
Decomposition of three qubit unitaries
Balint Pato

2020

Abstract

We would like to implement arbitrary three-qubit unitary decomposition into two-
qubit and one-qubit gates in Cirq (https://github.com/quantumlib/Cirq/issues/451).
This write-up explores the methodology described in [SBM06] which is the best known
algorithm in terms of CNOT count, giving 20 CNOT decomposition for any three qubit
unitaries.

1 Lower Bounds

Decomposing a unitary in the general case results in an exponential amount of single qubit
and two-qubit gates. Based on [SMB04] the theoretical lower bound for CNOTs in three qubit
circuits are 1

4
(4n − 3n− 1) = 54/4 = 13.5 ' 14 in the gateset {Rx, Rz, CNOT}.

The following algorithm gives 20 CNOTs.

2 Quantum multiplexors

The idea of quantum multiplexors is described in [SBM06]:

A quantum multiplexor is a unitary that leaves the S, select qubits in their original state
while changes the data qubits depending on the value of S. For each possible classic value
of S the multiplexor can act with a different unitary.

While this sounds like controlled gates - they are not. This is a generalization of the
control notion, where based on S different unitaries can be executed, in contrast controlled
gates are only ”choosing” between identity or a single unitary.

Notation: An n-qubit multiplexor U in circuit diagrams is denoted by ”�” on each select
qubit, connected by a vertical line to a gate on the remaining data qubits, with the U symbol
on the rectangle over the data qubits. While technically U denotes the whole unitary and not
just the ndata qubits qubit unitary that the actual ”box” covers, this circuit notation allows to
express the multiplexor structure.

Examples:
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• S is the most significant qubit - this case U is block diagonal: U =

(
U0

U1

)
, which

we can denote with U = U0 ⊕ U1

S0

D0
U

D1

• CNOT = I ⊕ σx

3 Shannon decomposition

The classical Shannon expansion of boolean functions is an important result that describes
an N variable boolean function as the XOR of two N − 1 variable Boolean functions that
are both restricted in one variable to 0 or 1 respectively:

f(x1, x2, .., xN) = (x1 ∧ f(x1 = 0, x2, x3, ..., xN))⊕ (¬x1 ∧ f1(x1 = 1, x2, x3, ..., xN))

We can start to see how the language of quantum multiplexors will be helpful to express
this kind of decomposition of step-by-step smaller qubit count operators.

3.1 The unoptimized algorithm

We start with an unoptimized algorithm, that gives 24 CNOTs. We will optimize it later to
achieve the promised 20 CNOT count.

• Step 1: Cosine Sine decomposition (Theorem 10)

U0

Ry

'
V DH UD

Where UD =

(
u1 0
0 u2

)
∈ SU(8) is a multiplexor between u1 and u2 and similarly

V DH =

(
v1h 0
0 v2h

)
∈ SU(8) and CS =

(
C −S
S C

)
∈ SU(8), where C and S are
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4x4 diagonal matrices that satisfy C2 + S2 = I, finally θi, i ∈ {0, 1, 2, 3} are the four
possible rotations of the Ry rotation that is being multiplexed by the four possible
states of the two least significant bits.

Since SciPy version 1.5.0 the cossin method implements the Cosine Sine decomposition.

from scipy.linalg import cossin

(u1, u2), theta, (v1h, v2h) = cossin(U, 4, 4, separate=True)

• Step 2: demultiplex the multiplexed Ry: it’s easy to verify that the following circuit
satisfies the required multiplexing logic, that is |k >→ Ry(θk):

