diff --git a/flaskr/report.py b/flaskr/report.py index 41b7569..f325b40 100644 --- a/flaskr/report.py +++ b/flaskr/report.py @@ -42,7 +42,7 @@ REFERENCES_PATH = os.path.join(Path(os.path.abspath(__file__)).parent.parent, "templates", "references.txt") DEBUG = False -VERSION = "v0.1.0" +VERSION = "v0.1.1" KEEP_PROPERTIES = { "OBJECTID": ["Object ID", int], "GNIS_ID": ["GNIS ID", str], @@ -207,7 +207,6 @@ def generate_report( html += wbs_html[wb] i += 1 logging.info(f"Report: {report_id}, completed group: {k}") - # Add refs else: i = 0 for k, ids in waterbodies.items(): @@ -254,7 +253,6 @@ def generate_report( for wb in sorted(wbs_html.keys()): html += wbs_html[wb] logging.info(f"Report: {report_id}, completed group: {k}") - # Add refs i += 1 html += get_references(j_env=j_env) html += get_closing(j_env=j_env) diff --git a/templates/references.txt b/templates/references.txt index cf22fc0..738bbf2 100644 --- a/templates/references.txt +++ b/templates/references.txt @@ -1,3 +1,6 @@ -Megan M. Coffer, Blake A. Schaeffer, John A. Darling, Erin A. Urquhart, Wilson B. Salls; Quantifying national and regional cyanobacterial occurrence in US lakes using satellite remote sensing.; Ecological Indicators, Volume 111, 2020, 105976, ISSN 1470-160X; https://www.sciencedirect.com/science/article/pii/S1470160X19309719 -Mishra, S., Stumpf, R.P., Schaeffer, B.A. et al.; Measurement of Cyanobacterial Bloom Magnitude using Satellite Remote Sensing.; Sci Rep 9, 18310 (2019).; https://rdcu.be/cg6bI -Ross S. Lunetta, Blake A. Schaeffer, Richard P. Stumpf, Darryl Keith, Scott A. Jacobs, Mark S. Murphy; Evaluation of cyanobacteria cell count detection derived from MERIS imagery across the eastern USA, Remote Sensing of Environment; Volume 157, 2015, Pages 24-34, ISSN 0034-4257; https://www.sciencedirect.com/science/article/pii/S0034425714002211 \ No newline at end of file +Megan M. Coffer, Blake A. Schaeffer, John A. Darling, Erin A. Urquhart, Wilson B. Salls; Quantifying national and regional cyanobacterial occurrence in US lakes using satellite remote sensing; Ecological Indicators, Volume 111, 2020, 105976, ISSN 1470-160X; https://www.sciencedirect.com/science/article/pii/S1470160X19309719 +Mishra, S., Stumpf, R.P., Schaeffer, B.A. et al.; Measurement of Cyanobacterial Bloom Magnitude using Satellite Remote Sensing; Sci Rep 9, 18310 (2019).; https://rdcu.be/cg6bI +Ross S. Lunetta, Blake A. Schaeffer, Richard P. Stumpf, Darryl Keith, Scott A. Jacobs, Mark S. Murphy; Evaluation of cyanobacteria cell count detection derived from MERIS imagery across the eastern USA, Remote Sensing of Environment; Volume 157, 2015, Pages 24-34, ISSN 0034-4257; https://www.sciencedirect.com/science/article/pii/S0034425714002211 +Megan M. Coffer, Blake A. Schaeffer, Wilson B. Salls, Erin A. Urquhart, Keith A. Loftin, Richard P. Stumpf, P. Jeremy Werdell, John A. Darling; Satellite remote sensing to assess cyanobacterial bloom frequency across the United States at multiple spatial scales; Ecological Indicators, Volume 128, 2021, 107822, ISSN 1470-160X; https://doi.org/10.1016/j.ecolind.2021.107822 +Blake A. Schaeffer, Erin A. Urquhart, Megan M. Coffer, Wilson B. Salls, Richard P. Stumpf, Keith A. Loftin, P. Jeremy Werdell; Satellites quantify the spatial extent of cyanobacterial blooms across the United States at multiple scales; Ecological Indicators, Volume 140, 2022, 108990, ISSN 1470-160X; https://doi.org/10.1016/j.ecolind.2022.108990 +Sachidananda Mishra, Richard P. Stumpf, Blake A. Schaeffer, P. Jeremy Werdell; Recent changes in cyanobacteria algal bloom magnitude in large lakes across the contiguous United States; Science of The Total Environment, Volume 897, 2023, 165253, ISSN 0048-9697; https://doi.org/10.1016/j.scitotenv.2023.165253 \ No newline at end of file diff --git a/templates/report_2_description.html b/templates/report_2_description.html index 8d6ff19..86bbb3e 100644 --- a/templates/report_2_description.html +++ b/templates/report_2_description.html @@ -121,6 +121,13 @@

Waterbody Statistics

A 30 day history is provided graphically showing the detection category counts, as well as a table showing the approximate surface area by pixel count and the percentage of surface area for the whole waterbody for each day. Lastly, a complete history is provided by category pixel count for all the data we have for the waterbody. +

Metric Calculations

+
+ The waterbody frequency, extent, and magnitude metrics are based on the published equations, each of the publications can be found in the references at the end of the document. The equations used for this report are slightly modified due + to differences in the underlying data used in the calculations. All metrics use the daily distribution of DN values, pixel values, within the waterbody or waterbody collection. The frequency metric is calculated as the sum of all detections (DN=1->253) for the entire time + period divided by the total number of valid pixels (DN=0->253) for the same time period. The extent metric is calculated as the average of the daily sum of detections in the waterbody divided by the sum of valid pixels in the waterbody. The magnitude metric provided is the + area weighted chla (mg/m^3) for a waterbody as described in the magnitude publication. +