framework built on QML for building the user interface of your application. It breaks down the user

interface into smaller elements, which can be combined into components. QtQuick describes the look

and the behavior of these user interface elements. This user interface description can be enriched with

JavaScript code to provide simple but also more complex logic. In this perspective, it follows the HTML-

JavaScript pattern but QML and QtQuick are designed from the ground up to describe user interfaces,

not text-documents.

In its simplest form, QtQuick lets you create a hierarchy of elements. Child elements inherit the

coordinate system from the parent. An x,y coordinate is always relative to the parent.

TIP

QtQuick builds on QML. The QML language only knows of elements, properties, signals and

bindings. QtQuick is a framework built on QML. Using default properties, the hierarchy of

QtQuick elements can be constructed in an elegant way.

Let’s start with a simple example of a QML file to explain the different syntax.

// RectangleExample.qml

import QtQuick

// The root element is the Rectangle

Rectangle {

 // name this element root

 id: root

The import statement imports a module. An optional version in the form of <major>.<minor> can

be added.

Comments can be made using // for single line comments or /* */ for multi-line comments.

Just like in C/C++ and JavaScript

Every QML file needs to have exactly one root element, like HTML

An element is declared by its type followed by { }

Elements can have properties, they are in the form name: value

Arbitrary elements inside a QML document can be accessed by using their id (an unquoted

identifier)

Elements can be nested, meaning a parent element can have child elements. The parent element can

be accessed using the parent keyword

With the import statement you import a QML module by name. In Qt5 you had to specify a major and

minor version (e.g. 2.15), this is now optional in Qt6. For the book content we drop this optional

 // properties: <name>: <value>

 width: 120; height: 240

 // color property

 color: "#4A4A4A"

 // Declare a nested element (child of root)

 Image {

 id: triangle

 // reference the parent

 x: (parent.width - width)/2; y: 40

 source: 'assets/triangle_red.png'

 }

 // Another child of root

 Text {

 // un-named element

 // reference element by id

 y: triangle.y + triangle.height + 20

 // reference root element

 width: root.width

 color: 'white'

 horizontalAlignment: Text.AlignHCenter

 text: 'Triangle'

 }

}

version number as normally you automatically want to choose the newest version available from your

selected Qt Kit.

TIP

Often you want to access a particular element by id or a parent element using the parent

keyword. So it’s good practice to name your root element “root” using id: root . Then you

don’t have to think about how the root element is named in your QML document.

TIP

You can run the example using the Qt Quick runtime from the command line from your OS like

this:

Where you need to replace the $QTDIR to the path to your Qt installation. The qml

executable initializes the Qt Quick runtime and interprets the provided QML file.

In Qt Creator, you can open the corresponding project file and run the document

RectangleExample.qml .

Properties

Elements are declared by using their element name but are defined by using their properties or by

creating custom properties. A property is a simple key-value pair, e.g. width: 100 , text:

'Greetings' , color: '#FF0000' . A property has a well-defined type and can have an initial value.

$ $QTDIR/bin/qml RectangleExample.qml

Text {

 // (1) identifier

 id: thisLabel

 // (2) set x- and y-position

 x: 24; y: 16

 // (3) bind height to 2 * width

 height: 2 * width

 // (4) custom property

 property int times: 24

 // (5) property alias

Let’s go through the different features of properties:

(1) id is a very special property-like value, it is used to reference elements inside a QML file (called

“document” in QML). The id is not a string type but rather an identifier and part of the QML syntax.

An id needs to be unique inside a document and it can’t be reset to a different value, nor may it be

queried. (It behaves much like a reference in the C++ world.)

(2) A property can be set to a value, depending on its type. If no value is given for a property, an initial

value will be chosen. You need to consult the documentation of the particular element for more

information about the initial value of a property.

(3) A property can depend on one or many other properties. This is called binding. A bound property

is updated when its dependent properties change. It works like a contract, in this case, the height

should always be two times the width .

(4) Adding new properties to an element is done using the property qualifier followed by the type,

the name and the optional initial value (property <type> <name> : <value>). If no initial value is

given, a default initial value is chosen.

 property alias anotherTimes: thisLabel.times

 // (6) set text appended by value

 text: "Greetings " + times

 // (7) font is a grouped property

 font.family: "Ubuntu"

 font.pixelSize: 24

 // (8) KeyNavigation is an attached property

 KeyNavigation.tab: otherLabel

 // (9) signal handler for property changes

 onHeightChanged: console.log('height:', height)

 // focus is need to receive key events

 focus: true

 // change color based on focus value

 color: focus ? "red" : "black"

}

TIP

You can also declare one property to be the default property using default keyword. If

another element is created inside the element and not explicitly bound to a property, it is bound

to the default property. For instance, This is used when you add child elements. The child

elements are added automatically to the default property children of type list if they are

visible elements.

(5) Another important way of declaring properties is using the alias keyword (property alias

<name>: <reference>). The alias keyword allows us to forward a property of an object or an object

itself from within the type to an outer scope. We will use this technique later when defining

components to export the inner properties or element ids to the root level. A property alias does not

need a type, it uses the type of the referenced property or object.

(6) The text property depends on the custom property times of type int. The int based value is

automatically converted to a string type. The expression itself is another example of binding and

results in the text being updated every time the times property changes.

(7) Some properties are grouped properties. This feature is used when a property is more structured

and related properties should be grouped together. Another way of writing grouped properties is

font { family: "Ubuntu"; pixelSize: 24 } .

(8) Some properties belong to the element class itself. This is done for global settings elements

which appear only once in the application (e.g. keyboard input). The writing is <Element>.

<property>: <value> .

(9) For every property, you can provide a signal handler. This handler is called after the property

changes. For example, here we want to be notified whenever the height changes and use the built-in

console to log a message to the system.

WARNING

An element id should only be used to reference elements inside your document (e.g. the

current file). QML provides a mechanism called "dynamic scoping", where documents loaded

later on overwrite the element IDs from documents loaded earlier. This makes it possible to

reference element IDs from previously loaded documents if they have not yet been overwritten.

It’s like creating global variables. Unfortunately, this frequently leads to really bad code in

practice, where the program depends on the order of execution. Unfortunately, this can’t be

turned off. Please only use this with care; or, even better, don’t use this mechanism at all. It’s

better to export the element you want to provide to the outside world using properties on the

root element of your document.

Scripting

QML and JavaScript (also known as ECMAScript) are best friends. In the JavaScript chapter we will go

into more detail on this symbiosis. Currently, we just want to make you aware of this relationship.

(1) The text changed handler onTextChanged prints the current text every time the text changed due

to the space bar being pressed. As we use a parameter injected by the signal, we need to use the

function syntax here. It's also possible to use an arrow function ((text) => {}), but we feel

function(text) {} is more readable.

Text {

 id: label

 x: 24; y: 24

 // custom counter property for space presses

 property int spacePresses: 0

 text: "Space pressed: " + spacePresses + " times"

 // (1) handler for text changes. Need to use function to capture parameters

 onTextChanged: function(text) {

 console.log("text changed to:", text)

 }

 // need focus to receive key events

 focus: true

 // (2) handler with some JS

 Keys.onSpacePressed: {

 increment()

 }

 // clear the text on escape

 Keys.onEscapePressed: {

 label.text = ''

 }

 // (3) a JS function

 function increment() {

 spacePresses = spacePresses + 1

 }

}

(2) When the text element receives the space key (because the user pressed the space bar on the

keyboard) we call a JavaScript function increment() .

(3) Definition of a JavaScript function in the form of function <name>(<parameters>) { ... } , which

increments our counter spacePresses . Every time spacePresses is incremented, bound properties

will also be updated.

Binding

The difference between the QML : (binding) and the JavaScript = (assignment) is that the binding is

a contract and keeps true over the lifetime of the binding, whereas the JavaScript assignment (=) is a

one time value assignment.

The lifetime of a binding ends when a new binding is set on the property or even when a JavaScript

value is assigned to the property. For example, a key handler setting the text property to an empty

string would destroy our increment display:

After pressing escape, pressing the space bar will not update the display anymore, as the previous

binding of the text property (text: “Space pressed: ” + spacePresses + ” times”) was destroyed.

When you have conflicting strategies to change a property as in this case (text updated by a change to a

property increment via a binding and text cleared by a JavaScript assignment) then you can’t use

bindings! You need to use assignment on both property change paths as the binding will be destroyed

by the assignment (broken contract!).

Keys.onEscapePressed: {

 label.text = ''

}

Core Elements

Elements can be grouped into visual and non-visual elements. A visual element (like the Rectangle)

has a geometry and normally presents an area on the screen. A non-visual element (like a Timer)

provides general functionality, normally used to manipulate the visual elements.

Currently, we will focus on the fundamental visual elements, such as Item , Rectangle , Text ,

Image and MouseArea . However, by using the Qt Quick Controls 2 module, it is possible to create

user interfaces built from standard platform components such as buttons, labels and sliders.

Item Element

Item is the base element for all visual elements as such all other visual elements inherits from Item .

It doesn’t paint anything by itself but defines all properties which are common across all visual

elements:

Geometry - x and y to define the top-left position, width and height for the expansion of the

element, and z for the stacking order to lift elements up or down from their natural ordering.

Layout handling - anchors (left, right, top, bottom, vertical and horizontal center) to position

elements relative to other elements with optional margins .

Key handling - attached Key and KeyNavigation properties to control key handling and the

focus property to enable key handling in the first place.

Transformation - scale and rotate transformation and the generic transform property list for

x,y,z transformation, as well as a transformOrigin point.

Visual - opacity to control transparency, visible to show/hide elements, clip to restrain paint

operations to the element boundary, and smooth to enhance the rendering quality.

State definition - states list property with the supported list of states, the current state

property, and the transitions list property to animate state changes.

To better understand the different properties we will try to introduce them throughout this chapter in

the context of the element presented. Please remember these fundamental properties are available on

every visual element and work the same across these elements.

TIP

The Item element is often used as a container for other elements, similar to the div element

in HTML.

Rectangle Element

Rectangle extends Item and adds a fill color to it. Additionally it supports borders defined by

border.color and border.width . To create rounded rectangles you can use the radius property.

TIP

Valid color values are colors from the SVG color names (see http://www.w3.org/TR/css3-

color/#svg-color (http://www.w3.org/TR/css3-color/#svg-color)). You can provide colors in

QML in different ways, but the most common way is an RGB string (‘#FF4444’) or as a color

name (e.g. ‘white’).

A random color can be created using some JavaScript:

Besides a fill color and a border, the rectangle also supports custom gradients:

Rectangle {

 id: rect1

 x: 12; y: 12

 width: 76; height: 96

 color: "lightsteelblue"

}

Rectangle {

 id: rect2

 x: 112; y: 12

 width: 76; height: 96

 border.color: "lightsteelblue"

 border.width: 4

 radius: 8

}

color: Qt.rgba(Math.random(), Math.random(), Math.random(), 1)

http://www.w3.org/TR/css3-color/#svg-color

A gradient is defined by a series of gradient stops. Each stop has a position and a color. The position

marks the position on the y-axis (0 = top, 1 = bottom). The color of the GradientStop marks the color

at that position.

TIP

A rectangle with no width/height set will not be visible. This happens often when you have

several rectangles width (height) depending on each other and something went wrong in your

composition logic. So watch out!

TIP

It is not possible to create an angled gradient. For this, it’s better to use predefined images.

One possibility would be to just rotate the rectangle with the gradient, but be aware the

geometry of a rotated rectangle will not change and thus will lead to confusion as the geometry

of the element is not the same as the visible area. From the author's perspective, it’s really

better to use designed gradient images in that case.

Text Element

To display text, you can use the Text element. Its most notable property is the text property of type

string . The element calculates its initial width and height based on the given text and the font used.

The font can be influenced using the font property group (e.g. font.family , font.pixelSize , …). To

change the color of the text just use the color property.

Rectangle {

 id: rect1

 x: 12; y: 12

 width: 176; height: 96

 gradient: Gradient {

 GradientStop { position: 0.0; color: "lightsteelblue" }

 GradientStop { position: 1.0; color: "slategray" }

 }

 border.color: "slategray"

}

Text can be aligned to each side and the center using the horizontalAlignment and

verticalAlignment properties. To further enhance the text rendering you can use the style and

styleColor property, which allows you to render the text in outline, raised and sunken mode.

For longer text, you often want to define a break position like A very … long text, this can be achieved

using the elide property. The elide property allows you to set the elide position to the left, right or

middle of your text.

In case you don’t want the ‘…’ of the elide mode to appear but still want to see the full text you can also

wrap the text using the wrapMode property (works only when the width is explicitly set):

A Text element only displays the given text, and the remaining space it occupies is transparent. This

means it does not render any background decoration, and so it's up to you to provide a sensible

background if desired.

Text {

 text: "The quick brown fox"

 color: "#303030"

 font.family: "Ubuntu"

 font.pixelSize: 28

}

Text {

 width: 40; height: 120

 text: 'A very long text'

 // '...' shall appear in the middle

 elide: Text.ElideMiddle

 // red sunken text styling

 style: Text.Sunken

 styleColor: '#FF4444'

 // align text to the top

 verticalAlignment: Text.AlignTop

 // only sensible when no elide mode

 // wrapMode: Text.WordWrap

}

TIP

Be aware that the initial width of a Text item is dependant on the font and text string that

were set. A Text element with no width set and no text will not be visible, as the initial width

will be 0.

TIP

Often when you want to layout Text elements you need to differentiate between aligning the

text inside the Text element boundary box and aligning the element boundary box itself. In

the former, you want to use the horizontalAlignment and verticalAlignment properties, and

in the latter case, you want to manipulate the element geometry or use anchors.

Image Element

An Image element is able to display images in various formats (e.g. PNG , JPG , GIF , BMP , WEBP).

For the full list of supported image formats, please consult the Qt documentation

(https://doc.qt.io/qt-6/qimagereader.html#supportedImageFormats) . Besides the source property

to provide the image URL, it contains a fillMode which controls the resizing behavior.

Image {

 x: 12; y: 12

 // width: 72

 // height: 72

 source: "assets/triangle_red.png"

}

Image {

 x: 12+64+12; y: 12

 // width: 72

 height: 72/2

 source: "assets/triangle_red.png"

 fillMode: Image.PreserveAspectCrop

 clip: true

}

https://doc.qt.io/qt-6/qimagereader.html#supportedImageFormats

TIP

A URL can be a local path with forward slashes (“./images/home.png”) or a web-link (e.g.

“http://example.org/home.png (http://example.org/home.png) ”).

TIP

Image elements using PreserveAspectCrop should also enable clipping to avoid image data

being rendered outside the Image boundaries. By default clipping is disabled (clip: false).

You need to enable clipping (clip: true) to constrain the painting to the elements bounding

rectangle. This can be used on any visual element, but should be used sparingly

(https://doc.qt.io/qt-6/qtquick-performance.html#clipping) .

TIP

Using C++ you are able to create your own image provider using QQuickImageProvider . This

allows you to create images on the fly and make use of threaded image loading.

MouseArea Element

To interact with these elements you will often use a MouseArea . It’s a rectangular invisible item in

which you can capture mouse events. The mouse area is often used together with a visible item to

execute commands when the user interacts with the visual part.

Rectangle {

 id: rect1

 x: 12; y: 12

 width: 76; height: 96

 color: "lightsteelblue"

 MouseArea {

 id: area

 width: parent.width

 height: parent.height

 onClicked: rect2.visible = !rect2.visible

 }

}

Rectangle {

 id: rect2

 x: 112; y: 12

 width: 76; height: 96

 border.color: "lightsteelblue"

http://example.org/home.png
https://doc.qt.io/qt-6/qtquick-performance.html#clipping

TIP

This is an important aspect of Qt Quick: the input handling is separated from the visual

presentation. This allows you to show the user an interface element where the actual

interaction area can be larger.

TIP

For more complex interaction, see Qt Quick Input Handlers (https://doc.qt.io/qt-

6/qtquickhandlers-index.html) . They are intended to be used instead of elements such as

MouseArea and Flickable and offer greater control and flexibility. The idea is to handle one

interaction aspect in each handler instance instead of centralizing the handling of all events

from a given source in a single element, which was the case before.

 border.width: 4

 radius: 8

}

https://doc.qt.io/qt-6/qtquickhandlers-index.html

Components

A component is a reusable element. QML provides different ways to create components. Currently, we

will look only at the simplest form - a file-based component. A file-based component is created by

placing a QML element in a file and giving the file an element name (e.g. Button.qml). You can use the

component like every other element from the Qt Quick module. In our case, you would use this in your

code as Button { ... } .

For example, let’s create a rectangle containing a text component and a mouse area. This resembles a

simple button and doesn’t need to be more complicated for our purposes.

The UI will look similar to this. In the first image, the UI is in its initial state, and in the second image the

button has been clicked.

Rectangle { // our inlined button ui

 id: button

 x: 12; y: 12

 width: 116; height: 26

 color: "lightsteelblue"

 border.color: "slategrey"

 Text {

 anchors.centerIn: parent

 text: "Start"

 }

 MouseArea {

 anchors.fill: parent

 onClicked: {

 status.text = "Button clicked!"

 }

 }

}

Text { // text changes when button was clicked

 id: status

 x: 12; y: 76

 width: 116; height: 26

 text: "waiting ..."

 horizontalAlignment: Text.AlignHCenter

}

Now our task is to extract the button UI into a reusable component. For this, we should think about a

possible API for our button. You can do this by imagining how someone else should use your button.

Here’s what I came up with:

I would like to set the text using a text property and to implement my own click handler. Also, I

would expect the button to have a sensible initial size, which I can overwrite (e.g. with width: 240 for

example).

To achieve this we create a Button.qml file and copy our button UI inside. Additionally, we need to

export the properties a user might want to change at the root level.

// minimal API for a button

Button {

 text: "Click Me"

 onClicked: { /* do something */ }

}

// Button.qml

import QtQuick

Rectangle {

 id: root

 // export button properties

 property alias text: label.text

 signal clicked

 width: 116; height: 26

 color: "lightsteelblue"

 border.color: "slategrey"

 Text {

 id: label

 anchors.centerIn: parent

We have exported the text property and the clicked signal at the root level. Typically we name our root

element root to make referencing it easier. We use the alias feature of QML, which is a way to export

properties inside nested QML elements to the root level and make this available for the outside world.

It is important to know that only the root level properties can be accessed from outside this file by

other components.

To use our new Button element we can simply declare it in our file. So the earlier example will

become a little bit simplified.

Now you can use as many buttons as you like in your UI by just using Button { ... } . A real button

could be more complex, e.g. providing feedback when clicked or showing a nicer decoration.

 text: "Start"

 }

 MouseArea {

 anchors.fill: parent

 onClicked: {

 root.clicked()

 }

 }

}

Button { // our Button component

 id: button

 x: 12; y: 12

 text: "Start"

 onClicked: {

 status.text = "Button clicked!"

 }

}

Text { // text changes when button was clicked

 id: status

 x: 12; y: 76

 width: 116; height: 26

 text: "waiting ..."

 horizontalAlignment: Text.AlignHCenter

}

TIP

If you want to, you could even go a step further and use an Item as a root element. This

prevents users from changing the color of the button we designed, and provides us with more

control over the exported API. The target should be to export a minimal API. Practically, this

means we would need to replace the root Rectangle with an Item and make the rectangle a

nested element in the root item.

With this technique, it is easy to create a whole series of reusable components.

Item {

 id: root

 width: 116; height: 26

 property alias text: label.text

 signal clicked

 Rectangle {

 anchors.fill parent

 color: "lightsteelblue"

 border.color: "slategrey"

 }

 ...

}

Simple Transformations

A transformation manipulates the geometry of an object. QML Items can, in general, be translated,

rotated and scaled. There is a simple form of these operations and a more advanced way.

Let’s start with the simple transformations. Here is our scene as our starting point.

A simple translation is done via changing the x,y position. A rotation is done using the rotation

property. The value is provided in degrees (0 .. 360). A scaling is done using the scale property and a

value <1 means the element is scaled down and >1 means the element is scaled up. Rotation and

scaling do not change an item's geometry: the x,y and width/height haven’t changed; only the

painting instructions are transformed.

Before we show off the example I would like to introduce a little helper: the ClickableImage element.

The ClickableImage is just an image with a mouse area. This brings up a useful rule of thumb - if you

have copied a chunk of code three times, extract it into a component.

// ClickableImage.qml

// Simple image which can be clicked

import QtQuick

Image {

 id: root

 signal clicked

 MouseArea {

 anchors.fill: parent

 onClicked: root.clicked()

 }

}

We use our clickable image to present three objects (box, circle, triangle). Each object performs a

simple transformation when clicked. Clicking the background will reset the scene.

// TransformationExample.qml

import QtQuick

Item {

 // set width based on given background

 width: bg.width

 height: bg.height

 Image { // nice background image

 id: bg

 source: "assets/background.png"

 }

 MouseArea {

 id: backgroundClicker

 // needs to be before the images as order matters

 // otherwise this mousearea would be before the other elements

 // and consume the mouse events

 anchors.fill: parent

 onClicked: {

 // reset our little scene

 circle.x = 84

 box.rotation = 0

 triangle.rotation = 0

 triangle.scale = 1.0

 }

 }

 ClickableImage {

 id: circle

 x: 84; y: 68

 source: "assets/circle_blue.png"

 antialiasing: true

 onClicked: {

 // increase the x-position on click

 x += 20

 }

 }

 ClickableImage {

 id: box

 x: 164; y: 68

 source: "assets/box_green.png"

 antialiasing: true

 onClicked: {

The circle increments the x-position on each click and the box will rotate on each click. The triangle will

rotate and scale the image up on each click, to demonstrate a combined transformation. For the scaling

and rotation operation we set antialiasing: true to enable anti-aliasing, which is switched off (same

as the clipping property clip) for performance reasons. In your own work, when you see some

rasterized edges in your graphics, then you should probably switch smoothing on.

TIP

To achieve better visual quality when scaling images, it is recommended to scale down instead

of up. Scaling an image up with a larger scaling factor will result in scaling artifacts (blurred

image). When scaling an image you should consider using smooth: true to enable the usage

of a higher quality filter at the cost of performance.

The background MouseArea covers the whole background and resets the object values.

 // increase the rotation on click

 rotation += 15

 }

 }

 ClickableImage {

 id: triangle

 x: 248; y: 68

 source: "assets/triangle_red.png"

 antialiasing: true

 onClicked: {

 // several transformations

 rotation += 15

 scale += 0.05

 }

 }

 // ...

TIP

Elements which appear earlier in the code have a lower stacking order (called z-order). If you

click long enough on circle you will see it moves below box . The z-order can also be

manipulated by the z property of an Item.

This is because box appears later in the code. The same applies also to mouse areas. A mouse

area later in the code will overlap (and thus grab the mouse events) of a mouse area earlier in

the code.

Please remember: the order of elements in the document matters.

Positioning Elements

There are a number of QML elements used to position items. These are called positioners, of which the

Qt Quick module provides the following: Row , Column , Grid and Flow . They can be seen showing

the same contents in the illustration below.

TIP

Before we go into details, let me introduce some helper elements: the red, blue, green, lighter

and darker squares. Each of these components contains a 48x48 pixel colorized rectangle. As a

reference, here is the source code for the RedSquare :

Please note the use of Qt.lighter(color) to produce a lighter border color based on the fill color. We

will use these helpers in the next examples to make the source code more compact and readable.

Please remember, each rectangle is initially 48x48 pixels.

The Column element arranges child items into a column by stacking them on top of each other. The

spacing property can be used to distance each of the child elements from each other.

// RedSquare.qml

import QtQuick

Rectangle {

 width: 48

 height: 48

 color: "#ea7025"

 border.color: Qt.lighter(color)

}

The Row element places its child items next to each other, either from the left to the right, or from the

right to the left, depending on the layoutDirection property. Again, spacing is used to separate

child items.

// ColumnExample.qml

import QtQuick

DarkSquare {

 id: root

 width: 120

 height: 240

 Column {

 id: column

 anchors.centerIn: parent

 spacing: 8

 RedSquare { }

 GreenSquare { width: 96 }

 BlueSquare { }

 }

}

// RowExample.qml

import QtQuick

BrightSquare {

 id: root

The Grid element arranges its children in a grid. By setting the rows and columns properties, the

number of rows or columns can be constrained. By not setting either of them, the other is calculated

from the number of child items. For instance, setting rows to 3 and adding 6 child items will result in 2

columns. The properties flow and layoutDirection are used to control the order in which the items

are added to the grid, while spacing controls the amount of space separating the child items.

 width: 400; height: 120

 Row {

 id: row

 anchors.centerIn: parent

 spacing: 20

 BlueSquare { }

 GreenSquare { }

 RedSquare { }

 }

}

// GridExample.qml

import QtQuick

BrightSquare {

 id: root

 width: 160

 height: 160

 Grid {

 id: grid

 rows: 2

 columns: 2

 anchors.centerIn: parent

 spacing: 8

 RedSquare { }

 RedSquare { }

 RedSquare { }

 RedSquare { }

 }

The final positioner is Flow . It adds its child items in a flow. The direction of the flow is controlled

using flow and layoutDirection . It can run sideways or from the top to the bottom. It can also run

from left to right or in the opposite direction. As the items are added in the flow, they are wrapped to

form new rows or columns as needed. In order for a flow to work, it must have a width or a height. This

can be set either directly, or though anchor layouts.

An element often used with positioners is the Repeater . It works like a for-loop and iterates over a

model. In the simplest case a model is just a value providing the number of loops.

}

// FlowExample.qml

import QtQuick

BrightSquare {

 id: root

 width: 160

 height: 160

 Flow {

 anchors.fill: parent

 anchors.margins: 20

 spacing: 20

 RedSquare { }

 BlueSquare { }

 GreenSquare { }

 }

}

In this repeater example, we use some new magic. We define our own colorArray property, which is

an array of colors. The repeater creates a series of rectangles (16, as defined by the model). For each

// RepeaterExample.qml

import QtQuick

DarkSquare {

 id: root

 width: 252

 height: 252

 property variant colorArray: ["#00bde3", "#67c111", "#ea7025"]

 Grid{

 anchors.fill: parent

 anchors.margins: 8

 spacing: 4

 Repeater {

 model: 16

 delegate: Rectangle {

 required property int index

 property int colorIndex: Math.floor(Math.random()*3)

 width: 56; height: 56

 color: root.colorArray[colorIndex]

 border.color: Qt.lighter(color)

 Text {

 anchors.centerIn: parent

 color: "#f0f0f0"

 text: "Cell " + parent.index

 }

 }

 }

 }

}

loop, it creates the rectangle as defined by the child of the repeater. In the rectangle we chose the color

by using JS math functions: Math.floor(Math.random()*3) . This gives us a random number in the range

from 0..2, which we use to select the color from our color array. As noted earlier, JavaScript is a core

part of Qt Quick, and as such, the standard libraries are available to us.

A repeater injects the index property into the repeater. It contains the current loop-index. (0,1,..15).

We can use this to make our own decisions based on the index, or in our case to visualize the current

index with the Text element.

TIP

While the index property is dynamically injected into the Rectangle, it is a good practice to

declare it as a required property to ease readability and help tooling. This is achieved by the

required property int index line.

TIP

More advanced handling of larger models and kinetic views with dynamic delegates is covered

in its own model-view chapter. Repeaters are best used when having a small amount of static

data to be presented.

Layout Items

QML provides a flexible way to layout items using anchors. The concept of anchoring is fundamental to

Item , and is available to all visual QML elements. Anchors act like a contract and are stronger than

competing geometry changes. Anchors are expressions of relativeness; you always need a related

element to anchor with.

An element has 6 major anchor lines (top , bottom , left , right , horizontalCenter ,

verticalCenter). Additionally, there is the baseline anchor for text in Text elements. Each anchor

line comes with an offset. In the case of the top , bottom , left , and right anchors, they are

called margins. For horizontalCenter , verticalCenter and baseline they are called offsets.

(1) An element fills a parent element.

GreenSquare {

 BlueSquare {

 width: 12

 anchors.fill: parent

 anchors.margins: 8

 text: '(1)'

 }

}

(2) An element is left aligned to the parent.

(3) An element's left side is aligned to the parent’s right side.

(4) Center-aligned elements. Blue1 is horizontally centered on the parent. Blue2 is also

horizontally centered, but on Blue1 , and its top is aligned to the Blue1 bottom line.

(5) An element is centered on a parent element

GreenSquare {

 BlueSquare {

 width: 48

 y: 8

 anchors.left: parent.left

 anchors.leftMargin: 8

 text: '(2)'

 }

}

GreenSquare {

 BlueSquare {

 width: 48

 anchors.left: parent.right

 text: '(3)'

 }

}

GreenSquare {

 BlueSquare {

 id: blue1

 width: 48; height: 24

 y: 8

 anchors.horizontalCenter: parent.horizontalCenter

 }

 BlueSquare {

 id: blue2

 width: 72; height: 24

 anchors.top: blue1.bottom

 anchors.topMargin: 4

 anchors.horizontalCenter: blue1.horizontalCenter

 text: '(4)'

 }

}

(6) An element is centered with a left-offset on a parent element using horizontal and vertical center

lines

Hidden Gems

Our squares have been magically enhanced to enable dragging. Try the example and drag around some

squares. You will see that (1) can’t be dragged as it’s anchored on all sides (although you can drag the

parent of (1), as it’s not anchored at all). (2) can be vertically dragged, as only the left side is anchored.

The same applies to (3). (4) can only be dragged vertically, as both squares are horizontally centered. (5)

is centered on the parent, and as such, can’t be dragged. The same applies to (6). Dragging an element

means changing its x,y position. As anchoring is stronger than setting the x,y properties, dragging

is restricted by the anchored lines. We will see this effect later when we discuss animations.

GreenSquare {

 BlueSquare {

 width: 48

 anchors.centerIn: parent

 text: '(5)'

 }

}

GreenSquare {

 BlueSquare {

 width: 48

 anchors.horizontalCenter: parent.horizontalCenter

 anchors.horizontalCenterOffset: -12

 anchors.verticalCenter: parent.verticalCenter

 text: '(6)'

 }

}

Input Elements

We have already used the MouseArea as a mouse input element. Next, we’ll focus on keyboard input.

We start off with the text editing elements: TextInput and TextEdit .

TextInput

TextInput allows the user to enter a line of text. The element supports input constraints such as

validator , inputMask , and echoMode .

// textinput.qml

import QtQuick

Rectangle {

 width: 200

 height: 80

 color: "linen"

 TextInput {

 id: input1

 x: 8; y: 8

 width: 96; height: 20

 focus: true

 text: "Text Input 1"

 }

 TextInput {

 id: input2

 x: 8; y: 36

 width: 96; height: 20

 text: "Text Input 2"

 }

}

The user can click inside a TextInput to change the focus. To support switching the focus by keyboard,

we can use the KeyNavigation attached property.

The KeyNavigation attached property supports a preset of navigation keys where an element id is

bound to switch focus on the given key press.

A text input element comes with no visual presentation beside a blinking cursor and the entered text.

For the user to be able to recognize the element as an input element it needs some visual decoration;

for example, a simple rectangle. When placing the TextInput inside an element you need make sure

you export the major properties you want others to be able to access.

We move this piece of code into our own component called TLineEditV1 for reuse.

// textinput2.qml

import QtQuick

Rectangle {

 width: 200

 height: 80

 color: "linen"

 TextInput {

 id: input1

 x: 8; y: 8

 width: 96; height: 20

 focus: true

 text: "Text Input 1"

 KeyNavigation.tab: input2

 }

 TextInput {

 id: input2

 x: 8; y: 36

 width: 96; height: 20

 text: "Text Input 2"

 KeyNavigation.tab: input1

 }

}

// TLineEditV1.qml

import QtQuick

Rectangle {

 width: 96; height: input.height + 8

 color: "lightsteelblue"

TIP

If you want to export the TextInput completely, you can export the element by using

property alias input: input . The first input is the property name, where the 2nd input is

the element id.

We then rewrite our KeyNavigation example with the new TLineEditV1 component.

Try the tab key for navigation. You will experience the focus does not change to input2 . The simple

use of focus: true is not sufficient. The problem is that when the focus was transferred to the

input2 element, the top-level item inside the TlineEditV1 (our Rectangle) received focus, and did

not forward the focus to the TextInput . To prevent this, QML offers the FocusScope .

FocusScope

 border.color: "gray"

 property alias text: input.text

 property alias input: input

 TextInput {

 id: input

 anchors.fill: parent

 anchors.margins: 4

 focus: true

 }

}

Rectangle {

 ...

 TLineEditV1 {

 id: input1

 ...

 }

 TLineEditV1 {

 id: input2

 ...

 }

}

A focus scope declares that the last child element with focus: true receives the focus when the focus

scope receives the focus. So it forwards the focus to the last focus-requesting child element. We will

create a second version of our TLineEdit component called TLineEditV2, using a focus scope as the root

element.

Our example now looks like this:

Pressing the tab key now successfully switches the focus between the 2 components and the correct

child element inside the component is focused.

// TLineEditV2.qml

import QtQuick

FocusScope {

 width: 96; height: input.height + 8

 Rectangle {

 anchors.fill: parent

 color: "lightsteelblue"

 border.color: "gray"

 }

 property alias text: input.text

 property alias input: input

 TextInput {

 id: input

 anchors.fill: parent

 anchors.margins: 4

 focus: true

 }

}

Rectangle {

 ...

 TLineEditV2 {

 id: input1

 ...

 }

 TLineEditV2 {

 id: input2

 ...

 }

}

TextEdit

The TextEdit is very similar to TextInput , and supports a multi-line text edit field. It doesn’t have

the text constraint properties, as this depends on querying the content size of the text (contentHeight ,

contentWidth). We also create our own component called TTextEdit to provide an editing

background and use the focus scope for better focus forwarding.

You can use it like the TLineEdit component

// TTextEdit.qml

import QtQuick

FocusScope {

 width: 96; height: 96

 Rectangle {

 anchors.fill: parent

 color: "lightsteelblue"

 border.color: "gray"

 }

 property alias text: input.text

 property alias input: input

 TextEdit {

 id: input

 anchors.fill: parent

 anchors.margins: 4

 focus: true

 }

}

// textedit.qml

import QtQuick

Rectangle {

 width: 136

 height: 120

 color: "linen"

 TTextEdit {

Keys Element

The attached property Keys allows executing code based on certain key presses. For example, to

move and scale a square, we can hook into the up, down, left and right keys to translate the element,

and the plus and minus keys to scale the element.

 id: input

 x: 8; y: 8

 width: 120; height: 104

 focus: true

 text: "Text Edit"

 }

}

// keys.qml

import QtQuick

DarkSquare {

 width: 400; height: 200

 GreenSquare {

 id: square

 x: 8; y: 8

 }

 focus: true

 Keys.onLeftPressed: square.x -= 8

 Keys.onRightPressed: square.x += 8

 Keys.onUpPressed: square.y -= 8

 Keys.onDownPressed: square.y += 8

 Keys.onPressed: function (event) {

 switch(event.key) {

 case Qt.Key_Plus:

 square.scale += 0.2

 break;

 case Qt.Key_Minus:

 square.scale -= 0.2

 break;

 }

 }

}

Advanced Techniques

Performance of QML

QML and Javascript are interpreted languages. This means that they do not have to be processed by a

compiler before being executed. Instead, they are being run inside an execution engine. However, as

interpretation is a costly operation, various techniques are used to improve performance.

The QML engine uses just-in-time (JIT) compilation to improve performance. It also caches the

intermediate output to avoid having to recompile. This works seamlessly for you as a developer. The

only trace of this is that files ending with qmlc and jsc can be found next to the source files.

If you want to avoid the initial start-up penalty induced by the initial parsing you can also pre-compile

your QML and Javascript. This requires you to put your code into a Qt resource file, and is described in

detail in the Compiling QML Ahead of Time (https://doc.qt.io/qt-6/qtquick-deployment.html#ahead-

of-time-compilation) chapter in the Qt documentation.

https://doc.qt.io/qt-6/qtquick-deployment.html#ahead-of-time-compilation

Fluid Elements

Until now, we have mostly looked at some simple graphical elements and how to arrange and

manipulate them.

This chapter is about how to make these changes more interesting by animating them.

Animations are one of the key foundations for modern, slick user interfaces, and can be employed in

your user interface via states, transitions and animations. Each state defines a set of property changes

and can be combined with animations on state changes. These changes are described as a transition

from one state to another state.

Besides animations being used during transitions, they can also be used as standalone elements

triggered by some scripted events.

Animations

Animations are applied to property changes. An animation defines the interpolation curve from one

value to another value when a property value changes. These animation curves create smooth

transitions from one value to another.

An animation is defined by a series of target properties to be animated, an easing curve for the

interpolation curve, and a duration. All animations in Qt Quick are controlled by the same timer and are

therefore synchronized. This improves the performance and visual quality of animations.

Animations control how properties change using value interpolation

This is a fundamental concept. QML is based on elements, properties, and scripting. Every

element provides dozens of properties, each property is waiting to get animated by you. In the

book, you will see this is a spectacular playing field.

You will catch yourself looking at some animations and just admiring their beauty, and your

creative genius, too. Please remember then: animations control property changes and every

element has dozens of properties at your disposal.

Unlock the power!

// AnimationExample.qml

import QtQuick

Image {

 id: root

 source: "assets/background.png"

 property int padding: 40

 property int duration: 4000

 property bool running: false

 Image {

The example above shows a simple animation applied on the x and rotation properties. Each

animation has a duration of 4000 milliseconds (msec). The animation on x moves the x-coordinate

from the object gradually over to 240px. The animation on rotation runs from the current angle to 360

degrees. Both animations run in parallel and are started when the MouseArea is clicked.

You can play around with the animation by changing the to and duration properties, or you could

add another animation (for example, on the opacity or even the scale). Combining these it could

look like the object is disappearing into deep space. Try it out!

Animation Elements

There are several types of animation elements, each optimized for a specific use case. Here is a list of

the most prominent animations:

PropertyAnimation - Animates changes in property values

NumberAnimation - Animates changes in qreal-type values

ColorAnimation - Animates changes in color values

RotationAnimation - Animates changes in rotation values

 id: box

 x: root.padding;

 y: (root.height-height)/2

 source: "assets/box_green.png"

 NumberAnimation on x {

 to: root.width - box.width - root.padding

 duration: root.duration

 running: root.running

 }

 RotationAnimation on rotation {

 to: 360

 duration: root.duration

 running: root.running

 }

 }

 MouseArea {

 anchors.fill: parent

 onClicked: root.running = true

 }

}

Besides these basic and widely used animation elements, Qt Quick also provides more specialized

animations for specific use cases:

PauseAnimation - Provides a pause for an animation

SequentialAnimation - Allows animations to be run sequentially

ParallelAnimation - Allows animations to be run in parallel

AnchorAnimation - Animates changes in anchor values

ParentAnimation - Animates changes in parent values

SmoothedAnimation - Allows a property to smoothly track a value

SpringAnimation - Allows a property to track a value in a spring-like motion

PathAnimation - Animates an item alongside a path

Vector3dAnimation - Animates changes in QVector3d values

Later we will learn how to create a sequence of animations. While working on more complex

animations, there is sometimes a need to change a property or to run a script during an ongoing

animation. For this Qt Quick offers the action elements, which can be used everywhere where the other

animation elements can be used:

PropertyAction - Specifies immediate property changes during animation

ScriptAction - Defines scripts to be run during an animation

The major animation types will be discussed in this chapter using small, focused examples.

Applying Animations

Animation can be applied in several ways:

Animation on property - runs automatically after the element is fully loaded

Behavior on property - runs automatically when the property value changes

Standalone Animation - runs when the animation is explicitly started using start() or running is

set to true (e.g. by a property binding)

Later we will also see how animations can be used inside state transitions.

Clickable Image V2

To demonstrate the usage of animations we reuse our ClickableImage component from an earlier

chapter and extended it with a text element.

To organize the element below the image we used a Column positioner and calculated the width and

height based on the column’s childrenRect property. We exposed text and image source properties,

and a clicked signal. We also wanted the text to be as wide as the image, and for it to wrap. We achieve

the latter by using the Text element's wrapMode property.

// ClickableImageV2.qml

// Simple image which can be clicked

import QtQuick

Item {

 id: root

 width: container.childrenRect.width

 height: container.childrenRect.height

 property alias text: label.text

 property alias source: image.source

 signal clicked

 Column {

 id: container

 Image {

 id: image

 }

 Text {

 id: label

 width: image.width

 horizontalAlignment: Text.AlignHCenter

 wrapMode: Text.WordWrap

 color: "#ececec"

 }

 }

 MouseArea {

 anchors.fill: parent

 onClicked: root.clicked()

 }

}

Parent/child geometry dependency

Due to the inversion of the geometry-dependency (parent geometry depends on child

geometry), we can’t set a width / height on the ClickableImageV2, as this will break our

width / height binding.

You should prefer the child’s geometry to depend on the parent’s geometry if the item is more

like a container for other items and should adapt to the parent's geometry.

The objects ascending

The three objects are all at the same y-position (y=200). They all need to travel to y=40 , each of them

using a different method with different side-effects and features.

First object

The first object travels using the Animation on <property> strategy. The animation starts immediately.

ClickableImageV2 {

 id: greenBox

 x: 40; y: root.height-height

 source: "assets/box_green.png"

 text: qsTr("animation on property")

 NumberAnimation on y {

 to: 40; duration: 4000

 }

}

When an object is clicked, its y-position is reset to the start position, and this applies to all of the

objects. On the first object, the reset does not have any effect as long as the animation is running.

This can be visually disturbing, as the y-position is set to a new value for a fraction of a second before

the animation starts. Such competing property changes should be avoided.

Second object

The second object travels using a Behavior on animation. This behavior tells the property it should

animate each change in value. The behavior can be disabled by setting enabled: false on the

Behavior element.

The object will start traveling when you click it (its y-position is then set to 40). Another click has no

influence, as the position is already set.

You could try to use a random value (e.g. 40 + (Math.random() * (205-40)) for the y-position. You

will see that the object will always animate to the new position and adapt its speed to match the 4

seconds to the destination defined by the duration of the animation.

Third object

The third object uses a standalone animation. The animation is defined as its own element and can be

almost anywhere in the document.

ClickableImageV2 {

 id: blueBox

 x: (root.width-width)/2; y: root.height-height

 source: "assets/box_blue.png"

 text: qsTr("behavior on property")

 Behavior on y {

 NumberAnimation { duration: 4000 }

 }

 onClicked: y = 40

 // random y on each click

 // onClicked: y = 40 + Math.random() * (205-40)

}

ClickableImageV2 {

 id: redBox

 x: root.width-width-40; y: root.height-height

 source: "assets/box_red.png"

 onClicked: anim.start()

 // onClicked: anim.restart()

The click will start the animation using the animation's start() function. Each animation has start(),

stop(), resume(), and restart() functions. The animation itself contains much more information than the

other animation types earlier.

We need to define the target , which is the element to be animated, along with the names of the

properties that we want to animate. We also need to define a to value, and, in this case, a from

value, which allows a restart of the animation.

A click on the background will reset all objects to their initial position. The first object cannot be

restarted except by re-starting the program which triggers the re-loading of the element.

 text: qsTr("standalone animation")

 NumberAnimation {

 id: anim

 target: redBox

 properties: "y"

 to: 40

 duration: 4000

 }

}

Other ways to control Animations

Another way to start/stop an animation is to bind a property to the running property of an

animation. This is especially useful when the user-input is in control of properties:

Easing Curves

The value change of a property can be controlled by an animation. Easing attributes allow influencing

the interpolation curve of a property change.

All animations we have defined by now use a linear interpolation because the initial easing type of an

animation is Easing.Linear . It’s best visualized with a small plot, where the y-axis is the property to

be animated and the x-axis is the time (duration). A linear interpolation would draw a straight line from

the from value at the start of the animation to the to value at the end of the animation. So the

easing type defines the curve of change.

Easing types should be carefully chosen to support a natural fit for a moving object. For example, when

a page slides out, the page should initially slide out slowly and then gain momentum to finally slide out

at high speed, similar to turning the page of a book.

Animations should not be overused.

As with other aspects of UI design, animations should be designed carefully to support the UI

flow, not dominate it. The eye is very sensitive to moving objects and animations can easily

distract the user.

In the next example, we will try some easing curves. Each easing curve is displayed by a clickable image

and, when clicked, will set a new easing type on the square animation and then trigger a restart()

to run the animation with the new curve.

NumberAnimation {

 // [...]

 // animation runs when mouse is pressed

 running: area.pressed

}

MouseArea {

 id: area

}

The code for this example was made a little bit more complicated. We first create a grid of

EasingTypes and a Box which is controlled by the easing types. An easing type just displays the curve

which the box shall use for its animation. When the user clicks on an easing curve the box moves in a

direction according to the easing curve. The animation itself is a standalone animation with the target

set to the box and configured for x-property animation with a duration of 2 seconds.

TIP

The internals of the EasingType renders the curve in real time, and the interested reader can

look it up in the EasingCurves example.

// EasingCurves.qml

import QtQuick

import QtQuick.Layouts

Rectangle {

 id: root

 width: childrenRect.width

 height: childrenRect.height

 color: '#4a4a4a'

 gradient: Gradient {

 GradientStop { position: 0.0; color: root.color }

 GradientStop { position: 1.0; color: Qt.lighter(root.color, 1.2) }

 }

 ColumnLayout {

 Grid {

 spacing: 8

 columns: 5

 EasingType {

 easingType: Easing.Linear

 title: 'Linear'

 onClicked: {

 animation.easing.type = easingType

 box.toggle = !box.toggle

 }

 }

 EasingType {

 easingType: Easing.InExpo

 title: "InExpo"

 onClicked: {

 animation.easing.type = easingType

 box.toggle = !box.toggle

 }

 }

 EasingType {

 easingType: Easing.OutExpo

 title: "OutExpo"

 onClicked: {

 animation.easing.type = easingType

 box.toggle = !box.toggle

 }

 }

 EasingType {

 easingType: Easing.InOutExpo

 title: "InOutExpo"

 onClicked: {

 animation.easing.type = easingType

 box.toggle = !box.toggle

 }

 }

 EasingType {

 easingType: Easing.InOutCubic

 title: "InOutCubic"

 onClicked: {

 animation.easing.type = easingType

 box.toggle = !box.toggle

 }

 }

 EasingType {

 easingType: Easing.SineCurve

 title: "SineCurve"

 onClicked: {

 animation.easing.type = easingType

 box.toggle = !box.toggle

 }

 }

 EasingType {

 easingType: Easing.InOutCirc

 title: "InOutCirc"

 onClicked: {

 animation.easing.type = easingType

 box.toggle = !box.toggle

 }

 }

 EasingType {

 easingType: Easing.InOutElastic

 title: "InOutElastic"

 onClicked: {

 animation.easing.type = easingType

 box.toggle = !box.toggle

 }

 }

 EasingType {

 easingType: Easing.InOutBack

 title: "InOutBack"

 onClicked: {

 animation.easing.type = easingType

 box.toggle = !box.toggle

 }

 }

 EasingType {

 easingType: Easing.InOutBounce

 title: "InOutBounce"

 onClicked: {

 animation.easing.type = easingType

 box.toggle = !box.toggle

 }

 }

 }

 Item {

 height: 80

 Layout.fillWidth: true

 Box {

 id: box

 property bool toggle

 x: toggle ? 20 : root.width - width - 20

 anchors.verticalCenter: parent.verticalCenter

 gradient: Gradient {

 GradientStop { position: 0.0; color: "#2ed5fa" }

 GradientStop { position: 1.0; color: "#2467ec" }

 }

 Behavior on x {

 NumberAnimation {

 id: animation

 duration: 500

 }

 }

Please play with the example and observe the change of speed during an animation. Some animations

feel more natural for the object and some feel irritating.

Besides the duration and easing.type , you are able to fine-tune animations. For example, the

general PropertyAnimation type (from which most animations inherit) additionally supports

easing.amplitude , easing.overshoot , and easing.period properties, which allow you to fine-tune

the behavior of particular easing curves.

Not all easing curves support these parameters. Please consult the easing table (http://doc.qt.io/qt-

6/qml-qtquick-propertyanimation.html#easing-prop) from the PropertyAnimation documentation to

check if an easing parameter has an influence on an easing curve.

Choose the right Animation

Choosing the right animation for the element in the user interface context is crucial for the

outcome. Remember the animation shall support the UI flow; not irritate the user.

Grouped Animations

Often animations will be more complex than just animating one property. You might want to run

several animations at the same time or one after another or even execute a script between two

animations.

For this, grouped animations can be used. As the name suggests, it’s possible to group animations.

Grouping can be done in two ways: parallel or sequential. You can use the SequentialAnimation or the

ParallelAnimation element, which act as animation containers for other animation elements. These

grouped animations are animations themselves and can be used exactly as such.

 }

 }

 }

}

http://doc.qt.io/qt-6/qml-qtquick-propertyanimation.html#easing-prop

Parallel animations

All direct child animations of a parallel animation run in parallel when started. This allows you to

animate different properties at the same time.

// ParallelAnimationExample.qml

import QtQuick

BrightSquare {

 id: root

 property int duration: 3000

 property Item ufo: ufo

 width: 600

 height: 400

 Image {

 anchors.fill: parent

 source: "assets/ufo_background.png"

 }

 ClickableImageV3 {

 id: ufo

 x: 20; y: root.height-height

 text: qsTr('ufo')

 source: "assets/ufo.png"

 onClicked: anim.restart()

 }

 ParallelAnimation {

 id: anim

 NumberAnimation {

 target: ufo

 properties: "y"

 to: 20

 duration: root.duration

 }

 NumberAnimation {

 target: ufo

 properties: "x"

 to: 160

 duration: root.duration

 }

 }

}

Sequential animations

A sequential animation runs each child animation in the order in which it is declared: top to bottom.

// SequentialAnimationExample.qml

import QtQuick

BrightSquare {

 id: root

 property int duration: 3000

 property Item ufo: ufo

 width: 600

 height: 400

 Image {

 anchors.fill: parent

 source: "assets/ufo_background.png"

 }

 ClickableImageV3 {

 id: ufo

 x: 20; y: root.height-height

 text: qsTr('rocket')

 source: "assets/ufo.png"

 onClicked: anim.restart()

 }

 SequentialAnimation {

 id: anim

 NumberAnimation {

 target: ufo

 properties: "y"

 to: 20

 // 60% of time to travel up

 duration: root.duration * 0.6

 }

 NumberAnimation {

Nested animations

Grouped animations can also be nested. For example, a sequential animation can have two parallel

animations as child animations, and so on. We can visualize this with a soccer ball example. The idea is

to throw a ball from left to right and animate its behavior.

To understand the animation we need to dissect it into the integral transformations of the object. We

need to remember that animations animate property changes. Here are the different transformations:

An x-translation from left-to-right (X1)

A y-translation from bottom to top (Y1) followed by a translation from up to down (Y2) with

some bouncing

A rotation of 360 degrees over the entire duration of the animation (ROT1)

 target: ufo

 properties: "x"

 to: 400

 // 40% of time to travel sideways

 duration: root.duration * 0.4

 }

 }

}

The whole duration of the animation should take three seconds.

We start with an empty item as the root element of the width of 480 and height of 300.

We have defined our total animation duration as a reference to better synchronize the animation parts.

The next step is to add the background, which in our case are 2 rectangles with green and blue

gradients.

import QtQuick

Item {

 id: root

 property int duration: 3000

 width: 480

 height: 300

 // [...]

}

Rectangle {

 id: sky

 width: parent.width

 height: 200

 gradient: Gradient {

 GradientStop { position: 0.0; color: "#0080FF" }

 GradientStop { position: 1.0; color: "#66CCFF" }

 }

}

Rectangle {

 id: ground

The upper blue rectangle takes 200 pixels of the height and the lower one is anchored to the bottom of

the sky and to the bottom of the root element.

Let’s bring the soccer ball onto the green. The ball is an image, stored under “assets/soccer_ball.png”.

For the beginning, we would like to position it in the lower left corner, near the edge.

 anchors.top: sky.bottom

 anchors.bottom: root.bottom

 width: parent.width

 gradient: Gradient {

 GradientStop { position: 0.0; color: "#00FF00" }

 GradientStop { position: 1.0; color: "#00803F" }

 }

}

Image {

 id: ball

 x: 0; y: root.height-height

 source: "assets/soccer_ball.png"

 MouseArea {

 anchors.fill: parent

 onClicked: {

 ball.x = 0

 ball.y = root.height-ball.height

 ball.rotation = 0

 anim.restart()

 }

 }

}

The image has a mouse area attached to it. If the ball is clicked, the position of the ball will reset and

the animation is restarted.

Let’s start with a sequential animation for the two y translations first.

This specifies that 40% of the total animation duration is the up animation and 60% the down

animation, with each animation running after the other in sequence. The transformations are animated

on a linear path but there is no curving currently. Curves will be added later using the easing curves, at

the moment we’re concentrating on getting the transformations animated.

Next, we need to add the x-translation. The x-translation shall run in parallel with the y-translation, so

we need to encapsulate the sequence of y-translations into a parallel animation together with the x-

translation.

SequentialAnimation {

 id: anim

 NumberAnimation {

 target: ball

 properties: "y"

 to: 20

 duration: root.duration * 0.4

 }

 NumberAnimation {

 target: ball

 properties: "y"

 to: 240

 duration: root.duration * 0.6

 }

}

ParallelAnimation {

 id: anim

 SequentialAnimation {

 // ... our Y1, Y2 animation

 }

 NumberAnimation { // X1 animation

 target: ball

 properties: "x"

 to: 400

In the end, we would like the ball to be rotating. For this, we need to add another animation to the

parallel animation. We choose RotationAnimation , as it’s specialized for rotation.

That’s the whole animation sequence. The one thing that's left is to provide the correct easing curves

for the movements of the ball. For the Y1 animation, we use a Easing.OutCirc curve, as this should

look more like a circular movement. Y2 is enhanced using an Easing.OutBounce to give the ball its

bounce, and the bouncing should happen at the end (try with Easing.InBounce and you will see that

the bouncing starts right away).

The X1 and ROT1 animation are left as-is, with a linear curve.

Here is the final animation code for your reference:

 duration: root.duration

 }

}

ParallelAnimation {

 id: anim

 SequentialAnimation {

 // ... our Y1, Y2 animation

 }

 NumberAnimation { // X1 animation

 // X1 animation

 }

 RotationAnimation {

 target: ball

 properties: "rotation"

 to: 720

 duration: root.duration

 }

}

ParallelAnimation {

 id: anim

 SequentialAnimation {

 NumberAnimation {

 target: ball

 properties: "y"

 to: 20

 duration: root.duration * 0.4

 easing.type: Easing.OutCirc

 }

 NumberAnimation {

 target: ball

 properties: "y"

 to: root.height-ball.height

 duration: root.duration * 0.6

 easing.type: Easing.OutBounce

 }

 }

 NumberAnimation {

 target: ball

 properties: "x"

 to: root.width-ball.width

 duration: root.duration

 }

 RotationAnimation {

 target: ball

 properties: "rotation"

 to: 720

 duration: root.duration

 }

}

States and Transitions
Often parts of a user interface can be described in states. A state defines a set of property changes and

can be triggered by a certain condition.

Additionally, these state switches can have a transition attached which defines how these changes

should be animated or any additional actions that shall be applied. Actions can also be applied when a

state is entered.

States

You define states in QML with the State element, which needs to be bound to the states array of

any item element.

A state is identified through a state name, and in its simplest form, consists of a series of property

changes on elements. The default state is defined by the initial properties of the element and is named

"" (an empty string).

A state is changed by assigning a new state name to the state property of the element in which the

states are defined.

Control states using when

Another way to control states is using the when property of the State element. The when

property can be set to an expression that evaluates to true when the state should be applied.

Item {

 id: root

 states: [

 State {

 name: "go"

 PropertyChanges { ... }

 },

 State {

 name: "stop"

 PropertyChanges { ... }

 }

]

}

For example, a traffic light might have two signaling lights. The upper one signaling stop with a red

color and the lower one signaling go with a green color. In this example, both lights should not shine at

the same time. Let’s have a look at the state chart diagram.

When the system is switched on, it automatically goes into the stop mode as the default state. The stop

state changes light1 to red and light2 to black (off).

An external event can now trigger a state switch to the "go" state. In the go state, we change the

color properties from light1 to black (off) and light2 to green to indicate the pedestrians may now

cross.

To realize this scenario we start sketching our user interface for the 2 lights. For simplicity, we use 2

rectangles with the radius set to the half of the width (and the width is the same as the height, which

means it’s a square).

Item {

 id: root

 states: [

 ...

]

 Button {

 id: goButton

 ...

 onClicked: root.state = "go"

 }

}

Rectangle {

 id: light1

 x: 25; y: 15

 width: 100; height: width

 radius: width / 2

As defined in the state chart we want to have two states: one being the "go" state and the other the

"stop" state, where each of them changes the traffic light's respective color to red or green. We set

the state property to stop to ensure the initial state of our traffic light is the stop state.

Initial state

We could have achieved the same effect with only a "go" state and no explicit "stop" state

by setting the color of light1 to red and the color of light2 to black. The initial state ""

defined by the initial property values would then act as the "stop" state.

Using PropertyChanges { target: light2; color: "black" } is not really required in these examples

as the initial color of light2 is already black. In a state, it’s only necessary to describe how the

properties shall change from their default state (and not from the previous state).

A state change is triggered using a mouse area which covers the whole traffic light and toggles

between the go- and stop-state when clicked.

 color: root.black

 border.color: Qt.lighter(color, 1.1)

}

Rectangle {

 id: light2

 x: 25; y: 135

 width: 100; height: width

 radius: width/2

 color: root.black

 border.color: Qt.lighter(color, 1.1)

}

state: "stop"

states: [

 State {

 name: "stop"

 PropertyChanges { target: light1; color: root.red }

 PropertyChanges { target: light2; color: root.black }

 },

 State {

 name: "go"

 PropertyChanges { target: light1; color: root.black }

 PropertyChanges { target: light2; color: root.green }

 }

]

We are now able to successfully change the state of the traffic lamp. To make the UI more appealing

and natural, we should add some transitions with animation effects. A transition can be triggered by a

state change.

Using scripting

It’s possible to create similar logic using scripting instead of QML states. However, QML is a

better language than JavaScript for describing user interfaces. Where possible, aim to write

declarative code instead of imperative code.

Transitions

A series of transitions can be added to every item. A transition is executed by a state change.

You can define on which state change a particular transition can be applied using the from: and to:

properties. These two properties act like a filter: when the filter is true the transition will be applied.

You can also use the wildcard “*”, which means “any state”.

