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Abstract

We study the structure of the monopole configuration in U(2) non-commutative

super Yang-Mills theory. Our analysis consists of two steps: solving the BPS

equation and then the eigenvalue equation in the non-commutative space. Cal-

culation to the first non-trivial order in the non-commutativity parameter θ shows

that the monopole exhibits a certain non-locality. This structure is precisely the

one expected from the recent predictions by the brane-configuration technique.
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1 Introduction

The fertile developments in string theory in this half a decade have enabled us to understand

various perturbative and non-perturbative phenomena in field theories by geometrical intu-

itive pictures. This progress in string theory is now beyond the province of reproduction of

the result of the field theories, that is, now the string theory has predictive power in various

field theories.

One of the most intriguing examples is the 1/4 BPS dyon solution in 4-dimensional

N = 4 super Yang-Mills theory (SYM). The study of the 1/4 BPS states in SYM was

triggered by the discovery of the stable string network in type IIB string theory [1, 2]. When

this string network has its ends on D3-branes, these states preserve 1/4 supersymmetries

of the original D3-brane worldvolume theory [3]. After the study from the string theory

side, there appeared some works [4, 5, 6, 7] in which explicit field theoretical solutions for

the corresponding solitons were constructed. The properties of the solution favor the string

theory interpretation with respect to their (p, q)-charges, masses and supersymmetries.

Recent topics of the string-theoretical realization of field theories are concerning the space

non-commutativity [8, 9, 10]. The non-commutative super Yang-Mills theory (NCSYM) is

realized as a decoupling limit of the worldvolume theory on D3-branes in the non-trivial

NS-NS 2-form background. Taking advantage of this equivalence, some basic properties of

localized objects in this exotic field theory were analyzed [11]. The brane configurations

corresponding to the monopoles, dyons and 1/4 BPS dyons were constructed, and they

were shown to have the same masses and supersymmetry properties as the ordinary SYM

counterparts. One fascinating prediction from this brane technique is that the monopole in

the NCSYM has non-locality δ due to the tilt of the D-string suspended between two D3-

branes (see fig. 1). Believing that the brane configuration of this figure precisely captures

the field theoretical properties, the configuration of the monopole in the NCSYM should

reproduce the tilted line, as the eigenvalues of the Higgs field. The ends of the D-string

appear to be magnetic charges, hence the field theoretical solution should contain dipole

structure.

In this paper, we explicitly solve the BPS equation for the monopole of the NCSYM to the

first non-trivial order in θij which specifies the non-commutativity. This 1/2 BPS solution

has the same mass as the ordinary SYM monopole, in agreement with the prediction by

string theory. Solving the non-commutative eigenvalue equation in Sec. 3, we show in Sec.

4 that the solution actually reproduces the tilt of the suspended D-string. Examining the

magnetic field, the dipole structure is also found. In the final section, we summarize the

paper and give some discussions.
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Figure 1: The D-string suspended between two parallel D3-branes tilts

owing to the background of the constant NS-NS B-field.

2 Non-commutative BPS equation and its solution

The Bogomol’nyi-Prasad-Sommerfield (BPS) monopole solution [12, 13] of the ordinary SYM

is saturating a particular energy bound which is usually called the BPS bound. Since this

bound is topologically sensible, the state saturating the bound is stable. Now in the case of

the NCSYM, unfortunately the topological argument seems not to be valid due to the high

complexity of the ∗-product. Even with this complexity, we can argue a similar mass bound

as in the following [11].

The energy of the system without the electric field is given by

E = Tr
∫

d3x
[

1

2
Fij ∗ Fij + DiΦ ∗DiΦ

]
, (2.1)

where we have defined the field strength and the covariant derivative as

Fij ≡ ∂iAj − ∂jAi − iAi ∗ Aj + iAj ∗ Ai, (2.2)

DiΦ ≡ ∂iΦ− iAi ∗ Φ + iΦ ∗ Ai. (2.3)

