Decomposition of three qubit unitaries
Balint Pato
2020

Abstract

We would like to implement arbitrary three-qubit unitary decomposition into twoqubit and one-qubit gates in Cirq (https://github.com/quantumlib/Cirq/issues/451). This write-up explores the methodology described in [SBM06] which is the best known algorithm in terms of CNOT count, giving 20 CNOT decomposition for any three qubit unitaries.

1 Lower Bounds

Decomposing a unitary in the general case results in an exponential amount of single qubit and two-qubit gates. Based on [SMB04] the theoretical lower bound for CNOTs in three qubit circuits are $\frac{1}{4}\left(4^{n}-3 n-1\right)=54 / 4=13.5 \simeq 14$ in the gateset $\left\{R_{x}, R_{z}, C N O T\right\}$.

The following algorithm gives 20 CNOTs.

2 Quantum multiplexors

The idea of quantum multiplexors is described in [SBM06]:
A quantum multiplexor is a unitary that leaves the S, select qubits in their original state while changes the data qubits depending on the value of S. For each possible classic value of S the multiplexor can act with a different unitary.

While this sounds like controlled gates - they are not. This is a generalization of the control notion, where based on S different unitaries can be executed, in contrast controlled gates are only "choosing" between identity or a single unitary.

Notation: An n-qubit multiplexor U in circuit diagrams is denoted by " \square " on each select qubit, connected by a vertical line to a gate on the remaining data qubits, with the U symbol on the rectangle over the data qubits. While technically U denotes the whole unitary and not just the $n_{\text {data qubits }}$ qubit unitary that the actual "box" covers, this circuit notation allows to express the multiplexor structure.

Examples:

- S is the most significant qubit - this case U is block diagonal: $U=\left(\begin{array}{ll}U_{0} & \\ & U_{1}\end{array}\right)$, which we can denote with $U=U_{0} \oplus U_{1}$

- $\mathrm{CNOT}=I \oplus \sigma^{x}$

3 Shannon decomposition

The classical Shannon expansion of boolean functions is an important result that describes an N variable boolean function as the XOR of two $N-1$ variable Boolean functions that are both restricted in one variable to 0 or 1 respectively:

$$
f\left(x_{1}, x_{2}, . ., x_{N}\right)=\left(x_{1} \wedge f\left(x_{1}=0, x_{2}, x_{3}, \ldots, x_{N}\right)\right) \oplus\left(\neg x_{1} \wedge f_{1}\left(x_{1}=1, x_{2}, x_{3}, \ldots, x_{N}\right)\right)
$$

We can start to see how the language of quantum multiplexors will be helpful to express this kind of decomposition of step-by-step smaller qubit count operators.

3.1 The unoptimized algorithm

We start with an unoptimized algorithm, that gives 24 CNOTs. We will optimize it later to achieve the promised 20 CNOT count.

- Step 1: Cosine Sine decomposition (Theorem 10)

Where $U D=\left(\begin{array}{cc}u_{1} & 0 \\ 0 & u_{2}\end{array}\right) \in S U(8)$ is a multiplexor between u_{1} and u_{2} and similarly $V D H=\left(\begin{array}{cc}v_{1 h} & 0 \\ 0 & v_{2 h}\end{array}\right) \in S U(8)$ and $C S=\left(\begin{array}{cc}C & -S \\ S & C\end{array}\right) \in S U(8)$, where C and S are

4 x 4 diagonal matrices that satisfy $C^{2}+S^{2}=I$, finally $\theta_{i}, i \in\{0,1,2,3\}$ are the four possible rotations of the R_{y} rotation that is being multiplexed by the four possible states of the two least significant bits.
Since SciPy version 1.5.0 the cossin method implements the Cosine Sine decomposition.

```
from scipy.linalg import cossin
(u1, u2), theta, (v1h, v2h) = cossin(U, 4, 4, separate=True)
```

- Step 2: demultiplex the multiplexed R_{y} : it's easy to verify that the following circuit satisfies the required multiplexing logic, that is $\mid k>\rightarrow R_{y}\left(\theta_{k}\right)$:

, where

$$
\begin{aligned}
\alpha & =\theta_{0}+\theta_{1}+\theta_{2}+\theta_{3} \\
\beta & =\theta_{0}+\theta_{1}-\theta_{2}-\theta_{3} \\
\gamma & =\theta_{0}-\theta_{1}-\theta_{2}+\theta_{3} \\
\delta & =\theta_{0}-\theta_{1}+\theta_{2}-\theta_{3}
\end{aligned}
$$

