From 78e5ec8dc7df71226193adc513fe3bdaf605931b Mon Sep 17 00:00:00 2001 From: Noah Shutty Date: Sun, 10 Aug 2025 22:46:23 -0400 Subject: [PATCH 01/14] Add visualization library to CMake build --- CMakeLists.txt | 7 ++++++- 1 file changed, 6 insertions(+), 1 deletion(-) diff --git a/CMakeLists.txt b/CMakeLists.txt index bc3111bd..33420c7c 100644 --- a/CMakeLists.txt +++ b/CMakeLists.txt @@ -73,10 +73,15 @@ target_include_directories(utils PUBLIC ${TESSERACT_SRC_DIR}) target_compile_options(utils PRIVATE ${OPT_COPTS}) target_link_libraries(utils PUBLIC common libstim Threads::Threads) +add_library(visualization ${TESSERACT_SRC_DIR}/visualization.cc ${TESSERACT_SRC_DIR}/visualization.h) +target_include_directories(visualization PUBLIC ${TESSERACT_SRC_DIR}) +target_compile_options(visualization PRIVATE ${OPT_COPTS}) +target_link_libraries(visualization PUBLIC common boost_headers) + add_library(tesseract_lib ${TESSERACT_SRC_DIR}/tesseract.cc ${TESSERACT_SRC_DIR}/tesseract.h) target_include_directories(tesseract_lib PUBLIC ${TESSERACT_SRC_DIR}) target_compile_options(tesseract_lib PRIVATE ${OPT_COPTS}) -target_link_libraries(tesseract_lib PUBLIC utils boost_headers) +target_link_libraries(tesseract_lib PUBLIC utils boost_headers visualization) add_library(simplex ${TESSERACT_SRC_DIR}/simplex.cc ${TESSERACT_SRC_DIR}/simplex.h) target_include_directories(simplex PUBLIC ${TESSERACT_SRC_DIR}) From 5c211bc872714ed03b2333c16d6c49a153c39d24 Mon Sep 17 00:00:00 2001 From: Noah Shutty Date: Wed, 13 Aug 2025 11:27:13 -0400 Subject: [PATCH 02/14] Fix CMake Python module placement and add agent instructions --- .gitignore | 3 +++ AGENTS.md | 5 +++++ CMakeLists.txt | 7 +++++++ 3 files changed, 15 insertions(+) create mode 100644 AGENTS.md diff --git a/.gitignore b/.gitignore index 5b5d20b4..66d8f700 100644 --- a/.gitignore +++ b/.gitignore @@ -32,3 +32,6 @@ eclipse-*bin/ /.sass-cache # User-specific .bazelrc user.bazelrc + +# Ignore python extension module produced by CMake. +src/tesseract_decoder*.so diff --git a/AGENTS.md b/AGENTS.md new file mode 100644 index 00000000..ea68e20e --- /dev/null +++ b/AGENTS.md @@ -0,0 +1,5 @@ +# Agent Instructions + +- Use the **CMake** build system when interacting with this repository. Humans use Bazel. +- A bug in some LLM coding environments makes Bazel difficult to use, so agents should rely on CMake. +- Keep both the CMake and Bazel builds working at all times. diff --git a/CMakeLists.txt b/CMakeLists.txt index 33420c7c..10e5ea69 100644 --- a/CMakeLists.txt +++ b/CMakeLists.txt @@ -103,4 +103,11 @@ pybind11_add_module(tesseract_decoder MODULE ${TESSERACT_SRC_DIR}/tesseract.pybi target_compile_options(tesseract_decoder PRIVATE ${OPT_COPTS}) target_include_directories(tesseract_decoder PRIVATE ${TESSERACT_SRC_DIR}) target_link_libraries(tesseract_decoder PRIVATE common utils simplex tesseract_lib) +set_target_properties(tesseract_decoder PROPERTIES + LIBRARY_OUTPUT_DIRECTORY ${PROJECT_SOURCE_DIR}/src + LIBRARY_OUTPUT_DIRECTORY_DEBUG ${PROJECT_SOURCE_DIR}/src + LIBRARY_OUTPUT_DIRECTORY_RELEASE ${PROJECT_SOURCE_DIR}/src + LIBRARY_OUTPUT_DIRECTORY_MINSIZEREL ${PROJECT_SOURCE_DIR}/src + LIBRARY_OUTPUT_DIRECTORY_RELWITHDEBINFO ${PROJECT_SOURCE_DIR}/src +) From 7c10268eef32c22ce9189b195b84e83dc87e69ef Mon Sep 17 00:00:00 2001 From: Noah Shutty Date: Wed, 20 Aug 2025 15:09:33 -0700 Subject: [PATCH 03/14] Allow decode_to_errors to accept bitstring --- README.md | 6 +-- src/py/README.md | 25 +++++------ src/py/shared_decoding_tests.py | 6 +-- src/py/simplex_test.py | 3 +- src/py/tesseract_test.py | 7 +++- src/simplex.pybind.h | 34 ++++++++++++--- src/tesseract.pybind.h | 73 ++++++++++++++++++++++++++------- 7 files changed, 113 insertions(+), 41 deletions(-) diff --git a/README.md b/README.md index 30230f7f..2e19e436 100644 --- a/README.md +++ b/README.md @@ -190,15 +190,15 @@ config = tesseract.TesseractConfig(dem=dem, det_beam=50) # 3. Create a decoder instance decoder = config.compile_decoder() -# 4. Simulate detection events -syndrome = [0, 1, 1] +# 4. Simulate detector outcomes +syndrome = np.array([0, 1, 1], dtype=bool) # 5a. Decode to observables flipped_observables = decoder.decode(syndrome) print(f"Flipped observables: {flipped_observables}") # 5b. Alternatively, decode to errors -decoder.decode_to_errors(np.where(syndrome)[0]) +decoder.decode_to_errors(syndrome) predicted_errors = decoder.predicted_errors_buffer # Indices of predicted errors print(f"Predicted errors indices: {predicted_errors}") diff --git a/src/py/README.md b/src/py/README.md index 79c0c396..625e41bd 100644 --- a/src/py/README.md +++ b/src/py/README.md @@ -64,28 +64,28 @@ print(f"Custom configuration detection penalty: {config2.det_beam}") #### Class `tesseract.TesseractDecoder` This is the main class that implements the Tesseract decoding logic. * `TesseractDecoder(config: tesseract.TesseractConfig)` -* `decode_to_errors(detections: list[int])` -* `decode_to_errors(detections: list[int], det_order: int, det_beam: int)` +* `decode_to_errors(syndrome: np.ndarray)` +* `decode_to_errors(syndrome: np.ndarray, det_order: int, det_beam: int)` * `get_observables_from_errors(predicted_errors: list[int]) -> list[bool]` * `cost_from_errors(predicted_errors: list[int]) -> float` -* `decode(detections: list[int]) -> list[bool]` +* `decode(syndrome: np.ndarray) -> np.ndarray` Explanation of each method: -#### `decode_to_errors(detections: list[int])` +#### `decode_to_errors(syndrome: np.ndarray)` Decodes a single measurement shot to predict a list of errors. -* **Parameters:** `detections` is a list of integers that represent the indices of the detectors that have fired in a single shot. +* **Parameters:** `syndrome` is a 1D NumPy array of booleans representing the detector outcomes for a single shot. * **Returns:** A list of integers, where each integer is the index of a predicted error. -#### `decode_to_errors(detections: list[int], det_order: int, det_beam: int)` +#### `decode_to_errors(syndrome: np.ndarray, det_order: int, det_beam: int)` An overloaded version of the `decode_to_errors` method that allows for a different decoding strategy. * **Parameters:** - * `detections` is a list of integers representing the indices of the fired detectors. + * `syndrome` is a 1D NumPy array of booleans representing the detector outcomes for a single shot. * `det_order` is an integer that specifies a different ordering of detectors to use for the decoding. @@ -219,10 +219,10 @@ print(f"Configuration verbose enabled: {config.verbose}") This is the main class for performing decoding using the Simplex algorithm. * `SimplexDecoder(config: simplex.SimplexConfig)` * `init_ilp()` -* `decode_to_errors(detections: list[int])` +* `decode_to_errors(syndrome: np.ndarray)` * `get_observables_from_errors(predicted_errors: list[int]) -> list[bool]` * `cost_from_errors(predicted_errors: list[int]) -> float` -* `decode(detections: list[int]) -> list[bool]` +* `decode(syndrome: np.ndarray) -> np.ndarray` **Example Usage**: @@ -230,6 +230,7 @@ This is the main class for performing decoding using the Simplex algorithm. import tesseract_decoder.simplex as simplex import stim import tesseract_decoder.common as common +import numpy as np # Create a DEM and a configuration dem = stim.DetectorErrorModel(""" @@ -245,9 +246,9 @@ decoder = simplex.SimplexDecoder(config) decoder.init_ilp() # Decode a shot where detector D1 fired -detections = [1] -flipped_observables = decoder.decode(detections) -print(f"Flipped observables for detections {detections}: {flipped_observables}") +syndrome = np.array([0, 1], dtype=bool) +flipped_observables = decoder.decode(syndrome) +print(f"Flipped observables for syndrome {syndrome.tolist()}: {flipped_observables}") # Access predicted errors predicted_error_indices = decoder.predicted_errors_buffer diff --git a/src/py/shared_decoding_tests.py b/src/py/shared_decoding_tests.py index 4500b141..82259d4b 100644 --- a/src/py/shared_decoding_tests.py +++ b/src/py/shared_decoding_tests.py @@ -302,16 +302,16 @@ def shared_test_merge_errors_affects_cost(decoder_class, config_class): error(0.01) D0 """ ) - detections = [0] + syndrome = np.array([True], dtype=bool) config_no_merge = config_class(dem, merge_errors=False) decoder_no_merge = decoder_class(config_no_merge) - predicted_errors_no_merge = decoder_no_merge.decode_to_errors(detections) + predicted_errors_no_merge = decoder_no_merge.decode_to_errors(syndrome) cost_no_merge = decoder_no_merge.cost_from_errors(decoder_no_merge.predicted_errors_buffer) config_merge = config_class(dem, merge_errors=True) decoder_merge = decoder_class(config_merge) - predicted_errors_merge = decoder_merge.decode_to_errors(detections) + predicted_errors_merge = decoder_merge.decode_to_errors(syndrome) cost_merge = decoder_merge.cost_from_errors(decoder_merge.predicted_errors_buffer) p_merged = 0.1 * (1 - 0.01) + 0.01 * (1 - 0.1) diff --git a/src/py/simplex_test.py b/src/py/simplex_test.py index 3a228d9c..752f9e8f 100644 --- a/src/py/simplex_test.py +++ b/src/py/simplex_test.py @@ -13,6 +13,7 @@ # limitations under the License. import pytest +import numpy as np import stim from src import tesseract_decoder @@ -56,7 +57,7 @@ def test_create_simplex_decoder(): decoder = tesseract_decoder.simplex.SimplexDecoder( tesseract_decoder.simplex.SimplexConfig(_DETECTOR_ERROR_MODEL, window_length=5) ) - decoder.decode_to_errors([1]) + decoder.decode_to_errors(np.array([False, True], dtype=bool)) assert decoder.get_observables_from_errors([1]) == [] assert decoder.cost_from_errors([2]) == pytest.approx(1.0986123) diff --git a/src/py/tesseract_test.py b/src/py/tesseract_test.py index 5df3e329..b7b21835 100644 --- a/src/py/tesseract_test.py +++ b/src/py/tesseract_test.py @@ -13,6 +13,7 @@ # limitations under the License. import pytest +import numpy as np import stim from src import tesseract_decoder @@ -60,8 +61,10 @@ def test_create_tesseract_config(): def test_create_tesseract_decoder(): config = tesseract_decoder.tesseract.TesseractConfig(_DETECTOR_ERROR_MODEL) decoder = tesseract_decoder.tesseract.TesseractDecoder(config) - decoder.decode_to_errors([0]) - decoder.decode_to_errors(detections=[0], det_order=0, det_beam=0) + decoder.decode_to_errors(np.array([True, False], dtype=bool)) + decoder.decode_to_errors( + syndrome=np.array([True, False], dtype=bool), det_order=0, det_beam=0 + ) assert decoder.get_observables_from_errors([1]) == [] assert decoder.cost_from_errors([1]) == pytest.approx(0.5108256237659907) diff --git a/src/simplex.pybind.h b/src/simplex.pybind.h index 79c8d59d..9c0e6b96 100644 --- a/src/simplex.pybind.h +++ b/src/simplex.pybind.h @@ -20,6 +20,7 @@ #include #include #include +#include #include "common.h" #include "simplex.h" @@ -140,20 +141,43 @@ void add_simplex_module(py::module& root) { This method must be called before decoding. )pbdoc") - .def("decode_to_errors", &SimplexDecoder::decode_to_errors, py::arg("detections"), - py::call_guard(), R"pbdoc( + .def( + "decode_to_errors", + [](SimplexDecoder& self, const py::array_t& syndrome) { + if ((size_t)syndrome.size() != self.num_detectors) { + std::ostringstream msg; + msg << "Syndrome array size (" << syndrome.size() + << ") does not match the number of detectors in the decoder (" + << self.num_detectors << ")."; + throw std::invalid_argument(msg.str()); + } + + std::vector detections; + auto syndrome_unchecked = syndrome.unchecked<1>(); + for (size_t i = 0; i < (size_t)syndrome_unchecked.size(); ++i) { + if (syndrome_unchecked(i)) { + detections.push_back(i); + } + } + self.decode_to_errors(detections); + return self.predicted_errors_buffer; + }, + py::arg("syndrome"), + py::call_guard(), + R"pbdoc( Decodes a single shot to a list of error indices. Parameters ---------- - detections : list[int] - A list of indices of the detectors that have fired. + syndrome : np.ndarray + A 1D NumPy array of booleans representing the detector outcomes for a single shot. + The length of the array should match the number of detectors in the DEM. Returns ------- list[int] A list of predicted error indices. - )pbdoc") + )pbdoc") .def( "get_observables_from_errors", [](SimplexDecoder& self, const std::vector& predicted_errors) { diff --git a/src/tesseract.pybind.h b/src/tesseract.pybind.h index 267aa115..9c09e108 100644 --- a/src/tesseract.pybind.h +++ b/src/tesseract.pybind.h @@ -20,6 +20,7 @@ #include #include #include +#include #include "stim_utils.pybind.h" #include "tesseract.h" @@ -170,33 +171,75 @@ void add_tesseract_module(py::module& root) { config : TesseractConfig The configuration object for the decoder. )pbdoc") - .def("decode_to_errors", - py::overload_cast&>(&TesseractDecoder::decode_to_errors), - py::arg("detections"), - py::call_guard(), R"pbdoc( + .def( + "decode_to_errors", + [](TesseractDecoder& self, const py::array_t& syndrome) { + if ((size_t)syndrome.size() != self.num_detectors) { + std::ostringstream msg; + msg << "Syndrome array size (" << syndrome.size() + << ") does not match the number of detectors in the decoder (" + << self.num_detectors << ")."; + throw std::invalid_argument(msg.str()); + } + + std::vector detections; + auto syndrome_unchecked = syndrome.unchecked<1>(); + for (size_t i = 0; i < (size_t)syndrome_unchecked.size(); ++i) { + if (syndrome_unchecked(i)) { + detections.push_back(i); + } + } + self.decode_to_errors(detections); + return self.predicted_errors_buffer; + }, + py::arg("syndrome"), + py::call_guard(), + R"pbdoc( Decodes a single shot to a list of error indices. Parameters ---------- - detections : list[int] - A list of indices of the detectors that have fired. + syndrome : np.ndarray + A 1D NumPy array of booleans representing the detector outcomes for a single shot. + The length of the array should match the number of detectors in the DEM. Returns ------- list[int] A list of predicted error indices. - )pbdoc") - .def("decode_to_errors", - py::overload_cast&, size_t, size_t>( - &TesseractDecoder::decode_to_errors), - py::arg("detections"), py::arg("det_order"), py::arg("det_beam"), - py::call_guard(), R"pbdoc( + )pbdoc") + .def( + "decode_to_errors", + [](TesseractDecoder& self, const py::array_t& syndrome, size_t det_order, + size_t det_beam) { + if ((size_t)syndrome.size() != self.num_detectors) { + std::ostringstream msg; + msg << "Syndrome array size (" << syndrome.size() + << ") does not match the number of detectors in the decoder (" + << self.num_detectors << ")."; + throw std::invalid_argument(msg.str()); + } + + std::vector detections; + auto syndrome_unchecked = syndrome.unchecked<1>(); + for (size_t i = 0; i < (size_t)syndrome_unchecked.size(); ++i) { + if (syndrome_unchecked(i)) { + detections.push_back(i); + } + } + self.decode_to_errors(detections, det_order, det_beam); + return self.predicted_errors_buffer; + }, + py::arg("syndrome"), py::arg("det_order"), py::arg("det_beam"), + py::call_guard(), + R"pbdoc( Decodes a single shot using a specific detector ordering and beam size. Parameters ---------- - detections : list[int] - A list of indices of the detectors that have fired. + syndrome : np.ndarray + A 1D NumPy array of booleans representing the detector outcomes for a single shot. + The length of the array should match the number of detectors in the DEM. det_order : int The index of the detector ordering to use. det_beam : int @@ -206,7 +249,7 @@ void add_tesseract_module(py::module& root) { ------- list[int] A list of predicted error indices. - )pbdoc") + )pbdoc") .def( "get_observables_from_errors", [](TesseractDecoder& self, const std::vector& predicted_errors) { From c34dd80aec9f031bec0dcc47e6486b481f62d7b2 Mon Sep 17 00:00:00 2001 From: noajshu Date: Wed, 20 Aug 2025 22:18:00 +0000 Subject: [PATCH 04/14] clang-format --- src/simplex.pybind.h | 1 + src/tesseract.pybind.h | 1 + 2 files changed, 2 insertions(+) diff --git a/src/simplex.pybind.h b/src/simplex.pybind.h index 9c0e6b96..78f9a9e5 100644 --- a/src/simplex.pybind.h +++ b/src/simplex.pybind.h @@ -20,6 +20,7 @@ #include #include #include + #include #include "common.h" diff --git a/src/tesseract.pybind.h b/src/tesseract.pybind.h index 37c00ca8..32aa84d9 100644 --- a/src/tesseract.pybind.h +++ b/src/tesseract.pybind.h @@ -20,6 +20,7 @@ #include #include #include + #include #include "stim_utils.pybind.h" From 24c0d691dcd56e7e4aeea2341aac51e4fddbcfaa Mon Sep 17 00:00:00 2001 From: Noah Shutty Date: Wed, 20 Aug 2025 16:00:57 -0700 Subject: [PATCH 05/14] Update src/tesseract.pybind.h Co-authored-by: Noureldin --- src/tesseract.pybind.h | 5 ++++- 1 file changed, 4 insertions(+), 1 deletion(-) diff --git a/src/tesseract.pybind.h b/src/tesseract.pybind.h index 32aa84d9..efdd17d7 100644 --- a/src/tesseract.pybind.h +++ b/src/tesseract.pybind.h @@ -253,7 +253,10 @@ void add_tesseract_module(py::module& root) { msg << "Syndrome array size (" << syndrome.size() << ") does not match the number of detectors in the decoder (" << self.num_detectors << ")."; - throw std::invalid_argument(msg.str()); + std::string msg = "Syndrome array size (" + std:to_string(syndrome.size()) + + ") does not match the number of detectors in the decoder (" + + std::to_string(self.num_detectors) + ")." + throw std::invalid_argument(msg); } std::vector detections; From 96849b67693c5beceb913b8f7f521bafdce1dc01 Mon Sep 17 00:00:00 2001 From: noajshu Date: Wed, 20 Aug 2025 23:38:00 +0000 Subject: [PATCH 06/14] remove stringstream --- src/simplex.pybind.h | 9 ++++----- src/tesseract.pybind.h | 9 +++++---- 2 files changed, 9 insertions(+), 9 deletions(-) diff --git a/src/simplex.pybind.h b/src/simplex.pybind.h index 78f9a9e5..7297fab8 100644 --- a/src/simplex.pybind.h +++ b/src/simplex.pybind.h @@ -253,11 +253,10 @@ void add_simplex_module(py::module& root) { "decode", [](SimplexDecoder& self, const py::array_t& syndrome) { if ((size_t)syndrome.size() != self.num_detectors) { - std::ostringstream msg; - msg << "Syndrome array size (" << syndrome.size() - << ") does not match the number of detectors in the decoder (" - << self.num_detectors << ")."; - throw std::invalid_argument(msg.str()); + std::string msg = "Syndrome array size (" + std::to_string(syndrome.size()) + + ") does not match the number of detectors in the decoder (" + + std::to_string(self.num_detectors) + ")."; + throw std::invalid_argument(msg); } std::vector detections; diff --git a/src/tesseract.pybind.h b/src/tesseract.pybind.h index efdd17d7..1d27adf2 100644 --- a/src/tesseract.pybind.h +++ b/src/tesseract.pybind.h @@ -253,10 +253,11 @@ void add_tesseract_module(py::module& root) { msg << "Syndrome array size (" << syndrome.size() << ") does not match the number of detectors in the decoder (" << self.num_detectors << ")."; - std::string msg = "Syndrome array size (" + std:to_string(syndrome.size()) - + ") does not match the number of detectors in the decoder (" - + std::to_string(self.num_detectors) + ")." - throw std::invalid_argument(msg); + std::string msg = "Syndrome array size (" + + std + : to_string(syndrome.size()) + + ") does not match the number of detectors in the decoder (" + + std::to_string(self.num_detectors) + ")." throw std::invalid_argument(msg); } std::vector detections; From 3d486b0975025c822e3db1309d1c181b36faf4cf Mon Sep 17 00:00:00 2001 From: noajshu Date: Wed, 20 Aug 2025 23:51:20 +0000 Subject: [PATCH 07/14] more fixes --- src/simplex.pybind.h | 21 ++++++-------- src/tesseract.pybind.h | 43 +++++++++++----------------- src/tesseract_sinter_compat.pybind.h | 4 +-- 3 files changed, 28 insertions(+), 40 deletions(-) diff --git a/src/simplex.pybind.h b/src/simplex.pybind.h index 7297fab8..9d00d3c6 100644 --- a/src/simplex.pybind.h +++ b/src/simplex.pybind.h @@ -21,8 +21,6 @@ #include #include -#include - #include "common.h" #include "simplex.h" #include "stim_utils.pybind.h" @@ -146,11 +144,10 @@ void add_simplex_module(py::module& root) { "decode_to_errors", [](SimplexDecoder& self, const py::array_t& syndrome) { if ((size_t)syndrome.size() != self.num_detectors) { - std::ostringstream msg; - msg << "Syndrome array size (" << syndrome.size() - << ") does not match the number of detectors in the decoder (" - << self.num_detectors << ")."; - throw std::invalid_argument(msg.str()); + std::string msg = "Syndrome array size (" + std::to_string(syndrome.size()) + + ") does not match the number of detectors in the decoder (" + + std::to_string(self.num_detectors) + ")."; + throw std::invalid_argument(msg); } std::vector detections; @@ -311,11 +308,11 @@ void add_simplex_module(py::module& root) { size_t num_detectors = syndromes_unchecked.shape(1); if (num_detectors != self.num_detectors) { - std::ostringstream msg; - msg << "The number of detectors in the input array (" << num_detectors - << ") does not match the number of detectors in the decoder (" - << self.num_detectors << ")."; - throw std::invalid_argument(msg.str()); + std::string msg = "The number of detectors in the input array (" + + std::to_string(num_detectors) + + ") does not match the number of detectors in the decoder (" + + std::to_string(self.num_detectors) + ")."; + throw std::invalid_argument(msg); } // Allocate the result array. diff --git a/src/tesseract.pybind.h b/src/tesseract.pybind.h index 1d27adf2..b94c27f5 100644 --- a/src/tesseract.pybind.h +++ b/src/tesseract.pybind.h @@ -21,8 +21,6 @@ #include #include -#include - #include "stim_utils.pybind.h" #include "tesseract.h" @@ -249,15 +247,10 @@ void add_tesseract_module(py::module& root) { "decode_to_errors", [](TesseractDecoder& self, const py::array_t& syndrome) { if ((size_t)syndrome.size() != self.num_detectors) { - std::ostringstream msg; - msg << "Syndrome array size (" << syndrome.size() - << ") does not match the number of detectors in the decoder (" - << self.num_detectors << ")."; - std::string msg = "Syndrome array size (" + - std - : to_string(syndrome.size()) + - ") does not match the number of detectors in the decoder (" + - std::to_string(self.num_detectors) + ")." throw std::invalid_argument(msg); + std::string msg = "Syndrome array size (" + std::to_string(syndrome.size()) + + ") does not match the number of detectors in the decoder (" + + std::to_string(self.num_detectors) + ")."; + throw std::invalid_argument(msg); } std::vector detections; @@ -291,11 +284,10 @@ void add_tesseract_module(py::module& root) { [](TesseractDecoder& self, const py::array_t& syndrome, size_t det_order, size_t det_beam) { if ((size_t)syndrome.size() != self.num_detectors) { - std::ostringstream msg; - msg << "Syndrome array size (" << syndrome.size() - << ") does not match the number of detectors in the decoder (" - << self.num_detectors << ")."; - throw std::invalid_argument(msg.str()); + std::string msg = "Syndrome array size (" + std::to_string(syndrome.size()) + + ") does not match the number of detectors in the decoder (" + + std::to_string(self.num_detectors) + ")."; + throw std::invalid_argument(msg); } std::vector detections; @@ -403,11 +395,10 @@ void add_tesseract_module(py::module& root) { "decode", [](TesseractDecoder& self, const py::array_t& syndrome) { if ((size_t)syndrome.size() != self.num_detectors) { - std::ostringstream msg; - msg << "Syndrome array size (" << syndrome.size() - << ") does not match the number of detectors in the decoder (" - << self.num_detectors << ")."; - throw std::invalid_argument(msg.str()); + std::string msg = "Syndrome array size (" + std::to_string(syndrome.size()) + + ") does not match the number of detectors in the decoder (" + + std::to_string(self.num_detectors) + ")."; + throw std::invalid_argument(msg); } std::vector detections; @@ -461,11 +452,11 @@ void add_tesseract_module(py::module& root) { size_t num_detectors = syndromes_unchecked.shape(1); if (num_detectors != self.num_detectors) { - std::ostringstream msg; - msg << "The number of detectors in the input array (" << num_detectors - << ") does not match the number of detectors in the decoder (" - << self.num_detectors << ")."; - throw std::invalid_argument(msg.str()); + std::string msg = "The number of detectors in the input array (" + + std::to_string(num_detectors) + + ") does not match the number of detectors in the decoder (" + + std::to_string(self.num_detectors) + ")."; + throw std::invalid_argument(msg); } // Allocate the result array. diff --git a/src/tesseract_sinter_compat.pybind.h b/src/tesseract_sinter_compat.pybind.h index 3d15e6b2..623253d9 100644 --- a/src/tesseract_sinter_compat.pybind.h +++ b/src/tesseract_sinter_compat.pybind.h @@ -83,7 +83,7 @@ struct TesseractSinterCompiledDecoder { // Store predictions into the output buffer uint8_t* single_result_buffer = result_buffer + shot * num_observable_bytes; std::fill(single_result_buffer, single_result_buffer + num_observable_bytes, 0); - for (int obs_index : predictions) { + for (size_t obs_index : predictions) { if (obs_index >= 0 && obs_index < num_observables) { single_result_buffer[obs_index / 8] ^= (1 << (obs_index % 8)); } @@ -191,7 +191,7 @@ struct TesseractSinterDecoder { // Pack the predictions back into a bit-packed format. std::fill(single_result_data.begin(), single_result_data.end(), 0); - for (int obs_index : predictions) { + for (size_t obs_index : predictions) { if (obs_index >= 0 && obs_index < num_obs) { single_result_data[obs_index / 8] ^= (1 << (obs_index % 8)); } From 61867e29d82be2417f69635c26feda3d27800a2e Mon Sep 17 00:00:00 2001 From: Noah Shutty Date: Fri, 29 Aug 2025 13:47:19 -0700 Subject: [PATCH 08/14] Handle explicit DetIndex case --- src/py/utils_test.py | 17 ++++++++++++++-- src/tesseract.pybind.h | 4 ++-- src/tesseract_main.cc | 44 ++++++++++++++++++++++++++---------------- src/utils.cc | 19 +++++++++++++++--- src/utils.h | 5 ++++- src/utils.pybind.h | 24 +++++++++++++++-------- 6 files changed, 80 insertions(+), 33 deletions(-) diff --git a/src/py/utils_test.py b/src/py/utils_test.py index b5a07c90..304ddf3f 100644 --- a/src/py/utils_test.py +++ b/src/py/utils_test.py @@ -50,12 +50,25 @@ def test_build_det_orders(): ) == [[0, 1]] -def test_build_det_orders_no_bfs(): +def test_build_det_orders_coordinate(): assert tesseract_decoder.utils.build_det_orders( - _DETECTOR_ERROR_MODEL, num_det_orders=1, det_order_bfs=False, seed=0 + _DETECTOR_ERROR_MODEL, + num_det_orders=1, + method=tesseract_decoder.utils.DetOrder.DetCoordinate, + seed=0, ) == [[0, 1]] +def test_build_det_orders_index(): + res = tesseract_decoder.utils.build_det_orders( + _DETECTOR_ERROR_MODEL, + num_det_orders=1, + method=tesseract_decoder.utils.DetOrder.DetIndex, + seed=0, + ) + assert res == [[0, 1]] or res == [[1, 0]] + + def test_get_errors_from_dem(): expected = "Error{cost=1.945910, symptom=Symptom{detectors=[0], observables=[]}}, Error{cost=0.510826, symptom=Symptom{detectors=[0 1], observables=[]}}, Error{cost=1.098612, symptom=Symptom{detectors=[1], observables=[]}}" assert ( diff --git a/src/tesseract.pybind.h b/src/tesseract.pybind.h index 6c145856..65111f0b 100644 --- a/src/tesseract.pybind.h +++ b/src/tesseract.pybind.h @@ -41,7 +41,7 @@ TesseractConfig tesseract_config_maker_no_dem( double det_penalty = 0.0, bool create_visualization = false) { stim::DetectorErrorModel empty_dem; if (det_orders.empty()) { - det_orders = build_det_orders(empty_dem, 20, /*det_order_bfs=*/true, 2384753); + det_orders = build_det_orders(empty_dem, 20, DetOrder::DetBFS, 2384753); } return TesseractConfig({empty_dem, det_beam, beam_climbing, no_revisit_dets, at_most_two_errors_per_detector, verbose, merge_errors, pqlimit, @@ -57,7 +57,7 @@ TesseractConfig tesseract_config_maker( double det_penalty = 0.0, bool create_visualization = false) { stim::DetectorErrorModel input_dem = parse_py_object(dem); if (det_orders.empty()) { - det_orders = build_det_orders(input_dem, 20, true, 2384753); + det_orders = build_det_orders(input_dem, 20, DetOrder::DetBFS, 2384753); } return TesseractConfig({input_dem, det_beam, beam_climbing, no_revisit_dets, at_most_two_errors_per_detector, verbose, merge_errors, pqlimit, diff --git a/src/tesseract_main.cc b/src/tesseract_main.cc index 8853f5ae..4785570e 100644 --- a/src/tesseract_main.cc +++ b/src/tesseract_main.cc @@ -34,7 +34,9 @@ struct Args { // Manifold orientation options uint64_t det_order_seed; size_t num_det_orders = 10; - bool det_order_bfs = true; + bool det_order_bfs = false; + bool det_order_index = false; + bool det_order_coordinate = false; // Sampling options size_t sample_num_shots = 0; @@ -88,6 +90,12 @@ struct Args { throw std::invalid_argument("Must provide at least one of --circuit or --dem"); } + int det_order_flags = int(det_order_bfs) + int(det_order_index) + int(det_order_coordinate); + if (det_order_flags > 1) { + throw std::invalid_argument( + "Only one of --det-order-bfs, --det-order-index, or --det-order-coordinate may be set."); + } + int num_data_sources = int(sample_num_shots > 0) + int(!in_fname.empty()); if (num_data_sources != 1) { throw std::invalid_argument("Requires exactly 1 source of shots."); @@ -180,8 +188,13 @@ struct Args { std::cout << ")" << std::endl; } } - config.det_orders = - build_det_orders(config.dem, num_det_orders, det_order_bfs, det_order_seed); + DetOrder order = DetOrder::DetBFS; + if (det_order_index) { + order = DetOrder::DetIndex; + } else if (det_order_coordinate) { + order = DetOrder::DetCoordinate; + } + config.det_orders = build_det_orders(config.dem, num_det_orders, order, det_order_seed); } if (sample_num_shots > 0) { @@ -296,21 +309,18 @@ int main(int argc, char* argv[]) { .metavar("N") .default_value(size_t(1)) .store_into(args.num_det_orders); - program.add_argument("--no-det-order-bfs") - .help("Disable BFS-based detector ordering and use geometric orientation") - .default_value(true) - .implicit_value(false) - .store_into(args.det_order_bfs); program.add_argument("--det-order-bfs") - .action([&](auto const&) { - std::cout << "BFS-based detector ordering is the default now; " - "--det-order-bfs is ignored." - << std::endl; - }) - .default_value(true) - .implicit_value(true) - .store_into(args.det_order_bfs) - .hidden(); + .help("Use BFS-based detector ordering (default if no method specified)") + .flag() + .store_into(args.det_order_bfs); + program.add_argument("--det-order-index") + .help("Randomly choose increasing or decreasing detector index order") + .flag() + .store_into(args.det_order_index); + program.add_argument("--det-order-coordinate") + .help("Random geometric detector orientation ordering") + .flag() + .store_into(args.det_order_coordinate); program.add_argument("--det-order-seed") .help( "Seed used when initializing the random detector traversal " diff --git a/src/utils.cc b/src/utils.cc index 1c678635..261a6aa1 100644 --- a/src/utils.cc +++ b/src/utils.cc @@ -83,7 +83,7 @@ std::vector> build_detector_graph(const stim::DetectorErrorM } std::vector> build_det_orders(const stim::DetectorErrorModel& dem, - size_t num_det_orders, bool det_order_bfs, + size_t num_det_orders, DetOrder method, uint64_t seed) { std::vector> det_orders(num_det_orders); std::mt19937_64 rng(seed); @@ -91,7 +91,7 @@ std::vector> build_det_orders(const stim::DetectorErrorModel auto detector_coords = get_detector_coords(dem); - if (det_order_bfs) { + if (method == DetOrder::DetBFS) { auto graph = build_detector_graph(dem); std::uniform_int_distribution dist_det(0, graph.size() - 1); for (size_t det_order = 0; det_order < num_det_orders; ++det_order) { @@ -131,7 +131,7 @@ std::vector> build_det_orders(const stim::DetectorErrorModel } det_orders[det_order] = inv_perm; } - } else { + } else if (method == DetOrder::DetCoordinate) { std::vector inner_products(dem.count_detectors()); if (!detector_coords.size() || !detector_coords.at(0).size()) { for (size_t det_order = 0; det_order < num_det_orders; ++det_order) { @@ -163,6 +163,19 @@ std::vector> build_det_orders(const stim::DetectorErrorModel det_orders[det_order] = inv_perm; } } + } else if (method == DetOrder::DetIndex) { + std::uniform_int_distribution dist_bool(0, 1); + size_t n = dem.count_detectors(); + for (size_t det_order = 0; det_order < num_det_orders; ++det_order) { + det_orders[det_order].resize(n); + if (dist_bool(rng)) { + for (size_t i = 0; i < n; ++i) { + det_orders[det_order][i] = n - 1 - i; + } + } else { + std::iota(det_orders[det_order].begin(), det_orders[det_order].end(), 0); + } + } } return det_orders; } diff --git a/src/utils.h b/src/utils.h index b66537cd..73d7817e 100644 --- a/src/utils.h +++ b/src/utils.h @@ -34,8 +34,11 @@ std::vector> get_detector_coords(const stim::DetectorErrorMo // in the model activates them both. std::vector> build_detector_graph(const stim::DetectorErrorModel& dem); +enum class DetOrder { DetBFS, DetIndex, DetCoordinate }; + std::vector> build_det_orders(const stim::DetectorErrorModel& dem, - size_t num_det_orders, bool det_order_bfs = true, + size_t num_det_orders, + DetOrder method = DetOrder::DetBFS, uint64_t seed = 0); const double INF = std::numeric_limits::infinity(); diff --git a/src/utils.pybind.h b/src/utils.pybind.h index 2fa23d79..92ba6680 100644 --- a/src/utils.pybind.h +++ b/src/utils.pybind.h @@ -32,6 +32,12 @@ void add_utils_module(py::module& root) { m.attr("INF") = INF; m.doc() = "A representation of infinity for floating point numbers."; + py::enum_(m, "DetOrder", "Detector ordering methods") + .value("DetBFS", DetOrder::DetBFS) + .value("DetIndex", DetOrder::DetIndex) + .value("DetCoordinate", DetOrder::DetCoordinate) + .export_values(); + m.def( "get_detector_coords", [](py::object dem) { @@ -79,11 +85,11 @@ void add_utils_module(py::module& root) { )pbdoc"); m.def( "build_det_orders", - [](py::object dem, size_t num_det_orders, bool det_order_bfs, uint64_t seed) { + [](py::object dem, size_t num_det_orders, DetOrder method, uint64_t seed) { auto input_dem = parse_py_object(dem); - return build_det_orders(input_dem, num_det_orders, det_order_bfs, seed); + return build_det_orders(input_dem, num_det_orders, method, seed); }, - py::arg("dem"), py::arg("num_det_orders"), py::arg("det_order_bfs") = true, + py::arg("dem"), py::arg("num_det_orders"), py::arg("method") = DetOrder::DetBFS, py::arg("seed") = 0, R"pbdoc( Generates various detector orderings for decoding. @@ -93,17 +99,19 @@ void add_utils_module(py::module& root) { The detector error model to generate orders for. num_det_orders : int The number of detector orderings to generate. - det_order_bfs : bool, default=True - If True, uses a Breadth-First Search (BFS) to generate - the orders. If False, uses a randomized ordering. + method : tesseract_decoder.utils.DetOrder, default=tesseract_decoder.utils.DetOrder.DetBFS + Strategy for ordering detectors. ``DetBFS`` performs a breadth-first + traversal, ``DetCoordinate`` uses randomized geometric orientations, + and ``DetIndex`` chooses either increasing or decreasing detector + index order at random. seed : int, default=0 A seed for the random number generator. Returns ------- list[list[int]] - A list of detector orderings. Each inner list is a - permutation of the detector indices. + A list of detector orderings. Each inner list maps a detector index + to its position in the ordering. )pbdoc"); m.def( "get_errors_from_dem", From 454521fd3f52f7d815a38e427cfddfc5b1396e4b Mon Sep 17 00:00:00 2001 From: Noah Shutty Date: Fri, 29 Aug 2025 15:56:49 -0700 Subject: [PATCH 09/14] expand det index test --- src/py/utils_test.py | 12 ++- src/utils.cc | 186 ++++++++++++++++++++++++------------------- 2 files changed, 112 insertions(+), 86 deletions(-) diff --git a/src/py/utils_test.py b/src/py/utils_test.py index 304ddf3f..3cbec85d 100644 --- a/src/py/utils_test.py +++ b/src/py/utils_test.py @@ -27,6 +27,10 @@ """ ) +_DETECTOR_ERROR_MODEL_10 = stim.DetectorErrorModel( + "\n".join(f"error(0.1) D{i}" for i in range(10)) +) + def test_module_has_global_constants(): assert tesseract_decoder.utils.EPSILON <= 1e-7 @@ -44,7 +48,7 @@ def test_build_detector_graph(): ] -def test_build_det_orders(): +def test_build_det_orders_bfs(): assert tesseract_decoder.utils.build_det_orders( _DETECTOR_ERROR_MODEL, num_det_orders=1, seed=0 ) == [[0, 1]] @@ -61,12 +65,14 @@ def test_build_det_orders_coordinate(): def test_build_det_orders_index(): res = tesseract_decoder.utils.build_det_orders( - _DETECTOR_ERROR_MODEL, + _DETECTOR_ERROR_MODEL_10, num_det_orders=1, method=tesseract_decoder.utils.DetOrder.DetIndex, seed=0, ) - assert res == [[0, 1]] or res == [[1, 0]] + expected_asc = list(range(10)) + expected_desc = list(range(9, -1, -1)) + assert res == [expected_asc] or res == [expected_desc] def test_get_errors_from_dem(): diff --git a/src/utils.cc b/src/utils.cc index 261a6aa1..4100a945 100644 --- a/src/utils.cc +++ b/src/utils.cc @@ -82,104 +82,124 @@ std::vector> build_detector_graph(const stim::DetectorErrorM return neighbors; } -std::vector> build_det_orders(const stim::DetectorErrorModel& dem, - size_t num_det_orders, DetOrder method, - uint64_t seed) { +static std::vector> build_det_orders_bfs(const stim::DetectorErrorModel& dem, + size_t num_det_orders, + std::mt19937_64& rng) { std::vector> det_orders(num_det_orders); - std::mt19937_64 rng(seed); - std::normal_distribution dist(0, 1); - - auto detector_coords = get_detector_coords(dem); - - if (method == DetOrder::DetBFS) { - auto graph = build_detector_graph(dem); - std::uniform_int_distribution dist_det(0, graph.size() - 1); - for (size_t det_order = 0; det_order < num_det_orders; ++det_order) { - std::vector perm; - perm.reserve(graph.size()); - std::vector visited(graph.size(), false); - std::queue q; - size_t start = dist_det(rng); - while (perm.size() < graph.size()) { - if (!visited[start]) { - visited[start] = true; - q.push(start); - perm.push_back(start); - } - while (!q.empty()) { - size_t cur = q.front(); - q.pop(); - auto neigh = graph[cur]; - std::shuffle(neigh.begin(), neigh.end(), rng); - for (size_t n : neigh) { - if (!visited[n]) { - visited[n] = true; - q.push(n); - perm.push_back(n); - } + auto graph = build_detector_graph(dem); + std::uniform_int_distribution dist_det(0, graph.size() - 1); + for (size_t det_order = 0; det_order < num_det_orders; ++det_order) { + std::vector perm; + perm.reserve(graph.size()); + std::vector visited(graph.size(), false); + std::queue q; + size_t start = dist_det(rng); + while (perm.size() < graph.size()) { + if (!visited[start]) { + visited[start] = true; + q.push(start); + perm.push_back(start); + } + while (!q.empty()) { + size_t cur = q.front(); + q.pop(); + auto neigh = graph[cur]; + std::shuffle(neigh.begin(), neigh.end(), rng); + for (size_t n : neigh) { + if (!visited[n]) { + visited[n] = true; + q.push(n); + perm.push_back(n); } } - if (perm.size() < graph.size()) { - do { - start = dist_det(rng); - } while (visited[start]); - } } - std::vector inv_perm(graph.size()); - for (size_t i = 0; i < perm.size(); ++i) { - inv_perm[perm[i]] = i; + if (perm.size() < graph.size()) { + do { + start = dist_det(rng); + } while (visited[start]); } - det_orders[det_order] = inv_perm; } - } else if (method == DetOrder::DetCoordinate) { - std::vector inner_products(dem.count_detectors()); - if (!detector_coords.size() || !detector_coords.at(0).size()) { - for (size_t det_order = 0; det_order < num_det_orders; ++det_order) { - det_orders[det_order].resize(dem.count_detectors()); - std::iota(det_orders[det_order].begin(), det_orders[det_order].end(), 0); - } - } else { - for (size_t det_order = 0; det_order < num_det_orders; ++det_order) { - std::vector orientation_vector; - for (size_t i = 0; i < detector_coords.at(0).size(); ++i) { - orientation_vector.push_back(dist(rng)); - } + std::vector inv_perm(graph.size()); + for (size_t i = 0; i < perm.size(); ++i) { + inv_perm[perm[i]] = i; + } + det_orders[det_order] = inv_perm; + } + return det_orders; +} - for (size_t i = 0; i < detector_coords.size(); ++i) { - inner_products[i] = 0; - for (size_t j = 0; j < orientation_vector.size(); ++j) { - inner_products[i] += detector_coords[i][j] * orientation_vector[j]; - } - } - std::vector perm(dem.count_detectors()); - std::iota(perm.begin(), perm.end(), 0); - std::sort(perm.begin(), perm.end(), [&](const size_t& i, const size_t& j) { - return inner_products[i] > inner_products[j]; - }); - std::vector inv_perm(dem.count_detectors()); - for (size_t i = 0; i < perm.size(); ++i) { - inv_perm[perm[i]] = i; - } - det_orders[det_order] = inv_perm; +static std::vector> build_det_orders_coordinate( + const stim::DetectorErrorModel& dem, size_t num_det_orders, std::mt19937_64& rng) { + std::vector> det_orders(num_det_orders); + auto detector_coords = get_detector_coords(dem); + std::vector inner_products(dem.count_detectors()); + std::normal_distribution dist(0, 1); + if (detector_coords.empty() || detector_coords.at(0).empty()) { + for (size_t det_order = 0; det_order < num_det_orders; ++det_order) { + det_orders[det_order].resize(dem.count_detectors()); + std::iota(det_orders[det_order].begin(), det_orders[det_order].end(), 0); + } + return det_orders; + } + for (size_t det_order = 0; det_order < num_det_orders; ++det_order) { + std::vector orientation_vector; + for (size_t i = 0; i < detector_coords.at(0).size(); ++i) { + orientation_vector.push_back(dist(rng)); + } + for (size_t i = 0; i < detector_coords.size(); ++i) { + inner_products[i] = 0; + for (size_t j = 0; j < orientation_vector.size(); ++j) { + inner_products[i] += detector_coords[i][j] * orientation_vector[j]; } } - } else if (method == DetOrder::DetIndex) { - std::uniform_int_distribution dist_bool(0, 1); - size_t n = dem.count_detectors(); - for (size_t det_order = 0; det_order < num_det_orders; ++det_order) { - det_orders[det_order].resize(n); - if (dist_bool(rng)) { - for (size_t i = 0; i < n; ++i) { - det_orders[det_order][i] = n - 1 - i; - } - } else { - std::iota(det_orders[det_order].begin(), det_orders[det_order].end(), 0); + std::vector perm(dem.count_detectors()); + std::iota(perm.begin(), perm.end(), 0); + std::sort(perm.begin(), perm.end(), [&](const size_t& i, const size_t& j) { + return inner_products[i] > inner_products[j]; + }); + std::vector inv_perm(dem.count_detectors()); + for (size_t i = 0; i < perm.size(); ++i) { + inv_perm[perm[i]] = i; + } + det_orders[det_order] = inv_perm; + } + return det_orders; +} + +static std::vector> build_det_orders_index(const stim::DetectorErrorModel& dem, + size_t num_det_orders, + std::mt19937_64& rng) { + std::vector> det_orders(num_det_orders); + std::uniform_int_distribution dist_bool(0, 1); + size_t n = dem.count_detectors(); + for (size_t det_order = 0; det_order < num_det_orders; ++det_order) { + det_orders[det_order].resize(n); + if (dist_bool(rng)) { + for (size_t i = 0; i < n; ++i) { + det_orders[det_order][i] = n - 1 - i; } + } else { + std::iota(det_orders[det_order].begin(), det_orders[det_order].end(), 0); } } return det_orders; } +std::vector> build_det_orders(const stim::DetectorErrorModel& dem, + size_t num_det_orders, DetOrder method, + uint64_t seed) { + std::mt19937_64 rng(seed); + switch (method) { + case DetOrder::DetBFS: + return build_det_orders_bfs(dem, num_det_orders, rng); + case DetOrder::DetCoordinate: + return build_det_orders_coordinate(dem, num_det_orders, rng); + case DetOrder::DetIndex: + return build_det_orders_index(dem, num_det_orders, rng); + } + throw std::invalid_argument("Unknown det order method"); +} + bool sampling_from_dem(uint64_t seed, size_t num_shots, stim::DetectorErrorModel dem, std::vector& shots) { stim::DemSampler sampler(dem, std::mt19937_64{seed}, num_shots); From 41f7c3e7189259383d8fed839dc90d67a02528e8 Mon Sep 17 00:00:00 2001 From: noajshu Date: Fri, 29 Aug 2025 23:33:56 +0000 Subject: [PATCH 10/14] update beam climbing for when det orders > beam+1 --- src/tesseract.cc | 10 ++++++++-- 1 file changed, 8 insertions(+), 2 deletions(-) diff --git a/src/tesseract.cc b/src/tesseract.cc index 97c8f4d8..ca441331 100644 --- a/src/tesseract.cc +++ b/src/tesseract.cc @@ -201,8 +201,10 @@ void TesseractDecoder::decode_to_errors(const std::vector& detections) } if (config.beam_climbing) { - for (int beam = config.det_beam; beam >= 0; --beam) { - size_t detector_order = beam % config.det_orders.size(); + int beam = 0; + int detector_order = 0; + for (int trial = 0; trial < std::max(config.det_beam + 1, int(config.det_orders.size())); + ++trial) { decode_to_errors(detections, detector_order, beam); double local_cost = cost_from_errors(predicted_errors_buffer); if (!low_confidence_flag && local_cost < best_cost) { @@ -215,6 +217,10 @@ void TesseractDecoder::decode_to_errors(const std::vector& detections) << " and obs_mask " << get_flipped_observables(predicted_errors_buffer) << ". Best cost so far: " << best_cost << std::endl; } + beam += 1; + detector_order += 1; + beam %= (config.det_beam + 1); + detector_order %= config.det_orders.size(); } } else { for (size_t detector_order = 0; detector_order < config.det_orders.size(); ++detector_order) { From 8f269f78bdf27ed826d6f7254ee532d2bf19048f Mon Sep 17 00:00:00 2001 From: noajshu Date: Sun, 31 Aug 2025 00:17:33 +0000 Subject: [PATCH 11/14] Refactor: Remove --at-most-two-errors-per-detector feature --- docs/tutorial.ipynb | 3149 +++++++++++++------------- src/py/README.md | 4 +- src/py/tesseract_test.py | 10 +- src/tesseract.cc | 31 +- src/tesseract.h | 2 +- src/tesseract.pybind.h | 33 +- src/tesseract_main.cc | 46 +- src/tesseract_sinter_compat.pybind.h | 25 +- 8 files changed, 1636 insertions(+), 1664 deletions(-) diff --git a/docs/tutorial.ipynb b/docs/tutorial.ipynb index 056ee540..89e9754b 100644 --- a/docs/tutorial.ipynb +++ b/docs/tutorial.ipynb @@ -1,1616 +1,1631 @@ { - "cells": [ - { - "cell_type": "markdown", - "metadata": { - "id": "KBmkwvhmupn-" - }, - "source": [ - "# Tesseract Tutorial\n", - "\n", - "- We will also, partly, explain how to use features of Stim and PyMatching\n", - "- Stim is a dependency of Tesseract but you can also use other sources of data\n", - "- This is not a comprehensive introduction." - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "jaZcr-NevBSB" - }, - "source": [ - "## Installation" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "i6_88o7kKOVJ" - }, - "outputs": [], - "source": [ - "!pip install --quiet --upgrade stim galois tesseract-decoder pymatching python-sat -U" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "RLXXX3eMT_LR" - }, - "source": [ - "## Getting a Surface Code Circuit" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "8zcmVHFFUPq2" - }, - "outputs": [], - "source": [ - "import stim\n", - "\n", - "d = 11\n", - "p = 0.005\n", - "circuit = stim.Circuit.generated(\n", - " code_task=\"surface_code:rotated_memory_x\",\n", - " distance=d,\n", - " rounds=d,\n", - " after_clifford_depolarization=p,\n", - " before_round_data_depolarization=p,\n", - " before_measure_flip_probability=p,\n", - " after_reset_flip_probability=p\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "UBMIlXY9U30Y" - }, - "source": [ - "## Sample" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "GCkUlTJZU2T_" - }, - "outputs": [], - "source": [ - "sampler = circuit.compile_detector_sampler()\n", - "\n", - "num_shots = 10000\n", - "detector_outcomes, actual_observables = sampler.sample(shots=num_shots, separate_observables=True)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "m9x8pivTVCir" - }, - "source": [ - "## Decode with uncorrelated matching" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "-5W0AX8nVEyU", - "outputId": "562e78d3-4fef-449e-92ae-403e5ed7c862" - }, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "Logical error rate: 69/10000\n" - ] - } - ], - "source": [ - "import pymatching\n", - "import numpy as np\n", - "\n", - "dem = circuit.detector_error_model(decompose_errors=True)\n", - "matching = pymatching.Matching.from_detector_error_model(model=dem)\n", - "predicted_observables = matching.decode_batch(shots=detector_outcomes)\n", - "num_errors = np.sum(np.any(predicted_observables != actual_observables, axis=1))\n", - "\n", - "print(f\"Logical error rate: {num_errors}/{num_shots}\")" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "Xp7MyK0XVs_6" - }, - "source": [ - "## Decode with new correlated matching!" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "vufQ8G5iVx7b", - "outputId": "1e12759c-e1e4-4c51-8103-98ec2d6906f8" - }, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "Logical error rate: 22/10000\n" - ] - } - ], - "source": [ - "dem = circuit.detector_error_model(decompose_errors=True)\n", - "matching_corr = pymatching.Matching.from_detector_error_model(\n", - " model=dem, enable_correlations=True\n", - " )\n", - "predicted_observables_corr = matching_corr.decode_batch(\n", - " shots=detector_outcomes,\n", - " enable_correlations=True\n", - " )\n", - "num_errors_corr = np.sum(np.any(predicted_observables_corr != actual_observables, axis=1))\n", - "\n", - "print(f\"Logical error rate: {num_errors_corr}/{num_shots}\")" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "a-AMqTUeuqOe" - }, - "source": [ - "## Getting a Color Code Circuit" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "W7fU_MYJCRen", - "outputId": "6038fc3e-8707-4bac-fd69-b9d08a90f167" - }, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - " % Total % Received % Xferd Average Speed Time Time Time Current\n", - " Dload Upload Total Spent Left Speed\n", - "100 13295 100 13295 0 0 72032 0 --:--:-- --:--:-- --:--:-- 72255\n" - ] - } - ], - "source": [ - "!curl 'https://raw.githubusercontent.com/quantumlib/tesseract-decoder/refs/heads/main/testdata/colorcodes/r%3D5%2Cd%3D5%2Cp%3D0.001%2Cnoise%3Dsi1000%2Cc%3Dsuperdense_color_code_Z%2Cq%3D37%2Cgates%3Dcz.stim' > d5r5colorcode_p001.stim" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "E-vXEhbaTeQI" - }, - "source": [ - "# Visualizing with Stim" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 343 - }, - "id": "2jTOVijwKPXm", - "outputId": "5a0c63b5-384b-4729-8bf1-d205552de185" - }, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/plain": [ - "{\"accessors\":[{\"bufferView\":0,\"byteOffset\":0,\"componentType\":5126,\"count\":12,\"max\":[0,0.5,0.5],\"min\":[0,-0.5,-0.5],\"name\":\"cube\",\"type\":\"VEC3\"},{\"bufferView\":1,\"byteOffset\":0,\"componentType\":5126,\"count\":12,\"max\":[0.375,0.5625],\"min\":[0.3125,0.5],\"name\":\"tex_coords_gate_R\",\"type\":\"VEC2\"},{\"bufferView\":2,\"byteOffset\":0,\"componentType\":5126,\"count\":12,\"max\":[0.5,0.4375],\"min\":[0.4375,0.375],\"name\":\"tex_coords_gate_X_ERROR\",\"type\":\"VEC2\"},{\"bufferView\":3,\"byteOffset\":0,\"componentType\":5126,\"count\":12,\"max\":[0.125,0.5],\"min\":[0.0625,0.4375],\"name\":\"tex_coords_gate_H\",\"type\":\"VEC2\"},{\"bufferView\":4,\"byteOffset\":0,\"componentType\":5126,\"count\":12,\"max\":[0.25,0.625],\"min\":[0.1875,0.5625],\"name\":\"tex_coords_gate_DEPOLARIZE1\",\"type\":\"VEC2\"},{\"bufferView\":5,\"byteOffset\":0,\"componentType\":5126,\"count\":17,\"max\":[0,0.400000005960464,0.400000005960464],\"min\":[0,-0.400000005960464,-0.400000005960464],\"name\":\"circle_loop\",\"type\":\"VEC3\"},{\"bufferView\":6,\"byteOffset\":0,\"componentType\":5126,\"count\":12,\"max\":[0.3125,0.625],\"min\":[0.25,0.5625],\"name\":\"tex_coords_gate_DEPOLARIZE2\",\"type\":\"VEC2\"},{\"bufferView\":7,\"byteOffset\":0,\"componentType\":5126,\"count\":12,\"max\":[0.3125,0.5625],\"min\":[0.25,0.5],\"name\":\"tex_coords_gate_M\",\"type\":\"VEC2\"},{\"bufferView\":8,\"byteOffset\":0,\"componentType\":5126,\"count\":1298,\"max\":[1,-32,-32],\"min\":[-96,-48,-44],\"name\":\"buf_scattered_lines\",\"type\":\"VEC3\"},{\"bufferView\":9,\"byteOffset\":0,\"componentType\":5126,\"count\":30,\"max\":[0,-29.5,-31],\"min\":[-64.25,-49,-45],\"name\":\"buf_red_scattered_lines\",\"type\":\"VEC3\"},{\"bufferView\":10,\"byteOffset\":0,\"componentType\":5126,\"count\":704,\"max\":[0.25,-31.2000007629395,-31.5],\"min\":[-93.25,-31.6000003814697,-44.5],\"name\":\"buf_blue_scattered_lines\",\"type\":\"VEC3\"}],\"asset\":{\"version\":\"2.0\"},\"bufferViews\":[{\"buffer\":0,\"byteLength\":144,\"byteOffset\":0,\"name\":\"cube\",\"target\":34962},{\"buffer\":1,\"byteLength\":96,\"byteOffset\":0,\"name\":\"tex_coords_gate_R\",\"target\":34962},{\"buffer\":2,\"byteLength\":96,\"byteOffset\":0,\"name\":\"tex_coords_gate_X_ERROR\",\"target\":34962},{\"buffer\":3,\"byteLength\":96,\"byteOffset\":0,\"name\":\"tex_coords_gate_H\",\"target\":34962},{\"buffer\":4,\"byteLength\":96,\"byteOffset\":0,\"name\":\"tex_coords_gate_DEPOLARIZE1\",\"target\":34962},{\"buffer\":5,\"byteLength\":204,\"byteOffset\":0,\"name\":\"circle_loop\",\"target\":34962},{\"buffer\":6,\"byteLength\":96,\"byteOffset\":0,\"name\":\"tex_coords_gate_DEPOLARIZE2\",\"target\":34962},{\"buffer\":7,\"byteLength\":96,\"byteOffset\":0,\"name\":\"tex_coords_gate_M\",\"target\":34962},{\"buffer\":8,\"byteLength\":15576,\"byteOffset\":0,\"name\":\"buf_scattered_lines\",\"target\":34962},{\"buffer\":9,\"byteLength\":360,\"byteOffset\":0,\"name\":\"buf_red_scattered_lines\",\"target\":34962},{\"buffer\":10,\"byteLength\":8448,\"byteOffset\":0,\"name\":\"buf_blue_scattered_lines\",\"target\":34962}],\"buffers\":[{\"byteLength\":144,\"name\":\"cube\",\"uri\":\"data:application/octet-stream;base64,AAAAAAAAAD8AAAA/AAAAAAAAAD8AAAC/AAAAAAAAAL8AAAA/AAAAAAAAAD8AAAC/AAAAAAAAAL8AAAC/AAAAAAAAAL8AAAA/AAAAAAAAAL8AAAC/AAAAAAAAAD8AAAC/AAAAAAAAAL8AAAA/AAAAAAAAAL8AAAA/AAAAAAAAAD8AAAC/AAAAAAAAAD8AAAA/\"},{\"byteLength\":96,\"name\":\"tex_coords_gate_R\",\"uri\":\"data:application/octet-stream;base64,AADAPgAAAD8AAKA+AAAAPwAAwD4AABA/AACgPgAAAD8AAKA+AAAQPwAAwD4AABA/AADAPgAAED8AAMA+AAAAPwAAoD4AABA/AACgPgAAED8AAMA+AAAAPwAAoD4AAAA/\"},{\"byteLength\":96,\"name\":\"tex_coords_gate_X_ERROR\",\"uri\":\"data:application/octet-stream;base64,AAAAPwAAwD4AAOA+AADAPgAAAD8AAOA+AADgPgAAwD4AAOA+AADgPgAAAD8AAOA+AAAAPwAA4D4AAAA/AADAPgAA4D4AAOA+AADgPgAA4D4AAAA/AADAPgAA4D4AAMA+\"},{\"byteLength\":96,\"name\":\"tex_coords_gate_H\",\"uri\":\"data:application/octet-stream;base64,AAAAPgAA4D4AAIA9AADgPgAAAD4AAAA/AACAPQAA4D4AAIA9AAAAPwAAAD4AAAA/AAAAPgAAAD8AAAA+AADgPgAAgD0AAAA/AACAPQAAAD8AAAA+AADgPgAAgD0AAOA+\"},{\"byteLength\":96,\"name\":\"tex_coords_gate_DEPOLARIZE1\",\"uri\":\"data:application/octet-stream;base64,AACAPgAAED8AAEA+AAAQPwAAgD4AACA/AABAPgAAED8AAEA+AAAgPwAAgD4AACA/AACAPgAAID8AAIA+AAAQPwAAQD4AACA/AABAPgAAID8AAIA+AAAQPwAAQD4AABA/\"},{\"byteLength\":204,\"name\":\"circle_loop\",\"uri\":\"data:application/octet-stream;base64,AAAAAM3MzD4AAAAAAAAAAOU1vT5Fvxw+AAAAAMPQkD7D0JA+AAAAAES/HD7lNb0+AAAAAPIwlrLNzMw+AAAAAEe/HL7lNb0+AAAAAMPQkL7D0JA+AAAAAOc1vb5Avxw+AAAAAM3MzL7yMBazAAAAAOU1vb5Evxy+AAAAAMHQkL7E0JC+AAAAADy/HL7nNb2+AAAAAPLkozHNzMy+AAAAAEm/HD7kNb2+AAAAAMbQkD6/0JC+AAAAAOY1vT5Evxy+AAAAAM3MzD4AAAAA\"},{\"byteLength\":96,\"name\":\"tex_coords_gate_DEPOLARIZE2\",\"uri\":\"data:application/octet-stream;base64,AACgPgAAED8AAIA+AAAQPwAAoD4AACA/AACAPgAAED8AAIA+AAAgPwAAoD4AACA/AACgPgAAID8AAKA+AAAQPwAAgD4AACA/AACAPgAAID8AAKA+AAAQPwAAgD4AABA/\"},{\"byteLength\":96,\"name\":\"tex_coords_gate_M\",\"uri\":\"data:application/octet-stream;base64,AACgPgAAAD8AAIA+AAAAPwAAoD4AABA/AACAPgAAAD8AAIA+AAAQPwAAoD4AABA/AACgPgAAED8AAKA+AAAAPwAAgD4AABA/AACAPgAAED8AAKA+AAAAPwAAgD4AAAA/\"},{\"byteLength\":15576,\"name\":\"buf_scattered_lines\",\"uri\":\"data:application/octet-stream;base64,AACAwAAACMIAAADCAACAwAAAEMIAAADCAACAwAAACMIAABDCAACAwAAAEMIAABDCAACAwAAAGMIAAAjCAACAwAAAIMIAAAjCAACAwAAAGMIAABjCAACAwAAAIMIAABjCAACAwAAAGMIAACjCAACAwAAAIMIAACjCAACAwAAAKMIAAADCAACAwAAAMMIAAADCAACAwAAAKMIAABDCAACAwAAAMMIAABDCAACAwAAAKMIAACDCAACAwAAAMMIAACDCAACAwAAAOMIAAAjCAACAwAAAQMIAAAjCAACgwAAACMIAAADCAACgwAAAEMIAAADCAACgwAAACMIAABDCAACgwAAAEMIAABDCAACgwAAAGMIAAAjCAACgwAAAIMIAAAjCAACgwAAAGMIAABjCAACgwAAAIMIAABjCAACgwAAAGMIAACjCAACgwAAAIMIAACjCAACgwAAAKMIAAADCAACgwAAAMMIAAADCAACgwAAAKMIAABDCAACgwAAAMMIAABDCAACgwAAAKMIAACDCAACgwAAAMMIAACDCAACgwAAAOMIAAAjCAACgwAAAQMIAAAjCAAAAwQAACMIAAADCAAAAwQAACMIAAAjCAAAAwQAAEMIAAADCAAAAwQAAEMIAAAjCAAAAwQAAEMIAABDCAAAAwQAAEMIAABjCAAAAwQAAGMIAAAjCAAAAwQAAGMIAABDCAAAAwQAAGMIAABjCAAAAwQAAGMIAACDCAAAAwQAAIMIAAAjCAAAAwQAAIMIAABDCAAAAwQAAIMIAABjCAAAAwQAAIMIAACDCAAAAwQAAIMIAACjCAAAAwQAAIMIAADDCAAAAwQAAKMIAAADCAAAAwQAAKMIAAAjCAAAAwQAAKMIAABDCAAAAwQAAKMIAABjCAAAAwQAAKMIAACDCAAAAwQAAKMIAACjCAAAAwQAAMMIAAADCAAAAwQAAMMIAAAjCAAAAwQAAMMIAABDCAAAAwQAAMMIAABjCAAAAwQAAOMIAAAjCAAAAwQAAOMIAABDCAAAQwQAACMIAAADCAAAQwQAACMIAAAjCAAAQwQAAEMIAAADCAAAQwQAAEMIAAAjCAAAQwQAAEMIAABDCAAAQwQAAEMIAABjCAAAQwQAAGMIAAAjCAAAQwQAAGMIAABDCAAAQwQAAGMIAABjCAAAQwQAAGMIAACDCAAAQwQAAIMIAAAjCAAAQwQAAIMIAABDCAAAQwQAAIMIAABjCAAAQwQAAIMIAACDCAAAQwQAAIMIAACjCAAAQwQAAIMIAADDCAAAQwQAAKMIAAADCAAAQwQAAKMIAAAjCAAAQwQAAKMIAABDCAAAQwQAAKMIAABjCAAAQwQAAKMIAACDCAAAQwQAAKMIAACjCAAAQwQAAMMIAAADCAAAQwQAAMMIAAAjCAAAQwQAAMMIAABDCAAAQwQAAMMIAABjCAAAQwQAAOMIAAAjCAAAQwQAAOMIAABDCAAAgwQAAAMIAAADCAAAgwQAACMIAAADCAAAgwQAAEMIAAADCAAAgwQAAGMIAAADCAAAgwQAAEMIAAAjCAAAgwQAAGMIAAAjCAAAgwQAAEMIAABDCAAAgwQAAGMIAABDCAAAgwQAAEMIAABjCAAAgwQAAGMIAABjCAAAgwQAAIMIAAADCAAAgwQAAKMIAAADCAAAgwQAAIMIAAAjCAAAgwQAAKMIAAAjCAAAgwQAAIMIAABDCAAAgwQAAKMIAABDCAAAgwQAAIMIAABjCAAAgwQAAKMIAABjCAAAgwQAAIMIAACDCAAAgwQAAKMIAACDCAAAgwQAAIMIAACjCAAAgwQAAKMIAACjCAAAgwQAAMMIAAADCAAAgwQAAOMIAAADCAAAgwQAAMMIAAAjCAAAgwQAAOMIAAAjCAAAgwQAAMMIAABDCAAAgwQAAOMIAABDCAAAwwQAAAMIAAADCAAAwwQAACMIAAADCAAAwwQAAEMIAAADCAAAwwQAAGMIAAADCAAAwwQAAEMIAAAjCAAAwwQAAGMIAAAjCAAAwwQAAEMIAABDCAAAwwQAAGMIAABDCAAAwwQAAEMIAABjCAAAwwQAAGMIAABjCAAAwwQAAIMIAAADCAAAwwQAAKMIAAADCAAAwwQAAIMIAAAjCAAAwwQAAKMIAAAjCAAAwwQAAIMIAABDCAAAwwQAAKMIAABDCAAAwwQAAIMIAABjCAAAwwQAAKMIAABjCAAAwwQAAIMIAACDCAAAwwQAAKMIAACDCAAAwwQAAIMIAACjCAAAwwQAAKMIAACjCAAAwwQAAMMIAAADCAAAwwQAAOMIAAADCAAAwwQAAMMIAAAjCAAAwwQAAOMIAAAjCAAAwwQAAMMIAABDCAAAwwQAAOMIAABDCAABAwQAACMIAAAjCAABAwQAACMIAABDCAABAwQAAEMIAAAjCAABAwQAAEMIAABDCAABAwQAAGMIAAADCAABAwQAAGMIAAAjCAABAwQAAGMIAABDCAABAwQAAGMIAABjCAABAwQAAGMIAACDCAABAwQAAGMIAACjCAABAwQAAIMIAAADCAABAwQAAIMIAAAjCAABAwQAAIMIAABDCAABAwQAAIMIAABjCAABAwQAAIMIAACDCAABAwQAAIMIAACjCAABAwQAAKMIAAAjCAABAwQAAKMIAABDCAABAwQAAKMIAABjCAABAwQAAKMIAACDCAABAwQAAMMIAAAjCAABAwQAAMMIAABDCAABAwQAAMMIAABjCAABAwQAAMMIAACDCAABAwQAAOMIAAADCAABAwQAAOMIAAAjCAABAwQAAQMIAAADCAABAwQAAQMIAAAjCAABQwQAACMIAAAjCAABQwQAACMIAABDCAABQwQAAEMIAAAjCAABQwQAAEMIAABDCAABQwQAAGMIAAADCAABQwQAAGMIAAAjCAABQwQAAGMIAABDCAABQwQAAGMIAABjCAABQwQAAGMIAACDCAABQwQAAGMIAACjCAABQwQAAIMIAAADCAABQwQAAIMIAAAjCAABQwQAAIMIAABDCAABQwQAAIMIAABjCAABQwQAAIMIAACDCAABQwQAAIMIAACjCAABQwQAAKMIAAAjCAABQwQAAKMIAABDCAABQwQAAKMIAABjCAABQwQAAKMIAACDCAABQwQAAMMIAAAjCAABQwQAAMMIAABDCAABQwQAAMMIAABjCAABQwQAAMMIAACDCAABQwQAAOMIAAADCAABQwQAAOMIAAAjCAABQwQAAQMIAAADCAABQwQAAQMIAAAjCAACAwQAACMIAAADCAACAwQAACMIAAAjCAACAwQAAEMIAAADCAACAwQAAEMIAAAjCAACAwQAAEMIAABDCAACAwQAAEMIAABjCAACAwQAAGMIAAAjCAACAwQAAGMIAABDCAACAwQAAGMIAABjCAACAwQAAGMIAACDCAACAwQAAIMIAAAjCAACAwQAAIMIAABDCAACAwQAAIMIAABjCAACAwQAAIMIAACDCAACAwQAAIMIAACjCAACAwQAAIMIAADDCAACAwQAAKMIAAADCAACAwQAAKMIAAAjCAACAwQAAKMIAABDCAACAwQAAKMIAABjCAACAwQAAKMIAACDCAACAwQAAKMIAACjCAACAwQAAMMIAAADCAACAwQAAMMIAAAjCAACAwQAAMMIAABDCAACAwQAAMMIAABjCAACAwQAAOMIAAAjCAACAwQAAOMIAABDCAACIwQAACMIAAADCAACIwQAACMIAAAjCAACIwQAAEMIAAADCAACIwQAAEMIAAAjCAACIwQAAEMIAABDCAACIwQAAEMIAABjCAACIwQAAGMIAAAjCAACIwQAAGMIAABDCAACIwQAAGMIAABjCAACIwQAAGMIAACDCAACIwQAAIMIAAAjCAACIwQAAIMIAABDCAACIwQAAIMIAABjCAACIwQAAIMIAACDCAACIwQAAIMIAACjCAACIwQAAIMIAADDCAACIwQAAKMIAAADCAACIwQAAKMIAAAjCAACIwQAAKMIAABDCAACIwQAAKMIAABjCAACIwQAAKMIAACDCAACIwQAAKMIAACjCAACIwQAAMMIAAADCAACIwQAAMMIAAAjCAACIwQAAMMIAABDCAACIwQAAMMIAABjCAACIwQAAOMIAAAjCAACIwQAAOMIAABDCAACQwQAAAMIAAADCAACQwQAACMIAAADCAACQwQAAEMIAAADCAACQwQAAGMIAAADCAACQwQAAEMIAAAjCAACQwQAAGMIAAAjCAACQwQAAEMIAABDCAACQwQAAGMIAABDCAACQwQAAEMIAABjCAACQwQAAGMIAABjCAACQwQAAIMIAAADCAACQwQAAKMIAAADCAACQwQAAIMIAAAjCAACQwQAAKMIAAAjCAACQwQAAIMIAABDCAACQwQAAKMIAABDCAACQwQAAIMIAABjCAACQwQAAKMIAABjCAACQwQAAIMIAACDCAACQwQAAKMIAACDCAACQwQAAIMIAACjCAACQwQAAKMIAACjCAACQwQAAMMIAAADCAACQwQAAOMIAAADCAACQwQAAMMIAAAjCAACQwQAAOMIAAAjCAACQwQAAMMIAABDCAACQwQAAOMIAABDCAACYwQAAAMIAAADCAACYwQAACMIAAADCAACYwQAAEMIAAADCAACYwQAAGMIAAADCAACYwQAAEMIAAAjCAACYwQAAGMIAAAjCAACYwQAAEMIAABDCAACYwQAAGMIAABDCAACYwQAAEMIAABjCAACYwQAAGMIAABjCAACYwQAAIMIAAADCAACYwQAAKMIAAADCAACYwQAAIMIAAAjCAACYwQAAKMIAAAjCAACYwQAAIMIAABDCAACYwQAAKMIAABDCAACYwQAAIMIAABjCAACYwQAAKMIAABjCAACYwQAAIMIAACDCAACYwQAAKMIAACDCAACYwQAAIMIAACjCAACYwQAAKMIAACjCAACYwQAAMMIAAADCAACYwQAAOMIAAADCAACYwQAAMMIAAAjCAACYwQAAOMIAAAjCAACYwQAAMMIAABDCAACYwQAAOMIAABDCAACgwQAACMIAAAjCAACgwQAACMIAABDCAACgwQAAEMIAAAjCAACgwQAAEMIAABDCAACgwQAAGMIAAADCAACgwQAAGMIAAAjCAACgwQAAGMIAABDCAACgwQAAGMIAABjCAACgwQAAGMIAACDCAACgwQAAGMIAACjCAACgwQAAIMIAAADCAACgwQAAIMIAAAjCAACgwQAAIMIAABDCAACgwQAAIMIAABjCAACgwQAAIMIAACDCAACgwQAAIMIAACjCAACgwQAAKMIAAAjCAACgwQAAKMIAABDCAACgwQAAKMIAABjCAACgwQAAKMIAACDCAACgwQAAMMIAAAjCAACgwQAAMMIAABDCAACgwQAAMMIAABjCAACgwQAAMMIAACDCAACgwQAAOMIAAADCAACgwQAAOMIAAAjCAACgwQAAQMIAAADCAACgwQAAQMIAAAjCAACowQAACMIAAAjCAACowQAACMIAABDCAACowQAAEMIAAAjCAACowQAAEMIAABDCAACowQAAGMIAAADCAACowQAAGMIAAAjCAACowQAAGMIAABDCAACowQAAGMIAABjCAACowQAAGMIAACDCAACowQAAGMIAACjCAACowQAAIMIAAADCAACowQAAIMIAAAjCAACowQAAIMIAABDCAACowQAAIMIAABjCAACowQAAIMIAACDCAACowQAAIMIAACjCAACowQAAKMIAAAjCAACowQAAKMIAABDCAACowQAAKMIAABjCAACowQAAKMIAACDCAACowQAAMMIAAAjCAACowQAAMMIAABDCAACowQAAMMIAABjCAACowQAAMMIAACDCAACowQAAOMIAAADCAACowQAAOMIAAAjCAACowQAAQMIAAADCAACowQAAQMIAAAjCAADAwQAACMIAAADCAADAwQAAEMIAAADCAADAwQAACMIAABDCAADAwQAAEMIAABDCAADAwQAAGMIAAAjCAADAwQAAIMIAAAjCAADAwQAAGMIAABjCAADAwQAAIMIAABjCAADAwQAAGMIAACjCAADAwQAAIMIAACjCAADAwQAAKMIAAADCAADAwQAAMMIAAADCAADAwQAAKMIAABDCAADAwQAAMMIAABDCAADAwQAAKMIAACDCAADAwQAAMMIAACDCAADAwQAAOMIAAAjCAADAwQAAQMIAAAjCAADIwQAACMIAAADCAADIwQAAEMIAAADCAADIwQAACMIAABDCAADIwQAAEMIAABDCAADIwQAAGMIAAAjCAADIwQAAIMIAAAjCAADIwQAAGMIAABjCAADIwQAAIMIAABjCAADIwQAAGMIAACjCAADIwQAAIMIAACjCAADIwQAAKMIAAADCAADIwQAAMMIAAADCAADIwQAAKMIAABDCAADIwQAAMMIAABDCAADIwQAAKMIAACDCAADIwQAAMMIAACDCAADIwQAAOMIAAAjCAADIwQAAQMIAAAjCAAAUwgAACMIAAADCAAAUwgAAEMIAAADCAAAUwgAACMIAABDCAAAUwgAAEMIAABDCAAAUwgAAGMIAAAjCAAAUwgAAIMIAAAjCAAAUwgAAGMIAABjCAAAUwgAAIMIAABjCAAAUwgAAGMIAACjCAAAUwgAAIMIAACjCAAAUwgAAKMIAAADCAAAUwgAAMMIAAADCAAAUwgAAKMIAABDCAAAUwgAAMMIAABDCAAAUwgAAKMIAACDCAAAUwgAAMMIAACDCAAAUwgAAOMIAAAjCAAAUwgAAQMIAAAjCAAAYwgAACMIAAADCAAAYwgAAEMIAAADCAAAYwgAACMIAABDCAAAYwgAAEMIAABDCAAAYwgAAGMIAAAjCAAAYwgAAIMIAAAjCAAAYwgAAGMIAABjCAAAYwgAAIMIAABjCAAAYwgAAGMIAACjCAAAYwgAAIMIAACjCAAAYwgAAKMIAAADCAAAYwgAAMMIAAADCAAAYwgAAKMIAABDCAAAYwgAAMMIAABDCAAAYwgAAKMIAACDCAAAYwgAAMMIAACDCAAAYwgAAOMIAAAjCAAAYwgAAQMIAAAjCAAAkwgAACMIAAADCAAAkwgAACMIAAAjCAAAkwgAAEMIAAADCAAAkwgAAEMIAAAjCAAAkwgAAEMIAABDCAAAkwgAAEMIAABjCAAAkwgAAGMIAAAjCAAAkwgAAGMIAABDCAAAkwgAAGMIAABjCAAAkwgAAGMIAACDCAAAkwgAAIMIAAAjCAAAkwgAAIMIAABDCAAAkwgAAIMIAABjCAAAkwgAAIMIAACDCAAAkwgAAIMIAACjCAAAkwgAAIMIAADDCAAAkwgAAKMIAAADCAAAkwgAAKMIAAAjCAAAkwgAAKMIAABDCAAAkwgAAKMIAABjCAAAkwgAAKMIAACDCAAAkwgAAKMIAACjCAAAkwgAAMMIAAADCAAAkwgAAMMIAAAjCAAAkwgAAMMIAABDCAAAkwgAAMMIAABjCAAAkwgAAOMIAAAjCAAAkwgAAOMIAABDCAAAowgAACMIAAADCAAAowgAACMIAAAjCAAAowgAAEMIAAADCAAAowgAAEMIAAAjCAAAowgAAEMIAABDCAAAowgAAEMIAABjCAAAowgAAGMIAAAjCAAAowgAAGMIAABDCAAAowgAAGMIAABjCAAAowgAAGMIAACDCAAAowgAAIMIAAAjCAAAowgAAIMIAABDCAAAowgAAIMIAABjCAAAowgAAIMIAACDCAAAowgAAIMIAACjCAAAowgAAIMIAADDCAAAowgAAKMIAAADCAAAowgAAKMIAAAjCAAAowgAAKMIAABDCAAAowgAAKMIAABjCAAAowgAAKMIAACDCAAAowgAAKMIAACjCAAAowgAAMMIAAADCAAAowgAAMMIAAAjCAAAowgAAMMIAABDCAAAowgAAMMIAABjCAAAowgAAOMIAAAjCAAAowgAAOMIAABDCAAAswgAAAMIAAADCAAAswgAACMIAAADCAAAswgAAEMIAAADCAAAswgAAGMIAAADCAAAswgAAEMIAAAjCAAAswgAAGMIAAAjCAAAswgAAEMIAABDCAAAswgAAGMIAABDCAAAswgAAEMIAABjCAAAswgAAGMIAABjCAAAswgAAIMIAAADCAAAswgAAKMIAAADCAAAswgAAIMIAAAjCAAAswgAAKMIAAAjCAAAswgAAIMIAABDCAAAswgAAKMIAABDCAAAswgAAIMIAABjCAAAswgAAKMIAABjCAAAswgAAIMIAACDCAAAswgAAKMIAACDCAAAswgAAIMIAACjCAAAswgAAKMIAACjCAAAswgAAMMIAAADCAAAswgAAOMIAAADCAAAswgAAMMIAAAjCAAAswgAAOMIAAAjCAAAswgAAMMIAABDCAAAswgAAOMIAABDCAAAwwgAAAMIAAADCAAAwwgAACMIAAADCAAAwwgAAEMIAAADCAAAwwgAAGMIAAADCAAAwwgAAEMIAAAjCAAAwwgAAGMIAAAjCAAAwwgAAEMIAABDCAAAwwgAAGMIAABDCAAAwwgAAEMIAABjCAAAwwgAAGMIAABjCAAAwwgAAIMIAAADCAAAwwgAAKMIAAADCAAAwwgAAIMIAAAjCAAAwwgAAKMIAAAjCAAAwwgAAIMIAABDCAAAwwgAAKMIAABDCAAAwwgAAIMIAABjCAAAwwgAAKMIAABjCAAAwwgAAIMIAACDCAAAwwgAAKMIAACDCAAAwwgAAIMIAACjCAAAwwgAAKMIAACjCAAAwwgAAMMIAAADCAAAwwgAAOMIAAADCAAAwwgAAMMIAAAjCAAAwwgAAOMIAAAjCAAAwwgAAMMIAABDCAAAwwgAAOMIAABDCAAA0wgAACMIAAAjCAAA0wgAACMIAABDCAAA0wgAAEMIAAAjCAAA0wgAAEMIAABDCAAA0wgAAGMIAAADCAAA0wgAAGMIAAAjCAAA0wgAAGMIAABDCAAA0wgAAGMIAABjCAAA0wgAAGMIAACDCAAA0wgAAGMIAACjCAAA0wgAAIMIAAADCAAA0wgAAIMIAAAjCAAA0wgAAIMIAABDCAAA0wgAAIMIAABjCAAA0wgAAIMIAACDCAAA0wgAAIMIAACjCAAA0wgAAKMIAAAjCAAA0wgAAKMIAABDCAAA0wgAAKMIAABjCAAA0wgAAKMIAACDCAAA0wgAAMMIAAAjCAAA0wgAAMMIAABDCAAA0wgAAMMIAABjCAAA0wgAAMMIAACDCAAA0wgAAOMIAAADCAAA0wgAAOMIAAAjCAAA0wgAAQMIAAADCAAA0wgAAQMIAAAjCAAA4wgAACMIAAAjCAAA4wgAACMIAABDCAAA4wgAAEMIAAAjCAAA4wgAAEMIAABDCAAA4wgAAGMIAAADCAAA4wgAAGMIAAAjCAAA4wgAAGMIAABDCAAA4wgAAGMIAABjCAAA4wgAAGMIAACDCAAA4wgAAGMIAACjCAAA4wgAAIMIAAADCAAA4wgAAIMIAAAjCAAA4wgAAIMIAABDCAAA4wgAAIMIAABjCAAA4wgAAIMIAACDCAAA4wgAAIMIAACjCAAA4wgAAKMIAAAjCAAA4wgAAKMIAABDCAAA4wgAAKMIAABjCAAA4wgAAKMIAACDCAAA4wgAAMMIAAAjCAAA4wgAAMMIAABDCAAA4wgAAMMIAABjCAAA4wgAAMMIAACDCAAA4wgAAOMIAAADCAAA4wgAAOMIAAAjCAAA4wgAAQMIAAADCAAA4wgAAQMIAAAjCAABEwgAACMIAAADCAABEwgAACMIAAAjCAABEwgAAEMIAAADCAABEwgAAEMIAAAjCAABEwgAAEMIAABDCAABEwgAAEMIAABjCAABEwgAAGMIAAAjCAABEwgAAGMIAABDCAABEwgAAGMIAABjCAABEwgAAGMIAACDCAABEwgAAIMIAAAjCAABEwgAAIMIAABDCAABEwgAAIMIAABjCAABEwgAAIMIAACDCAABEwgAAIMIAACjCAABEwgAAIMIAADDCAABEwgAAKMIAAADCAABEwgAAKMIAAAjCAABEwgAAKMIAABDCAABEwgAAKMIAABjCAABEwgAAKMIAACDCAABEwgAAKMIAACjCAABEwgAAMMIAAADCAABEwgAAMMIAAAjCAABEwgAAMMIAABDCAABEwgAAMMIAABjCAABEwgAAOMIAAAjCAABEwgAAOMIAABDCAABIwgAACMIAAADCAABIwgAACMIAAAjCAABIwgAAEMIAAADCAABIwgAAEMIAAAjCAABIwgAAEMIAABDCAABIwgAAEMIAABjCAABIwgAAGMIAAAjCAABIwgAAGMIAABDCAABIwgAAGMIAABjCAABIwgAAGMIAACDCAABIwgAAIMIAAAjCAABIwgAAIMIAABDCAABIwgAAIMIAABjCAABIwgAAIMIAACDCAABIwgAAIMIAACjCAABIwgAAIMIAADDCAABIwgAAKMIAAADCAABIwgAAKMIAAAjCAABIwgAAKMIAABDCAABIwgAAKMIAABjCAABIwgAAKMIAACDCAABIwgAAKMIAACjCAABIwgAAMMIAAADCAABIwgAAMMIAAAjCAABIwgAAMMIAABDCAABIwgAAMMIAABjCAABIwgAAOMIAAAjCAABIwgAAOMIAABDCAABMwgAAAMIAAADCAABMwgAACMIAAADCAABMwgAAEMIAAADCAABMwgAAGMIAAADCAABMwgAAEMIAAAjCAABMwgAAGMIAAAjCAABMwgAAEMIAABDCAABMwgAAGMIAABDCAABMwgAAEMIAABjCAABMwgAAGMIAABjCAABMwgAAIMIAAADCAABMwgAAKMIAAADCAABMwgAAIMIAAAjCAABMwgAAKMIAAAjCAABMwgAAIMIAABDCAABMwgAAKMIAABDCAABMwgAAIMIAABjCAABMwgAAKMIAABjCAABMwgAAIMIAACDCAABMwgAAKMIAACDCAABMwgAAIMIAACjCAABMwgAAKMIAACjCAABMwgAAMMIAAADCAABMwgAAOMIAAADCAABMwgAAMMIAAAjCAABMwgAAOMIAAAjCAABMwgAAMMIAABDCAABMwgAAOMIAABDCAABQwgAAAMIAAADCAABQwgAACMIAAADCAABQwgAAEMIAAADCAABQwgAAGMIAAADCAABQwgAAEMIAAAjCAABQwgAAGMIAAAjCAABQwgAAEMIAABDCAABQwgAAGMIAABDCAABQwgAAEMIAABjCAABQwgAAGMIAABjCAABQwgAAIMIAAADCAABQwgAAKMIAAADCAABQwgAAIMIAAAjCAABQwgAAKMIAAAjCAABQwgAAIMIAABDCAABQwgAAKMIAABDCAABQwgAAIMIAABjCAABQwgAAKMIAABjCAABQwgAAIMIAACDCAABQwgAAKMIAACDCAABQwgAAIMIAACjCAABQwgAAKMIAACjCAABQwgAAMMIAAADCAABQwgAAOMIAAADCAABQwgAAMMIAAAjCAABQwgAAOMIAAAjCAABQwgAAMMIAABDCAABQwgAAOMIAABDCAABUwgAACMIAAAjCAABUwgAACMIAABDCAABUwgAAEMIAAAjCAABUwgAAEMIAABDCAABUwgAAGMIAAADCAABUwgAAGMIAAAjCAABUwgAAGMIAABDCAABUwgAAGMIAABjCAABUwgAAGMIAACDCAABUwgAAGMIAACjCAABUwgAAIMIAAADCAABUwgAAIMIAAAjCAABUwgAAIMIAABDCAABUwgAAIMIAABjCAABUwgAAIMIAACDCAABUwgAAIMIAACjCAABUwgAAKMIAAAjCAABUwgAAKMIAABDCAABUwgAAKMIAABjCAABUwgAAKMIAACDCAABUwgAAMMIAAAjCAABUwgAAMMIAABDCAABUwgAAMMIAABjCAABUwgAAMMIAACDCAABUwgAAOMIAAADCAABUwgAAOMIAAAjCAABUwgAAQMIAAADCAABUwgAAQMIAAAjCAABYwgAACMIAAAjCAABYwgAACMIAABDCAABYwgAAEMIAAAjCAABYwgAAEMIAABDCAABYwgAAGMIAAADCAABYwgAAGMIAAAjCAABYwgAAGMIAABDCAABYwgAAGMIAABjCAABYwgAAGMIAACDCAABYwgAAGMIAACjCAABYwgAAIMIAAADCAABYwgAAIMIAAAjCAABYwgAAIMIAABDCAABYwgAAIMIAABjCAABYwgAAIMIAACDCAABYwgAAIMIAACjCAABYwgAAKMIAAAjCAABYwgAAKMIAABDCAABYwgAAKMIAABjCAABYwgAAKMIAACDCAABYwgAAMMIAAAjCAABYwgAAMMIAABDCAABYwgAAMMIAABjCAABYwgAAMMIAACDCAABYwgAAOMIAAADCAABYwgAAOMIAAAjCAABYwgAAQMIAAADCAABYwgAAQMIAAAjCAABkwgAACMIAAADCAABkwgAAEMIAAADCAABkwgAACMIAABDCAABkwgAAEMIAABDCAABkwgAAGMIAAAjCAABkwgAAIMIAAAjCAABkwgAAGMIAABjCAABkwgAAIMIAABjCAABkwgAAGMIAACjCAABkwgAAIMIAACjCAABkwgAAKMIAAADCAABkwgAAMMIAAADCAABkwgAAKMIAABDCAABkwgAAMMIAABDCAABkwgAAKMIAACDCAABkwgAAMMIAACDCAABkwgAAOMIAAAjCAABkwgAAQMIAAAjCAABowgAACMIAAADCAABowgAAEMIAAADCAABowgAACMIAABDCAABowgAAEMIAABDCAABowgAAGMIAAAjCAABowgAAIMIAAAjCAABowgAAGMIAABjCAABowgAAIMIAABjCAABowgAAGMIAACjCAABowgAAIMIAACjCAABowgAAKMIAAADCAABowgAAMMIAAADCAABowgAAKMIAABDCAABowgAAMMIAABDCAABowgAAKMIAACDCAABowgAAMMIAACDCAABowgAAOMIAAAjCAABowgAAQMIAAAjCAACMwgAACMIAAADCAACMwgAAEMIAAADCAACMwgAACMIAABDCAACMwgAAEMIAABDCAACMwgAAGMIAAAjCAACMwgAAIMIAAAjCAACMwgAAGMIAABjCAACMwgAAIMIAABjCAACMwgAAGMIAACjCAACMwgAAIMIAACjCAACMwgAAKMIAAADCAACMwgAAMMIAAADCAACMwgAAKMIAABDCAACMwgAAMMIAABDCAACMwgAAKMIAACDCAACMwgAAMMIAACDCAACMwgAAOMIAAAjCAACMwgAAQMIAAAjCAACOwgAACMIAAADCAACOwgAAEMIAAADCAACOwgAACMIAABDCAACOwgAAEMIAABDCAACOwgAAGMIAAAjCAACOwgAAIMIAAAjCAACOwgAAGMIAABjCAACOwgAAIMIAABjCAACOwgAAGMIAACjCAACOwgAAIMIAACjCAACOwgAAKMIAAADCAACOwgAAMMIAAADCAACOwgAAKMIAABDCAACOwgAAMMIAABDCAACOwgAAKMIAACDCAACOwgAAMMIAACDCAACOwgAAOMIAAAjCAACOwgAAQMIAAAjCAACUwgAACMIAAAjCAACUwgAACMIAABDCAACUwgAAEMIAAAjCAACUwgAAEMIAABDCAACUwgAAGMIAAADCAACUwgAAGMIAAAjCAACUwgAAGMIAABDCAACUwgAAGMIAABjCAACUwgAAGMIAACDCAACUwgAAGMIAACjCAACUwgAAIMIAAADCAACUwgAAIMIAAAjCAACUwgAAIMIAABDCAACUwgAAIMIAABjCAACUwgAAIMIAACDCAACUwgAAIMIAACjCAACUwgAAKMIAAAjCAACUwgAAKMIAABDCAACUwgAAKMIAABjCAACUwgAAKMIAACDCAACUwgAAMMIAAAjCAACUwgAAMMIAABDCAACUwgAAMMIAABjCAACUwgAAMMIAACDCAACUwgAAOMIAAADCAACUwgAAOMIAAAjCAACUwgAAQMIAAADCAACUwgAAQMIAAAjCAACWwgAACMIAAAjCAACWwgAACMIAABDCAACWwgAAEMIAAAjCAACWwgAAEMIAABDCAACWwgAAGMIAAADCAACWwgAAGMIAAAjCAACWwgAAGMIAABDCAACWwgAAGMIAABjCAACWwgAAGMIAACDCAACWwgAAGMIAACjCAACWwgAAIMIAAADCAACWwgAAIMIAAAjCAACWwgAAIMIAABDCAACWwgAAIMIAABjCAACWwgAAIMIAACDCAACWwgAAIMIAACjCAACWwgAAKMIAAAjCAACWwgAAKMIAABDCAACWwgAAKMIAABjCAACWwgAAKMIAACDCAACWwgAAMMIAAAjCAACWwgAAMMIAABDCAACWwgAAMMIAABjCAACWwgAAMMIAACDCAACWwgAAOMIAAADCAACWwgAAOMIAAAjCAACWwgAAQMIAAADCAACWwgAAQMIAAAjCAACYwgAAAMIAAADCAACYwgAACMIAAADCAACYwgAAEMIAAADCAACYwgAAGMIAAADCAACYwgAAEMIAAAjCAACYwgAAGMIAAAjCAACYwgAAEMIAABDCAACYwgAAGMIAABDCAACYwgAAEMIAABjCAACYwgAAGMIAABjCAACYwgAAIMIAAADCAACYwgAAKMIAAADCAACYwgAAIMIAAAjCAACYwgAAKMIAAAjCAACYwgAAIMIAABDCAACYwgAAKMIAABDCAACYwgAAIMIAABjCAACYwgAAKMIAABjCAACYwgAAIMIAACDCAACYwgAAKMIAACDCAACYwgAAIMIAACjCAACYwgAAKMIAACjCAACYwgAAMMIAAADCAACYwgAAOMIAAADCAACYwgAAMMIAAAjCAACYwgAAOMIAAAjCAACYwgAAMMIAABDCAACYwgAAOMIAABDCAACawgAAAMIAAADCAACawgAACMIAAADCAACawgAAEMIAAADCAACawgAAGMIAAADCAACawgAAEMIAAAjCAACawgAAGMIAAAjCAACawgAAEMIAABDCAACawgAAGMIAABDCAACawgAAEMIAABjCAACawgAAGMIAABjCAACawgAAIMIAAADCAACawgAAKMIAAADCAACawgAAIMIAAAjCAACawgAAKMIAAAjCAACawgAAIMIAABDCAACawgAAKMIAABDCAACawgAAIMIAABjCAACawgAAKMIAABjCAACawgAAIMIAACDCAACawgAAKMIAACDCAACawgAAIMIAACjCAACawgAAKMIAACjCAACawgAAMMIAAADCAACawgAAOMIAAADCAACawgAAMMIAAAjCAACawgAAOMIAAAjCAACawgAAMMIAABDCAACawgAAOMIAABDCAACcwgAACMIAAADCAACcwgAACMIAAAjCAACcwgAAEMIAAADCAACcwgAAEMIAAAjCAACcwgAAEMIAABDCAACcwgAAEMIAABjCAACcwgAAGMIAAAjCAACcwgAAGMIAABDCAACcwgAAGMIAABjCAACcwgAAGMIAACDCAACcwgAAIMIAAAjCAACcwgAAIMIAABDCAACcwgAAIMIAABjCAACcwgAAIMIAACDCAACcwgAAIMIAACjCAACcwgAAIMIAADDCAACcwgAAKMIAAADCAACcwgAAKMIAAAjCAACcwgAAKMIAABDCAACcwgAAKMIAABjCAACcwgAAKMIAACDCAACcwgAAKMIAACjCAACcwgAAMMIAAADCAACcwgAAMMIAAAjCAACcwgAAMMIAABDCAACcwgAAMMIAABjCAACcwgAAOMIAAAjCAACcwgAAOMIAABDCAACewgAACMIAAADCAACewgAACMIAAAjCAACewgAAEMIAAADCAACewgAAEMIAAAjCAACewgAAEMIAABDCAACewgAAEMIAABjCAACewgAAGMIAAAjCAACewgAAGMIAABDCAACewgAAGMIAABjCAACewgAAGMIAACDCAACewgAAIMIAAAjCAACewgAAIMIAABDCAACewgAAIMIAABjCAACewgAAIMIAACDCAACewgAAIMIAACjCAACewgAAIMIAADDCAACewgAAKMIAAADCAACewgAAKMIAAAjCAACewgAAKMIAABDCAACewgAAKMIAABjCAACewgAAKMIAACDCAACewgAAKMIAACjCAACewgAAMMIAAADCAACewgAAMMIAAAjCAACewgAAMMIAABDCAACewgAAMMIAABjCAACewgAAOMIAAAjCAACewgAAOMIAABDCAACkwgAACMIAAAjCAACkwgAACMIAABDCAACkwgAAEMIAAAjCAACkwgAAEMIAABDCAACkwgAAGMIAAADCAACkwgAAGMIAAAjCAACkwgAAGMIAABDCAACkwgAAGMIAABjCAACkwgAAGMIAACDCAACkwgAAGMIAACjCAACkwgAAIMIAAADCAACkwgAAIMIAAAjCAACkwgAAIMIAABDCAACkwgAAIMIAABjCAACkwgAAIMIAACDCAACkwgAAIMIAACjCAACkwgAAKMIAAAjCAACkwgAAKMIAABDCAACkwgAAKMIAABjCAACkwgAAKMIAACDCAACkwgAAMMIAAAjCAACkwgAAMMIAABDCAACkwgAAMMIAABjCAACkwgAAMMIAACDCAACkwgAAOMIAAADCAACkwgAAOMIAAAjCAACkwgAAQMIAAADCAACkwgAAQMIAAAjCAACmwgAACMIAAAjCAACmwgAACMIAABDCAACmwgAAEMIAAAjCAACmwgAAEMIAABDCAACmwgAAGMIAAADCAACmwgAAGMIAAAjCAACmwgAAGMIAABDCAACmwgAAGMIAABjCAACmwgAAGMIAACDCAACmwgAAGMIAACjCAACmwgAAIMIAAADCAACmwgAAIMIAAAjCAACmwgAAIMIAABDCAACmwgAAIMIAABjCAACmwgAAIMIAACDCAACmwgAAIMIAACjCAACmwgAAKMIAAAjCAACmwgAAKMIAABDCAACmwgAAKMIAABjCAACmwgAAKMIAACDCAACmwgAAMMIAAAjCAACmwgAAMMIAABDCAACmwgAAMMIAABjCAACmwgAAMMIAACDCAACmwgAAOMIAAADCAACmwgAAOMIAAAjCAACmwgAAQMIAAADCAACmwgAAQMIAAAjCAACowgAAAMIAAADCAACowgAACMIAAADCAACowgAAEMIAAADCAACowgAAGMIAAADCAACowgAAEMIAAAjCAACowgAAGMIAAAjCAACowgAAEMIAABDCAACowgAAGMIAABDCAACowgAAEMIAABjCAACowgAAGMIAABjCAACowgAAIMIAAADCAACowgAAKMIAAADCAACowgAAIMIAAAjCAACowgAAKMIAAAjCAACowgAAIMIAABDCAACowgAAKMIAABDCAACowgAAIMIAABjCAACowgAAKMIAABjCAACowgAAIMIAACDCAACowgAAKMIAACDCAACowgAAIMIAACjCAACowgAAKMIAACjCAACowgAAMMIAAADCAACowgAAOMIAAADCAACowgAAMMIAAAjCAACowgAAOMIAAAjCAACowgAAMMIAABDCAACowgAAOMIAABDCAACqwgAAAMIAAADCAACqwgAACMIAAADCAACqwgAAEMIAAADCAACqwgAAGMIAAADCAACqwgAAEMIAAAjCAACqwgAAGMIAAAjCAACqwgAAEMIAABDCAACqwgAAGMIAABDCAACqwgAAEMIAABjCAACqwgAAGMIAABjCAACqwgAAIMIAAADCAACqwgAAKMIAAADCAACqwgAAIMIAAAjCAACqwgAAKMIAAAjCAACqwgAAIMIAABDCAACqwgAAKMIAABDCAACqwgAAIMIAABjCAACqwgAAKMIAABjCAACqwgAAIMIAACDCAACqwgAAKMIAACDCAACqwgAAIMIAACjCAACqwgAAKMIAACjCAACqwgAAMMIAAADCAACqwgAAOMIAAADCAACqwgAAMMIAAAjCAACqwgAAOMIAAAjCAACqwgAAMMIAABDCAACqwgAAOMIAABDCAACswgAACMIAAADCAACswgAACMIAAAjCAACswgAAEMIAAADCAACswgAAEMIAAAjCAACswgAAEMIAABDCAACswgAAEMIAABjCAACswgAAGMIAAAjCAACswgAAGMIAABDCAACswgAAGMIAABjCAACswgAAGMIAACDCAACswgAAIMIAAAjCAACswgAAIMIAABDCAACswgAAIMIAABjCAACswgAAIMIAACDCAACswgAAIMIAACjCAACswgAAIMIAADDCAACswgAAKMIAAADCAACswgAAKMIAAAjCAACswgAAKMIAABDCAACswgAAKMIAABjCAACswgAAKMIAACDCAACswgAAKMIAACjCAACswgAAMMIAAADCAACswgAAMMIAAAjCAACswgAAMMIAABDCAACswgAAMMIAABjCAACswgAAOMIAAAjCAACswgAAOMIAABDCAACuwgAACMIAAADCAACuwgAACMIAAAjCAACuwgAAEMIAAADCAACuwgAAEMIAAAjCAACuwgAAEMIAABDCAACuwgAAEMIAABjCAACuwgAAGMIAAAjCAACuwgAAGMIAABDCAACuwgAAGMIAABjCAACuwgAAGMIAACDCAACuwgAAIMIAAAjCAACuwgAAIMIAABDCAACuwgAAIMIAABjCAACuwgAAIMIAACDCAACuwgAAIMIAACjCAACuwgAAIMIAADDCAACuwgAAKMIAAADCAACuwgAAKMIAAAjCAACuwgAAKMIAABDCAACuwgAAKMIAABjCAACuwgAAKMIAACDCAACuwgAAKMIAACjCAACuwgAAMMIAAADCAACuwgAAMMIAAAjCAACuwgAAMMIAABDCAACuwgAAMMIAABjCAACuwgAAOMIAAAjCAACuwgAAOMIAABDCAAC0wgAACMIAAADCAAC0wgAAEMIAAADCAAC0wgAACMIAABDCAAC0wgAAEMIAABDCAAC0wgAAGMIAAAjCAAC0wgAAIMIAAAjCAAC0wgAAGMIAABjCAAC0wgAAIMIAABjCAAC0wgAAGMIAACjCAAC0wgAAIMIAACjCAAC0wgAAKMIAAADCAAC0wgAAMMIAAADCAAC0wgAAKMIAABDCAAC0wgAAMMIAABDCAAC0wgAAKMIAACDCAAC0wgAAMMIAACDCAAC0wgAAOMIAAAjCAAC0wgAAQMIAAAjCAAC2wgAACMIAAADCAAC2wgAAEMIAAADCAAC2wgAACMIAABDCAAC2wgAAEMIAABDCAAC2wgAAGMIAAAjCAAC2wgAAIMIAAAjCAAC2wgAAGMIAABjCAAC2wgAAIMIAABjCAAC2wgAAGMIAACjCAAC2wgAAIMIAACjCAAC2wgAAKMIAAADCAAC2wgAAMMIAAADCAAC2wgAAKMIAABDCAAC2wgAAMMIAABDCAAC2wgAAKMIAACDCAAC2wgAAMMIAACDCAAC2wgAAOMIAAAjCAAC2wgAAQMIAAAjCAACAPwAAAMIAAADCAADAwgAAAMIAAADCAACAPwAACMIAAADCAADAwgAACMIAAADCAACAPwAACMIAAAjCAADAwgAACMIAAAjCAACAPwAACMIAABDCAADAwgAACMIAABDCAACAPwAAEMIAAADCAADAwgAAEMIAAADCAACAPwAAEMIAAAjCAADAwgAAEMIAAAjCAACAPwAAEMIAABDCAADAwgAAEMIAABDCAACAPwAAEMIAABjCAADAwgAAEMIAABjCAACAPwAAGMIAAADCAADAwgAAGMIAAADCAACAPwAAGMIAAAjCAADAwgAAGMIAAAjCAACAPwAAGMIAABDCAADAwgAAGMIAABDCAACAPwAAGMIAABjCAADAwgAAGMIAABjCAACAPwAAGMIAACDCAADAwgAAGMIAACDCAACAPwAAGMIAACjCAADAwgAAGMIAACjCAACAPwAAIMIAAADCAADAwgAAIMIAAADCAACAPwAAIMIAAAjCAADAwgAAIMIAAAjCAACAPwAAIMIAABDCAADAwgAAIMIAABDCAACAPwAAIMIAABjCAADAwgAAIMIAABjCAACAPwAAIMIAACDCAADAwgAAIMIAACDCAACAPwAAIMIAACjCAADAwgAAIMIAACjCAACAPwAAIMIAADDCAADAwgAAIMIAADDCAACAPwAAKMIAAADCAADAwgAAKMIAAADCAACAPwAAKMIAAAjCAADAwgAAKMIAAAjCAACAPwAAKMIAABDCAADAwgAAKMIAABDCAACAPwAAKMIAABjCAADAwgAAKMIAABjCAACAPwAAKMIAACDCAADAwgAAKMIAACDCAACAPwAAKMIAACjCAADAwgAAKMIAACjCAACAPwAAMMIAAADCAADAwgAAMMIAAADCAACAPwAAMMIAAAjCAADAwgAAMMIAAAjCAACAPwAAMMIAABDCAADAwgAAMMIAABDCAACAPwAAMMIAABjCAADAwgAAMMIAABjCAACAPwAAMMIAACDCAADAwgAAMMIAACDCAACAPwAAOMIAAADCAADAwgAAOMIAAADCAACAPwAAOMIAAAjCAADAwgAAOMIAAAjCAACAPwAAOMIAABDCAADAwgAAOMIAABDCAACAPwAAQMIAAADCAADAwgAAQMIAAADCAACAPwAAQMIAAAjCAADAwgAAQMIAAAjC\"},{\"byteLength\":360,\"name\":\"buf_red_scattered_lines\",\"uri\":\"data:application/octet-stream;base64,AAAAAAAA8MEAABjCAABAwAAA8MEAABjCAAAgwAAA9MEAABjCAABAwAAA8MEAABjCAAAgwAAA7MEAABjCAABAwAAA8MEAABjCAAD+wQAA+MEAAPjBAAD+wQAA+MEAADTCAAD+wQAA+MEAAPjBAAD+wQAARMIAAPjBAAD+wQAA+MEAAPjBAICAwgAA+MEAAPjBAAD+wQAA+MEAADTCAAD+wQAARMIAADTCAAD+wQAA+MEAADTCAICAwgAA+MEAADTCAAD+wQAARMIAAPjBAAD+wQAARMIAADTCAAD+wQAARMIAAPjBAICAwgAARMIAAPjBAAD+wQAARMIAADTCAICAwgAARMIAADTCAICAwgAA+MEAAPjBAICAwgAA+MEAADTCAICAwgAA+MEAAPjBAICAwgAARMIAAPjBAICAwgAA+MEAADTCAICAwgAARMIAADTCAICAwgAARMIAAPjBAICAwgAARMIAADTC\"},{\"byteLength\":8448,\"name\":\"buf_blue_scattered_lines\",\"uri\":\"data:application/octet-stream;base64,AACAPs3M/MEAAPzBAACAPpqZ+cEAAPzBAACAPs3M/MEAADLCAACAPpqZ+cEAADLCAACAPpqZ+cEAAPzBAACAPpqZ+cEAADLCAACAPpqZ+cEAAPzBAACgv5qZ+cEAAPzBAACAPpqZ+cEAADLCAACgv5qZ+cEAADLCAACgv83M/MEAAPzBAACgv5qZ+cEAAPzBAACgv83M/MEAADLCAACgv5qZ+cEAADLCAACgv5qZ+cEAAPzBAACgv5qZ+cEAADLCAADgv83M/MEAAPzBAADgv5qZ+cEAAPzBAADgv83M/MEAADLCAADgv5qZ+cEAADLCAADgv5qZ+cEAAPzBAADgv5qZ+cEAADLCAADgv5qZ+cEAAPzBAABQwJqZ+cEAAPzBAADgv5qZ+cEAADLCAABQwJqZ+cEAADLCAABQwM3M/MEAAPzBAABQwJqZ+cEAAPzBAABQwM3M/MEAADLCAABQwJqZ+cEAADLCAABQwJqZ+cEAAPzBAABQwJqZ+cEAADLCAABwwM3M/MEAAPzBAABwwJqZ+cEAAPzBAABwwM3M/MEAADLCAABwwJqZ+cEAADLCAABwwJqZ+cEAAPzBAABwwJqZ+cEAADLCAABwwJqZ+cEAAPzBAACowJqZ+cEAAPzBAABwwJqZ+cEAADLCAACowJqZ+cEAADLCAACowM3M/MEAAPzBAACowJqZ+cEAAPzBAACowM3M/MEAADLCAACowJqZ+cEAADLCAACowJqZ+cEAAPzBAACowJqZ+cEAADLCAAC4wM3M/MEAAPzBAAC4wJqZ+cEAAPzBAAC4wM3M/MEAADLCAAC4wJqZ+cEAADLCAAC4wJqZ+cEAAPzBAAC4wJqZ+cEAADLCAAC4wJqZ+cEAAPzBAADowJqZ+cEAAPzBAAC4wJqZ+cEAADLCAADowJqZ+cEAADLCAADowM3M/MEAAPzBAADowJqZ+cEAAPzBAADowM3M/MEAADLCAADowJqZ+cEAADLCAADowJqZ+cEAAPzBAADowJqZ+cEAADLCAAD4wM3M/MEAAPzBAAD4wJqZ+cEAAPzBAAD4wM3M/MEAADLCAAD4wJqZ+cEAADLCAAD4wJqZ+cEAAPzBAAD4wJqZ+cEAADLCAAD4wJqZ+cEAAPzBAAAUwZqZ+cEAAPzBAAD4wJqZ+cEAADLCAAAUwZqZ+cEAADLCAAAUwc3M/MEAAPzBAAAUwZqZ+cEAAPzBAAAUwc3M/MEAADLCAAAUwZqZ+cEAADLCAAAUwZqZ+cEAAPzBAAAUwZqZ+cEAADLCAAAcwc3M/MEAAPzBAAAcwZqZ+cEAAPzBAAAcwc3M/MEAADLCAAAcwZqZ+cEAADLCAAAcwZqZ+cEAAPzBAAAcwZqZ+cEAADLCAAAcwZqZ+cEAAPzBAAA0wZqZ+cEAAPzBAAAcwZqZ+cEAADLCAAA0wZqZ+cEAADLCAAA0wc3M/MEAAPzBAAA0wZqZ+cEAAPzBAAA0wc3M/MEAADLCAAA0wZqZ+cEAADLCAAA0wZqZ+cEAAPzBAAA0wZqZ+cEAADLCAAA8wc3M/MEAAPzBAAA8wZqZ+cEAAPzBAAA8wc3M/MEAADLCAAA8wZqZ+cEAADLCAAA8wZqZ+cEAAPzBAAA8wZqZ+cEAADLCAAA8wZqZ+cEAAPzBAABUwZqZ+cEAAPzBAAA8wZqZ+cEAADLCAABUwZqZ+cEAADLCAABUwc3M/MEAAPzBAABUwZqZ+cEAAPzBAABUwc3M/MEAADLCAABUwZqZ+cEAADLCAABUwZqZ+cEAAPzBAABUwZqZ+cEAADLCAABcwc3M/MEAAPzBAABcwZqZ+cEAAPzBAABcwc3M/MEAADLCAABcwZqZ+cEAADLCAABcwZqZ+cEAAPzBAABcwZqZ+cEAADLCAABcwZqZ+cEAAPzBAAB0wZqZ+cEAAPzBAABcwZqZ+cEAADLCAAB0wZqZ+cEAADLCAAB0wc3M/MEAAPzBAAB0wZqZ+cEAAPzBAAB0wc3M/MEAADLCAAB0wZqZ+cEAADLCAAB0wZqZ+cEAAPzBAAB0wZqZ+cEAADLCAAB8wc3M/MEAAPzBAAB8wZqZ+cEAAPzBAAB8wc3M/MEAADLCAAB8wZqZ+cEAADLCAAB8wZqZ+cEAAPzBAAB8wZqZ+cEAADLCAAB8wZqZ+cEAAPzBAACKwZqZ+cEAAPzBAAB8wZqZ+cEAADLCAACKwZqZ+cEAADLCAACKwc3M/MEAAPzBAACKwZqZ+cEAAPzBAACKwc3M/MEAADLCAACKwZqZ+cEAADLCAACKwZqZ+cEAAPzBAACKwZqZ+cEAADLCAACOwc3M/MEAAPzBAACOwZqZ+cEAAPzBAACOwc3M/MEAADLCAACOwZqZ+cEAADLCAACOwZqZ+cEAAPzBAACOwZqZ+cEAADLCAACOwZqZ+cEAAPzBAACawZqZ+cEAAPzBAACOwZqZ+cEAADLCAACawZqZ+cEAADLCAACawc3M/MEAAPzBAACawZqZ+cEAAPzBAACawc3M/MEAADLCAACawZqZ+cEAADLCAACawZqZ+cEAAPzBAACawZqZ+cEAADLCAACewc3M/MEAAPzBAACewZqZ+cEAAPzBAACewc3M/MEAADLCAACewZqZ+cEAADLCAACewZqZ+cEAAPzBAACewZqZ+cEAADLCAACewZqZ+cEAAPzBAACqwZqZ+cEAAPzBAACewZqZ+cEAADLCAACqwZqZ+cEAADLCAACqwc3M/MEAAPzBAACqwZqZ+cEAAPzBAACqwc3M/MEAADLCAACqwZqZ+cEAADLCAACqwZqZ+cEAAPzBAACqwZqZ+cEAADLCAACuwc3M/MEAAPzBAACuwZqZ+cEAAPzBAACuwc3M/MEAADLCAACuwZqZ+cEAADLCAACuwZqZ+cEAAPzBAACuwZqZ+cEAADLCAACuwZqZ+cEAAPzBAAC6wZqZ+cEAAPzBAACuwZqZ+cEAADLCAAC6wZqZ+cEAADLCAAC6wc3M/MEAAPzBAAC6wZqZ+cEAAPzBAAC6wc3M/MEAADLCAAC6wZqZ+cEAADLCAAC6wZqZ+cEAAPzBAAC6wZqZ+cEAADLCAAC+wc3M/MEAAPzBAAC+wZqZ+cEAAPzBAAC+wc3M/MEAADLCAAC+wZqZ+cEAADLCAAC+wZqZ+cEAAPzBAAC+wZqZ+cEAADLCAAC+wZqZ+cEAAPzBAADKwZqZ+cEAAPzBAAC+wZqZ+cEAADLCAADKwZqZ+cEAADLCAADKwc3M/MEAAPzBAADKwZqZ+cEAAPzBAADKwc3M/MEAADLCAADKwZqZ+cEAADLCAADKwZqZ+cEAAPzBAADKwZqZ+cEAADLCAADOwc3M/MEAAPzBAADOwZqZ+cEAAPzBAADOwc3M/MEAADLCAADOwZqZ+cEAADLCAADOwZqZ+cEAAPzBAADOwZqZ+cEAADLCAADOwZqZ+cEAAPzBAADawZqZ+cEAAPzBAADOwZqZ+cEAADLCAADawZqZ+cEAADLCAADawc3M/MEAAPzBAADawZqZ+cEAAPzBAADawc3M/MEAADLCAADawZqZ+cEAADLCAADawZqZ+cEAAPzBAADawZqZ+cEAADLCAADewc3M/MEAAPzBAADewZqZ+cEAAPzBAADewc3M/MEAADLCAADewZqZ+cEAADLCAADewZqZ+cEAAPzBAADewZqZ+cEAADLCAADewZqZ+cEAAPzBAADywZqZ+cEAAPzBAADewZqZ+cEAADLCAADywZqZ+cEAADLCAADywc3M/MEAAPzBAADywZqZ+cEAAPzBAADywc3M/MEAADLCAADywZqZ+cEAADLCAADywZqZ+cEAAPzBAADywZqZ+cEAADLCAAD+wc3M/MEAAPzBAAD+wZqZ+cEAAPzBAAD+wc3M/MEAADLCAAD+wZqZ+cEAADLCAAD+wZqZ+cEAAPzBAAD+wZqZ+cEAADLCAAD+wZqZ+cEAAPzBAAAJwpqZ+cEAAPzBAAD+wZqZ+cEAADLCAAAJwpqZ+cEAADLCAAAJws3M/MEAAPzBAAAJwpqZ+cEAAPzBAAAJws3M/MEAADLCAAAJwpqZ+cEAADLCAAAJwpqZ+cEAAPzBAAAJwpqZ+cEAADLCAAALws3M/MEAAPzBAAALwpqZ+cEAAPzBAAALws3M/MEAADLCAAALwpqZ+cEAADLCAAALwpqZ+cEAAPzBAAALwpqZ+cEAADLCAAALwpqZ+cEAAPzBAAARwpqZ+cEAAPzBAAALwpqZ+cEAADLCAAARwpqZ+cEAADLCAAARws3M/MEAAPzBAAARwpqZ+cEAAPzBAAARws3M/MEAADLCAAARwpqZ+cEAADLCAAARwpqZ+cEAAPzBAAARwpqZ+cEAADLCAAATws3M/MEAAPzBAAATwpqZ+cEAAPzBAAATws3M/MEAADLCAAATwpqZ+cEAADLCAAATwpqZ+cEAAPzBAAATwpqZ+cEAADLCAAATwpqZ+cEAAPzBAAAZwpqZ+cEAAPzBAAATwpqZ+cEAADLCAAAZwpqZ+cEAADLCAAAZws3M/MEAAPzBAAAZwpqZ+cEAAPzBAAAZws3M/MEAADLCAAAZwpqZ+cEAADLCAAAZwpqZ+cEAAPzBAAAZwpqZ+cEAADLCAAAbws3M/MEAAPzBAAAbwpqZ+cEAAPzBAAAbws3M/MEAADLCAAAbwpqZ+cEAADLCAAAbwpqZ+cEAAPzBAAAbwpqZ+cEAADLCAAAbwpqZ+cEAAPzBAAAhwpqZ+cEAAPzBAAAbwpqZ+cEAADLCAAAhwpqZ+cEAADLCAAAhws3M/MEAAPzBAAAhwpqZ+cEAAPzBAAAhws3M/MEAADLCAAAhwpqZ+cEAADLCAAAhwpqZ+cEAAPzBAAAhwpqZ+cEAADLCAAAjws3M/MEAAPzBAAAjwpqZ+cEAAPzBAAAjws3M/MEAADLCAAAjwpqZ+cEAADLCAAAjwpqZ+cEAAPzBAAAjwpqZ+cEAADLCAAAjwpqZ+cEAAPzBAAApwpqZ+cEAAPzBAAAjwpqZ+cEAADLCAAApwpqZ+cEAADLCAAApws3M/MEAAPzBAAApwpqZ+cEAAPzBAAApws3M/MEAADLCAAApwpqZ+cEAADLCAAApwpqZ+cEAAPzBAAApwpqZ+cEAADLCAAArws3M/MEAAPzBAAArwpqZ+cEAAPzBAAArws3M/MEAADLCAAArwpqZ+cEAADLCAAArwpqZ+cEAAPzBAAArwpqZ+cEAADLCAAArwpqZ+cEAAPzBAAAxwpqZ+cEAAPzBAAArwpqZ+cEAADLCAAAxwpqZ+cEAADLCAAAxws3M/MEAAPzBAAAxwpqZ+cEAAPzBAAAxws3M/MEAADLCAAAxwpqZ+cEAADLCAAAxwpqZ+cEAAPzBAAAxwpqZ+cEAADLCAAAzws3M/MEAAPzBAAAzwpqZ+cEAAPzBAAAzws3M/MEAADLCAAAzwpqZ+cEAADLCAAAzwpqZ+cEAAPzBAAAzwpqZ+cEAADLCAAAzwpqZ+cEAAPzBAAA5wpqZ+cEAAPzBAAAzwpqZ+cEAADLCAAA5wpqZ+cEAADLCAAA5ws3M/MEAAPzBAAA5wpqZ+cEAAPzBAAA5ws3M/MEAADLCAAA5wpqZ+cEAADLCAAA5wpqZ+cEAAPzBAAA5wpqZ+cEAADLCAAA7ws3M/MEAAPzBAAA7wpqZ+cEAAPzBAAA7ws3M/MEAADLCAAA7wpqZ+cEAADLCAAA7wpqZ+cEAAPzBAAA7wpqZ+cEAADLCAAA7wpqZ+cEAAPzBAABBwpqZ+cEAAPzBAAA7wpqZ+cEAADLCAABBwpqZ+cEAADLCAABBws3M/MEAAPzBAABBwpqZ+cEAAPzBAABBws3M/MEAADLCAABBwpqZ+cEAADLCAABBwpqZ+cEAAPzBAABBwpqZ+cEAADLCAABDws3M/MEAAPzBAABDwpqZ+cEAAPzBAABDws3M/MEAADLCAABDwpqZ+cEAADLCAABDwpqZ+cEAAPzBAABDwpqZ+cEAADLCAABDwpqZ+cEAAPzBAABJwpqZ+cEAAPzBAABDwpqZ+cEAADLCAABJwpqZ+cEAADLCAABJws3M/MEAAPzBAABJwpqZ+cEAAPzBAABJws3M/MEAADLCAABJwpqZ+cEAADLCAABJwpqZ+cEAAPzBAABJwpqZ+cEAADLCAABLws3M/MEAAPzBAABLwpqZ+cEAAPzBAABLws3M/MEAADLCAABLwpqZ+cEAADLCAABLwpqZ+cEAAPzBAABLwpqZ+cEAADLCAABLwpqZ+cEAAPzBAABRwpqZ+cEAAPzBAABLwpqZ+cEAADLCAABRwpqZ+cEAADLCAABRws3M/MEAAPzBAABRwpqZ+cEAAPzBAABRws3M/MEAADLCAABRwpqZ+cEAADLCAABRwpqZ+cEAAPzBAABRwpqZ+cEAADLCAABTws3M/MEAAPzBAABTwpqZ+cEAAPzBAABTws3M/MEAADLCAABTwpqZ+cEAADLCAABTwpqZ+cEAAPzBAABTwpqZ+cEAADLCAABTwpqZ+cEAAPzBAABZwpqZ+cEAAPzBAABTwpqZ+cEAADLCAABZwpqZ+cEAADLCAABZws3M/MEAAPzBAABZwpqZ+cEAAPzBAABZws3M/MEAADLCAABZwpqZ+cEAADLCAABZwpqZ+cEAAPzBAABZwpqZ+cEAADLCAABbws3M/MEAAPzBAABbwpqZ+cEAAPzBAABbws3M/MEAADLCAABbwpqZ+cEAADLCAABbwpqZ+cEAAPzBAABbwpqZ+cEAADLCAABbwpqZ+cEAAPzBAABhwpqZ+cEAAPzBAABbwpqZ+cEAADLCAABhwpqZ+cEAADLCAABhws3M/MEAAPzBAABhwpqZ+cEAAPzBAABhws3M/MEAADLCAABhwpqZ+cEAADLCAABhwpqZ+cEAAPzBAABhwpqZ+cEAADLCAABjws3M/MEAAPzBAABjwpqZ+cEAAPzBAABjws3M/MEAADLCAABjwpqZ+cEAADLCAABjwpqZ+cEAAPzBAABjwpqZ+cEAADLCAABjwpqZ+cEAAPzBAABpwpqZ+cEAAPzBAABjwpqZ+cEAADLCAABpwpqZ+cEAADLCAABpws3M/MEAAPzBAABpwpqZ+cEAAPzBAABpws3M/MEAADLCAABpwpqZ+cEAADLCAABpwpqZ+cEAAPzBAABpwpqZ+cEAADLCAABrws3M/MEAAPzBAABrwpqZ+cEAAPzBAABrws3M/MEAADLCAABrwpqZ+cEAADLCAABrwpqZ+cEAAPzBAABrwpqZ+cEAADLCAABrwpqZ+cEAAPzBAABxwpqZ+cEAAPzBAABrwpqZ+cEAADLCAABxwpqZ+cEAADLCAABxws3M/MEAAPzBAABxwpqZ+cEAAPzBAABxws3M/MEAADLCAABxwpqZ+cEAADLCAABxwpqZ+cEAAPzBAABxwpqZ+cEAADLCAABzws3M/MEAAPzBAABzwpqZ+cEAAPzBAABzws3M/MEAADLCAABzwpqZ+cEAADLCAABzwpqZ+cEAAPzBAABzwpqZ+cEAADLCAABzwpqZ+cEAAPzBAAB9wpqZ+cEAAPzBAABzwpqZ+cEAADLCAAB9wpqZ+cEAADLCAAB9ws3M/MEAAPzBAAB9wpqZ+cEAAPzBAAB9ws3M/MEAADLCAAB9wpqZ+cEAADLCAAB9wpqZ+cEAAPzBAAB9wpqZ+cEAADLCAICBws3M/MEAAPzBAICBwpqZ+cEAAPzBAICBws3M/MEAADLCAICBwpqZ+cEAADLCAICBwpqZ+cEAAPzBAICBwpqZ+cEAADLCAICBwpqZ+cEAAPzBAICGwpqZ+cEAAPzBAICBwpqZ+cEAADLCAICGwpqZ+cEAADLCAICGws3M/MEAAPzBAICGwpqZ+cEAAPzBAICGws3M/MEAADLCAICGwpqZ+cEAADLCAICGwpqZ+cEAAPzBAICGwpqZ+cEAADLCAICHws3M/MEAAPzBAICHwpqZ+cEAAPzBAICHws3M/MEAADLCAICHwpqZ+cEAADLCAICHwpqZ+cEAAPzBAICHwpqZ+cEAADLCAICHwpqZ+cEAAPzBAICKwpqZ+cEAAPzBAICHwpqZ+cEAADLCAICKwpqZ+cEAADLCAICKws3M/MEAAPzBAICKwpqZ+cEAAPzBAICKws3M/MEAADLCAICKwpqZ+cEAADLCAICKwpqZ+cEAAPzBAICKwpqZ+cEAADLCAICLws3M/MEAAPzBAICLwpqZ+cEAAPzBAICLws3M/MEAADLCAICLwpqZ+cEAADLCAICLwpqZ+cEAAPzBAICLwpqZ+cEAADLCAICLwpqZ+cEAAPzBAICOwpqZ+cEAAPzBAICLwpqZ+cEAADLCAICOwpqZ+cEAADLCAICOws3M/MEAAPzBAICOwpqZ+cEAAPzBAICOws3M/MEAADLCAICOwpqZ+cEAADLCAICOwpqZ+cEAAPzBAICOwpqZ+cEAADLCAICPws3M/MEAAPzBAICPwpqZ+cEAAPzBAICPws3M/MEAADLCAICPwpqZ+cEAADLCAICPwpqZ+cEAAPzBAICPwpqZ+cEAADLCAICPwpqZ+cEAAPzBAICSwpqZ+cEAAPzBAICPwpqZ+cEAADLCAICSwpqZ+cEAADLCAICSws3M/MEAAPzBAICSwpqZ+cEAAPzBAICSws3M/MEAADLCAICSwpqZ+cEAADLCAICSwpqZ+cEAAPzBAICSwpqZ+cEAADLCAICTws3M/MEAAPzBAICTwpqZ+cEAAPzBAICTws3M/MEAADLCAICTwpqZ+cEAADLCAICTwpqZ+cEAAPzBAICTwpqZ+cEAADLCAICTwpqZ+cEAAPzBAICWwpqZ+cEAAPzBAICTwpqZ+cEAADLCAICWwpqZ+cEAADLCAICWws3M/MEAAPzBAICWwpqZ+cEAAPzBAICWws3M/MEAADLCAICWwpqZ+cEAADLCAICWwpqZ+cEAAPzBAICWwpqZ+cEAADLCAICXws3M/MEAAPzBAICXwpqZ+cEAAPzBAICXws3M/MEAADLCAICXwpqZ+cEAADLCAICXwpqZ+cEAAPzBAICXwpqZ+cEAADLCAICXwpqZ+cEAAPzBAICawpqZ+cEAAPzBAICXwpqZ+cEAADLCAICawpqZ+cEAADLCAICaws3M/MEAAPzBAICawpqZ+cEAAPzBAICaws3M/MEAADLCAICawpqZ+cEAADLCAICawpqZ+cEAAPzBAICawpqZ+cEAADLCAICbws3M/MEAAPzBAICbwpqZ+cEAAPzBAICbws3M/MEAADLCAICbwpqZ+cEAADLCAICbwpqZ+cEAAPzBAICbwpqZ+cEAADLCAICbwpqZ+cEAAPzBAICewpqZ+cEAAPzBAICbwpqZ+cEAADLCAICewpqZ+cEAADLCAICews3M/MEAAPzBAICewpqZ+cEAAPzBAICews3M/MEAADLCAICewpqZ+cEAADLCAICewpqZ+cEAAPzBAICewpqZ+cEAADLCAICfws3M/MEAAPzBAICfwpqZ+cEAAPzBAICfws3M/MEAADLCAICfwpqZ+cEAADLCAICfwpqZ+cEAAPzBAICfwpqZ+cEAADLCAICfwpqZ+cEAAPzBAICiwpqZ+cEAAPzBAICfwpqZ+cEAADLCAICiwpqZ+cEAADLCAICiws3M/MEAAPzBAICiwpqZ+cEAAPzBAICiws3M/MEAADLCAICiwpqZ+cEAADLCAICiwpqZ+cEAAPzBAICiwpqZ+cEAADLCAICjws3M/MEAAPzBAICjwpqZ+cEAAPzBAICjws3M/MEAADLCAICjwpqZ+cEAADLCAICjwpqZ+cEAAPzBAICjwpqZ+cEAADLCAICjwpqZ+cEAAPzBAICmwpqZ+cEAAPzBAICjwpqZ+cEAADLCAICmwpqZ+cEAADLCAICmws3M/MEAAPzBAICmwpqZ+cEAAPzBAICmws3M/MEAADLCAICmwpqZ+cEAADLCAICmwpqZ+cEAAPzBAICmwpqZ+cEAADLCAICnws3M/MEAAPzBAICnwpqZ+cEAAPzBAICnws3M/MEAADLCAICnwpqZ+cEAADLCAICnwpqZ+cEAAPzBAICnwpqZ+cEAADLCAICnwpqZ+cEAAPzBAICqwpqZ+cEAAPzBAICnwpqZ+cEAADLCAICqwpqZ+cEAADLCAICqws3M/MEAAPzBAICqwpqZ+cEAAPzBAICqws3M/MEAADLCAICqwpqZ+cEAADLCAICqwpqZ+cEAAPzBAICqwpqZ+cEAADLCAICrws3M/MEAAPzBAICrwpqZ+cEAAPzBAICrws3M/MEAADLCAICrwpqZ+cEAADLCAICrwpqZ+cEAAPzBAICrwpqZ+cEAADLCAICrwpqZ+cEAAPzBAICuwpqZ+cEAAPzBAICrwpqZ+cEAADLCAICuwpqZ+cEAADLCAICuws3M/MEAAPzBAICuwpqZ+cEAAPzBAICuws3M/MEAADLCAICuwpqZ+cEAADLCAICuwpqZ+cEAAPzBAICuwpqZ+cEAADLCAICvws3M/MEAAPzBAICvwpqZ+cEAAPzBAICvws3M/MEAADLCAICvwpqZ+cEAADLCAICvwpqZ+cEAAPzBAICvwpqZ+cEAADLCAICvwpqZ+cEAAPzBAICywpqZ+cEAAPzBAICvwpqZ+cEAADLCAICywpqZ+cEAADLCAICyws3M/MEAAPzBAICywpqZ+cEAAPzBAICyws3M/MEAADLCAICywpqZ+cEAADLCAICywpqZ+cEAAPzBAICywpqZ+cEAADLCAICzws3M/MEAAPzBAICzwpqZ+cEAAPzBAICzws3M/MEAADLCAICzwpqZ+cEAADLCAICzwpqZ+cEAAPzBAICzwpqZ+cEAADLCAICzwpqZ+cEAAPzBAIC2wpqZ+cEAAPzBAICzwpqZ+cEAADLCAIC2wpqZ+cEAADLCAIC2ws3M/MEAAPzBAIC2wpqZ+cEAAPzBAIC2ws3M/MEAADLCAIC2wpqZ+cEAADLCAIC2wpqZ+cEAAPzBAIC2wpqZ+cEAADLCAIC3ws3M/MEAAPzBAIC3wpqZ+cEAAPzBAIC3ws3M/MEAADLCAIC3wpqZ+cEAADLCAIC3wpqZ+cEAAPzBAIC3wpqZ+cEAADLCAIC3wpqZ+cEAAPzBAIC6wpqZ+cEAAPzBAIC3wpqZ+cEAADLCAIC6wpqZ+cEAADLCAIC6ws3M/MEAAPzBAIC6wpqZ+cEAAPzBAIC6ws3M/MEAADLCAIC6wpqZ+cEAADLCAIC6wpqZ+cEAAPzBAIC6wpqZ+cEAADLC\"}],\"images\":[{\"uri\":\"\"}],\"materials\":[{\"doubleSided\":false,\"pbrMetallicRoughness\":{\"baseColorFactor\":[1,1,1,1],\"baseColorTexture\":{\"index\":0,\"texCoord\":0},\"metallicFactor\":0.4,\"roughnessFactor\":0.5}},{\"doubleSided\":true,\"pbrMetallicRoughness\":{\"baseColorFactor\":[0,0,0,1],\"metallicFactor\":1,\"roughnessFactor\":1}},{\"doubleSided\":true,\"pbrMetallicRoughness\":{\"baseColorFactor\":[0,0,0,1],\"metallicFactor\":1,\"roughnessFactor\":1}},{\"doubleSided\":true,\"pbrMetallicRoughness\":{\"baseColorFactor\":[1,0,0,1],\"metallicFactor\":1,\"roughnessFactor\":1}},{\"doubleSided\":true,\"pbrMetallicRoughness\":{\"baseColorFactor\":[0,0,1,1],\"metallicFactor\":1,\"roughnessFactor\":1}}],\"meshes\":[{\"primitives\":[{\"attributes\":{\"POSITION\":0,\"TEXCOORD_0\":1},\"material\":0,\"mode\":4}]},{\"primitives\":[{\"attributes\":{\"POSITION\":0,\"TEXCOORD_0\":2},\"material\":0,\"mode\":4}]},{\"primitives\":[{\"attributes\":{\"POSITION\":0,\"TEXCOORD_0\":3},\"material\":0,\"mode\":4}]},{\"primitives\":[{\"attributes\":{\"POSITION\":0,\"TEXCOORD_0\":4},\"material\":0,\"mode\":4}]},{\"primitives\":[{\"attributes\":{\"POSITION\":5},\"material\":1,\"mode\":6}]},{\"primitives\":[{\"attributes\":{\"POSITION\":0,\"TEXCOORD_0\":6},\"material\":0,\"mode\":4}]},{\"primitives\":[{\"attributes\":{\"POSITION\":0,\"TEXCOORD_0\":7},\"material\":0,\"mode\":4}]},{\"primitives\":[{\"attributes\":{\"POSITION\":8},\"material\":2,\"mode\":1}]},{\"primitives\":[{\"attributes\":{\"POSITION\":9},\"material\":3,\"mode\":1}]},{\"primitives\":[{\"attributes\":{\"POSITION\":10},\"material\":4,\"mode\":1}]}],\"nodes\":[{\"mesh\":0,\"translation\":[-0,-34,-32]},{\"mesh\":0,\"translation\":[-0,-34,-36]},{\"mesh\":0,\"translation\":[-0,-38,-34]},{\"mesh\":0,\"translation\":[-0,-38,-38]},{\"mesh\":0,\"translation\":[-0,-38,-42]},{\"mesh\":0,\"translation\":[-0,-42,-32]},{\"mesh\":0,\"translation\":[-0,-42,-36]},{\"mesh\":0,\"translation\":[-0,-42,-40]},{\"mesh\":0,\"translation\":[-0,-46,-34]},{\"mesh\":0,\"translation\":[-0,-32,-32]},{\"mesh\":0,\"translation\":[-0,-34,-34]},{\"mesh\":0,\"translation\":[-0,-36,-34]},{\"mesh\":0,\"translation\":[-0,-36,-38]},{\"mesh\":0,\"translation\":[-0,-38,-32]},{\"mesh\":0,\"translation\":[-0,-38,-36]},{\"mesh\":0,\"translation\":[-0,-38,-40]},{\"mesh\":0,\"translation\":[-0,-40,-32]},{\"mesh\":0,\"translation\":[-0,-40,-36]},{\"mesh\":0,\"translation\":[-0,-40,-40]},{\"mesh\":0,\"translation\":[-0,-40,-44]},{\"mesh\":0,\"translation\":[-0,-42,-34]},{\"mesh\":0,\"translation\":[-0,-42,-38]},{\"mesh\":0,\"translation\":[-0,-42,-42]},{\"mesh\":0,\"translation\":[-0,-44,-34]},{\"mesh\":0,\"translation\":[-0,-44,-38]},{\"mesh\":0,\"translation\":[-0,-46,-32]},{\"mesh\":0,\"translation\":[-0,-46,-36]},{\"mesh\":0,\"translation\":[-0,-48,-32]},{\"mesh\":0,\"translation\":[-0,-36,-32]},{\"mesh\":0,\"translation\":[-0,-36,-36]},{\"mesh\":0,\"translation\":[-0,-40,-34]},{\"mesh\":0,\"translation\":[-0,-40,-38]},{\"mesh\":0,\"translation\":[-0,-40,-42]},{\"mesh\":0,\"translation\":[-0,-44,-32]},{\"mesh\":0,\"translation\":[-0,-44,-36]},{\"mesh\":0,\"translation\":[-0,-44,-40]},{\"mesh\":0,\"translation\":[-0,-48,-34]},{\"mesh\":1,\"translation\":[-1,-34,-32]},{\"mesh\":1,\"translation\":[-1,-34,-36]},{\"mesh\":1,\"translation\":[-1,-38,-34]},{\"mesh\":1,\"translation\":[-1,-38,-38]},{\"mesh\":1,\"translation\":[-1,-38,-42]},{\"mesh\":1,\"translation\":[-1,-42,-32]},{\"mesh\":1,\"translation\":[-1,-42,-36]},{\"mesh\":1,\"translation\":[-1,-42,-40]},{\"mesh\":1,\"translation\":[-1,-46,-34]},{\"mesh\":1,\"translation\":[-1,-32,-32]},{\"mesh\":1,\"translation\":[-1,-34,-34]},{\"mesh\":1,\"translation\":[-1,-36,-34]},{\"mesh\":1,\"translation\":[-1,-36,-38]},{\"mesh\":1,\"translation\":[-1,-38,-32]},{\"mesh\":1,\"translation\":[-1,-38,-36]},{\"mesh\":1,\"translation\":[-1,-38,-40]},{\"mesh\":1,\"translation\":[-1,-40,-32]},{\"mesh\":1,\"translation\":[-1,-40,-36]},{\"mesh\":1,\"translation\":[-1,-40,-40]},{\"mesh\":1,\"translation\":[-1,-40,-44]},{\"mesh\":1,\"translation\":[-1,-42,-34]},{\"mesh\":1,\"translation\":[-1,-42,-38]},{\"mesh\":1,\"translation\":[-1,-42,-42]},{\"mesh\":1,\"translation\":[-1,-44,-34]},{\"mesh\":1,\"translation\":[-1,-44,-38]},{\"mesh\":1,\"translation\":[-1,-46,-32]},{\"mesh\":1,\"translation\":[-1,-46,-36]},{\"mesh\":1,\"translation\":[-1,-48,-32]},{\"mesh\":1,\"translation\":[-1,-36,-32]},{\"mesh\":1,\"translation\":[-1,-36,-36]},{\"mesh\":1,\"translation\":[-1,-40,-34]},{\"mesh\":1,\"translation\":[-1,-40,-38]},{\"mesh\":1,\"translation\":[-1,-40,-42]},{\"mesh\":1,\"translation\":[-1,-44,-32]},{\"mesh\":1,\"translation\":[-1,-44,-36]},{\"mesh\":1,\"translation\":[-1,-44,-40]},{\"mesh\":1,\"translation\":[-1,-48,-34]},{\"mesh\":2,\"translation\":[-2,-34,-32]},{\"mesh\":2,\"translation\":[-2,-34,-36]},{\"mesh\":2,\"translation\":[-2,-36,-32]},{\"mesh\":2,\"translation\":[-2,-36,-36]},{\"mesh\":2,\"translation\":[-2,-38,-34]},{\"mesh\":2,\"translation\":[-2,-38,-38]},{\"mesh\":2,\"translation\":[-2,-38,-42]},{\"mesh\":2,\"translation\":[-2,-40,-34]},{\"mesh\":2,\"translation\":[-2,-40,-38]},{\"mesh\":2,\"translation\":[-2,-40,-42]},{\"mesh\":2,\"translation\":[-2,-42,-32]},{\"mesh\":2,\"translation\":[-2,-42,-36]},{\"mesh\":2,\"translation\":[-2,-42,-40]},{\"mesh\":2,\"translation\":[-2,-44,-32]},{\"mesh\":2,\"translation\":[-2,-44,-36]},{\"mesh\":2,\"translation\":[-2,-44,-40]},{\"mesh\":2,\"translation\":[-2,-46,-34]},{\"mesh\":2,\"translation\":[-2,-48,-34]},{\"mesh\":3,\"translation\":[-3,-34,-32]},{\"mesh\":3,\"translation\":[-3,-34,-36]},{\"mesh\":3,\"translation\":[-3,-36,-32]},{\"mesh\":3,\"translation\":[-3,-36,-36]},{\"mesh\":3,\"translation\":[-3,-38,-34]},{\"mesh\":3,\"translation\":[-3,-38,-38]},{\"mesh\":3,\"translation\":[-3,-38,-42]},{\"mesh\":3,\"translation\":[-3,-40,-34]},{\"mesh\":3,\"translation\":[-3,-40,-38]},{\"mesh\":3,\"translation\":[-3,-40,-42]},{\"mesh\":3,\"translation\":[-3,-42,-32]},{\"mesh\":3,\"translation\":[-3,-42,-36]},{\"mesh\":3,\"translation\":[-3,-42,-40]},{\"mesh\":3,\"translation\":[-3,-44,-32]},{\"mesh\":3,\"translation\":[-3,-44,-36]},{\"mesh\":3,\"translation\":[-3,-44,-40]},{\"mesh\":3,\"translation\":[-3,-46,-34]},{\"mesh\":3,\"translation\":[-3,-48,-34]},{\"mesh\":3,\"translation\":[-3,-32,-32]},{\"mesh\":3,\"translation\":[-3,-34,-34]},{\"mesh\":3,\"translation\":[-3,-36,-34]},{\"mesh\":3,\"translation\":[-3,-36,-38]},{\"mesh\":3,\"translation\":[-3,-38,-32]},{\"mesh\":3,\"translation\":[-3,-38,-36]},{\"mesh\":3,\"translation\":[-3,-38,-40]},{\"mesh\":3,\"translation\":[-3,-40,-32]},{\"mesh\":3,\"translation\":[-3,-40,-36]},{\"mesh\":3,\"translation\":[-3,-40,-40]},{\"mesh\":3,\"translation\":[-3,-40,-44]},{\"mesh\":3,\"translation\":[-3,-42,-34]},{\"mesh\":3,\"translation\":[-3,-42,-38]},{\"mesh\":3,\"translation\":[-3,-42,-42]},{\"mesh\":3,\"translation\":[-3,-44,-34]},{\"mesh\":3,\"translation\":[-3,-44,-38]},{\"mesh\":3,\"translation\":[-3,-46,-32]},{\"mesh\":3,\"translation\":[-3,-46,-36]},{\"mesh\":3,\"translation\":[-3,-48,-32]},{\"mesh\":4,\"translation\":[-4,-34,-32]},{\"mesh\":4,\"translation\":[-4,-36,-32]},{\"mesh\":4,\"translation\":[-4,-34,-36]},{\"mesh\":4,\"translation\":[-4,-36,-36]},{\"mesh\":4,\"translation\":[-4,-38,-34]},{\"mesh\":4,\"translation\":[-4,-40,-34]},{\"mesh\":4,\"translation\":[-4,-38,-38]},{\"mesh\":4,\"translation\":[-4,-40,-38]},{\"mesh\":4,\"translation\":[-4,-38,-42]},{\"mesh\":4,\"translation\":[-4,-40,-42]},{\"mesh\":4,\"translation\":[-4,-42,-32]},{\"mesh\":4,\"translation\":[-4,-44,-32]},{\"mesh\":4,\"translation\":[-4,-42,-36]},{\"mesh\":4,\"translation\":[-4,-44,-36]},{\"mesh\":4,\"translation\":[-4,-42,-40]},{\"mesh\":4,\"translation\":[-4,-44,-40]},{\"mesh\":4,\"translation\":[-4,-46,-34]},{\"mesh\":4,\"translation\":[-4,-48,-34]},{\"mesh\":5,\"translation\":[-5,-34,-32]},{\"mesh\":5,\"translation\":[-5,-36,-32]},{\"mesh\":5,\"translation\":[-5,-34,-36]},{\"mesh\":5,\"translation\":[-5,-36,-36]},{\"mesh\":5,\"translation\":[-5,-38,-34]},{\"mesh\":5,\"translation\":[-5,-40,-34]},{\"mesh\":5,\"translation\":[-5,-38,-38]},{\"mesh\":5,\"translation\":[-5,-40,-38]},{\"mesh\":5,\"translation\":[-5,-38,-42]},{\"mesh\":5,\"translation\":[-5,-40,-42]},{\"mesh\":5,\"translation\":[-5,-42,-32]},{\"mesh\":5,\"translation\":[-5,-44,-32]},{\"mesh\":5,\"translation\":[-5,-42,-36]},{\"mesh\":5,\"translation\":[-5,-44,-36]},{\"mesh\":5,\"translation\":[-5,-42,-40]},{\"mesh\":5,\"translation\":[-5,-44,-40]},{\"mesh\":5,\"translation\":[-5,-46,-34]},{\"mesh\":5,\"translation\":[-5,-48,-34]},{\"mesh\":3,\"translation\":[-5,-32,-32]},{\"mesh\":3,\"translation\":[-5,-34,-34]},{\"mesh\":3,\"translation\":[-5,-36,-34]},{\"mesh\":3,\"translation\":[-5,-36,-38]},{\"mesh\":3,\"translation\":[-5,-38,-32]},{\"mesh\":3,\"translation\":[-5,-38,-36]},{\"mesh\":3,\"translation\":[-5,-38,-40]},{\"mesh\":3,\"translation\":[-5,-40,-32]},{\"mesh\":3,\"translation\":[-5,-40,-36]},{\"mesh\":3,\"translation\":[-5,-40,-40]},{\"mesh\":3,\"translation\":[-5,-40,-44]},{\"mesh\":3,\"translation\":[-5,-42,-34]},{\"mesh\":3,\"translation\":[-5,-42,-38]},{\"mesh\":3,\"translation\":[-5,-42,-42]},{\"mesh\":3,\"translation\":[-5,-44,-34]},{\"mesh\":3,\"translation\":[-5,-44,-38]},{\"mesh\":3,\"translation\":[-5,-46,-32]},{\"mesh\":3,\"translation\":[-5,-46,-36]},{\"mesh\":3,\"translation\":[-5,-48,-32]},{\"mesh\":2,\"translation\":[-6,-34,-32]},{\"mesh\":2,\"translation\":[-6,-34,-36]},{\"mesh\":2,\"translation\":[-6,-38,-34]},{\"mesh\":2,\"translation\":[-6,-38,-38]},{\"mesh\":2,\"translation\":[-6,-38,-42]},{\"mesh\":2,\"translation\":[-6,-42,-32]},{\"mesh\":2,\"translation\":[-6,-42,-36]},{\"mesh\":2,\"translation\":[-6,-42,-40]},{\"mesh\":2,\"translation\":[-6,-46,-34]},{\"mesh\":3,\"translation\":[-7,-34,-32]},{\"mesh\":3,\"translation\":[-7,-34,-36]},{\"mesh\":3,\"translation\":[-7,-38,-34]},{\"mesh\":3,\"translation\":[-7,-38,-38]},{\"mesh\":3,\"translation\":[-7,-38,-42]},{\"mesh\":3,\"translation\":[-7,-42,-32]},{\"mesh\":3,\"translation\":[-7,-42,-36]},{\"mesh\":3,\"translation\":[-7,-42,-40]},{\"mesh\":3,\"translation\":[-7,-46,-34]},{\"mesh\":3,\"translation\":[-7,-32,-32]},{\"mesh\":3,\"translation\":[-7,-34,-34]},{\"mesh\":3,\"translation\":[-7,-36,-32]},{\"mesh\":3,\"translation\":[-7,-36,-34]},{\"mesh\":3,\"translation\":[-7,-36,-36]},{\"mesh\":3,\"translation\":[-7,-36,-38]},{\"mesh\":3,\"translation\":[-7,-38,-32]},{\"mesh\":3,\"translation\":[-7,-38,-36]},{\"mesh\":3,\"translation\":[-7,-38,-40]},{\"mesh\":3,\"translation\":[-7,-40,-32]},{\"mesh\":3,\"translation\":[-7,-40,-34]},{\"mesh\":3,\"translation\":[-7,-40,-36]},{\"mesh\":3,\"translation\":[-7,-40,-38]},{\"mesh\":3,\"translation\":[-7,-40,-40]},{\"mesh\":3,\"translation\":[-7,-40,-42]},{\"mesh\":3,\"translation\":[-7,-40,-44]},{\"mesh\":3,\"translation\":[-7,-42,-34]},{\"mesh\":3,\"translation\":[-7,-42,-38]},{\"mesh\":3,\"translation\":[-7,-42,-42]},{\"mesh\":3,\"translation\":[-7,-44,-32]},{\"mesh\":3,\"translation\":[-7,-44,-34]},{\"mesh\":3,\"translation\":[-7,-44,-36]},{\"mesh\":3,\"translation\":[-7,-44,-38]},{\"mesh\":3,\"translation\":[-7,-44,-40]},{\"mesh\":3,\"translation\":[-7,-46,-32]},{\"mesh\":3,\"translation\":[-7,-46,-36]},{\"mesh\":3,\"translation\":[-7,-48,-32]},{\"mesh\":3,\"translation\":[-7,-48,-34]},{\"mesh\":4,\"translation\":[-8,-34,-32]},{\"mesh\":4,\"translation\":[-8,-34,-34]},{\"mesh\":4,\"translation\":[-8,-36,-32]},{\"mesh\":4,\"translation\":[-8,-36,-34]},{\"mesh\":4,\"translation\":[-8,-36,-36]},{\"mesh\":4,\"translation\":[-8,-36,-38]},{\"mesh\":4,\"translation\":[-8,-38,-34]},{\"mesh\":4,\"translation\":[-8,-38,-36]},{\"mesh\":4,\"translation\":[-8,-38,-38]},{\"mesh\":4,\"translation\":[-8,-38,-40]},{\"mesh\":4,\"translation\":[-8,-40,-34]},{\"mesh\":4,\"translation\":[-8,-40,-36]},{\"mesh\":4,\"translation\":[-8,-40,-38]},{\"mesh\":4,\"translation\":[-8,-40,-40]},{\"mesh\":4,\"translation\":[-8,-40,-42]},{\"mesh\":4,\"translation\":[-8,-40,-44]},{\"mesh\":4,\"translation\":[-8,-42,-32]},{\"mesh\":4,\"translation\":[-8,-42,-34]},{\"mesh\":4,\"translation\":[-8,-42,-36]},{\"mesh\":4,\"translation\":[-8,-42,-38]},{\"mesh\":4,\"translation\":[-8,-42,-40]},{\"mesh\":4,\"translation\":[-8,-42,-42]},{\"mesh\":4,\"translation\":[-8,-44,-32]},{\"mesh\":4,\"translation\":[-8,-44,-34]},{\"mesh\":4,\"translation\":[-8,-44,-36]},{\"mesh\":4,\"translation\":[-8,-44,-38]},{\"mesh\":4,\"translation\":[-8,-46,-34]},{\"mesh\":4,\"translation\":[-8,-46,-36]},{\"mesh\":5,\"translation\":[-9,-34,-32]},{\"mesh\":5,\"translation\":[-9,-34,-34]},{\"mesh\":5,\"translation\":[-9,-36,-32]},{\"mesh\":5,\"translation\":[-9,-36,-34]},{\"mesh\":5,\"translation\":[-9,-36,-36]},{\"mesh\":5,\"translation\":[-9,-36,-38]},{\"mesh\":5,\"translation\":[-9,-38,-34]},{\"mesh\":5,\"translation\":[-9,-38,-36]},{\"mesh\":5,\"translation\":[-9,-38,-38]},{\"mesh\":5,\"translation\":[-9,-38,-40]},{\"mesh\":5,\"translation\":[-9,-40,-34]},{\"mesh\":5,\"translation\":[-9,-40,-36]},{\"mesh\":5,\"translation\":[-9,-40,-38]},{\"mesh\":5,\"translation\":[-9,-40,-40]},{\"mesh\":5,\"translation\":[-9,-40,-42]},{\"mesh\":5,\"translation\":[-9,-40,-44]},{\"mesh\":5,\"translation\":[-9,-42,-32]},{\"mesh\":5,\"translation\":[-9,-42,-34]},{\"mesh\":5,\"translation\":[-9,-42,-36]},{\"mesh\":5,\"translation\":[-9,-42,-38]},{\"mesh\":5,\"translation\":[-9,-42,-40]},{\"mesh\":5,\"translation\":[-9,-42,-42]},{\"mesh\":5,\"translation\":[-9,-44,-32]},{\"mesh\":5,\"translation\":[-9,-44,-34]},{\"mesh\":5,\"translation\":[-9,-44,-36]},{\"mesh\":5,\"translation\":[-9,-44,-38]},{\"mesh\":5,\"translation\":[-9,-46,-34]},{\"mesh\":5,\"translation\":[-9,-46,-36]},{\"mesh\":3,\"translation\":[-9,-32,-32]},{\"mesh\":3,\"translation\":[-9,-34,-36]},{\"mesh\":3,\"translation\":[-9,-38,-32]},{\"mesh\":3,\"translation\":[-9,-38,-42]},{\"mesh\":3,\"translation\":[-9,-40,-32]},{\"mesh\":3,\"translation\":[-9,-44,-40]},{\"mesh\":3,\"translation\":[-9,-46,-32]},{\"mesh\":3,\"translation\":[-9,-48,-32]},{\"mesh\":3,\"translation\":[-9,-48,-34]},{\"mesh\":4,\"translation\":[-10,-32,-32]},{\"mesh\":4,\"translation\":[-10,-34,-32]},{\"mesh\":4,\"translation\":[-10,-36,-32]},{\"mesh\":4,\"translation\":[-10,-38,-32]},{\"mesh\":4,\"translation\":[-10,-36,-34]},{\"mesh\":4,\"translation\":[-10,-38,-34]},{\"mesh\":4,\"translation\":[-10,-36,-36]},{\"mesh\":4,\"translation\":[-10,-38,-36]},{\"mesh\":4,\"translation\":[-10,-36,-38]},{\"mesh\":4,\"translation\":[-10,-38,-38]},{\"mesh\":4,\"translation\":[-10,-40,-32]},{\"mesh\":4,\"translation\":[-10,-42,-32]},{\"mesh\":4,\"translation\":[-10,-40,-34]},{\"mesh\":4,\"translation\":[-10,-42,-34]},{\"mesh\":4,\"translation\":[-10,-40,-36]},{\"mesh\":4,\"translation\":[-10,-42,-36]},{\"mesh\":4,\"translation\":[-10,-40,-38]},{\"mesh\":4,\"translation\":[-10,-42,-38]},{\"mesh\":4,\"translation\":[-10,-40,-40]},{\"mesh\":4,\"translation\":[-10,-42,-40]},{\"mesh\":4,\"translation\":[-10,-40,-42]},{\"mesh\":4,\"translation\":[-10,-42,-42]},{\"mesh\":4,\"translation\":[-10,-44,-32]},{\"mesh\":4,\"translation\":[-10,-46,-32]},{\"mesh\":4,\"translation\":[-10,-44,-34]},{\"mesh\":4,\"translation\":[-10,-46,-34]},{\"mesh\":4,\"translation\":[-10,-44,-36]},{\"mesh\":4,\"translation\":[-10,-46,-36]},{\"mesh\":5,\"translation\":[-11,-32,-32]},{\"mesh\":5,\"translation\":[-11,-34,-32]},{\"mesh\":5,\"translation\":[-11,-36,-32]},{\"mesh\":5,\"translation\":[-11,-38,-32]},{\"mesh\":5,\"translation\":[-11,-36,-34]},{\"mesh\":5,\"translation\":[-11,-38,-34]},{\"mesh\":5,\"translation\":[-11,-36,-36]},{\"mesh\":5,\"translation\":[-11,-38,-36]},{\"mesh\":5,\"translation\":[-11,-36,-38]},{\"mesh\":5,\"translation\":[-11,-38,-38]},{\"mesh\":5,\"translation\":[-11,-40,-32]},{\"mesh\":5,\"translation\":[-11,-42,-32]},{\"mesh\":5,\"translation\":[-11,-40,-34]},{\"mesh\":5,\"translation\":[-11,-42,-34]},{\"mesh\":5,\"translation\":[-11,-40,-36]},{\"mesh\":5,\"translation\":[-11,-42,-36]},{\"mesh\":5,\"translation\":[-11,-40,-38]},{\"mesh\":5,\"translation\":[-11,-42,-38]},{\"mesh\":5,\"translation\":[-11,-40,-40]},{\"mesh\":5,\"translation\":[-11,-42,-40]},{\"mesh\":5,\"translation\":[-11,-40,-42]},{\"mesh\":5,\"translation\":[-11,-42,-42]},{\"mesh\":5,\"translation\":[-11,-44,-32]},{\"mesh\":5,\"translation\":[-11,-46,-32]},{\"mesh\":5,\"translation\":[-11,-44,-34]},{\"mesh\":5,\"translation\":[-11,-46,-34]},{\"mesh\":5,\"translation\":[-11,-44,-36]},{\"mesh\":5,\"translation\":[-11,-46,-36]},{\"mesh\":3,\"translation\":[-11,-34,-34]},{\"mesh\":3,\"translation\":[-11,-34,-36]},{\"mesh\":3,\"translation\":[-11,-38,-40]},{\"mesh\":3,\"translation\":[-11,-38,-42]},{\"mesh\":3,\"translation\":[-11,-40,-44]},{\"mesh\":3,\"translation\":[-11,-44,-38]},{\"mesh\":3,\"translation\":[-11,-44,-40]},{\"mesh\":3,\"translation\":[-11,-48,-32]},{\"mesh\":3,\"translation\":[-11,-48,-34]},{\"mesh\":4,\"translation\":[-12,-34,-34]},{\"mesh\":4,\"translation\":[-12,-34,-36]},{\"mesh\":4,\"translation\":[-12,-36,-34]},{\"mesh\":4,\"translation\":[-12,-36,-36]},{\"mesh\":4,\"translation\":[-12,-38,-32]},{\"mesh\":4,\"translation\":[-12,-38,-34]},{\"mesh\":4,\"translation\":[-12,-38,-36]},{\"mesh\":4,\"translation\":[-12,-38,-38]},{\"mesh\":4,\"translation\":[-12,-38,-40]},{\"mesh\":4,\"translation\":[-12,-38,-42]},{\"mesh\":4,\"translation\":[-12,-40,-32]},{\"mesh\":4,\"translation\":[-12,-40,-34]},{\"mesh\":4,\"translation\":[-12,-40,-36]},{\"mesh\":4,\"translation\":[-12,-40,-38]},{\"mesh\":4,\"translation\":[-12,-40,-40]},{\"mesh\":4,\"translation\":[-12,-40,-42]},{\"mesh\":4,\"translation\":[-12,-42,-34]},{\"mesh\":4,\"translation\":[-12,-42,-36]},{\"mesh\":4,\"translation\":[-12,-42,-38]},{\"mesh\":4,\"translation\":[-12,-42,-40]},{\"mesh\":4,\"translation\":[-12,-44,-34]},{\"mesh\":4,\"translation\":[-12,-44,-36]},{\"mesh\":4,\"translation\":[-12,-44,-38]},{\"mesh\":4,\"translation\":[-12,-44,-40]},{\"mesh\":4,\"translation\":[-12,-46,-32]},{\"mesh\":4,\"translation\":[-12,-46,-34]},{\"mesh\":4,\"translation\":[-12,-48,-32]},{\"mesh\":4,\"translation\":[-12,-48,-34]},{\"mesh\":5,\"translation\":[-13,-34,-34]},{\"mesh\":5,\"translation\":[-13,-34,-36]},{\"mesh\":5,\"translation\":[-13,-36,-34]},{\"mesh\":5,\"translation\":[-13,-36,-36]},{\"mesh\":5,\"translation\":[-13,-38,-32]},{\"mesh\":5,\"translation\":[-13,-38,-34]},{\"mesh\":5,\"translation\":[-13,-38,-36]},{\"mesh\":5,\"translation\":[-13,-38,-38]},{\"mesh\":5,\"translation\":[-13,-38,-40]},{\"mesh\":5,\"translation\":[-13,-38,-42]},{\"mesh\":5,\"translation\":[-13,-40,-32]},{\"mesh\":5,\"translation\":[-13,-40,-34]},{\"mesh\":5,\"translation\":[-13,-40,-36]},{\"mesh\":5,\"translation\":[-13,-40,-38]},{\"mesh\":5,\"translation\":[-13,-40,-40]},{\"mesh\":5,\"translation\":[-13,-40,-42]},{\"mesh\":5,\"translation\":[-13,-42,-34]},{\"mesh\":5,\"translation\":[-13,-42,-36]},{\"mesh\":5,\"translation\":[-13,-42,-38]},{\"mesh\":5,\"translation\":[-13,-42,-40]},{\"mesh\":5,\"translation\":[-13,-44,-34]},{\"mesh\":5,\"translation\":[-13,-44,-36]},{\"mesh\":5,\"translation\":[-13,-44,-38]},{\"mesh\":5,\"translation\":[-13,-44,-40]},{\"mesh\":5,\"translation\":[-13,-46,-32]},{\"mesh\":5,\"translation\":[-13,-46,-34]},{\"mesh\":5,\"translation\":[-13,-48,-32]},{\"mesh\":5,\"translation\":[-13,-48,-34]},{\"mesh\":3,\"translation\":[-13,-32,-32]},{\"mesh\":3,\"translation\":[-13,-34,-32]},{\"mesh\":3,\"translation\":[-13,-36,-32]},{\"mesh\":3,\"translation\":[-13,-36,-38]},{\"mesh\":3,\"translation\":[-13,-40,-44]},{\"mesh\":3,\"translation\":[-13,-42,-32]},{\"mesh\":3,\"translation\":[-13,-42,-42]},{\"mesh\":3,\"translation\":[-13,-44,-32]},{\"mesh\":3,\"translation\":[-13,-46,-36]},{\"mesh\":2,\"translation\":[-14,-32,-32]},{\"mesh\":2,\"translation\":[-14,-34,-32]},{\"mesh\":2,\"translation\":[-14,-34,-34]},{\"mesh\":2,\"translation\":[-14,-34,-36]},{\"mesh\":2,\"translation\":[-14,-36,-32]},{\"mesh\":2,\"translation\":[-14,-36,-34]},{\"mesh\":2,\"translation\":[-14,-36,-36]},{\"mesh\":2,\"translation\":[-14,-36,-38]},{\"mesh\":2,\"translation\":[-14,-38,-32]},{\"mesh\":2,\"translation\":[-14,-38,-34]},{\"mesh\":2,\"translation\":[-14,-38,-36]},{\"mesh\":2,\"translation\":[-14,-38,-38]},{\"mesh\":2,\"translation\":[-14,-38,-40]},{\"mesh\":2,\"translation\":[-14,-38,-42]},{\"mesh\":2,\"translation\":[-14,-40,-32]},{\"mesh\":2,\"translation\":[-14,-40,-34]},{\"mesh\":2,\"translation\":[-14,-40,-36]},{\"mesh\":2,\"translation\":[-14,-40,-38]},{\"mesh\":2,\"translation\":[-14,-40,-40]},{\"mesh\":2,\"translation\":[-14,-40,-42]},{\"mesh\":2,\"translation\":[-14,-40,-44]},{\"mesh\":2,\"translation\":[-14,-42,-32]},{\"mesh\":2,\"translation\":[-14,-42,-34]},{\"mesh\":2,\"translation\":[-14,-42,-36]},{\"mesh\":2,\"translation\":[-14,-42,-38]},{\"mesh\":2,\"translation\":[-14,-42,-40]},{\"mesh\":2,\"translation\":[-14,-42,-42]},{\"mesh\":2,\"translation\":[-14,-44,-32]},{\"mesh\":2,\"translation\":[-14,-44,-34]},{\"mesh\":2,\"translation\":[-14,-44,-36]},{\"mesh\":2,\"translation\":[-14,-44,-38]},{\"mesh\":2,\"translation\":[-14,-44,-40]},{\"mesh\":2,\"translation\":[-14,-46,-32]},{\"mesh\":2,\"translation\":[-14,-46,-34]},{\"mesh\":2,\"translation\":[-14,-46,-36]},{\"mesh\":2,\"translation\":[-14,-48,-32]},{\"mesh\":2,\"translation\":[-14,-48,-34]},{\"mesh\":3,\"translation\":[-15,-32,-32]},{\"mesh\":3,\"translation\":[-15,-34,-32]},{\"mesh\":3,\"translation\":[-15,-34,-34]},{\"mesh\":3,\"translation\":[-15,-34,-36]},{\"mesh\":3,\"translation\":[-15,-36,-32]},{\"mesh\":3,\"translation\":[-15,-36,-34]},{\"mesh\":3,\"translation\":[-15,-36,-36]},{\"mesh\":3,\"translation\":[-15,-36,-38]},{\"mesh\":3,\"translation\":[-15,-38,-32]},{\"mesh\":3,\"translation\":[-15,-38,-34]},{\"mesh\":3,\"translation\":[-15,-38,-36]},{\"mesh\":3,\"translation\":[-15,-38,-38]},{\"mesh\":3,\"translation\":[-15,-38,-40]},{\"mesh\":3,\"translation\":[-15,-38,-42]},{\"mesh\":3,\"translation\":[-15,-40,-32]},{\"mesh\":3,\"translation\":[-15,-40,-34]},{\"mesh\":3,\"translation\":[-15,-40,-36]},{\"mesh\":3,\"translation\":[-15,-40,-38]},{\"mesh\":3,\"translation\":[-15,-40,-40]},{\"mesh\":3,\"translation\":[-15,-40,-42]},{\"mesh\":3,\"translation\":[-15,-40,-44]},{\"mesh\":3,\"translation\":[-15,-42,-32]},{\"mesh\":3,\"translation\":[-15,-42,-34]},{\"mesh\":3,\"translation\":[-15,-42,-36]},{\"mesh\":3,\"translation\":[-15,-42,-38]},{\"mesh\":3,\"translation\":[-15,-42,-40]},{\"mesh\":3,\"translation\":[-15,-42,-42]},{\"mesh\":3,\"translation\":[-15,-44,-32]},{\"mesh\":3,\"translation\":[-15,-44,-34]},{\"mesh\":3,\"translation\":[-15,-44,-36]},{\"mesh\":3,\"translation\":[-15,-44,-38]},{\"mesh\":3,\"translation\":[-15,-44,-40]},{\"mesh\":3,\"translation\":[-15,-46,-32]},{\"mesh\":3,\"translation\":[-15,-46,-34]},{\"mesh\":3,\"translation\":[-15,-46,-36]},{\"mesh\":3,\"translation\":[-15,-48,-32]},{\"mesh\":3,\"translation\":[-15,-48,-34]},{\"mesh\":4,\"translation\":[-16,-34,-32]},{\"mesh\":4,\"translation\":[-16,-34,-34]},{\"mesh\":4,\"translation\":[-16,-36,-32]},{\"mesh\":4,\"translation\":[-16,-36,-34]},{\"mesh\":4,\"translation\":[-16,-36,-36]},{\"mesh\":4,\"translation\":[-16,-36,-38]},{\"mesh\":4,\"translation\":[-16,-38,-34]},{\"mesh\":4,\"translation\":[-16,-38,-36]},{\"mesh\":4,\"translation\":[-16,-38,-38]},{\"mesh\":4,\"translation\":[-16,-38,-40]},{\"mesh\":4,\"translation\":[-16,-40,-34]},{\"mesh\":4,\"translation\":[-16,-40,-36]},{\"mesh\":4,\"translation\":[-16,-40,-38]},{\"mesh\":4,\"translation\":[-16,-40,-40]},{\"mesh\":4,\"translation\":[-16,-40,-42]},{\"mesh\":4,\"translation\":[-16,-40,-44]},{\"mesh\":4,\"translation\":[-16,-42,-32]},{\"mesh\":4,\"translation\":[-16,-42,-34]},{\"mesh\":4,\"translation\":[-16,-42,-36]},{\"mesh\":4,\"translation\":[-16,-42,-38]},{\"mesh\":4,\"translation\":[-16,-42,-40]},{\"mesh\":4,\"translation\":[-16,-42,-42]},{\"mesh\":4,\"translation\":[-16,-44,-32]},{\"mesh\":4,\"translation\":[-16,-44,-34]},{\"mesh\":4,\"translation\":[-16,-44,-36]},{\"mesh\":4,\"translation\":[-16,-44,-38]},{\"mesh\":4,\"translation\":[-16,-46,-34]},{\"mesh\":4,\"translation\":[-16,-46,-36]},{\"mesh\":5,\"translation\":[-17,-34,-32]},{\"mesh\":5,\"translation\":[-17,-34,-34]},{\"mesh\":5,\"translation\":[-17,-36,-32]},{\"mesh\":5,\"translation\":[-17,-36,-34]},{\"mesh\":5,\"translation\":[-17,-36,-36]},{\"mesh\":5,\"translation\":[-17,-36,-38]},{\"mesh\":5,\"translation\":[-17,-38,-34]},{\"mesh\":5,\"translation\":[-17,-38,-36]},{\"mesh\":5,\"translation\":[-17,-38,-38]},{\"mesh\":5,\"translation\":[-17,-38,-40]},{\"mesh\":5,\"translation\":[-17,-40,-34]},{\"mesh\":5,\"translation\":[-17,-40,-36]},{\"mesh\":5,\"translation\":[-17,-40,-38]},{\"mesh\":5,\"translation\":[-17,-40,-40]},{\"mesh\":5,\"translation\":[-17,-40,-42]},{\"mesh\":5,\"translation\":[-17,-40,-44]},{\"mesh\":5,\"translation\":[-17,-42,-32]},{\"mesh\":5,\"translation\":[-17,-42,-34]},{\"mesh\":5,\"translation\":[-17,-42,-36]},{\"mesh\":5,\"translation\":[-17,-42,-38]},{\"mesh\":5,\"translation\":[-17,-42,-40]},{\"mesh\":5,\"translation\":[-17,-42,-42]},{\"mesh\":5,\"translation\":[-17,-44,-32]},{\"mesh\":5,\"translation\":[-17,-44,-34]},{\"mesh\":5,\"translation\":[-17,-44,-36]},{\"mesh\":5,\"translation\":[-17,-44,-38]},{\"mesh\":5,\"translation\":[-17,-46,-34]},{\"mesh\":5,\"translation\":[-17,-46,-36]},{\"mesh\":3,\"translation\":[-17,-32,-32]},{\"mesh\":3,\"translation\":[-17,-34,-36]},{\"mesh\":3,\"translation\":[-17,-38,-32]},{\"mesh\":3,\"translation\":[-17,-38,-42]},{\"mesh\":3,\"translation\":[-17,-40,-32]},{\"mesh\":3,\"translation\":[-17,-44,-40]},{\"mesh\":3,\"translation\":[-17,-46,-32]},{\"mesh\":3,\"translation\":[-17,-48,-32]},{\"mesh\":3,\"translation\":[-17,-48,-34]},{\"mesh\":4,\"translation\":[-18,-32,-32]},{\"mesh\":4,\"translation\":[-18,-34,-32]},{\"mesh\":4,\"translation\":[-18,-36,-32]},{\"mesh\":4,\"translation\":[-18,-38,-32]},{\"mesh\":4,\"translation\":[-18,-36,-34]},{\"mesh\":4,\"translation\":[-18,-38,-34]},{\"mesh\":4,\"translation\":[-18,-36,-36]},{\"mesh\":4,\"translation\":[-18,-38,-36]},{\"mesh\":4,\"translation\":[-18,-36,-38]},{\"mesh\":4,\"translation\":[-18,-38,-38]},{\"mesh\":4,\"translation\":[-18,-40,-32]},{\"mesh\":4,\"translation\":[-18,-42,-32]},{\"mesh\":4,\"translation\":[-18,-40,-34]},{\"mesh\":4,\"translation\":[-18,-42,-34]},{\"mesh\":4,\"translation\":[-18,-40,-36]},{\"mesh\":4,\"translation\":[-18,-42,-36]},{\"mesh\":4,\"translation\":[-18,-40,-38]},{\"mesh\":4,\"translation\":[-18,-42,-38]},{\"mesh\":4,\"translation\":[-18,-40,-40]},{\"mesh\":4,\"translation\":[-18,-42,-40]},{\"mesh\":4,\"translation\":[-18,-40,-42]},{\"mesh\":4,\"translation\":[-18,-42,-42]},{\"mesh\":4,\"translation\":[-18,-44,-32]},{\"mesh\":4,\"translation\":[-18,-46,-32]},{\"mesh\":4,\"translation\":[-18,-44,-34]},{\"mesh\":4,\"translation\":[-18,-46,-34]},{\"mesh\":4,\"translation\":[-18,-44,-36]},{\"mesh\":4,\"translation\":[-18,-46,-36]},{\"mesh\":5,\"translation\":[-19,-32,-32]},{\"mesh\":5,\"translation\":[-19,-34,-32]},{\"mesh\":5,\"translation\":[-19,-36,-32]},{\"mesh\":5,\"translation\":[-19,-38,-32]},{\"mesh\":5,\"translation\":[-19,-36,-34]},{\"mesh\":5,\"translation\":[-19,-38,-34]},{\"mesh\":5,\"translation\":[-19,-36,-36]},{\"mesh\":5,\"translation\":[-19,-38,-36]},{\"mesh\":5,\"translation\":[-19,-36,-38]},{\"mesh\":5,\"translation\":[-19,-38,-38]},{\"mesh\":5,\"translation\":[-19,-40,-32]},{\"mesh\":5,\"translation\":[-19,-42,-32]},{\"mesh\":5,\"translation\":[-19,-40,-34]},{\"mesh\":5,\"translation\":[-19,-42,-34]},{\"mesh\":5,\"translation\":[-19,-40,-36]},{\"mesh\":5,\"translation\":[-19,-42,-36]},{\"mesh\":5,\"translation\":[-19,-40,-38]},{\"mesh\":5,\"translation\":[-19,-42,-38]},{\"mesh\":5,\"translation\":[-19,-40,-40]},{\"mesh\":5,\"translation\":[-19,-42,-40]},{\"mesh\":5,\"translation\":[-19,-40,-42]},{\"mesh\":5,\"translation\":[-19,-42,-42]},{\"mesh\":5,\"translation\":[-19,-44,-32]},{\"mesh\":5,\"translation\":[-19,-46,-32]},{\"mesh\":5,\"translation\":[-19,-44,-34]},{\"mesh\":5,\"translation\":[-19,-46,-34]},{\"mesh\":5,\"translation\":[-19,-44,-36]},{\"mesh\":5,\"translation\":[-19,-46,-36]},{\"mesh\":3,\"translation\":[-19,-34,-34]},{\"mesh\":3,\"translation\":[-19,-34,-36]},{\"mesh\":3,\"translation\":[-19,-38,-40]},{\"mesh\":3,\"translation\":[-19,-38,-42]},{\"mesh\":3,\"translation\":[-19,-40,-44]},{\"mesh\":3,\"translation\":[-19,-44,-38]},{\"mesh\":3,\"translation\":[-19,-44,-40]},{\"mesh\":3,\"translation\":[-19,-48,-32]},{\"mesh\":3,\"translation\":[-19,-48,-34]},{\"mesh\":4,\"translation\":[-20,-34,-34]},{\"mesh\":4,\"translation\":[-20,-34,-36]},{\"mesh\":4,\"translation\":[-20,-36,-34]},{\"mesh\":4,\"translation\":[-20,-36,-36]},{\"mesh\":4,\"translation\":[-20,-38,-32]},{\"mesh\":4,\"translation\":[-20,-38,-34]},{\"mesh\":4,\"translation\":[-20,-38,-36]},{\"mesh\":4,\"translation\":[-20,-38,-38]},{\"mesh\":4,\"translation\":[-20,-38,-40]},{\"mesh\":4,\"translation\":[-20,-38,-42]},{\"mesh\":4,\"translation\":[-20,-40,-32]},{\"mesh\":4,\"translation\":[-20,-40,-34]},{\"mesh\":4,\"translation\":[-20,-40,-36]},{\"mesh\":4,\"translation\":[-20,-40,-38]},{\"mesh\":4,\"translation\":[-20,-40,-40]},{\"mesh\":4,\"translation\":[-20,-40,-42]},{\"mesh\":4,\"translation\":[-20,-42,-34]},{\"mesh\":4,\"translation\":[-20,-42,-36]},{\"mesh\":4,\"translation\":[-20,-42,-38]},{\"mesh\":4,\"translation\":[-20,-42,-40]},{\"mesh\":4,\"translation\":[-20,-44,-34]},{\"mesh\":4,\"translation\":[-20,-44,-36]},{\"mesh\":4,\"translation\":[-20,-44,-38]},{\"mesh\":4,\"translation\":[-20,-44,-40]},{\"mesh\":4,\"translation\":[-20,-46,-32]},{\"mesh\":4,\"translation\":[-20,-46,-34]},{\"mesh\":4,\"translation\":[-20,-48,-32]},{\"mesh\":4,\"translation\":[-20,-48,-34]},{\"mesh\":5,\"translation\":[-21,-34,-34]},{\"mesh\":5,\"translation\":[-21,-34,-36]},{\"mesh\":5,\"translation\":[-21,-36,-34]},{\"mesh\":5,\"translation\":[-21,-36,-36]},{\"mesh\":5,\"translation\":[-21,-38,-32]},{\"mesh\":5,\"translation\":[-21,-38,-34]},{\"mesh\":5,\"translation\":[-21,-38,-36]},{\"mesh\":5,\"translation\":[-21,-38,-38]},{\"mesh\":5,\"translation\":[-21,-38,-40]},{\"mesh\":5,\"translation\":[-21,-38,-42]},{\"mesh\":5,\"translation\":[-21,-40,-32]},{\"mesh\":5,\"translation\":[-21,-40,-34]},{\"mesh\":5,\"translation\":[-21,-40,-36]},{\"mesh\":5,\"translation\":[-21,-40,-38]},{\"mesh\":5,\"translation\":[-21,-40,-40]},{\"mesh\":5,\"translation\":[-21,-40,-42]},{\"mesh\":5,\"translation\":[-21,-42,-34]},{\"mesh\":5,\"translation\":[-21,-42,-36]},{\"mesh\":5,\"translation\":[-21,-42,-38]},{\"mesh\":5,\"translation\":[-21,-42,-40]},{\"mesh\":5,\"translation\":[-21,-44,-34]},{\"mesh\":5,\"translation\":[-21,-44,-36]},{\"mesh\":5,\"translation\":[-21,-44,-38]},{\"mesh\":5,\"translation\":[-21,-44,-40]},{\"mesh\":5,\"translation\":[-21,-46,-32]},{\"mesh\":5,\"translation\":[-21,-46,-34]},{\"mesh\":5,\"translation\":[-21,-48,-32]},{\"mesh\":5,\"translation\":[-21,-48,-34]},{\"mesh\":3,\"translation\":[-21,-32,-32]},{\"mesh\":3,\"translation\":[-21,-34,-32]},{\"mesh\":3,\"translation\":[-21,-36,-32]},{\"mesh\":3,\"translation\":[-21,-36,-38]},{\"mesh\":3,\"translation\":[-21,-40,-44]},{\"mesh\":3,\"translation\":[-21,-42,-32]},{\"mesh\":3,\"translation\":[-21,-42,-42]},{\"mesh\":3,\"translation\":[-21,-44,-32]},{\"mesh\":3,\"translation\":[-21,-46,-36]},{\"mesh\":2,\"translation\":[-22,-32,-32]},{\"mesh\":2,\"translation\":[-22,-34,-34]},{\"mesh\":2,\"translation\":[-22,-36,-32]},{\"mesh\":2,\"translation\":[-22,-36,-34]},{\"mesh\":2,\"translation\":[-22,-36,-36]},{\"mesh\":2,\"translation\":[-22,-36,-38]},{\"mesh\":2,\"translation\":[-22,-38,-32]},{\"mesh\":2,\"translation\":[-22,-38,-36]},{\"mesh\":2,\"translation\":[-22,-38,-40]},{\"mesh\":2,\"translation\":[-22,-40,-32]},{\"mesh\":2,\"translation\":[-22,-40,-34]},{\"mesh\":2,\"translation\":[-22,-40,-36]},{\"mesh\":2,\"translation\":[-22,-40,-38]},{\"mesh\":2,\"translation\":[-22,-40,-40]},{\"mesh\":2,\"translation\":[-22,-40,-42]},{\"mesh\":2,\"translation\":[-22,-40,-44]},{\"mesh\":2,\"translation\":[-22,-42,-34]},{\"mesh\":2,\"translation\":[-22,-42,-38]},{\"mesh\":2,\"translation\":[-22,-42,-42]},{\"mesh\":2,\"translation\":[-22,-44,-32]},{\"mesh\":2,\"translation\":[-22,-44,-34]},{\"mesh\":2,\"translation\":[-22,-44,-36]},{\"mesh\":2,\"translation\":[-22,-44,-38]},{\"mesh\":2,\"translation\":[-22,-44,-40]},{\"mesh\":2,\"translation\":[-22,-46,-32]},{\"mesh\":2,\"translation\":[-22,-46,-36]},{\"mesh\":2,\"translation\":[-22,-48,-32]},{\"mesh\":2,\"translation\":[-22,-48,-34]},{\"mesh\":3,\"translation\":[-23,-32,-32]},{\"mesh\":3,\"translation\":[-23,-34,-34]},{\"mesh\":3,\"translation\":[-23,-36,-32]},{\"mesh\":3,\"translation\":[-23,-36,-34]},{\"mesh\":3,\"translation\":[-23,-36,-36]},{\"mesh\":3,\"translation\":[-23,-36,-38]},{\"mesh\":3,\"translation\":[-23,-38,-32]},{\"mesh\":3,\"translation\":[-23,-38,-36]},{\"mesh\":3,\"translation\":[-23,-38,-40]},{\"mesh\":3,\"translation\":[-23,-40,-32]},{\"mesh\":3,\"translation\":[-23,-40,-34]},{\"mesh\":3,\"translation\":[-23,-40,-36]},{\"mesh\":3,\"translation\":[-23,-40,-38]},{\"mesh\":3,\"translation\":[-23,-40,-40]},{\"mesh\":3,\"translation\":[-23,-40,-42]},{\"mesh\":3,\"translation\":[-23,-40,-44]},{\"mesh\":3,\"translation\":[-23,-42,-34]},{\"mesh\":3,\"translation\":[-23,-42,-38]},{\"mesh\":3,\"translation\":[-23,-42,-42]},{\"mesh\":3,\"translation\":[-23,-44,-32]},{\"mesh\":3,\"translation\":[-23,-44,-34]},{\"mesh\":3,\"translation\":[-23,-44,-36]},{\"mesh\":3,\"translation\":[-23,-44,-38]},{\"mesh\":3,\"translation\":[-23,-44,-40]},{\"mesh\":3,\"translation\":[-23,-46,-32]},{\"mesh\":3,\"translation\":[-23,-46,-36]},{\"mesh\":3,\"translation\":[-23,-48,-32]},{\"mesh\":3,\"translation\":[-23,-48,-34]},{\"mesh\":3,\"translation\":[-23,-34,-32]},{\"mesh\":3,\"translation\":[-23,-34,-36]},{\"mesh\":3,\"translation\":[-23,-38,-34]},{\"mesh\":3,\"translation\":[-23,-38,-38]},{\"mesh\":3,\"translation\":[-23,-38,-42]},{\"mesh\":3,\"translation\":[-23,-42,-32]},{\"mesh\":3,\"translation\":[-23,-42,-36]},{\"mesh\":3,\"translation\":[-23,-42,-40]},{\"mesh\":3,\"translation\":[-23,-46,-34]},{\"mesh\":4,\"translation\":[-24,-34,-32]},{\"mesh\":4,\"translation\":[-24,-36,-32]},{\"mesh\":4,\"translation\":[-24,-34,-36]},{\"mesh\":4,\"translation\":[-24,-36,-36]},{\"mesh\":4,\"translation\":[-24,-38,-34]},{\"mesh\":4,\"translation\":[-24,-40,-34]},{\"mesh\":4,\"translation\":[-24,-38,-38]},{\"mesh\":4,\"translation\":[-24,-40,-38]},{\"mesh\":4,\"translation\":[-24,-38,-42]},{\"mesh\":4,\"translation\":[-24,-40,-42]},{\"mesh\":4,\"translation\":[-24,-42,-32]},{\"mesh\":4,\"translation\":[-24,-44,-32]},{\"mesh\":4,\"translation\":[-24,-42,-36]},{\"mesh\":4,\"translation\":[-24,-44,-36]},{\"mesh\":4,\"translation\":[-24,-42,-40]},{\"mesh\":4,\"translation\":[-24,-44,-40]},{\"mesh\":4,\"translation\":[-24,-46,-34]},{\"mesh\":4,\"translation\":[-24,-48,-34]},{\"mesh\":5,\"translation\":[-25,-34,-32]},{\"mesh\":5,\"translation\":[-25,-36,-32]},{\"mesh\":5,\"translation\":[-25,-34,-36]},{\"mesh\":5,\"translation\":[-25,-36,-36]},{\"mesh\":5,\"translation\":[-25,-38,-34]},{\"mesh\":5,\"translation\":[-25,-40,-34]},{\"mesh\":5,\"translation\":[-25,-38,-38]},{\"mesh\":5,\"translation\":[-25,-40,-38]},{\"mesh\":5,\"translation\":[-25,-38,-42]},{\"mesh\":5,\"translation\":[-25,-40,-42]},{\"mesh\":5,\"translation\":[-25,-42,-32]},{\"mesh\":5,\"translation\":[-25,-44,-32]},{\"mesh\":5,\"translation\":[-25,-42,-36]},{\"mesh\":5,\"translation\":[-25,-44,-36]},{\"mesh\":5,\"translation\":[-25,-42,-40]},{\"mesh\":5,\"translation\":[-25,-44,-40]},{\"mesh\":5,\"translation\":[-25,-46,-34]},{\"mesh\":5,\"translation\":[-25,-48,-34]},{\"mesh\":3,\"translation\":[-25,-32,-32]},{\"mesh\":3,\"translation\":[-25,-34,-34]},{\"mesh\":3,\"translation\":[-25,-36,-34]},{\"mesh\":3,\"translation\":[-25,-36,-38]},{\"mesh\":3,\"translation\":[-25,-38,-32]},{\"mesh\":3,\"translation\":[-25,-38,-36]},{\"mesh\":3,\"translation\":[-25,-38,-40]},{\"mesh\":3,\"translation\":[-25,-40,-32]},{\"mesh\":3,\"translation\":[-25,-40,-36]},{\"mesh\":3,\"translation\":[-25,-40,-40]},{\"mesh\":3,\"translation\":[-25,-40,-44]},{\"mesh\":3,\"translation\":[-25,-42,-34]},{\"mesh\":3,\"translation\":[-25,-42,-38]},{\"mesh\":3,\"translation\":[-25,-42,-42]},{\"mesh\":3,\"translation\":[-25,-44,-34]},{\"mesh\":3,\"translation\":[-25,-44,-38]},{\"mesh\":3,\"translation\":[-25,-46,-32]},{\"mesh\":3,\"translation\":[-25,-46,-36]},{\"mesh\":3,\"translation\":[-25,-48,-32]},{\"mesh\":2,\"translation\":[-26,-34,-32]},{\"mesh\":2,\"translation\":[-26,-34,-36]},{\"mesh\":2,\"translation\":[-26,-36,-32]},{\"mesh\":2,\"translation\":[-26,-36,-36]},{\"mesh\":2,\"translation\":[-26,-38,-34]},{\"mesh\":2,\"translation\":[-26,-38,-38]},{\"mesh\":2,\"translation\":[-26,-38,-42]},{\"mesh\":2,\"translation\":[-26,-40,-34]},{\"mesh\":2,\"translation\":[-26,-40,-38]},{\"mesh\":2,\"translation\":[-26,-40,-42]},{\"mesh\":2,\"translation\":[-26,-42,-32]},{\"mesh\":2,\"translation\":[-26,-42,-36]},{\"mesh\":2,\"translation\":[-26,-42,-40]},{\"mesh\":2,\"translation\":[-26,-44,-32]},{\"mesh\":2,\"translation\":[-26,-44,-36]},{\"mesh\":2,\"translation\":[-26,-44,-40]},{\"mesh\":2,\"translation\":[-26,-46,-34]},{\"mesh\":2,\"translation\":[-26,-48,-34]},{\"mesh\":3,\"translation\":[-27,-34,-32]},{\"mesh\":3,\"translation\":[-27,-34,-36]},{\"mesh\":3,\"translation\":[-27,-36,-32]},{\"mesh\":3,\"translation\":[-27,-36,-36]},{\"mesh\":3,\"translation\":[-27,-38,-34]},{\"mesh\":3,\"translation\":[-27,-38,-38]},{\"mesh\":3,\"translation\":[-27,-38,-42]},{\"mesh\":3,\"translation\":[-27,-40,-34]},{\"mesh\":3,\"translation\":[-27,-40,-38]},{\"mesh\":3,\"translation\":[-27,-40,-42]},{\"mesh\":3,\"translation\":[-27,-42,-32]},{\"mesh\":3,\"translation\":[-27,-42,-36]},{\"mesh\":3,\"translation\":[-27,-42,-40]},{\"mesh\":3,\"translation\":[-27,-44,-32]},{\"mesh\":3,\"translation\":[-27,-44,-36]},{\"mesh\":3,\"translation\":[-27,-44,-40]},{\"mesh\":3,\"translation\":[-27,-46,-34]},{\"mesh\":3,\"translation\":[-27,-48,-34]},{\"mesh\":3,\"translation\":[-27,-32,-32]},{\"mesh\":3,\"translation\":[-27,-34,-34]},{\"mesh\":3,\"translation\":[-27,-36,-34]},{\"mesh\":3,\"translation\":[-27,-36,-38]},{\"mesh\":3,\"translation\":[-27,-38,-32]},{\"mesh\":3,\"translation\":[-27,-38,-36]},{\"mesh\":3,\"translation\":[-27,-38,-40]},{\"mesh\":3,\"translation\":[-27,-40,-32]},{\"mesh\":3,\"translation\":[-27,-40,-36]},{\"mesh\":3,\"translation\":[-27,-40,-40]},{\"mesh\":3,\"translation\":[-27,-40,-44]},{\"mesh\":3,\"translation\":[-27,-42,-34]},{\"mesh\":3,\"translation\":[-27,-42,-38]},{\"mesh\":3,\"translation\":[-27,-42,-42]},{\"mesh\":3,\"translation\":[-27,-44,-34]},{\"mesh\":3,\"translation\":[-27,-44,-38]},{\"mesh\":3,\"translation\":[-27,-46,-32]},{\"mesh\":3,\"translation\":[-27,-46,-36]},{\"mesh\":3,\"translation\":[-27,-48,-32]},{\"mesh\":6,\"translation\":[-28,-34,-32]},{\"mesh\":6,\"translation\":[-28,-34,-36]},{\"mesh\":6,\"translation\":[-28,-38,-34]},{\"mesh\":6,\"translation\":[-28,-38,-38]},{\"mesh\":6,\"translation\":[-28,-38,-42]},{\"mesh\":6,\"translation\":[-28,-42,-32]},{\"mesh\":6,\"translation\":[-28,-42,-36]},{\"mesh\":6,\"translation\":[-28,-42,-40]},{\"mesh\":6,\"translation\":[-28,-46,-34]},{\"mesh\":6,\"translation\":[-28,-36,-32]},{\"mesh\":6,\"translation\":[-28,-36,-36]},{\"mesh\":6,\"translation\":[-28,-40,-34]},{\"mesh\":6,\"translation\":[-28,-40,-38]},{\"mesh\":6,\"translation\":[-28,-40,-42]},{\"mesh\":6,\"translation\":[-28,-44,-32]},{\"mesh\":6,\"translation\":[-28,-44,-36]},{\"mesh\":6,\"translation\":[-28,-44,-40]},{\"mesh\":6,\"translation\":[-28,-48,-34]},{\"mesh\":3,\"translation