We have put the Yang-Mills coupling constant gYM equal to unity. The ∗-product is defined

with the non-commutativity parameter θij by

(f ∗ g)(x) ≡ f(x) exp
(

i

2
θij

←−
∂i

−→
∂j

)
g(x) = f(x)g(x) +

i

2
{f, g}(x) + O(θ2), (2.4)

where {f, g} is the Poisson bracket,

{f, g}(x) ≡ θij∂if(x) ∂jg(x). (2.5)
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We shall take as the gauge group the simplest one U(2). Note that the group SU(2) is

not allowed here since the algebra of any special unitary group is not closed when the

multiplication is defined by the ∗-product. The energy (2.1) is bounded below by a surface

integral as follows:∗

E =
1

2
Tr

∫
d3x

[
∓ǫijk (Fij ∗DkΦ + DkΦ ∗ Fij) + (Fij ± ǫijkDkΦ) ∗ (Fij ± ǫijlDlΦ)

]

≥ Tr
∫

d3x∂k

[
∓ǫijk (Fij ∗ Φ)

]
. (2.6)

If the solution of the non-commutative BPS (NCBPS) equation,

DiΦ +
1

2
ǫijkFjk = 0, (2.7)

has the same asymptotic behavior as the ordinary BPS solution, then the energy remains

the same. This fact will be confirmed to the first non-trivial order in θ by explicitly solving

the NCBPS equation (2.7).

We shall solve the NCBPS equation (2.7) to O(θ) in the small θ expansion. Let us express

the gauge field as

Ai ≡ (Aa
i + aa

i )
1

2
σa +

(
A0

i + a0
i

) 1

2
 , (2.8)

where the upper (lower) case component fields are of O(θ0) (O(θ1)). The scalar Φ is expressed

in a similar manner. First, the O(θ0) part of the NCBPS equation (2.7) is nothing but the

ordinary BPS equation, and we adopt the well-known BPS monopole solution as the O(θ0)

part of the solution:

Φa =
xa

r
F (r), Aa

i = ǫaij

xj

r
W (r), Φ0 = A0

i = 0, (2.9)

where the the functions appearing in the solution are

F (r) ≡ C coth(Cr)−
1

r
, W (r) ≡

1

r
−

C

sinh(Cr)
. (2.10)

The dimensionful parameter C determines the mass scale of the monopole. For later conve-

nience, we present the asymptotic behavior of these functions:

F (r) = C −
1

r
+ O(e−Cr), W (r) =

1

r
+ O(e−Cr). (2.11)

Next let us proceed to the O(θ) part of the NCBPS equation (2.7). Plugging (2.8) into

the NCBPS equation (2.7) and taking the O(θ) part, the U(1) component reads

∂iϕ
0 +

1

2
{Aa

i , Φa}+ ǫijk

(
∂ja

0
k +

1

4
{Aa

j , A
a
k}

)
= 0, (2.12)

∗In deriving the inequality (2.6), we assumed that Fij ± ǫijkDkΦ decay sufficiently fast at the infinity so

that we can apply the formula
∫

d3x (f ∗ g)(x) =
∫

d3xf(x)g(x) for these quantities.
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and does not contain the SU(2) fields (aa
i , ϕ

a). On the other hand, the SU(2) component

of the O(θ) part of the NCBPS equation decouples from the U(1) fields, and is in fact the

linearized equation for the fluctuation (aa
i , ϕ

a) obtained from the ordinary BPS equation.

Since any solution for (aa
i , ϕ

a) corresponds to a θ-dependent gauge transformation on the

BPS solution (2.9), we take aa
i = ϕa = 0 hereafter.

Now our task is to solve the equation (2.12). The ansatz for the BPS monopole solution

(2.9) was the covariance under the rotation of the diagonal SO(3) subgroup of SO(3)gauge×

SO(3)space. In order to solve eq. (2.12), we put the following ansatz for the U(1) fields

(a0
i , ϕ

0) respecting the covariance under the generalized rotation, in which we rotate also the

parameter θij :
†

a0
i = θijxjA(r), ϕ0 = θijǫijkxkB(r), (2.13)

where A(r) and B(r) are functions of r to be determined. Putting these ansatz (2.13) and

the explicit forms of the BPS solution (2.9) into the differential equation (2.12), we obtain

the following two equations as the coefficients of different tensor structures:

−A + B + rB′ +
1

4r2
W (W + 2F ) = 0, (2.14)

