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Main challenge 

Noise effects are particularly detrimental in quantum chemistry calculations

Small changes in parameters can significantly change the result

Therefore, current quantum computers are not very suitable for simulating quantum chemistry

Optimal noise control is obviously the answer, but still far from reach

What can we do in meantime? 

Reduce the number of qubits to solve a quantum chemistry problem!  



But can we reduce qubits?

Recently, Dupont et al presented a remarkable proposal to HALVE the number of qubits



What is entanglement forging?

Consider the problem of  computing expectation values in a pure quantum state of 2N qubits

This problem is at the heart of quantum variational algorithms e.g. Energy minimization for finding 

ground states. 

Start with random state → compute energy →make variations that lower energy → repeat

Say, we are interested only in the expectation value of strings of Pauli operators e.g. many interesting 

Hamiltonians (Ising, Heisenberg)



What is entanglement forging?

Key result of the paper: If the state of 2N qubits has small entanglement between half the qubits the 

then expectation value of Pauli string operators = sum of products of only N-site expectation values

This can increase the accuracy of the variational optimization

Main mathematical tool to derive this result: Schmidt decomposition



Benchmarking results

The authors report the most accurate to-date ground state simulation of the water molecule 



Benchmarking results

The authors report the most accurate to-date ground state simulation of the water molecule 

An important parameter is k: 

the number of Schmidt states 

to keep in the ground state



Our project

The authors make a very non-trivial assumption: not only do they fix the number of Schmidt vectors, but 

also the Schmidt vectors themselves. 

This requires solid intuition about the molecular structure of the water at low energies (e.g. which 

orbitals are likely to the filled, occupations ruled out by symmetries)

In this project, we tried to improve their algorithm by additionally optimizing the Schmidt vectors (i.e. we 

only fixed the number of Schmidt states to retain in the ground state)



Approach

We had to address questions such as:

How do you set up the Schmidt vectors for a variational optimization?

What is the optimal direction in the space of Schmidt vectors?

We tried a few different strategies:

-- Random selection of Schmidt vectors

-- Descent in the direction of filling nearest orbitals



Some Background Chemistry



Results - Water
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Classically Determined Ground State= -75.7289



Results - Ammonia

Classically Determined Ground State = 56.04931106499788

Energy determined via VQE/Entanglement Forging = 55.9999

Bitstrings = [[0, 1, 1, 1, 1, 0, 0], [0, 1, 1, 1, 0, 1, 0], [1, 1, 1, 1, 0, 0, 0]]

VQE Ansatz



Other ideas (that didn’t work)

We also tried to extend the entanglement forging protocol to multiple partitions 

We considered states of qN qubits that had limited entanglement across q bipartitions. 

Our goal was to show that the expectation value of Pauli string operators for qN qubits reduces to a 

sum of products of only N-site expectation values

Recall that this way the key in the original protocol

For this generalization, we replaced the Schmidt decomposition (for a single bipartition) with a q-sites 

Matrix Product State decomposition. 

While we believe this is a fruitful approach to follow, and could potentially improve the original protocol, 

we were not able to show that this setup could generalize the existing construction.