\":[-29,-34,-32]},{\"mesh\":3,\"translation\":[-29,-34,-36]},{\"mesh\":3,\"translation\":[-29,-38,-34]},{\"mesh\":3,\"translation\":[-29,-38,-38]},{\"mesh\":3,\"translation\":[-29,-38,-42]},{\"mesh\":3,\"translation\":[-29,-42,-32]},{\"mesh\":3,\"translation\":[-29,-42,-36]},{\"mesh\":3,\"translation\":[-29,-42,-40]},{\"mesh\":3,\"translation\":[-29,-46,-34]},{\"mesh\":3,\"translation\":[-29,-36,-32]},{\"mesh\":3,\"translation\":[-29,-36,-36]},{\"mesh\":3,\"translation\":[-29,-40,-34]},{\"mesh\":3,\"translation\":[-29,-40,-38]},{\"mesh\":3,\"translation\":[-29,-40,-42]},{\"mesh\":3,\"translation\":[-29,-44,-32]},{\"mesh\":3,\"translation\":[-29,-44,-36]},{\"mesh\":3,\"translation\":[-29,-44,-40]},{\"mesh\":3,\"translation\":[-29,-48,-34]},{\"mesh\":3,\"translation\":[-29,-32,-32]},{\"mesh\":3,\"translation\":[-29,-34,-34]},{\"mesh\":3,\"translation\":[-29,-36,-34]},{\"mesh\":3,\"translation\":[-29,-36,-38]},{\"mesh\":3,\"translation\":[-29,-38,-32]},{\"mesh\":3,\"translation\":[-29,-38,-36]},{\"mesh\":3,\"translation\":[-29,-38,-40]},{\"mesh\":3,\"translation\":[-29,-40,-32]},{\"mesh\":3,\"translation\":[-29,-40,-36]},{\"mesh\":3,\"translation\":[-29,-40,-40]},{\"mesh\":3,\"translation\":[-29,-40,-44]},{\"mesh\":3,\"translation\":[-29,-42,-34]},{\"mesh\":3,\"translation\":[-29,-42,-38]},{\"mesh\":3,\"translation\":[-29,-42,-42]},{\"mesh\":3,\"translation\":[-29,-44,-34]},{\"mesh\":3,\"translation\":[-29,-44,-38]},{\"mesh\":3,\"translation\":[-29,-46,-32]},{\"mesh\":3,\"translation\":[-29,-46,-36]},{\"mesh\":3,\"translation\":[-29,-48,-32]},{\"mesh\":3,\"translation\":[-30,-32,-32]},{\"mesh\":3,\"translation\":[-30,-34,-34]},{\"mesh\":3,\"translation\":[-30,-36,-34]},{\"mesh\":3,\"translation\":[-30,-36,-38]},{\"mesh\":3,\"translation\":[-30,-38,-32]},{\"mesh\":3,\"translation\":[-30,-38,-36]},{\"mesh\":3,\"translation\":[-30,-38,-40]},{\"mesh\":3,\"translation\":[-30,-40,-32]},{\"mesh\":3,\"translation\":[-30,-40,-36]},{\"mesh\":3,\"translation\":[-30,-40,-40]},{\"mesh\":3,\"translation\":[-30,-40,-44]},{\"mesh\":3,\"translation\":[-30,-42,-34]},{\"mesh\":3,\"translation\":[-30,-42,-38]},{\"mesh\":3,\"translation\":[-30,-42,-42]},{\"mesh\":3,\"translation\":[-30,-44,-34]},{\"mesh\":3,\"translation\":[-30,-44,-38]},{\"mesh\":3,\"translation\":[-30,-46,-32]},{\"mesh\":3,\"translation\":[-30,-46,-36]},{\"mesh\":3,\"translation\":[-30,-48,-32]},{\"mesh\":0,\"translation\":[-32,-34,-32]},{\"mesh\":0,\"translation\":[-32,-34,-36]},{\"mesh\":0,\"translation\":[-32,-38,-34]},{\"mesh\":0,\"translation\":[-32,-38,-38]},{\"mesh\":0,\"translation\":[-32,-38,-42]},{\"mesh\":0,\"translation\":[-32,-42,-32]},{\"mesh\":0,\"translation\":[-32,-42,-36]},{\"mesh\":0,\"translation\":[-32,-42,-40]},{\"mesh\":0,\"translation\":[-32,-46,-34]},{\"mesh\":0,\"translation\":[-32,-36,-32]},{\"mesh\":0,\"translation\":[-32,-36,-36]},{\"mesh\":0,\"translation\":[-32,-40,-34]},{\"mesh\":0,\"translation\":[-32,-40,-38]},{\"mesh\":0,\"translation\":[-32,-40,-42]},{\"mesh\":0,\"translation\":[-32,-44,-32]},{\"mesh\":0,\"translation\":[-32,-44,-36]},{\"mesh\":0,\"translation\":[-32,-44,-40]},{\"mesh\":0,\"translation\":[-32,-48,-34]},{\"mesh\":1,\"translation\":[-33,-34,-32]},{\"mesh\":1,\"translation\":[-33,-34,-36]},{\"mesh\":1,\"translation\":[-33,-38,-34]},{\"mesh\":1,\"translation\":[-33,-38,-38]},{\"mesh\":1,\"translation\":[-33,-38,-42]},{\"mesh\":1,\"translation\":[-33,-42,-32]},{\"mesh\":1,\"translation\":[-33,-42,-36]},{\"mesh\":1,\"translation\":[-33,-42,-40]},{\"mesh\":1,\"translation\":[-33,-46,-34]},{\"mesh\":1,\"translation\":[-33,-36,-32]},{\"mesh\":1,\"translation\":[-33,-36,-36]},{\"mesh\":1,\"translation\":[-33,-40,-34]},{\"mesh\":1,\"translation\":[-33,-40,-38]},{\"mesh\":1,\"translation\":[-33,-40,-42]},{\"mesh\":1,\"translation\":[-33,-44,-32]},{\"mesh\":1,\"translation\":[-33,-44,-36]},{\"mesh\":1,\"translation\":[-33,-44,-40]},{\"mesh\":1,\"translation\":[-33,-48,-34]},{\"mesh\":3,\"translation\":[-33,-32,-32]},{\"mesh\":3,\"translation\":[-33,-34,-34]},{\"mesh\":3,\"translation\":[-33,-36,-34]},{\"mesh\":3,\"translation\":[-33,-36,-38]},{\"mesh\":3,\"translation\":[-33,-38,-32]},{\"mesh\":3,\"translation\":[-33,-38,-36]},{\"mesh\":3,\"translation\":[-33,-38,-40]},{\"mesh\":3,\"translation\":[-33,-40,-32]},{\"mesh\":3,\"translation\":[-33,-40,-36]},{\"mesh\":3,\"translation\":[-33,-40,-40]},{\"mesh\":3,\"translation\":[-33,-40,-44]},{\"mesh\":3,\"translation\":[-33,-42,-34]},{\"mesh\":3,\"translation\":[-33,-42,-38]},{\"mesh\":3,\"translation\":[-33,-42,-42]},{\"mesh\":3,\"translation\":[-33,-44,-34]},{\"mesh\":3,\"translation\":[-33,-44,-38]},{\"mesh\":3,\"translation\":[-33,-46,-32]},{\"mesh\":3,\"translation\":[-33,-46,-36]},{\"mesh\":3,\"translation\":[-33,-48,-32]},{\"mesh\":3,\"translation\":[-34,-32,-32]},{\"mesh\":3,\"translation\":[-34,-34,-34]},{\"mesh\":3,\"translation\":[-34,-36,-34]},{\"mesh\":3,\"translation\":[-34,-36,-38]},{\"mesh\":3,\"translation\":[-34,-38,-32]},{\"mesh\":3,\"translation\":[-34,-38,-36]},{\"mesh\":3,\"translation\":[-34,-38,-40]},{\"mesh\":3,\"translation\":[-34,-40,-32]},{\"mesh\":3,\"translation\":[-34,-40,-36]},{\"mesh\":3,\"translation\":[-34,-40,-40]},{\"mesh\":3,\"translation\":[-34,-40,-44]},{\"mesh\":3,\"translation\":[-34,-42,-34]},{\"mesh\":3,\"translation\":[-34,-42,-38]},{\"mesh\":3,\"translation\":[-34,-42,-42]},{\"mesh\":3,\"translation\":[-34,-44,-34]},{\"mesh\":3,\"translation\":[-34,-44,-38]},{\"mesh\":3,\"translation\":[-34,-46,-32]},{\"mesh\":3,\"translation\":[-34,-46,-36]},{\"mesh\":3,\"translation\":[-34,-48,-32]},{\"mesh\":2,\"translation\":[-35,-34,-32]},{\"mesh\":2,\"translation\":[-35,-34,-36]},{\"mesh\":2,\"translation\":[-35,-36,-32]},{\"mesh\":2,\"translation\":[-35,-36,-36]},{\"mesh\":2,\"translation\":[-35,-38,-34]},{\"mesh\":2,\"translation\":[-35,-38,-38]},{\"mesh\":2,\"translation\":[-35,-38,-42]},{\"mesh\":2,\"translation\":[-35,-40,-34]},{\"mesh\":2,\"translation\":[-35,-40,-38]},{\"mesh\":2,\"translation\":[-35,-40,-42]},{\"mesh\":2,\"translation\":[-35,-42,-32]},{\"mesh\":2,\"translation\":[-35,-42,-36]},{\"mesh\":2,\"translation\":[-35,-42,-40]},{\"mesh\":2,\"translation\":[-35,-44,-32]},{\"mesh\":2,\"translation\":[-35,-44,-36]},{\"mesh\":2,\"translation\":[-35,-44,-40]},{\"mesh\":2,\"translation\":[-35,-46,-34]},{\"mesh\":2,\"translation\":[-35,-48,-34]},{\"mesh\":3,\"translation\":[-36,-34,-32]},{\"mesh\":3,\"translation\":[-36,-34,-36]},{\"mesh\":3,\"translation\":[-36,-36,-32]},{\"mesh\":3,\"translation\":[-36,-36,-36]},{\"mesh\":3,\"translation\":[-36,-38,-34]},{\"mesh\":3,\"translation\":[-36,-38,-38]},{\"mesh\":3,\"translation\":[-36,-38,-42]},{\"mesh\":3,\"translation\":[-36,-40,-34]},{\"mesh\":3,\"translation\":[-36,-40,-38]},{\"mesh\":3,\"translation\":[-36,-40,-42]},{\"mesh\":3,\"translation\":[-36,-42,-32]},{\"mesh\":3,\"translation\":[-36,-42,-36]},{\"mesh\":3,\"translation\":[-36,-42,-40]},{\"mesh\":3,\"translation\":[-36,-44,-32]},{\"mesh\":3,\"translation\":[-36,-44,-36]},{\"mesh\":3,\"translation\":[-36,-44,-40]},{\"mesh\":3,\"translation\":[-36,-46,-34]},{\"mesh\":3,\"translation\":[-36,-48,-34]},{\"mesh\":3,\"translation\":[-36,-32,-32]},{\"mesh\":3,\"translation\":[-36,-34,-34]},{\"mesh\":3,\"translation\":[-36,-36,-34]},{\"mesh\":3,\"translation\":[-36,-36,-38]},{\"mesh\":3,\"translation\":[-36,-38,-32]},{\"mesh\":3,\"translation\":[-36,-38,-36]},{\"mesh\":3,\"translation\":[-36,-38,-40]},{\"mesh\":3,\"translation\":[-36,-40,-32]},{\"mesh\":3,\"translation\":[-36,-40,-36]},{\"mesh\":3,\"translation\":[-36,-40,-40]},{\"mesh\":3,\"translation\":[-36,-40,-44]},{\"mesh\":3,\"translation\":[-36,-42,-34]},{\"mesh\":3,\"translation\":[-36,-42,-38]},{\"mesh\":3,\"translation\":[-36,-42,-42]},{\"mesh\":3,\"translation\":[-36,-44,-34]},{\"mesh\":3,\"translation\":[-36,-44,-38]},{\"mesh\":3,\"translation\":[-36,-46,-32]},{\"mesh\":3,\"translation\":[-36,-46,-36]},{\"mesh\":3,\"translation\":[-36,-48,-32]},{\"mesh\":4,\"translation\":[-37,-34,-32]},{\"mesh\":4,\"translation\":[-37,-36,-32]},{\"mesh\":4,\"translation\":[-37,-34,-36]},{\"mesh\":4,\"translation\":[-37,-36,-36]},{\"mesh\":4,\"translation\":[-37,-38,-34]},{\"mesh\":4,\"translation\":[-37,-40,-34]},{\"mesh\":4,\"translation\":[-37,-38,-38]},{\"mesh\":4,\"translation\":[-37,-40,-38]},{\"mesh\":4,\"translation\":[-37,-38,-42]},{\"mesh\":4,\"translation\":[-37,-40,-42]},{\"mesh\":4,\"translation\":[-37,-42,-32]},{\"mesh\":4,\"translation\":[-37,-44,-32]},{\"mesh\":4,\"translation\":[-37,-42,-36]},{\"mesh\":4,\"translation\":[-37,-44,-36]},{\"mesh\":4,\"translation\":[-37,-42,-40]},{\"mesh\":4,\"translation\":[-37,-44,-40]},{\"mesh\":4,\"translation\":[-37,-46,-34]},{\"mesh\":4,\"translation\":[-37,-48,-34]},{\"mesh\":5,\"translation\":[-38,-34,-32]},{\"mesh\":5,\"translation\":[-38,-36,-32]},{\"mesh\":5,\"translation\":[-38,-34,-36]},{\"mesh\":5,\"translation\":[-38,-36,-36]},{\"mesh\":5,\"translation\":[-38,-38,-34]},{\"mesh\":5,\"translation\":[-38,-40,-34]},{\"mesh\":5,\"translation\":[-38,-38,-38]},{\"mesh\":5,\"translation\":[-38,-40,-38]},{\"mesh\":5,\"translation\":[-38,-38,-42]},{\"mesh\":5,\"translation\":[-38,-40,-42]},{\"mesh\":5,\"translation\":[-38,-42,-32]},{\"mesh\":5,\"translation\":[-38,-44,-32]},{\"mesh\":5,\"translation\":[-38,-42,-36]},{\"mesh\":5,\"translation\":[-38,-44,-36]},{\"mesh\":5,\"translation\":[-38,-42,-40]},{\"mesh\":5,\"translation\":[-38,-44,-40]},{\"mesh\":5,\"translation\":[-38,-46,-34]},{\"mesh\":5,\"translation\":[-38,-48,-34]},{\"mesh\":3,\"translation\":[-38,-32,-32]},{\"mesh\":3,\"translation\":[-38,-34,-34]},{\"mesh\":3,\"translation\":[-38,-36,-34]},{\"mesh\":3,\"translation\":[-38,-36,-38]},{\"mesh\":3,\"translation\":[-38,-38,-32]},{\"mesh\":3,\"translation\":[-38,-38,-36]},{\"mesh\":3,\"translation\":[-38,-38,-40]},{\"mesh\":3,\"translation\":[-38,-40,-32]},{\"mesh\":3,\"translation\":[-38,-40,-36]},{\"mesh\":3,\"translation\":[-38,-40,-40]},{\"mesh\":3,\"translation\":[-38,-40,-44]},{\"mesh\":3,\"translation\":[-38,-42,-34]},{\"mesh\":3,\"translation\":[-38,-42,-38]},{\"mesh\":3,\"translation\":[-38,-42,-42]},{\"mesh\":3,\"translation\":[-38,-44,-34]},{\"mesh\":3,\"translation\":[-38,-44,-38]},{\"mesh\":3,\"translation\":[-38,-46,-32]},{\"mesh\":3,\"translation\":[-38,-46,-36]},{\"mesh\":3,\"translation\":[-38,-48,-32]},{\"mesh\":2,\"translation\":[-39,-34,-32]},{\"mesh\":2,\"translation\":[-39,-34,-36]},{\"mesh\":2,\"translation\":[-39,-38,-34]},{\"mesh\":2,\"translation\":[-39,-38,-38]},{\"mesh\":2,\"translation\":[-39,-38,-42]},{\"mesh\":2,\"translation\":[-39,-42,-32]},{\"mesh\":2,\"translation\":[-39,-42,-36]},{\"mesh\":2,\"translation\":[-39,-42,-40]},{\"mesh\":2,\"translation\":[-39,-46,-34]},{\"mesh\":3,\"translation\":[-40,-34,-32]},{\"mesh\":3,\"translation\":[-40,-34,-36]},{\"mesh\":3,\"translation\":[-40,-38,-34]},{\"mesh\":3,\"translation\":[-40,-38,-38]},{\"mesh\":3,\"translation\":[-40,-38,-42]},{\"mesh\":3,\"translation\":[-40,-42,-32]},{\"mesh\":3,\"translation\":[-40,-42,-36]},{\"mesh\":3,\"translation\":[-40,-42,-40]},{\"mesh\":3,\"translation\":[-40,-46,-34]},{\"mesh\":3,\"translation\":[-40,-32,-32]},{\"mesh\":3,\"translation\":[-40,-34,-34]},{\"mesh\":3,\"translation\":[-40,-36,-32]},{\"mesh\":3,\"translation\":[-40,-36,-34]},{\"mesh\":3,\"translation\":[-40,-36,-36]},{\"mesh\":3,\"translation\":[-40,-36,-38]},{\"mesh\":3,\"translation\":[-40,-38,-32]},{\"mesh\":3,\"translation\":[-40,-38,-36]},{\"mesh\":3,\"translation\":[-40,-38,-40]},{\"mesh\":3,\"translation\":[-40,-40,-32]},{\"mesh\":3,\"translation\":[-40,-40,-34]},{\"mesh\":3,\"translation\":[-40,-40,-36]},{\"mesh\":3,\"translation\":[-40,-40,-38]},{\"mesh\":3,\"translation\":[-40,-40,-40]},{\"mesh\":3,\"translation\":[-40,-40,-42]},{\"mesh\":3,\"translation\":[-40,-40,-44]},{\"mesh\":3,\"translation\":[-40,-42,-34]},{\"mesh\":3,\"translation\":[-40,-42,-38]},{\"mesh\":3,\"translation\":[-40,-42,-42]},{\"mesh\":3,\"translation\":[-40,-44,-32]},{\"mesh\":3,\"translation\":[-40,-44,-34]},{\"mesh\":3,\"translation\":[-40,-44,-36]},{\"mesh\":3,\"translation\":[-40,-44,-38]},{\"mesh\":3,\"translation\":[-40,-44,-40]},{\"mesh\":3,\"translation\":[-40,-46,-32]},{\"mesh\":3,\"translation\":[-40,-46,-36]},{\"mesh\":3,\"translation\":[-40,-48,-32]},{\"mesh\":3,\"translation\":[-40,-48,-34]},{\"mesh\":4,\"translation\":[-41,-34,-32]},{\"mesh\":4,\"translation\":[-41,-34,-34]},{\"mesh\":4,\"translation\":[-41,-36,-32]},{\"mesh\":4,\"translation\":[-41,-36,-34]},{\"mesh\":4,\"translation\":[-41,-36,-36]},{\"mesh\":4,\"translation\":[-41,-36,-38]},{\"mesh\":4,\"translation\":[-41,-38,-34]},{\"mesh\":4,\"translation\":[-41,-38,-36]},{\"mesh\":4,\"translation\":[-41,-38,-38]},{\"mesh\":4,\"translation\":[-41,-38,-40]},{\"mesh\":4,\"translation\":[-41,-40,-34]},{\"mesh\":4,\"translation\":[-41,-40,-36]},{\"mesh\":4,\"translation\":[-41,-40,-38]},{\"mesh\":4,\"translation\":[-41,-40,-40]},{\"mesh\":4,\"translation\":[-41,-40,-42]},{\"mesh\":4,\"translation\":[-41,-40,-44]},{\"mesh\":4,\"translation\":[-41,-42,-32]},{\"mesh\":4,\"translation\":[-41,-42,-34]},{\"mesh\":4,\"translation\":[-41,-42,-36]},{\"mesh\":4,\"translation\":[-41,-42,-38]},{\"mesh\":4,\"translation\":[-41,-42,-40]},{\"mesh\":4,\"translation\":[-41,-42,-42]},{\"mesh\":4,\"translation\":[-41,-44,-32]},{\"mesh\":4,\"translation\":[-41,-44,-34]},{\"mesh\":4,\"translation\":[-41,-44,-36]},{\"mesh\":4,\"translation\":[-41,-44,-38]},{\"mesh\":4,\"translation\":[-41,-46,-34]},{\"mesh\":4,\"translation\":[-41,-46,-36]},{\"mesh\":5,\"translation\":[-42,-34,-32]},{\"mesh\":5,\"translation\":[-42,-34,-34]},{\"mesh\":5,\"translation\":[-42,-36,-32]},{\"mesh\":5,\"translation\":[-42,-36,-34]},{\"mesh\":5,\"translation\":[-42,-36,-36]},{\"mesh\":5,\"translation\":[-42,-36,-38]},{\"mesh\":5,\"translation\":[-42,-38,-34]},{\"mesh\":5,\"translation\":[-42,-38,-36]},{\"mesh\":5,\"translation\":[-42,-38,-38]},{\"mesh\":5,\"translation\":[-42,-38,-40]},{\"mesh\":5,\"translation\":[-42,-40,-34]},{\"mesh\":5,\"translation\":[-42,-40,-36]},{\"mesh\":5,\"translation\":[-42,-40,-38]},{\"mesh\":5,\"translation\":[-42,-40,-40]},{\"mesh\":5,\"translation\":[-42,-40,-42]},{\"mesh\":5,\"translation\":[-42,-40,-44]},{\"mesh\":5,\"translation\":[-42,-42,-32]},{\"mesh\":5,\"translation\":[-42,-42,-34]},{\"mesh\":5,\"translation\":[-42,-42,-36]},{\"mesh\":5,\"translation\":[-42,-42,-38]},{\"mesh\":5,\"translation\":[-42,-42,-40]},{\"mesh\":5,\"translation\":[-42,-42,-42]},{\"mesh\":5,\"translation\":[-42,-44,-32]},{\"mesh\":5,\"translation\":[-42,-44,-34]},{\"mesh\":5,\"translation\":[-42,-44,-36]},{\"mesh\":5,\"translation\":[-42,-44,-38]},{\"mesh\":5,\"translation\":[-42,-46,-34]},{\"mesh\":5,\"translation\":[-42,-46,-36]},{\"mesh\":3,\"translation\":[-42,-32,-32]},{\"mesh\":3,\"translation\":[-42,-34,-36]},{\"mesh\":3,\"translation\":[-42,-38,-32]},{\"mesh\":3,\"translation\":[-42,-38,-42]},{\"mesh\":3,\"translation\":[-42,-40,-32]},{\"mesh\":3,\"translation\":[-42,-44,-40]},{\"mesh\":3,\"translation\":[-42,-46,-32]},{\"mesh\":3,\"translation\":[-42,-48,-32]},{\"mesh\":3,\"translation\":[-42,-48,-34]},{\"mesh\":4,\"translation\":[-43,-32,-32]},{\"mesh\":4,\"translation\":[-43,-34,-32]},{\"mesh\":4,\"translation\":[-43,-36,-32]},{\"mesh\":4,\"translation\":[-43,-38,-32]},{\"mesh\":4,\"translation\":[-43,-36,-34]},{\"mesh\":4,\"translation\":[-43,-38,-34]},{\"mesh\":4,\"translation\":[-43,-36,-36]},{\"mesh\":4,\"translation\":[-43,-38,-36]},{\"mesh\":4,\"translation\":[-43,-36,-38]},{\"mesh\":4,\"translation\":[-43,-38,-38]},{\"mesh\":4,\"translation\":[-43,-40,-32]},{\"mesh\":4,\"translation\":[-43,-42,-32]},{\"mesh\":4,\"translation\":[-43,-40,-34]},{\"mesh\":4,\"translation\":[-43,-42,-34]},{\"mesh\":4,\"translation\":[-43,-40,-36]},{\"mesh\":4,\"translation\":[-43,-42,-36]},{\"mesh\":4,\"translation\":[-43,-40,-38]},{\"mesh\":4,\"translation\":[-43,-42,-38]},{\"mesh\":4,\"translation\":[-43,-40,-40]},{\"mesh\":4,\"translation\":[-43,-42,-40]},{\"mesh\":4,\"translation\":[-43,-40,-42]},{\"mesh\":4,\"translation\":[-43,-42,-42]},{\"mesh\":4,\"translation\":[-43,-44,-32]},{\"mesh\":4,\"translation\":[-43,-46,-32]},{\"mesh\":4,\"translation\":[-43,-44,-34]},{\"mesh\":4,\"translation\":[-43,-46,-34]},{\"mesh\":4,\"translation\":[-43,-44,-36]},{\"mesh\":4,\"translation\":[-43,-46,-36]},{\"mesh\":5,\"translation\":[-44,-32,-32]},{\"mesh\":5,\"translation\":[-44,-34,-32]},{\"mesh\":5,\"translation\":[-44,-36,-32]},{\"mesh\":5,\"translation\":[-44,-38,-32]},{\"mesh\":5,\"translation\":[-44,-36,-34]},{\"mesh\":5,\"translation\":[-44,-38,-34]},{\"mesh\":5,\"translation\":[-44,-36,-36]},{\"mesh\":5,\"translation\":[-44,-38,-36]},{\"mesh\":5,\"translation\":[-44,-36,-38]},{\"mesh\":5,\"translation\":[-44,-38,-38]},{\"mesh\":5,\"translation\":[-44,-40,-32]},{\"mesh\":5,\"translation\":[-44,-42,-32]},{\"mesh\":5,\"translation\":[-44,-40,-34]},{\"mesh\":5,\"translation\":[-44,-42,-34]},{\"mesh\":5,\"translation\":[-44,-40,-36]},{\"mesh\":5,\"translation\":[-44,-42,-36]},{\"mesh\":5,\"translation\":[-44,-40,-38]},{\"mesh\":5,\"translation\":[-44,-42,-38]},{\"mesh\":5,\"translation\":[-44,-40,-40]},{\"mesh\":5,\"translation\":[-44,-42,-40]},{\"mesh\":5,\"translation\":[-44,-40,-42]},{\"mesh\":5,\"translation\":[-44,-42,-42]},{\"mesh\":5,\"translation\":[-44,-44,-32]},{\"mesh\":5,\"translation\":[-44,-46,-32]},{\"mesh\":5,\"translation\":[-44,-44,-34]},{\"mesh\":5,\"translation\":[-44,-46,-34]},{\"mesh\":5,\"translation\":[-44,-44,-36]},{\"mesh\":5,\"translation\":[-44,-46,-36]},{\"mesh\":3,\"translation\":[-44,-34,-34]},{\"mesh\":3,\"translation\":[-44,-34,-36]},{\"mesh\":3,\"translation\":[-44,-38,-40]},{\"mesh\":3,\"translation\":[-44,-38,-42]},{\"mesh\":3,\"translation\":[-44,-40,-44]},{\"mesh\":3,\"translation\":[-44,-44,-38]},{\"mesh\":3,\"translation\":[-44,-44,-40]},{\"mesh\":3,\"translation\":[-44,-48,-32]},{\"mesh\":3,\"translation\":[-44,-48,-34]},{\"mesh\":4,\"translation\":[-45,-34,-34]},{\"mesh\":4,\"translation\":[-45,-34,-36]},{\"mesh\":4,\"translation\":[-45,-36,-34]},{\"mesh\":4,\"translation\":[-45,-36,-36]},{\"mesh\":4,\"translation\":[-45,-38,-32]},{\"mesh\":4,\"translation\":[-45,-38,-34]},{\"mesh\":4,\"translation\":[-45,-38,-36]},{\"mesh\":4,\"translation\":[-45,-38,-38]},{\"mesh\":4,\"translation\":[-45,-38,-40]},{\"mesh\":4,\"translation\":[-45,-38,-42]},{\"mesh\":4,\"translation\":[-45,-40,-32]},{\"mesh\":4,\"translation\":[-45,-40,-34]},{\"mesh\":4,\"translation\":[-45,-40,-36]},{\"mesh\":4,\"translation\":[-45,-40,-38]},{\"mesh\":4,\"translation\":[-45,-40,-40]},{\"mesh\":4,\"translation\":[-45,-40,-42]},{\"mesh\":4,\"translation\":[-45,-42,-34]},{\"mesh\":4,\"translation\":[-45,-42,-36]},{\"mesh\":4,\"translation\":[-45,-42,-38]},{\"mesh\":4,\"translation\":[-45,-42,-40]},{\"mesh\":4,\"translation\":[-45,-44,-34]},{\"mesh\":4,\"translation\":[-45,-44,-36]},{\"mesh\":4,\"translation\":[-45,-44,-38]},{\"mesh\":4,\"translation\":[-45,-44,-40]},{\"mesh\":4,\"translation\":[-45,-46,-32]},{\"mesh\":4,\"translation\":[-45,-46,-34]},{\"mesh\":4,\"translation\":[-45,-48,-32]},{\"mesh\":4,\"translation\":[-45,-48,-34]},{\"mesh\":5,\"translation\":[-46,-34,-34]},{\"mesh\":5,\"translation\":[-46,-34,-36]},{\"mesh\":5,\"translation\":[-46,-36,-34]},{\"mesh\":5,\"translation\":[-46,-36,-36]},{\"mesh\":5,\"translation\":[-46,-38,-32]},{\"mesh\":5,\"translation\":[-46,-38,-34]},{\"mesh\":5,\"translation\":[-46,-38,-36]},{\"mesh\":5,\"translation\":[-46,-38,-38]},{\"mesh\":5,\"translation\":[-46,-38,-40]},{\"mesh\":5,\"translation\":[-46,-38,-42]},{\"mesh\":5,\"translation\":[-46,-40,-32]},{\"mesh\":5,\"translation\":[-46,-40,-34]},{\"mesh\":5,\"translation\":[-46,-40,-36]},{\"mesh\":5,\"translation\":[-46,-40,-38]},{\"mesh\":5,\"translation\":[-46,-40,-40]},{\"mesh\":5,\"translation\":[-46,-40,-42]},{\"mesh\":5,\"translation\":[-46,-42,-34]},{\"mesh\":5,\"translation\":[-46,-42,-36]},{\"mesh\":5,\"translation\":[-46,-42,-38]},{\"mesh\":5,\"translation\":[-46,-42,-40]},{\"mesh\":5,\"translation\":[-46,-44,-34]},{\"mesh\":5,\"translation\":[-46,-44,-36]},{\"mesh\":5,\"translation\":[-46,-44,-38]},{\"mesh\":5,\"translation\":[-46,-44,-40]},{\"mesh\":5,\"translation\":[-46,-46,-32]},{\"mesh\":5,\"translation\":[-46,-46,-34]},{\"mesh\":5,\"translation\":[-46,-48,-32]},{\"mesh\":5,\"translation\":[-46,-48,-34]},{\"mesh\":3,\"translation\":[-46,-32,-32]},{\"mesh\":3,\"translation\":[-46,-34,-32]},{\"mesh\":3,\"translation\":[-46,-36,-32]},{\"mesh\":3,\"translation\":[-46,-36,-38]},{\"mesh\":3,\"translation\":[-46,-40,-44]},{\"mesh\":3,\"translation\":[-46,-42,-32]},{\"mesh\":3,\"translation\":[-46,-42,-42]},{\"mesh\":3,\"translation\":[-46,-44,-32]},{\"mesh\":3,\"translation\":[-46,-46,-36]},{\"mesh\":2,\"translation\":[-47,-32,-32]},{\"mesh\":2,\"translation\":[-47,-34,-32]},{\"mesh\":2,\"translation\":[-47,-34,-34]},{\"mesh\":2,\"translation\":[-47,-34,-36]},{\"mesh\":2,\"translation\":[-47,-36,-32]},{\"mesh\":2,\"translation\":[-47,-36,-34]},{\"mesh\":2,\"translation\":[-47,-36,-36]},{\"mesh\":2,\"translation\":[-47,-36,-38]},{\"mesh\":2,\"translation\":[-47,-38,-32]},{\"mesh\":2,\"translation\":[-47,-38,-34]},{\"mesh\":2,\"translation\":[-47,-38,-36]},{\"mesh\":2,\"translation\":[-47,-38,-38]},{\"mesh\":2,\"translation\":[-47,-38,-40]},{\"mesh\":2,\"translation\":[-47,-38,-42]},{\"mesh\":2,\"translation\":[-47,-40,-32]},{\"mesh\":2,\"translation\":[-47,-40,-34]},{\"mesh\":2,\"translation\":[-47,-40,-36]},{\"mesh\":2,\"translation\":[-47,-40,-38]},{\"mesh\":2,\"translation\":[-47,-40,-40]},{\"mesh\":2,\"translation\":[-47,-40,-42]},{\"mesh\":2,\"translation\":[-47,-40,-44]},{\"mesh\":2,\"translation\":[-47,-42,-32]},{\"mesh\":2,\"translation\":[-47,-42,-34]},{\"mesh\":2,\"translation\":[-47,-42,-36]},{\"mesh\":2,\"translation\":[-47,-42,-38]},{\"mesh\":2,\"translation\":[-47,-42,-40]},{\"mesh\":2,\"translation\":[-47,-42,-42]},{\"mesh\":2,\"translation\":[-47,-44,-32]},{\"mesh\":2,\"translation\":[-47,-44,-34]},{\"mesh\":2,\"translation\":[-47,-44,-36]},{\"mesh\":2,\"translation\":[-47,-44,-38]},{\"mesh\":2,\"translation\":[-47,-44,-40]},{\"mesh\":2,\"translation\":[-47,-46,-32]},{\"mesh\":2,\"translation\":[-47,-46,-34]},{\"mesh\":2,\"translation\":[-47,-46,-36]},{\"mesh\":2,\"translation\":[-47,-48,-32]},{\"mesh\":2,\"translation\":[-47,-48,-34]},{\"mesh\":3,\"translation\":[-48,-32,-32]},{\"mesh\":3,\"translation\":[-48,-34,-32]},{\"mesh\":3,\"translation\":[-48,-34,-34]},{\"mesh\":3,\"translation\":[-48,-34,-36]},{\"mesh\":3,\"translation\":[-48,-36,-32]},{\"mesh\":3,\"translation\":[-48,-36,-34]},{\"mesh\":3,\"translation\":[-48,-36,-36]},{\"mesh\":3,\"translation\":[-48,-36,-38]},{\"mesh\":3,\"translation\":[-48,-38,-32]},{\"mesh\":3,\"translation\":[-48,-38,-34]},{\"mesh\":3,\"translation\":[-48,-38,-36]},{\"mesh\":3,\"translation\":[-48,-38,-38]},{\"mesh\":3,\"translation\":[-48,-38,-40]},{\"mesh\":3,\"translation\":[-48,-38,-42]},{\"mesh\":3,\"translation\":[-48,-40,-32]},{\"mesh\":3,\"translation\":[-48,-40,-34]},{\"mesh\":3,\"translation\":[-48,-40,-36]},{\"mesh\":3,\"translation\":[-48,-40,-38]},{\"mesh\":3,\"translation\":[-48,-40,-40]},{\"mesh\":3,\"translation\":[-48,-40,-42]},{\"mesh\":3,\"translation\":[-48,-40,-44]},{\"mesh\":3,\"translation\":[-48,-42,-32]},{\"mesh\":3,\"translation\":[-48,-42,-34]},{\"mesh\":3,\"translation\":[-48,-42,-36]},{\"mesh\":3,\"translation\":[-48,-42,-38]},{\"mesh\":3,\"translation\":[-48,-42,-40]},{\"mesh\":3,\"translation\":[-48,-42,-42]},{\"mesh\":3,\"translation\":[-48,-44,-32]},{\"mesh\":3,\"translation\":[-48,-44,-34]},{\"mesh\":3,\"translation\":[-48,-44,-36]},{\"mesh\":3,\"translation\":[-48,-44,-38]},{\"mesh\":3,\"translation\":[-48,-44,-40]},{\"mesh\":3,\"translation\":[-48,-46,-32]},{\"mesh\":3,\"translation\":[-48,-46,-34]},{\"mesh\":3,\"translation\":[-48,-46,-36]},{\"mesh\":3,\"translation\":[-48,-48,-32]},{\"mesh\":3,\"translation\":[-48,-48,-34]},{\"mesh\":4,\"translation\":[-49,-34,-32]},{\"mesh\":4,\"translation\":[-49,-34,-34]},{\"mesh\":4,\"translation\":[-49,-36,-32]},{\"mesh\":4,\"translation\":[-49,-36,-34]},{\"mesh\":4,\"translation\":[-49,-36,-36]},{\"mesh\":4,\"translation\":[-49,-36,-38]},{\"mesh\":4,\"translation\":[-49,-38,-34]},{\"mesh\":4,\"translation\":[-49,-38,-36]},{\"mesh\":4,\"translation\":[-49,-38,-38]},{\"mesh\":4,\"translation\":[-49,-38,-40]},{\"mesh\":4,\"translation\":[-49,-40,-34]},{\"mesh\":4,\"translation\":[-49,-40,-36]},{\"mesh\":4,\"translation\":[-49,-40,-38]},{\"mesh\":4,\"translation\":[-49,-40,-40]},{\"mesh\":4,\"translation\":[-49,-40,-42]},{\"mesh\":4,\"translation\":[-49,-40,-44]},{\"mesh\":4,\"translation\":[-49,-42,-32]},{\"mesh\":4,\"translation\":[-49,-42,-34]},{\"mesh\":4,\"translation\":[-49,-42,-36]},{\"mesh\":4,\"translation\":[-49,-42,-38]},{\"mesh\":4,\"translation\":[-49,-42,-40]},{\"mesh\":4,\"translation\":[-49,-42,-42]},{\"mesh\":4,\"translation\":[-49,-44,-32]},{\"mesh\":4,\"translation\":[-49,-44,-34]},{\"mesh\":4,\"translation\":[-49,-44,-36]},{\"mesh\":4,\"translation\":[-49,-44,-38]},{\"mesh\":4,\"translation\":[-49,-46,-34]},{\"mesh\":4,\"translation\":[-49,-46,-36]},{\"mesh\":5,\"translation\":[-50,-34,-32]},{\"mesh\":5,\"translation\":[-50,-34,-34]},{\"mesh\":5,\"translation\":[-50,-36,-32]},{\"mesh\":5,\"translation\":[-50,-36,-34]},{\"mesh\":5,\"translation\":[-50,-36,-36]},{\"mesh\":5,\"translation\":[-50,-36,-38]},{\"mesh\":5,\"translation\":[-50,-38,-34]},{\"mesh\":5,\"translation\":[-50,-38,-36]},{\"mesh\":5,\"translation\":[-50,-38,-38]},{\"mesh\":5,\"translation\":[-50,-38,-40]},{\"mesh\":5,\"translation\":[-50,-40,-34]},{\"mesh\":5,\"translation\":[-50,-40,-36]},{\"mesh\":5,\"translation\":[-50,-40,-38]},{\"mesh\":5,\"translation\":[-50,-40,-40]},{\"mesh\":5,\"translation\":[-50,-40,-42]},{\"mesh\":5,\"translation\":[-50,-40,-44]},{\"mesh\":5,\"translation\":[-50,-42,-32]},{\"mesh\":5,\"translation\":[-50,-42,-34]},{\"mesh\":5,\"translation\":[-50,-42,-36]},{\"mesh\":5,\"translation\":[-50,-42,-38]},{\"mesh\":5,\"translation\":[-50,-42,-40]},{\"mesh\":5,\"translation\":[-50,-42,-42]},{\"mesh\":5,\"translation\":[-50,-44,-32]},{\"mesh\":5,\"translation\":[-50,-44,-34]},{\"mesh\":5,\"translation\":[-50,-44,-36]},{\"mesh\":5,\"translation\":[-50,-44,-38]},{\"mesh\":5,\"translation\":[-50,-46,-34]},{\"mesh\":5,\"translation\":[-50,-46,-36]},{\"mesh\":3,\"translation\":[-50,-32,-32]},{\"mesh\":3,\"translation\":[-50,-34,-36]},{\"mesh\":3,\"translation\":[-50,-38,-32]},{\"mesh\":3,\"translation\":[-50,-38,-42]},{\"mesh\":3,\"translation\":[-50,-40,-32]},{\"mesh\":3,\"translation\":[-50,-44,-40]},{\"mesh\":3,\"translation\":[-50,-46,-32]},{\"mesh\":3,\"translation\":[-50,-48,-32]},{\"mesh\":3,\"translation\":[-50,-48,-34]},{\"mesh\":4,\"translation\":[-51,-32,-32]},{\"mesh\":4,\"translation\":[-51,-34,-32]},{\"mesh\":4,\"translation\":[-51,-36,-32]},{\"mesh\":4,\"translation\":[-51,-38,-32]},{\"mesh\":4,\"translation\":[-51,-36,-34]},{\"mesh\":4,\"translation\":[-51,-38,-34]},{\"mesh\":4,\"translation\":[-51,-36,-36]},{\"mesh\":4,\"translation\":[-51,-38,-36]},{\"mesh\":4,\"translation\":[-51,-36,-38]},{\"mesh\":4,\"translation\":[-51,-38,-38]},{\"mesh\":4,\"translation\":[-51,-40,-32]},{\"mesh\":4,\"translation\":[-51,-42,-32]},{\"mesh\":4,\"translation\":[-51,-40,-34]},{\"mesh\":4,\"translation\":[-51,-42,-34]},{\"mesh\":4,\"translation\":[-51,-40,-36]},{\"mesh\":4,\"translation\":[-51,-42,-36]},{\"mesh\":4,\"translation\":[-51,-40,-38]},{\"mesh\":4,\"translation\":[-51,-42,-38]},{\"mesh\":4,\"translation\":[-51,-40,-40]},{\"mesh\":4,\"translation\":[-51,-42,-40]},{\"mesh\":4,\"translation\":[-51,-40,-42]},{\"mesh\":4,\"translation\":[-51,-42,-42]},{\"mesh\":4,\"translation\":[-51,-44,-32]},{\"mesh\":4,\"translation\":[-51,-46,-32]},{\"mesh\":4,\"translation\":[-51,-44,-34]},{\"mesh\":4,\"translation\":[-51,-46,-34]},{\"mesh\":4,\"translation\":[-51,-44,-36]},{\"mesh\":4,\"translation\":[-51,-46,-36]},{\"mesh\":5,\"translation\":[-52,-32,-32]},{\"mesh\":5,\"translation\":[-52,-34,-32]},{\"mesh\":5,\"translation\":[-52,-36,-32]},{\"mesh\":5,\"translation\":[-52,-38,-32]},{\"mesh\":5,\"translation\":[-52,-36,-34]},{\"mesh\":5,\"translation\":[-52,-38,-34]},{\"mesh\":5,\"translation\":[-52,-36,-36]},{\"mesh\":5,\"translation\":[-52,-38,-36]},{\"mesh\":5,\"translation\":[-52,-36,-38]},{\"mesh\":5,\"translation\":[-52,-38,-38]},{\"mesh\":5,\"translation\":[-52,-40,-32]},{\"mesh\":5,\"translation\":[-52,-42,-32]},{\"mesh\":5,\"translation\":[-52,-40,-34]},{\"mesh\":5,\"translation\":[-52,-42,-34]},{\"mesh\":5,\"translation\":[-52,-40,-36]},{\"mesh\":5,\"translation\":[-52,-42,-36]},{\"mesh\":5,\"translation\":[-52,-40,-38]},{\"mesh\":5,\"translation\":[-52,-42,-38]},{\"mesh\":5,\"translation\":[-52,-40,-40]},{\"mesh\":5,\"translation\":[-52,-42,-40]},{\"mesh\":5,\"translation\":[-52,-40,-42]},{\"mesh\":5,\"translation\":[-52,-42,-42]},{\"mesh\":5,\"translation\":[-52,-44,-32]},{\"mesh\":5,\"translation\":[-52,-46,-32]},{\"mesh\":5,\"translation\":[-52,-44,-34]},{\"mesh\":5,\"translation\":[-52,-46,-34]},{\"mesh\":5,\"translation\":[-52,-44,-36]},{\"mesh\":5,\"translation\":[-52,-46,-36]},{\"mesh\":3,\"translation\":[-52,-34,-34]},{\"mesh\":3,\"translation\":[-52,-34,-36]},{\"mesh\":3,\"translation\":[-52,-38,-40]},{\"mesh\":3,\"translation\":[-52,-38,-42]},{\"mesh\":3,\"translation\":[-52,-40,-44]},{\"mesh\":3,\"translation\":[-52,-44,-38]},{\"mesh\":3,\"translation\":[-52,-44,-40]},{\"mesh\":3,\"translation\":[-52,-48,-32]},{\"mesh\":3,\"translation\":[-52,-48,-34]},{\"mesh\":4,\"translation\":[-53,-34,-34]},{\"mesh\":4,\"translation\":[-53,-34,-36]},{\"mesh\":4,\"translation\":[-53,-36,-34]},{\"mesh\":4,\"translation\":[-53,-36,-36]},{\"mesh\":4,\"translation\":[-53,-38,-32]},{\"mesh\":4,\"translation\":[-53,-38,-34]},{\"mesh\":4,\"translation\":[-53,-38,-36]},{\"mesh\":4,\"translation\":[-53,-38,-38]},{\"mesh\":4,\"translation\":[-53,-38,-40]},{\"mesh\":4,\"translation\":[-53,-38,-42]},{\"mesh\":4,\"translation\":[-53,-40,-32]},{\"mesh\":4,\"translation\":[-53,-40,-34]},{\"mesh\":4,\"translation\":[-53,-40,-36]},{\"mesh\":4,\"translation\":[-53,-40,-38]},{\"mesh\":4,\"translation\":[-53,-40,-40]},{\"mesh\":4,\"translation\":[-53,-40,-42]},{\"mesh\":4,\"translation\":[-53,-42,-34]},{\"mesh\":4,\"translation\":[-53,-42,-36]},{\"mesh\":4,\"translation\":[-53,-42,-38]},{\"mesh\":4,\"translation\":[-53,-42,-40]},{\"mesh\":4,\"translation\":[-53,-44,-34]},{\"mesh\":4,\"translation\":[-53,-44,-36]},{\"mesh\":4,\"translation\":[-53,-44,-38]},{\"mesh\":4,\"translation\":[-53,-44,-40]},{\"mesh\":4,\"translation\":[-53,-46,-32]},{\"mesh\":4,\"translation\":[-53,-46,-34]},{\"mesh\":4,\"translation\":[-53,-48,-32]},{\"mesh\":4,\"translation\":[-53,-48,-34]},{\"mesh\":5,\"translation\":[-54,-34,-34]},{\"mesh\":5,\"translation\":[-54,-34,-36]},{\"mesh\":5,\"translation\":[-54,-36,-34]},{\"mesh\":5,\"translation\":[-54,-36,-36]},{\"mesh\":5,\"translation\":[-54,-38,-32]},{\"mesh\":5,\"translation\":[-54,-38,-34]},{\"mesh\":5,\"translation\":[-54,-38,-36]},{\"mesh\":5,\"translation\":[-54,-38,-38]},{\"mesh\":5,\"translation\":[-54,-38,-40]},{\"mesh\":5,\"translation\":[-54,-38,-42]},{\"mesh\":5,\"translation\":[-54,-40,-32]},{\"mesh\":5,\"translation\":[-54,-40,-34]},{\"mesh\":5,\"translation\":[-54,-40,-36]},{\"mesh\":5,\"translation\":[-54,-40,-38]},{\"mesh\":5,\"translation\":[-54,-40,-40]},{\"mesh\":5,\"translation\":[-54,-40,-42]},{\"mesh\":5,\"translation\":[-54,-42,-34]},{\"mesh\":5,\"translation\":[-54,-42,-36]},{\"mesh\":5,\"translation\":[-54,-42,-38]},{\"mesh\":5,\"translation\":[-54,-42,-40]},{\"mesh\":5,\"translation\":[-54,-44,-34]},{\"mesh\":5,\"translation\":[-54,-44,-36]},{\"mesh\":5,\"translation\":[-54,-44,-38]},{\"mesh\":5,\"translation\":[-54,-44,-40]},{\"mesh\":5,\"translation\":[-54,-46,-32]},{\"mesh\":5,\"translation\":[-54,-46,-34]},{\"mesh\":5,\"translation\":[-54,-48,-32]},{\"mesh\":5,\"translation\":[-54,-48,-34]},{\"