A′ + 2B′ −
d

dr

[
1

4r2
W (W + 2F )

]
= 0. (2.15)

The solution to eqs. (2.14) and (2.15) is given by

A(r) =
1

4r2
W (W + 2F )− 2

c1

r3
+ c2, B(r) =

c1

r3
+ c2, (2.16)

with two arbitrary constant parameters, c1 and c2. The parts in (2.16) containing these

constant parameters are actually solution to the homogeneous part of eq. (2.12):

∂iϕ
0 + ǫijk∂ja

0
k = 0. (2.17)

Since the c2 part of the scalar ϕ0 diverges at the infinity, we put c2 = 0. As for the c1 part,

a careful substitution into the left hand side of eq. (2.17) gives in fact a term proportional

to ∂i∂i(1/r) = −4πδ3(r). Hence the c1 part is not a solution at the origin, and we shall also

put c1 = 0. Finally the desired solution of the equation (2.12) is

a0
i = θijxj

1

4r2
W (W + 2F ), ϕ0 = 0. (2.18)

Note in particular that the scalar field receives no correction to this order. Since the whole

solution has the same leading asymptotic behavior as the BPS solution (2.9), we find that

the non-commutativity does not change the mass of the monopole.
†The generalized rotational covariance for a0

i allows two other terms with different structures, ǫijkθjk and

xiǫjklθjkxl. However, eq. (2.12) implies the vanishing of these two terms.
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3 Non-commutative eigenvalue equation

The configuration of the D-string suspended between two parallel D3-branes is described

by the deformation of the surface of the D3-branes in the spirit of the BIon (Born-Infeld

soliton) physics [14, 15]. The extent of this deformation of the D3-brane surface is given by

the eigenvalues of the scalar field on the D3-branes. We saw in the previous section that

there is no additional contribution of O(θ) in the scalar field configuration. However, since

we are now dealing with the theory with the ∗-product, the eigenvalue problem should be

different from that in the usual commutative case. In this section, we see that the O(θ)

terms are actually generated in the eigenvalues of the scalar field.

We propose that the eigenvalue equation for a hermitian matrix valued function M to be

considered in the non-commutative case is

M ∗ v = λ ∗ v, (3.1)

where v and λ are the eigenvector and the eigenvalue, respectively. Though there are other

candidates for the non-commutative eigenvalue equation, the present one (3.1) has advan-

tages over the others in various respects as we shall see in this and the final sections.

For solving (3.1) to O(θ), let us make the expansion

M = M0 + M1, v = v0 + v1, λ = λ0 + λ1, (3.2)

where the subscript number specifies the order of θ. Then, the O(θ0) part of (3.1) is M0v0 =

λ0v0, and the O(θ) part reads

M0v1 + M1v0 +
i

2
{M0, v0} = λ0v1 + λ1v0 +

i

2
{λ0, v0}. (3.3)

Multiplying v
†
0 from the left, we obtain the formula which gives the O(θ) part of the eigen-

value:

λ1 =
1

v
†
0v0

(
i

2
v
†
0{M0 − λ0

 , v0}+ v
†
0M1v0

)
. (3.4)

In view of the application to the present NCBPS solution, let us consider the particular case

with

M0 = m0(r) x̂aσa (x̂i ≡ xi/r), M1 = 0, (3.5)

and hence λ0 = ±m0(r) and x̂aσav0 = ±v0. Then, eq. (3.4) is calculated to give

λ1 =
i

2v
†
0v0

m0(r)

r
θij

(
v
†
0σi∂jv0 ∓ x̂iv

†
0∂jv0

)
= −

m0(r)

2r2
θix̂i, (3.6)
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with θi ≡ (1/2)ǫijkθjk. Note that λ1 (3.6) is independent of the sign of λ0. We obtained the

last expression of (3.6) using the explicit form v0 = (x1−ix2,±r−x3)T. However, the general

formula for λ1, eq. (3.4), is in fact invariant under the local phase and scale transformation

of v0 due to the identity v
†
0{M0−λ0

 , f  }v0 = 0 valid for any f(r). This corresponds to the

fact that the eigenvalue λ of (3.1) is invariant under the right multiplication v → v ∗ h for

an arbitrary h(r). We shall discuss the gauge transformation property of the eigenvalues in

the final section.