For example, from: "*"; to: "*" means "from any state to any other state", and is the default value

for from and to . This means the transition will be applied to every state switch.

MouseArea {

 anchors.fill: parent

 onClicked: parent.state = (parent.state == "stop" ? "go" : "stop")

}

For this example, we would like to animate the color changes when switching state from “go” to

“stop”. For the other reversed state change (“stop” to “go”) we want to keep an immediate color

change and don’t apply a transition.

We restrict the transition with the from and to properties to filter only the state change from “go”

to “stop”. Inside the transition, we add two color animations for each light, which shall animate the

property changes defined in the state description.

You can change the state though clicking the UI. The state is applied immediately and will also change

the state while a transition is running. So, try to click the UI while the state is in the transition from

“stop” to “go”. You will see the change will happen immediately.

You could play around with this UI by, for example, scaling the inactive light down to highlight the

active light.

For this, you would need to add another property change for scaling to the states and also handle the

animation for the scaling property in the transition.

Another option would be to add an “attention” state where the lights are blinking yellow. For this, you

would need to add a sequential animation to the transition for one second going to yellow (“to”

property of the animation and one second going to “black”).

Maybe you would also want to change the easing curve to make it more visually appealing.

transitions: [

 Transition {

 from: "stop"; to: "go"

 // from: "*"; to: "*"

 ColorAnimation { target: light1; properties: "color"; duration: 2000 }

 ColorAnimation { target: light2; properties: "color"; duration: 2000 }

 }

]

Advanced Techniques
Nothing advanced here 😃

UI Controls
This chapter shows how to use the Qt Quick Controls module. Qt Quick Controls are used to create

advanced user interfaces built from standard components such as buttons, labels, sliders and so on.

Qt Quick Controls can be arranged using the layout module and are easy to style. Also we will look into

the various styles for the different platforms before diving into custom styling.

Introduction to Controls

Using Qt Quick from scratch gives you primitive graphical and interaction elements from which you can

build your user interfaces. Using Qt Quick Controls you start from a slightly more structured set of

controls to build from.

The controls range from simple text labels and buttons to more complex ones such as sliders and dials.

These elements are handy if you want to create a user interface based on classic interaction patterns,

as they provide a good foundation to stand on.

Qt Quick Controls come with a number of styles out of the box that are shown in the table below. The

Basic style is a basic flat style. The Universal style is based on the Microsoft Universal Design

Guidelines, while Material is based on Google’s Material Design Guidelines, and the Fusion style is a

desktop-oriented style.

Some of the styles can be tweaked by modifying palettes. The Imagine style is based on image assets,

this allows a graphical designer to create a new style without writing any code at all, not even for

palette colour codes.

Basic

Fusion

macOS

Material

Imagine

Windows

Universal

Qt Quick Controls 2 is available from the QtQuick.Controls import. The following modules are also of

interest:

QtQuick.Controls - The basic controls.

QtQuick.Templates - Provides the behavioral, non-visual base types for the controls.

QtQuick.Controls.Imagine - Imagine style theming support.

QtQuick.Controls.Material - Material style theming support.

QtQuick.Controls.Universal - Universal style theming support.

Qt.labs.platform - Support for platform native dialogs for common tasks such as picking files,

colours, etc, as well as system tray icons and standard paths.

Qt.Labs

Notice that the Qt.labs modules are experimental, meaning that their APIs can have breaking

changes between Qt versions.

An Image Viewer

Let’s look at a larger example of how Qt Quick Controls are used. For this, we will create a simple

image viewer.

First, we create it for desktop using the Fusion style, then we will refactor it for a mobile experience

before having a look at the final code base.

The Desktop Version

The desktop version is based around a classic application window with a menu bar, a tool bar and a

document area. The application can be seen in action below.

We use the Qt Creator project template for an empty Qt Quick application as a starting point. However,

we replace the default Window element from the template with a ApplicationWindow from the

QtQuick.Controls module. The code below shows main.qml where the window itself is created and

setup with a default size and title.

The ApplicationWindow consists of four main areas as shown below. The menu bar, tool bar and status

bar are usually populated by instances of MenuBar , ToolBar or TabBar controls, while the contents

area is where the children of the window go. Notice that the image viewer application does not feature

a status bar; that is why it is missing from the code show here, as well as from the figure above.

As we are targeting desktop, we enforce the use of the Fusion style. This can be done via a

configuration file, environment variables, command line arguments, or programmatically in the C++

code. We do it the latter way by adding the following line to main.cpp :

We then start building the user interface in main.qml by adding an Image element as the contents.

This element will hold the images when the user opens them, so for now it is just a placeholder. The

background property is used to provide an element to the window to place behind the contents. This

will be shown when there is no image loaded, and as borders around the image if the aspect ratio does

not let it fill the contents area of the window.

import QtQuick

import QtQuick.Controls

import Qt.labs.platform as Platform

ApplicationWindow {

 visible: true

 width: 640

 height: 480

 // ...

}

QQuickStyle::setStyle("Fusion");

We then continue by adding the ToolBar . This is done using the toolBar property of the window.

Inside the tool bar we add a Flow element which will let the contents fill the width of the control

before overflowing to a new row. Inside the flow we place a ToolButton .

The ToolButton has a couple of interesting properties. The text is straight forward. However, the

icon.name is taken from the freedesktop.org Icon Naming Specification

(https://specifications.freedesktop.org/icon-naming-spec/icon-naming-spec-latest.html) . In that

document, a list of standard icons are listed by name. By referring to such a name, Qt will pick out the

correct icon from the current desktop theme.

In the onClicked signal handler of the ToolButton is the final piece of code. It calls the open

method on the fileOpenDialog element.

ApplicationWindow {

 // ...

 background: Rectangle {

 color: "darkGray"

 }

 Image {

 id: image

 anchors.fill: parent

 fillMode: Image.PreserveAspectFit

 asynchronous: true

 }

 // ...

}

ApplicationWindow {

 // ...

 header: ToolBar {

 Flow {

 anchors.fill: parent

 ToolButton {

 text: qsTr("Open")

 icon.name: "document-open"

 onClicked: fileOpenDialog.open()

 }

 }

 }

https://specifications.freedesktop.org/icon-naming-spec/icon-naming-spec-latest.html

The fileOpenDialog element is a FileDialog control from the Qt.labs.platform module. The file

dialog can be used to open or save files. We import the Qt.labs.platform as Platform , to avoid a

naming collision with the QtQuick.Controls import, hence we refer to it as Platform.FileDialog .

In the code we start by assigning a title . Then we set the starting folder using the StandardsPaths

class. The StandardsPaths class holds links to common folders such as the user’s home, documents,

and so on. After that we set a name filter that controls which files the user can see and pick using the

dialog.

Finally, we reach the onAccepted signal handler where the Image element that holds the window

contents is set to show the selected file. There is an onRejected signal as well, but we do not need to

handle it in the image viewer application.

We then continue with the MenuBar . To create a menu, one puts Menu elements inside the menu bar,

and then populates each Menu with MenuItem elements.

In the code below, we create two menus, File and Help. Under File, we place Open using the same icon

and action as the tool button in the tool bar. Under Help, you find About which triggers a call to the

open method of the aboutDialog element.

 // ...

}

ApplicationWindow {

 // ...

 FileDialog {

 id: fileOpenDialog

 title: "Select an image file"

 folder: StandardPaths.writableLocation(StandardPaths.DocumentsLocation)

 nameFilters: [

 "Image files (*.png *.jpeg *.jpg)",

]

 onAccepted: {

 image.source = fileOpenDialog.fileUrl

 }

 }

 // ...

}

Notice that the ampersands (“&”) in the title property of the Menu and the text property of the

MenuItem turn the following character into a keyboard shortcut; e.g. you reach the file menu by

pressing Alt+F, followed by Alt+O to trigger the open item.

The aboutDialog element is based on the Dialog control from the QtQuick.Controls module,

which is the base for custom dialogs. The dialog we are about to create is shown in the figure below.

ApplicationWindow {

 // ...

 menuBar: MenuBar {

 Menu {

 title: qsTr("&File")

 MenuItem {

 text: qsTr("&Open...")

 icon.name: "document-open"

 onTriggered: fileOpenDialog.open()

 }

 }

 Menu {

 title: qsTr("&Help")

 MenuItem {

 text: qsTr("&About...")

 onTriggered: aboutDialog.open()

 }

 }

 }

 // ...

}

The code for the aboutDialog can be split into three parts. First, we setup the dialog window with a

title. Then, we provide some contents for the dialog – in this case, a Label control. Finally, we opt to

use a standard Ok button to close the dialog.

ApplicationWindow {

 // ...

 Dialog {

 id: aboutDialog

 title: qsTr("About")

 Label {

 anchors.fill: parent

 text: qsTr("QML Image Viewer\nA part of the QmlBook\nhttp://qmlbook.org")

 horizontalAlignment: Text.AlignHCenter

 }

 standardButtons: StandardButton.Ok

 }

 // ...

}

The end result of all this is a functional, albeit simple, desktop application for viewing images.

Moving to Mobile

There are a number of differences in how a user interface is expected to look and behave on a mobile

device compared to a desktop application. The biggest difference for our application is how the actions

are accessed. Instead of a menu bar and a tool bar, we will use a drawer from which the user can pick

the actions. The drawer can be swiped in from the side, but we also offer a hamburger button in the

header. The resulting application with the drawer open can be seen below.

First of all, we need to change the style that is set in main.cpp from Fusion to Material:

Then we start adapting the user interface. We start by replacing the menu with a drawer. In the code

below, the Drawer component is added as a child to the ApplicationWindow . Inside the drawer, we

put a ListView containing ItemDelegate instances. It also contains a ScrollIndicator used to show

QQuickStyle::setStyle("Material");

which part of a long list is being shown. As our list only consists of two items, the indicator is not visible

in this example.

The drawer's ListView is populated from a ListModel where each ListItem corresponds to a menu

item. Each time an item is clicked, in the onClicked method, the triggered method of the

corresponding ListItem is called. This way, we can use a single delegate to trigger different actions.

ApplicationWindow {

 // ...

 id: window

 Drawer {

 id: drawer

 width: Math.min(window.width, window.height) / 3 * 2

 height: window.height

 ListView {

 focus: true

 currentIndex: -1

 anchors.fill: parent

 delegate: ItemDelegate {

 width: parent.width

 text: model.text

 highlighted: ListView.isCurrentItem

 onClicked: {

 drawer.close()

 model.triggered()

 }

 }

 model: ListModel {

 ListElement {

 text: qsTr("Open...")

 triggered: function() { fileOpenDialog.open(); }

 }

 ListElement {

 text: qsTr("About...")

 triggered: function() { aboutDialog.open(); }

 }

 }

 ScrollIndicator.vertical: ScrollIndicator { }

 }

 }

The next change is in the header of the ApplicationWindow . Instead of a desktop style toolbar, we

add a button to open the drawer and a label for the title of our application.

The ToolBar contains two child elements: a ToolButton and a Label .

The ToolButton control opens the drawer. The corresponding close call can be found in the

ListView delegate. When an item has been selected, the drawer is closed. The icon used for the

ToolButton comes from the Material Design Icons page (https://material.io/tools/icons/?

style=baseline) .

 // ...

}

ApplicationWindow {

 // ...

 header: ToolBar {

 ToolButton {

https://material.io/tools/icons/?style=baseline

Finally we make the background of the toolbar pretty — or at least orange. To do this, we alter the

Material.background attached property. This comes from the QtQuick.Controls.Material module

and only affects the Material style.

With these few changes we have converted our desktop image viewer to a mobile-friendly version.

A Shared Codebase

In the past two sections we have looked at an image viewer developed for desktop use and then

adapted it to mobile.

Looking at the code base, much of the code is still shared. The parts that are shared are mostly

associated with the document of the application, i.e. the image. The changes have accounted for the

 id: menuButton

 anchors.left: parent.left

 anchors.verticalCenter: parent.verticalCenter

 icon.source: "images/baseline-menu-24px.svg"

 onClicked: drawer.open()

 }

 Label {

 anchors.centerIn: parent

 text: "Image Viewer"

 font.pixelSize: 20

 elide: Label.ElideRight

 }

 }

 // ...

}

import QtQuick.Controls.Material

ApplicationWindow {

 // ...

 header: ToolBar {

 Material.background: Material.Orange

 // ...

}

different interaction patterns of desktop and mobile, respectively. Naturally, we would want to unify

these code bases. QML supports this through the use of file selectors.

A file selector lets us replace individual files based on which selectors are active. The Qt documentation

maintains a list of selectors in the documentation for the QFileSelector class (link

(https://doc.qt.io/qt-5/qfileselector.html)). In our case, we will make the desktop version the default

and replace selected files when the android selector is encountered. During development you can set

the environment variable QT_FILE_SELECTORS to android to simulate this.

File Selector

File selectors work by replacing files with an alternative when a selector is present.

By creating a directory named +selector (where selector represents the name of a

selector) in the same directory as the files that you want to replace, you can then place files

with the same name as the file you want to replace inside the directory. When the selector is

present, the file in the directory will be picked instead of the original file.

The selectors are based on the platform: e.g. android, ios, osx, linux, qnx, and so on. They can

also include the name of the Linux distribution used (if identified), e.g. debian, ubuntu, fedora.

Finally, they also include the locale, e.g. en_US, sv_SE, etc.

It is also possible to add your own custom selectors.

The first step to do this change is to isolate the shared code. We do this by creating the

ImageViewerWindow element which will be used instead of the ApplicationWindow for both of our

variants. This will consist of the dialogs, the Image element and the background. In order to make the

open methods of the dialogs available to the platform specific code, we need to expose them through

the functions openFileDialog and openAboutDialog .

import QtQuick

import QtQuick.Controls

import Qt.labs.platform as Platform

ApplicationWindow {

 function openFileDialog() { fileOpenDialog.open(); }

 function openAboutDialog() { aboutDialog.open(); }

 visible: true

 title: qsTr("Image Viewer")

 background: Rectangle {

 color: "darkGray"

 }

https://doc.qt.io/qt-5/qfileselector.html

Next, we create a new main.qml for our default style Fusion, i.e. the desktop version of the user

interface.

Here, we base the user interface around the ImageViewerWindow instead of the ApplicationWindow .

Then we add the platform specific parts to it, e.g. the MenuBar and ToolBar . The only changes to

these is that the calls to open the respective dialogs are made to the new functions instead of directly

to the dialog controls.

 Image {

 id: image

 anchors.fill: parent

 fillMode: Image.PreserveAspectFit

 asynchronous: true

 }

 Platform.FileDialog {

 id: fileOpenDialog

 // ...

 }

 Dialog {

 id: aboutDialog

 // ...

 }

}

import QtQuick

import QtQuick.Controls

ImageViewerWindow {

 id: window

 width: 640

 height: 480

 menuBar: MenuBar {

 Menu {

 title: qsTr("&File")

 MenuItem {

 text: qsTr("&Open...")

 icon.name: "document-open"

 onTriggered: window.openFileDialog()

 }

 }

Next, we have to create a mobile specific main.qml . This will be based around the Material theme.

Here, we keep the Drawer and the mobile-specific toolbar. Again, the only change is how the dialogs

are opened.

 Menu {

 title: qsTr("&Help")

 MenuItem {

 text: qsTr("&About...")

 onTriggered: window.openAboutDialog()

 }

 }

 }

 header: ToolBar {

 Flow {

 anchors.fill: parent

 ToolButton {

 text: qsTr("Open")

 icon.name: "document-open"

 onClicked: window.openFileDialog()

 }

 }

 }

}

import QtQuick

import QtQuick.Controls

import QtQuick.Controls.Material

ImageViewerWindow {

 id: window

 width: 360

 height: 520

 Drawer {

 id: drawer

 // ...

 ListView {

 // ...

 model: ListModel {

 ListElement {

 text: qsTr("Open...")

The two main.qml files are placed in the file system as shown below. This lets the file selector that the

QML engine automatically creates pick the right file. By default, the Fusion main.qml is loaded. If the

android selector is present, then the Material main.qml is loaded instead.

Until now the style has been set in main.cpp . We could continue doing this and use #ifdef

expressions to set different styles for different platforms. Instead we will use the file selector

mechanism again and set the style using a configuration file. Below, you can see the file for the Material

style, but the Fusion file is equally simple.

These changes have given us a joined codebase where all the document code is shared and only the

differences in user interaction patterns differ. There are different ways to do this, e.g. keeping the

 triggered: function(){ window.openFileDialog(); }

 }

 ListElement {

 text: qsTr("About...")

 triggered: function(){ window.openAboutDialog(); }

 }

 }

 // ...

 }

 }

 header: ToolBar {

 // ...

 }

}

[Controls]

Style=Material

document in a specific component that is included in the platform specific interfaces, or as in this

example, by creating a common base that is extended by each platform. The best approach is best

determined when you know how your specific code base looks and can decide how to separate the

common from the unique.

Native Dialogs

When using the image viewer you will notice that it uses a non-standard file selector dialog. This makes

it look out of place.

The Qt.labs.platform module can help us solve this. It provides QML bindings to native dialogs such

as the file dialog, font dialog and colour dialog. It also provides APIs to create system tray icons, as well

as system global menus that sits on top of the screen (e.g. as in OS X). The cost of this is a dependency

on the QtWidgets module, as the widget based dialog is used as a fallback where the native support is

missing.

In order to integrate a native file dialog into the image viewer, we need to import the

Qt.labs.platform module. As this module has name clashes with the QtQuick.Dialogs module

which it replaces, it is important to remove the old import statement.

In the actual file dialog element, we have to change how the folder property is set, and ensure that

the onAccepted handler uses the file property instead of the fileUrl property. Apart from these

details, the usage is identical to the FileDialog from QtQuick.Dialogs .

import QtQuick

import QtQuick.Controls

import Qt.labs.platform as Platform

ApplicationWindow {

 // ...

 Platform.FileDialog {

 id: fileOpenDialog

 title: "Select an image file"

 folder: StandardPaths.writableLocation(StandardPaths.DocumentsLocation)

 nameFilters: [

 "Image files (*.png *.jpeg *.jpg)",

]

 onAccepted: {

 image.source = fileOpenDialog.file

 }

 }

 // ...

In addition to the QML changes, we also need to alter the project file of the image viewer to include the

widgets module.

And we need to update main.qml to instantiate a QApplication object instead of a QGuiApplication

object. This is because the QGuiApplication class contains the minimal environment needed for a

graphical application, while QApplication extends QGuiApplication with features needed to support

QtWidgets .

With these changes, the image viewer will now use native dialogs on most platforms. The platforms

supported are iOS, Linux (with a GTK+ platform theme), macOS, Windows and WinRT. For Android, it

will use a default Qt dialog provided by the QtWidgets module.

}

QT += quick quickcontrols2 widgets

include <QApplication>

// ...

int main(int argc, char *argv[])

{

 QApplication app(argc, argv);

 // ...

}

Common Patterns
There a number of common user interface patterns that can be implemented using Qt Quick Controls.

In this section, we try to demonstrate how some of the more common ones can be built.

Nested Screens

For this example we will create a tree of pages that can be reached from the previous level of screens.

The structure is pictured below.

The key component in this type of user interface is the StackView . It allows us to place pages on a

stack which then can be popped when the user wants to go back. In the example here, we will show

how this can be implemented.

The initial home screen of the application is shown in the figure below.

The application starts in main.qml , where we have an ApplicationWindow containing a ToolBar , a

Drawer , a StackView and a home page element, Home . We will look into each of the components

below.

import QtQuick

import QtQuick.Controls

ApplicationWindow {

 // ...

 header: ToolBar {

 // ...

 }

 Drawer {

 // ...

 }

The home page, Home.qml consists of a Page , which is n control element that support headers and

footers. In this example we simply center a Label with the text Home Screen on the page. This works

because the contents of a StackView automatically fill the stack view, so the page will have the right

size for this to work.

Returning to main.qml , we now look at the drawer part. This is where the navigation to the pages

begin. The active parts of the user interface are the ÌtemDelegate items. In the onClicked handler,

the next page is pushed onto the stackView .

As shown in the code below, it is possible to push either a Component or a reference to a specific QML

file. Either way results in a new instance being created and pushed onto the stack.

 StackView {

 id: stackView

 anchors.fill: parent

 initialItem: Home {}

 }

}

import QtQuick

import QtQuick.Controls

Page {

 title: qsTr("Home")

 Label {

 anchors.centerIn: parent

 text: qsTr("Home Screen")

 }

}

ApplicationWindow {

 // ...

 Drawer {

 id: drawer

 width: window.width * 0.66

 height: window.height

 Column {

 anchors.fill: parent

 ItemDelegate {

 text: qsTr("Profile")

The other half of the puzzle is the toolbar. The idea is that a back button is shown when the stackView

contains more than one page, otherwise a menu button is shown. The logic for this can be seen in the

text property where the "\\u..." strings represents the unicode symbols that we need.

In the onClicked handler, we can see that when there is more than one page on the stack, the stack is

popped, i.e. the top page is removed. If the stack contains only one item, i.e. the home screen, the

drawer is opened.

Below the ToolBar , there is a Label . This element shows the title of each page in the center of the

header.

 width: parent.width

 onClicked: {

 stackView.push("Profile.qml")

 drawer.close()

 }

 }

 ItemDelegate {

 text: qsTr("About")

 width: parent.width

 onClicked: {

 stackView.push(aboutPage)

 drawer.close()

 }

 }

 }

 }

 // ...

 Component {

 id: aboutPage

 About {}

 }

 // ...

}

ApplicationWindow {

 // ...

 header: ToolBar {

 contentHeight: toolButton.implicitHeight

 ToolButton {

Now we’ve seen how to reach the About and Profile pages, but we also want to make it possible to

reach the Edit Profile page from the Profile page. This is done via the Button on the Profile page.

When the button is clicked, the EditProfile.qml file is pushed onto the StackView .

 id: toolButton

 text: stackView.depth > 1 ? "\u25C0" : "\u2630"

 font.pixelSize: Qt.application.font.pixelSize * 1.6

 onClicked: {

 if (stackView.depth > 1) {

 stackView.pop()

 } else {

 drawer.open()

 }

 }

 }

 Label {

 text: stackView.currentItem.title

 anchors.centerIn: parent

 }

 }

 // ...

}

import QtQuick

import QtQuick.Controls

Page {

 title: qsTr("Profile")

 Column {

 anchors.centerIn: parent

 spacing: 10

 Label {

 anchors.horizontalCenter: parent.horizontalCenter

 text: qsTr("Profile")

 }

 Button {

 anchors.horizontalCenter: parent.horizontalCenter

 text: qsTr("Edit");

 onClicked: stackView.push("EditProfile.qml")

 }

 }

}

Side by Side Screens

For this example we create a user interface consisting of three pages that the user can shift through.

The pages are shown in the diagram below. This could be the interface of a health tracking app,

tracking the current state, the user’s statistics and the overall statistics.

The illustration below shows how the Current page looks in the application. The main part of the screen

is managed by a SwipeView , which is what enables the side by side screen interaction pattern. The title

and text shown in the figure come from the page inside the SwipeView , while the PageIndicator (the

three dots at the bottom) comes from main.qml and sits under the SwipeView . The page indicator

shows the user which page is currently active, which helps when navigating.

Diving into main.qml , it consists of an ApplicationWindow with the SwipeView .

Inside the SwipeView each of the child pages are instantiated in the order they are to appear. They are

Current , UserStats and TotalStats .

import QtQuick

import QtQuick.Controls

ApplicationWindow {

 visible: true

 width: 640

 height: 480

 title: qsTr("Side-by-side")

 SwipeView {

 // ...

 }

 // ...

}

ApplicationWindow {

 // ...

 SwipeView {

 id: swipeView

 anchors.fill: parent

 Current {

 }

 UserStats {

 }

 TotalStats {

 }

 }

 // ...

}

Finally, the count and currentIndex properties of the SwipeView are bound to the PageIndicator

element. This completes the structure around the pages.

Each page consists of a Page with a header consisting of a Label and some contents. For the

Current and User Stats pages the contents consist of a simple Label , but for the Community Stats

page, a back button is included.

ApplicationWindow {

 // ...

 SwipeView {

 id: swipeView

 // ...

 }

 PageIndicator {

 anchors.bottom: parent.bottom

 anchors.horizontalCenter: parent.horizontalCenter

 currentIndex: swipeView.currentIndex

 count: swipeView.count

 }

}

import QtQuick

import QtQuick.Controls

Page {

 header: Label {

 text: qsTr("Community Stats")

 font.pixelSize: Qt.application.font.pixelSize * 2

 padding: 10

 }

 // ...

}

The back button explicitly calls the setCurrentIndex of the SwipeView to set the index to zero,

returning the user directly to the Current page. During each transition between pages the SwipeView

provides a transition, so even when explicitly changing the index the user is given a sense of direction.

TIP

When navigating in a SwipeView programatically it is important not to set the currentIndex

by assignment in JavaScript. This is because doing so will break any QML bindings it overrides.

Instead use the methods setCurrentIndex , incrementCurrentIndex , and

decrementCurrentIndex . This preserves the QML bindings.

Page {

 // ...

 Column {

 anchors.centerIn: parent

 spacing: 10

 Label {

 anchors.horizontalCenter: parent.horizontalCenter

 text: qsTr("Community statistics")

 }

 Button {

 anchors.horizontalCenter: parent.horizontalCenter

 text: qsTr("Back")

 onClicked: swipeView.setCurrentIndex(0);

Document Windows

This example shows how to implement a desktop-oriented, document-centric user interface. The idea

is to have one window per document. When opening a new document, a new window is opened. To the

user, each window is a self-contained world with a single document.

The code starts from an ApplicationWindow with a File menu with the standard operations: New,

Open, Save and Save As. We put this in the DocumentWindow.qml .

We import Qt.labs.platform for native dialogs, and have made the subsequent changes to the project

file and main.cpp as described in the section on native dialogs above.

 }

 }

}

import QtQuick

import QtQuick.Controls

To bootstrap the program, we create the first DocumentWindow instance from main.qml , which is the

entry point of the application.

import Qt.labs.platform as NativeDialogs

ApplicationWindow {

 id: root

 // ...

 menuBar: MenuBar {

 Menu {

 title: qsTr("&File")

 MenuItem {

 text: qsTr("&New")

 icon.name: "document-new"

 onTriggered: root.newDocument()

 }

 MenuSeparator {}

 MenuItem {

 text: qsTr("&Open")

 icon.name: "document-open"

 onTriggered: openDocument()

 }

 MenuItem {

 text: qsTr("&Save")

 icon.name: "document-save"

 onTriggered: saveDocument()

 }

 MenuItem {

 text: qsTr("Save &As...")

 icon.name: "document-save-as"

 onTriggered: saveAsDocument()

 }

 }

 }

 // ...

}

import QtQuick

DocumentWindow {

 visible: true

}

In the example at the beginning of this chapter, each MenuItem calls a corresponding function when

triggered. Let’s start with the New item, which calls the newDocument function.

The function, in turn, relies on the createNewDocument function, which dynamically creates a new

element instance from the DocumentWindow.qml file, i.e. a new DocumentWindow instance. The reason

for breaking out this part of the new function is that we use it when opening documents as well.

Notice that we do not provide a parent element when creating the new instance using createObject .

This way, we create new top level elements. If we had provided the current document as parent to the

next, the destruction of the parent window would lead to the destruction of the child windows.

Looking at the Open item, we see that it calls the openDocument function. The function simply opens

the openDialog , which lets the user pick a file to open. As we don’t have a document format, file

extension or anything like that, the dialog has most properties set to their default value. In a real world

application, this would be better configured.

In the onAccepted handler a new document window is instantiated using the createNewDocument

method, and a file name is set before the window is shown. In this case, no real loading takes place.

TIP

We imported the Qt.labs.platform module as NativeDialogs . This is because it provides a

MenuItem that clashes with the MenuItem provided by the QtQuick.Controls module.

ApplicationWindow {

 // ...

 function createNewDocument()

 {

 var component = Qt.createComponent("DocumentWindow.qml");

 var window = component.createObject();

 return window;

 }

 function newDocument()

 {

 var window = createNewDocument();

 window.show();

 }

 // ...

}

The file name belongs to a pair of properties describing the document: fileName and isDirty . The

fileName holds the file name of the document name and isDirty is set when the document has

unsaved changes. This is used by the save and save as logic, which is shown below.

When trying to save a document without a name, the saveAsDocument is invoked. This results in a

round-trip over the saveAsDialog , which sets a file name and then tries to save again in the

onAccepted handler.

Notice that the saveAsDocument and saveDocument functions correspond to the Save As and Save

menu items.

After having saved the document, in the saveDocument function, the tryingToClose property is

checked. This flag is set if the save is the result of the user wanting to save a document when the

window is being closed. As a consequence, the window is closed after the save operation has been

performed. Again, no actual saving takes place in this example.

ApplicationWindow {

 // ...

 function openDocument(fileName)

 {

 openDialog.open();

 }

 NativeDialogs.FileDialog {

 id: openDialog

 title: "Open"

 folder:

NativeDialogs.StandardPaths.writableLocation(NativeDialogs.StandardPaths.DocumentsLocation)

 onAccepted: {

 var window = root.createNewDocument();

 window.fileName = openDialog.file;

 window.show();

 }

 }

 // ...

}

ApplicationWindow {

 // ...

 property bool isDirty: true // Has the document got unsaved changes?

This leads us to the closing of windows. When a window is being closed, the onClosing handler is

invoked. Here, the code can choose not to accept the request to close. If the document has unsaved

changes, we open the closeWarningDialog and reject the request to close.

 property string fileName // The filename of the document

 property bool tryingToClose: false // Is the window trying to close (but needs a file

name first)?

 // ...

 function saveAsDocument()

 {

 saveAsDialog.open();

 }

 function saveDocument()

 {

 if (fileName.length === 0)

 {

 root.saveAsDocument();

 }

 else

 {

 // Save document here

 console.log("Saving document")

 root.isDirty = false;

 if (root.tryingToClose)

 root.close();

 }

 }

 NativeDialogs.FileDialog {

 id: saveAsDialog

 title: "Save As"

 folder:

NativeDialogs.StandardPaths.writableLocation(NativeDialogs.StandardPaths.DocumentsLocation)

 onAccepted: {

 root.fileName = saveAsDialog.file

 saveDocument();

 }

 onRejected: {

 root.tryingToClose = false;

 }

 }

 // ...

}

The closeWarningDialog asks the user if the changes should be saved, but the user also has the option

to cancel the close operation. The cancelling, handled in onRejected , is the easiest case, as we

rejected the closing when the dialog was opened.

When the user does not want to save the changes, i.e. in onNoClicked , the isDirty flag is set to

false and the window is closed again. This time around, the onClosing will accept the closure, as

isDirty is false.

Finally, when the user wants to save the changes, we set the tryingToClose flag to true before calling

save. This leads us to the save/save as logic.

The entire flow for the close and save/save as logic is shown below. The system is entered at the close

state, while the closed and not closed states are outcomes.

ApplicationWindow {

 // ...

 onClosing: {

 if (root.isDirty) {

 closeWarningDialog.open();

 close.accepted = false;

 }

 }

 NativeDialogs.MessageDialog {

 id: closeWarningDialog

 title: "Closing document"

 text: "You have unsaved changed. Do you want to save your changes?"

 buttons: NativeDialogs.MessageDialog.Yes | NativeDialogs.MessageDialog.No |

NativeDialogs.MessageDialog.Cancel

 onYesClicked: {

 // Attempt to save the document

 root.tryingToClose = true;

 root.saveDocument();

 }

 onNoClicked: {

 // Close the window

 root.isDirty = false;

 root.close()

 }

 onRejected: {

 // Do nothing, aborting the closing of the window

 }

 }

}

This looks complicated compared to implementing this using Qt Widgets and C++. This is because the

dialogs are not blocking to QML. This means that we cannot wait for the outcome of a dialog in a

switch statement. Instead we need to remember the state and continue the operation in the

respective onYesClicked , onNoClicked , onAccepted , and onRejected handlers.

The final piece of the puzzle is the window title. It is composed of the fileName and isDirty

properties.

ApplicationWindow {

 // ...

 title: (fileName.length===0?qsTr("Document"):fileName) + (isDirty?"*":"")

 // ...

This example is far from complete. For instance, the document is never loaded or saved. Another

missing piece is handling the case of closing all the windows in one go, i.e. exiting the application. For

this function, a singleton maintaining a list of all current DocumentWindow instances is needed.

However, this would only be another way to trigger the closing of a window, so the logic flow shown

here is still valid.

}

The Imagine Style
One of the goals with Qt Quick Controls is to separate the logic of a control from its appearance. For

most of the styles, the implementation of the appearance consists of a mix of QML code and graphical

assets. However, using the Imagine style, it is possible to customize the appearance of a Qt Quick

Controls based application using only graphical assets.

The imagine style is based on 9-patch images

(https://developer.android.com/guide/topics/graphics/drawables#nine-patch) . This allows the images

to carry information on how they are stretched and what parts are to be considered as a part of the

element and what is outside; e.g. a shadow. For each control, the style supports several elements, and

for each element a large number of states are available. By providing assets for certain combinations of

these elements and states, you can control the appearance of each control in detail.

The details of 9-patch images, and how each control can be styled is covered in great detail in the

Imagine style documentation (https://doc.qt.io/qt-6/qtquickcontrols2-imagine.html) . Here, we will

create a custom style for an imaginary device interface to demonstrate how the style is used.

The application's style customizes the ApplicationWindow and Button controls. For the buttons, the

normal state, as well as the pressed and checked states are handled. The demonstration application is

shown below.

https://developer.android.com/guide/topics/graphics/drawables#nine-patch
https://doc.qt.io/qt-6/qtquickcontrols2-imagine.html

The code for this uses a Column for the clickable buttons, and a Grid for the checkable ones. The

clickable buttons also stretch with the window width.

import QtQuick

import QtQuick.Controls

ApplicationWindow {

 // ...

 visible: true

 width: 640

 height: 480

 title: qsTr("Hello World")

 Column {

 anchors.top: parent.top

 anchors.left: parent.left

 anchors.margins: 10

 width: parent.width/2

 spacing: 10

As we are using the Imagine style, all controls that we want to use need to be styled using a graphical

asset. The easiest is the background for the ApplicationWindow . This is a single pixel texture defining

the background colour. By naming the file applicationwindow-background.png and then pointing the

style to it using the qtquickcontrols2.conf file, the file is picked up.

In the qtquickcontrols2.conf file shown below, you can see how we set the Style to Imagine , and

then setup a Path for the style where it can look for the assets. Finally we set some palette properties

as well. The available palette properties can be found on the palette QML Basic Type

(https://doc.qt.io/qt-6/qml-palette.html#qtquickcontrols2-palette) page.

 // ...

 Repeater {

 model: 5

 delegate: Button {

 width: parent.width

 height: 70

 text: qsTr("Click me!")

 }

 }

 }

 Grid {

 anchors.top: parent.top

 anchors.right: parent.right

 anchors.margins: 10

 columns: 2

 spacing: 10

 // ...

 Repeater {

 model: 10

 delegate: Button {

 height: 70

 text: qsTr("Check me!")

 checkable: true

 }

 }

 }

}

[Controls]

Style=Imagine

https://doc.qt.io/qt-6/qml-palette.html#qtquickcontrols2-palette

The assets for the Button control are button-background.9.png , button-background-pressed.9.png

and button-background-checked.9.png . These follow the control-element-state pattern. The stateless

file, button-background.9.png is used for all states without a specific asset. According to the Imagine

style element reference table (https://doc.qt.io/qt-6/qtquickcontrols2-imagine.html#element-

reference) , a button can have the following states:

disabled

pressed

checked

checkable

focused

highlighted

flat

mirrored

hovered

The states that are needed depend on your user interface. For instance, the hovered style is never used

for touch-based interfaces.

[Imagine]

Path=:images/imagine

[Imagine\Palette]

Text=#ffffff

ButtonText=#ffffff

BrightText=#ffffff

https://doc.qt.io/qt-6/qtquickcontrols2-imagine.html#element-reference

Looking at an enlarged version of button-background-checked.9.png above, you can see the 9-patch

guide lines along the sides. The purple background has been added for visibility reasons. This area is

actually transparent in the asset used in the example.

The pixes along the edges of the image can be either white/transparent, black, or red. These have

different meanings that we will go through one by one.

Black lines along the left and top sides of the asset mark the stretchable parts of the image. This

means that the rounded corners and the white marker in the example are not affected when the

button is stretched.

Black lines along the right and bottom sides of the asset mark the area used for the control’s

contents. That means the part of the button that is used for text in the example.

Red lines along the right and bottom sides of the asset mark inset areas. These areas are a part of

the image, but not considered a part of the control. For the checked image above, this is used for a

soft halo extending outside the button.

A demonstration of the usage of an inset area is shown in button-background.9.png (below) and

button-background-checked.9.png (above): the image seems to light up, but not move.

Summary

In this chapter we have looked at Qt Quick Controls 2. They offer a set of elements that provide more

high-level concepts than the basic QML elements. For most scenarios, you will save memory and gain

performance by using the Qt Quick Controls 2, as they are based around optimized C++ logic instead of

Javascript and QML.

We’ve demonstrated how different styles can be used, and how a common code base can be developed

using file selectors. This way, a single code base can address multiple platforms with different user

interactions and visual styles.

Finally, we have looked at the Imagine style, which allows you to completely customize the look of a

QML application through the use of graphical assets. In this way, an application can be reskinned

without any code change whatsoever.

Model-View-Delegate

As soon as the amount of data goes beyond the trivial, it is no longer feasible to keep a copy of the data

with the presentation. This means that the presentation layer, what is seen by the user, needs to be

separated by the data layer, the actual contents. In Qt Quick, data is separated from the presentation

through a so called model-view separation. Qt Quick provides a set of premade views in which each

data element is the visualization by a delegate. To utilize the system, one must understand these

classes and know how to create appropriate delegates to get the right look and feel.

Concept

A common pattern when developing user interfaces is to keep the representation of the data separate

from the visualization. This makes it possible to show the same data in different ways depending on

what task the user is performing. For instance, a phone book could be arranged as a vertical list of text

entries, or as a grid of pictures of the contacts. In both cases, the data is identical: the phone book, but

the visualization differs. This division is commonly referred to as the model-view pattern. In this

pattern, the data is referred to as the model, while the visualization is handled by the view.

In QML, the model and view are joined by the delegate. The responsibilities are divided as follows: The

model provides the data. For each data item, there might be multiple values. In the example above,

each phone book entry has a name, a picture, and a number. The data is arranged in a view, in which

each item is visualized using a delegate. The task of the view is to arrange the delegates, while each

delegate shows the values of each model item to the user.

This means that the delegate knows about the contents of the model and how to visualize it. The view

knows about the concept of delegates and how to lay them out. The model only knows about the data it

is representing.

Basic Models

The most basic way to visualize data from a model is to use the Repeater element. It is used to

instantiate an array of items and is easy to combine with a positioner to populate a part of the user

interface. A repeater uses a model, which can be anything from the number of items to instantiate, to a

full-blown model gathering data from the Internet.

Using a number

In its simplest form, the repeater can be used to instantiate a specified number of items. Each item will

have access to an attached property, the variable index , that can be used to tell the items apart.

In the example below, a repeater is used to create 10 instances of an item. The number of items is

controlled using the model property and their visual representation is controlled using the delegate

property. For each item in the model, a delegate is instantiated (here, the delegate is a BlueBox , which

is a customized Rectangle containing a Text element). As you can tell, the text property is set to

the index value, thus the items are numbered from zero to nine.

import QtQuick

import "../common"

Column {

 spacing: 2

 Repeater {

 model: 10

 delegate: BlueBox {

 required property int index

 width: 100

 height: 32

 text: index

 }

 }

}

Using an array

As nice as lists of numbered items are, it is sometimes interesting to display a more complex data set.

By replacing the integer model value with a JavaScript array, we can achieve that. The contents of the

array can be of any type, be it strings, integers or objects. In the example below, a list of strings is used.

We can still access and use the index variable, but we also have access to modelData containing the

data for each element in the array.

import QtQuick

import "../common"

Column {

 spacing: 2

Using a ListModel

Being able to expose the data of an array, you soon find yourself in a position where you need multiple

pieces of data per item in the array. This is where models enter the picture. One of the most trivial

models and one of the most commonly used is the ListModel . A list model is simply a collection of

ListElement items. Inside each list element, a number of properties can be bound to values. For

instance, in the example below, a name and a color are provided for each element.

 Repeater {

 model: ["Enterprise", "Columbia", "Challenger", "Discovery", "Endeavour",

"Atlantis"]

 delegate: BlueBox {

 required property var modelData

 required property int index

 width: 100

 height: 32

 radius: 3

 text: modelData + ' (' + index + ')'

 }

 }

}

The properties bound inside each element are attached to each instantiated item by the repeater. This

means that the variables name and surfaceColor are available from within the scope of each

Rectangle and Text item created by the repeater. This not only makes it easy to access the data, it

also makes it easy to read the source code. The surfaceColor is the color of the circle to the left of the

name, not something obscure as data from column i of row j .

import QtQuick

import "../common"

Column {

 spacing: 2

 Repeater {

 model: ListModel {

 ListElement { name: "Mercury"; surfaceColor: "gray" }

 ListElement { name: "Venus"; surfaceColor: "yellow" }

 ListElement { name: "Earth"; surfaceColor: "blue" }

 ListElement { name: "Mars"; surfaceColor: "orange" }

 ListElement { name: "Jupiter"; surfaceColor: "orange" }

 ListElement { name: "Saturn"; surfaceColor: "yellow" }

 ListElement { name: "Uranus"; surfaceColor: "lightBlue" }

 ListElement { name: "Neptune"; surfaceColor: "lightBlue" }

 }

 delegate: BlueBox {

 id: blueBox

 required property string name

 required property color surfaceColor

 width: 120

 height: 32

 radius: 3

 text: name

 Box {

 anchors.left: parent.left

 anchors.verticalCenter: parent.verticalCenter

 anchors.leftMargin: 4

 width: 16

 height: 16

 radius: 8

 color: blueBox.surfaceColor

 }

 }

Using a delegate as default property

The delegate property of the Repeater is its default property. This means that it's also possible to

write the code of Example 01 as follows:

 }

}

import QtQuick

import "../common"

Column {

 spacing: 2

 Repeater {

 model: 10

 BlueBox {

 required property int index

 width: 100

 height: 32

 text: index

 }

 }

}

Dynamic Views

Repeaters work well for limited and static sets of data, but in the real world, models are commonly

more complex – and larger. Here, a smarter solution is needed. For this, Qt Quick provides the

ListView and GridView elements. These are both based on a Flickable area, so the user can move

around in a larger dataset. At the same time, they limit the number of concurrently instantiated

delegates. For a large model, that means fewer elements in the scene at once.

The two elements are similar in their usage. We will begin with the ListView and then describe the

GridView with the former as the starting point of the comparison. Notice that the GridView places a

list of items into a two-dimensional grid, left-to-right or top-to-bottom. If you want to show a table of

data you need to use the TableView which is described in the Table Models section.

The ListView is similar to the Repeater element. It uses a model , instantiates a delegate and

between the delegates, there can be spacing . The listing below shows how a simple setup can look.

import QtQuick

import "../common"

Background {

 width: 80

 height: 300

 ListView {

 anchors.fill: parent

 anchors.margins: 20

 clip: true

 model: 100

If the model contains more data than can fit onto the screen, the ListView only shows part of the list.

However, as a consequence of the default behavior of Qt Quick, the list view does not limit the screen

area within which the delegates are shown. This means that delegates may be visible outside the list

view and that the dynamic creation and destruction of delegates outside the list view is visible to the

user. To prevent this, clipping must be activated on the ListView element by setting the clip

property to true . The illustration below shows the result of this (left view), compared to when the

clip property is false (right view).

 delegate: GreenBox {

 required property int index

 width: 40

 height: 40

 text: index

 }

 spacing: 5

 }

}

To the user, the ListView is a scrollable area. It supports kinetic scrolling, which means that it can be

flicked to quickly move through the contents. By default, it also can be stretched beyond the end of

contents, and then bounces back, to signal to the user that the end has been reached.

The behavior at the end of the view is controlled using the boundsBehavior property. This is an

enumerated value and can be conimaged from the default behavior,

Flickable.DragAndOvershootBounds , where the view can be both dragged and flicked outside its

boundaries, to Flickable.StopAtBounds , where the view never will move outside its boundaries. The

middle ground, Flickable.DragOverBounds lets the user drag the view outside its boundaries, but flicks

will stop at the boundary.

It is possible to limit the positions where a view is allowed to stop. This is controlled using the

snapMode property. The default behavior, ListView.NoSnap , lets the view stop at any position. By

setting the snapMode property to ListView.SnapToItem , the view will always align the top of an item

with its top. Finally, the ListView.SnapOneItem , the view will stop no more than one item from the first

visible item when the mouse button or touch was released. The last mode is very handy when flipping

through pages.

Orientation

The list view provides a vertically scrolling list by default, but horizontal scrolling can be just as useful.

The direction of the list view is controlled through the orientation property. It can be set to either the

default value, ListView.Vertical , or to ListView.Horizontal . A horizontal list view is shown below.

As you can tell, the direction of the horizontal flows from the left to the right by default. This can be

controlled through the layoutDirection property, which can be set to either Qt.LeftToRight or

Qt.RightToLeft , depending on the flow direction.

Keyboard Navigation and Highlighting

import QtQuick

import "../common"

Background {

 width: 480

 height: 80

 ListView {

 anchors.fill: parent

 anchors.margins: 20

 spacing: 4

 clip: true

 model: 100

 orientation: ListView.Horizontal

 delegate: GreenBox {

 required property int index

 width: 40

 height: 40

 text: index

 }

 }

}

When using a ListView in a touch-based setting, the view itself is enough. In a scenario with a

keyboard, or even just arrow keys to select an item, a mechanism to indicate the current item is needed.

In QML, this is called highlighting.

Views support a highlight delegate which is shown in the view together with the delegates. It can be

considered an additional delegate, only that it is only instantiated once, and is moved into the same

position as the current item.

In the example below this is demonstrated. There are two properties involved for this to work. First, the

focus property is set to true. This gives the ListView the keyboard focus. Second, the highlight

property is set to point out the highlighting delegate to use. The highlight delegate is given the x , y

and height of the current item. If the width is not specified, the width of the current item is also

used.

In the example, the ListView.view.width attached property is used for width. The attached properties

available to delegates are discussed further in the delegate section of this chapter, but it is good to

know that the same properties are available to highlight delegates as well.

import QtQuick

import "../common"

Background {

 width: 240

 height: 300

 ListView {

 id: view

 anchors.fill: parent

 anchors.margins: 20

 focus: true

 model: 100

 delegate: numberDelegate

 highlight: highlightComponent

 spacing: 5

 clip: true

 }

 Component {

 id: highlightComponent

 GreenBox {

 width: ListView.view ? ListView.view.width : 0

 }

 }

 Component {

 id: numberDelegate

 Item {

 id: wrapper

 required property int index

 width: ListView.view ? ListView.view.width : 0

 height: 40

 Text {

 anchors.centerIn: parent

 font.pixelSize: 10

 text: wrapper.index

 }

 }

 }

}

When using a highlight in conjunction with a ListView , a number of properties can be used to control

its behavior. The highlightRangeMode controls how the highlight is affected by what is shown in the

view. The default setting, ListView.NoHighlightRange means that the highlight and the visible range of

items in the view not being related at all.

The value ListView.StrictlyEnforceRange ensures that the highlight is always visible. If an action

attempts to move the highlight outside the visible part of the view, the current item will change

accordingly, so that the highlight remains visible.

The middle ground is the ListView.ApplyRange value. It attempts to keep the highlight visible but does

not alter the current item to enforce this. Instead, the highlight is allowed to move out of view if

necessary.

In the default configuration, the view is responsible for moving the highlight into position. The speed of

the movement and resizing can be controlled, either as a velocity or as a duration. The properties

involved are highlightMoveSpeed , highlightMoveDuration , highlightResizeSpeed and

highlightResizeDuration . By default, the speed is set to 400 pixels per second, and the duration is set

to -1, indicating that the speed and distance control the duration. If both a speed and a duration is set,

the one that results in the quickest animation is chosen.

To control the movement of the highlight more in detail, the highlightFollowCurrentItem property

can be set to false . This means that the view is no longer responsible for the movement of the

highlight delegate. Instead, the movement can be controlled through a Behavior or an animation.

In the example below, the y property of the highlight delegate is bound to the

ListView.view.currentItem.y attached property. This ensures that the highlight follows the current

item. However, as we do not let the view move the highlight, we can control how the element is moved.

This is done through the Behavior on y . In the example below, the movement is divided into three

steps: fading out, moving, before fading in. Notice how SequentialAnimation and PropertyAnimation

elements can be used in combination with the NumberAnimation to create a more complex movement.

Component {

 id: highlightComponent

 Item {

 width: ListView.view ? ListView.view.width : 0

 height: ListView.view ? ListView.view.currentItem.height : 0

 y: ListView.view ? ListView.view.currentItem.y : 0

 Behavior on y {

 SequentialAnimation {

 PropertyAnimation { target: highlightRectangle; property: "opacity"; to: 0;

 duration: 200 }

 NumberAnimation { duration: 1 }

Header and Footer

At each end of the ListView contents, a header and a footer element can be inserted. These can

be considered special delegates placed at the beginning or end of the list. For a horizontal list, these

will not appear at the head or foot, but rather at the beginning or end, depending on the

layoutDirection used.

The example below illustrates how a header and footer can be used to enhance the perception of the

beginning and end of a list. There are other uses for these special list elements. For instance, they can

be used to keep buttons to load more contents.

 PropertyAnimation { target: highlightRectangle; property: "opacity"; to: 1;

 duration: 200 }

 }

 }

 GreenBox {

 id: highlightRectangle

 anchors.fill: parent

 }

 }

}

import QtQuick

import "../common"

Background {

 width: 240

 height: 300

 ListView {

 anchors.fill: parent

 anchors.margins: 20

 clip: true

 model: 4

 delegate: numberDelegate

 header: headerComponent

 footer: footerComponent

 spacing: 2

 }

 Component {

 id: headerComponent

 YellowBox {

 width: ListView.view ? ListView.view.width : 0

 height: 20

 text: 'Header'

 }

 }

 Component {

 id: footerComponent

 YellowBox {

 width: ListView.view ? ListView.view.width : 0

 height: 20

 text: 'Footer'

 }

 }

 Component {

 id: numberDelegate

 GreenBox {

 required property int index

 width: ListView.view.width

 height: 40

 text: 'Item #' + index

 }

 }

}

TIP

Header and footer delegates do not respect the spacing property of a ListView , instead

they are placed directly adjacent to the next item delegate in the list. This means that any

spacing must be a part of the header and footer items.

The GridView

Using a GridView is very similar to using a ListView . The only real difference is that the grid view

places the delegates in a two-dimensional grid instead of in a linear list.

Compared to a list view, the grid view does not rely on spacing and the size of its delegates. Instead, it

uses the cellWidth and cellHeight properties to control the dimensions of the contents delegates.

Each delegate item is then placed in the top left corner of each such cell.

import QtQuick

import "../common"

Background {

 width: 220

 height: 300

 GridView {

 id: view

 anchors.fill: parent

 anchors.margins: 20

 clip: true

 model: 100

 cellWidth: 45

A GridView contains headers and footers, can use a highlight delegate and supports snap modes as

well as various bounds behaviors. It can also be orientated in different directions and orientations.

The orientation is controlled using the flow property. It can be set to either GridView.LeftToRight or

GridView.TopToBottom . The former value fills a grid from the left to the right, adding rows from the top

to the bottom. The view is scrollable in the vertical direction. The latter value adds items from the top

to the bottom, filling the view from left to right. The scrolling direction is horizontal in this case.

In addition to the flow property, the layoutDirection property can adapt the direction of the grid to

left-to-right or right-to-left languages, depending on the value used.

 cellHeight: 45

 delegate: GreenBox {

 required property int index

 width: 40

 height: 40

 text: index

 }

 }

}

Delegate

When it comes to using models and views in a custom user interface, the delegate plays a huge role in

creating a look and behaviour. As each item in a model is visualized through a delegate, what is actually

visible to the user are the delegates.

Each delegate gets access to a number of attached properties, some from the data model, others from

the view. From the model, the properties convey the data for each item to the delegate. From the view,

the properties convey state information related to the delegate within the view. Let's dive into the

properties from the view.

The most commonly used properties attached from the view are ListView.isCurrentItem and

ListView.view . The first is a boolean indicating if the item is the current item, while the latter is a

read-only reference to the actual view. Through access to the view, it is possible to create general,

reusable delegates that adapt to the size and nature of the view in which they are contained. In the

example below, the width of each delegate is bound to the width of the view, while the background

color of each delegate depends on the attached ListView.isCurrentItem property.

import QtQuick

Rectangle {

 width: 120

 height: 300

 gradient: Gradient {

 GradientStop { position: 0.0; color: "#f6f6f6" }

 GradientStop { position: 1.0; color: "#d7d7d7" }

 }

 ListView {

 anchors.fill: parent

 anchors.margins: 20

 focus: true

 model: 100

 delegate: numberDelegate

 spacing: 5

 clip: true

 }

 Component {

 id: numberDelegate

 Rectangle {

 id: wrapper

 required property int index

 width: ListView.view.width

 height: 40

 color: ListView.isCurrentItem ? "#157efb" : "#53d769"

 border.color: Qt.lighter(color, 1.1)

 Text {

 anchors.centerIn: parent

 font.pixelSize: 10

 text: wrapper.index

 }

 }

 }

}

If each item in the model is associated with an action, for instance, clicking an item acts upon it, that

functionality is a part of each delegate. This divides the event management between the view, which

handles the navigation between items in the view, and the delegate which handles actions on a specific

item.

The most basic way to do this is to create a MouseArea within each delegate and act on the onClicked

signal. This is demonstrated in the example in the next section of this chapter.

Animating Added and Removed Items

In some cases, the contents shown in a view changes over time. Items are added and removed as the

underlying data model is altered. In these cases, it is often a good idea to employ visual cues to give the

user a sense of direction and to help the user understand what data is added or removed.

Conveniently enough, QML views attach two signals, onAdd and onRemove , to each item delegate. By

triggering animations from these, it is easy to create the movement necessary to aid the user in

identifying what is taking place.

The example below demonstrates this through the use of a dynamically populated ListModel . At the

bottom of the screen, a button for adding new items is shown. When it is clicked, a new item is added

to the model using the append method. This triggers the creation of a new delegate in the view, and

the emission of the GridView.onAdd signal. The SequentialAnimation called addAnimation is started

from the signal causes the item to zoom into view by animating the scale property of the delegate.

When a delegate in the view is clicked, the item is removed from the model through a call to the

remove method. This causes the GridView.onRemove signal to be emitted, starting the

removeAnimation SequentialAnimation . This time, however, the destruction of the delegate must be

delayed until the animation has completed. To do this, PropertyAction element is used to set the

GridView.delayRemove property to true before the animation, and false after. This ensures that

the animation is allowed to complete before the delegate item is removed.

Here is the complete code:

GridView.onAdd: addAnimation.start()

SequentialAnimation {

 id: addAnimation

 NumberAnimation {

 target: wrapper

 property: "scale"

 from: 0

 to: 1

 duration: 250

 easing.type: Easing.InOutQuad

 }

}

GridView.onRemove: removeAnimation.start()

SequentialAnimation {

 id: removeAnimation

 PropertyAction { target: wrapper; property: "GridView.delayRemove"; value: true }

 NumberAnimation { target: wrapper; property: "scale"; to: 0; duration: 250;

easing.type: Easing.InOutQuad }

 PropertyAction { target: wrapper; property: "GridView.delayRemove"; value: false }

}

import QtQuick

Rectangle {

 width: 480

 height: 300

 gradient: Gradient {

 GradientStop { position: 0.0; color: "#dbddde" }

 GradientStop { position: 1.0; color: "#5fc9f8" }

 }

 ListModel {

 id: theModel

 ListElement { number: 0 }

 ListElement { number: 1 }

 ListElement { number: 2 }

 ListElement { number: 3 }

 ListElement { number: 4 }

 ListElement { number: 5 }

 ListElement { number: 6 }

 ListElement { number: 7 }

 ListElement { number: 8 }

 ListElement { number: 9 }

 }

 Rectangle {

 property int count: 9

 anchors.left: parent.left

 anchors.right: parent.right

 anchors.bottom: parent.bottom

 anchors.margins: 20

 height: 40

 color: "#53d769"

 border.color: Qt.lighter(color, 1.1)

 Text {

 anchors.centerIn: parent

 text: "Add item!"

 }

 MouseArea {

 anchors.fill: parent

 onClicked: {

 theModel.append({"number": ++parent.count})

 }

 }

 }

 GridView {

 anchors.fill: parent

 anchors.margins: 20

 anchors.bottomMargin: 80

 clip: true

 model: theModel

 cellWidth: 45

 cellHeight: 45

 delegate: numberDelegate

 }

 Component {

 id: numberDelegate

 Rectangle {

 id: wrapper

 required property int index

 required property int number

 width: 40

 height: 40

 gradient: Gradient {

 GradientStop { position: 0.0; color: "#f8306a" }

 GradientStop { position: 1.0; color: "#fb5b40" }

 }

 Text {

 anchors.centerIn: parent

 font.pixelSize: 10

 text: wrapper.number

 }

 MouseArea {

 anchors.fill: parent

 onClicked: {

 if (wrapper.index == -1) {

 return

 }

 theModel.remove(wrapper.index)

 }

 }

 GridView.onRemove: removeAnimation.start()

Shape-Shifting Delegates

A commonly used mechanism in lists is that the current item is expanded when activated. This can be

used to dynamically let the item expand to fill the screen to enter a new part of the user interface, or it

can be used to provide slightly more information for the current item in a given list.

In the example below, each item is expanded to the full extent of the ListView containing it when

clicked. The extra space is then used to add more information. The mechanism used to control this is a

state expanded that each item delegate can enter, where the item is expanded. In that state, a number

of properties are altered.

First of all, the height of the wrapper is set to the height of the ListView . The thumbnail image is

then enlarged and moved down to make it move from its small position into its larger position. In

addition to this, the two hidden items, the factsView and closeButton are shown by altering the

opacity of the elements. Finally, the ListView is setup.

 SequentialAnimation {

 id: removeAnimation

 PropertyAction { target: wrapper; property: "GridView.delayRemove"; value:

true }

 NumberAnimation { target: wrapper; property: "scale"; to: 0; duration: 250;

 easing.type: Easing.InOutQuad }

 PropertyAction { target: wrapper; property: "GridView.delayRemove"; value:

false }

 }

 GridView.onAdd: addAnimation.start()

 SequentialAnimation {

 id: addAnimation

 NumberAnimation {

 target: wrapper

 property: "scale"

 from: 0

 to: 1

 duration: 250

 easing.type: Easing.InOutQuad

 }

 }

 }

 }

}

Setting up the ListView involves setting the contentsY , that is the top of the visible part of the view,

to the y value of the delegate. The other change is to set interactive of the view to false . This

prevents the view from moving. The user can no longer scroll through the list or change the current

item.