mesh\":3,\"translation\":[-54,-32,-32]},{\"mesh\":3,\"translation\":[-54,-34,-32]},{\"mesh\":3,\"translation\":[-54,-36,-32]},{\"mesh\":3,\"translation\":[-54,-36,-38]},{\"mesh\":3,\"translation\":[-54,-40,-44]},{\"mesh\":3,\"translation\":[-54,-42,-32]},{\"mesh\":3,\"translation\":[-54,-42,-42]},{\"mesh\":3,\"translation\":[-54,-44,-32]},{\"mesh\":3,\"translation\":[-54,-46,-36]},{\"mesh\":2,\"translation\":[-55,-32,-32]},{\"mesh\":2,\"translation\":[-55,-34,-34]},{\"mesh\":2,\"translation\":[-55,-36,-32]},{\"mesh\":2,\"translation\":[-55,-36,-34]},{\"mesh\":2,\"translation\":[-55,-36,-36]},{\"mesh\":2,\"translation\":[-55,-36,-38]},{\"mesh\":2,\"translation\":[-55,-38,-32]},{\"mesh\":2,\"translation\":[-55,-38,-36]},{\"mesh\":2,\"translation\":[-55,-38,-40]},{\"mesh\":2,\"translation\":[-55,-40,-32]},{\"mesh\":2,\"translation\":[-55,-40,-34]},{\"mesh\":2,\"translation\":[-55,-40,-36]},{\"mesh\":2,\"translation\":[-55,-40,-38]},{\"mesh\":2,\"translation\":[-55,-40,-40]},{\"mesh\":2,\"translation\":[-55,-40,-42]},{\"mesh\":2,\"translation\":[-55,-40,-44]},{\"mesh\":2,\"translation\":[-55,-42,-34]},{\"mesh\":2,\"translation\":[-55,-42,-38]},{\"mesh\":2,\"translation\":[-55,-42,-42]},{\"mesh\":2,\"translation\":[-55,-44,-32]},{\"mesh\":2,\"translation\":[-55,-44,-34]},{\"mesh\":2,\"translation\":[-55,-44,-36]},{\"mesh\":2,\"translation\":[-55,-44,-38]},{\"mesh\":2,\"translation\":[-55,-44,-40]},{\"mesh\":2,\"translation\":[-55,-46,-32]},{\"mesh\":2,\"translation\":[-55,-46,-36]},{\"mesh\":2,\"translation\":[-55,-48,-32]},{\"mesh\":2,\"translation\":[-55,-48,-34]},{\"mesh\":3,\"translation\":[-56,-32,-32]},{\"mesh\":3,\"translation\":[-56,-34,-34]},{\"mesh\":3,\"translation\":[-56,-36,-32]},{\"mesh\":3,\"translation\":[-56,-36,-34]},{\"mesh\":3,\"translation\":[-56,-36,-36]},{\"mesh\":3,\"translation\":[-56,-36,-38]},{\"mesh\":3,\"translation\":[-56,-38,-32]},{\"mesh\":3,\"translation\":[-56,-38,-36]},{\"mesh\":3,\"translation\":[-56,-38,-40]},{\"mesh\":3,\"translation\":[-56,-40,-32]},{\"mesh\":3,\"translation\":[-56,-40,-34]},{\"mesh\":3,\"translation\":[-56,-40,-36]},{\"mesh\":3,\"translation\":[-56,-40,-38]},{\"mesh\":3,\"translation\":[-56,-40,-40]},{\"mesh\":3,\"translation\":[-56,-40,-42]},{\"mesh\":3,\"translation\":[-56,-40,-44]},{\"mesh\":3,\"translation\":[-56,-42,-34]},{\"mesh\":3,\"translation\":[-56,-42,-38]},{\"mesh\":3,\"translation\":[-56,-42,-42]},{\"mesh\":3,\"translation\":[-56,-44,-32]},{\"mesh\":3,\"translation\":[-56,-44,-34]},{\"mesh\":3,\"translation\":[-56,-44,-36]},{\"mesh\":3,\"translation\":[-56,-44,-38]},{\"mesh\":3,\"translation\":[-56,-44,-40]},{\"mesh\":3,\"translation\":[-56,-46,-32]},{\"mesh\":3,\"translation\":[-56,-46,-36]},{\"mesh\":3,\"translation\":[-56,-48,-32]},{\"mesh\":3,\"translation\":[-56,-48,-34]},{\"mesh\":3,\"translation\":[-56,-34,-32]},{\"mesh\":3,\"translation\":[-56,-34,-36]},{\"mesh\":3,\"translation\":[-56,-38,-34]},{\"mesh\":3,\"translation\":[-56,-38,-38]},{\"mesh\":3,\"translation\":[-56,-38,-42]},{\"mesh\":3,\"translation\":[-56,-42,-32]},{\"mesh\":3,\"translation\":[-56,-42,-36]},{\"mesh\":3,\"translation\":[-56,-42,-40]},{\"mesh\":3,\"translation\":[-56,-46,-34]},{\"mesh\":4,\"translation\":[-57,-34,-32]},{\"mesh\":4,\"translation\":[-57,-36,-32]},{\"mesh\":4,\"translation\":[-57,-34,-36]},{\"mesh\":4,\"translation\":[-57,-36,-36]},{\"mesh\":4,\"translation\":[-57,-38,-34]},{\"mesh\":4,\"translation\":[-57,-40,-34]},{\"mesh\":4,\"translation\":[-57,-38,-38]},{\"mesh\":4,\"translation\":[-57,-40,-38]},{\"mesh\":4,\"translation\":[-57,-38,-42]},{\"mesh\":4,\"translation\":[-57,-40,-42]},{\"mesh\":4,\"translation\":[-57,-42,-32]},{\"mesh\":4,\"translation\":[-57,-44,-32]},{\"mesh\":4,\"translation\":[-57,-42,-36]},{\"mesh\":4,\"translation\":[-57,-44,-36]},{\"mesh\":4,\"translation\":[-57,-42,-40]},{\"mesh\":4,\"translation\":[-57,-44,-40]},{\"mesh\":4,\"translation\":[-57,-46,-34]},{\"mesh\":4,\"translation\":[-57,-48,-34]},{\"mesh\":5,\"translation\":[-58,-34,-32]},{\"mesh\":5,\"translation\":[-58,-36,-32]},{\"mesh\":5,\"translation\":[-58,-34,-36]},{\"mesh\":5,\"translation\":[-58,-36,-36]},{\"mesh\":5,\"translation\":[-58,-38,-34]},{\"mesh\":5,\"translation\":[-58,-40,-34]},{\"mesh\":5,\"translation\":[-58,-38,-38]},{\"mesh\":5,\"translation\":[-58,-40,-38]},{\"mesh\":5,\"translation\":[-58,-38,-42]},{\"mesh\":5,\"translation\":[-58,-40,-42]},{\"mesh\":5,\"translation\":[-58,-42,-32]},{\"mesh\":5,\"translation\":[-58,-44,-32]},{\"mesh\":5,\"translation\":[-58,-42,-36]},{\"mesh\":5,\"translation\":[-58,-44,-36]},{\"mesh\":5,\"translation\":[-58,-42,-40]},{\"mesh\":5,\"translation\":[-58,-44,-40]},{\"mesh\":5,\"translation\":[-58,-46,-34]},{\"mesh\":5,\"translation\":[-58,-48,-34]},{\"mesh\":3,\"translation\":[-58,-32,-32]},{\"mesh\":3,\"translation\":[-58,-34,-34]},{\"mesh\":3,\"translation\":[-58,-36,-34]},{\"mesh\":3,\"translation\":[-58,-36,-38]},{\"mesh\":3,\"translation\":[-58,-38,-32]},{\"mesh\":3,\"translation\":[-58,-38,-36]},{\"mesh\":3,\"translation\":[-58,-38,-40]},{\"mesh\":3,\"translation\":[-58,-40,-32]},{\"mesh\":3,\"translation\":[-58,-40,-36]},{\"mesh\":3,\"translation\":[-58,-40,-40]},{\"mesh\":3,\"translation\":[-58,-40,-44]},{\"mesh\":3,\"translation\":[-58,-42,-34]},{\"mesh\":3,\"translation\":[-58,-42,-38]},{\"mesh\":3,\"translation\":[-58,-42,-42]},{\"mesh\":3,\"translation\":[-58,-44,-34]},{\"mesh\":3,\"translation\":[-58,-44,-38]},{\"mesh\":3,\"translation\":[-58,-46,-32]},{\"mesh\":3,\"translation\":[-58,-46,-36]},{\"mesh\":3,\"translation\":[-58,-48,-32]},{\"mesh\":2,\"translation\":[-59,-34,-32]},{\"mesh\":2,\"translation\":[-59,-34,-36]},{\"mesh\":2,\"translation\":[-59,-36,-32]},{\"mesh\":2,\"translation\":[-59,-36,-36]},{\"mesh\":2,\"translation\":[-59,-38,-34]},{\"mesh\":2,\"translation\":[-59,-38,-38]},{\"mesh\":2,\"translation\":[-59,-38,-42]},{\"mesh\":2,\"translation\":[-59,-40,-34]},{\"mesh\":2,\"translation\":[-59,-40,-38]},{\"mesh\":2,\"translation\":[-59,-40,-42]},{\"mesh\":2,\"translation\":[-59,-42,-32]},{\"mesh\":2,\"translation\":[-59,-42,-36]},{\"mesh\":2,\"translation\":[-59,-42,-40]},{\"mesh\":2,\"translation\":[-59,-44,-32]},{\"mesh\":2,\"translation\":[-59,-44,-36]},{\"mesh\":2,\"translation\":[-59,-44,-40]},{\"mesh\":2,\"translation\":[-59,-46,-34]},{\"mesh\":2,\"translation\":[-59,-48,-34]},{\"mesh\":3,\"translation\":[-60,-34,-32]},{\"mesh\":3,\"translation\":[-60,-34,-36]},{\"mesh\":3,\"translation\":[-60,-36,-32]},{\"mesh\":3,\"translation\":[-60,-36,-36]},{\"mesh\":3,\"translation\":[-60,-38,-34]},{\"mesh\":3,\"translation\":[-60,-38,-38]},{\"mesh\":3,\"translation\":[-60,-38,-42]},{\"mesh\":3,\"translation\":[-60,-40,-34]},{\"mesh\":3,\"translation\":[-60,-40,-38]},{\"mesh\":3,\"translation\":[-60,-40,-42]},{\"mesh\":3,\"translation\":[-60,-42,-32]},{\"mesh\":3,\"translation\":[-60,-42,-36]},{\"mesh\":3,\"translation\":[-60,-42,-40]},{\"mesh\":3,\"translation\":[-60,-44,-32]},{\"mesh\":3,\"translation\":[-60,-44,-36]},{\"mesh\":3,\"translation\":[-60,-44,-40]},{\"mesh\":3,\"translation\":[-60,-46,-34]},{\"mesh\":3,\"translation\":[-60,-48,-34]},{\"mesh\":3,\"translation\":[-60,-32,-32]},{\"mesh\":3,\"translation\":[-60,-34,-34]},{\"mesh\":3,\"translation\":[-60,-36,-34]},{\"mesh\":3,\"translation\":[-60,-36,-38]},{\"mesh\":3,\"translation\":[-60,-38,-32]},{\"mesh\":3,\"translation\":[-60,-38,-36]},{\"mesh\":3,\"translation\":[-60,-38,-40]},{\"mesh\":3,\"translation\":[-60,-40,-32]},{\"mesh\":3,\"translation\":[-60,-40,-36]},{\"mesh\":3,\"translation\":[-60,-40,-40]},{\"mesh\":3,\"translation\":[-60,-40,-44]},{\"mesh\":3,\"translation\":[-60,-42,-34]},{\"mesh\":3,\"translation\":[-60,-42,-38]},{\"mesh\":3,\"translation\":[-60,-42,-42]},{\"mesh\":3,\"translation\":[-60,-44,-34]},{\"mesh\":3,\"translation\":[-60,-44,-38]},{\"mesh\":3,\"translation\":[-60,-46,-32]},{\"mesh\":3,\"translation\":[-60,-46,-36]},{\"mesh\":3,\"translation\":[-60,-48,-32]},{\"mesh\":6,\"translation\":[-61,-34,-32]},{\"mesh\":6,\"translation\":[-61,-34,-36]},{\"mesh\":6,\"translation\":[-61,-38,-34]},{\"mesh\":6,\"translation\":[-61,-38,-38]},{\"mesh\":6,\"translation\":[-61,-38,-42]},{\"mesh\":6,\"translation\":[-61,-42,-32]},{\"mesh\":6,\"translation\":[-61,-42,-36]},{\"mesh\":6,\"translation\":[-61,-42,-40]},{\"mesh\":6,\"translation\":[-61,-46,-34]},{\"mesh\":6,\"translation\":[-61,-36,-32]},{\"mesh\":6,\"translation\":[-61,-36,-36]},{\"mesh\":6,\"translation\":[-61,-40,-34]},{\"mesh\":6,\"translation\":[-61,-40,-38]},{\"mesh\":6,\"translation\":[-61,-40,-42]},{\"mesh\":6,\"translation\":[-61,-44,-32]},{\"mesh\":6,\"translation\":[-61,-44,-36]},{\"mesh\":6,\"translation\":[-61,-44,-40]},{\"mesh\":6,\"translation\":[-61,-48,-34]},{\"mesh\":3,\"translation\":[-62,-34,-32]},{\"mesh\":3,\"translation\":[-62,-34,-36]},{\"mesh\":3,\"translation\":[-62,-38,-34]},{\"mesh\":3,\"translation\":[-62,-38,-38]},{\"mesh\":3,\"translation\":[-62,-38,-42]},{\"mesh\":3,\"translation\":[-62,-42,-32]},{\"mesh\":3,\"translation\":[-62,-42,-36]},{\"mesh\":3,\"translation\":[-62,-42,-40]},{\"mesh\":3,\"translation\":[-62,-46,-34]},{\"mesh\":3,\"translation\":[-62,-36,-32]},{\"mesh\":3,\"translation\":[-62,-36,-36]},{\"mesh\":3,\"translation\":[-62,-40,-34]},{\"mesh\":3,\"translation\":[-62,-40,-38]},{\"mesh\":3,\"translation\":[-62,-40,-42]},{\"mesh\":3,\"translation\":[-62,-44,-32]},{\"mesh\":3,\"translation\":[-62,-44,-36]},{\"mesh\":3,\"translation\":[-62,-44,-40]},{\"mesh\":3,\"translation\":[-62,-48,-34]},{\"mesh\":3,\"translation\":[-62,-32,-32]},{\"mesh\":3,\"translation\":[-62,-34,-34]},{\"mesh\":3,\"translation\":[-62,-36,-34]},{\"mesh\":3,\"translation\":[-62,-36,-38]},{\"mesh\":3,\"translation\":[-62,-38,-32]},{\"mesh\":3,\"translation\":[-62,-38,-36]},{\"mesh\":3,\"translation\":[-62,-38,-40]},{\"mesh\":3,\"translation\":[-62,-40,-32]},{\"mesh\":3,\"translation\":[-62,-40,-36]},{\"mesh\":3,\"translation\":[-62,-40,-40]},{\"mesh\":3,\"translation\":[-62,-40,-44]},{\"mesh\":3,\"translation\":[-62,-42,-34]},{\"mesh\":3,\"translation\":[-62,-42,-38]},{\"mesh\":3,\"translation\":[-62,-42,-42]},{\"mesh\":3,\"translation\":[-62,-44,-34]},{\"mesh\":3,\"translation\":[-62,-44,-38]},{\"mesh\":3,\"translation\":[-62,-46,-32]},{\"mesh\":3,\"translation\":[-62,-46,-36]},{\"mesh\":3,\"translation\":[-62,-48,-32]},{\"mesh\":3,\"translation\":[-63,-32,-32]},{\"mesh\":3,\"translation\":[-63,-34,-34]},{\"mesh\":3,\"translation\":[-63,-36,-34]},{\"mesh\":3,\"translation\":[-63,-36,-38]},{\"mesh\":3,\"translation\":[-63,-38,-32]},{\"mesh\":3,\"translation\":[-63,-38,-36]},{\"mesh\":3,\"translation\":[-63,-38,-40]},{\"mesh\":3,\"translation\":[-63,-40,-32]},{\"mesh\":3,\"translation\":[-63,-40,-36]},{\"mesh\":3,\"translation\":[-63,-40,-40]},{\"mesh\":3,\"translation\":[-63,-40,-44]},{\"mesh\":3,\"translation\":[-63,-42,-34]},{\"mesh\":3,\"translation\":[-63,-42,-38]},{\"mesh\":3,\"translation\":[-63,-42,-42]},{\"mesh\":3,\"translation\":[-63,-44,-34]},{\"mesh\":3,\"translation\":[-63,-44,-38]},{\"mesh\":3,\"translation\":[-63,-46,-32]},{\"mesh\":3,\"translation\":[-63,-46,-36]},{\"mesh\":3,\"translation\":[-63,-48,-32]},{\"mesh\":0,\"translation\":[-65,-48,-34]},{\"mesh\":0,\"translation\":[-65,-44,-40]},{\"mesh\":0,\"translation\":[-65,-44,-36]},{\"mesh\":0,\"translation\":[-65,-44,-32]},{\"mesh\":0,\"translation\":[-65,-40,-42]},{\"mesh\":0,\"translation\":[-65,-40,-38]},{\"mesh\":0,\"translation\":[-65,-40,-34]},{\"mesh\":0,\"translation\":[-65,-36,-36]},{\"mesh\":0,\"translation\":[-65,-36,-32]},{\"mesh\":0,\"translation\":[-65,-46,-34]},{\"mesh\":0,\"translation\":[-65,-42,-40]},{\"mesh\":0,\"translation\":[-65,-42,-36]},{\"mesh\":0,\"translation\":[-65,-42,-32]},{\"mesh\":0,\"translation\":[-65,-38,-42]},{\"mesh\":0,\"translation\":[-65,-38,-38]},{\"mesh\":0,\"translation\":[-65,-38,-34]},{\"mesh\":0,\"translation\":[-65,-34,-36]},{\"mesh\":0,\"translation\":[-65,-34,-32]},{\"mesh\":1,\"translation\":[-66,-48,-34]},{\"mesh\":1,\"translation\":[-66,-44,-40]},{\"mesh\":1,\"translation\":[-66,-44,-36]},{\"mesh\":1,\"translation\":[-66,-44,-32]},{\"mesh\":1,\"translation\":[-66,-40,-42]},{\"mesh\":1,\"translation\":[-66,-40,-38]},{\"mesh\":1,\"translation\":[-66,-40,-34]},{\"mesh\":1,\"translation\":[-66,-36,-36]},{\"mesh\":1,\"translation\":[-66,-36,-32]},{\"mesh\":1,\"translation\":[-66,-46,-34]},{\"mesh\":1,\"translation\":[-66,-42,-40]},{\"mesh\":1,\"translation\":[-66,-42,-36]},{\"mesh\":1,\"translation\":[-66,-42,-32]},{\"mesh\":1,\"translation\":[-66,-38,-42]},{\"mesh\":1,\"translation\":[-66,-38,-38]},{\"mesh\":1,\"translation\":[-66,-38,-34]},{\"mesh\":1,\"translation\":[-66,-34,-36]},{\"mesh\":1,\"translation\":[-66,-34,-32]},{\"mesh\":3,\"translation\":[-66,-32,-32]},{\"mesh\":3,\"translation\":[-66,-34,-34]},{\"mesh\":3,\"translation\":[-66,-36,-34]},{\"mesh\":3,\"translation\":[-66,-36,-38]},{\"mesh\":3,\"translation\":[-66,-38,-32]},{\"mesh\":3,\"translation\":[-66,-38,-36]},{\"mesh\":3,\"translation\":[-66,-38,-40]},{\"mesh\":3,\"translation\":[-66,-40,-32]},{\"mesh\":3,\"translation\":[-66,-40,-36]},{\"mesh\":3,\"translation\":[-66,-40,-40]},{\"mesh\":3,\"translation\":[-66,-40,-44]},{\"mesh\":3,\"translation\":[-66,-42,-34]},{\"mesh\":3,\"translation\":[-66,-42,-38]},{\"mesh\":3,\"translation\":[-66,-42,-42]},{\"mesh\":3,\"translation\":[-66,-44,-34]},{\"mesh\":3,\"translation\":[-66,-44,-38]},{\"mesh\":3,\"translation\":[-66,-46,-32]},{\"mesh\":3,\"translation\":[-66,-46,-36]},{\"mesh\":3,\"translation\":[-66,-48,-32]},{\"mesh\":3,\"translation\":[-67,-32,-32]},{\"mesh\":3,\"translation\":[-67,-34,-34]},{\"mesh\":3,\"translation\":[-67,-36,-34]},{\"mesh\":3,\"translation\":[-67,-36,-38]},{\"mesh\":3,\"translation\":[-67,-38,-32]},{\"mesh\":3,\"translation\":[-67,-38,-36]},{\"mesh\":3,\"translation\":[-67,-38,-40]},{\"mesh\":3,\"translation\":[-67,-40,-32]},{\"mesh\":3,\"translation\":[-67,-40,-36]},{\"mesh\":3,\"translation\":[-67,-40,-40]},{\"mesh\":3,\"translation\":[-67,-40,-44]},{\"mesh\":3,\"translation\":[-67,-42,-34]},{\"mesh\":3,\"translation\":[-67,-42,-38]},{\"mesh\":3,\"translation\":[-67,-42,-42]},{\"mesh\":3,\"translation\":[-67,-44,-34]},{\"mesh\":3,\"translation\":[-67,-44,-38]},{\"mesh\":3,\"translation\":[-67,-46,-32]},{\"mesh\":3,\"translation\":[-67,-46,-36]},{\"mesh\":3,\"translation\":[-67,-48,-32]},{\"mesh\":2,\"translation\":[-68,-34,-32]},{\"mesh\":2,\"translation\":[-68,-34,-36]},{\"mesh\":2,\"translation\":[-68,-36,-32]},{\"mesh\":2,\"translation\":[-68,-36,-36]},{\"mesh\":2,\"translation\":[-68,-38,-34]},{\"mesh\":2,\"translation\":[-68,-38,-38]},{\"mesh\":2,\"translation\":[-68,-38,-42]},{\"mesh\":2,\"translation\":[-68,-40,-34]},{\"mesh\":2,\"translation\":[-68,-40,-38]},{\"mesh\":2,\"translation\":[-68,-40,-42]},{\"mesh\":2,\"translation\":[-68,-42,-32]},{\"mesh\":2,\"translation\":[-68,-42,-36]},{\"mesh\":2,\"translation\":[-68,-42,-40]},{\"mesh\":2,\"translation\":[-68,-44,-32]},{\"mesh\":2,\"translation\":[-68,-44,-36]},{\"mesh\":2,\"translation\":[-68,-44,-40]},{\"mesh\":2,\"translation\":[-68,-46,-34]},{\"mesh\":2,\"translation\":[-68,-48,-34]},{\"mesh\":3,\"translation\":[-69,-34,-32]},{\"mesh\":3,\"translation\":[-69,-34,-36]},{\"mesh\":3,\"translation\":[-69,-36,-32]},{\"mesh\":3,\"translation\":[-69,-36,-36]},{\"mesh\":3,\"translation\":[-69,-38,-34]},{\"mesh\":3,\"translation\":[-69,-38,-38]},{\"mesh\":3,\"translation\":[-69,-38,-42]},{\"mesh\":3,\"translation\":[-69,-40,-34]},{\"mesh\":3,\"translation\":[-69,-40,-38]},{\"mesh\":3,\"translation\":[-69,-40,-42]},{\"mesh\":3,\"translation\":[-69,-42,-32]},{\"mesh\":3,\"translation\":[-69,-42,-36]},{\"mesh\":3,\"translation\":[-69,-42,-40]},{\"mesh\":3,\"translation\":[-69,-44,-32]},{\"mesh\":3,\"translation\":[-69,-44,-36]},{\"mesh\":3,\"translation\":[-69,-44,-40]},{\"mesh\":3,\"translation\":[-69,-46,-34]},{\"mesh\":3,\"translation\":[-69,-48,-34]},{\"mesh\":3,\"translation\":[-69,-32,-32]},{\"mesh\":3,\"translation\":[-69,-34,-34]},{\"mesh\":3,\"translation\":[-69,-36,-34]},{\"mesh\":3,\"translation\":[-69,-36,-38]},{\"mesh\":3,\"translation\":[-69,-38,-32]},{\"mesh\":3,\"translation\":[-69,-38,-36]},{\"mesh\":3,\"translation\":[-69,-38,-40]},{\"mesh\":3,\"translation\":[-69,-40,-32]},{\"mesh\":3,\"translation\":[-69,-40,-36]},{\"mesh\":3,\"translation\":[-69,-40,-40]},{\"mesh\":3,\"translation\":[-69,-40,-44]},{\"mesh\":3,\"translation\":[-69,-42,-34]},{\"mesh\":3,\"translation\":[-69,-42,-38]},{\"mesh\":3,\"translation\":[-69,-42,-42]},{\"mesh\":3,\"translation\":[-69,-44,-34]},{\"mesh\":3,\"translation\":[-69,-44,-38]},{\"mesh\":3,\"translation\":[-69,-46,-32]},{\"mesh\":3,\"translation\":[-69,-46,-36]},{\"mesh\":3,\"translation\":[-69,-48,-32]},{\"mesh\":4,\"translation\":[-70,-34,-32]},{\"mesh\":4,\"translation\":[-70,-36,-32]},{\"mesh\":4,\"translation\":[-70,-34,-36]},{\"mesh\":4,\"translation\":[-70,-36,-36]},{\"mesh\":4,\"translation\":[-70,-38,-34]},{\"mesh\":4,\"translation\":[-70,-40,-34]},{\"mesh\":4,\"translation\":[-70,-38,-38]},{\"mesh\":4,\"translation\":[-70,-40,-38]},{\"mesh\":4,\"translation\":[-70,-38,-42]},{\"mesh\":4,\"translation\":[-70,-40,-42]},{\"mesh\":4,\"translation\":[-70,-42,-32]},{\"mesh\":4,\"translation\":[-70,-44,-32]},{\"mesh\":4,\"translation\":[-70,-42,-36]},{\"mesh\":4,\"translation\":[-70,-44,-36]},{\"mesh\":4,\"translation\":[-70,-42,-40]},{\"mesh\":4,\"translation\":[-70,-44,-40]},{\"mesh\":4,\"translation\":[-70,-46,-34]},{\"mesh\":4,\"translation\":[-70,-48,-34]},{\"mesh\":5,\"translation\":[-71,-34,-32]},{\"mesh\":5,\"translation\":[-71,-36,-32]},{\"mesh\":5,\"translation\":[-71,-34,-36]},{\"mesh\":5,\"translation\":[-71,-36,-36]},{\"mesh\":5,\"translation\":[-71,-38,-34]},{\"mesh\":5,\"translation\":[-71,-40,-34]},{\"mesh\":5,\"translation\":[-71,-38,-38]},{\"mesh\":5,\"translation\":[-71,-40,-38]},{\"mesh\":5,\"translation\":[-71,-38,-42]},{\"mesh\":5,\"translation\":[-71,-40,-42]},{\"mesh\":5,\"translation\":[-71,-42,-32]},{\"mesh\":5,\"translation\":[-71,-44,-32]},{\"mesh\":5,\"translation\":[-71,-42,-36]},{\"mesh\":5,\"translation\":[-71,-44,-36]},{\"mesh\":5,\"translation\":[-71,-42,-40]},{\"mesh\":5,\"translation\":[-71,-44,-40]},{\"mesh\":5,\"translation\":[-71,-46,-34]},{\"mesh\":5,\"translation\":[-71,-48,-34]},{\"mesh\":3,\"translation\":[-71,-32,-32]},{\"mesh\":3,\"translation\":[-71,-34,-34]},{\"mesh\":3,\"translation\":[-71,-36,-34]},{\"mesh\":3,\"translation\":[-71,-36,-38]},{\"mesh\":3,\"translation\":[-71,-38,-32]},{\"mesh\":3,\"translation\":[-71,-38,-36]},{\"mesh\":3,\"translation\":[-71,-38,-40]},{\"mesh\":3,\"translation\":[-71,-40,-32]},{\"mesh\":3,\"translation\":[-71,-40,-36]},{\"mesh\":3,\"translation\":[-71,-40,-40]},{\"mesh\":3,\"translation\":[-71,-40,-44]},{\"mesh\":3,\"translation\":[-71,-42,-34]},{\"mesh\":3,\"translation\":[-71,-42,-38]},{\"mesh\":3,\"translation\":[-71,-42,-42]},{\"mesh\":3,\"translation\":[-71,-44,-34]},{\"mesh\":3,\"translation\":[-71,-44,-38]},{\"mesh\":3,\"translation\":[-71,-46,-32]},{\"mesh\":3,\"translation\":[-71,-46,-36]},{\"mesh\":3,\"translation\":[-71,-48,-32]},{\"mesh\":2,\"translation\":[-72,-32,-32]},{\"mesh\":2,\"translation\":[-72,-34,-34]},{\"mesh\":2,\"translation\":[-72,-36,-32]},{\"mesh\":2,\"translation\":[-72,-36,-34]},{\"mesh\":2,\"translation\":[-72,-36,-36]},{\"mesh\":2,\"translation\":[-72,-36,-38]},{\"mesh\":2,\"translation\":[-72,-38,-32]},{\"mesh\":2,\"translation\":[-72,-38,-36]},{\"mesh\":2,\"translation\":[-72,-38,-40]},{\"mesh\":2,\"translation\":[-72,-40,-32]},{\"mesh\":2,\"translation\":[-72,-40,-34]},{\"mesh\":2,\"translation\":[-72,-40,-36]},{\"mesh\":2,\"translation\":[-72,-40,-38]},{\"mesh\":2,\"translation\":[-72,-40,-40]},{\"mesh\":2,\"translation\":[-72,-40,-42]},{\"mesh\":2,\"translation\":[-72,-40,-44]},{\"mesh\":2,\"translation\":[-72,-42,-34]},{\"mesh\":2,\"translation\":[-72,-42,-38]},{\"mesh\":2,\"translation\":[-72,-42,-42]},{\"mesh\":2,\"translation\":[-72,-44,-32]},{\"mesh\":2,\"translation\":[-72,-44,-34]},{\"mesh\":2,\"translation\":[-72,-44,-36]},{\"mesh\":2,\"translation\":[-72,-44,-38]},{\"mesh\":2,\"translation\":[-72,-44,-40]},{\"mesh\":2,\"translation\":[-72,-46,-32]},{\"mesh\":2,\"translation\":[-72,-46,-36]},{\"mesh\":2,\"translation\":[-72,-48,-32]},{\"mesh\":2,\"translation\":[-72,-48,-34]},{\"mesh\":3,\"translation\":[-73,-32,-32]},{\"mesh\":3,\"translation\":[-73,-34,-34]},{\"mesh\":3,\"translation\":[-73,-36,-32]},{\"mesh\":3,\"translation\":[-73,-36,-34]},{\"mesh\":3,\"translation\":[-73,-36,-36]},{\"mesh\":3,\"translation\":[-73,-36,-38]},{\"mesh\":3,\"translation\":[-73,-38,-32]},{\"mesh\":3,\"translation\":[-73,-38,-36]},{\"mesh\":3,\"translation\":[-73,-38,-40]},{\"mesh\":3,\"translation\":[-73,-40,-32]},{\"mesh\":3,\"translation\":[-73,-40,-34]},{\"mesh\":3,\"translation\":[-73,-40,-36]},{\"mesh\":3,\"translation\":[-73,-40,-38]},{\"mesh\":3,\"translation\":[-73,-40,-40]},{\"mesh\":3,\"translation\":[-73,-40,-42]},{\"mesh\":3,\"translation\":[-73,-40,-44]},{\"mesh\":3,\"translation\":[-73,-42,-34]},{\"mesh\":3,\"translation\":[-73,-42,-38]},{\"mesh\":3,\"translation\":[-73,-42,-42]},{\"mesh\":3,\"translation\":[-73,-44,-32]},{\"mesh\":3,\"translation\":[-73,-44,-34]},{\"mesh\":3,\"translation\":[-73,-44,-36]},{\"mesh\":3,\"translation\":[-73,-44,-38]},{\"mesh\":3,\"translation\":[-73,-44,-40]},{\"mesh\":3,\"translation\":[-73,-46,-32]},{\"mesh\":3,\"translation\":[-73,-46,-36]},{\"mesh\":3,\"translation\":[-73,-48,-32]},{\"mesh\":3,\"translation\":[-73,-48,-34]},{\"mesh\":3,\"translation\":[-73,-34,-32]},{\"mesh\":3,\"translation\":[-73,-34,-36]},{\"mesh\":3,\"translation\":[-73,-38,-34]},{\"mesh\":3,\"translation\":[-73,-38,-38]},{\"mesh\":3,\"translation\":[-73,-38,-42]},{\"mesh\":3,\"translation\":[-73,-42,-32]},{\"mesh\":3,\"translation\":[-73,-42,-36]},{\"mesh\":3,\"translation\":[-73,-42,-40]},{\"mesh\":3,\"translation\":[-73,-46,-34]},{\"mesh\":4,\"translation\":[-74,-34,-34]},{\"mesh\":4,\"translation\":[-74,-34,-36]},{\"mesh\":4,\"translation\":[-74,-36,-34]},{\"mesh\":4,\"translation\":[-74,-36,-36]},{\"mesh\":4,\"translation\":[-74,-38,-32]},{\"mesh\":4,\"translation\":[-74,-38,-34]},{\"mesh\":4,\"translation\":[-74,-38,-36]},{\"mesh\":4,\"translation\":[-74,-38,-38]},{\"mesh\":4,\"translation\":[-74,-38,-40]},{\"mesh\":4,\"translation\":[-74,-38,-42]},{\"mesh\":4,\"translation\":[-74,-40,-32]},{\"mesh\":4,\"translation\":[-74,-40,-34]},{\"mesh\":4,\"translation\":[-74,-40,-36]},{\"mesh\":4,\"translation\":[-74,-40,-38]},{\"mesh\":4,\"translation\":[-74,-40,-40]},{\"mesh\":4,\"translation\":[-74,-40,-42]},{\"mesh\":4,\"translation\":[-74,-42,-34]},{\"mesh\":4,\"translation\":[-74,-42,-36]},{\"mesh\":4,\"translation\":[-74,-42,-38]},{\"mesh\":4,\"translation\":[-74,-42,-40]},{\"mesh\":4,\"translation\":[-74,-44,-34]},{\"mesh\":4,\"translation\":[-74,-44,-36]},{\"mesh\":4,\"translation\":[-74,-44,-38]},{\"mesh\":4,\"translation\":[-74,-44,-40]},{\"mesh\":4,\"translation\":[-74,-46,-32]},{\"mesh\":4,\"translation\":[-74,-46,-34]},{\"mesh\":4,\"translation\":[-74,-48,-32]},{\"mesh\":4,\"translation\":[-74,-48,-34]},{\"mesh\":5,\"translation\":[-75,-34,-34]},{\"mesh\":5,\"translation\":[-75,-34,-36]},{\"mesh\":5,\"translation\":[-75,-36,-34]},{\"mesh\":5,\"translation\":[-75,-36,-36]},{\"mesh\":5,\"translation\":[-75,-38,-32]},{\"mesh\":5,\"translation\":[-75,-38,-34]},{\"mesh\":5,\"translation\":[-75,-38,-36]},{\"mesh\":5,\"translation\":[-75,-38,-38]},{\"mesh\":5,\"translation\":[-75,-38,-40]},{\"mesh\":5,\"translation\":[-75,-38,-42]},{\"mesh\":5,\"translation\":[-75,-40,-32]},{\"mesh\":5,\"translation\":[-75,-40,-34]},{\"mesh\":5,\"translation\":[-75,-40,-36]},{\"mesh\":5,\"translation\":[-75,-40,-38]},{\"mesh\":5,\"translation\":[-75,-40,-40]},{\"mesh\":5,\"translation\":[-75,-40,-42]},{\"mesh\":5,\"translation\":[-75,-42,-34]},{\"mesh\":5,\"translation\":[-75,-42,-36]},{\"mesh\":5,\"translation\":[-75,-42,-38]},{\"mesh\":5,\"translation\":[-75,-42,-40]},{\"mesh\":5,\"translation\":[-75,-44,-34]},{\"mesh\":5,\"translation\":[-75,-44,-36]},{\"mesh\":5,\"translation\":[-75,-44,-38]},{\"mesh\":5,\"translation\":[-75,-44,-40]},{\"mesh\":5,\"translation\":[-75,-46,-32]},{\"mesh\":5,\"translation\":[-75,-46,-34]},{\"mesh\":5,\"translation\":[-75,-48,-32]},{\"mesh\":5,\"translation\":[-75,-48,-34]},{\"mesh\":3,\"translation\":[-75,-32,-32]},{\"mesh\":3,\"translation\":[-75,-34,-32]},{\"mesh\":3,\"translation\":[-75,-36,-32]},{\"mesh\":3,\"translation\":[-75,-36,-38]},{\"mesh\":3,\"translation\":[-75,-40,-44]},{\"mesh\":3,\"translation\":[-75,-42,-32]},{\"mesh\":3,\"translation\":[-75,-42,-42]},{\"mesh\":3,\"translation\":[-75,-44,-32]},{\"mesh\":3,\"translation\":[-75,-46,-36]},{\"mesh\":4,\"translation\":[-76,-32,-32]},{\"mesh\":4,\"translation\":[-76,-34,-32]},{\"mesh\":4,\"translation\":[-76,-36,-32]},{\"mesh\":4,\"translation\":[-76,-38,-32]},{\"mesh\":4,\"translation\":[-76,-36,-34]},{\"mesh\":4,\"translation\":[-76,-38,-34]},{\"mesh\":4,\"translation\":[-76,-36,-36]},{\"mesh\":4,\"translation\":[-76,-38,-36]},{\"mesh\":4,\"translation\":[-76,-36,-38]},{\"mesh\":4,\"translation\":[-76,-38,-38]},{\"mesh\":4,\"translation\":[-76,-40,-32]},{\"mesh\":4,\"translation\":[-76,-42,-32]},{\"mesh\":4,\"translation\":[-76,-40,-34]},{\"mesh\":4,\"translation\":[-76,-42,-34]},{\"mesh\":4,\"translation\":[-76,-40,-36]},{\"mesh\":4,\"translation\":[-76,-42,-36]},{\"mesh\":4,\"translation\":[-76,-40,-38]},{\"mesh\":4,\"translation\":[-76,-42,-38]},{\"mesh\":4,\"translation\":[-76,-40,-40]},{\"mesh\":4,\"translation\":[-76,-42,-40]},{\"mesh\":4,\"translation\":[-76,-40,-42]},{\"mesh\":4,\"translation\":[-76,-42,-42]},{\"mesh\":4,\"translation\":[-76,-44,-32]},{\"mesh\":4,\"translation\":[-76,-46,-32]},{\"mesh\":4,\"translation\":[-76,-44,-34]},{\"mesh\":4,\"translation\":[-76,-46,-34]},{\"mesh\":4,\"translation\":[-76,-44,-36]},{\"mesh\":4,\"translation\":[-76,-46,-36]},{\"mesh\":5,\"translation\":[-77,-32,-32]},{\"mesh\":5,\"translation\":[-77,-34,-32]},{\"mesh\":5,\"translation\":[-77,-36,-32]},{\"mesh\":5,\"translation\":[-77,-38,-32]},{\"mesh\":5,\"translation\":[-77,-36,-34]},{\"mesh\":5,\"translation\":[-77,-38,-34]},{\"mesh\":5,\"translation\":[-77,-36,-36]},{\"mesh\":5,\"translation\":[-77,-38,-36]},{\"mesh\":5,\"translation\":[-77,-36,-38]},{\"mesh\":5,\"translation\":[-77,-38,-38]},{\"mesh\":5,\"translation\":[-77,-40,-32]},{\"mesh\":5,\"translation\":[-77,-42,-32]},{\"mesh\":5,\"translation\":[-77,-40,-34]},{\"mesh\":5,\"translation\":[-77,-42,-34]},{\"mesh\":5,\"translation\":[-77,-40,-36]},{\"mesh\":5,\"translation\":[-77,-42,-36]},{\"mesh\":5,\"translation\":[-77,-40,-38]},{\"mesh\":5,\"translation\":[-77,-42,-38]},{\"mesh\":5,\"translation\":[-77,-40,-40]},{\"mesh\":5,\"translation\":[-77,-42,-40]},{\"mesh\":5,\"translation\":[-77,-40,-42]},{\"mesh\":5,\"translation\":[-77,-42,-42]},{\"mesh\":5,\"translation\":[-77,-44,-32]},{\"mesh\":5,\"translation\":[-77,-46,-32]},{\"mesh\":5,\"translation\":[-77,-44,-34]},{\"mesh\":5,\"translation\":[-77,-46,-34]},{\"mesh\":5,\"translation\":[-77,-44,-36]},{\"mesh\":5,\"translation\":[-77,-46,-36]},{\"mesh\":3,\"translation\":[-77,-34,-34]},{\"mesh\":3,\"translation\":[-77,-34,-36]},{\"mesh\":3,\"translation\":[-77,-38,-40]},{\"mesh\":3,\"translation\":[-77,-38,-42]},{\"mesh\":3,\"translation\":[-77,-40,-44]},{\"mesh\":3,\"translation\":[-77,-44,-38]},{\"mesh\":3,\"translation\":[-77,-44,-40]},{\"mesh\":3,\"translation\":[-77,-48,-32]},{\"mesh\":3,\"translation\":[-77,-48,-34]},{\"mesh\":4,\"translation\":[-78,-34,-32]},{\"mesh\":4,\"translation\":[-78,-34,-34]},{\"mesh\":4,\"translation\":[-78,-36,-32]},{\"mesh\":4,\"translation\":[-78,-36,-34]},{\"mesh\":4,\"translation\":[-78,-36,-36]},{\"mesh\":4,\"translation\":[-78,-36,-38]},{\"mesh\":4,\"translation\":[-78,-38,-34]},{\"mesh\":4,\"translation\":[-78,-38,-36]},{\"mesh\":4,\"translation\":[-78,-38,-38]},{\"mesh\":4,\"translation\":[-78,-38,-40]},{\"mesh\":4,\"translation\":[-78,-40,-34]},{\"mesh\":4,\"translation\":[-78,-40,-36]},{\"mesh\":4,\"translation\":[-78,-40,-38]},{\"mesh\":4,\"translation\":[-78,-40,-40]},{\"mesh\":4,\"translation\":[-78,-40,-42]},{\"mesh\":4,\"translation\":[-78,-40,-44]},{\"mesh\":4,\"translation\":[-78,-42,-32]},{\"mesh\":4,\"translation\":[-78,-42,-34]},{\"mesh\":4,\"translation\":[-78,-42,-36]},{\"mesh\":4,\"translation\":[-78,-42,-38]},{\"mesh\":4,\"translation\":[-78,-42,-40]},{\"mesh\":4,\"translation\":[-78,-42,-42]},{\"mesh\":4,\"translation\":[-78,-44,-32]},{\"mesh\":4,\"translation\":[-78,-44,-34]},{\"mesh\":4,\"translation\":[-78,-44,-36]},{\"mesh\":4,\"translation\":[-78,-44,-38]},{\"mesh\":4,\"translation\":[-78,-46,-34]},{\"mesh\":4,\"translation\":[-78,-46,-36]},{\"mesh\":5,\"translation\":[-79,-34,-32]},{\"mesh\":5,\"translation\":[-79,-34,-34]},{\"mesh\":5,\"translation\":[-79,-36,-32]},{\"mesh\":5,\"translation\":[-79,-36,-34]},{\"mesh\":5,\"translation\":[-79,-36,-36]},{\"mesh\":5,\"translation\":[-79,-36,-38]},{\"mesh\":5,\"translation\":[-79,-38,-34]},{\"mesh\":5,\"translation\":[-79,-38,-36]},{\"mesh\":5,\"translation\":[-79,-38,-38]},{\"mesh\":5,\"translation\":[-79,-38,-40]},{\"mesh\":5,\"translation\":[-79,-40,-34]},{\"mesh\":5,\"translation\":[-79,-40,-36]},{\"mesh\":5,\"translation\":[-79,-40,-38]},{\"mesh\":5,\"translation\":[-79,-40,-40]},{\"mesh\":5,\"translation\":[-79,-40,-42]},{\"mesh\":5,\"translation\":[-79,-40,-44]},{\"mesh\":5,\"translation\":[-79,-42,-32]},{\"mesh\":5,\"translation\":[-79,-42,-34]},{\"mesh\":5,\"translation\":[-79,-42,-36]},{\"mesh\":5,\"translation\":[-79,-42,-38]},{\"mesh\":5,\"translation\":[-79,-42,-40]},{\"mesh\":5,\"translation\":[-79,-42,-42]},{\"mesh\":5,\"translation\":[-79,-44,-32]},{\"mesh\":5,\"translation\":[-79,-44,-34]},{\"mesh\":5,\"translation\":[-79,-44,-36]},{\"mesh\":5,\"translation\":[-79,-44,-38]},{\"mesh\":5,\"translation\":[-79,-46,-34]},{\"mesh\":5,\"translation\":[-79,-46,-36]},{\"mesh\":3,\"translation\":[-79,-32,-32]},{\"mesh\":3,\"translation\":[-79,-34,-36]},{\"mesh\":3,\"translation\":[-79,-38,-32]},{\"mesh\":3,\"translation\":[-79,-38,-42]},{\"mesh\":3,\"translation\":[-79,-40,-32]},{\"mesh\":3,\"translation\":[-79,-44,-40]},{\"mesh\":3,\"translation\":[-79,-46,-32]},{\"mesh\":3,\"translation\":[-79,-48,-32]},{\"mesh\":3,\"translation\":[-79,-48,-34]},{\"mesh\":2,\"translation\":[-80,-32,-32]},{\"mesh\":2,\"translation\":[-80,-34,-32]},{\"mesh\":2,\"translation\":[-80,-34,-34]},{\"mesh\":2,\"translation\":[-80,-34,-36]},{\"mesh\":2,\"translation\":[-80,-36,-32]},{\"mesh\":2,\"translation\":[-80,-36,-34]},{\"mesh\":2,\"translation\":[-80,-36,-36]},{\"mesh\":2,\"translation\":[-80,-36,-38]},{\"mesh\":2,\"translation\":[-80,-38,-32]},{\"mesh\":2,\"translation\":[-80,-38,-34]},{\"mesh\":2,\"translation\":[-80,-38,-36]},{\"mesh\":2,\"translation\":[-80,-38,-38]},{\"mesh\":2,\"translation\":[-80,-38,-40]},{\"mesh\":2,\"translation\":[-80,-38,-42]},{\"mesh\":2,\"translation\":[-80,-40,-32]},{\"mesh\":2,\"translation\":[-80,-40,-34]},{\"mesh\":2,\"translation\":[-80,-40,-36]},{\"mesh\":2,\"translation\":[-80,-40,-38]},{\"mesh\":2,\"translation\":[-80,-40,-40]},{\"mesh\":2,\"translation\":[-80,-40,-42]},{\"mesh\":2,\"translation\":[-80,-40,-44]},{\"mesh\":2,\"translation\":[-80,-42,-32]},{\"mesh\":2,\"translation\":[-80,-42,-34]},{\"mesh\":2,\"translation\":[-80,-42,-36]},{\"mesh\":2,\"translation\":[-80,-42,-38]},{\"mesh\":2,\"translation\":[-80,-42,-40]},{\"mesh\":2,\"translation\":[-80,-42,-42]},{\"mesh\":2,\"translation\":[-80,-44,-32]},{\"mesh\":2,\"translation\":[-80,-44,-34]},{\"mesh\":2,\"translation\":[-80,-44,-36]},{\"mesh\":2,\"translation\":[-80,-44,-38]},{\"mesh\":2,\"translation\":[-80,-44,-40]},{\"mesh\":2,\"translation\":[-80,-46,-32]},{\"mesh\":2,\"translation\":[-80,-46,-34]},{\"mesh\":2,\"translation\":[-80,-46,-36]},{\"mesh\":2,\"translation\":[-80,-48,-32]},{\"mesh\":2,\"translation\":[-80,-48,-34]},{\"mesh\":3,\"translation\":[-81,-32,-32]},{\"mesh\":3,\"translation\":