- Step 3: demultiplex the two-qubit multiplexor $U D$:a block diagonal matrix can be diagonalized in a way that creates two two-qubit gates and a multiplexed R_{z} in the middle multiplexed on qubits 0 and 1, acting on qubit 2, i.e $u_{1} \oplus u_{2}=(I \otimes V)(D \oplus$ $\left.D^{\dagger}\right)(I \otimes W):$

$$
\left(\begin{array}{ll}
u_{1} & \\
& u_{2}
\end{array}\right)=\left(\begin{array}{ll}
V & \\
& V
\end{array}\right)\left(\begin{array}{cc}
D & \\
& D^{\dagger}
\end{array}\right)\left(\begin{array}{ll}
W & \\
& W
\end{array}\right)
$$

The calculation of V, D and W comes from:

$$
\begin{aligned}
u_{1} & =V D W \\
u_{2} & =V D^{\dagger} W \\
u_{2}^{\dagger} & =W^{\dagger} D V^{\dagger} \\
u_{1} u_{2}^{\dagger} & =V D W W^{\dagger} D V^{\dagger}=V D^{2} V^{\dagger}
\end{aligned}
$$

Where D is diagonal. We implemented cirq. unitary_eig to ensure that the resulting eigenvectors are orthogonal - i.e the resulting V is unitary:

```
u1u2 = u1 @ u2.conj().T
eigvals, V = cirq.unitary_eig(u1u2)
d = np.diag(np.sqrt(eigvals))
```

W can be easily expressed as $W=D V^{\dagger} u_{2}$.

- Step 4: Implementing the Diagonal D is very similar to CS , using a 4 -way R_{z} gate. At this point we have $C S$ implemented as a four-way R_{y} gate, W and V two-qubit unitaries, D implemented as a four-way R_{z} gate.

- Step 5: similarly decompose $V D H$ - giving 4 CNOTs for the 4 -way multiplexed R_{z}
- Step 6: decompose the four two qubit operators (using the KAK decomposition) that gives 3 CNOTs for each operator

This gives 24 CNOTs $=4 \times$ two-qubit operators x 3 CNOTs (KAK) +2 x 4 -way multiplexed R_{z} gates x 4 CNOTs ($V D H$ and $U D$ diagonals) $+1 \times 4$-way multiplexed R_{y} gate $\times 4$ CNOTs in the middle ($C S$)

3.2 Optimizations

3.2.1 $\mathrm{CNOT} \rightarrow \mathrm{CZ}$ in R_{y}

Appendix A. 1 in [SBM06] explains how replacing the CNOTs with CZs works equivalently in the multiplexed R_{y} implementation. The terminal CZ, as the CZ gate is diagonal, can be merged with the neighboring generic two-qubit multiplexer (UD).

Now, we are down to 3 CZs and 20CNOTs.

3.2.2 Eager diagonals

Based on Theorem 14 in Appendix A. 2 by [SBM06] there exists a diagonal gate Δ that we can extract from any two-qubit unitary that will leave a two-qubit gate that can be decomposed with only two CNOT gates:

This diagonal commutes through the controls of the multiplexed R_{y} and can be merged with the generic two-qubit multiplexers on the left of the circuit. As the KAK decomposition implemented in Cirq recognizes the two-CNOT circuits (is this true in general?), as long as we extract this diagonal, we can win 3 more CNOTs.

In order to understand this decomposition we need to look at [MBS03] for more details.

4 Extracting a diagonal from two-qubit circuits

4.1 Invariants of two-qubit unitaries

[MBS03] describes equivalence classes of two qubit special unitaries depending on whether they require zero, one, two or three CNOTs to implement them.
$U(4)$ is the group of two-qubit unitaries, $S U(4)$ is the group of determinant one two-qubit unitaries, the special unitary group.

Def: $\gamma: U(4) \rightarrow U(4), \gamma(u)=u\left(\sigma^{y}\right)^{\otimes 2} u^{T}\left(\sigma^{y}\right)^{\otimes 2}$
Def: $\chi(u)(x)=p(x)=\operatorname{det}(x I-u)$ the characteristic polynomial.
Def: u and v two are equivalent up to local unitaries if there exist one-qubit operators that, when pre- and post-composing with u, up to a global phase we get v. Denoted by $u \equiv v$.
[MBS03], Proposition II.1: $\forall u, v \in S U(4) u \equiv v \Longleftrightarrow \chi(\gamma(u))=\chi(\pm \gamma(v))$
[MBS03], Proposition III.1: An operator $u \in S U(4)$ can be simulated with 0 CNOT gates, if $\chi(\gamma(u))=(x+1)^{4}$ or $(x-1)^{4}$
[MBS03], Proposition III.2: An operator $u \in S U(4)$ can be simulated with 1 CNOT gate, if $\chi(\gamma(u))=(x+i)^{2}(x-i)^{2}$
[MBS03], Proposition III.3: An operator $u \in S U(4)$ can be simulated with 2 CNOT gates, if $\chi(\gamma(u))$ has real coefficients, which occurs if $\operatorname{tr}[\gamma(u)] \in \mathcal{R}$

4.2 Extracting the diagonal

The diagonal extraction is presented by in another paper by the same authors in [SMB04]. C_{2}^{1} represents a CNOT gate with control on the 1st qubit, target on the 2nd qubit:
[SMB04], Proposition V.2: For any $u \in S U(4)$ one can find θ, ϕ, ψ so that $\chi\left[\gamma\left(u C_{2}^{1}(I \otimes\right.\right.$ $\left.\left.R_{z}(\psi)\right) C_{2}^{1}\right]=\chi\left[\gamma\left(C_{2}^{1}\left(R_{x}(\theta) \otimes R_{z}(\phi)\right) C_{2}^{1}\right]\right.$.