As the item first is clicked, it enters the expanded state, causing the item delegate to fill the ListView

and the contents to rearrange. When the close button is clicked, the state is cleared, causing the

delegate to return to its previous state and re-enabling the ListView .

import QtQuick

Item {

 width: 300

 height: 480

 Rectangle {

 anchors.fill: parent

 gradient: Gradient {

 GradientStop { position: 0.0; color: "#4a4a4a" }

 GradientStop { position: 1.0; color: "#2b2b2b" }

 }

 }

 ListView {

 id: listView

 anchors.fill: parent

 delegate: detailsDelegate

 model: planets

 }

 ListModel {

 id: planets

 ListElement { name: "Mercury"; imageSource: "images/mercury.jpeg"; facts: "Mercury

is the smallest planet in the Solar System. It is the closest planet to the sun. It makes

one trip around the Sun once every 87.969 days." }

 ListElement { name: "Venus"; imageSource: "images/venus.jpeg"; facts: "Venus is

the second planet from the Sun. It is a terrestrial planet because it has a solid, rocky

surface. The other terrestrial planets are Mercury, Earth and Mars. Astronomers have known

Venus for thousands of years." }

 ListElement { name: "Earth"; imageSource: "images/earth.jpeg"; facts: "The Earth

is the third planet from the Sun. It is one of the four terrestrial planets in our Solar

System. This means most of its mass is solid. The other three are Mercury, Venus and Mars.

The Earth is also called the Blue Planet, 'Planet Earth', and 'Terra'." }

 ListElement { name: "Mars"; imageSource: "images/mars.jpeg"; facts: "Mars is the

fourth planet from the Sun in the Solar System. Mars is dry, rocky and cold. It is home to

the largest volcano in the Solar System. Mars is named after the mythological Roman god of

war because it is a red planet, which signifies the colour of blood." }

 }

 Component {

 id: detailsDelegate

 Item {

 id: wrapper

 required property string name

 required property string imageSource

 required property string facts

 width: listView.width

 height: 30

 Rectangle {

 anchors.left: parent.left

 anchors.right: parent.right

 anchors.top: parent.top

 height: 30

 color: "#333"

 border.color: Qt.lighter(color, 1.2)

 Text {

 anchors.left: parent.left

 anchors.verticalCenter: parent.verticalCenter

 anchors.leftMargin: 4

 font.pixelSize: parent.height-4

 color: '#fff'

 text: wrapper.name

 }

 }

 Rectangle {

 id: image

 width: 26

 height: 26

 anchors.right: parent.right

 anchors.top: parent.top

 anchors.rightMargin: 2

 anchors.topMargin: 2

 color: "black"

 Image {

 anchors.fill: parent

 fillMode: Image.PreserveAspectFit

 source: wrapper.imageSource

 }

 }

 MouseArea {

 anchors.fill: parent

 onClicked: parent.state = "expanded"

 }

 Item {

 id: factsView

 anchors.top: image.bottom

 anchors.left: parent.left

 anchors.right: parent.right

 anchors.bottom: parent.bottom

 opacity: 0

 Rectangle {

 anchors.fill: parent

 gradient: Gradient {

 GradientStop { position: 0.0; color: "#fed958" }

 GradientStop { position: 1.0; color: "#fecc2f" }

 }

 border.color: '#000000'

 border.width: 2

 Text {

 anchors.fill: parent

 anchors.margins: 5

 clip: true

 wrapMode: Text.WordWrap

 color: '#1f1f21'

 font.pixelSize: 12

 text: wrapper.facts

 }

 }

 }

 Rectangle {

 id: closeButton

 anchors.right: parent.right

 anchors.top: parent.top

 anchors.rightMargin: 2

 anchors.topMargin: 2

 width: 26

 height: 26

 color: "#157efb"

 border.color: Qt.lighter(color, 1.1)

 opacity: 0

 MouseArea {

 anchors.fill: parent

 onClicked: wrapper.state = ""

 }

 }

 states: [

 State {

 name: "expanded"

 PropertyChanges { target: wrapper; height: listView.height }

 PropertyChanges { target: image; width: listView.width; height:

listView.width; anchors.rightMargin: 0; anchors.topMargin: 30 }

 PropertyChanges { target: factsView; opacity: 1 }

 PropertyChanges { target: closeButton; opacity: 1 }

 PropertyChanges { target: wrapper.ListView.view; contentY: wrapper.y;

interactive: false }

 }

]

 transitions: [

 Transition {

 NumberAnimation {

 duration: 200;

 properties:

"height,width,anchors.rightMargin,anchors.topMargin,opacity,contentY"

 }

 }

]

 }

 }

}

The techniques demonstrated here to expand the delegate to fill the entire view can be employed to

make an item delegate shift shape in a much smaller way. For instance, when browsing through a list of

songs, the current item could be made slightly larger, accommodating more information about that

particular item.

Advanced Techniques

The PathView

The PathView element is the most flexible view provided in Qt Quick, but it is also the most complex.

It makes it possible to create a view where the items are laid out along an arbitrary path. Along the

same path, attributes such as scale, opacity and more can be controlled in detail.

When using the PathView , you have to define a delegate and a path. In addition to this, the PathView

itself can be customized through a range of properties. The most common being pathItemCount ,

controlling the number of visible items at once, and the highlight range control properties

preferredHighlightBegin , preferredHighlightEnd and highlightRangeMode , controlling where

along the path the current item is to be shown.

Before looking at the highlight range control properties in depth, we must look at the path property.

The path property expects a Path element defining the path that the delegates follow as the

PathView is being scrolled. The path is defined using the startX and startY properties in

combinations with path elements such as PathLine , PathQuad and PathCubic . These elements are

joined together to form a two-dimensional path.

When the path has been defined, it is possible to further tune it using PathPercent and

PathAttribute elements. These are placed in between path elements and provide more fine-grained

control over the path and the delegates on it. The PathPercent controls how large a portion of the

path that has been covered between each element. This, in turn, controls the distribution of delegates

along the path, as they are distributed proportionally to the percentage progressed.

This is where the preferredHighlightBegin and preferredHighlightEnd properties of the PathView

enters the picture. They both expect real values in the range between zero and one. The end is also

expected to be more or equal to the beginning. Setting both these properties too, for instance, 0.5, the

current item will be displayed at the location fifty percent along the path.

In the Path , the PathAttribute elements are placed between elements, just as PathPercent

elements. They let you specify property values that are interpolated along the path. These properties

are attached to the delegates and can be used to control any conceivable property.

The example below demonstrates how the PathView element is used to create a view of cards that the

user can flip through. It employs a number of tricks to do this. The path consists of three PathLine

elements. Using PathPercent elements, the central element is properly centered and provided

enough space not to be cluttered by other elements. Using PathAttribute elements, the rotation, size

and z -value is controlled.

In addition to the path , the pathItemCount property of the PathView has been set. This controls

how densely populated the path will be. The preferredHighlightBegin and preferredHighlightEnd

the PathView.onPath is used to control the visibility of the delegates.

PathView {

 anchors.fill: parent

 model: 100

 delegate: flipCardDelegate

 path: Path {

 startX: root.width / 2

 startY: 0

The delegate, shown below, utilizes the attached properties itemZ , itemAngle and itemScale from

the PathAttribute elements. It is worth noticing that the attached properties of the delegate only are

available from the wrapper . Thus, the rotX property is defined to be able to access the value from

within the Rotation element.

Another detail specific to PathView worth noticing is the usage of the attached PathView.onPath

property. It is common practice to bind the visibility to this, as this allows the PathView to keep

invisible elements for caching purposes. This can usually not be handled through clipping, as the item

delegates of a PathView are placed more freely than the item delegates of ListView or GridView

views.

 PathAttribute { name: "itemZ"; value: 0 }

 PathAttribute { name: "itemAngle"; value: -90.0; }

 PathAttribute { name: "itemScale"; value: 0.5; }

 PathLine { x: root.width / 2; y: root.height * 0.4; }

 PathPercent { value: 0.48; }

 PathLine { x: root.width / 2; y: root.height * 0.5; }

 PathAttribute { name: "itemAngle"; value: 0.0; }

 PathAttribute { name: "itemScale"; value: 1.0; }

 PathAttribute { name: "itemZ"; value: 100 }

 PathLine { x: root.width / 2; y: root.height * 0.6; }

 PathPercent { value: 0.52; }

 PathLine { x: root.width / 2; y: root.height; }

 PathAttribute { name: "itemAngle"; value: 90.0; }

 PathAttribute { name: "itemScale"; value: 0.5; }

 PathAttribute { name: "itemZ"; value: 0 }

 }

 pathItemCount: 16

 preferredHighlightBegin: 0.5

 preferredHighlightEnd: 0.5

}

Component {

 id: flipCardDelegate

 BlueBox {

 id: wrapper

 required property int index

 property real rotX: PathView.itemAngle

 visible: PathView.onPath

 width: 64

 height: 64

When transforming images or other complex elements on in PathView , a performance optimization

trick that is common to use is to bind the smooth property of the Image element to the attached

property PathView.view.moving . This means that the images are less pretty while moving but

smoothly transformed when stationary. There is no point spending processing power on smooth

scaling when the view is in motion, as the user will not be able to see this anyway.

TIP

Given the dynamic nature of PathAttribute , the qml tooling (in this case: qmllint) is not

aware of itemZ , itemAngle nor itemScale .

When using the PathView and changing the currentIndex programmatically you might want to

control the direction that the path moves in. You can do this using the movementDirection property. It

can be set to PathView.Shortest , which is the default value. This means that the movement can be

either direction, depending on which way is the closest way to move to the target value. The direction

can instead be restricted by setting movementDirection to PathView.Negative or PathView.Positive .

Table Models

All views discussed until now present an array of items one way or another. Even the GridView

expects the model to provide a one dimensional list of items. For two dimensional tables of data you

need to use the TableView element.

 scale: PathView.itemScale

 z: PathView.itemZ

 antialiasing: true

 gradient: Gradient {

 GradientStop { position: 0.0; color: "#2ed5fa" }

 GradientStop { position: 1.0; color: "#2467ec" }

 }

 transform: Rotation {

 axis { x: 1; y: 0; z: 0 }

 angle: wrapper.rotX

 origin { x: 32; y: 32; }

 }

 text: wrapper.index

 }

}

The TableView is similar to other views in that it combines a model with a delegate to form a grid.

If given a list oriented model, it displays a single column, making it very similar to the ListView

element. However, it can also display two-dimensional models that explicitly define both columns and

rows.

In the example below, we set up a simple TableView with a custom model exposed from C++. At the

moment, it is not possible to create table oriented models directly from QML, but in the ‘Qt and C++’

chapter the concept is explained. The running example is shown in the image below.

In the example below, we create a TableView and set the rowSpacing and columnSpacing to control

the horizontal and vertical gaps between delegates. The rest of the properties are set up as for any

other type of view.

The delegate itself can carry an implicit size through the implicitWidth and implicitHeight . This is

what we do in the example below. The actual data contents, i.e. the data returned from the model’s

TableView {

 id: view

 anchors.fill: parent

 anchors.margins: 20

 rowSpacing: 5

 columnSpacing: 5

 clip: true

 model: tableModel

 delegate: cellDelegate

}

display role.

It is possible to provide delegates with different sizes depending on the model contents, e.g.:

Notice that both the width and the height must be greater than zero.

When providing an implicit size from the delegate, the tallest delegate of each row and the widest

delegate of each column controls the size. This can create interesting behaviour if the width of items

depend on the row, or if the height depends on the column. This is because not all delegates are

instantiated at all times, so the width of a column might change as the user scrolls through the table.

To avoid the issues with specifying column widths and row heights using implicit delegate sizes, you

can provide functions that calculate these sizes. This is done using the columnWidthProvider and

rowHeightProvider . These functions return the size of the width and row respectively as shown

below:

Component {

 id: cellDelegate

 GreenBox {

 id: wrapper

 required property string display

 implicitHeight: 40

 implicitWidth: 40

 Text {

 anchors.centerIn: parent

 text: wrapper.display

 }

 }

}

GreenBox {

 implicitHeight: (1 + row) * 10

 // ...

}

TableView {

 columnWidthProvider: function (column) { return 10 * (column + 1) }

 // ...

}

If you need to dynamically change the column widths or row heights you must notify the view of this by

calling the forceLayout method. This will make the view re-calculate the size and position of all cells.

A Model from XML

As XML is a ubiquitous data format, QML provides the XmlListModel element that exposes XML data

as a model. The element can fetch XML data locally or remotely and then processes the data using

XPath expressions.

The example below demonstrates fetching images from an RSS flow. The source property refers to a

remote location over HTTP, and the data is automatically downloaded.

When the data has been downloaded, it is processed into model items and roles. The query property

of the XmlListModel is an XPath representing the base query for creating model items. In this

example, the path is /rss/channel/item , so for every item tag, inside a channel tag, inside an RSS tag,

a model item is created.

For every model item, a number of roles are extracted. These are represented by XmlListModelRole

elements. Each role is given a name, which the delegate can access through an attached property. The

actual value of each such property is determined through the elementName and (optional)

attributeName properties for each role. For instance, the title property corresponds to the title

XML element, returning the contents between the <title> and </title> tags.

The imageSource property extracts the value of an attribute of a tag instead of the contents of the tag.

In this case, the url attribute of the enclosure tag is extracted as a string. The imageSource

property can then be used directly as the source for an Image element, which loads the image from

the given URL.

import QtQuick

import QtQml.XmlListModel

import "../common"

Background {

 width: 300

 height: 480

 Component {

 id: imageDelegate

 Box {

 id: wrapper

 required property string title

 required property string imageSource

 width: listView.width

 height: 220

 color: '#333'

 Column {

 Text {

 text: wrapper.title

 color: '#e0e0e0'

 }

 Image {

 width: listView.width

 height: 200

 fillMode: Image.PreserveAspectCrop

 source: wrapper.imageSource

 }

 }

 }

 }

 XmlListModel {

 id: imageModel

 source: "https://www.nasa.gov/rss/dyn/image_of_the_day.rss"

 query: "/rss/channel/item"

 XmlListModelRole { name: "title"; elementName: "title" }

 XmlListModelRole { name: "imageSource"; elementName: "enclosure"; attributeName:

Lists with Sections

Sometimes, the data in a list can be divided into sections. It can be as simple as dividing a list of

contacts into sections under each letter of the alphabet or music tracks under albums. Using a

ListView it is possible to divide a flat list into categories, providing more depth to the experience.

In order to use sections, the section.property and section.criteria must be set up. The

section.property defines which property to use to divide the contents into sections. Here, it is

"url"; }

 }

 ListView {

 id: listView

 anchors.fill: parent

 model: imageModel

 delegate: imageDelegate

 }

}

important to know that the model must be sorted so that each section consists of continuous elements,

otherwise, the same property name might appear in multiple locations.

The section.criteria can be set to either ViewSection.FullString or ViewSection.FirstCharacter .

The first is the default value and can be used for models that have clear sections, for example, tracks of

music albums. The latter takes the first character of a property and means that any property can be

used for this. The most common example being the last name of contacts in a phone book.

When the sections have been defined, they can be accessed from each item using the attached

properties ListView.section , ListView.previousSection and ListView.nextSection . Using these

properties, it is possible to detect the first and last item of a section and act accordingly.

It is also possible to assign a section delegate component to the section.delegate property of a

ListView . This creates a section header delegate which is inserted before any items of a section. The

delegate component can access the name of the current section using the attached property section .

The example below demonstrates the section concept by showing a list of spacemen sectioned after

their nationality. The nation is used as the section.property . The section.delegate component,

sectionDelegate , shows a heading for each nation, displaying the name of the nation. In each section,

the names of the spacemen are shown using the spaceManDelegate component.

import QtQuick

import "../common"

Background {

 width: 300

 height: 290

 ListView {

 anchors.fill: parent

 anchors.margins: 20

 clip: true

 model: spaceMen

 delegate: spaceManDelegate

 section.property: "nation"

 section.delegate: sectionDelegate

 }

 Component {

 id: spaceManDelegate

 Item {

 id: spaceManWrapper

The ObjectModel

 required property string name

 width: ListView.view.width

 height: 20

 Text {

 anchors.left: parent.left

 anchors.verticalCenter: parent.verticalCenter

 anchors.leftMargin: 8

 font.pixelSize: 12

 text: spaceManWrapper.name

 color: '#1f1f1f'

 }

 }

 }

 Component {

 id: sectionDelegate

 BlueBox {

 id: sectionWrapper

 required property string section

 width: ListView.view ? ListView.view.width : 0

 height: 20

 text: sectionWrapper.section

 fontColor: '#e0e0e0'

 }

 }

 ListModel {

 id: spaceMen

 ListElement { name: "Abdul Ahad Mohmand"; nation: "Afganistan"; }

 ListElement { name: "Marcos Pontes"; nation: "Brazil"; }

 ListElement { name: "Alexandar Panayotov Alexandrov"; nation: "Bulgaria"; }

 ListElement { name: "Georgi Ivanov"; nation: "Bulgaria"; }

 ListElement { name: "Roberta Bondar"; nation: "Canada"; }

 ListElement { name: "Marc Garneau"; nation: "Canada"; }

 ListElement { name: "Chris Hadfield"; nation: "Canada"; }

 ListElement { name: "Guy Laliberte"; nation: "Canada"; }

 ListElement { name: "Steven MacLean"; nation: "Canada"; }

 ListElement { name: "Julie Payette"; nation: "Canada"; }

 ListElement { name: "Robert Thirsk"; nation: "Canada"; }

 ListElement { name: "Bjarni Tryggvason"; nation: "Canada"; }

 ListElement { name: "Dafydd Williams"; nation: "Canada"; }

 }

}

In some cases you might want to use a list view for a large set of different items. You can solve this

using dynamic QML and Loader , but another options is to use an ObjectModel from the

QtQml.Models module. The object model is different from other models as it lets you put the actual

visual elements side the model. That way, the view does not need any delegate .

In the example below we put three Rectangle elements into the ObjectModel . However, one

rectangle has a Text element child while the last one has rounded corners. This would have resulted

in a table-style model using something like a ListModel . It would also have resulted in empty Text

elements in the model.

import QtQuick

import QtQml.Models

Rectangle {

 width: 320

 height: 320

 gradient: Gradient {

 GradientStop { position: 0.0; color: "#f6f6f6" }

 GradientStop { position: 1.0; color: "#d7d7d7" }

 }

 ObjectModel {

 id: itemModel

 Rectangle { height: 60; width: 80; color: "#157efb" }

 Rectangle { height: 20; width: 300; color: "#53d769"

 Text { anchors.centerIn: parent; color: "black"; text: "Hello QML" }

 }

 Rectangle { height: 40; width: 40; radius: 10; color: "#fc1a1c" }

 }

 ListView {

Another aspect of the ObjectModel is that is can be dynamically populated using the get , insert ,

move , remove , and clear methods. This way, the contents of the model can be dynamically

generated from various sources and still easily shown in a single view.

Models with Actions

The ListElement type supports the binding of Javascript functions to properties. This means that you

can put functions into a model. This is very useful when building menus with actions and similar

constructs.

The example below demonstrates this by having a model of cities that greet you in different ways. The

actionModel is a model of four cities, but the hello property is bound to functions. Each function

takes an argument value , but you can have any number arguments.

In the delegate actionDelegate , the MouseArea calls the function hello as an ordinary function and

this results a call to the corresponding hello property in the model.

 anchors.fill: parent

 anchors.margins: 10

 spacing: 5

 model: itemModel

 }

}

import QtQuick

Rectangle {

 width: 120

 height: 300

 gradient: Gradient {

 GradientStop { position: 0.0; color: "#f6f6f6" }

 GradientStop { position: 1.0; color: "#d7d7d7" }

 }

 ListModel {

 id: actionModel

 ListElement {

 name: "Copenhagen"

 hello: function(value) { console.log(value + ": You clicked Copenhagen!"); }

 }

 ListElement {

 name: "Helsinki"

 hello: function(value) { console.log(value + ": Helsinki here!"); }

Tuning Performance

 }

 ListElement {

 name: "Oslo"

 hello: function(value) { console.log(value + ": Hei Hei fra Oslo!"); }

 }

 ListElement {

 name: "Stockholm"

 hello: function(value) { console.log(value + ": Stockholm calling!"); }

 }

 }

 ListView {

 anchors.fill: parent

 anchors.margins: 20

 focus: true

 model: actionModel

 delegate: Rectangle {

 id: delegate

 required property int index

 required property string name

 required property var hello

 width: ListView.view.width

 height: 40

 color: "#157efb"

 Text {

 anchors.centerIn: parent

 font.pixelSize: 10

 text: delegate.name

 }

 MouseArea {

 anchors.fill: parent

 onClicked: delegate.hello(delegate.index)

 }

 }

 spacing: 5

 clip: true

 }

}

The perceived performance of a view of a model depends very much on the time needed to prepare

new delegates. For instance, when scrolling downwards through a ListView, delegates are added just

outside the view from the bottom and are removed just as they leave sight over the top of the view.

This becomes apparent if the clip property is set to false . If the delegates take too much time to

initialize, it will become apparent to the user as soon as the view is scrolled too quickly.

To work around this issue you can tune the margins, in pixels, on the sides of a scrolling view. This is

done using the cacheBuffer property. In the case described above, vertical scrolling, it will control

how many pixels above and below the ListView that will contain prepared delegates. Combining this

with asynchronously loading Image elements can, for instance, give the images time to load before

they are brought into view.

Having more delegates sacrifices memory for a smoother experience and slightly more time to initialize

each delegate. This does not solve the problem of complex delegates. Each time a delegate is

instantiated, its contents are evaluated and compiled. This takes time, and if it takes too much time, it

will lead to a poor scrolling experience. Having many elements in a delegate will also degrade the

scrolling performance. It simply costs cycles to move many elements.

To remedy the two latter issues, it is recommended to use Loader elements. These can be used to

instantiate additional elements when they are needed. For instance, an expanding delegate may use a

Loader to postpone the instantiation of its detailed view until it is needed. For the same reason, it is

good to keep the amount of JavaScript to a minimum in each delegate. It is better to let them call

complex pieced of JavaScript that resides outside each delegate. This reduces the time spent compiling

JavaScript each time a delegate is created.

TIP

Be aware that using a Loader to postpone initialization does just that - it postpones a

performance issue. This means that the scrolling performance will be improved, but the actual

contents will still take time to appear.

Summary

In this chapter, we have looked at models, views, and delegates. For each data entry in a model, a view

instantiates a delegate visualizing the data. This separates the data from the presentation.

A model can be a single integer, where the index variable is provided to the delegate. If a JavaScript

array is used as a model, the modelData variable represents the data of the current index of the array,

while index holds the index. For more complex cases, where multiple values need to be provided by

each data item, a ListModel populated with ListElement items is a better solution.

For static models, a Repeater can be used as the view. It is easy to combine it with a positioner such as

Row , Column , Grid or Flow to build user interface parts. For dynamic or large data models, a view

such as ListView , GridView , or TableView is more appropriate. These create delegate instances on

the fly as they are needed, reducing the number of elements live in the scene at once.

The difference between GridView and TableView is that the table view expects a table type model

with multiple columns of data while the grid view shows a list type model in a grid.

The delegates used in the views can be static items with properties bound to data from the model, or

they can be dynamic, with states depending on if they are in focus or not. Using the onAdd and

onRemove signals of the view, they can even be animated as they appear and disappear.

Canvas Element

On of the strenghts of QML is its closeness to the Javascript ecosystem. This lets us reuse existing

solutions from the web world and combine it with the native performance of QML visuals. However,

sometimes we want to reuse graphics solutions from the web space too. That is where the Canvas

element comes in handy. The canvas element provides an API very closely aligned to the drawing APIs

for the identically named HTML element.

The fundamental idea of the canvas element is to render paths using a context 2D object. The context

2D object, contains the necessary graphics functions, whereas the canvas acts as the drawing canvas.

The 2D context supports strokes, fills gradients, text and a different set of path creation commands.

Let’s see an example of a simple path drawing:

import QtQuick

Canvas {

 id: root

 // canvas size

 width: 200; height: 200

 // handler to override for drawing

 onPaint: {

 // get context to draw with

 var ctx = getContext("2d")

This produces a filled rectangle with a starting point at 50,50 and a size of 100 and a stroke used as a

border decoration.

The stroke width is set to 4 and uses a blue color define by strokeStyle . The final shape is set up to be

filled through the fillStyle to a “steel blue” color. Only by calling stroke or fill the actual path

will be drawn and they can be used independently from each other. A call to stroke or fill will

draw the current path. It’s not possible to store a path for later reuse only a drawing state can be stored

and restored.

In QML the Canvas element acts as a container for the drawing. The 2D context object provides the

actual drawing operation. The actual drawing needs to be done inside the onPaint event handler.

 // setup the stroke

 ctx.lineWidth = 4

 ctx.strokeStyle = "blue"

 // setup the fill

 ctx.fillStyle = "steelblue"

 // begin a new path to draw

 ctx.beginPath()

 // top-left start point

 ctx.moveTo(50,50)

 // upper line

 ctx.lineTo(150,50)

 // right line

 ctx.lineTo(150,150)

 // bottom line

 ctx.lineTo(50,150)

 // left line through path closing

 ctx.closePath()

 // fill using fill style

 ctx.fill()

 // stroke using line width and stroke style

 ctx.stroke()

 }

}

The canvas itself provides a typical two-dimensional Cartesian coordinate system, where the top-left is

the (0,0) point. A higher y-value goes down and a hight x-value goes to the right.

A typical order of commands for this path based API is the following:

1. Setup stroke and/or fill

2. Create path

3. Stroke and/or fill

This produces a horizontal stroked line from point P1(50,50) to point P2(150,50) .

TIP

Typically you always want to set a start point when you reset your path, so the first operation

after beginPath is often moveTo .

Canvas {

 width: 200; height: 200

 onPaint: {

 var ctx = getContext("2d")

 // setup your path

 // fill or/and stroke

 }

}

onPaint: {

 var ctx = getContext("2d")

 // setup the stroke

 ctx.strokeStyle = "red"

 // create a path

 ctx.beginPath()

 ctx.moveTo(50,50)

 ctx.lineTo(150,50)

 // stroke path

 ctx.stroke()

}

Convenience API
For operations on rectangles, a convenience API is provided which draws directly and does need a

stroke or fill call.

TIP

The stroke area extends half of the line width on both sides of the path. A 4 px lineWidth will

draw 2 px outside the path and 2 px inside.

import QtQuick

Canvas {

 id: root

 width: 120; height: 120

 onPaint: {

 var ctx = getContext("2d")

 ctx.fillStyle = 'green'

 ctx.strokeStyle = "blue"

 ctx.lineWidth = 4

 // draw a filles rectangle

 ctx.fillRect(20, 20, 80, 80)

 // cut our an inner rectangle

 ctx.clearRect(30,30, 60, 60)

 // stroke a border from top-left to

 // inner center of the larger rectangle

 ctx.strokeRect(20,20, 40, 40)

 }

}

Gradients

Canvas can fill shapes with color but also with gradients or images.

The gradient in this example is defined along the starting point (100,0) to the end point (100,200),

which gives a vertical line in the middle of our canvas. The gradient-stops can be defined as a color

from 0.0 (gradient start point) to 1.0 (gradient endpoint). Here we use a blue color at 0.0 (100,0)

and a lightsteelblue color at the 0.5 (100,200) position. The gradient is defined as much larger

than the rectangle we want to draw, so the rectangle clips gradient to it’s defined the geometry.

TIP

The gradient is defined in canvas coordinates not in coordinates relative to the path to be

painted. A canvas does not have the concept of relative coordinates, as we are used to by now

from QML.

onPaint: {

 var ctx = getContext("2d")

 var gradient = ctx.createLinearGradient(100,0,100,200)

 gradient.addColorStop(0, "blue")

 gradient.addColorStop(0.5, "lightsteelblue")

 ctx.fillStyle = gradient

 ctx.fillRect(50,50,100,100)

}

Shadows

A path can be visually enhanced using shadows with the 2D context object. A shadow is an area around

the path with an offset, color and specified blurring. For this you can specify a shadowColor ,

shadowOffsetX , shadowOffsetY and a shadowBlur . All of this needs to be defined using the 2D

context. The 2D context is your only API to the drawing operations.

A shadow can also be used to create a glow effect around a path. In the next example, we create a text

“Canvas” with a white glow around. All this on a dark background for better visibility.

First, we draw the dark background:

then we define our shadow configuration, which will be used for the next path:

Finally, we draw our “Canvas” text using a large bold 80px font from the Ubuntu font family.

// setup a dark background

ctx.strokeStyle = "#333"

ctx.fillRect(0,0,canvas.width,canvas.height);

// setup a blue shadow

ctx.shadowColor = "#2ed5fa";

ctx.shadowOffsetX = 2;

ctx.shadowOffsetY = 2;

ctx.shadowBlur = 10;

// render green text

ctx.font = 'bold 80px sans-serif';

ctx.fillStyle = "#24d12e";

ctx.fillText("Canvas!",30,180);

Images

The QML canvas supports image drawing from several sources. To use an image inside the canvas the

image needs to be loaded first. We use the Component.onCompleted handler to load the image in our

example below.

The left shows our ball image painted at the top-left position of 10x10. The right image shows the ball

with a clipping path applied. Images and any other path can be clipped using another path. The clipping

is applied by defining a path and calling the clip() function. All following drawing operations will

now be clipped by this path. The clipping is disabled again by restoring the previous state or by setting

the clip region to the whole canvas.

onPaint: {

 var ctx = getContext("2d")

 // draw an image

 ctx.drawImage('assets/ball.png', 10, 10)

 // store current context setup

 ctx.save()

 ctx.strokeStyle = '#ff2a68'

 // create a triangle as clip region

 ctx.beginPath()

 ctx.moveTo(110,10)

 ctx.lineTo(155,10)

 ctx.lineTo(135,55)

 ctx.closePath()

 // translate coordinate system

 ctx.clip() // create clip from the path

 // draw image with clip applied

 ctx.drawImage('assets/ball.png', 100, 10)

 // draw stroke around path

 ctx.stroke()

 // restore previous context

 ctx.restore()

}

Component.onCompleted: {

 loadImage("assets/ball.png")

}

Transformation

The canvas allows you to transform the coordinate system in several ways. This is very similar to the

transformation offered by QML items. You have the possibility to scale , rotate , translate the

coordinate system. Indifference to QML the transform origin is always the canvas origin. For example

to scale a path around its center you would need to translate the canvas origin to the center of the path.

It is also possible to apply a more complex transformation using the transform method.

import QtQuick

Canvas {

 id: root

 width: 240; height: 120

 onPaint: {

 var ctx = getContext("2d")

 var ctx = getContext("2d");

 ctx.lineWidth = 4;

 ctx.strokeStyle = "blue";

 // translate x/y coordinate system

 ctx.translate(root.width/2, root.height/2);

 // draw path

 ctx.beginPath();

 ctx.rect(-20, -20, 40, 40);

 ctx.stroke();

 // rotate coordinate system

 ctx.rotate(Math.PI/4);

 ctx.strokeStyle = "green";

 // draw path

 ctx.beginPath();

 ctx.rect(-20, -20, 40, 40);

 ctx.stroke();

 }

}

Besides translate the canvas allows also to scale using scale(x,y) around x and y-axis, to rotate using

rotate(angle) , where the angle is given in radius (360 degree = 2*Math.PI) and to use a matrix

transformation using the setTransform(m11, m12, m21, m22, dx, dy) .

TIP

To reset any transformation you can call the resetTransform() function to set the

transformation matrix back to the identity matrix:

ctx.resetTransform()

js

Composition Modes

Composition allows you to draw a shape and blend it with the existing pixels. The canvas supports

several composition modes using the globalCompositeOperation(mode) operations. For instance:

source-over

source-in

source-out

source-atop

Let's begin with a short example demonstrating the exclusive or composition:

The example below will demonstrate all composition modes by iterating over them and combining a

rectangle and a circle. You can find the resulting output below the source code.

onPaint: {

 var ctx = getContext("2d")

 ctx.globalCompositeOperation = "xor"

 ctx.fillStyle = "#33a9ff"

 for(var i=0; i<40; i++) {

 ctx.beginPath()

 ctx.arc(Math.random()*400, Math.random()*200, 20, 0, 2*Math.PI)

 ctx.closePath()

 ctx.fill()

 }

}

property var operation : [

 'source-over', 'source-in', 'source-over',

 'source-atop', 'destination-over', 'destination-in',

 'destination-out', 'destination-atop', 'lighter',

 'copy', 'xor', 'qt-clear', 'qt-destination',

 'qt-multiply', 'qt-screen', 'qt-overlay', 'qt-darken',

 'qt-lighten', 'qt-color-dodge', 'qt-color-burn',

 'qt-hard-light', 'qt-soft-light', 'qt-difference',

 'qt-exclusion'

]

onPaint: {

 var ctx = getContext('2d')

 for(var i=0; i<operation.length; i++) {

 var dx = Math.floor(i%6)*100

 var dy = Math.floor(i/6)*100

 ctx.save()

 ctx.fillStyle = '#33a9ff'

 ctx.fillRect(10+dx,10+dy,60,60)

 ctx.globalCompositeOperation = root.operation[i]

 ctx.fillStyle = '#ff33a9'

 ctx.globalAlpha = 0.75

 ctx.beginPath()

 ctx.arc(60+dx, 60+dy, 30, 0, 2*Math.PI)

 ctx.closePath()

 ctx.fill()

 ctx.restore()

 }

}

Pixel Buffers
When working with the canvas you are able to retrieve pixel data from the canvas to read or manipulate

the pixels of your canvas. To read the image data use createImageData(sw,sh) or

getImageData(sx,sy,sw,sh) . Both functions return an ImageData object with a width , height and

a data variable. The data variable contains a one-dimensional array of the pixel data retrieved in the

RGBA format, where each value varies in the range of 0 to 255. To set pixels on the canvas you can use

the putImageData(imagedata, dx, dy) function.

Another way to retrieve the content of the canvas is to store the data into an image. This can be

achieved with the Canvas functions save(path) or toDataURL(mimeType) , where the later function

returns an image URL, which can be used to be loaded by an Image element.

import QtQuick

Rectangle {

 width: 240; height: 120

 Canvas {

 id: canvas

 x: 10; y: 10

 width: 100; height: 100

 property real hue: 0.0

 onPaint: {

 var ctx = getContext("2d")

 var x = 10 + Math.random(80)*80

 var y = 10 + Math.random(80)*80

 hue += Math.random()*0.1

 if(hue > 1.0) { hue -= 1 }

 ctx.globalAlpha = 0.7

 ctx.fillStyle = Qt.hsla(hue, 0.5, 0.5, 1.0)

 ctx.beginPath()

 ctx.moveTo(x+5,y)

 ctx.arc(x,y, x/10, 0, 360)

 ctx.closePath()

 ctx.fill()

 }

 MouseArea {

 anchors.fill: parent

 onClicked: {

 var url = canvas.toDataURL('image/png')

 print('image url=', url)

 image.source = url

 }

In our little example, we paint every second a small circle on the left canvas. When the user clicks on

the mouse area the canvas content is stored and an image URL is retrieved. On the right side of our

example, the image is then displayed.

 }

 }

 Image {

 id: image

 x: 130; y: 10

 width: 100; height: 100

 }

 Timer {

 interval: 1000

 running: true

 triggeredOnStart: true

 repeat: true

 onTriggered: canvas.requestPaint()

 }

}

Canvas Paint
In this example, we will create a small paint application using the Canvas element.

For this, we arrange four color squares on the top of our scene using a row positioner. A color square is

a simple rectangle filled with a mouse area to detect clicks.

Row {

 id: colorTools

 property color paintColor: "#33B5E5"

 anchors {

 horizontalCenter: parent.horizontalCenter

 top: parent.top

 topMargin: 8

 }

 spacing: 4

 Repeater {

 model: ["#33B5E5", "#99CC00", "#FFBB33", "#FF4444"]

 ColorSquare {

 required property var modelData

 color: modelData

 active: colorTools.paintColor == color

 onClicked: {

 colorTools.paintColor = color

 }

 }

The colors are stored in an array and the paint color. When one the user clicks in one of the squares the

color of the square is assigned to the paintColor property of the row named colorTools .

To enable tracking of the mouse events on the canvas we have a MouseArea covering the canvas

element and hooked up the pressed and position changed handlers.

 }

}

Canvas {

 id: canvas

 property real lastX: 0

 property real lastY: 0

 property color color: colorTools.paintColor

 anchors {

 left: parent.left

 right: parent.right

 top: colorTools.bottom

 bottom: parent.bottom

 margins: 8

 }

 onPaint: {

 var ctx = getContext('2d')

 ctx.lineWidth = 1.5

 ctx.strokeStyle = canvas.color

 ctx.beginPath()

 ctx.moveTo(lastX, lastY)

 lastX = area.mouseX

 lastY = area.mouseY

 ctx.lineTo(lastX, lastY)

 ctx.stroke()

 }

 MouseArea {

 id: area

 anchors.fill: parent

 onPressed: {

 canvas.lastX = mouseX

 canvas.lastY = mouseY

 }

 onPositionChanged: {

 canvas.requestPaint()

 }

 }

}

A mouse press stores the initial mouse position into the lastX and lastY properties. Every change

on the mouse position triggers a paint request on the canvas, which will result in calling the onPaint

handler.

To finally draw the users stroke, in the onPaint handler we begin a new path and move to the last

position. Then we gather the new position from the mouse area and draw a line with the selected color

to the new position. The mouse position is stored as the new last position.

Porting from HTML5 Canvas
Porting from an HTML5 canvas to a QML canvas is fairly easy. In this chapter we will look at the

example below and do the conversion.

https://developer.mozilla.org/en-US/docs/Web/API/Canvas_API/Tutorial/Transformations

http://en.wikipedia.org/wiki/Spirograph

Spirograph

We use a spirograph (http://en.wikipedia.org/wiki/Spirograph) example from the Mozilla project as

our foundation. The original HTML5 was posted as part of the canvas tutorial

(https://developer.mozilla.org/en-US/docs/Web/API/Canvas_API/Tutorial/Transformations) .

There were a few lines we needed to change:

Qt Quick requires you to declare a variable, so we needed to add some var declarations

We adapted the draw method to receive the Context2D object

We needed to adapt the translation for each spiro due to different sizes

Finally, we completed our onPaint handler. Inside we acquire a context and call our draw function.

for (var i=0;i<3;i++) {

 ...

}

function draw(ctx) {

 ...

}

ctx.translate(20+j*50,20+i*50);

onPaint: {

 var ctx = getContext("2d");

 draw(ctx);

}

js

js

js

https://developer.mozilla.org/en-US/docs/Web/API/Canvas_API/Tutorial/Transformations
http://en.wikipedia.org/wiki/Spirograph
http://en.wikipedia.org/wiki/Spirograph
https://developer.mozilla.org/en-US/docs/Web/API/Canvas_API/Tutorial/Transformations

The result is a ported spiro graph graphics running using the QML canvas.

As you can see, with no changes to the actual logic, and relatively few changes to the code itself, a port

from HTML5 to QML is possible.

Glowing Lines

Here is another more complicated port from the W3C organization. The original pretty glowing lines

(http://www.w3.org/TR/2dcontext/#examples) has some pretty nice aspects, which makes the porting

more challenging.

<!DOCTYPE HTML>

<html lang="en">

<head>

 <title>Pretty Glowing Lines</title>

</head>

<body>

html

http://www.w3.org/TR/2dcontext/#examples

<canvas width="800" height="450"></canvas>

<script>

var context = document.getElementsByTagName('canvas')[0].getContext('2d');

// initial start position

var lastX = context.canvas.width * Math.random();

var lastY = context.canvas.height * Math.random();

var hue = 0;

// closure function to draw

// a random bezier curve with random color with a glow effect

function line() {

 context.save();

 // scale with factor 0.9 around the center of canvas

 context.translate(context.canvas.width/2, context.canvas.height/2);

 context.scale(0.9, 0.9);

 context.translate(-context.canvas.width/2, -context.canvas.height/2);

 context.beginPath();

 context.lineWidth = 5 + Math.random() * 10;

 // our start position

 context.moveTo(lastX, lastY);

 // our new end position

 lastX = context.canvas.width * Math.random();

 lastY = context.canvas.height * Math.random();

 // random bezier curve, which ends on lastX, lastY

 context.bezierCurveTo(context.canvas.width * Math.random(),

 context.canvas.height * Math.random(),

 context.canvas.width * Math.random(),

 context.canvas.height * Math.random(),

 lastX, lastY);

 // glow effect

 hue = hue + 10 * Math.random();

 context.strokeStyle = 'hsl(' + hue + ', 50%, 50%)';

 context.shadowColor = 'white';

 context.shadowBlur = 10;

 // stroke the curve

 context.stroke();

 context.restore();

}

// call line function every 50msecs

setInterval(line, 50);

In HTML5 the Context2D object can paint at any time on the canvas. In QML it can only point inside the

onPaint handler. The timer in usage with setInterval triggers in HTML5 the stroke of the line or to

blank the screen. Due to the different handling in QML, it’s not possible to just call these functions,

because we need to go through the onPaint handler. Also, the color presentations need to be

adapted. Let’s go through the changes on by one.

Everything starts with the canvas element. For simplicity, we just use the Canvas element as the root

element of our QML file.

To untangle the direct call of the functions through the setInterval , we replace the setInterval

calls with two timers which will request a repaint. A Timer is triggered after a short interval and

allows us to execute some code. As we can’t tell the paint function which operation we would like to

trigger we define for each operation a bool flag request an operation and trigger then a repaint request.

Here is the code for the line operation. The blank operation is similar.

function blank() {

 // makes the background 10% darker on each call

 context.fillStyle = 'rgba(0,0,0,0.1)';

 context.fillRect(0, 0, context.canvas.width, context.canvas.height);

}

// call blank function every 50msecs

setInterval(blank, 40);

</script>

</body>

</html>

import QtQuick

Canvas {

 id: canvas

 width: 800; height: 450

 ...

}

...

property bool requestLine: false

Timer {

 id: lineTimer

 interval: 40

 repeat: true

 triggeredOnStart: true

Now we have an indication which (line or blank or even both) operation we need to perform during the

onPaint operation. As we enter the onPaint handler for each paint request we need to extract the

initialization of the variable into the canvas element.

Now our paint function should look like this:

The line function was extracted for a canvas as an argument.

 onTriggered: {

 canvas.requestLine = true

 canvas.requestPaint()

 }

}

Component.onCompleted: {

 lineTimer.start()

}

...

Canvas {

 ...

 property real hue: 0

 property real lastX: width * Math.random();

 property real lastY: height * Math.random();

 ...

}

onPaint: {

 var context = getContext('2d')

 if(requestLine) {

 line(context)

 requestLine = false

 }

 if(requestBlank) {

 blank(context)

 requestBlank = false

 }

}

function line(context) {

 context.save();

 context.translate(canvas.width/2, canvas.height/2);

 context.scale(0.9, 0.9);

 context.translate(-canvas.width/2, -canvas.height/2);

 context.beginPath();

 context.lineWidth = 5 + Math.random() * 10;

The biggest change was the use of the QML Qt.rgba() and Qt.hsla() functions, which required to

adopt the values to the used 0.0 … 1.0 range in QML.

Same applies to the blank function.

The final result will look similar to this.

 context.moveTo(lastX, lastY);

 lastX = canvas.width * Math.random();

 lastY = canvas.height * Math.random();

 context.bezierCurveTo(canvas.width * Math.random(),

 canvas.height * Math.random(),

 canvas.width * Math.random(),

 canvas.height * Math.random(),

 lastX, lastY);

 hue += Math.random()*0.1

 if(hue > 1.0) {

 hue -= 1

 }

 context.strokeStyle = Qt.hsla(hue, 0.5, 0.5, 1.0);

 // context.shadowColor = 'white';

 // context.shadowBlur = 10;

 context.stroke();

 context.restore();

}

function blank(context) {

 context.fillStyle = Qt.rgba(0,0,0,0.1)

 context.fillRect(0, 0, canvas.width, canvas.height);

}

Shapes

Until now we've used the Rectangle element and controls, but for free form shapes, we have to rely

on images. Using the Qt Quick Shapes module it is possible to create truly free form shapes. This

makes it possible to create visualizations directly from QML in a flexible manner.

In this chapter we will look at how to use shapes, the various path elements available, how shapes can

be filled in different ways, and how to combine shapes with the power of QML to smoothly animate

shapes.

A Basic Shape
The shape module lets you create arbitrarily paths and then stroke the outline and fill the interior. The

definition of the path can be reused in other places where paths are used, e.g. for the PathView

element used with models. But to paint a path, the Shape element is used, and the various path

elements are put into a ShapePath .

In the example below, the path shown in the screenshot here is created. The entire figure, all five filled

areas, are created from a single path which then is stroked and filled.

import QtQuick

import QtQuick.Shapes

Rectangle {

 id: root

The path is made up of the children to the ShapePath , i.e. the PathArc , PathLine , and PathMove

elements in the example above. In the next section, we will have a close look at the building blocks of

paths.

 width: 600

 height: 600

 Shape {

 anchors.centerIn: parent

 ShapePath {

 strokeWidth: 3

 strokeColor: "darkGray"

 fillColor: "lightGray"

 startX: -40; startY: 200

 // The circle

 PathArc { x: 40; y: 200; radiusX: 200; radiusY: 200; useLargeArc: true }

 PathLine { x: 40; y: 120 }

 PathArc { x: -40; y: 120; radiusX: 120; radiusY: 120; useLargeArc: true;

direction: PathArc.Counterclockwise }

 PathLine { x: -40; y: 200 }

 // The dots

 PathMove { x: -20; y: 80 }

 PathArc { x: 20; y: 80; radiusX: 20; radiusY: 20; useLargeArc: true }

 PathArc { x: -20; y: 80; radiusX: 20; radiusY: 20; useLargeArc: true }

 PathMove { x: -20; y: 130 }

 PathArc { x: 20; y: 130; radiusX: 20; radiusY: 20; useLargeArc: true }

 PathArc { x: -20; y: 130; radiusX: 20; radiusY: 20; useLargeArc: true }

 PathMove { x: -20; y: 180 }

 PathArc { x: 20; y: 180; radiusX: 20; radiusY: 20; useLargeArc: true }

 PathArc { x: -20; y: 180; radiusX: 20; radiusY: 20; useLargeArc: true }

 PathMove { x: -20; y: 230 }

 PathArc { x: 20; y: 230; radiusX: 20; radiusY: 20; useLargeArc: true }

 PathArc { x: -20; y: 230; radiusX: 20; radiusY: 20; useLargeArc: true }

 }

 }

}

Building Paths
As we saw in the last section, shapes are built from paths, which are built from path elements. The

most common way to build a path is to close it, i.e. to ensure that it starts and ends in the same point.

However, it is possible to create open paths, e.g. only for stroking. When filling an open path, the path

is closed by a straight line, basically adding a PathLine that is used when filling the path, but not when

stroking it.

As shown in the screenshot below, there are a few basic shapes that can be used to build your path.

These are: lines, arcs, and various curves. It is also possible to move without drawing using a PathMove

element. In addition to these elements, the ShapePath element also lets you specify a starting point

using the startX and startY properties.

Lines are drawn using the PathLine element, as shown below. For creating multiple independent

lines, the PathMultiline can be used.

Shape {

 ShapePath {

 strokeWidth: 3

 strokeColor: "darkgray"

 startX: 20; startY: 70

 PathLine {

When creating a polyline, i.e. a line consisting of several line segments, the PathPolyline element can

be used. This saves some typing, as the end point of the last line is assumed to be the starting point of

the next line.

For creating arcs, i.e. segments of circles or ellipses, the PathArc and PathAngleArc elements are

used. They provide you with the tools to create arcs, where the PathArc is used when you know the

coordinates of the starting and ending points, while the PathAngleArc is useful when you want to

control how many degrees the arc sweeps. Both elements produce the same output, so which one you

use comes down to what aspects of the arc are the most important in your application.

 x: 180

 y: 130

 }

 }

}

Shape {

 ShapePath {

 strokeWidth: 3

 strokeColor: "darkgray"

 PathPolyline {

 path: [

 Qt.point(220, 100),

 Qt.point(260, 20),

 Qt.point(300, 170),

 Qt.point(340, 60),

 Qt.point(380, 100)

]

 }

 }

}

Shape {

 ShapePath {

 strokeWidth: 3

 strokeColor: "darkgray"

 startX: 420; startY: 100

 PathArc {

 x: 580; y: 180

 radiusX: 120; radiusY: 120

 }

 }

}

After the lines and arcs follows the various curves. Here, Qt Quick Shapes provides three flavours. First,

we have a look a the PathQuad which let's you create a quadratic Bezier curve based on the starting

and end points (the starting point is implicit) and a single control point.

The PathCubic element creates a cubic Bezier curve from the starting and end points (the starting

point is implicit) and two control points.

Finally, the PathCurve creates a curve passing through a list of provided control points. The curve is

created by providing multiple PathCurve elements which each contain one control point. The Catmull-

Rom spline is used to create a curve passing through the control points.

Shape {

 ShapePath {

 strokeWidth: 3

 strokeColor: "darkgray"

 startX: 20; startY: 300

 PathQuad {

 x: 180; y: 300

 controlX: 60; controlY: 250

 }

 }

}

Shape {

 ShapePath {

 strokeWidth: 3

 strokeColor: "darkgray"

 startX: 220; startY: 300

 PathCubic {

 x: 380; y: 300

 control1X: 260; control1Y: 250

 control2X: 360; control2Y: 350

 }

 }

}

Shape {

 ShapePath {

 strokeWidth: 3

 strokeColor: "darkgray"

There is one more useful path element, the PathSvg . This element lets you stroke and fill an SVG path.

TIP

The PathSvg element cannot always be combined with other path elements. This depends on

the painting backend used, so make sure to use the PathSvg element or the other elements

for a single path. If you mix PathSvg with other path elements, your mileage will vary.

 startX: 420; startY: 300

 PathCurve { x: 460; y: 220 }

 PathCurve { x: 500; y: 370 }

 PathCurve { x: 540; y: 270 }

 PathCurve { x: 580; y: 300 }

 }

}

Filling Shapes
A shape can be filled in a number of different ways. In this section we will have a look at the general

filling rule, and also the various ways a path can be filled.

Qt Quick Shapes provides two filling rules controlled using the fillRule property of the ShapePath

element. The different results are shown in the screenshot below. It can be set to either

ShapePath.OddEvenFill , which is the default. This fills each part of the path individually, meaning that

you can create a shape with holes in it. The alternative rule is the ShapePath.WindingFill , which fills

everything between the extreme endpoints on each horizontal line across the shape. Regardless of the

filling rule, the shape outline is then drawn using a pen, so even when using the winding fill rule, the

outline is drawn inside the shape.

The examples below demonstrate how to use the two fill rules as shown in the screenshot above.

Shape {

 ShapePath {

 strokeWidth: 3

 strokeColor: "darkgray"

 fillColor: "orange"

 fillRule: ShapePath.OddEvenFill

 PathPolyline {

 path: [

 Qt.point(100, 20),

 Qt.point(150, 180),

 Qt.point(20, 75),

 Qt.point(180, 75),

 Qt.point(50, 180),

 Qt.point(100, 20),

]

 }

Once the filling rule has been decided on, there are a number of ways to fill the outline. The various

options are shown in the screenshot below. The various options are either a solid color, or one of the

three gradients provided by Qt Quick.

 }

}

Shape {

 ShapePath {

 strokeWidth: 3

 strokeColor: "darkgray"

 fillColor: "orange"

 fillRule: ShapePath.WindingFill

 PathPolyline {

 path: [

 Qt.point(300, 20),

 Qt.point(350, 180),

 Qt.point(220, 75),

 Qt.point(380, 75),

 Qt.point(250, 180),

 Qt.point(300, 20),

]

 }

 }

}

To fill a shape using a solid color, the fillColor property of the ShapePath is used. Set it to a color

name or code, and the shape is filled using it.

If you do not want to use a solid color, a gradient can be used. The gradient is applied using the

fillGradient property of the ShapePath element.

The first gradient we look at is the LinearGradient . It creates a linear gradient between the start and

end point. The end points can be positioned anyway you like, to create, for instance, a gradient at an

angle. Between the end points, a range of GradientStop elements can be inserted. These are put at a

position from 0.0 , being the x1, y1 position, to 1.0 , being the x2, y2 position. For each such

stop, a color is specified. The gradient then creates soft transitions between the colors.

TIP

If the shape extends beyond the end points, the first or last color is either continued, or the

gradient is repeated or mirrored. This behaviour is specified using the spread property of the

LinearGradient element.

Shape {

 ShapePath {

 strokeWidth: 3

 strokeColor: "darkgray"

 fillColor: "lightgreen"

 startX: 20; startY: 140

 PathLine {

 x: 180

 y: 140

 }

 PathArc {

 x: 20

 y: 140

 radiusX: 80

 radiusY: 80

 direction: PathArc.Counterclockwise

 useLargeArc: true

 }

 }

}

Shape {

 ShapePath {

 strokeWidth: 3

To create a gradient that spreads around an origin, a bit like a clock, the ConicalGradient is used.

Here, the center point is specified using the centerX and centerY properties, and the starting angle

is given using the angle property. The gradient stops are then spread from the given angle in a

clockwise direction for 360 degrees.

 strokeColor: "darkgray"

 fillGradient: LinearGradient {

 x1: 50; y1: 300

 x2: 150; y2: 280

 GradientStop { position: 0.0; color: "lightgreen" }

 GradientStop { position: 0.7; color: "yellow" }

 GradientStop { position: 1.0; color: "darkgreen" }

 }

 startX: 20; startY: 340

 PathLine {

 x: 180

 y: 340

 }

 PathArc {

 x: 20

 y: 340

 radiusX: 80

 radiusY: 80

 direction: PathArc.Counterclockwise

 useLargeArc: true

 }

 }

}

Shape {

 ShapePath {

 strokeWidth: 3

 strokeColor: "darkgray"

 fillGradient: ConicalGradient {

 centerX: 300; centerY: 100

 angle: 45

 GradientStop { position: 0.0; color: "lightgreen" }

 GradientStop { position: 0.7; color: "yellow" }

 GradientStop { position: 1.0; color: "darkgreen" }

 }

 startX: 220; startY: 140

To instead create a gradient that forms circles, a bit like rings on the water, the RadialGradient is

used. For it you specify two circles, the focal circle and the center. The gradient stops go from the focal

circle to the center circle, and beyond those circles, the last color continues, is mirrored or repeats,

depending on the spread property.

 PathLine {

 x: 380

 y: 140

 }

 PathArc {

 x: 220

 y: 140

 radiusX: 80

 radiusY: 80

 direction: PathArc.Counterclockwise

 useLargeArc: true

 }

 }

}

Shape {

 ShapePath {

 strokeWidth: 3

 strokeColor: "darkgray"

 fillGradient: RadialGradient {

 centerX: 300; centerY: 250; centerRadius: 120

 focalX: 300; focalY: 220; focalRadius: 10

 GradientStop { position: 0.0; color: "lightgreen" }

 GradientStop { position: 0.7; color: "yellow" }

 GradientStop { position: 1.0; color: "darkgreen" }

 }

 startX: 220; startY: 340

 PathLine {

 x: 380

 y: 340

 }

 PathArc {

 x: 220

 y: 340

 radiusX: 80

 radiusY: 80

 direction: PathArc.Counterclockwise

 useLargeArc: true

TIP

The advanced user can use a fragment shader to fill a shape. This way, you have full freedom to

how the shape is filled. See the Effects chapter for more information on shaders.

 }

 }

}

Animating Shapes
One of the nice aspects of using Qt Quick Shapes, is that the paths drawn are defined directly in QML.

This means that their properties can be bound, transitioned and animated, just like any other property

in QML.

In the example below, we reuse the basic shape from the very first section of this chapter, but we

introduce a variable, t , that we animate from 0.0 to 1.0 in a loop. We then use this variable to

offset the position of the small circles, as well as the size of the top and bottom circle. This creates an

animation in which it seems that the circles appear at the top and disappear towards the bottom.

import QtQuick

import QtQuick.Shapes

Rectangle {

 id: root

 width: 600

 height: 600

 Shape {

 anchors.centerIn: parent

 ShapePath {

 id: shapepath

 property real t: 0.0

 NumberAnimation on t { from: 0.0; to: 1.0; duration: 500; loops:

Animation.Infinite; running: true }

 strokeWidth: 3

 strokeColor: "darkGray"

 fillColor: "lightGray"

 startX: -40; startY: 200

 // The circle

 PathArc { x: 40; y: 200; radiusX: 200; radiusY: 200; useLargeArc: true }

 PathLine { x: 40; y: 120 }

 PathArc { x: -40; y: 120; radiusX: 120; radiusY: 120; useLargeArc: true;

direction: PathArc.Counterclockwise }

 PathLine { x: -40; y: 200 }

 // The dots

 PathMove { x: -20+(1.0-shapepath.t)*20; y: 80 + shapepath.t*50 }

 PathArc { x: 20-(1.0-shapepath.t)*20; y: 80 + shapepath.t*50; radiusX:

20*shapepath.t; radiusY: 20*shapepath.t; useLargeArc: true }

 PathArc { x: -20+(1.0-shapepath.t)*20; y: 80 + shapepath.t*50; radiusX:

20*shapepath.t; radiusY: 20*shapepath.t; useLargeArc: true }

 PathMove { x: -20; y: 130 + shapepath.t*50 }

 PathArc { x: 20; y: 130 + shapepath.t*50; radiusX: 20; radiusY: 20;

useLargeArc: true }

 PathArc { x: -20; y: 130 + shapepath.t*50; radiusX: 20; radiusY: 20;

useLargeArc: true }

 PathMove { x: -20; y: 180 + shapepath.t*50 }

 PathArc { x: 20; y: 180 + shapepath.t*50; radiusX: 20; radiusY: 20;

useLargeArc: true }

 PathArc { x: -20; y: 180 + shapepath.t*50; radiusX: 20; radiusY: 20;

useLargeArc: true }

 PathMove { x: -20+shapepath.t*20; y: 230 + shapepath.t*50 }

 PathArc { x: 20-shapepath.t*20; y: 230 + shapepath.t*50; radiusX: 20*(1.0-

Notice that instead of using a NumberAnimation on t , any other binding can be used, e.g. to a slider,

an external state, and so on. Your imagination is the limit.

shapepath.t); radiusY: 20*(1.0-shapepath.t); useLargeArc: true }

 PathArc { x: -20+shapepath.t*20; y: 230 + shapepath.t*50; radiusX: 20*(1.0-

shapepath.t); radiusY: 20*(1.0-shapepath.t); useLargeArc: true }

 }

 }

}

Summary

In this chapter we've a look at what the Qt Quick Shapes module has to offer. Using it we can create

arbitrary shapes directly in QML, and leverage the property binding system of QML to create dynamic

shapes. We've also had a look at the various path segments that can be used to build shapes from

elements such as lines, arcs, and various curves. Finally, we've explored the filling options, where

gradients can be used to create exciting visual effects from a path.