0 Ry(α) Ry(β) Ry(γ) Ry(δ)

1
V DH

• •
UD

2 • •

, where

α = θ0 + θ1 + θ2 + θ3

β = θ0 + θ1 − θ2 − θ3
γ = θ0 − θ1 − θ2 + θ3

δ = θ0 − θ1 + θ2 − θ3

• Step 3: demultiplex the two-qubit multiplexor UD:a block diagonal matrix can be
diagonalized in a way that creates two two-qubit gates and a multiplexed Rz in the
middle multiplexed on qubits 0 and 1, acting on qubit 2, i.e u1 ⊕ u2 = (I ⊗ V )(D ⊕
D†)(I ⊗W ): (

u1
u2

)
=

(
V

V

)(
D

D†

)(
W

W

)
The calculation of V , D and W comes from:

u1 = V DW

u2 = V D†W

u†2 = W †DV †

u1u
†
2 = V DWW †DV † = V D2V †

Where D is diagonal. We implemented cirq.unitary_eig to ensure that the resulting
eigenvectors are orthogonal - i.e the resulting V is unitary:
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u1u2 = u1 @ u2.conj().T

eigvals, V = cirq.unitary_eig(u1u2)

d = np.diag(np.sqrt(eigvals))

W can be easily expressed as W = DV †u2.

• Step 4: Implementing the Diagonal D is very similar to CS, using a 4-way Rz gate.
At this point we have CS implemented as a four-way Ry gate, W and V two-qubit
unitaries, D implemented as a four-way Rz gate.

0

CS(0) = 4-wayRyon(0) D = 4-wayRz1
V DH W V

2

• Step 5: similarly decompose V DH - giving 4 CNOTs for the 4-way multiplexed Rz

• Step 6: decompose the four two qubit operators (using the KAK decomposition) that
gives 3 CNOTs for each operator

This gives 24 CNOTs = 4 x two-qubit operators x 3 CNOTs (KAK) + 2 x 4-way multiplexed
Rz gates x 4 CNOTs (V DH and UD diagonals) + 1 x 4-way multiplexed Ry gate x 4 CNOTs
in the middle (CS)

3.2 Optimizations

3.2.1 CNOT → CZ in Ry

Appendix A.1 in [SBM06] explains how replacing the CNOTs with CZs works equivalently in
the multiplexed Ry implementation. The terminal CZ, as the CZ gate is diagonal, can be
merged with the neighboring generic two-qubit multiplexer (UD).

Now, we are down to 3 CZs and 20CNOTs.

3.2.2 Eager diagonals

Based on Theorem 14 in Appendix A.2 by [SBM06] there exists a diagonal gate ∆ that
we can extract from any two-qubit unitary that will leave a two-qubit gate that can be
decomposed with only two CNOT gates:
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∆

• Ry •
'

Ry

This diagonal commutes through the controls of the multiplexed Ry and can be merged
with the generic two-qubit multiplexers on the left of the circuit. As the KAK decomposition
implemented in Cirq recognizes the two-CNOT circuits (is this true in general?), as long as
we extract this diagonal, we can win 3 more CNOTs.

In order to understand this decomposition we need to look at [MBS03] for more details.

4 Extracting a diagonal from two-qubit circuits

4.1 Invariants of two-qubit unitaries

[MBS03] describes equivalence classes of two qubit special unitaries depending on whether
they require zero, one, two or three CNOTs to implement them.

U(4) is the group of two-qubit unitaries, SU(4) is the group of determinant one two-qubit
unitaries, the special unitary group.

Def : γ : U(4)→ U(4), γ(u) = u(σy)⊗2uT (σy)⊗2

Def : χ(u)(x) = p(x) = det(xI − u) the characteristic polynomial.

Def : u and v two are equivalent up to local unitaries if there exist one-qubit operators
that, when pre- and post-composing with u, up to a global phase we get v. Denoted by
u ≡ v.

[MBS03], Proposition II.1: ∀u, v ∈ SU(4)u ≡ v ⇐⇒ χ(γ(u)) = χ(±γ(v))

[MBS03], Proposition III.1: An operator u ∈ SU(4) can be simulated with 0 CNOT
gates, if χ(γ(u)) = (x+ 1)4 or (x− 1)4

[MBS03], Proposition III.2: An operator u ∈ SU(4) can be simulated with 1 CNOT
gate, if χ(γ(u)) = (x+ i)2(x− i)2

[MBS03], Proposition III.3: An operator u ∈ SU(4) can be simulated with 2 CNOT
gates, if χ(γ(u)) has real coefficients, which occurs if tr[γ(u)] ∈ R
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4.2 Extracting the diagonal

The diagonal extraction is presented by in another paper by the same authors in [SMB04].
C1

2 represents a CNOT gate with control on the 1st qubit, target on the 2nd qubit:

[SMB04], Proposition V.2: For any u ∈ SU(4) one can find θ, φ, ψ so that χ[γ(uC1
2(I⊗

Rz(ψ))C1
2 ] = χ[γ(C1

2(Rx(θ)⊗Rz(φ))C1
2 ].