Let us evaluate various eigenvalues of the system using the formula (3.6). First, the scalar

eigenvalues are obtained by substituting m0(r) = F (r)/2 as

λΦ = ±
1

2
F (r)−

θix̂i

4r2
F (r) + O(θ2). (3.7)

Next, we shall consider the eigenvalues of the magnetic field Bi ≡ (1/2)ǫijkFjk near the

infinity r →∞. The magnetic field itself is given from the solution (2.18) as‡

Bi = −
x̂i

2r2
x̂aσa +

C

2r3
(δij − 3x̂ix̂j) θj

 + O
(

1

r4

)
. (3.8)

We would like to evaluate the O(θ) contribution to the eigenvalues by putting m0(r) =

−x̂i/2r2 and M1(r, θ) = C (δij − 3x̂ix̂j) θj
 /2r3. Since m0(r) in this case is O(1/r2), using

the formula (3.6), the order of the correction to the eigenvalues from this part is found as

O(1/r4). Thus near the infinity, the O(1/r3) part of the eigenvalues of the magnetic field is

saturated by m1.

4 Interpretation of the eigenvalues

In this section, we shall see how the eigenvalues (3.7) and (3.8) reproduce the brane config-

uration depicted in fig. 1. In the brane picture, the end of the D-string is seen as a magnetic

charge in a single D3-brane worldvolume theory. The prediction from the brane configura-

tion is that the magnetic charge on each end of the D-string is actually moved in different

directions between the upper and lower D3-branes, as shown in fig. 1. This shift is specified

by the spatial vector δi.

Now, the eigenvalues of the magnetic field (3.8) indicate that the U(1) part of the mag-

netic field exhibits a dipole structure. This structure is exactly the one expected from the

brane picture above. Noting that the zero-th order solution (2.9) represents −1/2 charge on

‡Since the definition of the magnetic field contains the ∗-product in itself, we should calculate also the

Poisson bracket term. However, this term contributes only to the O(1/r4) part in (3.8).
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the upper D3-brane and 1/2 charge on the lower, it is easy to derive the non-locality δi as

δi = Cθi. (4.1)

This result verifies the prediction of ref. [11] with the identification C = U .

x1

λΦ

-4 -2 2 4

-1.5

-1

-0.5

0.5

1

1.5

Figure 2: The eigenvalues of the solution for the scalar field. We choose

C = 2 and θ23 = 1/2, and other θ’s are set to zero.

Although the magnetic charges are expected to indicate only the locations of the ends of

the D-string, the eigenvalues of the scalar field must reproduce not only the locations of the

ends but also the slope of the D-string. In fact, the asymptotic behavior of the eigenvalues

(3.7) is given using (2.11) as

λΦ = ±
C

2
∓

1

2r
+

(
−

C

4r2
+

1

4r3

)
θix̂i + O(e−Cr)

= ±
C

2
∓

1

2

∣∣∣∣xi ∓
(

C

2
−

1

2r

)
θi

∣∣∣∣
−1

+ O(e−Cr). (4.2)

Eq. (4.2) implies first that in the upper and the lower D3-brane the end of the D-string sits

at xi = Cθi/2 and xi = −Cθi/2, respectively. Hence the non-locality is precisely given by

δi = Cθi, in agreement with the result (4.1) from the magnetic field. Secondly, in order to

read off the slope of the D-string from (4.2), we rewrite it as

λΦ = ±
C

2
∓

1

2
|xi − λΦθi|

−1 + O(e−Cr). (4.3)
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This equation means that, for a given value of λΦ, the corresponding worldvolume coordinate

is located on a sphere with its center at xi = λΦθi. Interpreting the trajectory of the center

as the D-string, our analysis reproduces precisely the tilt of the suspended D-string.