Effects in QML

In this chapter, we will look at the tools for various effects in QML. The focus will be on:

Particle Effects

Shader Effects

Particle Effects

Particle effects lets us create groups of particles, i.e. instances of a given element. These are generated

in a stochastic way and let us work with groups of items rather than individual items. This can be used

to create things such as falling leafs, explosions, fire, clouds, and starfields.

Shader Effects

Shader effects are applied in the graphics rendering pipeline and allows us to change both the size and

colour of any visible QML element. This can be used to create transitions such as the genie effect,

waves and curtains, or filters such as blur, grayscale, and blending.

Shaders are written in a shader language which is then baked and imported into the QML scene, much

as other resources. These shaders can then be applied to images or other elements to create advanced

visual effects.

TIP

Working with shader effects is an advanced topic.

Particle Concept
In the heart of the particle simulation is the ParticleSystem which controls the shared timeline. A

scene can have several particles systems, each of them with an independent time-line. A particle is

emitted using an Emitter element and visualized with a ParticlePainter , which can be an image,

QML item or a shader item.
An emitter provides also the direction for particle using a vector space.

Particle ones emitted can’t be manipulated by the emitter anymore. The particle module provides the

Affector , which allows manipulating parameters of the particle after it has been emitted.

Particles in a system can share timed transitions using the ParticleGroup element. By default, every

particle is on the empty (‘’) group.

ParticleSystem - manages shared time-line between emitters

Emitter - emits logical particles into the system

ParticlePainter - particles are visualized by a particle painter

Direction - vector space for emitted particles

ParticleGroup - every particle is a member of a group

Affector - manipulates particles after they have been emitted

Simple Simulation

Let us have a look at a very simple simulation to get started. Qt Quick makes it actually very simple to

get started with particle rendering. For this we need:

A ParticleSystem which binds all elements to a simulation

An Emitter which emits particles into the system

A ParticlePainter derived element, which visualizes the particles

The outcome of the example will look like this:

import QtQuick

import QtQuick.Particles

Rectangle {

 id: root

 width: 480; height: 160

 color: "#1f1f1f"

 ParticleSystem {

 id: particleSystem

 }

 Emitter {

 id: emitter

 anchors.centerIn: parent

 width: 160; height: 80

 system: particleSystem

 emitRate: 10

 lifeSpan: 1000

 lifeSpanVariation: 500

 size: 16

 endSize: 32

 Tracer { color: 'green' }

 }

 ImageParticle {

 source: "assets/particle.png"

 system: particleSystem

 }

}

We start with an 80x80 pixel dark rectangle as our root element and background. Therein we declare a

ParticleSystem . This is always the first step as the system binds all other elements together. Typically

the next element is the Emitter , which defines the emitting area based on it’s bounding box and basic

parameters for them to be emitted particles. The emitter is bound to the system using the system

property.

The emitter in this example emits 10 particles per second (emitRate: 10) over the area of the emitter

with each a lifespan of 1000msec (lifeSpan : 1000) and a lifespan variation between emitted

particles of 500 msec (lifeSpanVariation: 500). A particle shall start with a size of 16px (size: 16)

and at the end of its life shall be 32px (endSize: 32).

The green bordered rectangle is a tracer element to show the geometry of the emitter. This visualizes

that also while the particles are emitted inside the emitters bounding box the rendering is not limited

to the emitters bounding box. The rendering position depends upon life-span and direction of the

particle. This will get more clear when we look into how to change the direction particles.

The emitter emits logical particles. A logical particle is visualized using a ParticlePainter in this

example we use an ImageParticle , which takes an image URL as the source property. The image

particle has also several other properties, which control the appearance of the average particle.

emitRate : particles emitted per second (defaults to 10 per second)

lifeSpan : milliseconds the particle should last for (defaults to 1000 msec)

size , endSize : size of the particles at the beginning and end of their life (defaults to 16 px)

Changing these properties can influence the result in a drastical way

Emitter {

 id: emitter

 anchors.centerIn: parent

 width: 20; height: 20

 system: particleSystem

 emitRate: 40

 lifeSpan: 2000

 lifeSpanVariation: 500

 size: 64

 sizeVariation: 32

 Tracer { color: 'green' }

}

Besides increasing the emit rate to 40 and the lifespan to 2 seconds the size now starts at 64 pixels and

decreases 32 pixels at the end of a particle lifespan.

Increasing the endSize even more would lead to a more or less white background. Please note also

when the particles are only emitted in the area defined by the emitter the rendering is not constrained

to it.

Particle Parameters

We saw already how to change the behavior of the emitter to change our simulation. The particle

painter used allows us how the particle image is visualized for each particle.

Coming back to our example we update our ImageParticle . First, we change our particle image to a

small sparking star image:

The particle shall be colorized in an gold color which varies from particle to particle by +/- 20%:

To make the scene more alive we would like to rotate the particles. Each particle should start by 15

degrees clockwise and varies between particles by +/-5 degrees. Additional the particle should

continuously rotate with the velocity of 45 degrees per second. The velocity shall also vary from

particle to particle by +/- 15 degrees per second:

Last but not least, we change the entry effect for the particle. This is the effect used when a particle

comes to life. In this case, we want to use the scale effect:

So now we have rotating golden stars appearing all over the place.

ImageParticle {

 ...

 source: 'assets/star.png'

}

color: '#FFD700'

colorVariation: 0.2

rotation: 15

rotationVariation: 5

rotationVelocity: 45

rotationVelocityVariation: 15

entryEffect: ImageParticle.Scale

Here is the code we changed for the image-particle in one block.

ImageParticle {

 source: "assets/star.png"

 system: particleSystem

 color: '#FFD700'

 colorVariation: 0.2

 rotation: 0

 rotationVariation: 45

 rotationVelocity: 15

 rotationVelocityVariation: 15

 entryEffect: ImageParticle.Scale

}

Directed Particles
We have seen particles can rotate. But particles can also have a trajectory. The trajectory is specified as

the velocity or acceleration of particles defined by a stochastic direction also named a vector space.

There are different vector spaces available to define the velocity or acceleration of a particle:

AngleDirection - a direction that varies in angle

PointDirection - a direction that varies in x and y components

TargetDirection - a direction towards the target point

Let’s try to move the particles over from the left to the right side of our scene by using the velocity

directions.

We first try the AngleDirection . For this we need to specify the AngleDirection as an element of the

velocity property of our emitter:

The angle where the particles are emitted is specified using the angle property. The angle is provided

as a value between 0..360 degree and 0 points to the right. For our example, we would like the

particles to move to the right so 0 is already the right direction. The particles shall spread by +/- 5

degrees:

Now we have set our direction, the next thing is to specify the velocity of the particle. This is defined by

a magnitude. The magnitude is defined in pixels per seconds. As we have ca. 640px to travel 100 seems

to be a good number. This would mean by an average lifetime of 6.4 secs a particle would cross the

velocity: AngleDirection { }

velocity: AngleDirection {

 angle: 0

 angleVariation: 15

}

open space. To make the traveling of the particles more interesting we vary the magnitude using the

magnitudeVariation and set this to the half of the magnitude:

Here is the full source code, with an average lifetime set to 6.4 seconds. We set the emitter width and

height to 1px. This means all particles are emitted at the same location and from thereon travel based

on our given trajectory.

So what is then the acceleration doing? The acceleration adds an acceleration vector to each particle,

which changes the velocity vector over time. For example, let’s make a trajectory like an arc of stars.

velocity: AngleDirection {

 ...

 magnitude: 100

 magnitudeVariation: 50

}

Emitter {

 id: emitter

 anchors.left: parent.left

 anchors.verticalCenter: parent.verticalCenter

 width: 1; height: 1

 system: particleSystem

 lifeSpan: 6400

 lifeSpanVariation: 400

 size: 32

 velocity: AngleDirection {

 angle: 0

 angleVariation: 15

 magnitude: 100

 magnitudeVariation: 50

 }

}

For this we change our velocity direction to -45 degree and remove the variations, to better visualize a

coherent arc:

The acceleration direction shall be 90 degrees (down direction) and we choose one-fourth of the

velocity magnitude for this:

The result is an arc going from the center-left to the bottom right.

The values are discovered by trial-and-error.

Here is the full code of our emitter.

velocity: AngleDirection {

 angle: -45

 magnitude: 100

}

acceleration: AngleDirection {

 angle: 90

 magnitude: 25

}

Emitter {

 id: emitter

 anchors.left: parent.left

 anchors.verticalCenter: parent.verticalCenter

 width: 1; height: 1

 system: particleSystem

 emitRate: 10

 lifeSpan: 6400

 lifeSpanVariation: 400

 size: 32

 velocity: AngleDirection {

In the next example we would like that the particles again travel from left to right but this time we use

the PointDirection vector space.

A PointDirection derived its vector space from an x and y component. For example, if you want the

particles to travel in a 45-degree vector, you need to specify the same value for x and y.

In our case we want the particles to travel from left-to-right building a 15-degree cone. For this we

specify a PointDirection as our velocity vector space:

To achieve a traveling velocity of 100 px per seconds we set our x component to 100. For the 15 degrees

(which is 1/6th of 90 degrees) we specify any variation of 100/6:

The result should be particles traveling in a 15-degree cone from right to left.

 angle: -45

 angleVariation: 0

 magnitude: 100

 }

 acceleration: AngleDirection {

 angle: 90

 magnitude: 25

 }

}

velocity: PointDirection { }

velocity: PointDirection {

 x: 100

 y: 0

 xVariation: 0

 yVariation: 100/6

}

Now coming to our last contender, the TargetDirection . The target direction allows us to specify a

target point as an x and y coordinate relative to the emitter or an item. When an item has specified the

center of the item will become the target point. You can achieve the 15-degree cone by specifying a

target variation of 1/6 th of the x target:

TIP

Target direction are great to use when you have a specific x/y coordinate you want the stream

of particles emitted towards.

I spare you the image as it looks the same as the previous one, instead, I have a quest for you.

In the following image, the red and the green circle specify each a target item for the target direction of

the velocity respective the acceleration property. Each target direction has the same parameters. Here

the question: Who is responsible for velocity and who is for acceleration?

velocity: TargetDirection {

 targetX: 100

 targetY: 0

 targetVariation: 100/6

 magnitude: 100

}

Affecting Particles
Particles are emitted by the emitter. After a particle was emitted it can’t be changed any more by the

emitter. The affectors allows you to influence particles after they have been emitted.

Each type of affector affects particles in a different way:

Age - alter where the particle is in its life-cycle

Attractor - attract particles towards a specific point

Friction - slows down movement proportional to the particle’s current velocity

Gravity - set’s an acceleration in an angle

Turbulence - fluid like forces based on a noise image

Wander - randomly vary the trajectory

GroupGoal - change the state of a group of a particle

SpriteGoal - change the state of a sprite particle

Age

Allows particle to age faster. the lifeLeft property specified how much life a particle should have

left.

In the example, we shorten the life of the upper particles once when they reach the age of affector to

1200 msec. As we have set the advancePosition to true, we see the particle appearing again on a

position when the particle has 1200 msecs left to live.

Age {

 anchors.horizontalCenter: parent.horizontalCenter

 width: 240; height: 120

 system: particleSystem

 advancePosition: true

 lifeLeft: 1200

 once: true

 Tracer {}

}

Attractor

The attractor attracts particles towards a specific point. The point is specified using pointX and

pointY , which is relative to the attractor geometry. The strength specifies the force of attraction. In

our example we let particles travel from left to right. The attractor is placed on the top and half of the

particles travel through the attractor. Affector only affect particles while they are in their bounding box.

This split allows us to see the normal stream and the affected stream simultaneous.

It’s easy to see that the upper half of the particles are affected by the attracted to the top. The

attraction point is set to top-left (0/0 point) of the attractor with a force of 1.0.

Attractor {

 anchors.horizontalCenter: parent.horizontalCenter

 width: 160; height: 120

 system: particleSystem

 pointX: 0

 pointY: 0

 strength: 1.0

 Tracer {}

}

Friction

The friction affector slows down particles by a factor until a certain threshold is reached.

In the upper friction area, the particles are slowed down by a factor of 0.8 until the particle reaches 25

pixels per seconds velocity. The threshold act’s like a filter. Particles traveling above the threshold

velocity are slowed down by the given factor.

Gravity

The gravity affector applies an acceleration In the example we stream the particles from the bottom to

the top using an angle direction. The right side is unaffected, where on the left a gravity effect is

applied. The gravity is angled to 90 degrees (bottom-direction) with a magnitude of 50.

Friction {

 anchors.horizontalCenter: parent.horizontalCenter

 width: 240; height: 120

 system: particleSystem

 factor : 0.8

 threshold: 25

 Tracer {}

}

Gravity {

 width: 240; height: 240

 system: particleSystem

 magnitude: 50

 angle: 90

Particles on the left side try to climb up, but the steady applied acceleration towards the bottom drags

them into the direction of the gravity.

Turbulence

The turbulence affector applies a chaos map of force vectors to the particles. The chaos map is defined

by a noise image, which can be defined with the noiseSource property. The strength defines how strong

the vector will be applied to the particle movements.

In the upper area of the example, particles are influenced by the turbulence. Their movement is more

erratic. The amount of erratic deviation from the original path is defined by the strength.

 Tracer {}

}

Turbulence {

 anchors.horizontalCenter: parent.horizontalCenter

 width: 240; height: 120

 system: particleSystem

 strength: 100

 Tracer {}

}

Wander

The wander manipulates the trajectory. With the property affectedParameter can be specified which

parameter (velocity, position or acceleration) is affector by the wander. The pace property specifies the

maximum of attribute changes per second. The yVariance and yVariance specify the influence on x and

y component of the particle trajectory.

In the top wander affector particles are shuffled around by random trajectory changes. In this case, the

position is changed 200 times per second in the y-direction.

Wander {

 anchors.horizontalCenter: parent.horizontalCenter

 width: 240; height: 120

 system: particleSystem

 affectedParameter: Wander.Position

 pace: 200

 yVariance: 240

 Tracer {}

}

Particle Groups
At the beginning of this chapter, we stated particles are in groups, which is by default the empty group

(‘’). Using the GroupGoal affector is it possible to let the particle change groups. To visualize this we

would like to create a small firework, where rockets start into space and explode in the air into a

spectacular firework.

The example is divided into 2 parts. The 1st part called “Launch Time” is concerned to set up the scene

and introduce particle groups and the 2nd part called “Let there be fireworks” focuses on the group

changes.

Let’s get started!

Launch Time

To get it going we create a typical dark scene:

import QtQuick 2.5

import QtQuick.Particles 2.0

Rectangle {

 id: root

 width: 480; height: 240

 color: "#1F1F1F"

 property bool tracer: false

}

The tracer property will be used to switch the tracer scene wide on and off. The next thing is to declare

our particle system:

And our two image particles (one for the rocket and one for the exhaust smoke):

You can see in on the images, they use the groups property to declare to which group the particle

belongs. It is enough to just declare a name and an implicit group will be created by Qt Quick.

Now it’s time to emit some rockets into the air. For this, we create an emitter on the bottom of our

scene and set the velocity in an upward direction. To simulate some gravity we set an acceleration

downwards:

ParticleSystem {

 id: particleSystem

}

ImageParticle {

 id: smokePainter

 system: particleSystem

 groups: ['smoke']

 source: "assets/particle.png"

 alpha: 0.3

 entryEffect: ImageParticle.None

}

ImageParticle {

 id: rocketPainter

 system: particleSystem

 groups: ['rocket']

 source: "assets/rocket.png"

 entryEffect: ImageParticle.None

}

Emitter {

 id: rocketEmitter

 anchors.bottom: parent.bottom

 width: parent.width; height: 40

 system: particleSystem

 group: 'rocket'

 emitRate: 2

 maximumEmitted: 4

 lifeSpan: 4800

 lifeSpanVariation: 400

 size: 32

 velocity: AngleDirection { angle: 270; magnitude: 150; magnitudeVariation: 10 }

 acceleration: AngleDirection { angle: 90; magnitude: 50 }

The emitter is in the group ‘rocket’, the same as our rocket particle painter. Through the group name,

they are bound together. The emitter emits particles into the group ‘rocket’ and the rocket particle

painter will pain them.

For the exhaust, we use a trail emitter, which follows our rocket. It declares an own group called

‘smoke’ and follows the particles from the ‘rocket’ group:

The smoke is directed downwards to simulate the force the smoke comes out of the rocket. The

emitHeight and emitWidth specify the are around the particle followed from where the smoke particles

shall be emitted. If this is not specified then they are of the particle followed is taken but for this

example, we want to increase the effect that the particles stem from a central point near the end of the

rocket.

If you start the example now you will see the rockets fly up and some are even flying out of the scene.

As this is not really wanted we need to slow them down before they leave the screen. A friction affector

can be used here to slow the particles down to a minimum threshold:

 Tracer { color: 'red'; visible: root.tracer }

}

TrailEmitter {

 id: smokeEmitter

 system: particleSystem

 emitHeight: 1

 emitWidth: 4

 group: 'smoke'

 follow: 'rocket'

 emitRatePerParticle: 96

 velocity: AngleDirection { angle: 90; magnitude: 100; angleVariation: 5 }

 lifeSpan: 200

 size: 16

 sizeVariation: 4

 endSize: 0

}

Friction {

 groups: ['rocket']

 anchors.top: parent.top

 width: parent.width; height: 80

 system: particleSystem

 threshold: 5

 factor: 0.9

}

In the friction affector, you also need to declare which groups of particles it shall affect. The friction will

slow all rockets, which are 80 pixels downwards from the top of the screen down by a factor of 0.9 (try

100 and you will see they almost stop immediately) until they reach a velocity of 5 pixels per second. As

the particles have still an acceleration downwards applied the rockets will start sinking toward the

ground after they reach the end of their life-span.

As climbing up in the air is hard work and a very unstable situation we want to simulate some

turbulences while the ship is climbing:

Also, the turbulence needs to declare which groups it shall affect. The turbulence itself reaches from

the bottom 160 pixels upwards (until it reaches the border of the friction). They also could overlap.

When you start the example now you will see the rockets are climbing up and then will be slowed down

by the friction and fall back to the ground by the still applied downwards acceleration. The next thing

would be to start the firework.

TIP

The image shows the scene with the tracers enabled to show the different areas. Rocket

particles are emitted in the red area and then affected by the turbulence in the blue area.

Finally, they are slowed down by the friction affector in the green area and start falling again,

because of the steady applied downwards acceleration.

Turbulence {

 groups: ['rocket']

 anchors.bottom: parent.bottom

 width: parent.width; height: 160

 system: particleSystem

 strength: 25

 Tracer { color: 'green'; visible: root.tracer }

}

Let there be fireworks

To be able to change the rocket into a beautiful firework we need add a ParticleGroup to encapsulate

the changes:

We change to the particle group using a GroupGoal affector. The group goal affector is placed near the

vertical center of the screen and it will affect the group ‘rocket’. With the groupGoal property we set

the target group for the change to ‘explosion’, our earlier defined particle group:

The jump property states the change in groups shall be immediately and not after a certain duration.

TIP

In the Qt 5 alpha release we could the duration for the group change not get working. Any

ideas?

As the group of the rocket now changes to our ‘explosion’ particle group when the rocket particle

enters the group goal area we need to add the firework inside the particle group:

ParticleGroup {

 name: 'explosion'

 system: particleSystem

}

GroupGoal {

 id: rocketChanger

 anchors.top: parent.top

 width: parent.width; height: 80

 system: particleSystem

 groups: ['rocket']

 goalState: 'explosion'

 jump: true

 Tracer { color: 'blue'; visible: root.tracer }

}

// inside particle group

TrailEmitter {

 id: explosionEmitter

 anchors.fill: parent

 group: 'sparkle'

The explosion emits particles into the ‘sparkle’ group. We will define soon a particle painter for this

group. The trail emitter used follows the rocket particle and emits per rocket 200 particles. The

particles are directed upwards and vary by 180 degrees.

As the particles are emitted into the ‘sparkle’ group, we also need to define a particle painter for the

particles:

The sparkles of our firework shall be little red stars with an almost transparent color to allow some

shine effects.

To make the firework more spectacular we also add a second trail emitter to our particle group, which

will emit particles in a narrow cone downwards:

Otherwise, the setup is similar to the other explosion trail emitter. That’s it.

Here is the final result.

 follow: 'rocket'

 lifeSpan: 750

 emitRatePerParticle: 200

 size: 32

 velocity: AngleDirection { angle: -90; angleVariation: 180; magnitude: 50 }

}

ImageParticle {

 id: sparklePainter

 system: particleSystem

 groups: ['sparkle']

 color: 'red'

 colorVariation: 0.6

 source: "assets/star.png"

 alpha: 0.3

}

// inside particle group

TrailEmitter {

 id: explosion2Emitter

 anchors.fill: parent

 group: 'sparkle'

 follow: 'rocket'

 lifeSpan: 250

 emitRatePerParticle: 100

 size: 32

 velocity: AngleDirection { angle: 90; angleVariation: 15; magnitude: 400 }

}

Here is the full source code of the rocket firework.

import QtQuick

import QtQuick.Particles

Rectangle {

 id: root

 width: 480; height: 240

 color: "#1F1F1F"

 property bool tracer: false

 ParticleSystem {

 id: particleSystem

 }

 ImageParticle {

 id: smokePainter

 system: particleSystem

 groups: ['smoke']

 source: "assets/particle.png"

 alpha: 0.3

 }

 ImageParticle {

 id: rocketPainter

 system: particleSystem

 groups: ['rocket']

 source: "assets/rocket.png"

 entryEffect: ImageParticle.Fade

 }

 Emitter {

 id: rocketEmitter

 anchors.bottom: parent.bottom

 width: parent.width; height: 40

 system: particleSystem

 group: 'rocket'

 emitRate: 2

 maximumEmitted: 8

 lifeSpan: 4800

 lifeSpanVariation: 400

 size: 128

 velocity: AngleDirection { angle: 270; magnitude: 150; magnitudeVariation: 10 }

 acceleration: AngleDirection { angle: 90; magnitude: 50 }

 Tracer { color: 'red'; visible: root.tracer }

 }

 TrailEmitter {

 id: smokeEmitter

 system: particleSystem

 group: 'smoke'

 follow: 'rocket'

 size: 16

 sizeVariation: 8

 emitRatePerParticle: 16

 velocity: AngleDirection { angle: 90; magnitude: 100; angleVariation: 15 }

 lifeSpan: 200

 Tracer { color: 'blue'; visible: root.tracer }

 }

 Friction {

 groups: ['rocket']

 anchors.top: parent.top

 width: parent.width; height: 80

 system: particleSystem

 threshold: 5

 factor: 0.9

 }

 Turbulence {

 groups: ['rocket']

 anchors.bottom: parent.bottom

 width: parent.width; height: 160

 system: particleSystem

 strength:25

 Tracer { color: 'green'; visible: root.tracer }

 }

 ImageParticle {

 id: sparklePainter

 system: particleSystem

 groups: ['sparkle']

 color: 'red'

 colorVariation: 0.6

 source: "assets/star.png"

 alpha: 0.3

 }

 GroupGoal {

 id: rocketChanger

 anchors.top: parent.top

 width: parent.width; height: 80

 system: particleSystem

 groups: ['rocket']

 goalState: 'explosion'

 jump: true

 Tracer { color: 'blue'; visible: root.tracer }

 }

 ParticleGroup {

 name: 'explosion'

 system: particleSystem

 TrailEmitter {

 id: explosionEmitter

 anchors.fill: parent

 group: 'sparkle'

 follow: 'rocket'

 lifeSpan: 750

 emitRatePerParticle: 200

 size: 32

 velocity: AngleDirection { angle: -90; angleVariation: 180; magnitude: 50 }

 }

 TrailEmitter {

 id: explosion2Emitter

 anchors.fill: parent

 group: 'sparkle'

 follow: 'rocket'

 lifeSpan: 250

 emitRatePerParticle: 100

 size: 32

 velocity: AngleDirection { angle: 90; angleVariation: 15; magnitude: 400 }

 }

 }

}

Particle Painters
Until now we have only used the image based particle painter to visualize particles. Qt comes also with

other particle painters:

ItemParticle : delegate based particle painter

CustomParticle : shader based particle painter

The ItemParticle can be used to emit QML items as particles. For this, you need to specify your own

delegate to the particle.

Our delegate, in this case, is a random image (using Math.random()), visualized with a white border and

a random size.

We emit 4 images per second with a lifespan of 4 seconds each. The particles fade automatically in and

out.

ItemParticle {

 id: particle

 system: particleSystem

 delegate: itemDelegate

}

Component {

 id: itemDelegate

 Item {

 id: container

 width: 32 * Math.ceil(Math.random() * 3)

 height: width

 Image {

 anchors.fill: parent

 anchors.margins: 4

 source: 'assets/' + root.images[Math.floor(Math.random() * 9)]

 }

 }

}

For more dynamic cases it is also possible to create an item on your own and let the particle take

control of it with take(item, priority) . By this, the particle simulation takes control of your particle

and handles the item like an ordinary particle. You can get back control of the item by using

give(item) . You can influence item particles even more by halt their life progression using

freeze(item) and resume their life using unfreeze(item) .

Graphics Shaders
Graphics is rendered using a rendering pipeline split into stages. There are multiple APIs to control

graphics rendering. Qt supports OpenGL, Metal, Vulcan, and Direct3D. Looking at a simplified OpenGL

pipeline, we can spot a vertex and fragment shader. These concepts exist for all other rendering

pipelines too.

In the pipeline, the vertex shader receives vertex data, i.e. the location of the corners of each element

that makes up the scene, and calculates a gl_Position . This means that the vertex shader can move

graphical elements. In the next stage, the vertexes are clipped, transformed and rasterized for pixel

output. Then the pixels, also known as fragments,are passed through the fragment shader, which

calculates the color of each pixel. The resulting color returned through the gl_FragColor variable.

To summarize: the vertex shader is called for each corner point of your polygon (vertex = point in 3D)

and is responsible for any 3D manipulation of these points. The fragment (fragment = pixel) shader is

called for each pixel and determines the color of that pixel.

As Qt is independent of the underlying rendering API, Qt relies on a standard language for writing

shaders. The Qt Shader Tools rely on a Vulcan-compatible GLSL. We will look more at this in the

examples in this chapter.

Shader Elements

For programming shaders, Qt Quick provides two elements. The ShaderEffectSource and the

ShaderEffect . The shader effect applies custom shaders and the shader effect source renders a QML

item into a texture and renders it. As shader effect can apply custom shaders to its rectangular shape

and can use sources for the shader operation. A source can be an image, which is used as a texture or a

shader effect source.

The default shader uses the source and renders it unmodified. Below, we first see the QML file with two

ShaderEffect elements. One without any shaders specified, and one explicitly specifying default

vertex and fragment shaders. We will look at the shaders shortly.

import QtQuick

Rectangle {

 width: 480; height: 240

 color: '#1e1e1e'

 Row {

 anchors.centerIn: parent

 spacing: 20

 Image {

 id: sourceImage

 width: 80; height: width

 source: '../assets/tulips.jpg'

 }

 ShaderEffect {

 id: effect

 width: 80; height: width

 property variant source: sourceImage

 }

 ShaderEffect {

 id: effect2

 width: 80; height: width

 property variant source: sourceImage

 vertexShader: "default.vert.qsb"

 fragmentShader: "default.frag.qsb"

 }

 }

}

In the above example, we have a row of 3 images. The first is the real image. The second is rendered

using the default shader and the third is rendered using the shader code for the fragment and vertex as

shown below. Let's have a look at the shaders.

The vertex shader takes the texture coordinate, qt_MultiTexCoord0 , and propagates it to the

qt_TexCoord0 variable. It also takes the qt_Vertex position and multiplies it with Qt's transformation

matrix, ubuf.qt_Matrix , and returns it through the gl_Position variable. This leaves the texture and

vertex position on the screen unmodified.

The fragment shader takes the texture from the source 2D sampler, i.e. the texture, at the coordinate

qt_TexCoord0 and multiplies it with the Qt opacity, ubuf.qt_Opacity to calculate the fragColor

which is the color to be used for the pixel.

#version 440

layout(location=0) in vec4 qt_Vertex;

layout(location=1) in vec2 qt_MultiTexCoord0;

layout(location=0) out vec2 qt_TexCoord0;

layout(std140, binding=0) uniform buf {

 mat4 qt_Matrix;

 float qt_Opacity;

} ubuf;

out gl_PerVertex {

 vec4 gl_Position;

};

void main() {

 qt_TexCoord0 = qt_MultiTexCoord0;

 gl_Position = ubuf.qt_Matrix * qt_Vertex;

}

Notice that these two shaders can serve as the boilerplate code for your own shaders. The variables,

locations and bindings, are what Qt expects. You can read more about the exact details of this on the

Shader Effect Documentation (https://doc-snapshots.qt.io/qt6-6.2/qml-qtquick-

shadereffect.html#details) .

Before we can use the shaders, they need to be baked. If the shaders are a part of a larger Qt project

and included as resources, this can be automated. However, when working with the shaders and a

qml -file, we need to explicitly bake them by hand. This is done using the following two commands:

The qsb tool is located in the bin directory of your Qt 6 installation.

TIP

If you don’t want to see the source image and only the effected image you can set the Image to

invisible (`` visible: false``). The shader effects will still use the image data just the Image

element will not be rendered.

In the next examples, we will be playing around with some simple shader mechanics. First, we

concentrate on the fragment shader and then we will come back to the vertex shader.

#version 440

layout(location=0) in vec2 qt_TexCoord0;

layout(location=0) out vec4 fragColor;

layout(std140, binding=0) uniform buf {

 mat4 qt_Matrix;

 float qt_Opacity;

} ubuf;

layout(binding=1) uniform sampler2D source;

void main() {

 fragColor = texture(source, qt_TexCoord0) * ubuf.qt_Opacity;

}

qsb --glsl 100es,120,150 --hlsl 50 --msl 12 -o default.frag.qsb default.frag

qsb --glsl 100es,120,150 --hlsl 50 --msl 12 -b -o default.vert.qsb default.vert

https://doc-snapshots.qt.io/qt6-6.2/qml-qtquick-shadereffect.html#details

Fragment Shaders
The fragment shader is called for every pixel to be rendered. In this chapter, we will develop a small red

lens which will increase the red color channel value of the source.

Setting up the scene

First, we set up our scene, with a grid centered in the field and our source image be displayed.

A red shader

import QtQuick

Rectangle {

 width: 480; height: 240

 color: '#1e1e1e'

 Grid {

 anchors.centerIn: parent

 spacing: 20

 rows: 2; columns: 4

 Image {

 id: sourceImage

 width: 80; height: width

 source: '../../assets/tulips.jpg'

 }

 }

}

Next, we will add a shader, which displays a red rectangle by providing for each fragment a red color

value.

In the fragment shader we simply assign a vec4(1.0, 0.0, 0.0, 1.0) , representing the color red with

full opacity (alpha=1.0), to the fragColor for each fragment, turning each pixel to a solid red.

A red shader with texture

Now we want to apply the red color to each texture pixel. For this, we need the texture back in the

vertex shader. As we don’t do anything else in the vertex shader the default vertex shader is enough for

us. We just need to provide a compatible fragment shader.

#version 440

layout(location=0) in vec2 qt_TexCoord0;

layout(location=0) out vec4 fragColor;

layout(std140, binding=0) uniform buf {

 mat4 qt_Matrix;

 float qt_Opacity;

} ubuf;

layout(binding=1) uniform sampler2D source;

void main() {

 fragColor = vec4(1.0, 0.0, 0.0, 1.0) * ubuf.qt_Opacity;

}

#version 440

layout(location=0) in vec2 qt_TexCoord0;

The full shader contains now back our image source as variant property and we have left out the vertex

shader, which if not specified is the default vertex shader.

In the fragment shader, we pick the texture fragment texture(source, qt_TexCoord0) and apply the

red color to it.

The red channel property

It’s not really nice to hard code the red channel value, so we would like to control the value from the

QML side. For this we add a redChannel property to our shader effect and also declare a float

redChannel inside the uniform buffer of the fragment shader. That is all that we need to do to make a

value from the QML side available to the shader code.

TIP

Notice that the redChannel must come after the implicit qt_Matrix and qt_Opacity in the

uniform buffer, ubuf . The order of the parameters after the qt_ parameters is up to you, but

qt_Matrix and qt_Opacity must come first and in that order.

layout(location=0) out vec4 fragColor;

layout(std140, binding=0) uniform buf {

 mat4 qt_Matrix;

 float qt_Opacity;

} ubuf;

layout(binding=1) uniform sampler2D source;

void main() {

 fragColor = texture(source, qt_TexCoord0) * vec4(1.0, 0.0, 0.0, 1.0) * ubuf.qt_Opacity;

}

To make the lens really a lens, we change the vec4 color to be vec4(redChannel, 1.0, 1.0, 1.0) so that the

other colors are multiplied by 1.0 and only the red portion is multiplied by our redChannel variable.

The red channel animated

As the redChannel property is just a normal property it can also be animated as all properties in QML.

So we can use QML properties to animate values on the GPU to influence our shaders. How cool is that!

#version 440

layout(location=0) in vec2 qt_TexCoord0;

layout(location=0) out vec4 fragColor;

layout(std140, binding=0) uniform buf {

 mat4 qt_Matrix;

 float qt_Opacity;

 float redChannel;

} ubuf;

layout(binding=1) uniform sampler2D source;

void main() {

 fragColor = texture(source, qt_TexCoord0) * vec4(ubuf.redChannel, 1.0, 1.0, 1.0) *

ubuf.qt_Opacity;

}

ShaderEffect {

 id: effect4

 width: 80; height: width

 property variant source: sourceImage

 property real redChannel: 0.3

Here the final result.

The shader effect on the 2nd row is animated from 0.0 to 1.0 with a duration of 4 seconds. So the image

goes from no red information (0.0 red) over to a normal image (1.0 red).

Baking

Again, we need to bake the shaders. The following commands from the command line does that:

 visible: root.step>3

 NumberAnimation on redChannel {

 from: 0.0; to: 1.0; loops: Animation.Infinite; duration: 4000

 }

 fragmentShader: "red3.frag.qsb"

}

qsb --glsl 100es,120,150 --hlsl 50 --msl 12 -o red1.frag.qsb red1.frag

qsb --glsl 100es,120,150 --hlsl 50 --msl 12 -o red2.frag.qsb red2.frag

qsb --glsl 100es,120,150 --hlsl 50 --msl 12 -o red3.frag.qsb red3.frag

Wave Effect
In this more complex example, we will create a wave effect with the fragment shader. The waveform is

based on the sinus curve and it influences the texture coordinates used for the color.

The qml file defines the properties and animation.

The fragment shader takes the properties and calculates the color of each pixel based on the

properties.

import QtQuick 2.5

Rectangle {

 width: 480; height: 240

 color: '#1e1e1e'

 Row {

 anchors.centerIn: parent

 spacing: 20

 Image {

 id: sourceImage

 width: 160; height: width

 source: "../assets/coastline.jpg"

 }

 ShaderEffect {

 width: 160; height: width

 property variant source: sourceImage

 property real frequency: 8

 property real amplitude: 0.1

 property real time: 0.0

 NumberAnimation on time {

 from: 0; to: Math.PI*2; duration: 1000; loops: Animation.Infinite

 }

 fragmentShader: "wave.frag.qsb"

 }

 }

}

#version 440

layout(location=0) in vec2 qt_TexCoord0;

The wave calculation is based on a pulse and the texture coordinate manipulation. The pulse equation

gives us a sine wave depending on the current time and the used texture coordinate:

Without the time factor, we would just have a distortion but not a traveling distortion like waves are.

For the color we use the color at a different texture coordinate:

The texture coordinate is influenced by our pulse x-value. The result of this is a moving wave.

In this example we use a fragment shader, meaning that we move the pixels inside the texture of the

rectangular item. If we wanted the entire item to move as a wave we would have to use a vertex shader.

layout(location=0) out vec4 fragColor;

layout(std140, binding=0) uniform buf {

 mat4 qt_Matrix;

 float qt_Opacity;

 float frequency;

 float amplitude;

 float time;

} ubuf;

layout(binding=1) uniform sampler2D source;

void main() {

 vec2 pulse = sin(ubuf.time - ubuf.frequency * qt_TexCoord0);

 vec2 coord = qt_TexCoord0 + ubuf.amplitude * vec2(pulse.x, -pulse.x);

 fragColor = texture(source, coord) * ubuf.qt_Opacity;

}

vec2 pulse = sin(ubuf.time - ubuf.frequency * qt_TexCoord0);

vec2 coord = qt_TexCoord0 + ubuf.amplitude * vec2(pulse.x, -pulse.x);

Vertex Shader
The vertex shader can be used to manipulate the vertexes provided by the shader effect. In normal

cases, the shader effect has 4 vertexes (top-left, top-right, bottom-left and bottom-right). Each vertex

reported is from type vec4 . To visualize the vertex shader we will program a genie effect. This effect is

used to let a rectangular window area vanish into one point, like a genie disappearing into a lamp.

Setting up the scene

First, we will set up our scene with an image and a shader effect.

import QtQuick

Rectangle {

 width: 480; height: 240

 color: '#1e1e1e'

 Image {

 id: sourceImage

 width: 160; height: width

 source: "../../assets/lighthouse.jpg"

 visible: false

 }

 Rectangle {

 width: 160; height: width

 anchors.centerIn: parent

 color: '#333333'

 }

 ShaderEffect {

 id: genieEffect

This provides a scene with a dark background and a shader effect using an image as the source texture.

The original image is not visible on the image produced by our genie effect. Additional we added a dark

rectangle on the same geometry as the shader effect so we can better detect where we need to click to

revert the effect.

The effect is triggered by clicking on the image, this is defined by the mouse area covering the effect. In

the onClicked handler we toggle the custom boolean property minimized. We will use this property

later to toggle the effect.

Minimize and normalize

After we have set up the scene, we define a property of type real called minimize, the property will

contain the current value of our minimization. The value will vary from 0.0 to 1.0 and is controlled by a

sequential animation.

 width: 160; height: width

 anchors.centerIn: parent

 property variant source: sourceImage

 property bool minimized: false

 MouseArea {

 anchors.fill: parent

 onClicked: genieEffect.minimized = !genieEffect.minimized

 }

 }

}

property real minimize: 0.0

SequentialAnimation on minimize {

 id: animMinimize

 running: genieEffect.minimized

 PauseAnimation { duration: 300 }

 NumberAnimation { to: 1; duration: 700; easing.type: Easing.InOutSine }

The animation is triggered by the toggling of the minimized property. Now that we have set up all our

surroundings we finally can look at our vertex shader.

The vertex shader is called for each vertex so four times, in our case. The default qt defined parameters

are provided, like qt_Matrix, qt_Vertex, qt_MultiTexCoord0, qt_TexCoord0. We have discussed the

variable already earlier. Additional we link the minimize, width and height variables from our shader

effect into our vertex shader code. In the main function, we store the current texture coordinate in our

qt_TexCoord0 to make it available to the fragment shader. Now we copy the current position and

modify the x and y position of the vertex:

 PauseAnimation { duration: 1000 }

}

SequentialAnimation on minimize {

 id: animNormalize

 running: !genieEffect.minimized

 NumberAnimation { to: 0; duration: 700; easing.type: Easing.InOutSine }

 PauseAnimation { duration: 1300 }

}

#version 440

layout(location=0) in vec4 qt_Vertex;

layout(location=1) in vec2 qt_MultiTexCoord0;

layout(location=0) out vec2 qt_TexCoord0;

layout(std140, binding=0) uniform buf {

 mat4 qt_Matrix;

 float qt_Opacity;

 float minimize;

 float width;

 float height;

} ubuf;

out gl_PerVertex {

 vec4 gl_Position;

};

void main() {

 qt_TexCoord0 = qt_MultiTexCoord0;

 vec4 pos = qt_Vertex;

 pos.y = mix(qt_Vertex.y, ubuf.height, ubuf.minimize);

 pos.x = mix(qt_Vertex.x, ubuf.width, ubuf.minimize);

 gl_Position = ubuf.qt_Matrix * pos;

}

The mix(…) function provides a linear interpolation between the first 2 parameters on the point (0.0-

1.0) provided by the 3rd parameter. So in our case, we interpolate for y between the current y position

and the height based on the current minimized value, similar for x. Bear in mind the minimized value is

animated by our sequential animation and travels from 0.0 to 1.0 (or vice versa).

The resulting effect is not really the genie effect but is already a great step towards it.

Primitive Bending

So minimized the x and y components of our vertexes. Now we would like to slightly modify the x

manipulation and make it depending on the current y value. The needed changes are pretty small. The

y-position is calculated as before. The interpolation of the x-position depends now on the vertexes y-

position:

This results in an x-position tending towards the width when the y-position is larger. In other words,

the upper 2 vertexes are not affected at all as they have a y-position of 0 and the lower two vertexes x-

positions both bend towards the width, so they bend towards the same x-position.

vec4 pos = qt_Vertex;

pos.y = mix(qt_Vertex.y, ubuf.height, ubuf.minimize);

pos.x = mix(qt_Vertex.x, ubuf.width, ubuf.minimize);

float t = pos.y / ubuf.height;

pos.x = mix(qt_Vertex.x, ubuf.width, t * minimize);

Better Bending

As the bending is not really satisfying currently we will add several parts to improve the situation.
First,

we enhance our animation to support an own bending property. This is necessary as the bending

should happen immediately and the y-minimization should be delayed shortly. Both animations have in

the sum the same duration (300+700+1000 and 700+1300).

We first add and animate bend from QML.

property real bend: 0.0

property bool minimized: false

// change to parallel animation

ParallelAnimation {

 id: animMinimize

 running: genieEffect.minimized

 SequentialAnimation {

 PauseAnimation { duration: 300 }

 NumberAnimation {

 target: genieEffect; property: 'minimize';

 to: 1; duration: 700;

 easing.type: Easing.InOutSine

 }

 PauseAnimation { duration: 1000 }

 }

 // adding bend animation

 SequentialAnimation {

 NumberAnimation {

 target: genieEffect; property: 'bend'

 to: 1; duration: 700;

 easing.type: Easing.InOutSine }

 PauseAnimation { duration: 1300 }

 }

}

We then add bend to the uniform buffer, ubuf and use it in the shader to achieve a smoother

bending.

The curve starts smooth at the 0.0 value, grows then and stops smoothly towards the 1.0 value. Here is

a plot of the function in the specified range. For us, only the range from 0..1 is from interest.

#version 440

layout(location=0) in vec4 qt_Vertex;

layout(location=1) in vec2 qt_MultiTexCoord0;

layout(location=0) out vec2 qt_TexCoord0;

layout(std140, binding=0) uniform buf {

 mat4 qt_Matrix;

 float qt_Opacity;

 float minimize;

 float width;

 float height;

 float bend;

} ubuf;

out gl_PerVertex {

 vec4 gl_Position;

};

void main() {

 qt_TexCoord0 = qt_MultiTexCoord0;

 vec4 pos = qt_Vertex;

 pos.y = mix(qt_Vertex.y, ubuf.height, ubuf.minimize);

 float t = pos.y / ubuf.height;

 t = (3.0 - 2.0 * t) * t * t;

 pos.x = mix(qt_Vertex.x, ubuf.width, t * ubuf.bend);

 gl_Position = ubuf.qt_Matrix * pos;

}

We also need to increase the number of vertex points. The vertex points used can be increased by using

a mesh.

The shader effect now has an equality distributed grid of 16x16 vertexes instead of the 2x2 vertexes

used before. This makes the interpolation between the vertexes look much smoother.

You can see also the influence of the curve being used, as the bending smoothes at the end nicely. This

is where the bending has the strongest effect.

Choosing Sides

As a final enhancement, we want to be able to switch sides. The side is towards which point the genie

effect vanishes. Until now it vanishes always towards the width. By adding a side property we are

able to modify the point between 0 and width.

mesh: GridMesh { resolution: Qt.size(16, 16) }

ShaderEffect {

 ...

 property real side: 0.5

 ...

}

#version 440

layout(location=0) in vec4 qt_Vertex;

layout(location=1) in vec2 qt_MultiTexCoord0;

layout(location=0) out vec2 qt_TexCoord0;

layout(std140, binding=0) uniform buf {

Packaging

The last thing to-do is packaging our effect nicely. For this, we extract our genie effect code into an own

component called GenieEffect . It has the shader effect as the root element. We removed the mouse

area as this should not be inside the component as the triggering of the effect can be toggled by the

minimized property.

 mat4 qt_Matrix;

 float qt_Opacity;

 float minimize;

 float width;

 float height;

 float bend;

 float side;

} ubuf;

out gl_PerVertex {

 vec4 gl_Position;

};

void main() {

 qt_TexCoord0 = qt_MultiTexCoord0;

 vec4 pos = qt_Vertex;

 pos.y = mix(qt_Vertex.y, ubuf.height, ubuf.minimize);

 float t = pos.y / ubuf.height;

 t = (3.0 - 2.0 * t) * t * t;

 pos.x = mix(qt_Vertex.x, ubuf.side * ubuf.width, t * ubuf.bend);

 gl_Position = ubuf.qt_Matrix * pos;

}

// GenieEffect.qml

import QtQuick

ShaderEffect {

 id: genieEffect

 width: 160; height: width

 anchors.centerIn: parent

 property variant source

 mesh: GridMesh { resolution: Qt.size(10, 10) }

 property real minimize: 0.0

 property real bend: 0.0

 property bool minimized: false

 property real side: 1.0

 ParallelAnimation {

 id: animMinimize

 running: genieEffect.minimized

 SequentialAnimation {

 PauseAnimation { duration: 300 }

 NumberAnimation {

 target: genieEffect; property: 'minimize';

 to: 1; duration: 700;

 easing.type: Easing.InOutSine

 }

 PauseAnimation { duration: 1000 }

 }

 SequentialAnimation {

 NumberAnimation {

 target: genieEffect; property: 'bend'

 to: 1; duration: 700;

 easing.type: Easing.InOutSine }

 PauseAnimation { duration: 1300 }

 }

 }

 ParallelAnimation {

 id: animNormalize

 running: !genieEffect.minimized

 SequentialAnimation {

 NumberAnimation {

 target: genieEffect; property: 'minimize';

 to: 0; duration: 700;

 easing.type: Easing.InOutSine

 }

 PauseAnimation { duration: 1300 }

 }

 SequentialAnimation {

 PauseAnimation { duration: 300 }

 NumberAnimation {

 target: genieEffect; property: 'bend'

 to: 0; duration: 700;

 easing.type: Easing.InOutSine }

 PauseAnimation { duration: 1000 }

You can use now the effect simply like this:

 }

 }

 vertexShader: "genieeffect.vert.qsb"

}

// genieeffect.vert

#version 440

layout(location=0) in vec4 qt_Vertex;

layout(location=1) in vec2 qt_MultiTexCoord0;

layout(location=0) out vec2 qt_TexCoord0;

layout(std140, binding=0) uniform buf {

 mat4 qt_Matrix;

 float qt_Opacity;

 float minimize;

 float width;

 float height;

 float bend;

 float side;

} ubuf;

out gl_PerVertex {

 vec4 gl_Position;

};

void main() {

 qt_TexCoord0 = qt_MultiTexCoord0;

 vec4 pos = qt_Vertex;

 pos.y = mix(qt_Vertex.y, ubuf.height, ubuf.minimize);

 float t = pos.y / ubuf.height;

 t = (3.0 - 2.0 * t) * t * t;

 pos.x = mix(qt_Vertex.x, ubuf.side * ubuf.width, t * ubuf.bend);

 gl_Position = ubuf.qt_Matrix * pos;

}

import QtQuick

Rectangle {

 width: 480; height: 240

 color: '#1e1e1e'

 GenieEffect {

We have simplified the code by removing our background rectangle and we assigned the image directly

to the effect, instead of loading it inside a standalone image element.

 source: Image { source: '../../assets/lighthouse.jpg' }

 MouseArea {

 anchors.fill: parent

 onClicked: parent.minimized = !parent.minimized

 }

 }

}

Curtain Effect
In the last example for custom shader effects, I would like to bring you the curtain effect. This effect

was published first in May 2011 as part of Qt labs for shader effects

(http://labs.qt.nokia.com/2011/05/03/qml-shadereffectitem-on-qgraphicsview/) .

At that time I really loved these effects and the curtain effect was my favorite out of them. I just love

how the curtain opens and hide the background object.

For this chapter, the effect has been adapted for Qt 6. It has also been slightly simplified to make it a

better showcase.

The curtain image is called fabric.png . The effect then uses a vertex shader to swing the curtain forth

and back and a fragment shader to apply shadows to show how the fabric folds.

The diagram below shows how the shader works. The waves are computed through a sin curve with 7

periods (7*PI=21.99…). The other part is the swinging. The topWidht of the curtain is animated when

the curtain is opened or closed. The bottomWidth follows the topWidth using a SpringAnimation .

This creates the effect of the bottom part of the curtain swinging freely. The calculated swing

component is the strength of the swing based on the y-component of the vertexes.

http://labs.qt.nokia.com/2011/05/03/qml-shadereffectitem-on-qgraphicsview/

The curtain effect is implemented in the CurtainEffect.qml file where the fabric image act as the

texture source. In the QML code, the mesh property is adjusted to make sure that the number of

vertices is increased to give a smoother result.

import QtQuick

ShaderEffect {

 anchors.fill: parent

 mesh: GridMesh {

 resolution: Qt.size(50, 50)

 }

 property real topWidth: open?width:20

 property real bottomWidth: topWidth

 property real amplitude: 0.1

 property bool open: false

 property variant source: effectSource

 Behavior on bottomWidth {

 SpringAnimation {

 easing.type: Easing.OutElastic;

 velocity: 250; mass: 1.5;

 spring: 0.5; damping: 0.05

 }

 }

 Behavior on topWidth {

 NumberAnimation { duration: 1000 }

 }

 ShaderEffectSource {

 id: effectSource

 sourceItem: effectImage;

 hideSource: true

 }

The vertex shader, shown below, reshapes the curtain based on the topWidth and bottomWidth

properties, extrapolating the shift based on the y-coordinate. It also calculates the shade value, which

is used in the fragment shader. The shade property is passed through an additional output in

location 1.

 Image {

 id: effectImage

 anchors.fill: parent

 source: "../assets/fabric.png"

 fillMode: Image.Tile

 }

 vertexShader: "curtain.vert.qsb"

 fragmentShader: "curtain.frag.qsb"

}

#version 440

layout(location=0) in vec4 qt_Vertex;

layout(location=1) in vec2 qt_MultiTexCoord0;

layout(location=0) out vec2 qt_TexCoord0;

layout(location=1) out float shade;

layout(std140, binding=0) uniform buf {

 mat4 qt_Matrix;

 float qt_Opacity;

 float topWidth;

 float bottomWidth;

 float width;

 float height;

 float amplitude;

} ubuf;

out gl_PerVertex {

 vec4 gl_Position;

};

void main() {

 qt_TexCoord0 = qt_MultiTexCoord0;

 vec4 shift = vec4(0.0, 0.0, 0.0, 0.0);

 float swing = (ubuf.topWidth - ubuf.bottomWidth) * (qt_Vertex.y / ubuf.height);

 shift.x = qt_Vertex.x * (ubuf.width - ubuf.topWidth + swing) / ubuf.width;

 shade = sin(21.9911486 * qt_Vertex.x / ubuf.width);

In the fragment shader below, the shade is picked up as an input in location 1 and is then used to

calculate the fragColor , which is used to draw the pixel in question.

The combination of QML animations and passing variables from the vertex shader to the fragment

shader demonstrates how QML and shaders can be used together to build complex, animated, effects.

The effect itself is used from the curtaindemo.qml file shown below.

 shift.y = ubuf.amplitude * (ubuf.width - ubuf.topWidth + swing) * shade;

 gl_Position = ubuf.qt_Matrix * (qt_Vertex - shift);

 shade = 0.2 * (2.0 - shade) * ((ubuf.width - ubuf.topWidth + swing) / ubuf.width);

}

#version 440

layout(location=0) in vec2 qt_TexCoord0;

layout(location=1) in float shade;

layout(location=0) out vec4 fragColor;

layout(std140, binding=0) uniform buf {

 mat4 qt_Matrix;

 float qt_Opacity;

 float topWidth;

 float bottomWidth;

 float width;

 float height;

 float amplitude;

} ubuf;

layout(binding=1) uniform sampler2D source;

void main() {

 highp vec4 color = texture(source, qt_TexCoord0);

 color.rgb *= 1.0 - shade;

 fragColor = color;

}

import QtQuick

Item {

 id: root

 width: background.width; height: background.height

The curtain is opened through a custom open property on the curtain effect. We use a MouseArea to

trigger the opening and closing of the curtain when the user clicks or taps the area.

 Image {

 id: background

 anchors.centerIn: parent

 source: '../assets/background.png'

 }

 Text {

 anchors.centerIn: parent

 font.pixelSize: 48

 color: '#efefef'

 text: 'Qt 6 Book'

 }

 CurtainEffect {

 id: curtain

 anchors.fill: parent

 }

 MouseArea {

 anchors.fill: parent

 onClicked: curtain.open = !curtain.open

 }

}

Summary

When creating new user interfaces effects can make a difference between a dull interface and a

sparkling interface. In this chapter we've looked at particle effects and shaders.

Particles provide a powerful and fun way to express graphical phenomena like smoke. firework,

random visual elements. The particles look are playful and have a great potential when used wisely to

create some eye catcher in any user interface. Using too many particle effects inside a user interface

will definitely lead to the impression towards a game. Creating games is also the real strength of the

particles.

Shaders can be used to take the QML scene to the next level. Using vertex shaders it is possible to

change the shape of elements, while fragment shaders are used to alter the texture of an element, e.g.

changing the colour, or transforming the surface to produce effects such as waves.

In this chapter we've scratched the surface of these two topics. For the interested reader, there are

many more possibilities to explore.

Multimedia

The multimedia elements in the Qt Multimedia makes it possible to playback and record media such as

sound, video or pictures. Decoding and encoding are handled through platform-specific backends. For

instance, the popular GStreamer framework is used on Linux, WMF is used on Windows, AVFramework

on OS X and iOS and the Android multimedia APIs are used on Android.

The multimedia elements are not a part of the Qt Quick core API. Instead, they are provided through a

separate API made available by importing Qt Multimedia as shown below:

import QtMultimedia

Playing Media

The most basic case of multimedia integration in a QML application is for it to playback media. The

QtMultimedia module supports this by providing a dedicated QML component: the MediaPlayer .

The MediaPlayer component is a non-visual item that connects a media source to one or several

output channel(s). Depending on the nature of the media (i.e. audio, image or video) various output

channel(s) can be configured.

Playing audio

In the following example, the MediaPlayer plays a mp3 sample audio file from a remote URL in an

empty window:

In this example, the MediaPlayer defines two attributes:

source : it contains the URL of the media to play. It can either be embedded (qrc://), local

(file://) or remote (https://).

audioOutput : it contains an audio output channel, AudioOutput , connected to a physical output

device. By default, it will use the default audio output device of the system.

import QtQuick

import QtMultimedia

Window {

 width: 1024

 height: 768

 visible: true

 MediaPlayer {

 id: player

 source: "https://file-examples-

com.github.io/uploads/2017/11/file_example_MP3_2MG.mp3"

 audioOutput: AudioOutput {}

 }

 Component.onCompleted: {

 player.play()

 }

}

As soon as the main component has been fully initialized, the player’s play function is called:

Playing a video

If you want to play visual media such as pictures or videos, you must also define a VideoOutput

element to place the resulting image or video in the user interface.

In the following example, the MediaPlayer plays a mp4 sample video file from a remote URL and

centers the video content in the window:

In this example, the MediaPlayer defines a third attribute:

videoOutput : it contains the video output channel, VideoOutput , representing the visual space

reserved to display the video in the user interface.

Component.onCompleted: {

 player.play()

}

import QtQuick

import QtMultimedia

Window {

 width: 1920

 height: 1080

 visible: true

 MediaPlayer {

 id: player

 source: "https://file-examples-

com.github.io/uploads/2017/04/file_example_MP4_1920_18MG.mp4"

 audioOutput: AudioOutput {}

 videoOutput: videoOutput

 }

 VideoOutput {

 id: videoOutput

 anchors.fill: parent

 anchors.margins: 20

 }

 Component.onCompleted: {

 player.play()

 }

}

TIP

Please note that the VideoOutput component is a visual item. As such, it's essential that it is

created within the visual components hierarchy and not within the MediaPlayer itself.

Controlling the playback

The MediaPlayer component offers several useful properties. For instance, the duration and

position properties can be used to build a progress bar. If the seekable property is true , it is even

possible to update the position when the progress bar is tapped.

It's also possible to leverage AudioOutput and VideoOutput properties to customize the experience

and provide, for instance, volume control.