Which is exactly what we want: compose our two-qubit unitary (u) from the left (in the
circuit diagram) with a diagonal (C1

2(I ⊗Rz(ψ))C1
2 is diagonal) to get a unitary that can be

implemented with only two CNOTs.

The proof is constructive and contains the algorithm to find ψ, however it does have a
typo/bug in the formulae:

∆ := C1
2(I ⊗Rz(ψ))C1

2

tr[γ(u∆)] = (t1 + t4)e
−iψ + (t2 + t3)e

iψ

, where t1, t2, t3, t4 are the diagonal entries of γ(uT )T .

Now, the paper claims that ”We may ensure that this number is real by setting tan(ψ) =
Im(t1+t2+t3+t4)
Re(t1+t2−t3−t4) ”.

Which is incorrect, it is relatively easy to deduce that tan(ψ) = Im(t1+t2+t3+t4)
Re(t1+t4−t2−t3) is the right

formula.

Also, there is one missing case mentioned in the paper:

• when Re(t1 + t4 − t2 − t3) = 0 and will mean that:

(t1 + t4)e
−iψ + (t2 + t3)e

iψ ∈ R =⇒
eiψ = −e−iψ

ψ = 3π/2 or π/2

The python code:

def special(u):

return u / (np.linalg.det(u) ** (1 / 4))
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def g(u):

yy = np.kron(cirq.Y._unitary_(), cirq.Y._unitary_())

return u @ yy @ u.T @ yy

def extract_right_diag(U):

u = special(U)

t = _gamma(_to_special(U).T).T.diagonal()

k = np.real(t[0] + t[3] - t[1] - t[2])

if k == 0:

# in the end we have to pick a psi that makes sure that

# exp(-i*psi) (t[0]+t[3]) + exp(i*psi) (t[1]+t[2]) is real

# both pi/2 or 3pi/2 can work

psi = np.pi/2

else:

psi = np.arctan(np.imag(np.sum(t)) / k)

a, b = cirq.LineQubit.range(2)

c_d = cirq.Circuit([cirq.CNOT(a, b), cirq.rz(psi)(b), cirq.CNOT(a, b)])

return c_d._unitary_()

V = circuit._unitary_()

dV = extract_right_diag(V)

V = V @ dV

print(cirq.Circuit(

cirq.optimizers.two_qubit_matrix_to_operations(

a,b,V,allow_partial_czs=False

)))

np.trace(g(special(V)))

...

(-2.618033988749896-2.7755575615628914e-16j)

0 PhX(-0.0207)0.2 • PhX(-0.196)0.2 • PhX(-0.696)0.134 Z−0.508

1 PhX(-0.218)0.2916 • PhX(0.496)0.2 • PhX(0.996)0.134 Z−0.176

7



References

[MBS03] Igor L Markov, Stephen S Bullock, and Vivek V Shende. “Recognizing Small-
Circuit Structure in Two-Qubit Operators and Timing Hamiltonians to Compute
Controlled-Not Gates”. In: Quant-Ph/0308045 (2003), pp. 3–6. doi: doi:10.

1103/PhysRevA.70.012310. arXiv: 0308045 [quant-ph]. url: http://arxiv.
org/abs/quant-ph/0308045%7B%5C%%7D5Cnhttp://www.arxiv.org/pdf/

quant-ph/0308045.pdf.

[SMB04] Vivek V Shende, Igor L Markov, and Stephen S Bullock. Minimal Universal Two-
Qubit CNOT-based Circuits. Tech. rep. 2004.

[SBM06] Vivek V Shende, Stephen S Bullock, and Igor L Markov. Synthesis of Quantum
Logic Circuits. Tech. rep. 2006.

8


