#### **Financial Wellbeing**

Using quantum machine learning to identify people who are in need of financial support.

Qiskit Hackathon: July 2022

Team<sup>\*</sup>: Anthony Hsu (BMM Lab), Ming Chen (CS) , Nitin Yadav (BMM Lab) Coach: Desiree (IBM) and Charles (Physics)

\*Thanks to Udaya for support.

## **Financial Wellbeing**

**Usefulness and Complexity** 

#### FINANCIAL WELLBEING IN AUSTRALIA AT A GLANCE



#### Classification task on real world data



### Results: Classical vs Quantum

AUC Precision Recall F1-Score Time(s) 0.006 AdaBoost 0.597 0:0.45 0:0.56 0:0.50 1:0.73 1:0.64 1:0.68 0.67 0:0.79 0:0.41 0:0.54 0.06 Neural Networks 1:0.75 1:0.94 1:0.83 (3 hidden layers) 0:0.730:0.30 0:0.42 0.016 Logit 0.61 1:0.71 1:0.94 1:0.81 SVM 0.64 0:0.89 0:0.30 0:0.44 0.007 1:0.72 1:0.98 1:0.83 912.5 0.55 0:0.41 0:0.48 0:0.44 Quantum VQC 1:0.69 1:0.621:0.65(ZZFeature, RealAmplitudes) 0.55 0:0.50 0:0.22 0:0.31 954.4 Quantum Kernel 1:0.68 1:0.88 1:0.77 (ZZFeature, linear entl.) 0.60 0:0.56 0:0.37 0:0.44 618.2 **Ouantum Kernel** 1:0.71 1:0.84 1:0.77 (ZFeature) 0.48 0:0.25 0:0.07 0:0.11 2144.75 Quantum Kernel 1:0.64 1:0.88 1:0.74 (PauliFeature)

**Usefulness and Complexity** 

Ran on 6% of the dataset. Core i9-10900F@4.8Ghz, 64GB DDR4 3466 MHz, Windows 11 Pro under Jupyter Notebook environment. QML was run on a simulator.

# Portfolio optimisation on real world data

Just for fun...



| Metrics                     | Expected Return | Expected Risk | Sharpe Ratio |
|-----------------------------|-----------------|---------------|--------------|
| Equally weighted            | 55.02%          | 20.94%        | 2.46         |
| Classical<br>(scipy, slsqp) | 71.44%          | 23.02%        | 2.95         |
| VQE                         | 63.3%           | 21.28%        | 2.81         |
| QAOA                        | 76.34%          | 25.25%        | 2.89         |

| Weights          | AAPL | META | XOM  | JNJ  | JPM  | INTC | GE   | TSLA |
|------------------|------|------|------|------|------|------|------|------|
| Equally weighted | 0.12 | 0.12 | 0.12 | 0.12 | 0.12 | 0.12 | 0.12 | 0.12 |
| Classical        | 0.00 | 0.25 | 0.00 | 0.05 | 0.30 | 0.24 | 0.16 | 0.00 |
| VQE              | 0.10 | 0.30 | 0.00 | 0.10 | 0.10 | 0.20 | 0.10 | 0.10 |
| QAOA             | 0.10 | 0.30 | 0.00 | 0.00 | 0.20 | 0.20 | 0.20 | 0.00 |

Note: Only one year of past daily data taken and hence Sharpe ratio is high.

1

Bonus?

- Hackathons are fun and an *efficient* way to get into something new.
- Double (triple) check the qiskit doc. version and the installed version.
- Inputs to the VQC and Kernel methods may be different.
  - The target variable needed one-hot encoding in VQC but not in kernel methods.
- Different runs of a QML algorithm may yield diverse performance
  - Hyper parameter tuning is based on experience with these methods.
- QML methods are (currently) magnitudes slower than classical ML methods.
  - Implementing parallel processing in simulators can be tricky.
  - One needs patience (a lot of it...)
- QML methods (currently) have a lower performance than classical ML methods.
- One has to be aware of issues arising from using small datasets (in the presence of noise).

### Healthy cross-disciplinary collaboration

Quantum community benefit



Thank you to UoM Physics and IBM Quantum group for organizing this event.