The following example adds custom controls for the playback:

a volume slider

a play/pause button

a progress slider

import QtQuick

import QtQuick.Controls

import QtMultimedia

Window {

 id: root

 width: 1920

 height: 1080

 visible: true

 MediaPlayer {

 id: player

 source: Qt.resolvedUrl("sample-5s.mp4")

 audioOutput: audioOutput

 videoOutput: videoOutput

 }

 AudioOutput {

 id: audioOutput

 volume: volumeSlider.value

 }

 VideoOutput {

 id: videoOutput

 width: videoOutput.sourceRect.width

 height: videoOutput.sourceRect.height

 anchors.horizontalCenter: parent.horizontalCenter

 }

 Slider {

 id: volumeSlider

 anchors.top: parent.top

 anchors.right: parent.right

 anchors.margins: 20

 orientation: Qt.Vertical

 value: 0.5

 }

 Item {

 height: 50

 anchors.left: parent.left

 anchors.right: parent.right

 anchors.bottom: parent.bottom

 anchors.margins: 20

 Button {

 anchors.horizontalCenter: parent.horizontalCenter

 text: player.playbackState === MediaPlayer.PlayingState ? qsTr("Pause") :

qsTr("Play")

 onClicked: {

 switch(player.playbackState) {

 case MediaPlayer.PlayingState: player.pause(); break;

 case MediaPlayer.PausedState: player.play(); break;

 case MediaPlayer.StoppedState: player.play(); break;

 }

 }

 }

 Slider {

 id: progressSlider

 width: parent.width

 anchors.bottom: parent.bottom

 enabled: player.seekable

 value: player.duration > 0 ? player.position / player.duration : 0

 background: Rectangle {

 implicitHeight: 8

 color: "white"

 radius: 3

 Rectangle {

 width: progressSlider.visualPosition * parent.width

 height: parent.height

 color: "#1D8BF8"

 radius: 3

 }

 }

 handle: Item {}

The volume slider

A vertical Slider component is added on the top right corner of the window, allowing the user to

control the volume of the media:

The volume attribute of the AudioOutput is then mapped to the value of the slider:

Play / Pause

A Button component reflects the playback state of the media and allows the user to control this state:

 onMoved: function () {

 player.position = player.duration * progressSlider.position

 }

 }

 }

 Component.onCompleted: {

 player.play()

 }

}

Slider {

 id: volumeSlider

 anchors.top: parent.top

 anchors.right: parent.right

 anchors.margins: 20

 orientation: Qt.Vertical

 value: 0.5

}

AudioOutput {

 id: audioOutput

 volume: volumeSlider.value

}

Button {

 anchors.horizontalCenter: parent.horizontalCenter

 text: player.playbackState === MediaPlayer.PlayingState ? qsTr("Pause") : qsTr("Play")

 onClicked: {

 switch(player.playbackState) {

 case MediaPlayer.PlayingState: player.pause(); break;

 case MediaPlayer.PausedState: player.play(); break;

 case MediaPlayer.StoppedState: player.play(); break;

Depending on the playback state, a different text will be displayed in the button. When clicked, the

corresponding action will be triggered and will either play or pause the media.

TIP

The possible playback states are listed below:

MediaPlayer.PlayingState : The media is currently playing.

MediaPlayer.PausedState : Playback of the media has been suspended.

MediaPlayer.StoppedState : Playback of the media is yet to begin.

Interactive progress slider

A Slider component is added to reflect the current progress of the playback. It also allows the user to

control the current position of the playback.

A few things to note on this sample:

 }

 }

}

Slider {

 id: progressSlider

 width: parent.width

 anchors.bottom: parent.bottom

 enabled: player.seekable

 value: player.duration > 0 ? player.position / player.duration : 0

 background: Rectangle {

 implicitHeight: 8

 color: "white"

 radius: 3

 Rectangle {

 width: progressSlider.visualPosition * parent.width

 height: parent.height

 color: "#1D8BF8"

 radius: 3

 }

 }

 handle: Item {}

 onMoved: function () {

 player.position = player.duration * progressSlider.position

 }

}

This slider will only be enabled when the media is seekable (line 5)

Its value will be set to the current media progress, i.e. player.position / player.duration (line 6)

The media position will be (also) updated when the slider is moved by the user (lines 19-21)

The media status

When using MediaPlayer to build a media player, it is good to monitor the status property of the

player. Here is an enumeration of the possible statuses, ranging from MediaPlayer.Buffered to

MediaPlayer.InvalidMedia . The possible values are summarized in the bullets below:

MediaPlayer.NoMedia . No media has been set. Playback is stopped.

MediaPlayer.Loading . The media is currently being loaded.

MediaPlayer.Loaded . The media has been loaded. Playback is stopped.

MediaPlayer.Buffering . The media is buffering data.

MediaPlayer.Stalled . The playback has been interrupted while the media is buffering data.

MediaPlayer.Buffered . The media has been buffered, this means that the player can start playing

the media.

MediaPlayer.EndOfMedia . The end of the media has been reached. Playback is stopped.

MediaPlayer.InvalidMedia . The media cannot be played. Playback is stopped.

MediaPlayer.UnknownStatus . The status of the media is unknown.

As mentioned in the bullets above, the playback state can vary over time. Calling play , pause or

stop alters the state, but the media in question can also have an effect. For example, the end can be

reached, or it can be invalid, causing playback to stop.

TIP

It is also possible to let the MediaPlayer to loop a media item. The loops property controls

how many times the source is to be played. Setting the property to MediaPlayer.Infinite

causes endless looping. Great for continuous animations or a looping background song.

Sound Effects
When playing sound effects, the response time from requesting playback until actually playing

becomes important. In this situation, the SoundEffect element comes in handy. By setting up the

source property, a simple call to the play function immediately starts playback.

This can be utilized for audio feedback when tapping the screen, as shown below.

The element can also be utilized to accompany a transition with audio. To trigger playback from a

transition, the ScriptAction element is used.

The following example shows how sound effects elements can be used to accompany transition

between visual states using animations:

import QtQuick

import QtMultimedia

Window {

 width: 300

 height: 200

 visible: true

 SoundEffect {

 id: beep

 source: Qt.resolvedUrl("beep.wav")

 }

 Rectangle {

 id: button

 anchors.centerIn: parent

 width: 200

 height: 100

 color: "red"

 MouseArea {

 anchors.fill: parent

 onClicked: beep.play()

 }

 }

}

import QtQuick

import QtQuick.Controls

import QtMultimedia

Window {

 width: 500

 height: 500

 visible: true

 SoundEffect { id: beep; source: "file:beep.wav"}

 SoundEffect { id: swosh; source: "file:swosh.wav" }

 Rectangle {

 id: rectangle

 anchors.centerIn: parent

 width: 300

 height: width

 color: "red"

 state: "DEFAULT"

 states: [

 State {

 name: "DEFAULT"

 PropertyChanges { target: rectangle; rotation: 0; }

 },

 State {

 name: "REVERSE"

 PropertyChanges { target: rectangle; rotation: 180; }

 }

]

 transitions: [

 Transition {

 to: "DEFAULT"

 ParallelAnimation {

 ScriptAction { script: swosh.play(); }

 PropertyAnimation { properties: "rotation"; duration: 200; }

 }

 },

 Transition {

 to: "REVERSE"

 ParallelAnimation {

 ScriptAction { script: beep.play(); }

 PropertyAnimation { properties: "rotation"; duration: 200; }

 }

 }

]

In this example, we want to apply a 180 rotation animation to our Rectangle whenever the "Flip!"

button is clicked. We also want to play a different sound when the rectangle flips in one direction or the

other.

To do so, we first start by loading our effects:

Then we define two states for our rectangle, DEFAULT and REVERSE , specifying the expected rotation

angle for each state:

To provide between-states animation, we define two transitions:

 }

 Button {

 anchors.centerIn: parent

 text: "Flip!"

 onClicked: rectangle.state = rectangle.state === "DEFAULT" ? "REVERSE" : "DEFAULT"

 }

}

SoundEffect { id: beep; source: "file:beep.wav"}

SoundEffect { id: swosh; source: "file:swosh.wav" }

states: [

 State {

 name: "DEFAULT"

 PropertyChanges { target: rectangle; rotation: 0; }

 },

 State {

 name: "REVERSE"

 PropertyChanges { target: rectangle; rotation: 180; }

 }

]

transitions: [

 Transition {

 to: "DEFAULT"

 ParallelAnimation {

 ScriptAction { script: swosh.play(); }

 PropertyAnimation { properties: "rotation"; duration: 200; }

 }

 },

 Transition {

 to: "REVERSE"

 ParallelAnimation {

Notice the ScriptAction { script: swosh.play(); } line. Using the ScriptAction component we can

run an arbitrary script as part of the animation, which allows us to play the desired sound effect as part

of the animation.

TIP

In addition to the play function, a number of properties similar to the ones offered by

MediaPlayer are available. Examples are volume and loops . The latter can be set to

SoundEffect.Infinite for infinite playback. To stop playback, call the stop function.

WARNING

When the PulseAudio backend is used, stop will not stop instantaneously, but only prevent

further loops. This is due to limitations in the underlying API.

 ScriptAction { script: beep.play(); }

 PropertyAnimation { properties: "rotation"; duration: 200; }

 }

 }

]

Video Streams

The VideoOutput element is not limited to be used in combination with a MediaPlayer element. It can

also be used with various video sources to display video streams.

For instance, we can use the VideoOutput to display the live video stream of the user's Camera . To do

so, we will combine it with two components: Camera and CaptureSession .

The CaptureSession component provides a simple way to read a camera stream, capture still images

or record videos.

As the MediaPlayer component, the CaptureSession element provides a videoOuput attribute. We

can thus use this attribute to configure our own visual component.

Finally, when the application is loaded, we can start the camera recording:

import QtQuick

import QtMultimedia

Window {

 width: 1024

 height: 768

 visible: true

 CaptureSession {

 id: captureSession

 camera: Camera {}

 videoOutput: output

 }

 VideoOutput {

 id: output

 anchors.fill: parent

 }

 Component.onCompleted: captureSession.camera.start()

}

Component.onCompleted: captureSession.camera.start()

TIP

Depending on your operating system, this application may require sensitive access

permission(s). If you run this sample application using the qml binary, those permissions will

be requested automatically.

However, if you run it as an independant program you may need to request those permissions

first (e.g.: under MacOS, you would need a dedicated .plist file bundled with your application).

Capturing Images

One of the key features of the Camera element is that is can be used to take pictures. We will use this

in a simple stop-motion application. By building the application, you will learn how to show a

viewfinder, switch between cameras, snap photos and keep track of the pictures taken.

The user interface is shown below. It consists of three major parts. In the background, you will find the

viewfinder, to the right, a column of buttons and at the bottom, a list of images taken. The idea is to

take a series of photos, then click the Play Sequence button. This will play the images back, creating a

simple stop-motion film.

The viewfinder

The viewfinder part of the camera is made using a VideoOutput element as video output channel of a

CaptureSession . The CaptureSession in turns uses a Camera component to configure the device.

This will display a live video stream from the camera.

CaptureSession {

 id: captureSession

TIP

You can have more control on the camera behaviour by using dedicated Camera properties

such as exposureMode , whiteBalanceMode or zoomFactor .

The captured images list

The list of photos is a ListView oriented horizontally that shows images from a ListModel called

imagePaths . In the background, a semi-transparent black Rectangle is used.

 videoOutput: output

 camera: Camera {}

 imageCapture: ImageCapture {

 onImageSaved: function (id, path) {

 imagePaths.append({"path": path})

 listView.positionViewAtEnd()

 }

 }

}

VideoOutput {

 id: output

 anchors.fill: parent

}

ListModel {

 id: imagePaths

}

ListView {

 id: listView

 anchors.left: parent.left

 anchors.right: parent.right

 anchors.bottom: parent.bottom

 anchors.bottomMargin: 10

 height: 100

 orientation: ListView.Horizontal

 spacing: 10

 model: imagePaths

 delegate: Image {

 required property string path

For the shooting of images, the CaptureSession element contains a set of sub-elements for various

tasks. To capture still pictures, the CaptureSession.imageCapture element is used. When you call the

captureToFile method, a picture is taken and saved in the user's local pictures directory. This results

in the CaptureSession.imageCapture emitting the imageSaved signal.

In this case, we don’t need to show a preview image, but simply add the resulting image to the

ListView at the bottom of the screen. Shown in the example below, the path to the saved image is

provided as the path argument with the signal.

 height: 100

 source: path

 fillMode: Image.PreserveAspectFit

 }

 Rectangle {

 anchors.fill: parent

 anchors.topMargin: -10

 color: "black"

 opacity: 0.5

 }

}

Button {

 id: shotButton

 width: parent.buttonWidth

 height: parent.buttonHeight

 text: qsTr("Take Photo")

 onClicked: {

 captureSession.imageCapture.captureToFile()

 }

}

CaptureSession {

 id: captureSession

 videoOutput: output

 camera: Camera {}

 imageCapture: ImageCapture {

 onImageSaved: function (id, path) {

 imagePaths.append({"path": path})

 listView.positionViewAtEnd()

 }

 }

}

TIP

For showing a preview, connect to the imageCaptured signal and use the preview signal

argument as source of an Image element. An id signal argument is sent along both the

imageCaptured and imageSaved . This value is returned from the capture method. Using

this, the capture of an image can be traced through the complete cycle. This way, the preview

can be used first and then be replaced by the properly saved image. This, however, is nothing

that we do in the example.

Switching between cameras

If the user has multiple cameras, it can be handy to provide a way of switching between those. It's

possible to achieve this by using the MediaDevices element in conjunction with a ListView . In our

case, we'll use a ComboBox component:

The model property of the ComboBox is set to the videoInputs property of our MediaDevices . This

last property contains the list of usable video inputs. We then set the displayText of the control to

the description of the camera device (captureSession.camera.cameraDevice.description).

Finally, when the user switches the video input, the cameraDevice is updated to reflect that change:

captureSession.camera.cameraDevice = cameraComboBox.currentValue .

MediaDevices {

 id: mediaDevices

}

ComboBox {

 id: cameraComboBox

 width: parent.buttonWidth

 height: parent.buttonHeight

 model: mediaDevices.videoInputs

 textRole: "description"

 displayText: captureSession.camera.cameraDevice.description

 onActivated: function (index) {

 captureSession.camera.cameraDevice = cameraComboBox.currentValue

 }

}

The playback

The last part of the application is the actual playback. This is driven using a Timer element and some

JavaScript. The _imageIndex variable is used to keep track of the currently shown image. When the

last image has been shown, the playback is stopped. In the example, the root.state is used to hide

parts of the user interface when playing the sequence.

property int _imageIndex: -1

function startPlayback() {

 root.state = "playing"

 root.setImageIndex(0)

 playTimer.start()

}

function setImageIndex(i) {

 root._imageIndex = i

 if (root._imageIndex >= 0 && root._imageIndex < imagePaths.count) {

 image.source = imagePaths.get(root._imageIndex).path

 } else {

 image.source = ""

 }

}

Timer {

 id: playTimer

 interval: 200

 repeat: false

 onTriggered: {

 if (root._imageIndex + 1 < imagePaths.count) {

 root.setImageIndex(root._imageIndex + 1)

 playTimer.start()

 } else {

 root.setImageIndex(-1)

 root.state = ""

 }

 }

}

Summary

The media API provided by Qt provides mechanisms for playing and capturing video and audio.

Through the VideoOutput element, video streams can be rendered in the user interface. Through the

MediaPlayer element, most playback can be handled, even though the SoundEffect can be used for

low-latency sounds. For capturing, or recording camera streams, a combination of CaptureSession

and Camera elements can be used.

Qt Quick 3D
The Qt Quick 3D module takes the power of QML to the third dimension. Using Qt Quick 3D you can

create three dimensional scenes and use the property bindings, state management, animations, and

more from QML to make the scene interactive. You can even mix 2D and 3D contents in various way to

create a mixed environment.

Just as Qt provides an abstraction for 2D graphics, Qt Quick 3D relies on an abstraction layer for the

various rendering APIs supported. In order to use Qt Quick 3D it is recommended to use a platform

provding at least one of the following APIs:

OpenGL 3.3+ (support from 3.0)

OpenGL ES 3.0+ (limited support for OpenGL ES 2)

Direct3D 11.1

Vulcan 1.0+

Metal 1.2+

The Qt Quick Software Adaption, i.e. the software only rendering stack, does not support 3D contents.

In this chapter we will take you through the basics of Qt Quick 3D, letting you create interactive 3D

scenes based on built in meshes as well as assets created in external tools. We will also look at

animations and mixing of 2D and 3D contents.

The Basics

In this section we will walk through the basics of Qt Quick 3D. This includes working with the built in

shapes (meshes), using lights, and transformations in 3D.

A Basic Scene

A 3D scene consists of a few standard elements:

View3D , which is the top level QML element representing the entire 3D scene.

SceneEnvironment , controls how the scene is rendered, including how the background, or sky box, is

rendered.

PerspectiveCamera , the camera in the scene. Can also be a OrthographicCamera , or even a custom

camera with a custom projection matrix.

In addition to this, the scene usually contains Model instances representing objects in the 3D space,

and lights.

We will look at how these elements interact by creating the scene shown below.

First of all, the QML code is setup with a View3D as the main element, filling the window. We also

import the QtQuick3D module.

The View3D element can be seen as any other Qt Quick element, just that inside of it, the 3D contents

will be rendered.

import QtQuick

import QtQuick3D

Window {

 width: 640

 height: 480

 visible: true

 title: qsTr("Basic Scene")

 View3D {

 anchors.fill: parent

 // ...

 }

}

Then we setup the SceneEnvironment with a solid background colour. This is done inside the View3D

element.

The SceneEnvironment can be used to control a lot more rendering parameters, but for now, we only

use it to set a solid background colour.

The next step is to add meshes to the scene. A mesh represents an object in 3D space. Each mesh is

created using a Model QML element.

A model can be used to load 3D assets, but there are a few built-in meshes allowing us to get started

without involving the complexity of 3D assets management. In the code below, we create a #Cone and

a #Sphere .

In addition to the shape of the mesh, we position them in 3D space and provide them with a material

with a simple, diffuse base colour. We will discuss materials more in the [Materials and Light]

("Materials and Lights") section

When positioning elements in 3D space, coordinates are expressed as Qt.vector3d(x, y, z) where

the x axis controls the horizontal movement, y is the vertical movement, and z the how close or

far away something is.

By default, the positive direction of the x axis is to the right, positive y points upwards, and positive

z out of the screen. I say default, because this depends on the projection matrix of the camera.

Once we have lights in the scene we add a DirectionalLight , which is a light that works much like the

sun. It adds an even light in a pre-determined direction. The direction is controlled using the

environment: SceneEnvironment {

 clearColor: "#222222"

 backgroundMode: SceneEnvironment.Color

}

Model {

 position: Qt.vector3d(0, 0, 0)

 scale: Qt.vector3d(1, 1.25, 1)

 source: "#Cone"

 materials: [PrincipledMaterial { baseColor: "yellow"; }]

}

Model {

 position: Qt.vector3d(80, 0, 50)

 source: "#Sphere"

 materials: [PrincipledMaterial { baseColor: "green"; }]

}

eulerRotation property where we can rotate the light direction around the various axes.

By setting the castsShadow property to true we ensure that the light generates shadows as can be

seen on cone, where the shadow from the sphere is visible.

The last piece of the puzzle is to add a camera to the scene. There are various cameras for various

perspectives, but for a realistic projection, the ProjectionCamera is the one to use.

In the code, we place the camera using the position property. It is then possible to direct the camera

using the eulerRotation property, but instead we call the lookAt method from the

Component.onCompleted signal handler. This rotates the camera to look at a specific direction once it

has been created and initialized.

The resulting scene can be seen below.

DirectionalLight {

 eulerRotation.x: -20

 eulerRotation.y: 110

 castsShadow: true

}

PerspectiveCamera {

 position: Qt.vector3d(0, 200, 300)

 Component.onCompleted: lookAt(Qt.vector3d(0, 0, 0))

}

So, all in all, a minimal scene consists of a View3D with an SceneEnvironment , something to look at,

e.g. a Model with a mesh, a light source, e.g. a DirectionalLight , and something to look with, e.g. a

PerspectiveCamera .

The Built-in Meshes

In the previous example, we used the built-in cone and sphere. Qt Quick 3D comes with the following

built in meshes:

#Cube

#Cone

#Sphere

#Cylinder

#Rectangle

These are all shown in the illustration below. (top-left: Cube, top-right: Cone, center: Sphere, bottom-

left: Cylinder, bottom-right: Rectangle)

Tip

One caveat is that the #Rectangle is one-sided. That means that it is only visible from one

direction. This means that the eulerRotation property is important.

When working with real scenes, the meshes are exported from a design tool and then imported into

the Qt Quick 3D scene. We look at this in more detail in the Working with Assets (/ch12-

qtquick3d/assets.html) section.

Lights

Just as with meshes, Qt Quick 3D comes with a number of pre-defined light sources. These are used to

light the scene in different ways.

The first one, DirectionalLight , should be familiar from our previous example. It works much as the

sun, and casts light uniformly over the scene in a given direction. If the castsShadow property is set to

true , the light will cast shadows, as shown in the illustration below. This property is available for all

the light sources.

http://localhost:8080/ch12-qtquick3d/assets.html

The next light source is the PointLight . It is a light that eminates from a given point in space and then

falls off towards darkness based on the values of the constantFade , linearFade , and quadraticFace

properties, where the light is calculated as constantFade + distance * (linearFade * 0.01) +

distance^2 * (quadraticFade * 0.0001) . The default values are 1.0 constant and quadratic fade, and

0.0 for the linear fade, meaning that the light falls off according to the inverse square law.

DirectionalLight {

 eulerRotation.x: 210

 eulerRotation.y: 20

 castsShadow: true

}

The last of the light sources is the SpotLight which emits a cone of light in a given direction, much like

a real world spotlight. The cone consists of an inner and an outer cone. The width of these is controlled

by the innerConeAngle and coneAngle , specified in degrees between zero and 180 degrees.

The light in the inner cone behaves much like a PointLight and can be controlled using the

constantFade , linearFade , and quadraticFace properties. In addition to this, the light fades

towards darkness as it approaches the outer cone, controlled by the coneAngle .

PointLight {

 position: Qt.vector3d(100, 100, 150)

 castsShadow: true

}

In addition to the castsShadow property, all lights also has the commonly used properties color and

brightness which control the color and intensity of the light emitted. The lights also has an

ambientColor property defining a base color to be applied to materials, before they are lit by the light

source. This property is set to black by default, but can be used to provide a base lighting in a scene.

In the examples this far, we've only used one light source at a time, but it is of course possible to

combine multiple light sources in a single scene.

SpotLight {

 position: Qt.vector3d(50, 200, 50)

 eulerRotation.x: -90

 brightness: 5

 ambientColor: Qt.rgba(0.1, 0.1, 0.1, 1.0)

 castsShadow: true

}

Working with Assets
When working with 3D scenes, the built in meshes quickly grow old. Instead, a good flow from a

modelling tool into QML is needed. Qt Quick 3D comes with the Balsam asset import tool, which is

used to convert common asset formats into a Qt Quick 3D friendly format.

The purpose of Balsam is to make it easy to take assets created in common tools such as Blender

(https://www.blender.org/) , Maya or 3ds Max and use them from Qt Quick 3D. Balsam supports the

following asset types:

COLLADA (*.dae)

FBX (*.fbx)

GLTF2 (*.gltf , *.glb)

STL (*.stl)

Wavefront (*.obj)

For some format, texture assets can also be exported into a Qt Quick 3D-friendly format, as long as Qt

Quick 3D supports the given asset.

Blender

To generate an asset that we can import, we will use Blender to create a scene with a monkey head in

it. We will then export this as a COLLADA (https://en.wikipedia.org/wiki/COLLADA) file to be able to

convert it to a Qt Quick 3D friendly file format using Balsam.

Blender is available from https://www.blender.org/ (https://www.blender.org/) , and mastering

Blender is a topic for another book, so we will do the most basic thing possible. Remove the original

cube (select the cube with the left mouse button, press shift + x , select Delete), add a mesh (from

the keyboard shift + a , select Mesh), and select to add a monkey (select Monkey from the list of

available meshes). There are a number of video tutorials demonstrating how to do this. The resulting

Blender user interface with the monkey head scene can be seen below.

https://www.blender.org/
https://en.wikipedia.org/wiki/COLLADA
https://www.blender.org/

Once the head is in place, go to File -> Export -> COLLADA.

This takes you to the Export COLLADA dialog where you can export the resulting scene.

Tip

Both the blender scene and the exported COLLADA file (*.dae) can be found among the

example files for the chapter.

Balsam

Once the COLLADA file has been saved to disk, we can prepare it for use in Qt Quick 3D using Balsam.

Balsam is available as a command line tool, or through a graphical user interface, using the balsamui

tool. The graphical tool is just a thin layer on top of the command line tool, so there is no difference in

what you can do with either tool.

We start by adding the monkey.dae file to the input files section, and set the output folder to a

reasonable path.Your paths will most likely be different from the ones shown in the screenshot.

The Settings tab in the balsamui includes all the options. These all correspond to a command line

option of the balsam tool. For now, we will leave all of them with their default values.

Now, go back to the Input tab and click Convert. This will result in the following output in the status

section of the user interface:

If you started balsamui from the command line, you will also see the following output there:

Converting 1 files...

[1/1] Successfully converted '/home/.../src/basicasset/monkey.dae'

Successfully converted all files!

generated file: "/home/.../src/basicasset/Monkey.qml"

generated file: "/home/.../src/basicasset/meshes/suzanne.mesh"

This means that Balsam generated a *.qml file and a *.mesh file.

The Qt Quick 3D Assets

To use the files from a Qt Quick project we need to add them to the project. This is done in the

CMakeLists.txt file, in the qt_add_qml_module macro. Add the files to the QML_FILES and

RESOURCES sections as shown below.

Having done this, we can populate a View3D with the Monkey.qml as shown below.

The Monkey.qml contains the entire Blender scene, including the camera and a light, so the result is a

complete scene as shown below.

qt_add_qml_module(appbasicasset

 URI basicasset

 VERSION 1.0

 QML_FILES main.qml Monkey.qml

 RESOURCES meshes/suzanne.mesh

)

View3D {

 anchors.fill: parent

 environment: SceneEnvironment {

 clearColor: "#222222"

 backgroundMode: SceneEnvironment.Color

 }

 Monkey {}

}

The interested reader is encouraged to explore the Monkey.qml file. As you will see, it contains a

completely normal Qt Quick 3D scene built from the elements we already have used in this chapter.

Tip

As Monkey.qml is generated by a tool, do not modify the file manually. If you do, your changes

will be overwritten if you ever have to regenerate the file using Balsam.

An alternative to using the entire scene from Blender is to use the *.mesh file in a Qt Quick 3D scene.

This is demonstrated in the code below.

Here, we put a DirectionalLight and PerspectiveCamera into a View3D , and combine it with the

mesh using a Model element. This way, we can control the positioning, scale, and lighting from QML.

We also specify a different, yellow, material for the monkey head.

View3D {

 anchors.fill: parent

 environment: SceneEnvironment {

 clearColor: "#222222"

 backgroundMode: SceneEnvironment.Color

The resulting view is shown below.

 }

 Model {

 source: "meshes/suzanne.mesh"

 scale: Qt.vector3d(2, 2, 2)

 eulerRotation.y: 30

 eulerRotation.x: -80

 materials: [DefaultMaterial { diffuseColor: "yellow"; }]

 }

 PerspectiveCamera {

 position: Qt.vector3d(0, 0, 15)

 Component.onCompleted: lookAt(Qt.vector3d(0, 0, 0))

 }

 DirectionalLight {

 eulerRotation.x: -20

 eulerRotation.y: 110

 castsShadow: true

 }

}

This demonstrates how a simple mesh can be exported from a 3D design tool such as blender,

converted to a Qt Quick 3D format and then used from QML. One thing to think about is that we can

import the entire scene as is, i.e. using Monkey.qml , or use only the assets, e.g. suzanne.mesh . This

puts you in control of the trade-off between simple importing of a scene, and added complexity while

gaining flexibility by setting up the scene in QML.

Materials and Light

Up until now, we've only worked with basic materials. To create a convincing 3D scene, proper

materials and more advanced lighting is needed. Qt Quick 3D supports a number of techniques to

achieve this, and in this section we will look at a few of them.

The Built-in Materials

First up, we will look at the built in materials. Qt Quick 3D comes with three material types:

DefaultMaterial , PrincipledMaterial , and CustomMaterial . In this chapter we will touch on the

two first, while the latter allows you to create truly custom material by providing your own vertex and

fragment shaders.

The DefaultMaterial lets you control the appearance of the material through the specular ,

roughness , and diffuseColor properties. The PrincipledMaterial lets you control the appearache

through the metalness , roughness , and baseColor properties.

Examples of the two material types can be seen below, with the PrincipledMaterial to the left, and

the DefaultMaterial to the right.

Comparing the two Suzannes, we can see how the two materials are set up.

For the DefaultMaterial , we use the diffuseColor , specularTint , and specularAmount properties.

We will look at how variations of these properties affect the appearance of the objects later in this

section.

For the PrincipledMaterial , we tune the baseColor , metalness , and roughness properties. Again,

we will look at how variations of these properties affect the appearance later in this section.

Model {

 source: "meshes/suzanne.mesh"

 position: Qt.vector3d(5, 4, 0)

 scale: Qt.vector3d(2, 2, 2)

 rotation: Quaternion.fromEulerAngles(Qt.vector3d(-80, 30, 0))

 materials: [DefaultMaterial {

 diffuseColor: "yellow";

 specularTint: "red";

 specularAmount: 0.7

 }]

}

Default Material Properties

The figure below shows the default material with various values for the specularAmount and the

specularRoughness properties.

The specularAmount varies from 0.8 (left-most), through 0.5 (center), to 0.2 (right-most).

The specularRoughness varies from 0.0 (top), through 0.4 (middle), to 0.8 (bottom).

Model {

 source: "meshes/suzanne.mesh"

 position: Qt.vector3d(-5, 4, 0)

 scale: Qt.vector3d(2, 2, 2)

 rotation: Quaternion.fromEulerAngles(Qt.vector3d(-80, 30, 0))

 materials: [PrincipledMaterial {

 baseColor: "yellow";

 metalness: 0.8

 roughness: 0.3

 }]

}

The code for the middle Model is shown below.

Principled Material Properties

The figure below shows the principled material with various values for the metalness and

roughness properties.

Model {

 source: "meshes/suzanne.mesh"

 position: Qt.vector3d(0, 0, 0)

 scale: Qt.vector3d(2, 2, 2)

 rotation: Quaternion.fromEulerAngles(Qt.vector3d(-80, 30, 0))

 materials: [DefaultMaterial {

 diffuseColor: "yellow";

 specularTint: "red";

 specularAmount: 0.5

 specularRoughness: 0.4

 }]

}

The metalness varies from 0.8 (left-most), through 0.5 (center), to 0.2 (right-most).

The roughness varies from 0.9 (top), through 0.6 (middle), to 0.3 (bottom).

Image-based Lighting

One final detail in the main example in this section is the skybox. For this example, we are using an

image as skybox, instead of a single colour background.

Model {

 source: "meshes/suzanne.mesh"

 position: Qt.vector3d(0, 0, 0)

 scale: Qt.vector3d(2, 2, 2)

 rotation: Quaternion.fromEulerAngles(Qt.vector3d(-80, 30, 0))

 materials: [PrincipledMaterial {

 baseColor: "yellow";

 metalness: 0.5

 roughness: 0.6

 }]

}

To provide a skybox, assign a Texture to the lightProbe property of the SceneEnvironment as

shown in the code below. This means that the scene receives image-based light, i.e. that the skybox is

used to light the scene. We also adjust the probeExposure which is used to control how much light is

exposed through the probe, i.e. how brightly the scene will be lit. In this scene, we combine the light

probe with a DirectionalLight for the final lighting.

In addition to what we show, the orientation of the light probe can be adjusted using the

probeOrientation vector, and the probeHorizon property can be used to darken the bottom half of

the environment, simulating that the light comes from above, i.e. from the sky, rather than from all

around.

environment: SceneEnvironment {

 clearColor: "#222222"

 backgroundMode: SceneEnvironment.SkyBox

 lightProbe: Texture {

 source: "maps/skybox.jpg"

 }

 probeExposure: 0.75

}

Animations

There are multiple ways to add animations to Qt Quick 3D scenes. The most basic one is to move,

rotate, and scale Model elements in the scene. However, in many cases, we want to modify the actual

meshes. There are two basic approaches to this: morphing animations and skeletal animations.

Morphing animations lets you create a number of target shapes to which various weights can be

assigned. By combining the target shapes based on the weights, a deformed, i.e. morphed, shape is

produced. This is commonly used to simulate deformations of soft materials.

Skeletal animations is used to pose an object, such as a body, based on the positions of a skeleton

made of bones. These bones will affect the body, thus deform it into the pose required.

For both types of animations, the most common approach is to define the morphing target shapes and

bones in a modelling tool, and then export it to QML using the Balsam tool. In this chapter we will do

just this for a skeletal animation, but the approach is similar for a morphing animation.

Skeletal Animations

The goal of this example is to make Suzanne, the Blender monkey head, wave with one of her ears.

Skeletal animation is sometimes known as vertex skinning. Basically, a skeleton is put inside of a mesh

and the vertexes of the mesh are bound to the skeleton. This way, when moving the skeleton, the mesh

is deformed into various poses.

As teaching Blender is beyond the scope of this book, the keywords you are looking for are posing and

armatures. Armatures are what Blender calls the bones. There are plenty of video tutorials available

explaining how to do this. The screenshot below shows the scene with Suzanne and the armatures in

Blender. Notice that the ear armatures have been named, so that we can identify them from QML.

Once the Blender scene is done, we export it as a COLLADA file and convert it to a QML and a mesh, just

as in the Working with Assets section. The resulting QML file is called Monkey_with_bones.qml .

We then have to refer to the files in our qt_add_qml_module statement in the CMakeLists.txt file:

Exploring the generated QML, we notice that the skeleton is built up from QML elements of the types

Skeleton and Joint . It is possible to work with these elements as code in QML, but it is much more

common to create them in a design tool.

The Skeleton element is then referred to by the skeleton property of the Model element, before

the inverseBindPoses property, linking the joints to the model.

qt_add_qml_module(appanimations

 URI animations

 VERSION 1.0

 QML_FILES main.qml Monkey_with_bones.qml

 RESOURCES meshes/suzanne.mesh

)

Node {

 id: armature

 z: -0.874189

 Skeleton {

 id: qmlskeleton

 Joint {

 id: armature_Bone

 rotation: Qt.quaternion(0.707107, 0.707107, 0, 0)

 index: 0

 skeletonRoot: qmlskeleton

 Joint {

 id: armature_Bone_001

 y: 1

Model {

 id: suzanne

 skeleton: qmlskeleton

 inverseBindPoses: [

 Qt.matrix4x4(1, 0, 0, 0, 0, 0, 1, 0.748378, 0, -1, 0, 0, 0, 0, 0, 1),

 Qt.matrix4x4(),

 Qt.matrix4x4(0.283576, -0.11343, 0.952218, 1.00072, -0.884112, 0.353645, 0.305421,

-0.669643, -0.371391, -0.928477, 1.19209e-07, -0.0380237, 0, 0, 0, 1),

 Qt.matrix4x4(),

 Qt.matrix4x4(0.311833, 0.101945, -0.944652, -1.01739, 0.897887, 0.29354, 0.328074,

-0.648326, 0.310739, -0.950495, 0, 0.0303747, 0, 0, 0, 1),

 Qt.matrix4x4()

The next step is to include the newly created Monkey_with_bones element into our main View3D

scene:

And then we create a SequentialAnimation built from two NumberAnimations to make the ear flop

forth and back.

]

 source: "meshes/suzanne.mesh"

View3D {

 anchors.fill: parent

 Monkey_with_bones {

 id: monkey

 }

SequentialAnimation {

 NumberAnimation {

 target: monkey

 property: "left_ear_euler"

 duration: 1000

 from: -30

 to: 60

 easing: InOutQuad

 }

 NumberAnimation {

 target: monkey

 property: "left_ear_euler"

 duration: 1000

 from: 60

 to: -30

 easing: InOutQuad

 }

 loops: Animation.Infinite

 running: true

}

Caveat

In order to be able to access the Joint 's eulerRotation.y from outside of the

Monkey_with_bones file, we need to expose it as a top level property alias. This means

modifying a generated file, which is not very nice, but it solves the problem.

The resulting floppy ear can be enjoyed below:

As you can see, it is convenient to import and use skeletons created in a design tool. This makes it

convenient to animate complex 3D models from QML.

Node {

 id: scene

 property alias left_ear_euler: armature_left_ear.eulerRotation.y

 property alias right_ear_euler: armature_right_ear.eulerRotation.y

Mixing 2D and 3D Contents
Qt Quick 3D has been built to integrate nicely into the traditional Qt Quick used to build dynamic 2D

contents.

3D Contents in a 2D Scene

It is straight forward to mix 3D contents into a 2D scene, as the View3D element represents a 2D

surface in the Qt Quick scene.

There are a couple of properties that can be of interest when combining 3D contents into a 2D scene

this way.

First, the renderMode of View3D , which lets you control if the 3D contents is rendered behind, in-

front-of, or inline with the 2D contents. It can also be rendered on an off-screen buffer which then is

combined with the 2D scene.

The other property is the backgroundMode of the SceneEnvironment bound to the environment

property of the View3D . Ẁe've seen it set to Color or SkyBox , but it can also be set to Transparent

which lets you see any 2D contents behind the View3D through the 3D scene.

When building a combined 2D and 3D scene, it is also good to know that it is possible to combine

multiple View3D elements in a single Qt Quick scene. For instance, if you want to have multiple 3D

models in a single scene, but they are separate parts of the 2D interface, then you can put them in

separate View3D elements and handle the layout from the 2D Qt Quick side.

2D Contents in a 3D Scene

To put 2D contents into a 3D scene, it needs to be placed on a 3D surface. The Qt Quick 3D Texture

element has a sourceItem property that allows you to integrate a 2D Qt Quick scene as a texture for

an arbitrary 3D surface.

Another apporoach is to put the 2D Qt Quick elements directly into the scene. This is the approach used

in the example below where we provide a name badge for Suzanne.

What we do here is that we instantiate a Node that serves as an anchor point in the 3D scene. We then

place a Rectangle and a Text element inside the Node . These two are 2D Qt Quick elements. We

can then control the 3D position, rotation, and scale through the corresponding properties of the

Node element.

Node {

 y: -30

 eulerRotation.y: -10

 Rectangle {

 anchors.horizontalCenter: parent.horizontalCenter

 color: "orange"

 width: text.width+10

 height: text.height+10

 Text {

 anchors.centerIn: parent

 id: text

 text: "I'm Suzanne"

 font.pointSize: 14

 color: "black"

 }

 }

}

Summary

Qt Quick 3D offers a rich way of integrating 3D contents into a Qt Quick scene, allowing a tight

integration through QML.

When working with 3D contents, the most common approach is to work with assets created in other

tools such as Blender, Maya, or 3ds Max. Using the Balsam tool it is possible to import meshes,

materials, as well as animation skeletons, from these models into QML. This can then be used to

render, as well as interacting with the models.

QML is still used to setup the scene, as well as instantiating models. This means that a scene can be

built in an external tool, or be instantiated dynamically from QML using elements created using

external tool. In the most basic cases, scenes can also be created from the built in meshed that come

with Qt Quick 3D.

By allowing the tight integration of Qt Quick's 2D contents, and Qt Quick 3D, it is possible to create

modern and intuit user interfaces. With QML's ability to bind C++ properties to QML properties, this

makes it easy to connect 3D model state to underlying C++ state.

In this chapter we've only scratched the surface of what is possible using Qt Quick 3D. There are more

advanced concepts ranging from custom filters and shaders, to generating meshes dynamically from

C++. There is also a large set of optimization techniques that can be used to ensure good rendering

performance of complex 3D contents. You can read more about this in the Qt Quick 3D Reference

Documentation (https://doc.qt.io/qt-6/qtquick3d-index.html) .

https://doc.qt.io/qt-6/qtquick3d-index.html

Networking

Qt 6 comes with a rich set of networking classes on the C++ side. There are for example high-level

classes on the HTTP protocol layer in a request-reply fashion such as QNetworkRequest ,

QNetworkReply and QNetworkAccessManager . But also lower levels classes on the TCP/IP or UDP

protocol layer such as QTcpSocket , QTcpServer and QUdpSocket . Additional classes exist to manage

proxies, network cache and also the systems network configuration.

This chapter will not be about C++ networking, this chapter is about Qt Quick and networking. So how

can I connect my QML/JS user interface directly with a network service or how can I serve my user

interface via a network service? There are good books and references out there to cover network

programming with Qt/C++. Then it is just a manner to read the chapter about C++ integration to come

up with an integration layer to feed your data into the Qt Quick world.

Serving UI via HTTP
To load a simple user interface via HTTP we need to have a web-server, which serves the UI documents.

We start off with our own simple web-server using a python one-liner. But first, we need to have our

demo user interface. For this, we create a small RemoteComponent.qml file in our project folder and

create a red rectangle inside.

To serve this file we can start a small python script:

Now our file should be reachable via http://localhost:8080/RemoteComponent.qml . You can test it with:

Or just point your browser to the location. Unfortunately, your browser does not understand QML and

will not be able to render the document. Fortunately, a QML web browser does exist. It's called Canonic

(https://www.canonic.com) . Canonic is itself built with QML and runs in your web browser via

WebAssembly. However, if you are using the WebAssembly version of Canonic, you won't be able to

view files served from localhost ; in a bit, you'll see how to make your QML files available to use with

the WebAssembly version of Canonic. If you want, you can download the code to run Canonic as an app

on your desktop, but there are security concerns related to doing so (see here

(https://docs.page/canonic/canonic) and here (https://doc.qt.io/qt-6/qtqml-documents-

networktransparency.html#implications-for-application-security) for more details).

Furthermore, Qt 6 provides the qml binary, which can be used like a web browser. You can directly

load a remote QML document by using the following command:

// RemoteComponent.qml

import QtQuick

Rectangle {

 width: 320

 height: 320

 color: '#ff0000'

}

cd <PROJECT>

python -m http.server 8080

curl http://localhost:8080/RemoteComponent.qml

sh

sh

https://www.canonic.com/
https://docs.page/canonic/canonic
https://doc.qt.io/qt-6/qtqml-documents-networktransparency.html#implications-for-application-security

Sweet and simple.

TIP

If the qml program is not in your path, you can find it in the Qt binaries: <qt-install-

path>/<qt-version>/<your-os>/bin/qml .

Another way of importing a remote QML document is to dynamically load it using QML ! For this, we

use a Loader element to retrieve for us the remote document.

Now we can ask the qml executable to load the local LocalHostExample.qml loader document.

qml http://localhost:8080/RemoteComponent.qml

// LocalHostExample.qml

import QtQuick

Loader {

 id: root

 source: 'http://localhost:8080/RemoteComponent.qml'

 onLoaded: {

 root.width = root.item.width // qmllint disable

 root.height = root.item.height // qmllint disable

 }

}

qml LocalHostExample.qml

sh

sh

TIP

If you do not want to run a local server you can also use the gist service from GitHub. The gist is

a clipboard like online services like Pastebin and others. It is available under

https://gist.github.com (https://gist.github.com) . For this example, I created a small gist

under the URL https://gist.github.com/jryannel/7983492

(https://gist.github.com/jryannel/7983492) . This will reveal a green rectangle. As the gist URL

will provide the website as HTML code we need to attach a /raw to the URL to retrieve the raw

file and not the HTML code.

Since this content is hosted on a web server with a public web address, you can now use the

web-based version of Canonic to view it. To do so, simply point your web browser to

https://app.canonic.com/#http://gist.github.com/jryannel/7983492

(https://app.canonic.com/#http://gist.github.com/jryannel/7983492) . Of course, you'll need to

change the part after the # to view your own files.

To load another file over the network from RemoteComponent.qml , you will need to create a dedicated

qmldir file in the same directory on the server. Once done, you will be able to reference the

component by its name.

Networked Components

Let us create a small experiment. We add to our remote side a small button as a reusable component.

Here's the directory structure that we will use:

// GistExample.qml

import QtQuick

Loader {

 id: root

 source: 'https://gist.github.com/jryannel/7983492/raw'

 onLoaded: {

 root.width = root.item.width // qmllint disable

 root.height = root.item.height // qmllint disable

 }

}

./src/SimpleExample.qml

./src/remote/qmldir

./src/remote/Button.qml

./src/remote/RemoteComponent.qml

sh

https://gist.github.com/
https://gist.github.com/jryannel/7983492
https://app.canonic.com/#http://gist.github.com/jryannel/7983492

Our SimpleExample.qml is the same as our previous main.qml example:

In the remote directory, we will update the RemoteComponent.qml file so that it uses a custom

Button component:

As our components are hosted remotely, the QML engine needs to know what other components are

available remotely. To do so, we define the content of our remote directory within a qmldir file:

And finally we will create our dummy Button.qml file:

import QtQuick

Loader {

 id: root

 anchors.fill: parent

 source: 'http://localhost:8080/RemoteComponent.qml'

 onLoaded: {

 root.width = root.item.width // qmllint disable

 root.height = root.item.height // qmllint disable

 }

}

// remote/RemoteComponent.qml

import QtQuick

Rectangle {

 width: 320

 height: 320

 color: '#ff0000'

 Button {

 anchors.centerIn: parent

 text: qsTr('Click Me')

 onClicked: Qt.quit()

 }

}

qmldir

Button 1.0 Button.qml

// remote/Button.qml

import QtQuick.Controls

Button {

We can now launch our web-server (keep in mind that we now have a remote subdirectory):

And remote QML loader:

Importing a QML components directory

By defining a qmldir file, it's also possible to directly import a library of components from a remote

repository. To do so, a classical import works:

TIP

When using components from a local file system, they are created immediately without a

latency. When components are loaded via the network they are created asynchronously. This

has the effect that the time of creation is unknown and an element may not yet be fully loaded

when others are already completed. Take this into account when working with components

loaded over the network.

}

cd src/serve-qml-networked-components/

python -m http.server --directory ./remote 8080

qml SimpleExample.qml

import QtQuick

import "http://localhost:8080" as Remote

Rectangle {

 width: 320

 height: 320

 color: 'blue'

 Remote.Button {

 anchors.centerIn: parent

 text: qsTr('Quit')

 onClicked: Qt.quit()

 }

}

sh

sh

WARNING

Be very cautious about loading QML components from the Internet. By doing so, you introduce

the risk of accidentally downloading malicious components that will do evil things to your

computer. These security risks have been documented (https://doc.qt.io/qt-6/qtqml-

documents-networktransparency.html#implications-for-application-security) by Qt. The Qt

page was already linked to on this page, but the warning is worth repeating.

https://doc.qt.io/qt-6/qtqml-documents-networktransparency.html#implications-for-application-security

Templates

When working with HTML projects they often use template driven development. A small HTML stub is

expanded on the server side with code generated by the server using a template mechanism. For

example, for a photo list, the list header would be coded in HTML and the dynamic image list would be

dynamically generated using a template mechanism. In general, this can also be done using QML but

there are some issues with it.

First, it is not necessary. The reason HTML developers are doing this is to overcome limitations on the

HTML backend. There is no component model yet in HTML so dynamic aspects have to be covered

using these mechanisms or using programmatically javascript on the client side. Many JS frameworks

are out there (jQuery, dojo, backbone, angular, …) to solve this issue and put more logic into the client-

side browser to connect with a network service. The client would then just use a web-service API (e.g.

serving JSON or XML data) to communicate with the server. This seems also the better approach for

QML.

The second issue is the component cache from QML. When QML accesses a component it caches the

render-tree and just loads the cached version for rendering. A modified version on disk or remote

would not be detected without restarting the client. To overcome this issue we could use a trick. We

could use URL fragments to load the URL (e.g. http://localhost:8080/main.qml#1234

(http://localhost:8080/main.qml#1234)), where ‘#1234’ is the fragment. The HTTP server serves

always the same document but QML would store this document using the full URL, including the

fragment. Every time we would access this URL the fragment would need to change and the QML cache

would not get a positive hit. A fragment could be for example the current time in milliseconds or a

random number.

In summary templating is possible but not really recommended and does not play to the strength of

QML. A better approach is to use web-services which serve JSON or XML data.

Loader {

 source: 'http://localhost:8080/main.qml#' + new Date().getTime()

}

http://localhost:8080/main.qml#1234

HTTP Requests
An HTTP request is in Qt typically done using QNetworkRequest and QNetworkReply from the c++ site

and then the response would be pushed using the Qt/C++ integration into the QML space. So we try to

push the envelope here a little bit to use the current tools Qt Quick gives us to communicate with a

network endpoint. For this, we use a helper object to make an HTTP request, response cycle. It comes

in the form of the javascript XMLHttpRequest object.

The XMLHttpRequest object allows the user to register a response handler function and a URL. A

request can be sent using one of the HTTP verbs (get, post, put, delete, …) to make the request. When

the response arrives the handler function is called. The handler function is called several times. Every-

time the request state has changed (for example headers have arrived or request is done).

Here a short example:

For a response, you can get the XML format or just the raw text. It is possible to iterate over the

resulting XML but more commonly used is the raw text nowadays for a JSON formatted response. The

JSON document will be used to convert text to a JS object using JSON.parse(text) .

In the response handler, we access the raw response text and convert it into a javascript object. This

JSON object is now a valid JS object (in javascript an object can be an object or an array).

function request() {

 var xhr = new XMLHttpRequest();

 xhr.onreadystatechange = function() {

 if (xhr.readyState === XMLHttpRequest.HEADERS_RECEIVED) {

 print('HEADERS_RECEIVED');

 } else if(xhr.readyState === XMLHttpRequest.DONE) {

 print('DONE');

 }

 }

 xhr.open("GET", "http://example.com");

 xhr.send();

}

/* ... */

} else if(xhr.readyState === XMLHttpRequest.DONE) {

 var object = JSON.parse(xhr.responseText.toString());

 print(JSON.stringify(object, null, 2));

}

js

js

TIP

It seems the toString() conversion first makes the code more stable. Without the explicit

conversion, I had several times parser errors. Not sure what the cause it.

Flickr Calls

Let us have a look on a more real-world example. A typical example is to use the Flickr service to

retrieve a public feed of the newly uploaded pictures. For this, we can use the

http://api.flickr.com/services/feeds/photos_public.gne URL. Unfortunately, it returns by default an

XML stream, which could be easily parsed by the XmlListModel in qml. For the sake of the example,

we would like to concentrate on JSON data. To become a clean JSON response we need to attach some

parameters to the request: http://api.flickr.com/services/feeds/photos_public.gne?

format=json&nojsoncallback=1 . This will return a JSON response without the JSON callback.

TIP

A JSON callback wraps the JSON response into a function call. This is a shortcut used on HTML

programming where a script tag is used to make a JSON request. The response will trigger a

local function defined by the callback. There is no mechanism which works with JSON callbacks

in QML.

Let us first examine the response by using curl:

The response will be something like this:

curl "http://api.flickr.com/services/feeds/photos_public.gne?

format=json&nojsoncallback=1&tags=munich"

{

 "title": "Recent Uploads tagged munich",

 ...

 "items": [

 {

 "title": "Candle lit dinner in Munich",

 "media": {"m":"http://farm8.staticflickr.com/7313/11444882743_2f5f87169f_m.jpg"},

 ...

 },{

 "title": "Munich after sunset: a train full of \"must haves\" =",

 "media": {"m":"http://farm8.staticflickr.com/7394/11443414206_a462c80e83_m.jpg"},

 ...

 }

sh

json

The returned JSON document has a defined structure. An object which has a title and an items

property. Where the title is a string and items is an array of objects. When converting this text into a

JSON document you can access the individual entries, as it is a valid JS object/array structure.

As a valid JS array, we can use the obj.items array also as a model for a list view. We will try to

accomplish this now. First, we need to retrieve the response and convert it into a valid JS object. And

then we can just set the response.items property as a model to a list view.

Here is the full source code, where we create the request when the component is loaded. The request

response is then used as the model for our simple list view.

]

 ...

}

// JS code

obj = JSON.parse(response);

print(obj.title) // => "Recent Uploads tagged munich"

for(var i=0; i<obj.items.length; i++) {

 // iterate of the items array entries

 print(obj.items[i].title) // title of picture

 print(obj.items[i].media.m) // url of thumbnail

}

function request() {

 const xhr = new XMLHttpRequest()

 xhr.onreadystatechange = function() {

 if (xhr.readyState === XMLHttpRequest.HEADERS_RECEIVED) {

 print('HEADERS_RECEIVED')

 } else if(xhr.readyState === XMLHttpRequest.DONE) {

 print('DONE')

 const response = JSON.parse(xhr.responseText.toString())

 // Set JS object as model for listview

 view.model = response.items

 }

 }

 xhr.open("GET", "http://api.flickr.com/services/feeds/photos_public.gne?

format=json&nojsoncallback=1&tags=munich")

 xhr.send()

}

import QtQuick

Rectangle {

 id: root

js

When the document is fully loaded (Component.onCompleted) we request the latest feed content from

Flickr. On arrival, we parse the JSON response and set the items array as the model for our view. The

list view has a delegate, which displays the thumbnail icon and the title text in a row.

The other option would be to have a placeholder ListModel and append each item onto the list model.

To support larger models it is required to support pagination (e.g. page 1 of 10) and lazy content

retrieval.

 width: 320

 height: 480

 ListView {

 id: view

 anchors.fill: parent

 delegate: Thumbnail {

 required property var modelData

 width: view.width

 text: modelData.title

 iconSource: modelData.media.m

 }

 }

 function request() {

 const xhr = new XMLHttpRequest()

 xhr.onreadystatechange = function() {

 if (xhr.readyState === XMLHttpRequest.HEADERS_RECEIVED) {

 print('HEADERS_RECEIVED')

 } else if(xhr.readyState === XMLHttpRequest.DONE) {

 print('DONE')

 const response = JSON.parse(xhr.responseText.toString())

 // Set JS object as model for listview

 view.model = response.items

 }

 }

 xhr.open("GET", "http://api.flickr.com/services/feeds/photos_public.gne?

format=json&nojsoncallback=1&tags=munich")

 xhr.send()

 }

 Component.onCompleted: {

 root.request()

 }

}

Local files
Is it also possible to load local (XML/JSON) files using the XMLHttpRequest. For example a local file

named “colors.json” can be loaded using:

We use this to read a color table and display it as a grid. It is not possible to modify the file from the Qt

Quick side. To store data back to the source we would need a small REST based HTTP server or a native

Qt Quick extension for file access.

xhr.open("GET", "colors.json")

import QtQuick

Rectangle {

 width: 360

 height: 360

 color: '#000'

 GridView {

 id: view

 anchors.fill: parent

 cellWidth: width / 4

 cellHeight: cellWidth

 delegate: Rectangle {

 required property var modelData

 width: view.cellWidth

 height: view.cellHeight

 color: modelData.value

 }

 }

 function request() {

 const xhr = new XMLHttpRequest()

 xhr.onreadystatechange = function() {

 if (xhr.readyState === XMLHttpRequest.HEADERS_RECEIVED) {

 print('HEADERS_RECEIVED')

 } else if(xhr.readyState === XMLHttpRequest.DONE) {

 print('DONE')

 const response = JSON.parse(xhr.responseText.toString())

 view.model = response.colors

 }

 }

js

TIP

By default, using GET on a local file is disabled by the QML engine. To overcome this limitation,

you can set the QML_XHR_ALLOW_FILE_READ environment variable to 1 :

The issue is when allowing a QML application to read local files through an XMLHttpRequest ,

hence XHR , this opens up the entire file system for reading, which is a potential security issue.

Qt will allow you to read local files only if the environment variable is set, so that this is a

concious decision.

Instead of using the XMLHttpRequest it is also possible to use the XmlListModel to access local files.

 xhr.open("GET", "colors.json")

 xhr.send()

 }

 Component.onCompleted: {

 request()

 }

}

QML_XHR_ALLOW_FILE_READ=1 qml localfiles.qml

import QtQuick

import QtQml.XmlListModel

Rectangle {

 width: 360

 height: 360

 color: '#000'

 GridView {

 id: view

 anchors.fill: parent

 cellWidth: width / 4

 cellHeight: cellWidth

 model: xmlModel

 delegate: Rectangle {

 id: delegate

 required property var model

 width: view.cellWidth

 height: view.cellHeight

 color: model.value

 Text {

 anchors.centerIn: parent

sh

With the XmlListModel it is only possible to read XML files and not JSON files.

 text: delegate.model.name

 }

 }

 }

 XmlListModel {

 id: xmlModel

 source: "colors.xml"

 query: "/colors/color"

 XmlListModelRole { name: 'name'; elementName: 'name' }

 XmlListModelRole { name: 'value'; elementName: 'value' }

 }

}

REST API
To use a web-service, we first need to create one. We will use Flask (https://flask.palletsprojects.com

(https://flask.palletsprojects.com)) a simple HTTP app server based on python to create a simple color

web-service. You could also use every other web server which accepts and returns JSON data. The idea

is to have a list of named colors, which can be managed via the web-service. Managed in this case

means CRUD (create-read-update-delete).

A simple web-service in Flask can be written in one file. We start with an empty server.py file. Inside

this file, we create some boiler-code and load our initial colors from an external JSON file. See also the

Flask quickstart (https://flask.palletsprojects.com/en/2.0.x/quickstart/) documentation.

When you run this script, it will provide a web-server at http://localhost:5000 (http://localhost:5000)

, which does not serve anything useful yet.

We will now start adding our CRUD (Create,Read,Update,Delete) endpoints to our little web-service.

Read Request

To read data from our web-server, we will provide a GET method for all colors.

from flask import Flask, jsonify, request

import json

with open('colors.json', 'r') as file:

 colors = json.load(file)

app = Flask(__name__)

Services registration & implementation...

if __name__ == '__main__':

 app.run(debug = True)

@app.route('/colors', methods = ['GET'])

def get_colors():

 return jsonify({ "data" : colors })

py

py

py

py

https://flask.palletsprojects.com/
https://flask.palletsprojects.com/en/2.0.x/quickstart/
http://localhost:5000/

This will return the colors under the ‘/colors’ endpoint. To test this we can use curl to create an HTTP

request.

Which will return us the list of colors as JSON data.

Read Entry

To read an individual color by name we provide the details endpoint, which is located under

/colors/<name> . The name is a parameter to the endpoint, which identifies an individual color.

And we can test it with using curl again. For example to get the red color entry.

It will return one color entry as JSON data.

Create Entry

Till now we have just used HTTP GET methods. To create an entry on the server side, we will use a

POST method and pass the new color information with the POST data. The endpoint location is the

same as to get all colors. But this time we expect a POST request.

curl -i -GET http://localhost:5000/colors

@app.route('/colors/<name>', methods = ['GET'])

def get_color(name):

 for color in colors:

 if color["name"] == name:

 return jsonify(color)

 return jsonify({ 'error' : True })

curl -i -GET http://localhost:5000/colors/red

@app.route('/colors', methods= ['POST'])

def create_color():

 print('create color')

 color = {

 'name': request.json['name'],

 'value': request.json['value']

 }

 colors.append(color)

 return jsonify(color), 201

sh

py

sh

py

Curl is flexible enough to allow us to provide JSON data as the new entry inside the POST request.

Update Entry

To update an individual entry we use the PUT HTTP method. The endpoint is the same as to retrieve an

individual color entry. When the color was updated successfully we return the updated color as JSON

data.

In the curl request, we only provide the values to be updated as JSON data and then a named endpoint

to identify the color to be updated.