Which is exactly what we want: compose our two-qubit unitary (u) from the left (in the circuit diagram) with a diagonal $\left(C_{2}^{1}\left(I \otimes R_{z}(\psi)\right) C_{2}^{1}\right.$ is diagonal) to get a unitary that can be implemented with only two CNOTs.

The proof is constructive and contains the algorithm to find ψ, however it does have a typo/bug in the formulae:

$$
\begin{aligned}
\Delta & :=C_{2}^{1}\left(I \otimes R_{z}(\psi)\right) C_{2}^{1} \\
\operatorname{tr}[\gamma(u \Delta)] & =\left(t_{1}+t_{4}\right) e^{-i \psi}+\left(t_{2}+t_{3}\right) e^{i \psi}
\end{aligned}
$$

, where $t_{1}, t_{2}, t_{3}, t_{4}$ are the diagonal entries of $\gamma\left(u^{T}\right)^{T}$.
Now, the paper claims that "We may ensure that this number is real by setting $\tan (\psi)=$ $\frac{I m\left(t_{1}+t_{2}+t_{3}+t_{4}\right)}{R e\left(t_{1}+t_{2}-t_{3}-t_{4}\right)}$.

Which is incorrect, it is relatively easy to deduce that $\tan (\psi)=\frac{I m\left(t_{1}+t_{2}+t_{3}+t_{4}\right)}{\operatorname{Re}\left(t_{1}+t_{4}-t_{2}-t_{3}\right)}$ is the right formula.

Also, there is one missing case mentioned in the paper:

- when $\operatorname{Re}\left(t_{1}+t_{4}-t_{2}-t_{3}\right)=0$ and will mean that:

$$
\begin{aligned}
\left(t_{1}+t_{4}\right) e^{-i \psi} & +\left(t_{2}+t_{3}\right) e^{i \psi} \in \mathbb{R} \Longrightarrow \\
e^{i \psi} & =-e^{-i \psi} \\
\psi & =3 \pi / 2 \text { or } \pi / 2
\end{aligned}
$$

The python code:

```
def special(u):
    return u / (np.linalg.det(u) ** (1 / 4))
```

```
def g(u):
    yy = np.kron(cirq.Y._unitary_(), cirq.Y._unitary_())
    return u @ yy @ u.T @ yy
def extract_right_diag(U):
    u = special(U)
    t = _gamma(_to_special(U).T).T.diagonal()
    k = np.real(t[0] + t[3] - t[1] - t[2])
    if k == 0:
        # in the end we have to pick a psi that makes sure that
        # exp(-i*psi) (t[0]+t[3]) + exp(i*psi) (t[1]+t[2]) is real
        # both pi/2 or 3pi/2 can work
        psi = np.pi/2
    else:
        psi = np.arctan(np.imag(np.sum(t)) / k)
    a, b = cirq.LineQubit.range(2)
    c_d = cirq.Circuit([cirq.CNOT(a, b), cirq.rz(psi)(b), cirq.CNOT(a, b)])
    return c_d._unitary_()
V = circuit._unitary_()
dV = extract_right_diag(V)
V = V @ dV
print(cirq.Circuit(
        cirq.optimizers.two_qubit_matrix_to_operations(
        a,b,V,allow_partial_czs=False
        )))
np.trace(g(special(V)))
```

$(-2.618033988749896-2.7755575615628914 \mathrm{e}-16 \mathrm{j})$

References

[MBS03] Igor L Markov, Stephen S Bullock, and Vivek V Shende. "Recognizing SmallCircuit Structure in Two-Qubit Operators and Timing Hamiltonians to Compute Controlled-Not Gates". In: Quant-Ph/0308045 (2003), pp. 3-6. Doi: doi : 10 . 1103/PhysRevA.70.012310. arXiv: 0308045 [quant-ph]. URL: http://arxiv. org/abs / quant - ph / 0308045\% 7B\% 5C\%\%7D5Cnhttp : / / www . arxiv . org/pdf / quant-ph/0308045.pdf.
[SMB04] Vivek V Shende, Igor L Markov, and Stephen S Bullock. Minimal Universal TwoQubit CNOT-based Circuits. Tech. rep. 2004.
[SBM06] Vivek V Shende, Stephen S Bullock, and Igor L Markov. Synthesis of Quantum Logic Circuits. Tech. rep. 2006.