In fig. 2 we present the curves of the eigenvalues of the scalar field. The thin straight lines

represent the brane configuration of fig. 1. The dashed curves denote the eigenvalues of the

scalar field with θ = 0. Comparing these with the bold curves representing the eigenvalues

(3.7) with θ 6= 0, we can read off the simple brane configuration of ref. [11]. (The reason

why the bold curves are cutoff for small |x1| in fig. 2 is that the O(θ) term of the scalar

eigenvalues (3.7) are actually divergent at the origin r = 0. We shall discuss this problem in

the next section.)

5 Summary and discussion

In this paper, we solved the BPS equation of the NCSYM to the first non-trivial order in θ.

Evaluating the eigenvalues of the solution, we explicitly showed that the solution exhibits

the brane configuration of the tilted D-string, given in ref. [11]. Magnetic field has the dipole

structure, and the scalar field is also shifted to reproduce the tilted trajectory of the D-string.

Some comments are in order. Our first comment is on the gauge transformation prop-

erty of the eigenvalue λ in our non-commutative eigenvalue equation (3.1). Of course, the

eigenvalue λ in eq. (3.1) is never strictly invariant under the local gauge transformation of

M ,

M → U−1 ∗M ∗ U, (5.1)

where U−1 is the inverse of U with respect to the ∗-product, U ∗ U−1 = U−1 ∗ U =  .

However, we can show that the eigenvalue has a fairly nice property under (5.1). Consider

an infinitesimal gauge transformation δǫ on M with U =  + iǫ (ǫ† = ǫ),

δǫM = i(M ∗ ǫ− ǫ ∗M). (5.2)

Letting δǫ act on (3.1) and ∗-multiplying the resultant equation by v
† from the left, we obtain

v
† ∗ δǫλ ∗ v = iv† ∗ (λ ∗ ǫ− ǫ ∗ λ) ∗ v. (5.3)

Taking the O(θ) part of (5.3) and using δǫλ0 = 0, δǫλ1 is given as

δǫλ1 = v
†
0{ǫ, λ0}v0, (5.4)

for a normalized v0. Eq. (5.4) implies that, at least to O(θ), the gauge transformation cor-

responds to a coordinate transformation on the eigenvalue λ(r). In the U(2) case with ǫ(r) =

ǫa(r)σa+ǫ0(r) , the form of the coordinate transformation is δǫxi = −θij

(
∂jǫ0 + v

†
0σav0 ∂jǫa

)
.
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Therefore, we have shown that the eigenvalue of (3.1) for M and the one for U−1∗M∗U are

related by a coordinate transformation on the D3-branes and hence are physically equivalent,

at least to the first non-trivial order in θ. Recalling also that the eigenvalue of (3.1) is

independent of the choice of the eigenvector and that the scalar eigenvalue (3.7) has an

invariance under the simultaneous rotation of xi and θij , the eigenvalue equation (3.1) we have

adopted is a satisfactory one. These good properties, in particular, the gauge transformation

property of λ, are expected to persist to higher orders in θ.

Our second comment is on another type of non-commutative eigenvalue equation,

M ∗ v = v ∗ λ, (5.5)

where, compared with (3.1), v and λ are interchanged on the right hand side. Eq. (5.5) has

a property that the eigenvalue λ is invariant under the gauge transformation (5.1) of M .

However, for a given M the eigenvalues are not unique and do depend on the choice of the

eigenvectors v. What is worse, in the analysis similar to those in Sec. 3 by adopting (5.5), we

can show that it is impossible to obtain the the scalar eigenvalues possessing an invariance

under the simultaneous rotation of xi and θij . These are the reasons why we did not adopt

(5.5).

Our final comment is concerning the singular nature of the scalar eigenvalues (3.7) at the

origin r = 0. Since we have adopted the eigenvalue equation (3.1), the matrix whose diagonal

entries are these eigenvalues is no longer a solution of the BPS equation. Hence although

the eigenvalues (4.2) diverge at the origin, the energy of the configuration is still finite. We

would need a technique beyond the expansion in powers of θ to dissolve the singularity at

the origin.

Our analysis in this paper can straightforwardly be applied to the case of dyons. We

obtain a result consistent with the non-locality predicted by [11]. It would be an interesting

subject to study the non-commutative 1/4 BPS dyons using our formulation.

Note added

While writing this paper, we became aware of the paper [16] which has an overlap concerning

the solution of Sec. 2.
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