Delete Entry

Deleting an entry is done using the DELETE HTTP verb. It also uses the same endpoint for an individual

color, but this time the DELETE HTTP verb.

This request looks similar to the GET request for an individual color.

curl -i -H "Content-Type: application/json" -X POST -d '{"name":"gray1","value":"#333"}'

http://localhost:5000/colors

@app.route('/colors/<name>', methods= ['PUT'])

def update_color(name):

 for color in colors:

 if color["name"] == name:

 color['value'] = request.json.get('value', color['value'])

 return jsonify(color)

 return jsonify({ 'error' : True })

curl -i -H "Content-Type: application/json" -X PUT -d '{"value":"#666"}'

http://localhost:5000/colors/red

@app.route('/colors/<name>', methods=['DELETE'])

def delete_color(name):

 for color in colors:

 if color["name"] == name:

 colors.remove(color)

 return jsonify(color)

 return jsonify({ 'error' : True })

sh

py

sh

py

HTTP Verbs

Now we can read all colors, read a specific color, create a new color, update a color and delete a color.

Also, we know the HTTP endpoints to our API.

Our little REST server is complete now and we can focus on QML and the client side. To create an easy

to use API we need to map each action to an individual HTTP request and provide a simple API to our

users.

Client REST

To demonstrate a REST client we write a small color grid. The color grid displays the colors retrieved

from the web-service via HTTP requests. Our user interface provides the following commands:

Get a color list

Create color

Read the last color

Update last color

Delete the last color

We bundle our API into an own JS file called colorservice.js and import it into our UI as Service .

Inside the service module (colorservice.js), we create a helper function to make the HTTP requests

for us:

curl -i -X DELETE http://localhost:5000/colors/red

Read All

GET http://localhost:5000/colors

Create Entry

POST http://localhost:5000/colors

Read Entry

GET http://localhost:5000/colors/${name}

Update Entry

PUT http://localhost:5000/colors/${name}

Delete Entry

DELETE http://localhost:5000/colors/${name}

function request(verb, endpoint, obj, cb) {

 print('request: ' + verb + ' ' + BASE + (endpoint ? '/' + endpoint : ''))

 var xhr = new XMLHttpRequest()

 xhr.onreadystatechange = function() {

sh

sh

js

It takes four arguments. The verb , which defines the HTTP verb to be used (GET, POST, PUT,

DELETE). The second parameter is the endpoint to be used as a postfix to the BASE address (e.g.

‘http://localhost:5000/colors (http://localhost:5000/colors) ’). The third parameter is the optional

obj, to be sent as JSON data to the service. The last parameter defines a callback to be called when the

response returns. The callback receives a response object with the response data. Before we send the

request, we indicate that we send and accept JSON data by modifying the request header.

Using this request helper function we can implement the simple commands we defined earlier (create,

read, update, delete). This code resides in the service implementation:

 print('xhr: on ready state change: ' + xhr.readyState)

 if(xhr.readyState === XMLHttpRequest.DONE) {

 if(cb) {

 var res = JSON.parse(xhr.responseText.toString())

 cb(res)

 }

 }

 }

 xhr.open(verb, BASE + (endpoint ? '/' + endpoint : ''))

 xhr.setRequestHeader('Content-Type', 'application/json')

 xhr.setRequestHeader('Accept', 'application/json')

 var data = obj ? JSON.stringify(obj) : ''

 xhr.send(data)

}

function getColors(cb) {

 // GET http://localhost:5000/colors

 request('GET', null, null, cb)

}

function createColor(entry, cb) {

 // POST http://localhost:5000/colors

 request('POST', null, entry, cb)

}

function getColor(name, cb) {

 // GET http://localhost:5000/colors/${name}

 request('GET', name, null, cb)

}

function updateColor(name, entry, cb) {

 // PUT http://localhost:5000/colors/${name}

 request('PUT', name, entry, cb)

}

function deleteColor(name, cb) {

 // DELETE http://localhost:5000/colors/${name}

js

http://localhost:5000/colors

In the UI we use the service to implement our commands. We have a ListModel with the id

gridModel as a data provider for the GridView . The commands are indicated using a Button UI

element.

Importing our service library is pretty straightforward:

Reading the color list from the server:

Create a new color entry on the server:

Reading a color based on its name:

 request('DELETE', name, null, cb)

}

import "colorservice.js" as Service

Button {

 text: 'Read Colors'

 onClicked: {

 Service.getColors(function(response) {

 print('handle get colors response: ' + JSON.stringify(response))

 gridModel.clear()

 const entries = response.data

 for(let i=0; i<entries.length; i++) {

 gridModel.append(entries[i])

 }

 })

 }

}

Button {

 text: 'Create New'

 onClicked: {

 const index = gridModel.count - 1

 const entry = {

 name: 'color-' + index,

 value: Qt.hsla(Math.random(), 0.5, 0.5, 1.0).toString()

 }

 Service.createColor(entry, function(response) {

 print('handle create color response: ' + JSON.stringify(response))

 gridModel.append(response)

 })

 }

}

Update a color entry on the server based on the color name:

Delete a color by the color name:

This concludes the CRUD (create, read, update, delete) operations using a REST API. There are also

other possibilities to generate a Web-Service API. One could be module based and each module would

have one endpoint. And the API could be defined using JSON RPC (http://www.jsonrpc.org/

Button {

 text: 'Read Last Color'

 onClicked: {

 const index = gridModel.count - 1

 const name = gridModel.get(index).name

 Service.getColor(name, function(response) {

 print('handle get color response:' + JSON.stringify(response))

 message.text = response.value

 })

 }

}

Button {

 text: 'Update Last Color'

 onClicked: {

 const index = gridModel.count - 1

 const name = gridModel.get(index).name

 const entry = {

 value: Qt.hsla(Math.random(), 0.5, 0.5, 1.0).toString()

 }

 Service.updateColor(name, entry, function(response) {

 print('handle update color response: ' + JSON.stringify(response))

 gridModel.setProperty(gridModel.count - 1, 'value', response.value)

 })

 }

}

Button {

 text: 'Delete Last Color'

 onClicked: {

 const index = gridModel.count - 1

 const name = gridModel.get(index).name

 Service.deleteColor(name)

 gridModel.remove(index, 1)

 }

}

http://www.jsonrpc.org/

(http://www.jsonrpc.org/)). Sure also XML based API is possible, but the JSON approach has great

advantages as the parsing is built into the QML/JS as part of JavaScript.

http://www.jsonrpc.org/

Authentication using OAuth

OAuth is an open protocol to allow secure authorization in a simple and standard method from web,

mobile, and desktop applications. OAuth is used to authenticate a client against common web-services

such as Google, Facebook, and Twitter.

TIP

For a custom web-service you could also use the standard HTTP authentication for example by

using the XMLHttpRequest username and password in the get method (e.g. xhr.open(verb,

url, true, username, password))

OAuth is currently not part of a QML/JS API. So you would need to write some C++ code and export the

authentication to QML/JS. Another issue would be the secure storage of the access token.

Here are some links which we find useful:

http://oauth.net/

http://hueniverse.com/oauth/

https://github.com/pipacs/o2

http://www.johanpaul.com/blog/2011/05/oauth2-explained-with-qt-quick/

Integration example

In this section, we will go through an example of OAuth integration using the Spotify API

(https://developer.spotify.com/documentation/web-api/) . This example uses a combination of C++

classes and QML/JS. To discover more on this integration, please refer to Chapter 16.

This application's goal is to retrieve the top ten favourite artists of the authenticated user.

Creating the App

First, you will need to create a dedicated app on the Spotify Developer's portal

(https://developer.spotify.com/dashboard/applications) .

http://oauth.net/
http://hueniverse.com/oauth/
https://github.com/pipacs/o2
http://www.johanpaul.com/blog/2011/05/oauth2-explained-with-qt-quick/
https://developer.spotify.com/documentation/web-api/
https://developer.spotify.com/dashboard/applications

Once your app is created, you'll receive two keys: a client id and a client secret .

The QML file

The process is divided in two phases:

1. The application connects to the Spotify API, which in turns requests the user to authorize it;

2. If authorized, the application displays the list of the top ten favourite artists of the user.

Authorizing the app

Let's start with the first step:

When the application starts, we will first import a custom library, Spotify , that defines a SpotifyAPI

component (we'll come to that later). This component will then be instantiated:

Once the application has been loaded, the SpotifyAPI component will request an authorization to

Spotify:

Until the authorization is provided, a busy indicator will be displayed in the center of the app.

TIP

Please note that for security reasons, the API credentials should never be put directly into a

QML file!

Listing the user's favorite artists

import QtQuick

import QtQuick.Window

import QtQuick.Controls

import Spotify

ApplicationWindow {

 width: 320

 height: 568

 visible: true

 title: qsTr("Spotify OAuth2")

 BusyIndicator {

 visible: !spotifyApi.isAuthenticated

 anchors.centerIn: parent

 }

 SpotifyAPI {

 id: spotifyApi

 onIsAuthenticatedChanged: if(isAuthenticated) spotifyModel.update()

 }

Component.onCompleted: {

 spotifyApi.setCredentials("CLIENT_ID", "CLIENT_SECRET")

 spotifyApi.authorize()

}

The next step happens when the authorization has been granted. To display the list of artists, we will

use the Model/View/Delegate pattern:

SpotifyModel {

 id: spotifyModel

 spotifyApi: spotifyApi

}

ListView {

 visible: spotifyApi.isAuthenticated

 width: parent.width

 height: parent.height

 model: spotifyModel

 delegate: Pane {

 id: delegate

 required property var model

 topPadding: 0

 Column {

 width: 300

 spacing: 10

 Rectangle {

 height: 1

 width: parent.width

 color: delegate.model.index > 0 ? "#3d3d3d" : "transparent"

 }

 Row {

 spacing: 10

 Item {

 width: 20

 height: width

 Rectangle {

 width: 20

 height: 20

 anchors.top: parent.top

 anchors.right: parent.right

 color: "black"

 Label {

 anchors.centerIn: parent

 font.pointSize: 16

 text: delegate.model.index + 1

 color: "white"

 }

 }

 }

The model SpotifyModel is defined in the Spotify library. To work properly, it needs a SpotifyAPI .

The ListView displays a vertical list of artists. An artist is represented by a name, an image and the total

count of followers.

SpotifyAPI

Let's now get a bit deeper into the authentication flow. We'll focus on the SpotifyAPI class, a

QML_ELEMENT defined on the C++ side.

 Image {

 width: 80

 height: width

 source: delegate.model.imageURL

 fillMode: Image.PreserveAspectFit

 }

 Column {

 Label {

 text: delegate.model.name

 font.pointSize: 16

 font.bold: true

 }

 Label { text: "Followers: " + delegate.model.followersCount }

 }

 }

 }

 }

}

#ifndef SPOTIFYAPI_H

#define SPOTIFYAPI_H

#include <QtCore>

#include <QtNetwork>

#include <QtQml/qqml.h>

#include <QOAuth2AuthorizationCodeFlow>

class SpotifyAPI: public QObject

{

 Q_OBJECT

 QML_ELEMENT

 Q_PROPERTY(bool isAuthenticated READ isAuthenticated WRITE setAuthenticated NOTIFY

isAuthenticatedChanged)

First, we'll import the <QOAuth2AuthorizationCodeFlow> class. This class is a part of the

QtNetworkAuth module, which contains various implementations of OAuth .

Our class, SpotifyAPI , will define a isAuthenticated property:

The two public slots that we used in the QML files:

public:

 SpotifyAPI(QObject *parent = nullptr);

 void setAuthenticated(bool isAuthenticated) {

 if (m_isAuthenticated != isAuthenticated) {

 m_isAuthenticated = isAuthenticated;

 emit isAuthenticatedChanged();

 }

 }

 bool isAuthenticated() const {

 return m_isAuthenticated;

 }

 QNetworkReply* getTopArtists();

public slots:

 void setCredentials(const QString& clientId, const QString& clientSecret);

 void authorize();

signals:

 void isAuthenticatedChanged();

private:

 QOAuth2AuthorizationCodeFlow m_oauth2;

 bool m_isAuthenticated;

};

#endif // SPOTIFYAPI_H

#include <QOAuth2AuthorizationCodeFlow>

Q_PROPERTY(bool isAuthenticated READ isAuthenticated WRITE setAuthenticated NOTIFY

isAuthenticatedChanged)

void setCredentials(const QString& clientId, const QString& clientSecret);

void authorize();

And a private member representing the authentication flow:

On the implementation side, we have the following code:

QOAuth2AuthorizationCodeFlow m_oauth2;

#include "spotifyapi.h"

#include <QtGui>

#include <QtCore>

#include <QtNetworkAuth>

SpotifyAPI::SpotifyAPI(QObject *parent): QObject(parent), m_isAuthenticated(false) {

 m_oauth2.setAuthorizationUrl(QUrl("https://accounts.spotify.com/authorize"));

 m_oauth2.setAccessTokenUrl(QUrl("https://accounts.spotify.com/api/token"));

 m_oauth2.setScope("user-top-read");

 m_oauth2.setReplyHandler(new QOAuthHttpServerReplyHandler(8000, this));

 m_oauth2.setModifyParametersFunction([&](QAbstractOAuth::Stage stage,

QMultiMap<QString, QVariant> *parameters) {

 if(stage == QAbstractOAuth::Stage::RequestingAuthorization) {

 parameters->insert("duration", "permanent");

 }

 });

 connect(&m_oauth2, &QOAuth2AuthorizationCodeFlow::authorizeWithBrowser,

&QDesktopServices::openUrl);

 connect(&m_oauth2, &QOAuth2AuthorizationCodeFlow::statusChanged, [=]

(QAbstractOAuth::Status status) {

 if (status == QAbstractOAuth::Status::Granted) {

 setAuthenticated(true);

 } else {

 setAuthenticated(false);

 }

 });

}

void SpotifyAPI::setCredentials(const QString& clientId, const QString& clientSecret) {

 m_oauth2.setClientIdentifier(clientId);

 m_oauth2.setClientIdentifierSharedKey(clientSecret);

}

void SpotifyAPI::authorize() {

 m_oauth2.grant();

}

QNetworkReply* SpotifyAPI::getTopArtists() {

The constructor task mainly consists in configuring the authentication flow. First, we define the Spotify

API routes that will serve as authenticators.

We then select the scope (= the Spotify authorizations) that we want to use:

Since OAuth is a two-way communication process, we instantiate a dedicated local server to handle the

replies:

Finally, we configure two signals and slots.

The first one configures the authorization to happen within a web-browser (through

&QDesktopServices::openUrl), while the second makes sure that we are notified when the

authorization process has been completed.

The authorize() method is only a placeholder for calling the underlying grant() method of the

authentication flow. This is the method that triggers the process.

Finally, the getTopArtists() calls the web api using the authorization context provided by the

m_oauth2 network access manager.

 return m_oauth2.get(QUrl("https://api.spotify.com/v1/me/top/artists?limit=10"));

}

m_oauth2.setAuthorizationUrl(QUrl("https://accounts.spotify.com/authorize"));

m_oauth2.setAccessTokenUrl(QUrl("https://accounts.spotify.com/api/token"));

m_oauth2.setScope("user-top-read");

m_oauth2.setReplyHandler(new QOAuthHttpServerReplyHandler(8000, this));

connect(&m_oauth2, &QOAuth2AuthorizationCodeFlow::authorizeWithBrowser,

&QDesktopServices::openUrl);

connect(&m_oauth2, &QOAuth2AuthorizationCodeFlow::statusChanged, [=]

(QAbstractOAuth::Status status) { /* ... */ })

void SpotifyAPI::authorize() {

 m_oauth2.grant();

}

The Spotify model

This class is a QML_ELEMENT that subclasses QAbstractListModel to represent our list of artists. It

relies on SpotifyAPI to gather the artists from the remote endpoint.

QNetworkReply* SpotifyAPI::getTopArtists() {

 return m_oauth2.get(QUrl("https://api.spotify.com/v1/me/top/artists?limit=10"));

}

#ifndef SPOTIFYMODEL_H

#define SPOTIFYMODEL_H

#include <QtCore>

#include "spotifyapi.h"

QT_FORWARD_DECLARE_CLASS(QNetworkReply)

class SpotifyModel : public QAbstractListModel

{

 Q_OBJECT

 QML_ELEMENT

 Q_PROPERTY(SpotifyAPI* spotifyApi READ spotifyApi WRITE setSpotifyApi NOTIFY

spotifyApiChanged)

public:

 SpotifyModel(QObject *parent = nullptr);

 void setSpotifyApi(SpotifyAPI* spotifyApi) {

 if (m_spotifyApi != spotifyApi) {

 m_spotifyApi = spotifyApi;

 emit spotifyApiChanged();

 }

 }

 SpotifyAPI* spotifyApi() const {

 return m_spotifyApi;

 }

 enum {

 NameRole = Qt::UserRole + 1,

 ImageURLRole,

 FollowersCountRole,

 HrefRole,

 };

This class defines a spotifyApi property:

An enumeration of Roles (as per QAbstractListModel):

A slot to trigger the refresh of the artists list:

And, of course, the list of artists, represented as JSON objects:

 QHash<int, QByteArray> roleNames() const override;

 int rowCount(const QModelIndex &parent) const override;

 int columnCount(const QModelIndex &parent) const override;

 QVariant data(const QModelIndex &index, int role) const override;

signals:

 void spotifyApiChanged();

 void error(const QString &errorString);

public slots:

 void update();

private:

 QPointer<SpotifyAPI> m_spotifyApi;

 QList<QJsonObject> m_artists;

};

#endif // SPOTIFYMODEL_H

Q_PROPERTY(SpotifyAPI* spotifyApi READ spotifyApi WRITE setSpotifyApi NOTIFY

spotifyApiChanged)

enum {

 NameRole = Qt::UserRole + 1, // The artist's name

 ImageURLRole, // The artist's image

 FollowersCountRole, // The artist's followers count

 HrefRole, // The link to the artist's page

};

public slots:

 void update();

public slots:

 QList<QJsonObject> m_artists;

On the implementation side, we have:

#include "spotifymodel.h"

#include <QtCore>

#include <QtNetwork>

SpotifyModel::SpotifyModel(QObject *parent): QAbstractListModel(parent) {}

QHash<int, QByteArray> SpotifyModel::roleNames() const {

 static const QHash<int, QByteArray> names {

 { NameRole, "name" },

 { ImageURLRole, "imageURL" },

 { FollowersCountRole, "followersCount" },

 { HrefRole, "href" },

 };

 return names;

}

int SpotifyModel::rowCount(const QModelIndex &parent) const {

 Q_UNUSED(parent);

 return m_artists.size();

}

int SpotifyModel::columnCount(const QModelIndex &parent) const {

 Q_UNUSED(parent);

 return m_artists.size() ? 1 : 0;

}

QVariant SpotifyModel::data(const QModelIndex &index, int role) const {

 Q_UNUSED(role);

 if (!index.isValid())

 return QVariant();

 if (role == Qt::DisplayRole || role == NameRole) {

 return m_artists.at(index.row()).value("name").toString();

 }

 if (role == ImageURLRole) {

 const auto artistObject = m_artists.at(index.row());

 const auto imagesValue = artistObject.value("images");

 Q_ASSERT(imagesValue.isArray());

 const auto imagesArray = imagesValue.toArray();

 if (imagesArray.isEmpty())

 return "";

 const auto imageValue = imagesArray.at(0).toObject();

 return imageValue.value("url").toString();

 }

 if (role == FollowersCountRole) {

 const auto artistObject = m_artists.at(index.row());

 const auto followersValue = artistObject.value("followers").toObject();

 return followersValue.value("total").toInt();

 }

 if (role == HrefRole) {

 return m_artists.at(index.row()).value("href").toString();

 }

 return QVariant();

}

void SpotifyModel::update() {

 if (m_spotifyApi == nullptr) {

 emit error("SpotifyModel::error: SpotifyApi is not set.");

 return;

 }

 auto reply = m_spotifyApi->getTopArtists();

 connect(reply, &QNetworkReply::finished, [=]() {

 reply->deleteLater();

 if (reply->error() != QNetworkReply::NoError) {

 emit error(reply->errorString());

 return;

 }

 const auto json = reply->readAll();

 const auto document = QJsonDocument::fromJson(json);

 Q_ASSERT(document.isObject());

 const auto rootObject = document.object();

 const auto artistsValue = rootObject.value("items");

 Q_ASSERT(artistsValue.isArray());

 const auto artistsArray = artistsValue.toArray();

 if (artistsArray.isEmpty())

 return;

 beginResetModel();

 m_artists.clear();

 for (const auto artistValue : qAsConst(artistsArray)) {

 Q_ASSERT(artistValue.isObject());

 m_artists.append(artistValue.toObject());

 }

 endResetModel();

 });

}

The update() method calls the getTopArtists() method and handle its reply by extracting the

individual items from the JSON document and refreshing the list of artists within the model.

The data() method extracts, depending on the requested model role, the relevant attributes of an

Artist and returns as a QVariant :

auto reply = m_spotifyApi->getTopArtists();

connect(reply, &QNetworkReply::finished, [=]() {

 reply->deleteLater();

 if (reply->error() != QNetworkReply::NoError) {

 emit error(reply->errorString());

 return;

 }

 const auto json = reply->readAll();

 const auto document = QJsonDocument::fromJson(json);

 Q_ASSERT(document.isObject());

 const auto rootObject = document.object();

 const auto artistsValue = rootObject.value("items");

 Q_ASSERT(artistsValue.isArray());

 const auto artistsArray = artistsValue.toArray();

 if (artistsArray.isEmpty())

 return;

 beginResetModel();

 m_artists.clear();

 for (const auto artistValue : qAsConst(artistsArray)) {

 Q_ASSERT(artistValue.isObject());

 m_artists.append(artistValue.toObject());

 }

 endResetModel();

});

 if (role == Qt::DisplayRole || role == NameRole) {

 return m_artists.at(index.row()).value("name").toString();

 }

 if (role == ImageURLRole) {

 const auto artistObject = m_artists.at(index.row());

 const auto imagesValue = artistObject.value("images");

 Q_ASSERT(imagesValue.isArray());

 const auto imagesArray = imagesValue.toArray();

 if (imagesArray.isEmpty())

 return "";

 const auto imageValue = imagesArray.at(0).toObject();

 return imageValue.value("url").toString();

 }

 if (role == FollowersCountRole) {

 const auto artistObject = m_artists.at(index.row());

 const auto followersValue = artistObject.value("followers").toObject();

 return followersValue.value("total").toInt();

 }

 if (role == HrefRole) {

 return m_artists.at(index.row()).value("href").toString();

 }

Web Sockets
The WebSockets module provides an implementation of the WebSockets protocol for WebSockets

clients and servers. It mirrors the Qt CPP module. It allows sending a string and binary messages using

a full duplex communication channel. A WebSocket is normally established by making an HTTP

connection to the server and the server then “upgrades” the connection to a WebSocket connection.

In Qt/QML you can also simply use the WebSocket and WebSocketServer objects to creates direct

WebSocket connection. The WebSocket protocol uses the “ws” URL schema or “wss” for a secure

connection.

You can use the web socket qml module by importing it first.

WS Server

You can easily create your own WS server using the C++ part of the Qt WebSocket or use a different WS

implementation, which I find very interesting. It is interesting because it allows connecting the amazing

rendering quality of QML with the great expanding web application servers. In this example, we will use

a Node JS based web socket server using the ws (https://npmjs.org/package/ws) module. For this,

you first need to install node js (http://nodejs.org/) . Then, create a ws_server folder and install the

ws package using the node package manager (npm).

The code shall create a simple echo server in NodeJS to echo our messages back to our QML client.

import QtWebSockets

WebSocket {

 id: socket

}

https://npmjs.org/package/ws
http://nodejs.org/

The npm tool downloads and installs the ws package and dependencies into your local folder.

A server.js file will be our server implementation. The server code will create a web socket server on

port 3000 and listens to an incoming connection. On an incoming connection, it will send out a

greeting and waits for client messages. Each message a client sends on a socket will be sent back to the

client.

You need to get used to the notation of JavaScript and the function callbacks.

cd ws_server

npm install ws

const WebSocketServer = require('ws').Server

const server = new WebSocketServer({ port : 3000 })

server.on('connection', function(socket) {

	 console.log('client connected')

	 socket.on('message', function(msg) {

	 	 console.log('Message: %s', msg)

	 	 socket.send(msg.toString())

	 });

	 socket.send('Welcome to Awesome Chat')

});

console.log('listening on port ' + server.options.port)

sh

js

WS Client

On the client side, we need a list view to display the messages and a TextInput for the user to enter a

new chat message.

We will use a label with white color in the example.

Our chat view is a list view, where the text is appended to a list model. Each entry is displayed using a

row of prefix and message label. We use a cell width cw factor to split the with into 24 columns.

// Label.qml

import QtQuick

Text {

 color: '#fff'

 horizontalAlignment: Text.AlignLeft

 verticalAlignment: Text.AlignVCenter

}

// ChatView.qml

import QtQuick

ListView {

 id: root

 width: 100

 height: 62

 model: ListModel {}

 function append(prefix, message) {

 model.append({prefix: prefix, message: message})

 }

 delegate: Row {

 id: delegate

 required property var model

 property real cw: width / 24

 width: root.width

 height: 18

 Label {

 width: delegate.cw * 1

The chat input is just a simple text input wrapped with a colored border.

 height: parent.height

 text: delegate.model.prefix

 }

 Label {

 width: delegate.cw * 23

 height: parent.height

 text: delegate.model.message

 }

 }

}

// ChatInput.qml

import QtQuick

FocusScope {

 id: root

 property alias text: input.text

 signal accepted(string text)

 width: 240

 height: 32

 Rectangle {

 anchors.fill: parent

 color: '#000'

 border.color: '#fff'

 border.width: 2

 }

 TextInput {

 id: input

 anchors.left: parent.left

 anchors.right: parent.right

 anchors.verticalCenter: parent.verticalCenter

 anchors.leftMargin: 4

 anchors.rightMargin: 4

 color: '#fff'

 focus: true

 onAccepted: function () {

 root.accepted(text)

 }

 }

}

When the web socket receives a message it appends the message to the chat view. Same applies for a

status change. Also when the user enters a chat message a copy is appended to the chat view on the

client side and the message is sent to the server.

// ws_client.qml

import QtQuick

import QtWebSockets

Rectangle {

 width: 360

 height: 360

 color: '#000'

 ChatView {

 id: box

 anchors.left: parent.left

 anchors.right: parent.right

 anchors.top: parent.top

 anchors.bottom: input.top

 }

 ChatInput {

 id: input

 anchors.left: parent.left

 anchors.right: parent.right

 anchors.bottom: parent.bottom

 focus: true

 onAccepted: function(text) {

 print('send message: ' + text)

 socket.sendTextMessage(text)

 box.append('>', text)

 text = ''

 }

 }

 WebSocket {

 id: socket

 url: "ws://localhost:3000"

 active: true

 onTextMessageReceived: function (message) {

 box.append('<', message)

 }

 onStatusChanged: {

 if (socket.status == WebSocket.Error) {

 box.append('#', 'socket error ' + socket.errorString)

You need first run the server and then the client. There is no retry connection mechanism in our simple

client.

Running the server

Running the client

When entering text and pressing enter you should see something like this.

 } else if (socket.status == WebSocket.Open) {

 box.append('#', 'socket open')

 } else if (socket.status == WebSocket.Closed) {

 box.append('#', 'socket closed')

 }

 }

 }

}

cd ws_server

node server.js

cd ws_client

qml ws_client.qml

sh

sh

Summary

This concludes our chapter about QML networking. Please bear in mind Qt has on the native side a

much richer networking API as on the QML side currently. But the idea of the chapter is to push the

boundaries of QML networking and how to integrate with cloud-based services.

Storage

In this chapter we discuss how to store and retrieve data from Qt Quick. Qt Quick offers only limited

ways of storing local data directly. In this sense, it acts more like a browser. In many projects storing

data is handled by the C++ backend and the required functionality is exported to the Qt Quick frontend

side. Qt Quick does not provide you with access to the host file system to read and write files as you are

used from the Qt C++ side. So it would be the task of the backend engineer to write such a plugin or

maybe use a network channel to communicate with a local server, which provides these capabilities.

Every application needs to store smaller and larger information persistently. This can be done locally

on the file system or remote on a server. Some information will be structured and simple (e.g. settings),

some will be large and complicated for example documentation files and some will be large and

structured and will require some sort of database connection. Here we will mainly cover the built-in

capabilities of Qt Quick to store data as also the networked ways.

Settings

Qt comes with a Settings element for loading and storing settings. The is still in the lab’s module,

which means the API may break in the future. So be aware.

Here is a small example which applies a color value to a base rectangle. Every time the user clicks on

the window a new random color is generated. When the application is closed and relaunched again you

should see your last color. The default color should be the color initially set on the root rectangle.

The settings value are stored every time the value changes. This might be not always what you want. To

store the settings only when required you can use standard properties combined with a function that

alters the setting when called.

import QtQuick

import Qt.labs.settings 1.0

Rectangle {

 id: root

 width: 320

 height: 240

 color: '#fff' // default color

 Settings {

 property alias color: root.color

 }

 MouseArea {

 anchors.fill: parent

 // random color

 onClicked: root.color = Qt.hsla(Math.random(), 0.5, 0.5, 1.0);

 }

}

Rectangle {

 id: root

 color: settings.color

 Settings {

 id: settings

 property color color: '#000000'

 }

 function storeSettings() { // executed maybe on destruction

 settings.color = root.color

It is also possible to group settings into different categories using the category property.

The settings are stored according to your application name, organization, and domain. This information

is normally set in the main function of your C++ code.

If you are writing a pure QML application, you can set the same attributed using the global properties

Qt.application.name , Qt.application.organization , and Qt.application.domain .

 }

}

Settings {

 category: 'window'

 property alias x: window.x

 property alias y: window.x

 property alias width: window.width

 property alias height: window.height

}

int main(int argc, char** argv) {

 ...

 QCoreApplication::setApplicationName("Awesome Application");

 QCoreApplication::setOrganizationName("Awesome Company");

 QCoreApplication::setOrganizationDomain("org.awesome");

 ...

}

Local Storage - SQL

Qt Quick supports a local storage API known from the web browsers the local storage API. the API is

available under “import QtQuick.LocalStorage 2.0”.

In general, it stores the content into an SQLite database in a system-specific location in a unique ID

based file based on the given database name and version. It is not possible to list or delete existing

databases. You can find the storage location from QQmlEngine::offlineStoragePath() .

You use the API by first creating a database object and then creating transactions on the database. Each

transaction can contain one or more SQL queries. The transaction will roll-back when a SQL query will

fail inside the transaction.

For example, to read from a simple notes table with a text column you could use the local storage like

this:

Crazy Rectangle

As an example assume we would like to store the position of a rectangle on our scene.

import QtQuick

import QtQuick.LocalStorage 2.0

Item {

 Component.onCompleted: {

 const db = LocalStorage.openDatabaseSync("MyExample", "1.0", "Example database",

10000)

 db.transaction(function(tx) {

 const result = tx.executeSql('select * from notes')

 for(let i = 0; i < result.rows.length; i++) {

 print(result.rows[i].text)

 }

 })

 }

}

Here is the base of the example. It contains a rectangle called crazy that is draggable and shows its

current x and y position as text.

Item {

 width: 400

 height: 400

 Rectangle {

 id: crazy

 objectName: 'crazy'

 width: 100

 height: 100

 x: 50

 y: 50

 color: "#53d769"

 border.color: Qt.lighter(color, 1.1)

 Text {

 anchors.centerIn: parent

 text: Math.round(parent.x) + '/' + Math.round(parent.y)

 }

 MouseArea {

 anchors.fill: parent

 drag.target: parent

 }

 }

 // ...

You can drag the rectangle freely around. When you close the application and launch it again the

rectangle is at the same position.

Now we would like to add that the x/y position of the rectangle is stored inside the SQL DB. For this, we

need to add an init , read and store database function. These functions are called when on

component completed and on component destruction.

You could also extract the DB code in an own JS library, which does all the logic. This would be the

preferred way if the logic gets more complicated.

In the database initialization function, we create the DB object and ensure the SQL table is created.

Notice that the database functions are quite talkative so that you can follow along on the console.

import QtQuick

import QtQuick.LocalStorage 2.0

Item {

 // reference to the database object

 property var db

 function initDatabase() {

 // initialize the database object

 }

 function storeData() {

 // stores data to DB

 }

 function readData() {

 // reads and applies data from DB

 }

 Component.onCompleted: {

 initDatabase()

 readData()

 }

 Component.onDestruction: {

 storeData()

 }

}

function initDatabase() {

 // initialize the database object

 print('initDatabase()')

 db = LocalStorage.openDatabaseSync("CrazyBox", "1.0", "A box who remembers its

position", 100000)

The application next calls the read function to read existing data back from the database. Here we need

to differentiate if there is already data in the table. To check we look into how many rows the select

clause has returned.

We expect the data is stored in a JSON string inside the value column. This is not typical SQL like, but

works nicely with JS code. So instead of storing the x,y as properties in the table, we store them as a

complete JS object using the JSON stringify/parse methods. In the end, we get a valid JS object with x

and y properties, which we can apply on our crazy rectangle.

To store the data, we need to differentiate the update and insert cases. We use update when a record

already exists and insert if no record under the name “crazy” exists.

 db.transaction(function(tx) {

 print('... create table')

 tx.executeSql('CREATE TABLE IF NOT EXISTS data(name TEXT, value TEXT)')

 })

}

function readData() {

 // reads and applies data from DB

 print('readData()')

 if(!db) { return }

 db.transaction(function(tx) {

 print('... read crazy object')

 const result = tx.executeSql('select * from data where name="crazy"')

 if(result.rows.length === 1) {

 print('... update crazy geometry')

 // get the value column

 const value = result.rows[0].value

 // convert to JS object

 const obj = JSON.parse(value)

 // apply to object

 crazy.x = obj.x

 crazy.y = obj.y

 }

 })

}

function storeData() {

 // stores data to DB

 print('storeData()')

 if(!db) { return }

 db.transaction(function(tx) {

 print('... check if a crazy object exists')

 var result = tx.executeSql('SELECT * from data where name = "crazy"')

 // prepare object to be stored as JSON

Instead of selecting the whole recordset we could also use the SQLite count function like this: SELECT

COUNT(*) from data where name = "crazy" which would return use one row with the number of rows

affected by the select query. Otherwise, this is common SQL code. As an additional feature, we use the

SQL value binding using the ? in the query.

Now you can drag the rectangle and when you quit the application the database stores the x/y position

and applies it on the next application run.

 var obj = { x: crazy.x, y: crazy.y }

 if(result.rows.length === 1) { // use update

 print('... crazy exists, update it')

 result = tx.executeSql('UPDATE data set value=? where name="crazy"',

[JSON.stringify(obj)])

 } else { // use insert

 print('... crazy does not exists, create it')

 result = tx.executeSql('INSERT INTO data VALUES (?,?)', ['crazy',

JSON.stringify(obj)])

 }

 })

}

Dynamic QML

Until now, we have treated QML as a tool for constructing a static set of scenes and navigating between

them. Depending on various states and logic rules, a living and dynamic user interface is constructed.

By working with QML and JavaScript in a more dynamic manner, the flexibility and possibilities expand

even further. Components can be loaded and instantiated at run-time, elements can be destroyed.

Dynamically created user interfaces can be saved to disk and later restored.

Loading Components Dynamically

The easiest way to dynamically load different parts of QML is to use the Loader element. It serves as a

placeholder to the item that is being loaded. The item to load is controlled through either the source

property or the sourceComponent property. The former loads the item from a given URL, while the

latter instantiates a Component .

As the loader serves as a placeholder for the item being loaded, its size depends on the size of the item,

and vice versa. If the Loader element has a size, either by having set width and height or through

anchoring, the loaded item will be given the loader’s size. If the Loader has no size, it is resized in

accordance to the size of the item being loaded.

The example described below demonstrates how two separate user interface parts can be loaded into

the same space using a Loader element. The idea is to have a speed dial that can be either digital or

analog, as shown in the illustration below. The code surrounding the dial is unaffected by which item

that is loaded for the moment.

The first step in the application is to declare a Loader element. Notice that the source property is

left out. This is because the source depends on which state the user interface is in.

In the states property of the parent of dialLoader a set of PropertyChanges elements drives the

loading of different QML files depending on the state . The source property happens to be a relative

file path in this example, but it can just as well be a full URL, fetching the item over the web.

Loader {

 id: dialLoader

 anchors.fill: parent

}

states: [

 State {

 name: "analog"

 PropertyChanges { target: analogButton; color: "green"; }

 PropertyChanges { target: dialLoader; source: "Analog.qml"; }

 },

 State {

 name: "digital"

 PropertyChanges { target: digitalButton; color: "green"; }

 PropertyChanges { target: dialLoader; source: "Digital.qml"; }

In order to make the loaded item come alive, it is speed property must be bound to the root speed

property. This cannot be done as a direct binding as the item not always is loaded and changes over

time. Instead, a Binding element must be used. The target property of the binding is changed every

time the Loader triggers the onLoaded signal.

The onLoaded signal lets the loading QML act when the item has been loaded. In a similar fashion, the

QML being loaded can rely on the Component.onCompleted signal. This signal is actually available for all

components, regardless of how they are loaded. For instance, the root component of an entire

application can use it to kick-start itself when the entire user interface has been loaded.

Connecting Indirectly

When creating QML elements dynamically, you cannot connect to signals using the onSignalName

approach used for static setup. Instead, the Connections element must be used. It connects to any

number of signals of a target element.

Having set the target property of a Connections element, the signals can be connected, as usual,

that is, using the onSignalName approach. However, by altering the target property, different

elements can be monitored at different times.

 }

]

Loader {

 id: dialLoader

 anchors.left: parent.left

 anchors.right: parent.right

 anchors.top: parent.top

 anchors.bottom: analogButton.top

 onLoaded: {

 binder.target = dialLoader.item;

 }

}

Binding {

 id: binder

 property: "speed"

 value: root.speed

}

In the example shown above, a user interface consisting of two clickable areas is presented to the user.

When either area is clicked, it is flashed using an animation. The left area is shown in the code snippet

below. In the MouseArea , the leftClickedAnimation is triggered, causing the area to flash.

Rectangle {

 id: leftRectangle

 width: 290

 height: 200

 color: "green"

 MouseArea {

 id: leftMouseArea

 anchors.fill: parent

 onClicked: leftClickedAnimation.start()

 }

 Text {

 anchors.centerIn: parent

 font.pixelSize: 30

 color: "white"

 text: "Click me!"

 }

}

In addition to the two clickable areas, a Connections element is used. This triggers the third animation

when the active, i.e. the target of the element, is clicked.

To determine which MouseArea to target, two states are defined. Notice that we cannot set the

target property using a PropertyChanges element, as it already contains a target property.

Instead a StateChangeScript is utilized.

When trying out the example, it is worth noticing that when multiple signal handlers are used, all are

invoked. The execution order of these is, however, undefined.

When creating a Connections element without setting the target property, the property defaults to

parent . This means that it has to be explicitly set to null to avoid catching signals from the parent

until the target is set. This behavior does make it possible to create custom signal handler

components based on a Connections element. This way, the code reacting to the signals can be

encapsulated and re-used.

In the example below, the Flasher component can be put inside any MouseArea . When clicked, it

triggers an animation, causing the parent to flash. In the same MouseArea the actual task being

triggered can also be carried out. This separates the standardized user feedback, i.e. the flashing, from

the actual action.

Connections {

 id: connections

 function onClicked() { activeClickedAnimation.start() }

}

states: [

 State {

 name: "left"

 StateChangeScript {

 script: connections.target = leftMouseArea

 }

 },

 State {

 name: "right"

 StateChangeScript {

 script: connections.target = rightMouseArea

 }

 }

]

import QtQuick

Connections {

To use the Flasher , simply instantiate a Flasher within each MouseArea, and it all works.

When using a Connections element to monitor the signals of multiple types of target elements, you

sometimes find yourself in a situation where the available signals vary between the targets. This results

in the Connections element outputting run-time errors as signals are missed. To avoid this, the

ignoreUnknownSignal property can be set to true . This ignores all such errors.

TIP

It is usually a bad idea to suppress error messages, and if you do, make sure to document why

in a comment.

Binding Indirectly

Just as it is not possible to connect to signals of dynamically created elements directly, nor it is possible

to bind properties of a dynamically created element without working with a bridge element. To bind a

property of any element, including dynamically created elements, the Binding element is used.

The Binding element lets you specify a target element, a property to bind and a value to bind it

to. Through using a Binding element, it is, for instance, possible to bind properties of a dynamically

loaded element. This was demonstrated in the introductory example in this chapter, as shown below.

	 function onClicked() {

	 	 // Automatically targets the parent

	 }

}

import QtQuick

Item {

	 // A background flasher that flashes the background of any parent MouseArea

}

Loader {

 id: dialLoader

 anchors.left: parent.left

 anchors.right: parent.right

 anchors.top: parent.top

 anchors.bottom: analogButton.top

 onLoaded: {

 binder.target = dialLoader.item;

As the target element of a Binding not always is set, and perhaps not always has a given property,

the when property of the Binding element can be used to limit the time when the binding is active.

For instance, it can be limited to specific modes in the user interface.

The Binding element also comes with a delayed property. When this property is set to true the

binding is not propagated to the target until the event queue has been emptied. In high load

situations this can serve as an optimization as intermediate values are not pushed to the target .

 }

}

Binding {

 id: binder

 property: "speed"

 value: root.speed

}

Creating and Destroying Objects

The Loader element makes it possible to populate part of a user interface dynamically. However, the

overall structure of the interface is still static. Through JavaScript, it is possible to take one more step

and to instantiate QML elements completely dynamically.

Before we dive into the details of creating elements dynamically, we need to understand the workflow.

When loading a piece of QML from a file or even over the Internet, a component is created. The

component encapsulates the interpreted QML code and can be used to create items. This means that

loading a piece of QML code and instantiating items from it is a two-stage process. First, the QML code

is parsed into a component. Then the component is used to instantiate actual item objects.

In addition to creating elements from QML code stored in files or on servers, it is also possible to create

QML objects directly from text strings containing QML code. The dynamically created items are then

treated in a similar fashion once instantiated.

Dynamically Loading and Instantiating Items

When loading a piece of QML, it is first interpreted as a component. This includes loading dependencies

and validating the code. The location of the QML being loaded can be either a local file, a Qt resource,

or even a distance network location specified by a URL. This means that the loading time can be

everything from instant, for instance, a Qt resource located in RAM without any non-loaded

dependencies, to very long, meaning a piece of code located on a slow server with multiple

dependencies that need to be loaded.

The status of a component being created can be tracked by it is status property. The available values

are Component.Null , Component.Loading , Component.Ready and Component.Error . The Null to

Loading to Ready is the usual flow. At any stage, the status can change to Error . In that case,

the component cannot be used to create new object instances. The Component.errorString() function

can be used to retrieve a user-readable error description.

When loading components over slow connections, the progress property can be of use. It ranges

from 0.0 , meaning nothing has been loaded, to 1.0 indicating that all have been loaded. When the

component’s status changes to Ready , the component can be used to instantiate objects. The code

below demonstrates how that can be achieved, taking into account the event of the component

becoming ready or failing to be created directly, as well as the case where a component is ready slightly

later.

The code above is kept in a separate JavaScript source file, referenced from the main QML file.

The createObject function of a component is used to create object instances, as shown above. This

not only applies to dynamically loaded components but also Component elements inlined in the QML

code. The resulting object can be used in the QML scene like any other object. The only difference is

that it does not have an id .

The createObject function takes two arguments. The first is a parent object of the type Item . The

second is a list of properties and values on the format {"name": value, "name": value} . This is

demonstrated in the example below. Notice that the properties argument is optional.

var component;

function createImageObject() {

 component = Qt.createComponent("dynamic-image.qml");

 if (component.status === Component.Ready || component.status === Component.Error) {

 finishCreation();

 } else {

 component.statusChanged.connect(finishCreation);

 }

}

function finishCreation() {

 if (component.status === Component.Ready) {

 var image = component.createObject(root, {"x": 100, "y": 100});

 if (image === null) {

 console.log("Error creating image");

 }

 } else if (component.status === Component.Error) {

 console.log("Error loading component:", component.errorString());

 }

}

import QtQuick

import "create-component.js" as ImageCreator

Item {

 id: root

 width: 1024

 height: 600

 Component.onCompleted: ImageCreator.createImageObject();

}

js

TIP

A dynamically created component instance is not different to an in-line Component element.

The in-line Component element also provides functions to instantiate objects dynamically.

Incubating Components

When components are created using createObject the creation of the object component is blocking.

This means that the instantiation of a complex element may block the main thread, causing a visible

glitch. Alternatively, complex components may have to be broken down and loaded in stages using

Loader elements.

To resolve this problem, a component can be instantiated using the incubateObject method. This

might work just as createObject and return an instance immediately, or it may call back when the

component is ready. Depending on your exact setup, this may or may not be a good way to solve

instantiation related animation glitches.

To use an incubator, simply use it as createComponent . However, the returned object is an incubator

and not the object instance itself. When the incubator’s status is Component.Ready , the object is

available through the object property of the incubator. All this is shown in the example below:

Dynamically Instantiating Items from Text

Sometimes, it is convenient to be able to instantiate an object from a text string of QML. If nothing else,

it is quicker than putting the code in a separate source file. For this, the Qt.createQmlObject function

var image = component.createObject(root, {"x": 100, "y": 100});

function finishCreate() {

 if (component.status === Component.Ready) {

 var incubator = component.incubateObject(root, {"x": 100, "y": 100});

 if (incubator.status === Component.Ready) {

 var image = incubator.object; // Created at once

 } else {

 incubator.onStatusChanged = function(status) {

 if (status === Component.Ready) {

 var image = incubator.object; // Created async

 }

 };

 }

 }

}

js

js

is used.

The function takes three arguments: qml , parent and filepath . The qml argument contains the

string of QML code to instantiate. The parent argument provides a parent object to the newly created

object. The filepath argument is used when reporting any errors from the creation of the object. The

result returned from the function is either a new object or null .

WARNING

The createQmlObject function always returns immediately. For the function to succeed, all the

dependencies of the call must be loaded. This means that if the code passed to the function

refers to a non-loaded component, the call will fail and return null . To better handle this, the

createComponent / createObject approach must be used.

The objects created using the Qt.createQmlObject function resembles any other dynamically created

object. That means that it is identical to every other QML object, apart from not having an id . In the

example below, a new Rectangle element is instantiated from in-line QML code when the root

element has been created.

Managing Dynamically Created Elements

Dynamically created objects can be treated as any other object in a QML scene. However, there are

some pitfalls that we need to be aware of. The most important is the concept of the creation contexts.

The creation context of a dynamically created object is the context within it is being created. This is not

necessarily the same context as the parent exists in. When the creation context is destroyed, so are the

import QtQuick

Item {

 id: root

 width: 1024

 height: 600

 function createItem() {

 Qt.createQmlObject("import QtQuick 2.5; Rectangle { x: 100; y: 100; width: 100;

height: 100; color: \"blue\" }", root, "dynamicItem")

 }

 Component.onCompleted: root.createItem()

}

bindings concerning the object. This means that it is important to implement the creation of dynamic

objects in a place in the code which will be instantiated during the entire lifetime of the objects.

Dynamically created objects can also be dynamically destroyed. When doing this, there is a rule of

thumb: never attempt to destroy an object that you have not created. This also includes elements that

you have created, but not using a dynamic mechanism such as Component.createObject or

createQmlObject .

An object is destroyed by calling its destroy function. The function takes an optional argument which

is an integer specifying how many milliseconds the objects shall exist before being destroyed. This is

useful too, for instance, let the object complete a final transition.

TIP

It is possible to destroy an object from within, making it possible to create self-destroying

popup windows for instance.

item = Qt.createQmlObject(...)

...

item.destroy()

js

Tracking Dynamic Objects

Working with dynamic objects, it is often necessary to track the created objects. Another common

feature is to be able to store and restore the state of the dynamic objects. Both these tasks are easily

handled using an XmlListModel that is dynamically populated.

In the example shown below two types of elements, rockets and UFOs can be created and moved

around by the user. In order to be able to manipulate the entire scene of dynamically created elements,

we use a model to track the items.

The model, a XmlListModel , is populated as the items are created. The object reference is tracked

alongside the source URL used when instantiating it. The latter is not strictly needed for tracking the

objects but will come in handy later.

As you can tell from the example above, the create-object.js is a more generalized form of the

JavaScript introduced earlier. The create method uses three arguments: a source URL, a root

element, and a callback to invoke when finished. The callback gets called with two arguments: a

reference to the newly created object and the source URL used.

import QtQuick

import "create-object.js" as CreateObject

Item {

 id: root

 ListModel {

 id: objectsModel

 }

 function addUfo() {

 CreateObject.create("ufo.qml", root, itemAdded)

 }

 function addRocket() {

 CreateObject.create("rocket.qml", root, itemAdded)

 }

 function itemAdded(obj, source) {

 objectsModel.append({"obj": obj, "source": source})

 }

This means that each time addUfo or addRocket functions are called, the itemAdded function will be

called when the new object has been created. The latter will append the object reference and source

URL to the objectsModel model.

The objectsModel can be used in many ways. In the example in question, the clearItems function

relies on it. This function demonstrates two things. First, how to iterate over the model and perform a

task, i.e. calling the destroy function for each item to remove it. Secondly, it highlights the fact that

the model is not updated as objects are destroyed. Instead of removing the model item connected to

the object in question, the obj property of that model item is set to null . To remedy this, the code

explicitly has to clear the model item as the objects are removed.

Having a model representing all dynamically created items, it is easy to create a function that serializes

the items. In the example code, the serialized information consists of the source URL of each object

along its x and y properties. These are the properties that can be altered by the user. The

information is used to build an XML document string.

TIP

Currently, the XmlListModel of Qt 6 lacks the xml property and get() function needed to

make serialization and deserialization work.

function clearItems() {

 while(objectsModel.count > 0) {

 objectsModel.get(0).obj.destroy()

 objectsModel.remove(0)

 }

}

function serialize() {

 var res = "<?xml version=\"1.0\" encoding=\"utf-8\"?>\n<scene>\n"

 for(var ii=0; ii < objectsModel.count; ++ii) {

 var i = objectsModel.get(ii)

 res += " <item>\n <source>" + i.source + "</source>\n <x>" + i.obj.x + "

</x>\n <y>" + i.obj.y + "</y>\n </item>\n"

 }

 res += "</scene>"

 return res

}

The XML document string can be used with an XmlListModel by setting the xml property of the

model. In the code below, the model is shown along the deserialize function. The deserialize

function kickstarts the deserialization by setting the dsIndex to refer to the first item of the model

and then invoking the creation of that item. The callback, dsItemAdded then sets that x and y

properties of the newly created object. It then updates the index and creates the next object, if any.

The example demonstrates how a model can be used to track created items, and how easy it is to

serialize and deserialize such information. This can be used to store a dynamically populated scene

such as a set of widgets. In the example, a model was used to track each item.

An alternate solution would be to use the children property of the root of a scene to track items. This,

however, requires the items themselves to know the source URL to use to re-create them. It also

requires us to implement a way to be able to tell dynamically created items apart from the items that

are a part of the original scene, so that we can avoid attempting to serialize and later deserialize any of

the original items.

XmlListModel {

 id: xmlModel

 query: "/scene/item"

 XmlListModelRole { name: "source"; elementName: "source" }

 XmlListModelRole { name: "x"; elementName: "x" }

 XmlListModelRole { name: "y"; elementName: "y" }

}

function deserialize() {

 dsIndex = 0

 CreateObject.create(xmlModel.get(dsIndex).source, root, dsItemAdded)

}

function dsItemAdded(obj, source) {

 itemAdded(obj, source)

 obj.x = xmlModel.get(dsIndex).x

 obj.y = xmlModel.get(dsIndex).y

 dsIndex++

 if (dsIndex < xmlModel.count) {

 CreateObject.create(xmlModel.get(dsIndex).source, root, dsItemAdded)

 }

}

property int dsIndex

Summary

In this chapter, we have looked at creating QML elements dynamically. This lets us create QML scenes

freely, opening the door for user configurable and plug-in based architectures.

The easiest way to dynamically load a QML element is to use a Loader element. This acts as a

placeholder for the contents being loaded.

For a more dynamic approach, the Qt.createQmlObject function can be used to instantiate a string of

QML. This approach does, however, have limitations. The full-blown solution is to dynamically create a

Component using the Qt.createComponent function. Objects are then created by calling the

createObject function of a Component .

As bindings and signal connections rely on the existence of an object id , or access to the object

instantiation, an alternate approach must be used for dynamically created objects. To create a binding,

the Binding element is used. The Connections element makes it possible to connect to signals of a

dynamically created object.

One of the challenges of working with dynamically created items is to keep track of them. This can be

done using a model. By having a model tracking the dynamically created items, it is possible to

implement functions for serialization and deserialization, making it possible to store and restore

dynamically created scenes.

JavaScript

JavaScript is the lingua-franca on web client development. It also starts to get traction on web server

development mainly by node js. As such it is a well-suited addition as an imperative language onto the

side of declarative QML language. QML itself as a declarative language is used to express the user

interface hierarchy but is limited to express operational code. Sometimes you need a way to express

operations, here JavaScript comes into play.

TIP

There is an open question in the Qt community about the right mixture about QML/JS/Qt C++ in

a modern Qt application. The commonly agreed recommended mixture is to limit the JS part of

your application to a minimum and do your business logic inside Qt C++ and the UI logic inside

QML/JS.

This book pushes the boundaries, which is not always the right mix for a product development and not

for everyone. It is important to follow your team skills and your personal taste. In doubt follow the

recommendation.

Here a short example of how JS used in QML looks like:

Button {

 width: 200

 height: 300

 property bool checked: false

 text: "Click to toggle"

 // JS function

 function doToggle() {

 checked = !checked

 }

 onClicked: {

 // this is also JavaScript

 doToggle();

 console.log('checked: ' + checked)

 }

}

So JavaScript can come in many places inside QML as a standalone JS function, as a JS module and it

can be on every right side of a property binding.

Within QML you declare the user interface, with JavaScript you make it functional. So how much

JavaScript should you write? It depends on your style and how familiar you are with JS development. JS

is a loosely typed language, which makes it difficult to spot type defects. Also, functions expect all

argument variations, which can be a very nasty bug to spot. The way to spot defects is rigorous unit

testing or acceptance testing. So if you develop real logic (not some glue lines of code) in JS you should

really start using the test-first approach. In generally mixed teams (Qt/C++ and QML/JS) are very

successful when they minimize the amount of JS in the frontend as the domain logic and do the heavy

lifting in Qt C++ in the backend. The backend should then be rigorous unit tested so that the frontend

developers can trust the code and focus on all these little user interface requirements.

TIP

In general: backend developers are functional driven and frontend developers are user story

driven.

import "util.js" as Util // import a pure JS module

Button {

 width: 200

 height: width*2 // JS on the right side of property binding

 // standalone function (not really useful)

 function log(msg) {

 console.log("Button> " + msg);

 }

 onClicked: {

 // this is JavaScript

 log();

 Qt.quit();

 }

}

Browser/HTML vs Qt Quick/QML

The browser is the runtime to render HTML and execute the Javascript associated with the HTML.

Nowadays modern web applications contain much more JavaScript than HTML. The Javascript inside

the browser is a standard ECMAScript environment with some additional browser APIs. A typical JS

environment inside the browser has a global object named window which is used to interact with the

browser window (title, location URL, DOM tree etc.) Browsers provide functions to access DOM nodes

by their id, class etc. (which were used by jQuery to provide the CSS selectors) and recently also by CSS

selectors (querySelector , querySelectorAll). Additionally, there is a possibility to call a function

after a certain amount of time (setTimeout) and to call it repeatedly (setInterval). Besides these

(and other browser APIs), the environment is similar to QML/JS.

Another difference is how JS can appear inside HTML and QML. In HTML, you can execute JS only

during the initial page load or in event handlers (e.g. page loaded, mouse pressed). For example, your

JS initializes normally on page load, which is comparable to Component.onCompleted in QML. By

default, you cannot use JS for property bindings in a browser (AngularJS enhances the DOM tree to

allow these, but this is far away from standard HTML).

In QML, JS is a much more of a first-class citizen and is much deeper integrated into the QML render

tree. Which makes the syntax much more readable. Besides these differences, people who have

developed HTML/JS applications should feel at home using QML/JS.

JS Language
This chapter will not give you a general introduction to JavaScript. There are other books out there for a

general introduction to JavaScript, please visit this great side on Mozilla Developer Network

(https://developer.mozilla.org/en-US/docs/Web/JavaScript/A_re-introduction_to_JavaScript) .

On the surface JavaScript is a very common language and does not differ a lot from other languages:

But be warned JS has function scope and not block scope as in C++ (see Functions and function scope

(https://developer.mozilla.org/it/docs/Web/JavaScript/Reference/Functions_and_function_scope)).

The statements if ... else , break , continue also work as expected. The switch case can also

compare other types and not just integer values:

JS knows several values which can be false, e.g. false , 0 , "" , undefined , null). For example, a

function returns by default undefined . To test for false use the === identity operator. The ==

equality operator will do type conversion to test for equality. If possible use the faster and better ===

function countDown() {

 for(var i=0; i<10; i++) {

 console.log('index: ' + i)

 }

}

function countDown2() {

 var i=10;

 while(i>0) {

 i--;

 }

}

function getAge(name) {

 // switch over a string

 switch(name) {

 case "father":

 return 58;

 case "mother":

 return 56;

 }

 return unknown;

}

js

js

https://developer.mozilla.org/en-US/docs/Web/JavaScript/A_re-introduction_to_JavaScript
https://developer.mozilla.org/it/docs/Web/JavaScript/Reference/Functions_and_function_scope

strict equality operator which will test for identity (see Comparison operators

(https://developer.mozilla.org/en-

US/docs/Web/JavaScript/Reference/Operators/Comparison_Operators)).

Under the hood, javascript has its own ways of doing things. For example arrays:

Also for people coming from C++ or Java which are used to an OO language JS just works differently. JS

is not purely an OO language it is a so-called prototype based language. Each object has a prototype

object. An object is created based on his prototype object. Please read more about this in the book

Javascript the Good Parts by Douglas Crockford (http://javascript.crockford.com) .

