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1 Hubbard model for electrons or two cold atom
species

The standard Hubbard model for spin up and down fermions is given by:

H = −t
∑
〈i,j〉

(a†↑(j)a↑(i) + a†↓(j)a↓(i)) + U
∑
i

a†↑(i)a↑(i)a†↓(i)a↓(i), (1)

where 〈i, j〉 are nearest-neighbor sites on the lattice, and t is the kinetic term
and U is the on-site interaction. This can be shortened to

H = −t
∑

〈i,j〉,σ

a†σ(j)aσ(i)) + U
∑

i,σ<>σ′

a†σ(i)a(σi)a
′†
σ (i)a′σ(i), (2)

where the sum over σ is over all the spins (here and up and down) of the fermions
and the on-site interaction involves two different spins σ and σ′ (for fermions
there are no on-site interactions possible for the same spin).

This model in 2D away from half-filling is often used to try to simulate high
Tc. In this case U is typically large and repulsive, with U/t ≈ 10. It can also be
used to study dilute Fermi gases (particularly near unitarity in 3D), in this case
the interaction strength is tunable in both theory and experiment. A particular
choice of attractive U/t < 0 gives unitarity, essentially a zero-energy bound
state in the two-particle system (1 up and 1 down). Many calculations of the
unitary Fermi gas have been performed both in the continuum and using this
lattice model.[2] To reliably mimic cold atom systems the simulation must be
run in the dilute limit, many fewer particles than lattice sites.

The same model can be used to simulate pure neutron matter at very low
density, similar to what should exist in the inner crust of the neutron star.[4, 5]
The attractive Hubbard model has no sign problem for any filling, but the
superfluid correlations are very strong. At zero temperature there is a smooth
transition from BCS (weak pairing) to BEC (bound dimers of up and down
particles).
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2 More Species

In both cold atom physics and particularly in nuclear physics, it may be useful
to generalize this fermion model to more than two species. For example it may
be possible to mimic atomic nuclei using such a model. This is the lowest-order
term in ’pionless effective field theory’, often used to study models of nuclei,
particularly light ones.

In this case the Hamiltonian is:

H0
m = −t

∑
〈i,j〉,σ

a†σ(j)aσ(i) +
∑
i,σ<σ′

Uσ,σ′ a†σ(i)aσ(i)a†σ′(i)aσ′(i). (3)

For nuclei the sum over spins runs over four types ( ↑ neutron, ↓ neutron, ↑
proton, ↓ proton). Each spin has a kinetic term as for the two-component
species, and each pair of species can interact if two different species of par-
ticle are on the same lattice site. In principle each pair of species can have
a different interaction strength that labeled Uσ,σ′ . People have discussed and
sometimes even measured these types of systems in cold atom experiments.

For sufficiently attractive two body interactions the Hamiltonian Hm in the
continuum is not bounded from below. The attraction of three particles on a
site can overwhelm the two-body physics and produce an extremely strongly-
bound three-particle cluster. To avoid this in effective field theory one uses a
three-body repulsive term, again in principle it can depend upon the labels of
the three particles of species involved. The full Hamiltonian is then:

Hm = H0
m +

∑
i,σ<σ′<σ′′

Vσ,σ′,σ′′ a†σ(i)aσ(i)a†σ′(i)aσ′(i)a†σ′′(i)aσ′′(i). (4)

For sufficiently repulsive three-particle terms V the continuum Hamiltonian is
bounded from below. The ground-state of N fermions with an infinite number of
species problem is the same as the ground state of the many-boson problem with
the same Hamiltonian. If we tune the three-body problem to a weakly bound
trimer by adjusting the two-body problem to a zero-energy bound state and
then adjusting V to get a weakly bound three-body system, many properties
of the system can be solved for different particle number.[1] These properties
are universal in the sense they do not depend upon details of the two-body
interaction if we are in the dilute limit. Unitary bosons have been studied
experimentally in cold atom experiments.

For bosons the energy simply decreases monotonically with the number of
particles for the case where the trimers are weakly bound. Hence N-body
ground-state clusters are always bound states (they do not separate into smaller
clusters). For many particles the system saturates and there is an equilibrium
density at zero temperature. One can then study two- and three-particle con-
tacts (the probability of two- or three- particles being at one site), the con-
densate fraction, the scaled energy (energy per particle in an N-particle cluster
compared to energy per particle in the three-body bound state), etc.

For three- or four species this may well not happen. It is not clear that an
eight particle system with four species will not be higher in energy than two
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isolated four-particle systems. Variational calculations find that 4 4-particle
clusters (alpha particles) are lower in energy than a 16 nucleon system with 8
neutrons and 8 protons.[3] This is definitely what happens for two-species, two
dimers interact with a repulsive interation. The phase diagram of these systems
at zero (and finite) temperature is quite interesting. At low enough densities
they may well isolate into clusters where the number of particles per clusters is
equal to the number of species. This will produce a cloud of composite fermions
(3-species) or bosons (4-species). As the density is increased the clusters will
overlap and a ground-state with interesting properties should emerge. Some
kind of superfluidity is likely, either a simple two-species pairing or some kind
of more exotic superfulidity. We are trying to investigate these systems now
using Quantum Monte Carlo. They all have sign problems, so some kind of
approximation (variational, fixed node, etc.) is required.

There is also a lot of interesting dynamics on all these systems, some of
which has already been studied experimentally.
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