To test some small JS snippets you can use the online JS Console (http://jsconsole.com) or just build

a little piece of QML code:

function doIt() {

 var a = [] // empty arrays

 a.push(10) // addend number on arrays

 a.push("Monkey") // append string on arrays

 console.log(a.length) // prints 2

 a[0] // returns 10

 a[1] // returns Monkey

 a[2] // returns undefined

 a[99] = "String" // a valid assignment

 console.log(a.length) // prints 100

 a[98] // contains the value undefined

}

import QtQuick 2.5

Item {

 function runJS() {

 console.log("Your JS code goes here");

 }

 Component.onCompleted: {

 runJS();

 }

}

js

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Operators/Comparison_Operators
http://javascript.crockford.com/
http://jsconsole.com/

JS Objects
While working with JS there are some objects and methods which are more frequently used. This is a

small collection of them.

Math.floor(v) , Math.ceil(v) , Math.round(v) - largest, smallest, rounded integer from float

Math.random() - create a random number between 0 and 1

Object.keys(o) - get keys from object (including QObject)

JSON.parse(s) , JSON.stringify(o) - conversion between JS object and JSON string

Number.toFixed(p) - fixed precision float

Date - Date manipulation

You can find them also at: JavaScript reference (https://developer.mozilla.org/en-

US/docs/Web/JavaScript/Reference)

Here some small and limited examples of how to use JS with QML. They should give you an idea how

you can use JS inside QML

Print all keys from QML Item

Parse an object to a JSON string and back

Item {

 id: root

 Component.onCompleted: {

 var keys = Object.keys(root);

 for(var i=0; i<keys.length; i++) {

 var key = keys[i];

 // prints all properties, signals, functions from object

 console.log(key + ' : ' + root[key]);

 }

 }

}

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference

Current Date

Call a function by name

Item {

 property var obj: {

 key: 'value'

 }

 Component.onCompleted: {

 var data = JSON.stringify(obj);

 console.log(data);

 var obj = JSON.parse(data);

 console.log(obj.key); // > 'value'

 }

}

Item {

 Timer {

 id: timeUpdater

 interval: 100

 running: true

 repeat: true

 onTriggered: {

 var d = new Date();

 console.log(d.getSeconds());

 }

 }

}

Item {

 id: root

 function doIt() {

 console.log("doIt()")

 }

 Component.onCompleted: {

 // Call using function execution

 root["doIt"]();

 var fn = root["doIt"];

 // Call using JS call method (could pass in a custom this object and arguments)

 fn.call()

 }

}

Creating a JS Console

As a little example, we will create a JS console. We need an input field where the user can enter his JS

expressions and ideally there should be a list of output results. As this should more look like a desktop

application we use the Qt Quick Controls module.

TIP

A JS console inside your next project can be really beneficial for testing. Enhanced with a

Quake-Terminal effect it is also good to impress customers. To use it wisely you need to

control the scope the JS console evaluates in, e.g. the currently visible screen, the main data

model, a singleton core object or all together.

We use Qt Creator to create a Qt Quick UI project using Qt Quick controls. We call the project

JSConsole. After the wizard has finished we have already a basic structure for the application with an

application window and a menu to exit the application.

For the input, we use a TextField and a Button to send the input for evaluation. The result of the

expression evaluation is displayed using a ListView with a ListModel as the model and two labels to

display the expression and the evaluated result.

Our application will be split in two files:

JSConsole.qml : the main view of the app

jsconsole.js : the javascript library responsible for evaluating user statements

JSConsole.qml

Application window

Form

// JSConsole.qml

import QtQuick

import QtQuick.Controls

import QtQuick.Layouts

import QtQuick.Window

import "jsconsole.js" as Util

ApplicationWindow {

 id: root

 title: qsTr("JSConsole")

 width: 640

 height: 480

 visible: true

 menuBar: MenuBar {

 Menu {

 title: qsTr("File")

 MenuItem {

 text: qsTr("Exit")

 onTriggered: Qt.quit()

 }

 }

 }

ColumnLayout {

 anchors.fill: parent

 anchors.margins: 9

 RowLayout {

 Layout.fillWidth: true

 TextField {

 id: input

 Layout.fillWidth: true

 focus: true

 onAccepted: {

 // call our evaluation function on root

 root.jsCall(input.text)

 }

 }

 Button {

 text: qsTr("Send")

 onClicked: {

 // call our evaluation function on root

 root.jsCall(input.text)

 }

 }

 }

 Item {

 Layout.fillWidth: true

 Layout.fillHeight: true

 Rectangle {

 anchors.fill: parent

 color: '#333'

 border.color: Qt.darker(color)

 opacity: 0.2

 radius: 2

 }

 ScrollView {

 id: scrollView

 anchors.fill: parent

 anchors.margins: 9

 ListView {

 id: resultView

 model: ListModel {

 id: outputModel

 }

 delegate: ColumnLayout {

 id: delegate

 required property var model

 width: ListView.view.width

 Label {

 Layout.fillWidth: true

 color: 'green'

 text: "> " + delegate.model.expression

 }

 Label {

 Layout.fillWidth: true

 color: delegate.model.error === "" ? 'blue' : 'red'

Calling the library

The evaluation function jsCall does the evaluation not by itself this has been moved to a JS module

(jsconsole.js) for clearer separation.

TIP

For safety, we do not use the eval function from JS as this would allow the user to modify the

local scope. We use the Function constructor to create a JS function on runtime and pass in our

scope as this variable. As the function is created every time it does not act as a closure and

stores its own scope, we need to use this.a = 10 to store the value inside this scope of the

function. This scope is set by the script to the scope variable.

jsconsole.js

 text: delegate.model.error === "" ? "" + delegate.model.result :

delegate.model.error

 }

 Rectangle {

 height: 1

 Layout.fillWidth: true

 color: '#333'

 opacity: 0.2

 }

 }

 }

 }

 }

}

import "jsconsole.js" as Util

function jsCall(exp) {

 const data = Util.call(exp)

 // insert the result at the beginning of the list

 outputModel.insert(0, data)

}

// jsconsole.js

.pragma library

js

The data return from the call function is a JS object with a result, expression and error property: data:

{ expression: "", result: "", error: "" } . We can use this JS object directly inside the ListModel

and access it then from the delegate, e.g. delegate.model.expression gives us the input expression.

const scope = {

 // our custom scope injected into our function evaluation

}

function call(msg) {

 const exp = msg.toString()

 console.log(exp)

 const data = {

 expression : msg,

 result: "",

 error: ""

 }

 try {

 const fun = new Function('return (' + exp + ')')

 data.result = JSON.stringify(fun.call(scope), null, 2)

 console.log('scope: ' + JSON.stringify(scope, null, 2), 'result: ' + data.result)

 } catch(e) {

 console.log(e.toString())

 data.error = e.toString()

 }

 return data

}

Qt and C++

Qt is a C++ toolkit with an extension for QML and Javascript. There exist many language bindings for

Qt, but as Qt itself is developed in C++. The spirit of C++ can be found throughout the classes. In this

section, we will look at Qt from a C++ perspective to build a better understanding of how to extend

QML with native plugins developed using C++. Through C++, it is possible to extend and control the

execution environment provided to QML.

This chapter will, just as Qt, require the reader to have some basic knowledge of C++. Qt does not rely

on advanced C++ features and I generally consider the Qt style of C++ to be very readable, so do not

worry if you feel that your C++ knowledge is shaky.

Qt C++

Approaching Qt from a C++ direction, you will find that Qt enriches C++ with a number of modern

language features enabled through making introspection data available. This is made possible through

the use of the QObject base class. Introspection data, or metadata, maintains information of the

classes at run-time, something that ordinary C++ does not do. This makes it possible to dynamically

probe objects for information about such details as their properties and available methods.

Qt uses this meta information to enable a very loosely bound callback concept using signals and slots.

Each signal can be connected to any number of slots or even other signals. When a signal is emitted

from an object instance, the connected slots are invoked. As the signal emitting object does not need to

know anything about the object owning the slot and vice versa, this mechanism is used to create very

reusable components with very few inter-component dependencies.

Qt for Python

The introspection features are also used to create dynamic language bindings, making it possible to

expose a C++ object instance to QML and making C++ functions callable from Javascript. Other

bindings for Qt C++ exist and besides the standard Javascript binding, the official one is the Python

binding called PySide6 (https://www.qt.io/qt-for-python) .

Cross Platform

In addition to this central concept, Qt makes it possible to develop cross-platform applications using

C++. Qt C++ provides a platform abstraction on the different operating systems, which allows the

developer to concentrate on the task at hand and not the details of how you open a file on different

operating systems. This means you can re-compile the same source code for Windows, OS X, and Linux

and Qt takes care of the different OS ways of handling certain things. The end result is natively built

applications with the look and feel of the target platform. As the mobile is the new desktop, newer Qt

versions can also target a number of mobile platforms using the same source code, e.g. iOS, Android,

Jolla, BlackBerry, Ubuntu Phone, Tizen.

When it comes to re-using, not only can source code be re-used but developer skills are also reusable.

A team knowing Qt can reach out to far more platforms than a team just focusing on a single platform

specific technology and as Qt is so flexible the team can create different system components using the

same technology.

For all platform, Qt offers a set of basic types, e.g. strings with full Unicode support, lists, vectors,

buffers. It also provides a common abstraction to the target platform’s main loop, and cross-platform

threading and networking support. The general philosophy is that for an application developer Qt

comes with all required functionality included. For domain-specific tasks such as to interface to your

native libraries, Qt comes with several helper classes to make this easier.

https://www.qt.io/qt-for-python

A Boilerplate Application
The best way to understand Qt is to start from a small example. This application creates a simple

"Hello World!" string and writes it into a file using Unicode characters.

The example demonstrates the use of file access and the how to write text to a file using text codecs

using a text stream. For binary data, there is a cross-platform binary stream called QDataStream that

takes care of endianess and other details. The different classes we use are included using their class

name at the top of the file. You can also include classes using the module and class name e.g. #include

#include <QCoreApplication>

#include <QString>

#include <QFile>

#include <QDir>

#include <QTextStream>

#include <QDebug>

int main(int argc, char *argv[])

{

 QCoreApplication app(argc, argv);

 // prepare the message

 QString message("Hello World!");

 // prepare a file in the users home directory named out.txt

 QFile file(QDir::home().absoluteFilePath("out.txt"));

 // try to open the file in write mode

 if(!file.open(QIODevice::WriteOnly)) {

 qWarning() << "Can not open file with write access";

 return -1;

 }

 // as we handle text we need to use proper text codecs

 QTextStream stream(&file);

 // write message to file via the text stream

 stream << message;

 // do not start the eventloop as this would wait for external IO

 // app.exec();

 // no need to close file, closes automatically when scope ends

 return 0;

}

<QtCore/QFile> . For the lazy, there is also the possibility to include all the classes from a module using

#include <QtCore> . For instance, in QtCore you have the most common classes used for an

application that are not UI related. Have a look at the QtCore class list (http://doc.qt.io/qt-5/qtcore-

module.html) or the QtCore overview (http://doc.qt.io/qt-5/qtcore-index.html) .

You build the application using CMake and make. CMake reads a project file, CMakeLists.txt and

generates a Makefile which is used to build the application. CMake supports other build systems too,

for example ninja. The project file is platform independent and CMake has some rules to apply the

platform specific settings to the generated makefile. The project can also contain platform scopes for

platform-specific rules, which are required in some specific cases.

Here is an example of a simple project file generated by Qt Creator. Notice that Qt attempts to create a

file that is compatible with both Qt 5 and Qt 6, as well as various platforms such as Android, OS X and

such.

cmake_minimum_required(VERSION 3.14)

project(projectname VERSION 0.1 LANGUAGES CXX)

set(CMAKE_INCLUDE_CURRENT_DIR ON)

set(CMAKE_AUTOUIC ON)

set(CMAKE_AUTOMOC ON)

set(CMAKE_AUTORCC ON)

set(CMAKE_CXX_STANDARD 11)

set(CMAKE_CXX_STANDARD_REQUIRED ON)

QtCreator supports the following variables for Android, which are identical to qmake

Android variables.

Check https://doc.qt.io/qt/deployment-android.html for more information.

They need to be set before the find_package(...) calls below.

#if(ANDROID)

set(ANDROID_PACKAGE_SOURCE_DIR "${CMAKE_CURRENT_SOURCE_DIR}/android")

if (ANDROID_ABI STREQUAL "armeabi-v7a")

set(ANDROID_EXTRA_LIBS

${CMAKE_CURRENT_SOURCE_DIR}/path/to/libcrypto.so

${CMAKE_CURRENT_SOURCE_DIR}/path/to/libssl.so)

endif()

#endif()

find_package(QT NAMES Qt6 Qt5 COMPONENTS Core Quick REQUIRED)

find_package(Qt${QT_VERSION_MAJOR} COMPONENTS Core Quick REQUIRED)

set(PROJECT_SOURCES

 main.cpp

 qml.qrc

sh

http://doc.qt.io/qt-5/qtcore-module.html
http://doc.qt.io/qt-5/qtcore-index.html

We will not go into the depths of this file. Just remember Qt uses CMake's CMakeLists.txt files to

generate platform-specific makefiles, that are then used to build a project. In the build system section

we will have a look at more basic, handwritten, CMake files.

The simple code example above just writes the text and exits the application. For a command line tool,

this is good enough. For a user interface you need an event loop which waits for user input and

somehow schedules draw operations. Here follows the same example now uses a button to trigger the

writing.

Our main.cpp surprisingly got smaller. We moved code into an own class to be able to use Qt's signal

and slots for the user input, i.e. to handle the button click. The signal and slot mechanism normally

needs an object instance as you will see shortly, but it can also be used with C++ lambdas.

)

if(${QT_VERSION_MAJOR} GREATER_EQUAL 6)

 qt_add_executable(projectname

 MANUAL_FINALIZATION

 ${PROJECT_SOURCES}

)

else()

 if(ANDROID)

 add_library(projectname SHARED

 ${PROJECT_SOURCES}

)

 else()

 add_executable(projectname

 ${PROJECT_SOURCES}

)

 endif()

endif()

target_compile_definitions(projectname

 PRIVATE $<$<OR:$<CONFIG:Debug>,$<CONFIG:RelWithDebInfo>>:QT_QML_DEBUG>)

target_link_libraries(projectname

 PRIVATE Qt${QT_VERSION_MAJOR}::Core Qt${QT_VERSION_MAJOR}::Quick)

set_target_properties(projectname PROPERTIES

 MACOSX_BUNDLE_GUI_IDENTIFIER my.example.com

 MACOSX_BUNDLE_BUNDLE_VERSION ${PROJECT_VERSION}

 MACOSX_BUNDLE_SHORT_VERSION_STRING ${PROJECT_VERSION_MAJOR}.${PROJECT_VERSION_MINOR}

)

if(QT_VERSION_MAJOR EQUAL 6)

 qt_import_qml_plugins(projectname)

 qt_finalize_executable(projectname)

endif()

In the main function we create the application object, a window, and then start the event loop using

exec() . For now, the application sits in the event loop and waits for user input.

Using Qt, you can build user interfaces in both QML and Widgets. In this book we focus on QML, but in

this chapter, we will look at Widgets. This lets us create the program only C++.

#include <QtCore>

#include <QtGui>

#include <QtWidgets>

#include "mainwindow.h"

int main(int argc, char** argv)

{

 QApplication app(argc, argv);

 MainWindow win;

 win.resize(320, 240);

 win.setVisible(true);

 return app.exec();

}

int main(int argc, char** argv)

{

 QApplication app(argc, argv); // init application

 // create the ui

 return app.exec(); // execute event loop

}

The main window itself is a widget. It becomes a top-level window as it does not have any parent. This

comes from how Qt sees a user interface as a tree of UI elements. In this case, the main window is the

root element, thus becomes a window, while the push button, that is a child of the main window,

becomes a widget inside the window.

Additionally, we define a public slot called storeContent() in a custom section in the header file. Slots

can be public, protected, or private, and can be called just like any other class method. You may also

encounter a signals section with a set of signal signatures. These methods should not be called and

must not be implemented. Both signals and slots are handled by the Qt meta information system and

can be introspected and called dynamically at run-time.

The purpose of the storeContent() slot is that it is called when the button is clicked. Let's make that

happen!

#ifndef MAINWINDOW_H

#define MAINWINDOW_H

#include <QtWidgets>

class MainWindow : public QMainWindow

{

public:

 MainWindow(QWidget* parent=0);

 ~MainWindow();

public slots:

 void storeContent();

private:

 QPushButton *m_button;

};

#endif // MAINWINDOW_H

#include "mainwindow.h"

MainWindow::MainWindow(QWidget *parent)

 : QMainWindow(parent)

{

 m_button = new QPushButton("Store Content", this);

 setCentralWidget(m_button);

 connect(m_button, &QPushButton::clicked, this, &MainWindow::storeContent);

}

MainWindow::~MainWindow()

{

In the main window, we first create the push button and then register the signal clicked() with the

slot storeContent() using the connect method. Every time the signal clicked is emitted the slot

storeContent() is called. And now, the two objects communicate via signal and slots despite not

being aware of each other. This is called loose coupling and is made possible using the QObject base

class which most Qt classes derive from.

}

void MainWindow::storeContent()

{

 qDebug() << "... store content";

 QString message("Hello World!");

 QFile file(QDir::home().absoluteFilePath("out.txt"));

 if(!file.open(QIODevice::WriteOnly)) {

 qWarning() << "Can not open file with write access";

 return;

 }

 QTextStream stream(&file);

 stream << message;

}

The QObject

As described in the introduction, the QObject is what enables many of Qt's core functions such as

signals and slots. This is implemented through introspection, which is what QObject provides.

QObject is the base class of almost all classes in Qt. Exceptions are value types such as QColor ,

QString and QList .

A Qt object is a standard C++ object, but with more abilities. These can be divided into two groups:

introspection and memory management. The first means that a Qt object is aware of its class name, its

relationship to other classes, as well as its methods and properties. The memory management concept

means that each Qt object can be the parent of child objects. The parent owns the children, and when

the parent is destroyed, it is responsible for destroying its children.

The best way of understanding how the QObject abilities affect a class is to take a standard C++ class

and Qt enables it. The class shown below represents an ordinary such class.

The person class is a data class with a name and gender properties. The person class uses Qt’s object

system to add meta information to the c++ class. It allows users of a person object to connect to the

slots and get notified when the properties get changed.

class Person : public QObject

{

 Q_OBJECT // enabled meta object abilities

 // property declarations required for QML

 Q_PROPERTY(QString name READ name WRITE setName NOTIFY nameChanged)

 Q_PROPERTY(Gender gender READ gender WRITE setGender NOTIFY genderChanged)

 // enables enum introspections

 Q_ENUM(Gender)

 // makes the type creatable in QML

 QML_ELEMENT

public:

 // standard Qt constructor with parent for memory management

 Person(QObject *parent = 0);

 enum Gender { Unknown, Male, Female, Other };

 QString name() const;

 Gender gender() const;

The constructor passes the parent to the superclass and initializes the members. Qt’s value classes are

automatically initialized. In this case QString will initialize to a null string (QString::isNull()) and

the gender member will explicitly initialize to the unknown gender.

The getter function is named after the property and is normally a basic const function. The setter

emits the changed signal when the property has changed. To ensure that the value actually has

changed, we insert a guard to compare the current value with the new value. Only when the value

differs we assign it to the member variable and emit the changed signal.

public slots: // slots can be connected to signals, or called

 void setName(const QString &);

 void setGender(Gender);

signals: // signals can be emitted

 void nameChanged(const QString &name);

 void genderChanged(Gender gender);

private:

 // data members

 QString m_name;

 Gender m_gender;

};

Person::Person(QObject *parent)

 : QObject(parent)

 , m_gender(Person::Unknown)

{

}

QString Person::name() const

{

 return m_name;

}

void Person::setName(const QString &name)

{

 if (m_name != name) // guard

 {

 m_name = name;

 emit nameChanged(m_name);

 }

}

Having a class derived from QObject , we have gained more meta object abilities we can explore using

the metaObject() method. For example, retrieving the class name from the object.

There are many more features which can be accessed by the QObject base class and the meta object.

Please check out the QMetaObject documentation.

TIP

QObject , and the Q_OBJECT macro has a lightweight sibling: Q_GADGET . The Q_GADGET

macro can be inserted in the private section of non- QObject -derived classes to expose

properties and invokable methods. Beware that a Q_GADGET object cannot have signals, so the

properties cannot provide a change notification signal. Still, this can be useful to provide a

QML-like interface to data structures exposed from C++ to QML without invoking the cost of a

fully fledged QObject .

Person* person = new Person();

person->metaObject()->className(); // "Person"

Person::staticMetaObject.className(); // "Person"

Build Systems

Building software reliably across different platforms can be a complex task. You will encounter

different environments with different compilers, paths, and library variations. The purpose of Qt is to

shield the application developer from these cross-platform issues. Qt relies on CMake

(https://cmake.org/) to convert CMakeLists.txt project files to platform specific make files, which

then can be built using the platform specific tooling.

TIP

Qt comes with three different build systems. The original Qt build system
was called qmake .

Another Qt specific build system is QBS which uses a
declarative approach to describing the

build sequence. Since version 6, Qt
has shifted from qmake to CMake as the official build

system.

A typical build flow in Qt under Unix would be:

With Qt you are encouraged to use shadow builds. A shadow build is a build outside of your source

code location. Assume we have a myproject folder with a CMakeLists.txt file. The flow would be like

this:

We create a build folder and then call cmake from inside the build folder with the location of our

project folder. This will set up the makefile in a way that all build artifacts are stored under the build

folder instead of inside our source code folder. This allows us to create builds for different qt versions

and build configurations at the same time and also it does not clutter our source code folder which is

always a good thing.

When you are using Qt Creator it does these things behind the scenes for you and you do not have to

worry about these steps in most cases. For larger projects and for a deeper understanding of the flow,

vim CMakeLists.txt

cmake . // generates Makefile

make

mkdir build

cd build

cmake ..

sh

sh

https://cmake.org/

it is recommended that you learn to build your Qt project from the command line to ensure that you

have full control over what is happening.

CMake

CMake is a tool created by Kitware. Kitware is very well known for their 3D visualization software VTK

and also CMake, the cross-platform makefile generator. It uses a series of CMakeLists.txt files to

generate platform-specific makefiles. CMake is used by the KDE project and as such has a special

relationship with the Qt community and since version 6, it is the preferred way to build Qt projects.

The CMakeLists.txt is the file used to store the project configuration. For a simple hello world using

Qt Core the project file would look like this:

This will build a foundations_tests executable using tst_foundation.cpp and link against the Core

and Test libraries from Qt 6. You will find more examples of CMake files in this book, as we use CMake

for all C++ based examples.

// ensure cmake version is at least 3.16.0

cmake_minimum_required(VERSION 3.16.0)

// defines a project with a version

project(foundation_tests VERSION 1.0.0 LANGUAGES CXX)

// pick the C++ standard to use, in this case C++17

set(CMAKE_CXX_STANDARD 17)

set(CMAKE_CXX_STANDARD_REQUIRED ON)

// tell CMake to run the Qt tools moc, rcc, and uic automatically

set(CMAKE_AUTOMOC ON)

set(CMAKE_AUTORCC ON)

set(CMAKE_AUTOUIC ON)

// configure the Qt 6 modules core and test

find_package(Qt6 COMPONENTS Core REQUIRED)

find_package(Qt6 COMPONENTS Test REQUIRED)

// define an executable built from a source file

add_executable(foundation_tests

 tst_foundation.cpp

)

// tell cmake to link the executable to the Qt 6 core and test modules

target_link_libraries(foundation_tests PRIVATE Qt6::Core Qt6::Test)

CMake is a powerful, a complex, tool and it takes some time to get used to the syntax. CMake is very

flexible and really shines in large and complex projects.

References

CMake Help (http://www.cmake.org/documentation/) - available online but also as Qt Help format

Running CMake (http://www.cmake.org/runningcmake/)

KDE CMake Tutorial (https://techbase.kde.org/Development/Tutorials/CMake)

CMake Book (http://www.kitware.com/products/books/CMakeBook.html)

CMake and Qt (http://www.cmake.org/cmake/help/v3.0/manual/cmake-qt.7.html)

QMake

QMake is the tool which reads your project file and generates the build file. A project file is a simplified

write-down of your project configuration, external dependencies, and your source files. The simplest

project file is probably this:

Here we build an executable application which will have the name myproject based on the project file

name. The build will only contain the main.cpp source file. And by default, we will use the QtCore

and QtGui module for this project. If our project were a QML application we would need to add the

QtQuick and QtQml module to the list:

Now the build file knows to link against the QtQml and QtQuick Qt modules. QMake uses the

concept of = , += and -= to assign, add, remove elements from a list of options, respectively. For a

pure console build without UI dependencies you would remove the QtGui module:

// myproject.pro

SOURCES += main.cpp

// myproject.pro

QT += qml quick

SOURCES += main.cpp

// myproject.pro

js

js

js

http://www.cmake.org/documentation/
http://www.cmake.org/runningcmake/
https://techbase.kde.org/Development/Tutorials/CMake
http://www.kitware.com/products/books/CMakeBook.html
http://www.cmake.org/cmake/help/v3.0/manual/cmake-qt.7.html

When you want to build a library instead of an application, you need to change the build template:

Now the project will build as a library without UI dependencies and used the utils.h header and the

utils.cpp source file. The format of the library will depend on the OS you are building the project.

Often you will have more complicated setups and need to build a set of projects. For this, qmake offers

the subdirs template. Assume we would have a mylib and a myapp project. Then our setup could be

like this:

We know already how the mylib.pro and myapp.pro would look like. The my.pro as the overarching

project file would look like this:

This declares a project with two subprojects: mylib and myapp , where myapp depends on mylib .

When you run qmake on this project file it will generate file a build file for each project in a

corresponding folder. When you run the makefile for my.pro , all subprojects are also built.

QT -= gui

SOURCES += main.cpp

// myproject.pro

TEMPLATE = lib

QT -= gui

HEADERS += utils.h

SOURCES += utils.cpp

my.pro

mylib/mylib.pro

mylib/utils.h

mylib/utils.cpp

myapp/myapp.pro

myapp/main.cpp

// my.pro

TEMPLATE = subdirs

subdirs = mylib \

 myapp

myapp.depends = mylib

js

js

js

Sometimes you need to do one thing on one platform and another thing on other platforms based on

your configuration. For this qmake introduces the concept of scopes. A scope is applied when a

configuration option is set to true.

For example, to use a Unix specific utils implementation you could use:

What it says is if the CONFIG variable contains a Unix option then apply this scope otherwise use the

else path. A typical one is to remove the application bundling under mac:

This will create your application as a plain executable under mac and not as a .app folder which is

used for application installation.

QMake based projects are normally the number one choice when you start programming Qt

applications. There are also other options out there. All have their benefits and drawbacks. We will

shortly discuss these other options next.

References

QMake Manual (http://doc.qt.io/qt-5//qmake-manual.html) - Table of contents of the qmake

manual

QMake Language (http://doc.qt.io/qt-5//qmake-language.html) - Value assignment, scopes and so

like

QMake Variables (http://doc.qt.io/qt-5//qmake-variable-reference.html) - Variables like

TEMPLATE, CONFIG, QT is explained here

unix {

 SOURCES += utils_unix.cpp

} else {

 SOURCES += utils.cpp

}

macx {

 CONFIG -= app_bundle

}

js

js

http://doc.qt.io/qt-5//qmake-manual.html
http://doc.qt.io/qt-5//qmake-language.html
http://doc.qt.io/qt-5//qmake-variable-reference.html

Common Qt Classes
Most Qt classes are derived from the QObject class. It encapsulates the central concepts of Qt. But

there are many more classes in the framework. Before we continue looking at QML and how to extend

it, we will look at some basic Qt classes that are useful to know about.

The code examples shown in this section are written using the Qt Test library. This way, we can ensure

that the code works, without constructing entire programs around it. The QVERIFY and QCOMPARE

functions from the test library to assert a certain condition. We will use {} scopes to avoid name

collisions. Don't let this confuse you.

QString

In general, text handling in Qt is Unicode based. For this, you use the QString class. It comes with a

variety of great functions which you would expect from a modern framework. For 8-bit data, you would

use normally the QByteArray class and for ASCII identifiers the QLatin1String to preserve memory.

For a list of strings you can use a QList<QString> or simply the QStringList class (which is derived

from QList<QString>).

Below are some examples of how to use the QString class. QString can be created on the stack but it

stores its data on the heap. Also when assigning one string to another, the data will not be copied - only

a reference to the data. So this is really cheap and lets the developer concentrate on the code and not

on the memory handling. QString uses reference counters to know when the data can be safely

deleted. This feature is called Implicit Sharing (http://doc.qt.io/qt-6/implicit-sharing.html) and it is

used in many Qt classes.

Below you can see how to convert a number to a string and back. There are also conversion functions

for float or double and other types. Just look for the function in the Qt documentation used here and

QString data("A,B,C,D"); // create a simple string

// split it into parts

QStringList list = data.split(",");

// create a new string out of the parts

QString out = list.join(",");

// verify both are the same

QVERIFY(data == out);

// change the first character to upper case

QVERIFY(QString("A") == out[0].toUpper());

http://doc.qt.io/qt-6/implicit-sharing.html

you will find the others.

Often in a text, you need to have parameterized text. One option could be to use QString("Hello" +

name) but a more flexible method is the arg marker approach. It preserves the order also during

translation when the order might change.

Sometimes you want to use Unicode characters directly in your code. For this, you need to remember

how to mark them for the QChar and QString classes.

// create some variables

int v = 10;

int base = 10;

// convert an int to a string

QString a = QString::number(v, base);

// and back using and sets ok to true on success

bool ok(false);

int v2 = a.toInt(&ok, base);

// verify our results

QVERIFY(ok == true);

QVERIFY(v = v2);

// create a name

QString name("Joe");

// get the day of the week as string

QString weekday = QDate::currentDate().toString("dddd");

// format a text using paramters (%1, %2)

QString hello = QString("Hello %1. Today is %2.").arg(name).arg(weekday);

// This worked on Monday. Promise!

if(Qt::Monday == QDate::currentDate().dayOfWeek()) {

 QCOMPARE(QString("Hello Joe. Today is Monday."), hello);

} else {

 QVERIFY(QString("Hello Joe. Today is Monday.") != hello);

}

// Create a unicode character using the unicode for smile :-)

QChar smile(0x263A);

// you should see a :-) on you console

qDebug() << smile;

// Use a unicode in a string

QChar smile2 = QString("\u263A").at(0);

QVERIFY(smile == smile2);

// Create 12 smiles in a vector

QVector<QChar> smilies(12);

smilies.fill(smile);

// Can you see the smiles

qDebug() << smilies;

This gives you some examples of how to easily treat Unicode aware text in Qt. For non-Unicode, the

QByteArray class also has many helper functions for conversion. Please read the Qt documentation

for QString as it contains tons of good examples.

Sequential Containers

A list, queue, vector or linked-list is a sequential container. The mostly used sequential container is the

QList class. It is a template based class and needs to be initialized with a type. It is also implicit

shared and stores the data internally on the heap. All container classes should be created on the stack.

Normally you never want to use new QList<T>() , which means never use new with a container.

The QList is as versatile as the QString class and offers a great API to explore your data. Below is a

small example of how to use and iterate over a list using some new C++ 11 features.

// Create a simple list of ints using the new C++11 initialization

// for this you need to add "CONFIG += c++11" to your pro file.

QList<int> list{1,2};

// append another int

list << 3;

// We are using scopes to avoid variable name clashes

{ // iterate through list using Qt for each

 int sum(0);

 foreach (int v, list) {

 sum += v;

 }

 QVERIFY(sum == 6);

}

{ // iterate through list using C++ 11 range based loop

 int sum = 0;

 for(int v : list) {

 sum+= v;

 }

 QVERIFY(sum == 6);

}

{ // iterate through list using JAVA style iterators

 int sum = 0;

 QListIterator<int> i(list);

 while (i.hasNext()) {

 sum += i.next();

 }

Associative Containers

A map, a dictionary, or a set are examples of associative containers. They store a value using a key. They

are known for their fast lookup. We demonstrate the use of the most used associative container the

QHash also demonstrating some new C++ 11 features.

 QVERIFY(sum == 6);

}

{ // iterate through list using STL style iterator

 int sum = 0;

 QList<int>::iterator i;

 for (i = list.begin(); i != list.end(); ++i) {

 sum += *i;

 }

 QVERIFY(sum == 6);

}

// using std::sort with mutable iterator using C++11

// list will be sorted in descending order

std::sort(list.begin(), list.end(), [](int a, int b) { return a > b; });

QVERIFY(list == QList<int>({3,2,1}));

int value = 3;

{ // using std::find with const iterator

 QList<int>::const_iterator result = std::find(list.constBegin(), list.constEnd(),

value);

 QVERIFY(*result == value);

}

{ // using std::find using C++ lambda and C++ 11 auto variable

 auto result = std::find_if(list.constBegin(), list.constBegin(), [value](int v) {

return v == value; });

 QVERIFY(*result == value);

}

QHash<QString, int> hash({{"b",2},{"c",3},{"a",1}});

qDebug() << hash.keys(); // a,b,c - unordered

qDebug() << hash.values(); // 1,2,3 - unordered but same as order as keys

QVERIFY(hash["a"] == 1);

QVERIFY(hash.value("a") == 1);

QVERIFY(hash.contains("c") == true);

{ // JAVA iterator

 int sum =0;

 QHashIterator<QString, int> i(hash);

 while (i.hasNext()) {

 i.next();

 sum+= i.value();

 qDebug() << i.key() << " = " << i.value();

 }

 QVERIFY(sum == 6);

}

{ // STL iterator

 int sum = 0;

 QHash<QString, int>::const_iterator i = hash.constBegin();

 while (i != hash.constEnd()) {

 sum += i.value();

 qDebug() << i.key() << " = " << i.value();

 i++;

 }

 QVERIFY(sum == 6);

}

hash.insert("d", 4);

QVERIFY(hash.contains("d") == true);

hash.remove("d");

QVERIFY(hash.contains("d") == false);

{ // hash find not successfull

 QHash<QString, int>::const_iterator i = hash.find("e");

 QVERIFY(i == hash.end());

}

{ // hash find successfull

 QHash<QString, int>::const_iterator i = hash.find("c");

 while (i != hash.end()) {

 qDebug() << i.value() << " = " << i.key();

 i++;

 }

}

// QMap

QMap<QString, int> map({{"b",2},{"c",2},{"a",1}});

qDebug() << map.keys(); // a,b,c - ordered ascending

QVERIFY(map["a"] == 1);

QVERIFY(map.value("a") == 1);

QVERIFY(map.contains("c") == true);

// JAVA and STL iterator work same as QHash

File IO

It is often required to read and write from files. QFile is actually a QObject but in most cases, it is

created on the stack. QFile contains signals to inform the user when data can be read. This allows

reading chunks of data asynchronously until the whole file is read. For convenience, it also allows

reading data in blocking mode. This should only be used for smaller amounts of data and not large files.

Luckily we only use small amounts of data in these examples.

Besides reading raw data from a file into a QByteArray you can also read data types using the

QDataStream and Unicode string using the QTextStream . We will show you how.

QStringList data({"a", "b", "c"});

{ // write binary files

 QFile file("out.bin");

 if(file.open(QIODevice::WriteOnly)) {

 QDataStream stream(&file);

 stream << data;

 }

}

{ // read binary file

 QFile file("out.bin");

 if(file.open(QIODevice::ReadOnly)) {

 QDataStream stream(&file);

 QStringList data2;

 stream >> data2;

 QCOMPARE(data, data2);

 }

}

{ // write text file

 QFile file("out.txt");

 if(file.open(QIODevice::WriteOnly)) {

 QTextStream stream(&file);

 QString sdata = data.join(",");

 stream << sdata;

 }

}

{ // read text file

 QFile file("out.txt");

 if(file.open(QIODevice::ReadOnly)) {

 QTextStream stream(&file);

 QStringList data2;

 QString sdata;

 stream >> sdata;

 data2 = sdata.split(",");

 QCOMPARE(data, data2);

More Classes

Qt is a rich application framework. As such it has thousands of classes. It takes some time to get used

to all of these classes and how to use them. Luckily Qt has a very good documentation with many

useful examples includes. Most of the time you search for a class and the most common use cases are

already provided as snippets. Which means you just copy and adapt these snippets. Also, Qt’s examples

in the Qt source code are a great help. Make sure you have them available and searchable to make your

life more productive. Do not waste time. The Qt community is always helpful. When you ask, it is very

helpful to ask exact questions and provide a simple example which displays your needs. This will

drastically improve the response time of others. So invest a little bit of time to make the life of others

who want to help you easier 😃.

Here some classes whose documentation the author thinks are a must read:

QObject , QString , QByteArray

QFile , QDir , QFileInfo , QIODevice

QTextStream , QDataStream

QDebug , QLoggingCategory

QTcpServer , QTcpSocket , QNetworkRequest , QNetworkReply

QAbstractItemModel , QRegularExpression

QList , QHash

QThread , QProcess

QJsonDocument , QJSValue

That should be enough for the beginning.

 }

}

http://doc.qt.io/qt-6/qobject.html
http://doc.qt.io/qt-6/qstring.html
http://doc.qt.io/qt-6/qbytearray.html
http://doc.qt.io/qt-6/qfile.html
http://doc.qt.io/qt-6/qdir.html
http://doc.qt.io/qt-6/qfileinfo.html
http://doc.qt.io/qt-6/qiodevice.html
http://doc.qt.io/qt-6/qtextstream.html
http://doc.qt.io/qt-6/qdatastream.html
http://doc.qt.io/qt-6/qdebug.html
http://doc.qt.io/qt-6/qloggingcategory.html
http://doc.qt.io/qt-6/qtcpserver.html
http://doc.qt.io/qt-6/qtcpsocket.html
http://doc.qt.io/qt-6/qnetworkrequest.html
http://doc.qt.io/qt-6/qnetworkreply.html
http://doc.qt.io/qt-6/qabstractitemmodel.html
http://doc.qt.io/qt-6/qregularexpression.html
http://doc.qt.io/qt-6/qlist.html
http://doc.qt.io/qt-6/qhash.html
http://doc.qt.io/qt-6/qthread.html
http://doc.qt.io/qt-6/qprocess.html
http://doc.qt.io/qt-6/qjsondocument.html
http://doc.qt.io/qt-6/qjsvalue.html

Models in C++

One of the most common ways to integrate C++ and QML is through models. A model provides data to

a view such as ListViews , GridView , PathViews , and other views which take a model and create an

instance of a delegate for each entry in the model. The view is smart enough to only create these

instances which are visible or in the cache range. This makes it possible to have large models with tens

of thousands of entries but still have a very slick user interface. The delegate acts like a template to be

rendered with the model entries data. So in summary: a view renders entries from the model using a

delegate as a template. The model is a data provider for views.

When you do not want to use C++ you can also define models in pure QML. You have several ways to

provide a model for the view. For handling of data coming from C++ or a large amount of data, the C++

model is more suitable than this pure QML approach. But often you only need a few entries then these

QML models are well suited.

The QML views know how to handle these different types of models. For models coming from the C++

world, the view expects a specific protocol to be followed. This protocol is defined in the API defined in

ListView {

 // using a integer as model

 model: 5

 delegate: Text { text: 'index: ' + index }

}

ListView {

 // using a JS array as model

 model: ['A', 'B', 'C', 'D', 'E']

 delegate: Text { 'Char['+ index +']: ' + modelData }

}

ListView {

 // using a dynamic QML ListModel as model

 model: ListModel {

 ListElement { char: 'A' }

 ListElement { char: 'B' }

 ListElement { char: 'C' }

 ListElement { char: 'D' }

 ListElement { char: 'E' }

 }

 delegate: Text { 'Char['+ index +']: ' + model.char }

}

QAbstractItemModel , together with documentation describing the dynamic behavior. The API was

developed for driving views in the desktop widget world and is flexible enough to act as a base for

trees, or multi-column tables as well as lists. In QML, we usually use either the list variant of the API,

QAbstractListModel or, for the TableView element, the table variant of the API,

QAbstractTableModel . The API contains some functions that have to be implemented and some

optional ones that extend the capabilities of the model. The optional parts mostly handle the dynamic

use cases for changing, adding or deleting data.

A simple model

A typical QML C++ model derives from QAbstractListModel and implements at least the data and

rowCount function. In the example below, we will use a series of SVG color names provided by the

QColor class and display them using our model. The data is stored into a QList<QString> data

container.

Our DataEntryModel is derived form QAbstractListModel and implements the mandatory functions.

We can ignore the parent in rowCount as this is only used in a tree model. The QModelIndex class

provides the row and column information for the cell, for which the view wants to retrieve data. The

view is pulling information from the model on a row/column and role-based. The QAbstractListModel

is defined in QtCore but QColor in QtGui . That is why we have the additional QtGui dependency.

For QML applications it is okay to depend on QtGui but it should normally not depend on QtWidgets .

#ifndef DATAENTRYMODEL_H

#define DATAENTRYMODEL_H

#include <QtCore>

#include <QtGui>

class DataEntryModel : public QAbstractListModel

{

 Q_OBJECT

public:

 explicit DataEntryModel(QObject *parent = 0);

 ~DataEntryModel();

public: // QAbstractItemModel interface

 virtual int rowCount(const QModelIndex &parent) const;

 virtual QVariant data(const QModelIndex &index, int role) const;

private:

 QList<QString> m_data;

};

#endif // DATAENTRYMODEL_H

On the implementation side, the most complex part is the data function. We first need to make a range

check to ensure that we've been provided a valid index. Then we check that the display role is

supported. Each item in a model can have multiple display roles defining various aspects of the data

contained. The Qt::DisplayRole is the default text role a view will ask for. There is a small set of

default roles defined in Qt which can be used, but normally a model will define its own roles for clarity.

In the example, all calls which do not contain the display role are ignored at the moment and the

default value QVariant() is returned.

#include "dataentrymodel.h"

DataEntryModel::DataEntryModel(QObject *parent)

 : QAbstractListModel(parent)

{

 // initialize our data (QList<QString>) with a list of color names

 m_data = QColor::colorNames();

}

DataEntryModel::~DataEntryModel()

{

}

int DataEntryModel::rowCount(const QModelIndex &parent) const

{

 Q_UNUSED(parent);

 // return our data count

 return m_data.count();

}

QVariant DataEntryModel::data(const QModelIndex &index, int role) const

{

 // the index returns the requested row and column information.

 // we ignore the column and only use the row information

 int row = index.row();

 // boundary check for the row

 if(row < 0 || row >= m_data.count()) {

 return QVariant();

 }

 // A model can return data for different roles.

 // The default role is the display role.

 // it can be accesses in QML with "model.display"

 switch(role) {

 case Qt::DisplayRole:

 // Return the color name for the particular row

 // Qt automatically converts it to the QVariant type

 return m_data.value(row);

 }

The next step would be to register the model with QML using the qmlRegisterType call. This is done

inside the main.cpp before the QML file was loaded.

Now you can access the DataEntryModel using the QML import statement import org.example 1.0

and use it just like other QML item DataEntryModel {} .

We use this in this example to display a simple list of color entries.

 // The view asked for other data, just return an empty QVariant

 return QVariant();

}

#include <QtGui>

#include <QtQml>

#include "dataentrymodel.h"

int main(int argc, char *argv[])

{

 QGuiApplication app(argc, argv);

 // register the type DataEntryModel

 // under the url "org.example" in version 1.0

 // under the name "DataEntryModel"

 qmlRegisterType<DataEntryModel>("org.example", 1, 0, "DataEntryModel");

 QQmlApplicationEngine engine;

 engine.load(QUrl(QStringLiteral("qrc:/main.qml")));

 return app.exec();

}

import org.example 1.0

ListView {

 id: view

 anchors.fill: parent

 model: DataEntryModel {}

 delegate: ListDelegate {

 // use the defined model role "display"

 text: model.display

 }

 highlight: ListHighlight { }

}

The ListDelegate is a custom type to display some text. The ListHighlight is just a rectangle. The

code was extracted to keep the example compact.

The view can now display a list of strings using the C++ model and the display property of the model. It

is still very simple, but already usable in QML. Normally the data is provided from outside the model

and the model would act as an interface to the view.

TIP

To expose a table of data instead of a list, the QAbstractTableModel is used. The only

difference compared to implementing a QAbstractListModel is that you must also provide the

columnCount method.

More Complex Data

In reality, the model data is often much more complex. So there is a need to define custom roles so that

the view can query other data via properties. For example, the model could provide not only the color

as a hex string but maybe also the hue, saturation, and brightness from the HSV color model as

“model.hue”, “model.saturation” and “model.brightness” in QML.

#ifndef ROLEENTRYMODEL_H

#define ROLEENTRYMODEL_H

#include <QtCore>

#include <QtGui>

class RoleEntryModel : public QAbstractListModel

{

 Q_OBJECT

public:

 // Define the role names to be used

 enum RoleNames {

 NameRole = Qt::UserRole,

 HueRole = Qt::UserRole+2,

 SaturationRole = Qt::UserRole+3,

 BrightnessRole = Qt::UserRole+4

 };

 explicit RoleEntryModel(QObject *parent = 0);

 ~RoleEntryModel();

 // QAbstractItemModel interface

public:

 virtual int rowCount(const QModelIndex &parent) const override;

 virtual QVariant data(const QModelIndex &index, int role) const override;

In the header, we added the role mapping to be used for QML. When QML tries now to access a

property from the model (e.g. “model.name”) the listview will lookup the mapping for “name” and ask

the model for data using the NameRole . User-defined roles should start with Qt::UserRole and need

to be unique for each model.

protected:

 // return the roles mapping to be used by QML

 virtual QHash<int, QByteArray> roleNames() const override;

private:

 QList<QColor> m_data;

 QHash<int, QByteArray> m_roleNames;

};

#endif // ROLEENTRYMODEL_H

#include "roleentrymodel.h"

RoleEntryModel::RoleEntryModel(QObject *parent)

 : QAbstractListModel(parent)

{

 // Set names to the role name hash container (QHash<int, QByteArray>)

 // model.name, model.hue, model.saturation, model.brightness

 m_roleNames[NameRole] = "name";

 m_roleNames[HueRole] = "hue";

 m_roleNames[SaturationRole] = "saturation";

 m_roleNames[BrightnessRole] = "brightness";

 // Append the color names as QColor to the data list (QList<QColor>)

 for(const QString& name : QColor::colorNames()) {

 m_data.append(QColor(name));

 }

}

RoleEntryModel::~RoleEntryModel()

{

}

int RoleEntryModel::rowCount(const QModelIndex &parent) const

{

 Q_UNUSED(parent);

 return m_data.count();

}

QVariant RoleEntryModel::data(const QModelIndex &index, int role) const

{

 int row = index.row();

 if(row < 0 || row >= m_data.count()) {

The implementation now has changed only in two places. First in the initialization. We now initialize the

data list with QColor data types. Additionally, we define our role name map to be accessible for QML.

This map is returned later in the ::roleNames function.

The second change is in the ::data function. We extend the switch to cover the other roles (e.g hue,

saturation, brightness). There is no way to return an SVG name from a color, as a color can take any

color and SVG names are limited. So we skip this. Storing the names would require to create a structure

struct { QColor, QString } to be able to identify the named color.

After registering the type we can use the model and its entries in our user interface.

 return QVariant();

 }

 const QColor& color = m_data.at(row);

 qDebug() << row << role << color;

 switch(role) {

 case NameRole:

 // return the color name as hex string (model.name)

 return color.name();

 case HueRole:

 // return the hue of the color (model.hue)

 return color.hueF();

 case SaturationRole:

 // return the saturation of the color (model.saturation)

 return color.saturationF();

 case BrightnessRole:

 // return the brightness of the color (model.brightness)

 return color.lightnessF();

 }

 return QVariant();

}

QHash<int, QByteArray> RoleEntryModel::roleNames() const

{

 return m_roleNames;

}

ListView {

 id: view

 anchors.fill: parent

 model: RoleEntryModel {}

 focus: true

 delegate: ListDelegate {

 text: 'hsv(' +

 Number(model.hue).toFixed(2) + ',' +

 Number(model.saturation).toFixed() + ',' +

 Number(model.brightness).toFixed() + ')'

 color: model.name

We convert the returned type to a JS number type to be able to format the number using fixed-point

notation. The code would also work without the Number call (e.g. plain

model.saturation.toFixed(2)). Which format to choose, depends how much you trust the incoming

data.

Dynamic Data

Dynamic data covers the aspects of inserting, removing and clearing the data from the model. The

QAbstractListModel expect a certain behavior when entries are removed or inserted. The behavior is

expressed in signals which need to be called before and after the manipulation. For example to insert a

row into a model you need first to emit the signal beginInsertRows , then manipulate the data and

then finally emit endInsertRows .

We will add the following functions to our headers. These functions are declared using Q_INVOKABLE

to be able to call them from QML. Another way would be to declare them as public slots.

Additionally, we define a count property to get the size of the model and a get method to get a

color at the given index. This is useful when you would like to iterate over the model content from QML.

The implementation for insert checks first the boundaries and if the given value is valid. Only then do

we begin inserting the data.

 }

 highlight: ListHighlight { }

}

// inserts a color at the index (0 at begining, count-1 at end)

Q_INVOKABLE void insert(int index, const QString& colorValue);

// uses insert to insert a color at the end

Q_INVOKABLE void append(const QString& colorValue);

// removes a color from the index

Q_INVOKABLE void remove(int index);

// clear the whole model (e.g. reset)

Q_INVOKABLE void clear();

// gives the size of the model

Q_PROPERTY(int count READ count NOTIFY countChanged)

// gets a color at the index

Q_INVOKABLE QColor get(int index);

void DynamicEntryModel::insert(int index, const QString &colorValue)

{

Append is very simple. We reuse the insert function with the size of the model.

Remove is similar to insert but it calls according to the remove operation protocol.

The helper function count is trivial. It just returns the data count. The get function is also quite

simple.

 if(index < 0 || index > m_data.count()) {

 return;

 }

 QColor color(colorValue);

 if(!color.isValid()) {

 return;

 }

 // view protocol (begin => manipulate => end]

 emit beginInsertRows(QModelIndex(), index, index);

 m_data.insert(index, color);

 emit endInsertRows();

 // update our count property

 emit countChanged(m_data.count());

}

void DynamicEntryModel::append(const QString &colorValue)

{

 insert(count(), colorValue);

}

void DynamicEntryModel::remove(int index)

{

 if(index < 0 || index >= m_data.count()) {

 return;

 }

 emit beginRemoveRows(QModelIndex(), index, index);

 m_data.removeAt(index);

 emit endRemoveRows();

 // do not forget to update our count property

 emit countChanged(m_data.count());

}

QColor DynamicEntryModel::get(int index)

{

 if(index < 0 || index >= m_data.count()) {

 return QColor();

 }

 return m_data.at(index);

}

You need to be careful that you only return a value which QML understands. If it is not one of the basic

QML types or types known to QML you need to register the type first with qmlRegisterType or

qmlRegisterUncreatableType . You use qmlRegisterUncreatableType if the user shall not be able to

instantiate its own object in QML.

Now you can use the model in QML and insert, append, remove entries from the model. Here is a small

example which allows the user to enter a color name or color hex value and the color is then appended

onto the model and shown in the list view. The red circle on the delegate allows the user to remove this

entry from the model. After the entry is to remove the list view is notified by the model and updates its

content.

And here is the QML code. You find the full source code also in the assets for this chapter. The example

uses the QtQuick.Controls and QtQuick.Layout module to make the code more compact. These

controls module provides a set of desktop related UI elements in Qt Quick and the layouts module

provides some very useful layout managers.

import QtQuick

import QtQuick.Window

import QtQuick.Controls

import QtQuick.Layouts

// our module

import org.example 1.0

Window {

 visible: true

 width: 480

 height: 480

 Background { // a dark background

 id: background

 }

 // our dyanmic model

 DynamicEntryModel {

 id: dynamic

 onCountChanged: {

 // we print out count and the last entry when count is changing

 print('new count: ' + dynamic.count)

 print('last entry: ' + dynamic.get(dynamic.count - 1))

 }

 }

 ColumnLayout {

 anchors.fill: parent

 anchors.margins: 8

 ScrollView {

 Layout.fillHeight: true

 Layout.fillWidth: true

 ListView {

 id: view

 // set our dynamic model to the views model property

 model: dynamic

 delegate: ListDelegate {

 required property var model

 width: ListView.view.width

 // construct a string based on the models proeprties

 text: 'hsv(' +

 Number(model.hue).toFixed(2) + ',' +

 Number(model.saturation).toFixed() + ',' +

 Number(model.brightness).toFixed() + ')'

 // sets the font color of our custom delegates

 color: model.name

 onClicked: {

 // make this delegate the current item

 view.currentIndex = model.index

 view.focus = true

 }

 onRemove: {

 // remove the current entry from the model

 dynamic.remove(model.index)

 }

 }

 highlight: ListHighlight { }

 // some fun with transitions :-)

 add: Transition {

 // applied when entry is added

 NumberAnimation {

 properties: "x"; from: -view.width;

 duration: 250; easing.type: Easing.InCirc

 }

 NumberAnimation { properties: "y"; from: view.height;

 duration: 250; easing.type: Easing.InCirc

 }

 }

 remove: Transition {

 // applied when entry is removed

 NumberAnimation {

 properties: "x"; to: view.width;

 duration: 250; easing.type: Easing.InBounce

 }

 }

 displaced: Transition {

 // applied when entry is moved

 // (e.g because another element was removed)

 SequentialAnimation {

 // wait until remove has finished

 PauseAnimation { duration: 250 }

 NumberAnimation { properties: "y"; duration: 75

 }

 }

 }

 }

 }

 TextEntry {

 id: textEntry

 onAppend: function (color) {

 // called when the user presses return on the text field

 // or clicks the add button

 dynamic.append(color)

 }

 onUp: {

 // called when the user presses up while the text field is focused

 view.decrementCurrentIndex()

 }

 onDown: {

 // same for down

 view.incrementCurrentIndex()

 }

 }

 }

}

Model view programming is one of the more complex development tasks in Qt. It is one of the very few

classes where you have to implement an interface as a normal application developer. All other classes

you just use normally. The sketching of models should always start on the QML side. You should

envision how your users would use your model inside QML. For this, it is often a good idea to create a

prototype first using the ListModel to see how this best works in QML. This is also true when it comes

to defining QML APIs. Making data available from C++ to QML is not only a technology boundary it is

also a programming paradigm change from imperative to declarative style programming. So be

prepared for some setbacks and aha moments:-).

Extending QML with C++

Creating application using only QML can sometimes be limiting. The QML run-time is developed using

C++, and the run-time environment can be extended, making it possible to make use of the full

performance and freedom of the surrounding system.

Understanding the QML Run-time

When running QML, it is being executed inside of a run-time environment. The run-time is

implemented in C++ in the QtQml module. It consists of an engine, responsible for the execution of

QML, contexts, holding global properties accessible for each component, and components - QML

elements that can be instantiated from QML.

In the example, the QGuiApplication encapsulates all that is related to the application instance (e.g.

application name, command line arguments and managing the event loop). The

QQmlApplicationEngine manages the hierarchical order of contexts and components. It requires

typical a QML file to be loaded as the starting point of your application. In this case, it is a main.qml

containing a window and a text type.

TIP

Loading a main.qml with a simple Item as the root type through the QmlApplicationEngine

will not show anything on your display, as it requires a window to manage a surface for

rendering. The engine is capable of loading QML code which does not contain any user

interface (e.g. plain objects). Because of this, it does not create a window for you by default. The

qml runtime will internally first check if the main QML file contains a window as a root item

and if not create one for you and set the root item as a child to the newly created window.

#include <QtGui>

#include <QtQml>

int main(int argc, char **argv)

{

 QGuiApplication app(argc, argv);

 QUrl source(QStringLiteral("qrc:/main.qml"));

 QQmlApplicationEngine engine;

 engine.load(source);

 return app.exec();

}

import QtQuick 2.5

import QtQuick.Window 2.2

Window {

 visible: true

In the QML file we declare our dependencies here it is QtQuick and QtQuick.Window . These

declarations will trigger a lookup for these modules in the import paths and on success will load the

required plugins by the engine. The newly loaded types will then be made available to the QML

environment through a declaration in a a qmldir file representing the report.

It is also possible to shortcut the plugin creation by adding our types directly to the engine in our

main.cpp . Here we assume we have a CurrentTime , which is a class based on the QObject base

class.

Now we can also use the CurrentTime type within our QML file.

If we don't need to be able to instantiate the new class from QML, we can use context properties to

expose C++ objects into QML, e.g.

 width: 512

 height: 300

 Text {

 anchors.centerIn: parent

 text: "Hello World!"

 }

}

QQmlApplicationEngine engine();

qmlRegisterType<CurrentTime>("org.example", 1, 0, "CurrentTime");

engine.load(source);

import org.example 1.0

CurrentTime {

 // access properties, functions, signals

}

QScopedPointer<CurrentTime> current(new CurrentTime());

QQmlApplicationEngine engine();

engine.rootContext().setContextProperty("current", current.value())

engine.load(source);

TIP

Do not mix up setContextProperty() and setProperty() . The first one sets a context

property on a qml context, and setProperty() sets a dynamic property value on a QObject

and will not help you.

Now you can use the current property everywhere in your application. It is available everywhere in the

QML code thanks to context inheritance. The current object is registered in the outermost root

context, which is inherited everywhere.

Here are the different ways you can extend QML in general:

Context properties - setContextProperty()

Register type with engine - calling qmlRegisterType in your main.cpp

QML extension plugins - maximum flexibility, to be discussed next

Context properties are easy to use for small applications. They do not require any effort you just

expose your system API with kind of global objects. It is helpful to ensure there will be no naming

conflicts (e.g. by using a special character for this ($) for example $.currentTime). $ is a valid

character for JS variables.

Registering QML types allows the user to control the lifecycle of a C++ object from QML. This is not

possible with the context properties. Also, it does not pollute the global namespace. Still all types need

to be registered first and by this, all libraries need to be linked on application start, which in most cases

is not really a problem.

The most flexible system is provided by the QML extension plugins. They allow you to register types in

a plugin which is loaded when the first QML file calls the import identifier. Also by using a QML

singleton, there is no need to pollute the global namespace anymore. Plugins allow you to reuse

modules across projects, which comes quite handy when you do more than one project with Qt.

import QtQuick

import QtQuick.Window

Window {

 visible: true

 width: 512

 height: 300

 Component.onCompleted: {

 console.log('current: ' + current)

 }

}

Going back to our simple example main.qml file:

When we import the QtQuick and QtQuick.Window , what we do is that we tell the QML run-time to

find the corresponding QML extension plugins and load them. This is done by the QML engine by

looking for these modules in the QML import paths. The newly loaded types will then be made

available to the QML environment.

For the remainder of this chapter will focus on the QML extension plugins. As they provide the greatest

flexibility and reuse.

import QtQuick 2.5

import QtQuick.Window 2.2

Window {

 visible: true

 width: 512

 height: 300

 Text {

 anchors.centerIn: parent

 text: "Hello World!"

 }

}

Plugin Content
A plugin is a library with a defined interface, which is loaded on demand. This differs from a library as a

library is linked and loaded on startup of the application. In the QML case, the interface is called

QQmlExtensionPlugin . There are two methods interesting for us initializeEngine() and

registerTypes() . When the plugin is loaded first the initializeEngine() is called, which allows us

to access the engine to expose plugin objects to the root context. In the majority, you will only use the

registerTypes() method. This allows you to register your custom QML types with the engine on the

provided URL.

Let us explore by building a small FileIO utility class. It would let you read and write text files from

QML. A first iteration could look like this in a mocked QML implementation.

This is a pure QML implementation of a possible C++ based QML API. We use this to explore the API.

We see we need a read and a write function. We also see that the write function takes a path

and a text , while the read function takes a path and returns a text . As it looks, path and

text are common parameters and maybe we can extract them as properties to make the API easier to

use in a declarative context.

Yes, this looks more like a QML API. We use properties to allow our environment to bind to our

properties and react to changes.

To create this API in C++ we would need to create a Qt C++ interface looking like this.

// FileIO.qml (good)

QtObject {

 function write(path, text) {};

 function read(path) { return "TEXT" }

}

// FileIO.qml (better)

QtObject {

 property url source

 property string text

 function write() {} // open file and write text

 function read() {} // read file and assign to text

}

The FileIO type need to be registered with the QML engine. We want to use it under the

“org.example.io” module

A plugin could expose several types with the same module. But it can not expose several modules from

one plugin. So there is a one to one relationship between modules and plugins. This relationship is

expressed by the module identifier.

class FileIO : public QObject {

 ...

 Q_PROPERTY(QUrl source READ source WRITE setSource NOTIFY sourceChanged)

 Q_PROPERTY(QString text READ text WRITE setText NOTIFY textChanged)

 ...

public:

 Q_INVOKABLE void read();

 Q_INVOKABLE void write();

 ...

}

import org.example.io 1.0

FileIO {

}

Creating the plugin
Qt Creator contains a wizard to create a QtQuick 2 QML Extension Plugin, found under Library when

creating a new project. We use it to create a plugin called fileio with a FileIO object to start within

the module org.example.io .

TIP

The current wizard generates a QMake based project. Please use the example from this chapter

as a starting point to build a CMake based project.

The project should consist of the fileio.h and fileio.cpp , that declare and implement the FileIO

type, and a fileio_plugin.cpp that contains the actual plugin class that allows the QML engine to

discover out extension.

The plugin class is derived from the QQmlEngineExtensionPlugin class, and contains a the Q_OBJECT

and Q_PLUGIN_METADATA macros. The entire file can be seen below.

The extension will automatically discover and register all types marked with QML_ELEMENT and

QML_NAMED_ELEMENT . We will see how this is done in the FileIO Implementation section below.

For the import of the module to work, the user also needs to specify a URI, e.g. import

org.example.io . Interestingly we cannot see the module URI anywhere. This is set from the outside

using a qmldir file, alternatively in the CMakeLists.txt file of your project.

The qmldir file specifies the content of your QML plugin or better the QML side of your plugin. A

hand-written qmldir file for our plugin should look something like this:

#include <QQmlEngineExtensionPlugin>

class FileioPlugin : public QQmlEngineExtensionPlugin

{

 Q_OBJECT

 Q_PLUGIN_METADATA(IID QQmlEngineExtensionInterface_iid)

};

#include "fileio_plugin.moc"

The module is the URI that the user imports, and after it you name which plugin to load for the said URI.

The plugin line must be identical with your plugin file name (under mac this would be

libfileio_debug.dylib on the file system and fileio in the qmldir, for a Linux system, the same line would

look for libfileio.so). These files are created by Qt Creator based on the given information.

The easier way to create a correct qmldir file is in the CMakeLists.txt for your project, in the

qt_add_qml_module macro. Here, the URI parameter is used to specify the URI of the plugin, e.g.

org.example.io . This way, the qmldir file is generated when the project is built. For the example

here, the qt_add_qml_module macro looks as follows:

When importing a module called org.example.io , the QML engine will look in one of the import paths

, e.g. the QML2_IMPORT_PATH environment variable, and try to locate the org/example/io path with a

qmldir file. The qmldir file will tell the engine which library to load as a QML extension plugin using

which module URI. Two modules with the same URI will override each other. For the example above,

the module can be imported with the following command:

Notice that the QML2_IMPORT_PATH points to the imports directory, and that the org/example/io

sub-path is found via the org.example.io part of the import statement.

module org.example.io

plugin fileio

qt_add_qml_module(fileio PLUGIN_TARGET

 VERSION 1.0.0

 URI "org.example.io"

 OUTPUT_DIRECTORY "${CMAKE_CURRENT_BINARY_DIR}/imports/org/example/io/"

 SOURCES

 fileio.cpp

 fileio.h

 fileio_plugin.cpp

)

QML2_IMPORT_PATH=/home/.../ch18-extensions/src/fileio/imports \

./.../ch18-extensions/src/CityUI/CityUI

FileIO Implementation

Remember the FileIO API we want to create should look like this.

We will leave out the properties, as they are simple setters and getters.

The read method opens a file in reading mode and reads the data using a text stream.

When the text is changed it is necessary to inform others about the change using emit

textChanged(m_text) . Otherwise, property binding will not work.

The write method does the same but opens the file in write mode and uses the stream to write the

contents of the text property.

class FileIO : public QObject {

 ...

 Q_PROPERTY(QUrl source READ source WRITE setSource NOTIFY sourceChanged)

 Q_PROPERTY(QString text READ text WRITE setText NOTIFY textChanged)

 ...

public:

 Q_INVOKABLE void read();

 Q_INVOKABLE void write();

 ...

}

void FileIO::read()

{

 if(m_source.isEmpty()) {

 return;

 }

 QFile file(m_source.toLocalFile());

 if(!file.exists()) {

 qWarning() << "Does not exist: " << m_source.toLocalFile();

 return;

 }

 if(file.open(QIODevice::ReadOnly)) {

 QTextStream stream(&file);

 m_text = stream.readAll();

 emit textChanged(m_text);

 }

}

To make the type visible to QML, we add the QML_ELEMENT macro just after the Q_PROPERTY lines. This

tells Qt that the type should be made available to QML. If you want to provide a different name than the

C++ class, you can use the QML_NAMED_ELEMENT macro.

TIP

As the reading and writing are blocking function calls you should only use this FileIO for

small texts, otherwise, you will block the UI thread of Qt. Be warned!

void FileIO::read()

{

 if(m_source.isEmpty()) {

 return;

 }

 QFile file(m_source.toLocalFile());

 if(!file.exists()) {

 qWarning() << "Does not exist: " << m_source.toLocalFile();

 return;

 }

 if(file.open(QIODevice::ReadOnly)) {

 QTextStream stream(&file);

 m_text = stream.readAll();

 emit textChanged(m_text);

 }

}

Using FileIO
Now we can use our newly created file to access some data. In this example, we will some city data in a

JSON format and display it in a table. We build this as two projects: one for the extension plugin (called

fileio) which provides us a way to read and write text from a file, and the other, which displays the

data in a table, (CityUI). The CityUI uses the fileio extension for reading and writing files.

JSON data is just text that is formatted in such a way that it can be converted into a valid JS object/array

and back to text. We use our FileIO to read the JSON formatted data and convert it into a JS object

using the built-in Javascript function JSON.parse() . The data is later used as a model for the table

view. This is implemented in the read document and write document functions shown below.

FileIO {

 id: io

}

function readDocument() {

 io.source = openDialog.fileUrl

 io.read()

 view.model = JSON.parse(io.text)

}

The JSON data used in this example is in the cities.json file.
It contains a list of city data entries,

where each entry contains interesting data about the city such as what is shown below.

The Application Window

We use the Qt Creator QtQuick Application wizard to create a Qt Quick Controls 2 based application.

We will not use the new QML forms as this is difficult to explain in a book, although the new forms

approach with a ui.qml file is much more usable than previous. So you can remove/delete the forms file

for now.

The basic setup is an ApplicationWindow which can contain a toolbar, menubar, and status bar. We will

only use the menubar to create some standard menu entries for opening and saving the document. The

basic setup will just display an empty window.

function saveDocument() {

 var data = view.model

 io.text = JSON.stringify(data, null, 4)

 io.write()

}

[

 {

 "area": "1928",

 "city": "Shanghai",

 "country": "China",

 "flag": "22px-Flag_of_the_People's_Republic_of_China.svg.png",

 "population": "13831900"

 },

 ...

]

import QtQuick 2.5

import QtQuick.Controls 1.3

import QtQuick.Window 2.2

import QtQuick.Dialogs 1.2

ApplicationWindow {

 id: root

 title: qsTr("City UI")

 width: 640

 height: 480

 visible: true

}

json

Using Actions

To better use/reuse our commands we use the QML Action type. This will allow us later to use the

same action also for a potential toolbar. The open and save and exit actions are quite standard. The

open and save action do not contain any logic yet, this we will come later. The menubar is created with

a file menu and these three action entries. Additional we prepare already a file dialog, which will allow

us to pick our city document later. A dialog is not visible when declared, you need to use the open()

method to show it.

Action {

 id: save

 text: qsTr("&Save")

 shortcut: StandardKey.Save

 onTriggered: {

 saveDocument()

 }

}

Action {

 id: open

 text: qsTr("&Open")

 shortcut: StandardKey.Open

 onTriggered: openDialog.open()

}

Action {

 id: exit

 text: qsTr("E&xit")

 onTriggered: Qt.quit();

}

menuBar: MenuBar {

 Menu {

 title: qsTr("&File")

 MenuItem { action: open }

 MenuItem { action: save }

 MenuSeparator {}

 MenuItem { action: exit }

 }

}

FileDialog {

 id: openDialog

 onAccepted: {

 root.readDocument()

Formatting the Table

The content of the city data shall be displayed in a table. For this, we use the TableView control and

declare 4 columns: city, country, area, population. Each column is a standard TableViewColumn . Later

we will add columns for the flag and remove operation which will require a custom column delegate.

Now the application should show you a menubar with a file menu and an empty table with 4 table

headers. The next step will be to populate the table with useful data using our FileIO extension.

The cities.json document is an array of city entries. Here is an example.

 }

}

TableView {

 id: view

 anchors.fill: parent

 TableViewColumn {

 role: 'city'

 title: "City"

 width: 120

 }

 TableViewColumn {

 role: 'country'

 title: "Country"

 width: 120

 }

 TableViewColumn {

 role: 'area'

 title: "Area"

 width: 80

 }

 TableViewColumn {

 role: 'population'

 title: "Population"

 width: 80

 }

}

Our job is it to allow the user to select the file, read it, convert it and set it onto the table view.

Reading Data

For this we let the open action open the file dialog. When the user has selected a file the onAccepted

method is called on the file dialog. There we call the readDocument() function. The readDocument()

function sets the URL from the file dialog to our FileIO object and calls the read() method. The

loaded text from FileIO is then parsed using the JSON.parse() method and the resulting object is

directly set onto the table view as a model. How convenient is that?

[

 {

 "area": "1928",

 "city": "Shanghai",

 "country": "China",

 "flag": "22px-Flag_of_the_People's_Republic_of_China.svg.png",

 "population": "13831900"

 },

 ...

]

Action {

 id: open

 ...

 onTriggered: {

 openDialog.open()

 }

}

...

FileDialog {

 id: openDialog

 onAccepted: {

 root.readDocument()

 }

}

function readDocument() {

 io.source = openDialog.fileUrl

 io.read()

 view.model = JSON.parse(io.text)

}

FileIO {

json

Writing Data

For saving the document, we hook up the “save” action to the saveDocument() function. The save

document function takes the model from the view, which is a JS object and converts it into a string

using the JSON.stringify() function. The resulting string is set to the text property of our FileIO

object and we call write() to save the data to disk. The “null” and “4” parameters on the stringify

function will format the resulting JSON data using indentation with 4 spaces. This is just for better

reading of the saved document.

This is basically the application with reading, writing and displaying a JSON document. Think about all

the time spend by writing XML readers and writers. With JSON all you need is a way to read and write a

text file or send receive a text buffer.

 id: io

}

Action {

 id: save

 ...

 onTriggered: {

 saveDocument()

 }

}

function saveDocument() {

 var data = view.model

 io.text = JSON.stringify(data, null, 4)

 io.write()

}

FileIO {

 id: io

}

Finishing Touch

The application is not fully ready yet. We still want to show the flags and allow the user to modify the

document by removing cities from the model.

In this example, the flag files are stored relative to the main.qml document in a flags folder. To be able

to show them the table column needs to define a custom delegate for rendering the flag image.

That is all that is needed to show the flag. It exposes the flag property from the JS model as

styleData.value to the delegate. The delegate then adjusts the image path to pre-pend 'flags/'

and displays it as an Image element.

For removing we use a similar technique to display a remove button.

TableViewColumn {

 delegate: Item {

 Image {

 anchors.centerIn: parent

 source: 'flags/' + styleData.value

 }

 }

 role: 'flag'

 title: "Flag"

 width: 40

}

For the data removal operation, we get a hold on the view model and then remove one entry using the

JS splice function. This method is available to us as the model is from the type JS array. The splice

method changes the content of an array by removing existing elements and/or adding new elements.

A JS array is unfortunately not so smart as a Qt model like the QAbstractItemModel , which will notify

the view about row changes or data changes. The view will not show any updated data by now as it is

never notified of any changes. Only when we set the data back to the view, the view recognizes there is

new data and refreshes the view content. Setting the model again using view.model = data is a way to

let the view know there was a data change.

TableViewColumn {

 delegate: Button {

 iconSource: "remove.png"

 onClicked: {

 var data = view.model

 data.splice(styleData.row, 1)

 view.model = data

 }

 }

 width: 40

}

Summary

The plugin created in this chapter is a very simple plugin. but it can be re-used and extended by other

types for different applications. Using plugins creates a very flexible solution. For example, you can now

start the UI by just using the qml . Open the folder where your CityUI project is a start the UI with

qml main.qml . The extension is readily available to the QML engine from any project and can be

imported anywhere.

You are encouraged to write your applications in a way so that they work with a qml . This has a

tremendous increase in turnaround time for the UI developer and it is also a good habit to keep a clear

separation of the logic and the presentation of an application.

The only drawback with using plugins is that the deployment gets more difficult. This becomes more

apparent the simpler the application is (as the overhead of creating and deploying the plugin stays the

same). You need now to deploy your plugin with your application. If this is a problem for you, you can

still use the same FileIO class and register it directly in your main.cpp using qmlRegisterType . The

QML code would stay the same.

In larger projects, you do not use an application as such. You have a simple qml runtime similar to the

qml command provided with Qt, and require all native functionality to come as plugins. And your

projects are simple pure qml projects using these qml extension plugins. This provides greater

flexibility and removes the compilation step for UI changes. After editing a QML file you just need to run

the UI. This allows the user interface writers to stay flexible and agile to make all these little changes to

push pixels.

Plugins provide a nice and clean separation between C++ backend development and QML frontend

development. When developing QML plugins always have the QML side in mind and do not hesitate to

start with a QML only mockup first to validate your API before you implement it in C++. If an API is

written in C++ people often hesitate to change it or not to speak of to rewrite it. Mocking an API in QML

provides much more flexibility and less initial investment. When using plugins the switch between a

mocked API and the real API is just changing the import path for the qml runtime.

Qt for Python
This chapter describes the PySide6 module from the Qt for Python project. You will learn how to install

it and how to leverage QML together with Python.

Introduction

The Qt for Python project provides the tooling to bind C++ and Qt to Python, and a complete Python

API to Qt. This means that everything that you can do with Qt and C++, you can also do with Qt and

Python. This ranges from headless services to widget based user interfaces. In this chapter, we will

focus on how to integrate QML and Python.

Currently, Qt for Python is available for all desktop platforms, but not for mobile. Depending on which

platform you use, the setup of Python is slightly different, but as soon as you have a Python

(https://www.python.org/) and PyPA (https://www.pypa.io/en/latest/) environment setup, you can

install Qt for Python using pip . This is discussed in more detail further down.

As the Qt for Python project provides an entirely new language binding for Qt, it also comes with a new

set of documentation. The following resources are good to know about when exploring this module.

Reference documentation: https://doc.qt.io/qtforpython/

Qt for Python wiki: https://wiki.qt.io/Qt_for_Python

Caveats: https://wiki.qt.io/Qt_for_Python/Considerations

The Qt for Python bindings are generated using the Shiboken tool. At times, it might be of interest to

read about it as well to understand what is going on. The preferred point for finding information about

Shiboken is the reference documentation (https://doc.qt.io/qtforpython/shiboken6/index.html) . If

you want to mix your own C++ code with Python and QML, Shiboken is the tool that you need.

TIP

Through-out this chapter we will use Python 3.7.

https://www.python.org/
https://www.pypa.io/en/latest/
https://doc.qt.io/qtforpython/
https://wiki.qt.io/Qt_for_Python
https://wiki.qt.io/Qt_for_Python/Considerations
https://doc.qt.io/qtforpython/shiboken6/index.html

Installing

Qt for Python is available through PyPA using pip under the name pyside6 . In the example below

we setup a venv environment in which we will install the latest version of Qt for Python:

When the environment is setup, we continue to install pyside6 using pip :

After the installation, we can test it by running a Hello World example from the interactive Python

prompt:

The example results in a window such as the one shown below. To end the program, close the window.

mkdir qt-for-python

cd qt-for-python

python3 -m venv .

source bin/activate

(qt-for-python) $ python --version

Python 3.9.6

(qt-for-python) $ pip install pyside6

Collecting pyside6

Downloading [...] (60.7 MB)

Collecting shiboken6==6.1.2

Downloading [...] (1.0 MB)

Installing collected packages: shiboken6, pyside6

Successfully installed pyside6-6.1.2 shiboken6-6.1.2

(qt-for-python) $ python

Python 3.9.6 (default, Jun 28 2021, 06:20:32)

[Clang 12.0.0 (clang-1200.0.32.29)] on darwin

Type "help", "copyright", "credits" or "license" for more information.

>>> from PySide6 import QtWidgets

>>> import sys

>>> app = QtWidgets.QApplication(sys.argv)

>>> widget = QtWidgets.QLabel("Hello World!")

>>> widget.show()

>>> app.exec()

0

>>>

sh

sh

sh

Building an Application
In this chapter we will look at how you can combine Python and QML. The most natural way to combine

the two worlds is to do as with C++ and QML, i.e. implement the logic in Python and the presentation in

QML.

To do this, we need to understand how to combine QML and Python into a single program, and then

how to implement interfaces between the two worlds. In the sub-sections below, we will look at how

this is done. We will start simple and progress to an example exposing the capabilities of a Python

module to QML through a Qt item model.

Running QML from Python

The very first step is to create a Python program that can host the Hello World QML program shown

below.

To do this, we need a Qt mainloop provided by QGuiApplication from the QtGui module. We also

need a QQmlApplicationEngine from the QtQml module. In order to pass the reference to the source

file to the QML application engine, we also need the QUrl class from the QtCore module.

In the code below we emulate the functionality of the boilerplate C++ code generated by Qt Creator for

QML projects. It instantiates the application object, and creates a QML application engine. It then loads

the QML and then ensures that the QML was loaded by checking if a root object was created. Finally, it

exits and returns the value returned by the exec method of the application object.

import QtQuick

import QtQuick.Window

Window {

 width: 640

 height: 480

 visible: true

 title: qsTr("Hello Python World!")

}

import sys

from PySide6.QtGui import QGuiApplication

from PySide6.QtQml import QQmlApplicationEngine

from PySide6.QtCore import QUrl

py

Executing the example results in a window with the title Hello Python World.

TIP

The example assumes that it is executed from the directory containing the main.qml source

file. You can determine the location of the Python file being executed using the __file__

variable. This can be used to locate the QML files relative to the Python file as shown in this

blog post (http://blog.qt.io/blog/2018/05/14/qml-qt-python/) .

if __name__ == '__main__':

 app = QGuiApplication(sys.argv)

 engine = QQmlApplicationEngine()

 engine.load(QUrl("main.qml"))

 if not engine.rootObjects():

 sys.exit(-1)

 sys.exit(app.exec())

http://blog.qt.io/blog/2018/05/14/qml-qt-python/

Exposing Python Objects to QML

The easiest way to share information between Python and QML is to expose a Python object to QML.

This is done by registering a context property through the QQmlApplicationEngine . Before we can do

that, we need to define a class so that we have an object to expose.

Qt classes come with a number of features that we want to be able to use. These are: signals, slots and

properties. In this first example, we will restrict ourselves to a basic pair of signal and slot. The rest will

be covered in the examples further on.

Signals and Slots

We start with the class NumberGenerator . It has a constructor, a method called updateNumber and a

signal called nextNumber . The idea is that when you call updateNumber , the signal nextNumber is

emitted with a new random number. You can see the code for the class below, but first we will look at

the details.

First of all we make sure to call QObject.__init__ from our constructor. This is very important, as the

example will not work without it.

Then we declare a signal by creating an instance of the Signal class from the PySide6.QtCore

module. In this case, the signal carries an integer value, hence the int . The signal parameter name,

number , is defined in the arguments parameter.

Finally, we decorate the updateNumber method with the @Slot() decorator, thus turning it into a slot.

There is no concept of invokables in Qt for Python, so all callable methods must be slots.

In the updateNumber method we emit the nextNumber signal using the emit method. This is a bit

different than the syntax for doing so from QML or C++ as the signal is represented by an object instead

of being a callable function.

import random

from PySide6.QtCore import QObject, Signal, Slot

class NumberGenerator(QObject):

 def __init__(self):

 QObject.__init__(self)

 nextNumber = Signal(int, arguments=['number'])

 @Slot()

py

Next up is to combine the class we just created with the boilerplate code for combining QML and

Python from earlier. This gives us the following entry-point code.

The interesting lines are the one where we first instantiate a NumberGenerator . This object is then

exposed to QML using the setContextProperty method of the rootContext of the QML engine. This

exposes the object to QML as a global variable under the name numberGenerator .

Continuing to the QML code, we can see that we’ve created a Qt Quick Controls 2 user interface

consisting of a Button and a Label . In the button’s onClicked handler, the

numberGenerator.updateNumber() function is called. This is the slot of the object instantiated on the

Python side.

To receive a signal from an object that has been instantiated outside of QML we need to use a

Connections element. This allows us to attach a signal handler to an existing target.

 def giveNumber(self):

 self.nextNumber.emit(random.randint(0, 99))

import sys

from PySide6.QtGui import QGuiApplication

from PySide6.QtQml import QQmlApplicationEngine

from PySide6.QtCore import QUrl

if __name__ == '__main__':

 app = QGuiApplication(sys.argv)

 engine = QQmlApplicationEngine()

 number_generator = NumberGenerator()

 engine.rootContext().setContextProperty("numberGenerator", number_generator)

 engine.load(QUrl("main.qml"))

 if not engine.rootObjects():

 sys.exit(-1)

 sys.exit(app.exec())

import QtQuick

import QtQuick.Window

import QtQuick.Controls

Window {

 id: root

 width: 640

py

Properties

Instead of relying solely on signals and slots, the common way to expose state to QML is through

properties. A property is a combination of a setter, getter and notification signal. The setter is optional,

as we can also have read-only properties.

To try this out we will update the NumberGenerator from the last example to a property based version.

It will have two properties: number , a read-only property holding the last random number, and

maxNumber , a read-write property holding the maximum value that can be returned. It will also have a

slot, updateNumber that updates the random number.

Before we dive into the details of properties, we create a basic Python class for this. It consists of the

relevant getters and setters, but not Qt signalling. As a matter of fact, the only Qt part here is the

inheritance from QObject . Even the names of the methods are Python style, i.e. using underscores

instead of camelCase.

Take notice of the underscores (“ __ ”) at the beginning of the __set_number method. This implies

that it is a private method. So even when the number property is read-only, we provide a setter. We

just don’t make it public. This allows us to take actions when changing the value (e.g. emitting the

notification signal).

 height: 480

 visible: true

 title: qsTr("Hello Python World!")

 Flow {

 Button {

 text: qsTr("Give me a number!")

 onClicked: numberGenerator.giveNumber()

 }

 Label {

 id: numberLabel

 text: qsTr("no number")

 }

 }

 Connections {

 target: numberGenerator

 function onNextNumber(number) {

 numberLabel.text = number

 }

 }

}

In order to define properties, we need to import the concepts of Signal , Slot , and Property from

PySide2.QtCore . In the full example, there are more imports, but these are the ones relevant to the

properties.

Now we are ready to define the first property, number . We start off by declaring the signal

numberChanged , which we then invoke in the __set_number method so that the signal is emitted when

the value is changed.

After that, all that is left is to instantiate the Property object. The Property constructor takes three

arguments in this case: the type (int), the getter (get_number) and the notification signal which is

passed as a named argument (notify=numberChanged). Notice that the getter has a Python name, i.e.

using underscore rather than camelCase, as it is used to read the value from Python. For QML, the

property name, number , is used.

class NumberGenerator(QObject):

 def __init__(self):

 QObject.__init__(self)

 self.__number = 42

 self.__max_number = 99

 def set_max_number(self, val):

 if val < 0:

 val = 0

 if self.__max_number != val:

 self.__max_number = val

 if self.__number > self.__max_number:

 self.__set_number(self.__max_number)

 def get_max_number(self):

 return self.__max_number

 def __set_number(self, val):

 if self.__number != val:

 self.__number = val

 def get_number(self):

 return self.__number

from PySide6.QtCore import QObject, Signal, Slot, Property

class NumberGenerator(QObject):

py

py

py

This leads us to the next property, maxNumber . This is a read-write property, so we need to provide a

setter, as well as everything that we did for the number property.

First up we declare the maxNumberChanged signal. This time, using the @Signal decorator instead of

instantiating a Signal object. We also provide a setter slot, setMaxNumber with a Qt name

(camelCase) that simply calls the Python method set_max_number alongside a getter with a Python

name. Again, the setter emits the change signal when the value is updated.

Finally we put the pieces together into a read-write property by instantiating a Property object taking

the type, getter, setter and notification signal as arguments.

 # ...

 # number

 numberChanged = Signal(int)

 def __set_number(self, val):

 if self.__number != val:

 self.__number = val

 self.numberChanged.emit(self.__number)

 def get_number(self):

 return self.__number

 number = Property(int, get_number, notify=numberChanged)

class NumberGenerator(QObject):

 # ...

 # maxNumber

 @Signal

 def maxNumberChanged(self):

 pass

 @Slot(int)

 def setMaxNumber(self, val):

 self.set_max_number(val)

 def set_max_number(self, val):

 if val < 0:

 val = 0

 if self.__max_number != val:

 self.__max_number = val

 self.maxNumberChanged.emit()

py

Now we have properties for the current random number, number , and the maximum random number,

maxNumber . All that is left is a slot to produce a new random number. It is called updateNumber and

simply sets a new random number.

Finally, the number generator is exposed to QML through a root context property.

In QML, we can bind to the number as well as the maxNumber properties of the numberGenerator

object. In the onClicked handler of the Button we call the updateNumber method to generate a new

random number and in the onValueChanged handler of the Slider we set the maxNumber property

using the setMaxNumber method. This is because altering the property directly through Javascript

would destroy the bindings to the property. By using the setter method explicitly, this is avoided.

 if self.__number > self.__max_number:

 self.__set_number(self.__max_number)

 def get_max_number(self):

 return self.__max_number

 maxNumber = Property(int, get_max_number, set_max_number, notify=maxNumberChanged)

class NumberGenerator(QObject):

 # ...

 @Slot()

 def updateNumber(self):

 self.__set_number(random.randint(0, self.__max_number))

if __name__ == '__main__':

 app = QGuiApplication(sys.argv)

 engine = QQmlApplicationEngine()

 number_generator = NumberGenerator()

 engine.rootContext().setContextProperty("numberGenerator", number_generator)

 engine.load(QUrl("main.qml"))

 if not engine.rootObjects():

 sys.exit(-1)

 sys.exit(app.exec())

py

py

Exposing a Python class to QML

Up until now, we’ve instantiated an object Python and used the setContextProperty method of the

rootContext to make it available to QML. Being able to instantiate the object from QML allows better

control over object life-cycles from QML. To enable this, we need to expose the class, instead of the

object, to QML.

The class that is being exposed to QML is not affected by where it is instantiated. No change is needed

to the class definition. However, instead of calling setContextProperty , the qmlRegisterType

function is used. This function comes from the PySide2.QtQml module and takes five arguments:

A reference to the class, NumberGenerator in the example below.

import QtQuick

import QtQuick.Window

import QtQuick.Controls

Window {

 id: root

 width: 640

 height: 480

 visible: true

 title: qsTr("Hello Python World!")

 Column {

 Flow {

 Button {

 text: qsTr("Give me a number!")

 onClicked: numberGenerator.updateNumber()

 }

 Label {

 id: numberLabel

 text: numberGenerator.number

 }

 }

 Flow {

 Slider {

 from: 0

 to: 99

 value: numberGenerator.maxNumber

 onValueChanged: numberGenerator.setMaxNumber(value)

 }

 }

 }

}

A module name, 'Generators' .

A module version consisting of a major and minor number, 1 and 0 meaning 1.0 .

The QML name of the class, 'NumberGenerator'

In QML, we need to import the module, e.g. Generators 1.0 and then instantiate the class as

NumberGenerator { ... } . The instance now works like any other QML element.

import random

import sys

from PySide6.QtGui import QGuiApplication

from PySide6.QtQml import QQmlApplicationEngine, qmlRegisterType

from PySide6.QtCore import QUrl, QObject, Signal, Slot

class NumberGenerator(QObject):

 def __init__(self):

 QObject.__init__(self)

 nextNumber = Signal(int, arguments=['number'])

 @Slot()

 def giveNumber(self):

 self.nextNumber.emit(random.randint(0, 99))

if __name__ == '__main__':

 app = QGuiApplication(sys.argv)

 engine = QQmlApplicationEngine()

 qmlRegisterType(NumberGenerator, 'Generators', 1, 0, 'NumberGenerator')

 engine.load(QUrl("main.qml"))

 if not engine.rootObjects():

 sys.exit(-1)

 sys.exit(app.exec())

import QtQuick

import QtQuick.Window

import QtQuick.Controls

import Generators

Window {

 id: root

py

A Model from Python

One of the more interesting types of objects or classes to expose from Python to QML are item models.

These are used with various views or the Repeater element to dynamically build a user interface from

the model contents.

In this section we will take an existing python utility for monitoring CPU load (and more), psutil , and

expose it to QML via a custom made item model called CpuLoadModel . You can see the program in

action below:

 width: 640

 height: 480

 visible: true

 title: qsTr("Hello Python World!")

 Flow {

 Button {

 text: qsTr("Give me a number!")

 onClicked: numberGenerator.giveNumber()

 }

 Label {

 id: numberLabel

 text: qsTr("no number")

 }

 }

 NumberGenerator {

 id: numberGenerator

 }

 Connections {

 target: numberGenerator

 function onNextNumber(number) {

 numberLabel.text = number

 }

 }

}

TIP

The psutil library can be found at https://pypi.org/project/psutil/

(https://pypi.org/project/psutil/) .

“psutil (process and system utilities) is a cross-platform library for retrieving information on running

processes and system utilization (CPU, memory, disks, network, sensors) in Python.”

You can install psutil using pip install psutil .

We will use the psutil.cpu_percent function (documentation

(https://psutil.readthedocs.io/en/latest/#psutil.cpu_percent)) to sample the CPU load per core every

second. To drive the sampling we use a QTimer . All of this is exposed through the CpuLoadModel

which is a QAbstractListModel .

Item models are interesting. They allow you to represent a two dimensional data set, or even nested

data sets, if using the QAbstractItemModel . The QAbstractListModel that we use allow us to

represent a list of items, so a one dimensional set of data. It is possible to implement a nested set of

lists, creating a tree, but we will only create one level.

https://pypi.org/project/psutil/
https://psutil.readthedocs.io/en/latest/#psutil.cpu_percent

To implement a QAbstractListModel , it is necessary to implement the methods rowCount and data .

The rowCount returns the number of CPU cores which we get using the psutil.cpu_count method.

The data method returns data for different roles. We only support the Qt.DisplayRole , which

corresponds to what you get when you refer to display inside the delegate item from QML.

Looking at the code for the model, you can see that the actual data is stored in the __cpu_load list. If a

valid request is made to data , i.e. the row, column and role is correct, we return the right element

from the __cpu_load list. Otherwise we return None which corresponds to an uninitialized

QVariant on the Qt side.

Every time the update timer (__update_timer) times out, the __update method is triggered. Here, the

__cpu_load list is updated, but we also emit the dataChanged signal, indicating that all data was

changed. We do not do a modelReset as that also implies that the number of items might have

changed.

Finally, the CpuLoadModel is exposed to QML are a registered type in the PsUtils module.

import psutil

import sys

from PySide6.QtGui import QGuiApplication

from PySide6.QtQml import QQmlApplicationEngine, qmlRegisterType

from PySide6.QtCore import Qt, QUrl, QTimer, QAbstractListModel

class CpuLoadModel(QAbstractListModel):

 def __init__(self):

 QAbstractListModel.__init__(self)

 self.__cpu_count = psutil.cpu_count()

 self.__cpu_load = [0] * self.__cpu_count

 self.__update_timer = QTimer(self)

 self.__update_timer.setInterval(1000)

 self.__update_timer.timeout.connect(self.__update)

 self.__update_timer.start()

 # The first call returns invalid data

 psutil.cpu_percent(percpu=True)

 def __update(self):

 self.__cpu_load = psutil.cpu_percent(percpu=True)

 self.dataChanged.emit(self.index(0,0), self.index(self.__cpu_count-1, 0))

 def rowCount(self, parent):

 return self.__cpu_count

 def data(self, index, role):

py

On the QML side we use a ListView to show the CPU load. The model is bound to the model

property. For each item in the model a delegate item will be instantiated. In this case that means a

Rectangle with a green bar (another Rectangle) and a Text element displaying the current load.

 if (role == Qt.DisplayRole and

 index.row() >= 0 and

 index.row() < len(self.__cpu_load) and

 index.column() == 0):

 return self.__cpu_load[index.row()]

 else:

 return None

if __name__ == '__main__':

 app = QGuiApplication(sys.argv)

 engine = QQmlApplicationEngine()

 qmlRegisterType(CpuLoadModel, 'PsUtils', 1, 0, 'CpuLoadModel')

 engine.load(QUrl("main.qml"))

 if not engine.rootObjects():

 sys.exit(-1)

 sys.exit(app.exec())

import QtQuick

import QtQuick.Window

import PsUtils

Window {

 id: root

 width: 640

 height: 480

 visible: true

 title: qsTr("CPU Load")

 ListView {

 anchors.fill: parent

 model: CpuLoadModel { }

 delegate: Rectangle {

 id: delegate

 required property int display

 width: parent.width

 height: 30

 color: "white"

 Rectangle {

 id: bar

 width: parent.width * delegate.display / 100.0

 height: 30

 color: "green"

 }

 Text {

 anchors.verticalCenter: parent.verticalCenter

 x: Math.min(bar.x + bar.width + 5, parent.width-width)

 text: delegate.display + "%"

 }

 }

 }

}

Limitations

At the moment, there are some things that are not easily available. One of them is that you cannot

easily create QML plugins using Python. Instead you need to import the Python QML “modules” into

your Python program and then use qmlRegisterType to make it possible to import them from QML.

Summary

In this chapter we have looked at the PySide6 module from the Qt for Python project. After a brief look

at installation, we focused on how Qt concepts are used from Python. This included slots, signals and

properties. We also looked at a basic list model and how to expose both Python objects and classes

from Python to QML.

Qt for MCUs

Notice

Qt for MCUs is not a part of the open source Qt distribution, but as a commercial add-on.

Qt for MCUs is a Qt version takes Qt for platforms that are too small to run Linux. Instead, Qt for MCUs

can run on top of FreeRTOS, or even on the bare metal, i.e. without any operating system involved. As

this book focuses on QML, we will have a deeper look at Qt Quick Ultralite and compare it to the full-

size Qt offering.

Using Qt for MCUs you can build beautiful, fluid graphical user interfaces for your micro controller-

based systems. Qt for MCUs is focused on the graphical front-end, so instead of the traditional Qt

modules, common C++ types are used. This means that some interfaces change. Most notably how

models are exposed to QML. In this chapter we will dive into this, and more.

Setup

Qt for MCUs (https://doc.qt.io/QtForMCUs/index.html) comes with support for a range of evaluation

boards from companies such as NCP, Renesas, ST, and Infinion/Cypress. These are good for getting

started and helps you try out the integration to the specific MCU. In the end, you will most likely end up

tuning a specific platform definition to your specific hardware, e.g. to configure the amount of RAM,

FLASH and screen configuration.

In addition to supporting multiple MCUs out of the box, Qt for MCUs also support running either on

FreeRTOS or directly on the bare metal, i.e. without an operating system. As Qt for MCUs focuses on

the graphical front-end part of things, there are no classes for filesystems and such. All this has to

come from the underlying system. Hence, if you need support for more complex feature, FreeRTOS is

one option.

When it comes to the development environment, various boards come with various compilers, so the

Qt for MCUs setup will look a bit different depending on which MCU you target, as well as which

compiler you choose. For instance, for the boards from ST, both GCC and IAR are supported, while for

some other boards Green Hills MULTI Compiler is used. The officially supported development hosts

from Qt's point of view are Linux (Ubuntu 20.04 LTS on x86_64) or Windows (Windows 10 on x86_64).

For Windows, please notice that the MSVC compilers supported are the 2017 and 2019 editions - not

https://doc.qt.io/QtForMCUs/index.html

the very latest. Make sure to follow the latest setup instructions on qt.io

(https://doc.qt.io/QtForMCUs/qtul-setup-development-host.html) to get a working environment.

Once you have setup your environment, you can find the supported boards as Kits as well as under

Devices - MCU under the Tools - Options... menu item in Qt Creator.

https://doc.qt.io/QtForMCUs/qtul-setup-development-host.html

TIP

If you do not find the MCUs tab under Tools, make sure that the Qt for MCUs plugins

(McuSupport and BaremetalSupport) are available and activated under Help - About Plugins....

Links

Further reading at qt.io:

Supported boards

Platform porting guide

https://doc.qt.io/QtForMCUs/qtul-supported-platforms.html
https://doc.qt.io/QtForMCUs/platform-porting-guide-introduction.html

Hello World - for MCUs

As the setup of Qt for MCU can be a bit tricky, we will start with a Hello World like example to ensure

that the toolchain works, and so that we can discuss the basic differences between Qt Quick Ultralite

and standard Qt Quick.

First up, we need to start by creating a Qt for MCUs project in Qt Creator to get a C++ entry point into

the system. When working with Qt Quick Ultralite, we cannot use a common runtime such as qml .

This is because Qt Quick Ultralite is translated into C++ together with optimized versions of all the

assets. These are then built into a target executable. This means that there is no support for dynamic

loading of QML and such - as there is no interpreter running on the target.

I call the project helloworld . Feel free to pick a name of your own. The only thing changing is the

name of the entry-point QML-file of the project.

Also, make sure to pick the Qt for MCUs kits when creating your project.

After a few more configuration pages, you will end up with a project as shown below.

Once the basic project is setup, run the project on your desktop and ensure that you get a window like

the one shown below.

Now that we know that the installation works, replace the QML in helloworld.qml with the code

shown below. We will walk through this example line by line below, but first, build and run it for your

Qt for MCU Desktop target. This should result in a window looking like the screenshot below the code.

import QtQuick

import QtQuickUltralite.Extras

Rectangle {

 width: 480

 height: 272

Click the orange rectangle, and it fades to red. Click it again and it fades back to orange.

 Rectangle {

 id: rect

 anchors.fill: parent

 anchors.margins: 60

 color: "orange"

 Behavior on color {

 ColorAnimation { duration: 400 }

 }

 MouseArea {

 anchors.fill: parent

 onClicked: {

 if (rect.color == "red")

 rect.color = "orange";

 else

 rect.color = "red";

 }

 }

 }

 StaticText {

 anchors.centerIn: parent

 color: "black"

 text: "Hello World!"

 font.pixelSize: 52

 }

}

Now, let's have a look at the source code from a Qt Quick perspective and compare.

First up, Qt Quick Ultralight ignores the version numbers after import statements. This is supported in

Qt Quick since Qt 6 too by leaving out the version number, so if you can manage without it and need

compatibility, make sure to leave out the version number.

In the root of our scene, we place a Rectangle . This is because Qt Quick Ultralite does not provide a

default, white, background. By using a Rectangle as root, we ensure that we control the background

color of the scene.

The next part, the clickable Rectangle , is straight forward QML, with some Javascript bound to the

onClicked event. Qt for MCUs has limited support for Javascript, so ensure to keep such scripts

simple. You can read more about the specific limitations in the links at the end of this section.

import QtQuick

import QtQuickUltralite.Extras

Rectangle {

 width: 480

 height: 272

 Rectangle {

 id: rect

 anchors.fill: parent

 anchors.margins: 60

 color: "orange"

 Behavior on color {

 ColorAnimation { duration: 400 }

 }

Finally, the text is rendered using a StaticText element, which is a version of the Text element for

static texts. This means that the text can be rendered once, or even pre-rendered, which can save a lot

of resources on a small, MCU-based, system.

In Qt Creator, you will notice that you get warnings around the StaticText element. This is because

Qt Creator assumes that you are working with Qt Quick. To make Qt Creator aware of Qt Quick

Ultralite, you need to set the QML_IMPORT_PATH to the path of your Qt for MCUs compatibility module.

You can do this in your CMakeLists.txt file, or in your project settings. The project settings for a

standard Windows 10 install is shown below.

In addition to what has been stated above, there are more differences. For instance, the Qt Quick

Ultralite Item class, and hence the Rectangle class, lacks a lot of properties that could be found in

Qt Quick. For instance, the scale and rotation properties are missing. These are only available for

specific elements such as Image , and there it is made available through the Rotation and Scale

types instead of properties.

 MouseArea {

 anchors.fill: parent

 onClicked: {

 if (rect.color == "red")

 rect.color = "orange";

 else

 rect.color = "red";

 }

 }

 }

 StaticText {

 anchors.centerIn: parent

 color: "black"

 text: "Hello World!"

 font.pixelSize: 52

 }

}

Going beyond the example above, there are fewer QML elements in general in Qt Quick Ultralite, but

the supported types is continuously growing. The intention is that the provided types cover the use-

cases of the intended target devices. You can read more about this and general compatibility issues in

the links provided below.

Links

Further reading at qt.io:

Qt Quick Ultralite vs Qt Quick

Differences between Qt Quick Ultralite Controls and Qt Quick Controls

Known Issues and Limitations

https://doc.qt.io/QtForMCUs/qtul-qtquick-differences.html
https://doc.qt.io/QtForMCUs/qtul-qtquick-controls-api-differences.html
https://doc.qt.io/QtForMCUs/qtul-known-issues.html

Integrating with C++

The C++

In order to demonstrate the connection between C++ and QML in Qt for MCUs, we will create a simple

Counter singleton holding an integer value. Notice that we start from a struct and not a class .

This is common practice in Qt Quick Ultralite.

The singleton will be used from a small UI as shown below.

The Counter struct provides a property, value , as well as methods for changing the value,

increase and decrease , as well as a reset method. It also provides a signal, hasBeenReset .

#ifndef COUNTER_H

#define COUNTER_H

#include <qul/singleton.h>

#include <qul/property.h>

#include <qul/signal.h>

class Counter : public Qul::Singleton<Counter>

{

public:

 Counter();

 Qul::Property<int> value;

 void increase();

Coming from Qt, this looks odd. This is where Qt for MCUs shows the main differences. There is no

QObject base class or Q_OBJECT macro, instead a new set of classes from the Qul is used. In this

particular case, the base class is the Qul::Singleton class, creating a globally accessible singleton in

the QML world. We also use the Qul::Signal class to create a signal and the Qul::Property class to

create a property. All public, non-overloaded member functions are exposed to QML automatically.

TIP

To create an element that can be instantiated from QML, instead of a singleton, use the

Qul::Object base class.

The struct is then exposed to QML using the CMake macro qul_target_generate_interfaces . Below

you can see the CMakeLists.txt , based on the file generated by Qt Creator, with the counter.h and

counter.cpp files added.

Now, let's continue with the implementation of the Counter struct. First up, for the value property,

we use the value and setValue functions to access and modify the actual value. In our case, the

property holds and int , but just as for the ordinary QML engine, types are mapped between C++ and

QML (https://doc.qt.io/QtForMCUs/qtul-integratecppqml.html#type-mapping) .

This is used in the constructor, shown below, that sets the initial value to zero.

The increase and decrease functions look similar. They use the getter and setter instead of

interacting directly with the value.

 void decrease();

 void reset();

 Qul::Signal<void(void)> hasBeenReset;

};

#endif // COUNTER_H

qul_target_generate_interfaces(cppintegration counter.h)

Counter::Counter()

{

 value.setValue(0);

}

https://doc.qt.io/QtForMCUs/qtul-integratecppqml.html#type-mapping

Counter also has a signal. The signal is represented by the Qul::Signal instance named hasReset .

The signal takes a function signature as template argument, so to create a signal carrying an integer,

create a Qul::Signal<void(int)> . In this case, the signal does not carry any values, so it is defined as a

void(void) . To emit the signal, we simply call it as if it was an ordinary function as shown in the

reset function below.

The QML

The QML code produces the simple user interface shown below.

We will look at the UI in three parts. First, the basic structure, and bindings to Counter.value :

void Counter::increase()

{

 value.setValue(value.value()+1);

}

void Counter::decrease()

{

 value.setValue(value.value()-1);

}

void Counter::reset()

{

 std::cout << "Resetting from " << value.value() << std::endl;

 value.setValue(0);

 hasBeenReset();

}

As you can tell, the Text element's text property is bound to the Counter.value as in all QML.

Now, let's look at the left side buttons. These are used to invoke the C++ methods provided via the

Counter singleton. The PlainButton is a QML element that we use to create these simple buttons. It

lets you set the text, background color and a handler for the clicked signal. As you can tell, each

button calls the corresponding method on the Counter singleton.

import QtQuick

Rectangle {

 width: 480

 height: 272

 Column {

 // Left buttons goes here

 }

 Column {

 // Right buttons goes here

 }

 Text {

 anchors.centerIn: parent

 text: Counter.value;

 }

}

Column {

 x: 10

 y: 10

 spacing: 5

 PlainButton {

 text: "+"

 onClicked: Counter.increase()

 }

 PlainButton {

 text: "reset"

 onClicked: Counter.reset()

 }

 PlainButton {

 text: "-"

 onClicked: Counter.decrease()

 }

}

The buttons on the right modify the Counter.value directly from QML. This is possible to do, but

invisible to C++. There is no simple way for C++ to monitor if a property has changed, so if a C++

reaction is needed, it is recommended to use a setter method, rather than directly modifying the

property value.

This shows how to provide a singleton from C++ and how to make function calls, emit signals, and

share state (properties) between C++ and QML.

Revisiting the CMake file

The CMakeLists.txt file may look familiar to you, but there are some tips and tricks that we need to

discuss.

First of all, in order to expose a C++ class to QML, use the qul_target_generate_interfaces , e.g:

The other half, the QML files, are added using the qul_target_qml_sources macro. If you have multiple

QML files, simply list them one by one as shown below:

Column {

 x: 350

 y: 10

 spacing: 5

 PlainButton {

 color: "orange"

 text: "++"

 onClicked: Counter.value += 5;

 }

 PlainButton {

 color: "orange"

 text: "100"

 onClicked: Counter.value = 100;

 }

 PlainButton {

 color: "orange"

 text: "--"

 onClicked: Counter.value -= 5;

 }

}

qul_target_generate_interfaces(cppintegration counter.h)

qul_target_qml_sources(cppintegration cppintegration.qml PlainButton.qml)

Another interesting aspect is that we are building a C++ project without writing a main function. This

is taken care of by the app_target_default_main macro that adds a reference main implementation to

the project. You can of course replace this with a custom main function if you need more control.

Finally, the libraries linked to are not the standard Qt ones, but the Qul:: ones, e.g:

Links

Further reading at qt.io:

Integrate C++ and QML

app_target_default_main(cppintegration cppintegration)

target_link_libraries(cppintegration

 Qul::QuickUltralite

 Qul::QuickUltralitePlatform)

https://doc.qt.io/QtForMCUs/qtul-integratecppqml.html

Working with Models

In Qt Quick Ultralite, it is possible to create models in QML using the ListModel element. It is also

possible, and a bit more interesting, to create models from C++. This lets you expose lists of data from

C++ to QML and to instantiate user interface elements for each item of the list. The setup is very similar

to the ordinary Qt Quick, but the base classes and interfaces are more limited.

In this chapter we will create a list of cities in Europe, listing the name of the city and the country in

which the city is located. The cities will be shown in a ListView as shown below:

The C++

To create a model in Qt Quick Ultralite, the first thing we need to do is to define a struct with the

data of each list item. For this struct, we also need to provide a == operator. This is what we do with

the CityData struct shown below. Notice that we use std::string rather than QString in Qt Quick

Ultralite. The assumption is that UTF-8 encoding is used.

#include <string>

struct CityData

{

 std::string name;

 std::string country;

};

inline bool operator==(const CityData &l, const CityData &r)

{

Once the data type has been prepared, we declare the CityModel struct, inheriting from

Qul::ListModel . This lets us define a model that can be accessed from QML. We must implement the

count and data methods, which are similar, but not identical to, the corresponding methods from

the QAbstractListModel class. We also use the `CMake macro qul_target_generate_interfaces to

make the types available to QML.

We also implement a constructor for the CityModel struct that populates the m_data vector with

data.

The QML

In the example, we show the model as a scrollable list, as shown below.

 return l.name == r.name && l.country == r.country;

}

#include <qul/model.h>

#include <platforminterface/allocator.h>

struct CityModel : Qul::ListModel<CityData>

{

private:

 Qul::PlatformInterface::Vector<CityData> m_data;

public:

 CityModel();

 int count() const override { return m_data.size(); }

 CityData data(int index) const override { return m_data[index]; }

};

#include "citymodel.h"

CityModel::CityModel()

{

 m_data.push_back(CityData {"Berlin", "Germany"});

 m_data.push_back(CityData {"Copenhagen", "Denmark"});

 m_data.push_back(CityData {"Helsinki", "Finland"});

 m_data.push_back(CityData {"London", "England"});

 m_data.push_back(CityData {"Oslo", "Norway"});

 m_data.push_back(CityData {"Paris", "France"});

 m_data.push_back(CityData {"Stockholm", "Sweden"});

}

The QML code is shown in its entirety below:

import QtQuick 2.0

Rectangle {

 width: 480

 height: 272

 CityModel {

 id: cityModel

 }

 Component {

 id: cityDelegate

 Item {

 width: 480

 height: 45

 Column {

 spacing: 2

 Text {

 text: model.name

 x: 10

 font: Qt.font({

 pixelSize: 24,

 unicodeCoverage: [Font.UnicodeBlock_BasicLatin]

 })

 }

 Text {

 text: model.country

 x: 10

 color: "gray"

 font: Qt.font({

 pixelSize: 12,

The example starts by instantiating the cityModel . As the model is not a singleton, it has to be

instantiated from QML.

Then the delegate, cityDelegate is implemented as a Component . This means that it can be

instantiated multiple times from QML. The model data is accessed via the model.name and

model.country attached properties.

Finally, the ListView element joins the model and the delegate, resulting in the list shown in the

screenshots in this chapter.

An interesting aspect of the QML is how the font of the Text elements is configured. The

unicodeCoverage property lets us tell the Qt Quick Ultralite compiler what characters we would like to

be able to render. When specifying fixed strings, the Qt Quick Ultralite tooling generates minimal fonts

 unicodeCoverage: [Font.UnicodeBlock_BasicLatin]

 })

 }

 Rectangle {

 color: "lightGreen"

 x: 10

 width: 460

 height: 1

 }

 }

 }

 }

 ListView {

 anchors.fill: parent

 model: cityModel

 delegate: cityDelegate

 spacing: 5

 }

}

containing exactly the glyphs that we intend to use. However, since the model will provide us with

dynamic data, we need to tell the font what characters we expect to use.

When rendering a complete font, sometimes you encounter the following style of warnings:

These can safely be disregarded, unless you expect to show the character in question.

[2/7 8.8/sec] Generating CMakeFiles/cppmodel.dir/qul_font_engines.cpp,

CMakeFiles/cppmodel.dir/qul_font_data.cpp

Warning: Glyph not found for character "\u0000"

Warning: Glyph not found for character "\u0001"

Warning: Glyph not found for character "\u0002"

Warning: Glyph not found for character "\u0003"

Warning: Glyph not found for character "\u0004"

Warning: Glyph not found for character "\u0005"

Warning: Glyph not found for character "\u0006"

Warning: Glyph not found for character "\u0007"

...

Summary

In this chapter we've scratched the surface of Qt for MCUs and Qt Quick Ultralite. These technologies

bring Qt to much smaller platforms and make it truly embeddable. Through-out this chapter, we've

used the virtual desktop target, which allows for quick prototyping. Targeting a specific board is just as

easy, but requires access to hardware and the associated tools.

Key take-aways from using Qt Quick Ultralite is that there are fewer built in elements, and that some

APIs are slightly more restricted. But given the intended target systems, this is usually not a hindrance.

Qt Quick Ultralite also turns QML into a compiled language, which actually is nice. It allows you to catch

more errors during compile time, instead of having to test more during run time.

	0 preface preface
	1 preface acknowledgements
	2 preface authors
	3 ch01-meetqt meet-qt
	4 ch01-meetqt blocks
	5 ch01-meetqt intro
	6 ch02-start quick-start
	7 ch02-start install
	8 ch02-start hello-world
	9 ch02-start app-types
	10 ch02-start summary
	11 ch03-qtcreator qt-creator
	12 ch03-qtcreator user-interface
	13 ch03-qtcreator kit-registry
	14 ch03-qtcreator projects
	15 ch03-qtcreator editor
	16 ch03-qtcreator locator
	17 ch03-qtcreator debugging
	18 ch03-qtcreator shortcuts
	19 ch04-qmlstart quick-start
	20 ch04-qmlstart qml-syntax
	21 ch04-qmlstart core-elements
	22 ch04-qmlstart components
	23 ch04-qmlstart transformations
	24 ch04-qmlstart positioning
	25 ch04-qmlstart layout
	26 ch04-qmlstart input
	27 ch04-qmlstart advanced
	28 ch05-fluid fluid-elements
	29 ch05-fluid animations
	30 ch05-fluid states-transitions
	31 ch05-fluid advanced
	32 ch06-controls controls2
	33 ch06-controls introduction
	34 ch06-controls image-viewer
	35 ch06-controls common-patterns
	36 ch06-controls imagine-style
	37 ch06-controls summary
	38 ch07-modelview model-view
	39 ch07-modelview concept
	40 ch07-modelview basic-models
	41 ch07-modelview dynamic-views
	42 ch07-modelview delegate
	43 ch07-modelview advanced
	44 ch07-modelview summary
	45 ch08-canvas canvas-element
	46 ch08-canvas convenience-api
	47 ch08-canvas gradients
	48 ch08-canvas shadows
	49 ch08-canvas images
	50 ch08-canvas transformation
	51 ch08-canvas composition-modes
	52 ch08-canvas pixel-buffer
	53 ch08-canvas canvas-paint
	54 ch08-canvas port-from-html
	55 ch09-shapes shapes
	56 ch09-shapes basics
	57 ch09-shapes paths
	58 ch09-shapes gradients
	59 ch09-shapes animations
	60 ch09-shapes summary
	61 ch10-effects effects
	62 ch10-effects particles
	63 ch10-effects simple-simulation
	64 ch10-effects particle-parameters
	65 ch10-effects directed-particles
	66 ch10-effects affecting-particles
	67 ch10-effects particle-groups
	68 ch10-effects particle-painters
	69 ch10-effects opengl-shaders
	70 ch10-effects shader-elements
	71 ch10-effects fragment-shaders
	72 ch10-effects wave-effect
	73 ch10-effects vertex-shader
	74 ch10-effects curtain-effect
	75 ch10-effects summary
	76 ch11-multimedia multimedia
	77 ch11-multimedia playing-media
	78 ch11-multimedia sound-effects
	79 ch11-multimedia video-streams
	80 ch11-multimedia capturing-images
	81 ch11-multimedia summary
	82 ch12-qtquick3d intro
	83 ch12-qtquick3d basics
	84 ch12-qtquick3d assets
	85 ch12-qtquick3d materials-and-light
	86 ch12-qtquick3d animations
	87 ch12-qtquick3d mixing-2d-and-3d
	88 ch12-qtquick3d summary
	89 ch13-networking networking
	90 ch13-networking serve-qml
	91 ch13-networking templates
	92 ch13-networking http-requests
	93 ch13-networking local-files
	94 ch13-networking rest-api
	95 ch13-networking authentication
	96 ch13-networking web-sockets
	97 ch13-networking summary
	98 ch14-storage storage
	99 ch14-storage settings
	100 ch14-storage local-storage
	101 ch15-dynamicqml dynamic-qml
	102 ch15-dynamicqml loading-components
	103 ch15-dynamicqml dynamic-objects
	104 ch15-dynamicqml tracking-objects
	105 ch15-dynamicqml summary
	106 ch16-javascript javascript
	107 ch16-javascript html-qml
	108 ch16-javascript js-language
	109 ch16-javascript js-objects
	110 ch16-javascript js-console
	111 ch17-qtcpp qtcpp
	112 ch17-qtcpp boilerplate
	113 ch17-qtcpp qobject
	114 ch17-qtcpp build-system
	115 ch17-qtcpp common-classes
	116 ch17-qtcpp cpp-models
	117 ch18-extensions extending-qml
	118 ch18-extensions qml-runtime
	119 ch18-extensions plugin-content
	120 ch18-extensions create-plugin
	121 ch18-extensions fileio-demo
	122 ch18-extensions using-fileio
	123 ch18-extensions summary
	124 ch19-python qt-python
	125 ch19-python introduction
	126 ch19-python installing
	127 ch19-python build-app
	128 ch19-python limitations
	129 ch19-python summary
	130 ch20-qtformcu qtformcu
	131 ch20-qtformcu setup
	132 ch20-qtformcu helloworld
	133 ch20-qtformcu cpp
	134 ch20-qtformcu models
	135 ch20-qtformcu summary