[-81,-34,-32]},{\"mesh\":3,\"translation\":[-81,-34,-34]},{\"mesh\":3,\"translation\":[-81,-34,-36]},{\"mesh\":3,\"translation\":[-81,-36,-32]},{\"mesh\":3,\"translation\":[-81,-36,-34]},{\"mesh\":3,\"translation\":[-81,-36,-36]},{\"mesh\":3,\"translation\":[-81,-36,-38]},{\"mesh\":3,\"translation\":[-81,-38,-32]},{\"mesh\":3,\"translation\":[-81,-38,-34]},{\"mesh\":3,\"translation\":[-81,-38,-36]},{\"mesh\":3,\"translation\":[-81,-38,-38]},{\"mesh\":3,\"translation\":[-81,-38,-40]},{\"mesh\":3,\"translation\":[-81,-38,-42]},{\"mesh\":3,\"translation\":[-81,-40,-32]},{\"mesh\":3,\"translation\":[-81,-40,-34]},{\"mesh\":3,\"translation\":[-81,-40,-36]},{\"mesh\":3,\"translation\":[-81,-40,-38]},{\"mesh\":3,\"translation\":[-81,-40,-40]},{\"mesh\":3,\"translation\":[-81,-40,-42]},{\"mesh\":3,\"translation\":[-81,-40,-44]},{\"mesh\":3,\"translation\":[-81,-42,-32]},{\"mesh\":3,\"translation\":[-81,-42,-34]},{\"mesh\":3,\"translation\":[-81,-42,-36]},{\"mesh\":3,\"translation\":[-81,-42,-38]},{\"mesh\":3,\"translation\":[-81,-42,-40]},{\"mesh\":3,\"translation\":[-81,-42,-42]},{\"mesh\":3,\"translation\":[-81,-44,-32]},{\"mesh\":3,\"translation\":[-81,-44,-34]},{\"mesh\":3,\"translation\":[-81,-44,-36]},{\"mesh\":3,\"translation\":[-81,-44,-38]},{\"mesh\":3,\"translation\":[-81,-44,-40]},{\"mesh\":3,\"translation\":[-81,-46,-32]},{\"mesh\":3,\"translation\":[-81,-46,-34]},{\"mesh\":3,\"translation\":[-81,-46,-36]},{\"mesh\":3,\"translation\":[-81,-48,-32]},{\"mesh\":3,\"translation\":[-81,-48,-34]},{\"mesh\":4,\"translation\":[-82,-34,-34]},{\"mesh\":4,\"translation\":[-82,-34,-36]},{\"mesh\":4,\"translation\":[-82,-36,-34]},{\"mesh\":4,\"translation\":[-82,-36,-36]},{\"mesh\":4,\"translation\":[-82,-38,-32]},{\"mesh\":4,\"translation\":[-82,-38,-34]},{\"mesh\":4,\"translation\":[-82,-38,-36]},{\"mesh\":4,\"translation\":[-82,-38,-38]},{\"mesh\":4,\"translation\":[-82,-38,-40]},{\"mesh\":4,\"translation\":[-82,-38,-42]},{\"mesh\":4,\"translation\":[-82,-40,-32]},{\"mesh\":4,\"translation\":[-82,-40,-34]},{\"mesh\":4,\"translation\":[-82,-40,-36]},{\"mesh\":4,\"translation\":[-82,-40,-38]},{\"mesh\":4,\"translation\":[-82,-40,-40]},{\"mesh\":4,\"translation\":[-82,-40,-42]},{\"mesh\":4,\"translation\":[-82,-42,-34]},{\"mesh\":4,\"translation\":[-82,-42,-36]},{\"mesh\":4,\"translation\":[-82,-42,-38]},{\"mesh\":4,\"translation\":[-82,-42,-40]},{\"mesh\":4,\"translation\":[-82,-44,-34]},{\"mesh\":4,\"translation\":[-82,-44,-36]},{\"mesh\":4,\"translation\":[-82,-44,-38]},{\"mesh\":4,\"translation\":[-82,-44,-40]},{\"mesh\":4,\"translation\":[-82,-46,-32]},{\"mesh\":4,\"translation\":[-82,-46,-34]},{\"mesh\":4,\"translation\":[-82,-48,-32]},{\"mesh\":4,\"translation\":[-82,-48,-34]},{\"mesh\":5,\"translation\":[-83,-34,-34]},{\"mesh\":5,\"translation\":[-83,-34,-36]},{\"mesh\":5,\"translation\":[-83,-36,-34]},{\"mesh\":5,\"translation\":[-83,-36,-36]},{\"mesh\":5,\"translation\":[-83,-38,-32]},{\"mesh\":5,\"translation\":[-83,-38,-34]},{\"mesh\":5,\"translation\":[-83,-38,-36]},{\"mesh\":5,\"translation\":[-83,-38,-38]},{\"mesh\":5,\"translation\":[-83,-38,-40]},{\"mesh\":5,\"translation\":[-83,-38,-42]},{\"mesh\":5,\"translation\":[-83,-40,-32]},{\"mesh\":5,\"translation\":[-83,-40,-34]},{\"mesh\":5,\"translation\":[-83,-40,-36]},{\"mesh\":5,\"translation\":[-83,-40,-38]},{\"mesh\":5,\"translation\":[-83,-40,-40]},{\"mesh\":5,\"translation\":[-83,-40,-42]},{\"mesh\":5,\"translation\":[-83,-42,-34]},{\"mesh\":5,\"translation\":[-83,-42,-36]},{\"mesh\":5,\"translation\":[-83,-42,-38]},{\"mesh\":5,\"translation\":[-83,-42,-40]},{\"mesh\":5,\"translation\":[-83,-44,-34]},{\"mesh\":5,\"translation\":[-83,-44,-36]},{\"mesh\":5,\"translation\":[-83,-44,-38]},{\"mesh\":5,\"translation\":[-83,-44,-40]},{\"mesh\":5,\"translation\":[-83,-46,-32]},{\"mesh\":5,\"translation\":[-83,-46,-34]},{\"mesh\":5,\"translation\":[-83,-48,-32]},{\"mesh\":5,\"translation\":[-83,-48,-34]},{\"mesh\":3,\"translation\":[-83,-32,-32]},{\"mesh\":3,\"translation\":[-83,-34,-32]},{\"mesh\":3,\"translation\":[-83,-36,-32]},{\"mesh\":3,\"translation\":[-83,-36,-38]},{\"mesh\":3,\"translation\":[-83,-40,-44]},{\"mesh\":3,\"translation\":[-83,-42,-32]},{\"mesh\":3,\"translation\":[-83,-42,-42]},{\"mesh\":3,\"translation\":[-83,-44,-32]},{\"mesh\":3,\"translation\":[-83,-46,-36]},{\"mesh\":4,\"translation\":[-84,-32,-32]},{\"mesh\":4,\"translation\":[-84,-34,-32]},{\"mesh\":4,\"translation\":[-84,-36,-32]},{\"mesh\":4,\"translation\":[-84,-38,-32]},{\"mesh\":4,\"translation\":[-84,-36,-34]},{\"mesh\":4,\"translation\":[-84,-38,-34]},{\"mesh\":4,\"translation\":[-84,-36,-36]},{\"mesh\":4,\"translation\":[-84,-38,-36]},{\"mesh\":4,\"translation\":[-84,-36,-38]},{\"mesh\":4,\"translation\":[-84,-38,-38]},{\"mesh\":4,\"translation\":[-84,-40,-32]},{\"mesh\":4,\"translation\":[-84,-42,-32]},{\"mesh\":4,\"translation\":[-84,-40,-34]},{\"mesh\":4,\"translation\":[-84,-42,-34]},{\"mesh\":4,\"translation\":[-84,-40,-36]},{\"mesh\":4,\"translation\":[-84,-42,-36]},{\"mesh\":4,\"translation\":[-84,-40,-38]},{\"mesh\":4,\"translation\":[-84,-42,-38]},{\"mesh\":4,\"translation\":[-84,-40,-40]},{\"mesh\":4,\"translation\":[-84,-42,-40]},{\"mesh\":4,\"translation\":[-84,-40,-42]},{\"mesh\":4,\"translation\":[-84,-42,-42]},{\"mesh\":4,\"translation\":[-84,-44,-32]},{\"mesh\":4,\"translation\":[-84,-46,-32]},{\"mesh\":4,\"translation\":[-84,-44,-34]},{\"mesh\":4,\"translation\":[-84,-46,-34]},{\"mesh\":4,\"translation\":[-84,-44,-36]},{\"mesh\":4,\"translation\":[-84,-46,-36]},{\"mesh\":5,\"translation\":[-85,-32,-32]},{\"mesh\":5,\"translation\":[-85,-34,-32]},{\"mesh\":5,\"translation\":[-85,-36,-32]},{\"mesh\":5,\"translation\":[-85,-38,-32]},{\"mesh\":5,\"translation\":[-85,-36,-34]},{\"mesh\":5,\"translation\":[-85,-38,-34]},{\"mesh\":5,\"translation\":[-85,-36,-36]},{\"mesh\":5,\"translation\":[-85,-38,-36]},{\"mesh\":5,\"translation\":[-85,-36,-38]},{\"mesh\":5,\"translation\":[-85,-38,-38]},{\"mesh\":5,\"translation\":[-85,-40,-32]},{\"mesh\":5,\"translation\":[-85,-42,-32]},{\"mesh\":5,\"translation\":[-85,-40,-34]},{\"mesh\":5,\"translation\":[-85,-42,-34]},{\"mesh\":5,\"translation\":[-85,-40,-36]},{\"mesh\":5,\"translation\":[-85,-42,-36]},{\"mesh\":5,\"translation\":[-85,-40,-38]},{\"mesh\":5,\"translation\":[-85,-42,-38]},{\"mesh\":5,\"translation\":[-85,-40,-40]},{\"mesh\":5,\"translation\":[-85,-42,-40]},{\"mesh\":5,\"translation\":[-85,-40,-42]},{\"mesh\":5,\"translation\":[-85,-42,-42]},{\"mesh\":5,\"translation\":[-85,-44,-32]},{\"mesh\":5,\"translation\":[-85,-46,-32]},{\"mesh\":5,\"translation\":[-85,-44,-34]},{\"mesh\":5,\"translation\":[-85,-46,-34]},{\"mesh\":5,\"translation\":[-85,-44,-36]},{\"mesh\":5,\"translation\":[-85,-46,-36]},{\"mesh\":3,\"translation\":[-85,-34,-34]},{\"mesh\":3,\"translation\":[-85,-34,-36]},{\"mesh\":3,\"translation\":[-85,-38,-40]},{\"mesh\":3,\"translation\":[-85,-38,-42]},{\"mesh\":3,\"translation\":[-85,-40,-44]},{\"mesh\":3,\"translation\":[-85,-44,-38]},{\"mesh\":3,\"translation\":[-85,-44,-40]},{\"mesh\":3,\"translation\":[-85,-48,-32]},{\"mesh\":3,\"translation\":[-85,-48,-34]},{\"mesh\":4,\"translation\":[-86,-34,-32]},{\"mesh\":4,\"translation\":[-86,-34,-34]},{\"mesh\":4,\"translation\":[-86,-36,-32]},{\"mesh\":4,\"translation\":[-86,-36,-34]},{\"mesh\":4,\"translation\":[-86,-36,-36]},{\"mesh\":4,\"translation\":[-86,-36,-38]},{\"mesh\":4,\"translation\":[-86,-38,-34]},{\"mesh\":4,\"translation\":[-86,-38,-36]},{\"mesh\":4,\"translation\":[-86,-38,-38]},{\"mesh\":4,\"translation\":[-86,-38,-40]},{\"mesh\":4,\"translation\":[-86,-40,-34]},{\"mesh\":4,\"translation\":[-86,-40,-36]},{\"mesh\":4,\"translation\":[-86,-40,-38]},{\"mesh\":4,\"translation\":[-86,-40,-40]},{\"mesh\":4,\"translation\":[-86,-40,-42]},{\"mesh\":4,\"translation\":[-86,-40,-44]},{\"mesh\":4,\"translation\":[-86,-42,-32]},{\"mesh\":4,\"translation\":[-86,-42,-34]},{\"mesh\":4,\"translation\":[-86,-42,-36]},{\"mesh\":4,\"translation\":[-86,-42,-38]},{\"mesh\":4,\"translation\":[-86,-42,-40]},{\"mesh\":4,\"translation\":[-86,-42,-42]},{\"mesh\":4,\"translation\":[-86,-44,-32]},{\"mesh\":4,\"translation\":[-86,-44,-34]},{\"mesh\":4,\"translation\":[-86,-44,-36]},{\"mesh\":4,\"translation\":[-86,-44,-38]},{\"mesh\":4,\"translation\":[-86,-46,-34]},{\"mesh\":4,\"translation\":[-86,-46,-36]},{\"mesh\":5,\"translation\":[-87,-34,-32]},{\"mesh\":5,\"translation\":[-87,-34,-34]},{\"mesh\":5,\"translation\":[-87,-36,-32]},{\"mesh\":5,\"translation\":[-87,-36,-34]},{\"mesh\":5,\"translation\":[-87,-36,-36]},{\"mesh\":5,\"translation\":[-87,-36,-38]},{\"mesh\":5,\"translation\":[-87,-38,-34]},{\"mesh\":5,\"translation\":[-87,-38,-36]},{\"mesh\":5,\"translation\":[-87,-38,-38]},{\"mesh\":5,\"translation\":[-87,-38,-40]},{\"mesh\":5,\"translation\":[-87,-40,-34]},{\"mesh\":5,\"translation\":[-87,-40,-36]},{\"mesh\":5,\"translation\":[-87,-40,-38]},{\"mesh\":5,\"translation\":[-87,-40,-40]},{\"mesh\":5,\"translation\":[-87,-40,-42]},{\"mesh\":5,\"translation\":[-87,-40,-44]},{\"mesh\":5,\"translation\":[-87,-42,-32]},{\"mesh\":5,\"translation\":[-87,-42,-34]},{\"mesh\":5,\"translation\":[-87,-42,-36]},{\"mesh\":5,\"translation\":[-87,-42,-38]},{\"mesh\":5,\"translation\":[-87,-42,-40]},{\"mesh\":5,\"translation\":[-87,-42,-42]},{\"mesh\":5,\"translation\":[-87,-44,-32]},{\"mesh\":5,\"translation\":[-87,-44,-34]},{\"mesh\":5,\"translation\":[-87,-44,-36]},{\"mesh\":5,\"translation\":[-87,-44,-38]},{\"mesh\":5,\"translation\":[-87,-46,-34]},{\"mesh\":5,\"translation\":[-87,-46,-36]},{\"mesh\":3,\"translation\":[-87,-32,-32]},{\"mesh\":3,\"translation\":[-87,-34,-36]},{\"mesh\":3,\"translation\":[-87,-38,-32]},{\"mesh\":3,\"translation\":[-87,-38,-42]},{\"mesh\":3,\"translation\":[-87,-40,-32]},{\"mesh\":3,\"translation\":[-87,-44,-40]},{\"mesh\":3,\"translation\":[-87,-46,-32]},{\"mesh\":3,\"translation\":[-87,-48,-32]},{\"mesh\":3,\"translation\":[-87,-48,-34]},{\"mesh\":2,\"translation\":[-88,-34,-32]},{\"mesh\":2,\"translation\":[-88,-34,-36]},{\"mesh\":2,\"translation\":[-88,-38,-34]},{\"mesh\":2,\"translation\":[-88,-38,-38]},{\"mesh\":2,\"translation\":[-88,-38,-42]},{\"mesh\":2,\"translation\":[-88,-42,-32]},{\"mesh\":2,\"translation\":[-88,-42,-36]},{\"mesh\":2,\"translation\":[-88,-42,-40]},{\"mesh\":2,\"translation\":[-88,-46,-34]},{\"mesh\":3,\"translation\":[-89,-34,-32]},{\"mesh\":3,\"translation\":[-89,-34,-36]},{\"mesh\":3,\"translation\":[-89,-38,-34]},{\"mesh\":3,\"translation\":[-89,-38,-38]},{\"mesh\":3,\"translation\":[-89,-38,-42]},{\"mesh\":3,\"translation\":[-89,-42,-32]},{\"mesh\":3,\"translation\":[-89,-42,-36]},{\"mesh\":3,\"translation\":[-89,-42,-40]},{\"mesh\":3,\"translation\":[-89,-46,-34]},{\"mesh\":3,\"translation\":[-89,-32,-32]},{\"mesh\":3,\"translation\":[-89,-34,-34]},{\"mesh\":3,\"translation\":[-89,-36,-32]},{\"mesh\":3,\"translation\":[-89,-36,-34]},{\"mesh\":3,\"translation\":[-89,-36,-36]},{\"mesh\":3,\"translation\":[-89,-36,-38]},{\"mesh\":3,\"translation\":[-89,-38,-32]},{\"mesh\":3,\"translation\":[-89,-38,-36]},{\"mesh\":3,\"translation\":[-89,-38,-40]},{\"mesh\":3,\"translation\":[-89,-40,-32]},{\"mesh\":3,\"translation\":[-89,-40,-34]},{\"mesh\":3,\"translation\":[-89,-40,-36]},{\"mesh\":3,\"translation\":[-89,-40,-38]},{\"mesh\":3,\"translation\":[-89,-40,-40]},{\"mesh\":3,\"translation\":[-89,-40,-42]},{\"mesh\":3,\"translation\":[-89,-40,-44]},{\"mesh\":3,\"translation\":[-89,-42,-34]},{\"mesh\":3,\"translation\":[-89,-42,-38]},{\"mesh\":3,\"translation\":[-89,-42,-42]},{\"mesh\":3,\"translation\":[-89,-44,-32]},{\"mesh\":3,\"translation\":[-89,-44,-34]},{\"mesh\":3,\"translation\":[-89,-44,-36]},{\"mesh\":3,\"translation\":[-89,-44,-38]},{\"mesh\":3,\"translation\":[-89,-44,-40]},{\"mesh\":3,\"translation\":[-89,-46,-32]},{\"mesh\":3,\"translation\":[-89,-46,-36]},{\"mesh\":3,\"translation\":[-89,-48,-32]},{\"mesh\":3,\"translation\":[-89,-48,-34]},{\"mesh\":4,\"translation\":[-90,-34,-32]},{\"mesh\":4,\"translation\":[-90,-36,-32]},{\"mesh\":4,\"translation\":[-90,-34,-36]},{\"mesh\":4,\"translation\":[-90,-36,-36]},{\"mesh\":4,\"translation\":[-90,-38,-34]},{\"mesh\":4,\"translation\":[-90,-40,-34]},{\"mesh\":4,\"translation\":[-90,-38,-38]},{\"mesh\":4,\"translation\":[-90,-40,-38]},{\"mesh\":4,\"translation\":[-90,-38,-42]},{\"mesh\":4,\"translation\":[-90,-40,-42]},{\"mesh\":4,\"translation\":[-90,-42,-32]},{\"mesh\":4,\"translation\":[-90,-44,-32]},{\"mesh\":4,\"translation\":[-90,-42,-36]},{\"mesh\":4,\"translation\":[-90,-44,-36]},{\"mesh\":4,\"translation\":[-90,-42,-40]},{\"mesh\":4,\"translation\":[-90,-44,-40]},{\"mesh\":4,\"translation\":[-90,-46,-34]},{\"mesh\":4,\"translation\":[-90,-48,-34]},{\"mesh\":5,\"translation\":[-91,-34,-32]},{\"mesh\":5,\"translation\":[-91,-36,-32]},{\"mesh\":5,\"translation\":[-91,-34,-36]},{\"mesh\":5,\"translation\":[-91,-36,-36]},{\"mesh\":5,\"translation\":[-91,-38,-34]},{\"mesh\":5,\"translation\":[-91,-40,-34]},{\"mesh\":5,\"translation\":[-91,-38,-38]},{\"mesh\":5,\"translation\":[-91,-40,-38]},{\"mesh\":5,\"translation\":[-91,-38,-42]},{\"mesh\":5,\"translation\":[-91,-40,-42]},{\"mesh\":5,\"translation\":[-91,-42,-32]},{\"mesh\":5,\"translation\":[-91,-44,-32]},{\"mesh\":5,\"translation\":[-91,-42,-36]},{\"mesh\":5,\"translation\":[-91,-44,-36]},{\"mesh\":5,\"translation\":[-91,-42,-40]},{\"mesh\":5,\"translation\":[-91,-44,-40]},{\"mesh\":5,\"translation\":[-91,-46,-34]},{\"mesh\":5,\"translation\":[-91,-48,-34]},{\"mesh\":3,\"translation\":[-91,-32,-32]},{\"mesh\":3,\"translation\":[-91,-34,-34]},{\"mesh\":3,\"translation\":[-91,-36,-34]},{\"mesh\":3,\"translation\":[-91,-36,-38]},{\"mesh\":3,\"translation\":[-91,-38,-32]},{\"mesh\":3,\"translation\":[-91,-38,-36]},{\"mesh\":3,\"translation\":[-91,-38,-40]},{\"mesh\":3,\"translation\":[-91,-40,-32]},{\"mesh\":3,\"translation\":[-91,-40,-36]},{\"mesh\":3,\"translation\":[-91,-40,-40]},{\"mesh\":3,\"translation\":[-91,-40,-44]},{\"mesh\":3,\"translation\":[-91,-42,-34]},{\"mesh\":3,\"translation\":[-91,-42,-38]},{\"mesh\":3,\"translation\":[-91,-42,-42]},{\"mesh\":3,\"translation\":[-91,-44,-34]},{\"mesh\":3,\"translation\":[-91,-44,-38]},{\"mesh\":3,\"translation\":[-91,-46,-32]},{\"mesh\":3,\"translation\":[-91,-46,-36]},{\"mesh\":3,\"translation\":[-91,-48,-32]},{\"mesh\":2,\"translation\":[-92,-34,-32]},{\"mesh\":2,\"translation\":[-92,-34,-36]},{\"mesh\":2,\"translation\":[-92,-36,-32]},{\"mesh\":2,\"translation\":[-92,-36,-36]},{\"mesh\":2,\"translation\":[-92,-38,-34]},{\"mesh\":2,\"translation\":[-92,-38,-38]},{\"mesh\":2,\"translation\":[-92,-38,-42]},{\"mesh\":2,\"translation\":[-92,-40,-34]},{\"mesh\":2,\"translation\":[-92,-40,-38]},{\"mesh\":2,\"translation\":[-92,-40,-42]},{\"mesh\":2,\"translation\":[-92,-42,-32]},{\"mesh\":2,\"translation\":[-92,-42,-36]},{\"mesh\":2,\"translation\":[-92,-42,-40]},{\"mesh\":2,\"translation\":[-92,-44,-32]},{\"mesh\":2,\"translation\":[-92,-44,-36]},{\"mesh\":2,\"translation\":[-92,-44,-40]},{\"mesh\":2,\"translation\":[-92,-46,-34]},{\"mesh\":2,\"translation\":[-92,-48,-34]},{\"mesh\":3,\"translation\":[-93,-34,-32]},{\"mesh\":3,\"translation\":[-93,-34,-36]},{\"mesh\":3,\"translation\":[-93,-36,-32]},{\"mesh\":3,\"translation\":[-93,-36,-36]},{\"mesh\":3,\"translation\":[-93,-38,-34]},{\"mesh\":3,\"translation\":[-93,-38,-38]},{\"mesh\":3,\"translation\":[-93,-38,-42]},{\"mesh\":3,\"translation\":[-93,-40,-34]},{\"mesh\":3,\"translation\":[-93,-40,-38]},{\"mesh\":3,\"translation\":[-93,-40,-42]},{\"mesh\":3,\"translation\":[-93,-42,-32]},{\"mesh\":3,\"translation\":[-93,-42,-36]},{\"mesh\":3,\"translation\":[-93,-42,-40]},{\"mesh\":3,\"translation\":[-93,-44,-32]},{\"mesh\":3,\"translation\":[-93,-44,-36]},{\"mesh\":3,\"translation\":[-93,-44,-40]},{\"mesh\":3,\"translation\":[-93,-46,-34]},{\"mesh\":3,\"translation\":[-93,-48,-34]},{\"mesh\":3,\"translation\":[-93,-32,-32]},{\"mesh\":3,\"translation\":[-93,-34,-34]},{\"mesh\":3,\"translation\":[-93,-36,-34]},{\"mesh\":3,\"translation\":[-93,-36,-38]},{\"mesh\":3,\"translation\":[-93,-38,-32]},{\"mesh\":3,\"translation\":[-93,-38,-36]},{\"mesh\":3,\"translation\":[-93,-38,-40]},{\"mesh\":3,\"translation\":[-93,-40,-32]},{\"mesh\":3,\"translation\":[-93,-40,-36]},{\"mesh\":3,\"translation\":[-93,-40,-40]},{\"mesh\":3,\"translation\":[-93,-40,-44]},{\"mesh\":3,\"translation\":[-93,-42,-34]},{\"mesh\":3,\"translation\":[-93,-42,-38]},{\"mesh\":3,\"translation\":[-93,-42,-42]},{\"mesh\":3,\"translation\":[-93,-44,-34]},{\"mesh\":3,\"translation\":[-93,-44,-38]},{\"mesh\":3,\"translation\":[-93,-46,-32]},{\"mesh\":3,\"translation\":[-93,-46,-36]},{\"mesh\":3,\"translation\":[-93,-48,-32]},{\"mesh\":6,\"translation\":[-94,-48,-34]},{\"mesh\":6,\"translation\":[-94,-44,-40]},{\"mesh\":6,\"translation\":[-94,-44,-36]},{\"mesh\":6,\"translation\":[-94,-44,-32]},{\"mesh\":6,\"translation\":[-94,-40,-42]},{\"mesh\":6,\"translation\":[-94,-40,-38]},{\"mesh\":6,\"translation\":[-94,-40,-34]},{\"mesh\":6,\"translation\":[-94,-36,-36]},{\"mesh\":6,\"translation\":[-94,-36,-32]},{\"mesh\":6,\"translation\":[-94,-48,-32]},{\"mesh\":6,\"translation\":[-94,-46,-36]},{\"mesh\":6,\"translation\":[-94,-46,-32]},{\"mesh\":6,\"translation\":[-94,-44,-38]},{\"mesh\":6,\"translation\":[-94,-44,-34]},{\"mesh\":6,\"translation\":[-94,-42,-42]},{\"mesh\":6,\"translation\":[-94,-42,-38]},{\"mesh\":6,\"translation\":[-94,-42,-34]},{\"mesh\":6,\"translation\":[-94,-40,-44]},{\"mesh\":6,\"translation\":[-94,-40,-40]},{\"mesh\":6,\"translation\":[-94,-40,-36]},{\"mesh\":6,\"translation\":[-94,-40,-32]},{\"mesh\":6,\"translation\":[-94,-38,-40]},{\"mesh\":6,\"translation\":[-94,-38,-36]},{\"mesh\":6,\"translation\":[-94,-38,-32]},{\"mesh\":6,\"translation\":[-94,-36,-38]},{\"mesh\":6,\"translation\":[-94,-36,-34]},{\"mesh\":6,\"translation\":[-94,-34,-34]},{\"mesh\":6,\"translation\":[-94,-32,-32]},{\"mesh\":6,\"translation\":[-94,-46,-34]},{\"mesh\":6,\"translation\":[-94,-42,-40]},{\"mesh\":6,\"translation\":[-94,-42,-36]},{\"mesh\":6,\"translation\":[-94,-42,-32]},{\"mesh\":6,\"translation\":[-94,-38,-42]},{\"mesh\":6,\"translation\":[-94,-38,-38]},{\"mesh\":6,\"translation\":[-94,-38,-34]},{\"mesh\":6,\"translation\":[-94,-34,-36]},{\"mesh\":6,\"translation\":[-94,-34,-32]},{\"mesh\":3,\"translation\":[-95,-48,-34]},{\"mesh\":3,\"translation\":[-95,-44,-40]},{\"mesh\":3,\"translation\":[-95,-44,-36]},{\"mesh\":3,\"translation\":[-95,-44,-32]},{\"mesh\":3,\"translation\":[-95,-40,-42]},{\"mesh\":3,\"translation\":[-95,-40,-38]},{\"mesh\":3,\"translation\":[-95,-40,-34]},{\"mesh\":3,\"translation\":[-95,-36,-36]},{\"mesh\":3,\"translation\":[-95,-36,-32]},{\"mesh\":3,\"translation\":[-95,-48,-32]},{\"mesh\":3,\"translation\":[-95,-46,-36]},{\"mesh\":3,\"translation\":[-95,-46,-32]},{\"mesh\":3,\"translation\":[-95,-44,-38]},{\"mesh\":3,\"translation\":[-95,-44,-34]},{\"mesh\":3,\"translation\":[-95,-42,-42]},{\"mesh\":3,\"translation\":[-95,-42,-38]},{\"mesh\":3,\"translation\":[-95,-42,-34]},{\"mesh\":3,\"translation\":[-95,-40,-44]},{\"mesh\":3,\"translation\":[-95,-40,-40]},{\"mesh\":3,\"translation\":[-95,-40,-36]},{\"mesh\":3,\"translation\":[-95,-40,-32]},{\"mesh\":3,\"translation\":[-95,-38,-40]},{\"mesh\":3,\"translation\":[-95,-38,-36]},{\"mesh\":3,\"translation\":[-95,-38,-32]},{\"mesh\":3,\"translation\":[-95,-36,-38]},{\"mesh\":3,\"translation\":[-95,-36,-34]},{\"mesh\":3,\"translation\":[-95,-34,-34]},{\"mesh\":3,\"translation\":[-95,-32,-32]},{\"mesh\":3,\"translation\":[-95,-46,-34]},{\"mesh\":3,\"translation\":[-95,-42,-40]},{\"mesh\":3,\"translation\":[-95,-42,-36]},{\"mesh\":3,\"translation\":[-95,-42,-32]},{\"mesh\":3,\"translation\":[-95,-38,-42]},{\"mesh\":3,\"translation\":[-95,-38,-38]},{\"mesh\":3,\"translation\":[-95,-38,-34]},{\"mesh\":3,\"translation\":[-95,-34,-36]},{\"mesh\":3,\"translation\":[-95,-34,-32]},{\"mesh\":7,\"translation\":[0,0,0]},{\"mesh\":8,\"translation\":[0,0,0]},{\"mesh\":9,\"translation\":[0,0,0]}],\"samplers\":[{\"magFilter\":9728,\"minFilter\":9728,\"wrapS\":33071,\"wrapT\":33071}],\"scene\":0,\"scenes\":[{\"nodes\":[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,296,297,298,299,300,301,302,303,304,305,306,307,308,309,310,311,312,313,314,315,316,317,318,319,320,321,322,323,324,325,326,327,328,329,330,331,332,333,334,335,336,337,338,339,340,341,342,343,344,345,346,347,348,349,350,351,352,353,354,355,356,357,358,359,360,361,362,363,364,365,366,367,368,369,370,371,372,373,374,375,376,377,378,379,380,381,382,383,384,385,386,387,388,389,390,391,392,393,394,395,396,397,398,399,400,401,402,403,404,405,406,407,408,409,410,411,412,413,414,415,416,417,418,419,420,421,422,423,424,425,426,427,428,429,430,431,432,433,434,435,436,437,438,439,440,441,442,443,444,445,446,447,448,449,450,451,452,453,454,455,456,457,458,459,460,461,462,463,464,465,466,467,468,469,470,471,472,473,474,475,476,477,478,479,480,481,482,483,484,485,486,487,488,489,490,491,492,493,494,495,496,497,498,499,500,501,502,503,504,505,506,507,508,509,510,511,512,513,514,515,516,517,518,519,520,521,522,523,524,525,526,527,528,529,530,531,532,533,534,535,536,537,538,539,540,541,542,543,544,545,546,547,548,549,550,551,552,553,554,555,556,557,558,559,560,561,562,563,564,565,566,567,568,569,570,571,572,573,574,575,576,577,578,579,580,581,582,583,584,585,586,587,588,589,590,591,592,593,594,595,596,597,598,599,600,601,602,603,604,605,606,607,608,609,610,611,612,613,614,615,616,617,618,619,620,621,622,623,624,625,626,627,628,629,630,631,632,633,634,635,636,637,638,639,640,641,642,643,644,645,646,647,648,649,650,651,652,653,654,655,656,657,658,659,660,661,662,663,664,665,666,667,668,669,670,671,672,673,674,675,676,677,678,679,680,681,682,683,684,685,686,687,688,689,690,691,692,693,694,695,696,697,698,699,700,701,702,703,704,705,706,707,708,709,710,711,712,713,714,715,716,717,718,719,720,721,722,723,724,725,726,727,728,729,730,731,732,733,734,735,736,737,738,739,740,741,742,743,744,745,746,747,748,749,750,751,752,753,754,755,756,757,758,759,760,761,762,763,764,765,766,767,768,769,770,771,772,773,774,775,776,777,778,779,780,781,782,783,784,785,786,787,788,789,790,791,792,793,794,795,796,797,798,799,800,801,802,803,804,805,806,807,808,809,810,811,812,813,814,815,816,817,818,819,820,821,822,823,824,825,826,827,828,829,830,831,832,833,834,835,836,837,838,839,840,841,842,843,844,845,846,847,848,849,850,851,852,853,854,855,856,857,858,859,860,861,862,863,864,865,866,867,868,869,870,871,872,873,874,875,876,877,878,879,880,881,882,883,884,885,886,887,888,889,890,891,892,893,894,895,896,897,898,899,900,901,902,903,904,905,906,907,908,909,910,911,912,913,914,915,916,917,918,919,920,921,922,923,924,925,926,927,928,929,930,931,932,933,934,935,936,937,938,939,940,941,942,943,944,945,946,947,948,949,950,951,952,953,954,955,956,957,958,959,960,961,962,963,964,965,966,967,968,969,970,971,972,973,974,975,976,977,978,979,980,981,982,983,984,985,986,987,988,989,990,991,992,993,994,995,996,997,998,999,1000,1001,1002,1003,1004,1005,1006,1007,1008,1009,1010,1011,1012,1013,1014,1015,1016,1017,1018,1019,1020,1021,1022,1023,1024,1025,1026,1027,1028,1029,1030,1031,1032,1033,1034,1035,1036,1037,1038,1039,1040,1041,1042,1043,1044,1045,1046,1047,1048,1049,1050,1051,1052,1053,1054,1055,1056,1057,1058,1059,1060,1061,1062,1063,1064,1065,1066,1067,1068,1069,1070,1071,1072,1073,1074,1075,1076,1077,1078,1079,1080,1081,1082,1083,1084,1085,1086,1087,1088,1089,1090,1091,1092,1093,1094,1095,1096,1097,1098,1099,1100,1101,1102,1103,1104,1105,1106,1107,1108,1109,1110,1111,1112,1113,1114,1115,1116,1117,1118,1119,1120,1121,1122,1123,1124,1125,1126,1127,1128,1129,1130,1131,1132,1133,1134,1135,1136,1137,1138,1139,1140,1141,1142,1143,1144,1145,1146,1147,1148,1149,1150,1151,1152,1153,1154,1155,1156,1157,1158,1159,1160,1161,1162,1163,1164,1165,1166,1167,1168,1169,1170,1171,1172,1173,1174,1175,1176,1177,1178,1179,1180,1181,1182,1183,1184,1185,1186,1187,1188,1189,1190,1191,1192,1193,1194,1195,1196,1197,1198,1199,1200,1201,1202,1203,1204,1205,1206,1207,1208,1209,1210,1211,1212,1213,1214,1215,1216,1217,1218,1219,1220,1221,1222,1223,1224,1225,1226,1227,1228,1229,1230,1231,1232,1233,1234,1235,1236,1237,1238,1239,1240,1241,1242,1243,1244,1245,1246,1247,1248,1249,1250,1251,1252,1253,1254,1255,1256,1257,1258,1259,1260,1261,1262,1263,1264,1265,1266,1267,1268,1269,1270,1271,1272,1273,1274,1275,1276,1277,1278,1279,1280,1281,1282,1283,1284,1285,1286,1287,1288,1289,1290,1291,1292,1293,1294,1295,1296,1297,1298,1299,1300,1301,1302,1303,1304,1305,1306,1307,1308,1309,1310,1311,1312,1313,1314,1315,1316,1317,1318,1319,1320,1321,1322,1323,1324,1325,1326,1327,1328,1329,1330,1331,1332,1333,1334,1335,1336,1337,1338,1339,1340,1341,1342,1343,1344,1345,1346,1347,1348,1349,1350,1351,1352,1353,1354,1355,1356,1357,1358,1359,1360,1361,1362,1363,1364,1365,1366,1367,1368,1369,1370,1371,1372,1373,1374,1375,1376,1377,1378,1379,1380,1381,1382,1383,1384,1385,1386,1387,1388,1389,1390,1391,1392,1393,1394,1395,1396,1397,1398,1399,1400,1401,1402,1403,1404,1405,1406,1407,1408,1409,1410,1411,1412,1413,1414,1415,1416,1417,1418,1419,1420,1421,1422,1423,1424,1425,1426,1427,1428,1429,1430,1431,1432,1433,1434,1435,1436,1437,1438,1439,1440,1441,1442,1443,1444,1445,1446,1447,1448,1449,1450,1451,1452,1453,1454,1455,1456,1457,1458,1459,1460,1461,1462,1463,1464,1465,1466,1467,1468,1469,1470,1471,1472,1473,1474,1475,1476,1477,1478,1479,1480,1481,1482,1483,1484,1485,1486,1487,1488,1489,1490,1491,1492,1493,1494,1495,1496,1497,1498,1499,1500,1501,1502,1503,1504,1505,1506,1507,1508,1509,1510,1511,1512,1513,1514,1515,1516,1517,1518,1519,1520,1521,1522,1523,1524,1525,1526,1527,1528,1529,1530,1531,1532,1533,1534,1535,1536,1537,1538,1539,1540,1541,1542,1543,1544,1545,1546,1547,1548,1549,1550,1551,1552,1553,1554,1555,1556,1557,1558,1559,1560,1561,1562,1563,1564,1565,1566,1567,1568,1569,1570,1571,1572,1573,1574,1575,1576,1577,1578,1579,1580,1581,1582,1583,1584,1585,1586,1587,1588,1589,1590,1591,1592,1593,1594,1595,1596,1597,1598,1599,1600,1601,1602,1603,1604,1605,1606,1607,1608,1609,1610,1611,1612,1613,1614,1615,1616,1617,1618,1619,1620,1621,1622,1623,1624,1625,1626,1627,1628,1629,1630,1631,1632,1633,1634,1635,1636,1637,1638,1639,1640,1641,1642,1643,1644,1645,1646,1647,1648,1649,1650,1651,1652,1653,1654,1655,1656,1657,1658,1659,1660,1661,1662,1663,1664,1665,1666,1667,1668,1669,1670,1671,1672,1673,1674,1675,1676,1677,1678,1679,1680,1681,1682,1683,1684,1685,1686,1687,1688,1689,1690,1691,1692,1693,1694,1695,1696,1697,1698,1699,1700,1701,1702,1703,1704,1705,1706,1707,1708,1709,1710,1711,1712,1713,1714,1715,1716,1717,1718,1719,1720,1721,1722,1723,1724,1725,1726,1727,1728,1729,1730,1731,1732,1733,1734,1735,1736,1737,1738,1739,1740,1741,1742,1743,1744,1745,1746,1747,1748,1749,1750,1751,1752,1753,1754,1755,1756,1757,1758,1759,1760,1761,1762,1763,1764,1765,1766,1767,1768,1769,1770,1771,1772,1773,1774,1775,1776,1777,1778,1779,1780,1781,1782,1783,1784,1785,1786,1787,1788,1789,1790,1791,1792,1793,1794,1795,1796,1797,1798,1799,1800,1801,1802,1803,1804,1805,1806,1807,1808,1809,1810,1811,1812,1813,1814,1815,1816,1817,1818,1819,1820,1821,1822,1823,1824,1825,1826,1827,1828,1829,1830,1831,1832,1833,1834,1835,1836,1837,1838,1839,1840,1841,1842,1843,1844,1845,1846,1847,1848,1849,1850,1851,1852,1853,1854,1855,1856,1857,1858,1859,1860,1861,1862,1863,1864,1865,1866,1867,1868,1869,1870,1871,1872,1873,1874,1875,1876,1877,1878,1879,1880,1881,1882,1883,1884,1885,1886,1887,1888,1889,1890,1891,1892,1893,1894,1895,1896,1897,1898,1899,1900,1901,1902,1903,1904,1905,1906,1907,1908,1909,1910,1911,1912,1913,1914,1915,1916,1917,1918,1919,1920,1921,1922,1923,1924,1925,1926,1927,1928,1929,1930,1931,1932,1933,1934,1935,1936,1937,1938,1939,1940,1941,1942,1943,1944,1945,1946,1947,1948,1949,1950,1951,1952,1953,1954,1955,1956,1957,1958,1959,1960,1961,1962,1963,1964,1965,1966,1967,1968,1969,1970,1971,1972,1973,1974,1975,1976,1977,1978,1979,1980,1981,1982,1983,1984,1985,1986,1987,1988,1989,1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013,2014,2015,2016,2017,2018,2019,2020,2021,2022,2023,2024,2025,2026,2027,2028,2029,2030,2031,2032,2033,2034,2035,2036,2037,2038,2039,2040,2041,2042,2043,2044,2045,2046,2047,2048,2049,2050,2051,2052,2053,2054,2055,2056,2057,2058,2059,2060,2061,2062,2063,2064,2065,2066,2067,2068,2069,2070,2071,2072,2073,2074,2075,2076,2077,2078,2079,2080,2081,2082,2083,2084,2085,2086,2087,2088,2089,2090,2091,2092,2093,2094,2095,2096,2097,2098,2099,2100,2101,2102,2103,2104,2105,2106,2107,2108,2109,2110,2111,2112,2113,2114,2115,2116,2117,2118,2119,2120,2121,2122,2123,2124,2125,2126,2127,2128,2129,2130,2131,2132,2133,2134,2135,2136,2137,2138,2139,2140,2141,2142,2143,2144,2145,2146,2147,2148,2149,2150,2151,2152,2153,2154,2155,2156,2157,2158,2159,2160,2161,2162,2163,2164,2165,2166,2167,2168,2169,2170,2171,2172,2173,2174,2175,2176,2177,2178,2179,2180,2181,2182,2183,2184,2185,2186,2187,2188,2189,2190,2191,2192,2193,2194,2195,2196,2197,2198,2199,2200,2201,2202,2203,2204,2205,2206,2207,2208,2209,2210,2211,2212,2213,2214,2215,2216,2217,2218,2219,2220,2221,2222,2223,2224,2225,2226,2227,2228,2229,2230,2231,2232,2233,2234,2235,2236,2237,2238,2239,2240,2241,2242,2243,2244,2245,2246,2247,2248,2249,2250,2251,2252,2253,2254,2255,2256,2257,2258,2259,2260,2261,2262,2263,2264,2265,2266,2267,2268,2269,2270,2271,2272,2273,2274,2275,2276,2277,2278,2279,2280,2281,2282,2283,2284,2285,2286,2287,2288,2289,2290,2291,2292,2293,2294,2295,2296,2297,2298,2299,2300,2301,2302,2303,2304,2305,2306,2307,2308,2309,2310,2311,2312,2313,2314,2315,2316,2317,2318,2319,2320,2321,2322,2323,2324,2325,2326,2327,2328,2329,2330,2331,2332,2333,2334,2335,2336,2337,2338,2339,2340,2341,2342,2343,2344,2345,2346,2347,2348,2349,2350,2351,2352,2353,2354,2355,2356,2357,2358,2359,2360,2361,2362,2363,2364,2365,2366,2367,2368,2369,2370,2371,2372,2373,2374,2375,2376,2377,2378,2379,2380,2381,2382,2383,2384,2385,2386,2387,2388,2389,2390,2391,2392,2393,2394,2395,2396,2397,2398,2399,2400,2401,2402,2403,2404,2405,2406,2407,2408,2409,2410,2411,2412,2413,2414,2415,2416,2417,2418,2419,2420,2421,2422,2423,2424,2425,2426,2427,2428,2429,2430,2431,2432,2433,2434,2435,2436,2437,2438,2439,2440,2441,2442,2443,2444,2445,2446,2447,2448,2449,2450,2451,2452,2453,2454,2455,2456,2457,2458,2459,2460,2461,2462,2463,2464,2465,2466,2467,2468,2469,2470,2471,2472,2473,2474,2475,2476,2477,2478,2479,2480,2481,2482,2483,2484,2485,2486,2487,2488,2489,2490,2491,2492,2493,2494,2495,2496,2497,2498,2499,2500,2501,2502,2503,2504,2505,2506,2507,2508,2509,2510,2511,2512,2513,2514,2515,2516,2517,2518,2519,2520,2521,2522,2523,2524,2525,2526,2527,2528,2529,2530,2531,2532,2533,2534,2535,2536,2537,2538,2539,2540,2541,2542,2543,2544,2545,2546,2547,2548,2549,2550,2551,2552,2553,2554,2555,2556,2557,2558,2559,2560,2561,2562,2563,2564,2565,2566,2567,2568,2569,2570,2571,2572,2573,2574,2575,2576,2577,2578,2579,2580,2581,2582,2583,2584,2585,2586,2587,2588,2589,2590,2591,2592,2593,2594,2595,2596,2597,2598,2599,2600,2601,2602,2603,2604,2605,2606,2607,2608,2609,2610,2611,2612,2613,2614,2615,2616,2617,2618,2619,2620,2621,2622,2623,2624,2625,2626,2627,2628,2629,2630,2631,2632,2633,2634,2635,2636,2637,2638,2639,2640,2641,2642,2643,2644,2645,2646,2647,2648,2649,2650,2651,2652,2653,2654,2655,2656,2657,2658,2659,2660,2661,2662,2663,2664,2665,2666,2667,2668,2669,2670,2671,2672,2673,2674,2675,2676,2677,2678,2679,2680,2681,2682,2683,2684,2685,2686,2687,2688,2689,2690,2691,2692,2693,2694,2695,2696,2697,2698,2699,2700,2701,2702,2703,2704,2705,2706,2707,2708,2709,2710,2711,2712,2713,2714,2715,2716,2717,2718,2719,2720,2721,2722,2723,2724,2725,2726,2727,2728,2729,2730,2731,2732,2733,2734,2735,2736,2737,2738,2739,2740,2741,2742,2743,2744,2745,2746,2747,2748,2749,2750,2751,2752,2753,2754,2755,2756,2757,2758,2759,2760,2761,2762,2763,2764,2765,2766,2767,2768,2769,2770,2771,2772,2773,2774,2775,2776,2777,2778,2779,2780,2781,2782,2783,2784,2785,2786,2787,2788,2789,2790,2791,2792,2793,2794,2795,2796,2797,2798,2799,2800,2801,2802,2803,2804,2805,2806,2807,2808,2809,2810,2811,2812,2813,2814,2815,2816,2817,2818,2819,2820,2821,2822,2823,2824,2825,2826,2827,2828,2829,2830,2831]}],\"textures\":[{\"sampler\":0,\"source\":0}]}" - ], - "text/html": [ - "" - ] - }, - "metadata": {}, - "execution_count": 7 - } - ], - "source": [ - "import stim\n", - "\n", - "circuit = stim.Circuit.from_file('d5r5colorcode_p001.stim')\n", - "circuit.diagram('timeline-3d')" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "YDnwv2dacTbf" - }, - "source": [ - "# Estimating code distance with Stim" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "r2MFDDBMvkq3", - "outputId": "cc6b8bfe-9adb-4b55-9c47-ed2580177b44" - }, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "estimated distance: 5\n" - ] - } - ], - "source": [ - "distance_estimate = len(circuit.search_for_undetectable_logical_errors(\n", - " dont_explore_detection_event_sets_with_size_above=6,\n", - " dont_explore_edges_with_degree_above=3,\n", - " dont_explore_edges_increasing_symptom_degree=False))\n", - "print(f'estimated distance: {distance_estimate}')" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "UuYvEwq9cgYc" - }, - "source": [ - "# Create DEM, detection events and observables with Stim" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "6oCW5jRsXy8-" - }, - "source": [ - "### Can't decode with pymatching..." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "x6TQbGZ7b06k", - "outputId": "c4caa541-cef7-498d-a410-c00b64cf8a79" - }, - "outputs": [ - { - "output_type": "stream", - "name": "stderr", - "text": [ - "Traceback (most recent call last):\n", - " File \"/tmp/ipython-input-2195602962.py\", line 5, in \n", - " circuit.detector_error_model(decompose_errors=True)\n", - "ValueError: Failed to decompose errors into graphlike components with at most two symptoms.\n", - "The error component that failed to decompose is 'D46, D49, D52, D63, D66, D73, D75'.\n", - "\n", - "In Python, you can ignore this error by passing `ignore_decomposition_failures=True` to `stim.Circuit.detector_error_model(...)`.\n", - "From the command line, you can ignore this error by passing the flag `--ignore_decomposition_failures` to `stim analyze_errors`.\n", - "\n", - "Circuit stack trace:\n", - " during TICK layer #46 of 75\n", - " at instruction #104 [which is a REPEAT 3 block]\n" - ] - } - ], - "source": [ - "import traceback\n", - "\n", - "try:\n", - " # decompose_errors=True needed for DEM to be matchable\n", - " circuit.detector_error_model(decompose_errors=True)\n", - "except:\n", - " traceback.print_exc()" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "ye5W7BJHX8DJ" - }, - "source": [ - "No need to decompose errors using tesseract:" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "AVu7idoTYAdM" - }, - "outputs": [], - "source": [ - "dem = circuit.detector_error_model()" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "vFDn06Xach0_" - }, - "outputs": [], - "source": [ - "num_shots = 1000\n", - "sampler = circuit.compile_detector_sampler()\n", - "dets, obs = sampler.sample(num_shots, separate_observables=True)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "JrX13vNQcrm3" - }, - "source": [ - "# Decoding with Tesseract and ILP decoder" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "Uds8S04a-z-G" - }, - "outputs": [], - "source": [ - "import tesseract_decoder\n", - "import tesseract_decoder.tesseract as tesseract\n", - "import numpy as np\n", - "import time\n", - "\n", - "# Helper functions for benchmarking\n", - "\n", - "def print_results(result):\n", - " print(\"Tesseract Decoder Stats:\")\n", - " print(f\" Number of Errors / num_shots: {results['num_errors']} / {results['num_shots']}\")\n", - " print(f\" Time: {results['time_seconds']:.4f} s\")\n", - " print()\n", - "\n", - "def run_tesseract_decoder(decoder, dets, obs):\n", - " # Run and time the Tesseract decoder\n", - " num_errors = 0\n", - " start_time = time.time()\n", - " obs_predicted = decoder.decode_batch(dets)\n", - " num_errors = np.sum(np.any(obs_predicted != obs, axis=1))\n", - " end_time = time.time()\n", - "\n", - " return {\n", - " 'num_errors': num_errors,\n", - " 'num_shots': len(dets),\n", - " 'time_seconds': end_time - start_time,\n", - " }\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "D0Tx2eY3ctFw", - "outputId": "64f388af-f1db-4869-873f-3ab714ee8e9c" - }, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "Tesseract decoder configurations --> TesseractConfig(dem=DetectorErrorModel_Object, det_beam=65535, no_revisit_dets=1, at_most_two_errors_per_detector=0, verbose=0, pqlimit=10000, det_orders=[[89, 86, 85, 83, 81, 88, 84, 82, 87, 74, 71, 78, 75, 69, 67, 63, 77, 66, 61, 72, 64, 65, 79, 68, 62, 73, 80, 70, 42, 76, 43, 46, 33, 32, 50, 44, 31, 57, 35, 36, 59, 51, 30, 58, 60, 48, 39, 45, 49, 34, 25, 7, 47, 5, 18, 26, 21, 2, 40, 24, 12, 29, 28, 55, 37, 56, 54, 53, 38, 15, 3, 16, 52, 20, 9, 19, 13, 8, 11, 10, 17, 41, 22, 6, 14, 23, 0, 1, 27, 4]], det_penalty=0, create_visualization=0)\n", - "\n", - "Tesseract Decoder Stats:\n", - " Number of Errors / num_shots: 3 / 1000\n", - " Time: 3.6089 s\n", - "\n" - ] - } - ], - "source": [ - "# setup the tesseract decoder configuration\n", - "tesseract_config = tesseract.TesseractConfig(\n", - " dem=dem,\n", - " pqlimit=10000,\n", - " no_revisit_dets=True,\n", - " # verbose=True,\n", - " det_orders=tesseract_decoder.utils.build_det_orders(\n", - " dem, num_det_orders=1, det_order_bfs=True, seed=2384753),\n", - ")\n", - "print(f'Tesseract decoder configurations --> {tesseract_config}\\n')\n", - "\n", - "tesseract_dec = tesseract_config.compile_decoder()\n", - "\n", - "results = run_tesseract_decoder(tesseract_dec, dets, obs)\n", - "print_results(results)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "INvMKs7zc5T_" - }, - "source": [ - "#Decoding with ILP decoder" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "9Npo7ibac4x5", - "outputId": "51af3bd2-5f53-43c8-a16d-f595a9596bde" - }, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "ILP decoder configurations --> SimplexConfig(dem=DetectorErrorModel_Object, window_length=0, window_slide_length=0, verbose=0)\n", - "ILP stats:\n", - " Estimated time for full shots 1115.2181386947632 s\n", - " Number of Errors / num_shots: 0 / 10\n" - ] - } - ], - "source": [ - "simplex_config = tesseract_decoder.simplex.SimplexConfig(\n", - " dem=dem, parallelize=True\n", - ")\n", - "print(f'ILP decoder configurations --> {simplex_config}')\n", - "ilp_dec = simplex_config.compile_decoder()\n", - "\n", - "start_time = time.time()\n", - "\n", - "# Run and time ILP decoder -- so slow!\n", - "num_shots_to_decode = 10 # Only decoding 10 shots because it's soooo slow\n", - "obs_predicted = ilp_dec.decode_batch(dets[0:num_shots_to_decode])\n", - "num_errors = np.sum(np.any(obs_predicted != obs[0:num_shots_to_decode], axis=1))\n", - "\n", - "end_time = time.time()\n", - "print(f'ILP stats:\\n Estimated time for full shots {num_shots/num_shots_to_decode * (end_time - start_time)} s')\n", - "print(f\" Number of Errors / num_shots: {num_errors} / {num_shots_to_decode}\")" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "VQqlMqFRIZ2J" - }, - "source": [ - "# Tesseract Config and impact of heuristic\n", - "You can tune tesseract decoder through the Config that is passed to the decoder with this set of parameters:\n", - "Explanation of configuration arguments:\n", - "\n", - "* `pqlimit` - An integer that sets a limit on the number of nodes in the priority queue. This can be used to constrain the memory usage of the decoder. The default value is `sys.maxsize`, which means the size is effectively unbounded.\n", - "\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "0pExdmuPQuGr", - "outputId": "45a20eca-fef6-425d-d6a2-9a619fe9e10c" - }, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "Smaller pqlimit\n", - "Tesseract Decoder Stats:\n", - " Number of Errors / num_shots: 183 / 1000\n", - " Time: 1.8420 s\n", - "\n", - "Larger pqlimit\n", - "Tesseract Decoder Stats:\n", - " Number of Errors / num_shots: 3 / 1000\n", - " Time: 8.4409 s\n", - "\n" - ] - } - ], - "source": [ - "tesseract_config1 = tesseract.TesseractConfig(\n", - " dem=dem,\n", - " pqlimit=100,\n", - " no_revisit_dets=True,\n", - " det_orders=tesseract_decoder.utils.build_det_orders(\n", - " dem, num_det_orders=5, det_order_bfs=True, seed=2384753),\n", - ")\n", - "\n", - "print (\"Smaller pqlimit\")\n", - "results = run_tesseract_decoder(tesseract_config1.compile_decoder(), dets, obs)\n", - "print_results(results)\n", - "\n", - "\n", - "tesseract_config2 = tesseract.TesseractConfig(\n", - " dem=dem,\n", - " pqlimit=20000,\n", - " no_revisit_dets=True,\n", - " det_orders=tesseract_decoder.utils.build_det_orders(\n", - " dem, num_det_orders=5, det_order_bfs=True, seed=2384753),\n", - ")\n", - "print (\"Larger pqlimit\")\n", - "results = run_tesseract_decoder(tesseract_config2.compile_decoder(), dets, obs)\n", - "print_results(results)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "ru-MRctAIq5-" - }, - "source": [ - "#More heurisitcs\n", - "* `det_beam` - This integer value represents the beam search cutoff. It specifies a threshold for the number of \"residual detection events\" a node can have before it is pruned from the search. A lower `det_beam` value makes the search more aggressive, potentially sacrificing accuracy for speed. The default value `INF_DET_BEAM` means no beam cutoff is applied.\n", - "* `beam_climbing` - A boolean flag that, when set to `True`, enables a heuristic called \"beam climbing.\" This optimization causes the decoder to try different `det_beam` values (up to a maximum) to find a good decoding path. This can improve the decoder's chance of finding the most likely error, even with an initial narrow beam search.\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "cyctTUyzQ-cQ", - "outputId": "0f3c5a8a-0d09-49e4-e3b1-e193152bf2bf" - }, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "Smaller det_beam\n", - "Tesseract Decoder Stats:\n", - " Number of Errors / num_shots: 2 / 1000\n", - " Time: 5.8029 s\n", - "\n", - "Larger det_beam\n", - "Tesseract Decoder Stats:\n", - " Number of Errors / num_shots: 2 / 1000\n", - " Time: 6.1866 s\n", - "\n" - ] - } - ], - "source": [ - "tesseract_config1 = tesseract.TesseractConfig(\n", - " dem=dem,\n", - " pqlimit=1000,\n", - " det_beam=3,\n", - " beam_climbing=True,\n", - " det_orders=tesseract_decoder.utils.build_det_orders(\n", - " dem, num_det_orders=5, det_order_bfs=True, seed=2384753),\n", - ")\n", - "\n", - "print (\"Smaller det_beam\")\n", - "results = run_tesseract_decoder(tesseract_config1.compile_decoder(), dets, obs)\n", - "print_results(results)\n", - "\n", - "\n", - "tesseract_config2 = tesseract.TesseractConfig(\n", - " dem=dem,\n", - " pqlimit=1000,\n", - " det_beam=5,\n", - " beam_climbing=True,\n", - " det_orders=tesseract_decoder.utils.build_det_orders(\n", - " dem, num_det_orders=5, det_order_bfs=True, seed=2384753),\n", - ")\n", - "print (\"Larger det_beam\")\n", - "results = run_tesseract_decoder(tesseract_config2.compile_decoder(), dets, obs)\n", - "print_results(results)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "VJiBCWpUQ9sf" - }, - "source": [ - "#Even More Heuristics\n", - "* `no_revisit_dets` - A boolean flag that, when `True`, activates a heuristic to prevent the decoder from revisiting nodes that have the same set of leftover detection events as a node it has already visited. This can help to reduce search redundancy and improve decoding speed.\n", - "* `at_most_two_errors_per_detector` - This boolean flag is a specific constraint that assumes at most two errors can affect a given detector. This can be a useful optimization for certain types of codes and noise models, as it prunes the search space by making a stronger assumption about the error distribution.\n", - "\n", - "* `det_orders` - A list of lists of integers, where each inner list represents an ordering of the detectors. This is used for \"ensemble reordering,\" an optimization that tries different detector orderings to improve the search's convergence. The default is an empty list, meaning a single, fixed ordering is used.\n", - "* `det_penalty` - A floating-point value that adds a cost for each residual detection event. This encourages the decoder to prioritize paths that resolve more detection events, steering the search towards more complete solutions. The default value is `0.0`, meaning no penalty is applied." - ] + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "KBmkwvhmupn-" + }, + "source": [ + "# Tesseract Tutorial\n", + "\n", + "- We will also, partly, explain how to use features of Stim and PyMatching\n", + "- Stim is a dependency of Tesseract but you can also use other sources of data\n", + "- This is not a comprehensive introduction." + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "jaZcr-NevBSB" + }, + "source": [ + "## Installation" + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "metadata": { + "id": "i6_88o7kKOVJ" + }, + "outputs": [], + "source": [ + "!pip install --quiet --upgrade stim galois tesseract-decoder pymatching python-sat -U" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "RLXXX3eMT_LR" + }, + "source": [ + "## Getting a Surface Code Circuit" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "metadata": { + "id": "8zcmVHFFUPq2" + }, + "outputs": [], + "source": [ + "import stim\n", + "\n", + "d = 11\n", + "p = 0.005\n", + "circuit = stim.Circuit.generated(\n", + " code_task=\"surface_code:rotated_memory_x\",\n", + " distance=d,\n", + " rounds=d,\n", + " after_clifford_depolarization=p,\n", + " before_round_data_depolarization=p,\n", + " before_measure_flip_probability=p,\n", + " after_reset_flip_probability=p\n", + ")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "UBMIlXY9U30Y" + }, + "source": [ + "## Sample" + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "metadata": { + "id": "GCkUlTJZU2T_" + }, + "outputs": [], + "source": [ + "sampler = circuit.compile_detector_sampler()\n", + "\n", + "num_shots = 10000\n", + "detector_outcomes, actual_observables = sampler.sample(shots=num_shots, separate_observables=True)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "m9x8pivTVCir" + }, + "source": [ + "## Decode with uncorrelated matching" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" }, + "id": "-5W0AX8nVEyU", + "outputId": "562e78d3-4fef-449e-92ae-403e5ed7c862" + }, + "outputs": [ { - "cell_type": "code", - "execution_count": null, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "0VrW2z8sSXtN", - "outputId": "6f69c1ff-1c04-4dc6-d1a0-32aa0777d56b" - }, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "First version\n", - "Tesseract Decoder Stats:\n", - " Number of Errors / num_shots: 9 / 1000\n", - " Time: 1.1290 s\n", - "\n", - "Second version\n", - "Tesseract Decoder Stats:\n", - " Number of Errors / num_shots: 19 / 1000\n", - " Time: 0.9446 s\n", - "\n" - ] - } - ], - "source": [ - "tesseract_config1 = tesseract.TesseractConfig(\n", - " dem=dem,\n", - " pqlimit=1000,\n", - " # no_revisit_dets=True,\n", - " # at_most_two_errors_per_detector = True,\n", - " det_penalty = 10,\n", - " # det_orders=tesseract_decoder.utils.build_det_orders(\n", - " # dem, num_det_orders=2, det_order_bfs=True, seed=2384753),\n", - ")\n", - "\n", - "print (\"First version\")\n", - "results = run_tesseract_decoder(tesseract_config1.compile_decoder(), dets, obs)\n", - "print_results(results)\n", - "\n", - "\n", - "tesseract_config2 = tesseract.TesseractConfig(\n", - " dem=dem,\n", - " pqlimit=1000,\n", - " # no_revisit_dets=False,\n", - " # at_most_two_errors_per_detector = False,\n", - " det_penalty = 0,\n", - " # det_orders=tesseract_decoder.utils.build_det_orders(\n", - " # dem, num_det_orders=2, det_order_bfs=True, seed=2384753),\n", - ")\n", - "print (\"Second version\")\n", - "results = run_tesseract_decoder(tesseract_config2.compile_decoder(), dets, obs)\n", - "print_results(results)" - ] + "name": "stdout", + "output_type": "stream", + "text": [ + "Logical error rate: 61/10000\n" + ] + } + ], + "source": [ + "import pymatching\n", + "import numpy as np\n", + "\n", + "dem = circuit.detector_error_model(decompose_errors=True)\n", + "matching = pymatching.Matching.from_detector_error_model(model=dem)\n", + "predicted_observables = matching.decode_batch(shots=detector_outcomes)\n", + "num_errors = np.sum(np.any(predicted_observables != actual_observables, axis=1))\n", + "\n", + "print(f\"Logical error rate: {num_errors}/{num_shots}\")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "Xp7MyK0XVs_6" + }, + "source": [ + "## Decode with new correlated matching!" + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" }, + "id": "vufQ8G5iVx7b", + "outputId": "1e12759c-e1e4-4c51-8103-98ec2d6906f8" + }, + "outputs": [ { - "cell_type": "markdown", - "metadata": { - "id": "BoEALeo3OYGp" - }, - "source": [ - "# Decoding Wild Stabilizer Codes under Code Capacity Noise with Tesseract\n", - "\n", - "\n", - "\n", - "* checkout https://www.codetables.de/ for a qubit stabilizer code\n", - "* full table of qubit codes: [here](https://codetables.de/QECC/Tables_color.php?q=4&n0=1&n1=256&k0=0&k1=256)\n", - "* copy the stabilizer matrix for a code, such as: [this one used below](https://codetables.de/QECC/QECC.php?q=4&n=21&k=8)\n", - "\n" - ] + "name": "stdout", + "output_type": "stream", + "text": [ + "Logical error rate: 18/10000\n" + ] + } + ], + "source": [ + "dem = circuit.detector_error_model(decompose_errors=True)\n", + "matching_corr = pymatching.Matching.from_detector_error_model(\n", + " model=dem, enable_correlations=True\n", + " )\n", + "predicted_observables_corr = matching_corr.decode_batch(\n", + " shots=detector_outcomes,\n", + " enable_correlations=True\n", + " )\n", + "num_errors_corr = np.sum(np.any(predicted_observables_corr != actual_observables, axis=1))\n", + "\n", + "print(f\"Logical error rate: {num_errors_corr}/{num_shots}\")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "a-AMqTUeuqOe" + }, + "source": [ + "## Getting a Color Code Circuit" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" }, + "id": "W7fU_MYJCRen", + "outputId": "6038fc3e-8707-4bac-fd69-b9d08a90f167" + }, + "outputs": [ { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "pJ1gEKAgPbHO" - }, - "outputs": [], - "source": [ - "import time\n", - "import tesseract_decoder\n", - "import stim\n", - "import numpy as np\n", - "import numpy.typing as npt\n", - "from galois import GF2\n", - "from typing import List, Tuple\n", - "\n", - "\n", - "def paulis_from_symplectic_matrix(check_matrix: npt.NDArray[np.uint8]) -> List[stim.PauliString]:\n", - " n = check_matrix.shape[1] // 2\n", - " paulis = []\n", - " for i in range(check_matrix.shape[0]):\n", - " paulis.append(\n", - " stim.PauliString.from_numpy(\n", - " xs=check_matrix[i, :n].astype(bool), zs=check_matrix[i, n:].astype(bool)\n", - " )\n", - " )\n", - " return paulis\n", - "\n", - "def rank(H):\n", - " return np.linalg.matrix_rank(GF2(H))\n", - "\n", - "def stabilizer_code_logical_operators(\n", - " check_matrix: npt.NDArray[np.uint8]) -> Tuple[npt.NDArray[np.uint8], npt.NDArray[np.uint8]]:\n", - " check_matrix = np.array(check_matrix, dtype=np.uint8)\n", - "\n", - " r = rank(check_matrix)\n", - " n = check_matrix.shape[1] // 2\n", - "\n", - " stabilisers = paulis_from_symplectic_matrix(check_matrix=check_matrix)\n", - "\n", - " tableau = stim.Tableau.from_stabilizers(\n", - " stabilizers=stabilisers, allow_underconstrained=True, allow_redundant=True\n", - " )\n", - "\n", - " x2x, x2z, z2x, z2z, x_signs, z_signs = tableau.to_numpy()\n", - "\n", - " num_logicals = n - r\n", - "\n", - " Lx = np.zeros((num_logicals, check_matrix.shape[1]), dtype=np.uint8)\n", - " Lz = np.zeros((num_logicals, check_matrix.shape[1]), dtype=np.uint8)\n", - "\n", - " Lx[:, :n] = x2x[r:]\n", - " Lx[:, n:] = x2z[r:]\n", - " Lz[:, :n] = z2x[r:]\n", - " Lz[:, n:] = z2z[r:]\n", - " return Lx.astype(np.uint8), Lz.astype(np.uint8)\n", - "\n", - "\n", - "def pauli_to_observable_include_target(pauli: stim.PauliString) -> List[stim.GateTarget]:\n", - " obs_pauli_targets = []\n", - " for i in range(len(pauli)):\n", - " if pauli[i] != 0:\n", - " obs_pauli_targets.append(stim.target_pauli(i, pauli[i]))\n", - " return obs_pauli_targets\n", - "\n", - "\n", - "def append_observable_includes_for_paulis(circuit: stim.Circuit, paulis: List[stim.PauliString]) -> None:\n", - " for i, obs in enumerate(paulis):\n", - " circuit.append(\n", - " \"OBSERVABLE_INCLUDE\",\n", - " targets=pauli_to_observable_include_target(pauli=obs),\n", - " arg=i\n", - " )\n", - "\n", - "\n", - "def code_capacity_circuit(\n", - " stabilizers: npt.NDArray[np.uint8],\n", - " x_logicals: npt.NDArray[np.uint8],\n", - " z_logicals: npt.NDArray[np.uint8],\n", - " p: float\n", - ") -> stim.Circuit:\n", - " \"\"\"Generate a code capacity stim circuit for a stabilizer code\n", - "\n", - " Parameters\n", - " ----------\n", - " stabilizers : npt.NDArray[np.uint8]\n", - " The stabilizer generators of the code, as a binary symplectic matrix.\n", - " The matrix has dimensions (r, 2 * n) where r is the number of stabilizer\n", - " generators and n is the number of physical qubits.\n", - " `stabilizers[i, j]` is 1 if stabilizer i is X or Y on qubit j and 0 otherwise.\n", - " `stabilizers[i, n + j]` is 1 if stabilizer i is Z or Y on qubit j and 0 otherwise.\n", - " x_logicals : npt.NDArray[np.uint8]\n", - " The X logical operators of the code, as a binary symplectic matrix.\n", - " The matrix has dimensions (k, 2 * n) where k is the number of logical qubits\n", - " and n is the number of physical qubits.\n", - " z_logicals : npt.NDArray[np.uint8]\n", - " The Z logical operators of the code, as a binary symplectic matrix.\n", - " The matrix has dimensions (k, 2 * n) where k is the number of logical qubits\n", - " and n is the number of physical qubits.\n", - " p : float\n", - " The strength of single-qubit depolarizing noise to use\n", - "\n", - " Returns\n", - " -------\n", - " stim.Circuit\n", - " The stim circuit of the code capacity circuit\n", - " \"\"\"\n", - " num_qubits = stabilizers.shape[1] // 2\n", - " num_stabilizers = stabilizers.shape[0]\n", - " stabilizer_paulis = paulis_from_symplectic_matrix(stabilizers)\n", - " x_logicals_paulis = paulis_from_symplectic_matrix(x_logicals)\n", - " z_logicals_paulis = paulis_from_symplectic_matrix(z_logicals)\n", - " all_logicals_paulis = x_logicals_paulis + z_logicals_paulis\n", - "\n", - " circuit = stim.Circuit()\n", - "\n", - " append_observable_includes_for_paulis(\n", - " circuit=circuit, paulis=all_logicals_paulis)\n", - " circuit.append(\"MPP\", stabilizer_paulis)\n", - " circuit.append(\"DEPOLARIZE1\", targets=list(range(num_qubits)), arg=p)\n", - " circuit.append(\"MPP\", stabilizer_paulis)\n", - "\n", - " for i in range(num_stabilizers):\n", - " circuit.append(\n", - " \"DETECTOR\",\n", - " targets=[\n", - " stim.target_rec(i - 2 * num_stabilizers),\n", - " stim.target_rec(i - num_stabilizers)\n", - " ]\n", - " )\n", - "\n", - " append_observable_includes_for_paulis(\n", - " circuit=circuit, paulis=all_logicals_paulis)\n", - " return circuit\n", - "\n", - "\n", - "def parse_symplectic_matrix(text: str) -> npt.NDArray[np.uint8]:\n", - " rows = []\n", - " for line in text.strip().splitlines():\n", - " line = line.strip()\n", - " if not line or line[0] != '[' or line[-1] != ']':\n", - " continue # skip malformed lines\n", - " body = line[1:-1]\n", - " if \"|\" in body:\n", - " left, right = body.split(\"|\")\n", - " bits = left.strip().split() + right.strip().split()\n", - " else:\n", - " bits = body.strip().split()\n", - " row = [int(b) for b in bits]\n", - " rows.append(row)\n", - " return np.array(rows, dtype=np.uint8)\n" - ] + "name": "stdout", + "output_type": "stream", + "text": [ + " % Total % Received % Xferd Average Speed Time Time Time Current\n", + " Dload Upload Total Spent Left Speed\n", + "100 13295 100 13295 0 0 124k 0 --:--:-- --:--:-- --:--:-- 124k\n" + ] + } + ], + "source": [ + "!curl 'https://raw.githubusercontent.com/quantumlib/tesseract-decoder/refs/heads/main/testdata/colorcodes/r%3D5%2Cd%3D5%2Cp%3D0.001%2Cnoise%3Dsi1000%2Cc%3Dsuperdense_color_code_Z%2Cq%3D37%2Cgates%3Dcz.stim' > d5r5colorcode_p001.stim" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "E-vXEhbaTeQI" + }, + "source": [ + "# Visualizing with Stim" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 343 }, + "id": "2jTOVijwKPXm", + "outputId": "5a0c63b5-384b-4729-8bf1-d205552de185" + }, + "outputs": [ { - "cell_type": "code", - "execution_count": null, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 343 - }, - "id": "pH_b3u1rBogl", - "outputId": "846dd807-82ed-4139-e46d-a3cfe65a7681" - }, - "outputs": [ - { - "output_type": "execute_result", - "data": { - "text/plain": [ - "{\"accessors\":[{\"bufferView\":0,\"byteOffset\":0,\"componentType\":5126,\"count\":12,\"max\":[0,0.5,0.5],\"min\":[0,-0.5,-0.5],\"name\":\"cube\",\"type\":\"VEC3\"},{\"bufferView\":1,\"byteOffset\":0,\"componentType\":5126,\"count\":12,\"max\":[0.6875,0.4375],\"min\":[0.625,0.375],\"name\":\"tex_coords_gate_MPP:X\",\"type\":\"VEC2\"},{\"bufferView\":2,\"byteOffset\":0,\"componentType\":5126,\"count\":12,\"max\":[0.6875,0.5],\"min\":[0.625,0.4375],\"name\":\"tex_coords_gate_MPP:Y\",\"type\":\"VEC2\"},{\"bufferView\":3,\"byteOffset\":0,\"componentType\":5126,\"count\":12,\"max\":[0.6875,0.5625],\"min\":[0.625,0.5],\"name\":\"tex_coords_gate_MPP:Z\",\"type\":\"VEC2\"},{\"bufferView\":4,\"byteOffset\":0,\"componentType\":5126,\"count\":12,\"max\":[0.25,0.625],\"min\":[0.1875,0.5625],\"name\":\"tex_coords_gate_DEPOLARIZE1\",\"type\":\"VEC2\"},{\"bufferView\":5,\"byteOffset\":0,\"componentType\":5126,\"count\":470,\"max\":[1,-0,-0],\"min\":[-19,-40,-0],\"name\":\"buf_scattered_lines\",\"type\":\"VEC3\"},{\"bufferView\":6,\"byteOffset\":0,\"componentType\":5126,\"count\":6,\"max\":[0,2.5,-0],\"min\":[-3,1.5,-0],\"name\":\"buf_red_scattered_lines\",\"type\":\"VEC3\"}],\"asset\":{\"version\":\"2.0\"},\"bufferViews\":[{\"buffer\":0,\"byteLength\":144,\"byteOffset\":0,\"name\":\"cube\",\"target\":34962},{\"buffer\":1,\"byteLength\":96,\"byteOffset\":0,\"name\":\"tex_coords_gate_MPP:X\",\"target\":34962},{\"buffer\":2,\"byteLength\":96,\"byteOffset\":0,\"name\":\"tex_coords_gate_MPP:Y\",\"target\":34962},{\"buffer\":3,\"byteLength\":96,\"byteOffset\":0,\"name\":\"tex_coords_gate_MPP:Z\",\"target\":34962},{\"buffer\":4,\"byteLength\":96,\"byteOffset\":0,\"name\":\"tex_coords_gate_DEPOLARIZE1\",\"target\":34962},{\"buffer\":5,\"byteLength\":5640,\"byteOffset\":0,\"name\":\"buf_scattered_lines\",\"target\":34962},{\"buffer\":6,\"byteLength\":72,\"byteOffset\":0,\"name\":\"buf_red_scattered_lines\",\"target\":34962}],\"buffers\":[{\"byteLength\":144,\"name\":\"cube\",\"uri\":\"data:application/octet-stream;base64,AAAAAAAAAD8AAAA/AAAAAAAAAD8AAAC/AAAAAAAAAL8AAAA/AAAAAAAAAD8AAAC/AAAAAAAAAL8AAAC/AAAAAAAAAL8AAAA/AAAAAAAAAL8AAAC/AAAAAAAAAD8AAAC/AAAAAAAAAL8AAAA/AAAAAAAAAL8AAAA/AAAAAAAAAD8AAAC/AAAAAAAAAD8AAAA/\"},{\"byteLength\":96,\"name\":\"tex_coords_gate_MPP:X\",\"uri\":\"data:application/octet-stream;base64,AAAwPwAAwD4AACA/AADAPgAAMD8AAOA+AAAgPwAAwD4AACA/AADgPgAAMD8AAOA+AAAwPwAA4D4AADA/AADAPgAAID8AAOA+AAAgPwAA4D4AADA/AADAPgAAID8AAMA+\"},{\"byteLength\":96,\"name\":\"tex_coords_gate_MPP:Y\",\"uri\":\"data:application/octet-stream;base64,AAAwPwAA4D4AACA/AADgPgAAMD8AAAA/AAAgPwAA4D4AACA/AAAAPwAAMD8AAAA/AAAwPwAAAD8AADA/AADgPgAAID8AAAA/AAAgPwAAAD8AADA/AADgPgAAID8AAOA+\"},{\"byteLength\":96,\"name\":\"tex_coords_gate_MPP:Z\",\"uri\":\"data:application/octet-stream;base64,AAAwPwAAAD8AACA/AAAAPwAAMD8AABA/AAAgPwAAAD8AACA/AAAQPwAAMD8AABA/AAAwPwAAED8AADA/AAAAPwAAID8AABA/AAAgPwAAED8AADA/AAAAPwAAID8AAAA/\"},{\"byteLength\":96,\"name\":\"tex_coords_gate_DEPOLARIZE1\",\"uri\":\"data:application/octet-stream;base64,AACAPgAAED8AAEA+AAAQPwAAgD4AACA/AABAPgAAED8AAEA+AAAgPwAAgD4AACA/AACAPgAAID8AAIA+AAAQPwAAQD4AACA/AABAPgAAID8AAIA+AAAQPwAAQD4AABA/\"},{\"byteLength\":5640,\"name\":\"buf_scattered_lines\",\"uri\":\"data:application/octet-stream;base64,AAAAgAAAIMEAAACAAACAvgAAoMAAAACAAACAvgAAoMAAAACAAAAAgAAAAIAAAACAAAAAgAAAQMEAAACAAAAAgAAAIMEAAACAAAAAgAAAYMEAAACAAAAAgAAAQMEAAACAAAAAgAAAgMEAAACAAAAAgAAAYMEAAACAAAAAgAAAoMEAAACAAACAvgAAkMEAAACAAACAvgAAkMEAAACAAAAAgAAAgMEAAACAAAAAgAAAsMEAAACAAAAAgAAAoMEAAACAAAAAgAAA4MEAAACAAACAvgAAyMEAAACAAACAvgAAyMEAAACAAAAAgAAAsMEAAACAAAAAgAAA8MEAAACAAAAAgAAA4MEAAACAAAAAgAAAAMIAAACAAAAAgAAA8MEAAACAAACAvwAAAMEAAACAAACgvwAAgMAAAACAAACgvwAAgMAAAACAAACAvwAAAIAAAACAAACAvwAAIMEAAACAAACAvwAAAMEAAACAAACAvwAAQMEAAACAAACAvwAAIMEAAACAAACAvwAAYMEAAACAAACAvwAAQMEAAACAAACAvwAAgMEAAACAAACAvwAAYMEAAACAAACAvwAAoMEAAACAAACgvwAAkMEAAACAAACgvwAAkMEAAACAAACAvwAAgMEAAACAAACAvwAAsMEAAACAAACAvwAAoMEAAACAAACAvwAA0MEAAACAAACgvwAAwMEAAACAAACgvwAAwMEAAACAAACAvwAAsMEAAACAAACAvwAA4MEAAACAAACAvwAA0MEAAACAAACAvwAA8MEAAACAAACAvwAA4MEAAACAAACAvwAAAMIAAACAAACAvwAA8MEAAACAAAAAwAAAAMEAAACAAAAQwAAAoMAAAACAAAAQwAAAoMAAAACAAAAAwAAAAMAAAACAAAAAwAAAIMEAAACAAAAAwAAAAMEAAACAAAAAwAAAQMEAAACAAAAAwAAAIMEAAACAAAAAwAAAYMEAAACAAAAAwAAAQMEAAACAAAAAwAAAgMEAAACAAAAAwAAAYMEAAACAAAAAwAAAkMEAAACAAAAAwAAAgMEAAACAAAAAwAAAoMEAAACAAAAAwAAAkMEAAACAAAAAwAAAsMEAAACAAAAAwAAAoMEAAACAAAAAwAAAwMEAAACAAAAAwAAAsMEAAACAAAAAwAAA0MEAAACAAAAAwAAAwMEAAACAAAAAwAAA4MEAAACAAAAAwAAA0MEAAACAAAAAwAAA8MEAAACAAAAAwAAA4MEAAACAAAAAwAAAAMIAAACAAAAAwAAA8MEAAACAAABAwAAAIMEAAACAAABQwAAAwMAAAACAAABQwAAAwMAAAACAAABAwAAAAMAAAACAAABAwAAAQMEAAACAAABAwAAAIMEAAACAAABAwAAAYMEAAACAAABAwAAAQMEAAACAAABAwAAAgMEAAACAAABAwAAAYMEAAACAAABAwAAAkMEAAACAAABAwAAAgMEAAACAAABAwAAAoMEAAACAAABAwAAAkMEAAACAAABAwAAAsMEAAACAAABAwAAAoMEAAACAAABAwAAAwMEAAACAAABAwAAAsMEAAACAAABAwAAA4MEAAACAAABQwAAA0MEAAACAAABQwAAA0MEAAACAAABAwAAAwMEAAACAAABAwAAA8MEAAACAAABAwAAA4MEAAACAAABAwAAAAMIAAACAAABAwAAA8MEAAACAAACAwAAAYMEAAACAAACIwAAAEMEAAACAAACIwAAAEMEAAACAAACAwAAAgMAAAACAAACAwAAAgMEAAACAAACAwAAAYMEAAACAAACAwAAAkMEAAACAAACAwAAAgMEAAACAAACAwAAAoMEAAACAAACAwAAAkMEAAACAAACAwAAAsMEAAACAAACAwAAAoMEAAACAAACAwAAAwMEAAACAAACAwAAAsMEAAACAAACAwAAA0MEAAACAAACAwAAAwMEAAACAAACAwAAA8MEAAACAAACIwAAA4MEAAACAAACIwAAA4MEAAACAAACAwAAA0MEAAACAAACAwAAAAMIAAACAAACAwAAA8MEAAACAAACgwAAAAMEAAACAAACowAAAwMAAAACAAACowAAAwMAAAACAAACgwAAAgMAAAACAAACgwAAAYMEAAACAAACowAAAMMEAAACAAACowAAAMMEAAACAAACgwAAAAMEAAACAAACgwAAAgMEAAACAAACgwAAAYMEAAACAAACgwAAAkMEAAACAAACgwAAAgMEAAACAAACgwAAAoMEAAACAAACgwAAAkMEAAACAAACgwAAAsMEAAACAAACgwAAAoMEAAACAAACgwAAAwMEAAACAAACgwAAAsMEAAACAAACgwAAA0MEAAACAAACgwAAAwMEAAACAAACgwAAA4MEAAACAAACgwAAA0MEAAACAAACgwAAA8MEAAACAAACgwAAA4MEAAACAAACgwAAAAMIAAACAAACgwAAA8MEAAACAAADAwAAAAMEAAACAAADAwAAAwMAAAACAAADAwAAAIMEAAACAAADAwAAAAMEAAACAAADAwAAAQMEAAACAAADAwAAAIMEAAACAAADAwAAAYMEAAACAAADAwAAAQMEAAACAAADAwAAAkMEAAACAAADIwAAAgMEAAACAAADIwAAAgMEAAACAAADAwAAAYMEAAACAAADAwAAAoMEAAACAAADAwAAAkMEAAACAAADAwAAAwMEAAACAAADIwAAAsMEAAACAAADIwAAAsMEAAACAAADAwAAAoMEAAACAAADAwAAA0MEAAACAAADAwAAAwMEAAACAAADAwAAA4MEAAACAAADAwAAA0MEAAACAAADAwAAA8MEAAACAAADAwAAA4MEAAACAAADAwAAAAMIAAACAAADAwAAA8MEAAACAAADgwAAAIMEAAACAAADowAAAAMEAAACAAADowAAAAMEAAACAAADgwAAAwMAAAACAAADgwAAAQMEAAACAAADgwAAAIMEAAACAAADgwAAAYMEAAACAAADgwAAAQMEAAACAAADgwAAAkMEAAACAAADowAAAgMEAAACAAADowAAAgMEAAACAAADgwAAAYMEAAACAAADgwAAAoMEAAACAAADgwAAAkMEAAACAAADgwAAAwMEAAACAAADowAAAsMEAAACAAADowAAAsMEAAACAAADgwAAAoMEAAACAAADgwAAA0MEAAACAAADgwAAAwMEAAACAAADgwAAA8MEAAACAAADowAAA4MEAAACAAADowAAA4MEAAACAAADgwAAA0MEAAACAAADgwAAAAMIAAACAAADgwAAA8MEAAACAAAAAwQAA0MEAAACAAAAEwQAAiMEAAACAAAAEwQAAiMEAAACAAAAAwQAAAMEAAACAAAAAwQAA4MEAAACAAAAAwQAA0MEAAACAAAAAwQAA8MEAAACAAAAAwQAA4MEAAACAAAAgwQAAIMEAAACAAAAkwQAAoMAAAACAAAAkwQAAoMAAAACAAAAgwQAAAIAAAACAAAAgwQAAQMEAAACAAAAgwQAAIMEAAACAAAAgwQAAYMEAAACAAAAgwQAAQMEAAACAAAAgwQAAgMEAAACAAAAgwQAAYMEAAACAAAAgwQAAoMEAAACAAAAkwQAAkMEAAACAAAAkwQAAkMEAAACAAAAgwQAAgMEAAACAAAAgwQAAsMEAAACAAAAgwQAAoMEAAACAAAAgwQAA4MEAAACAAAAkwQAAyMEAAACAAAAkwQAAyMEAAACAAAAgwQAAsMEAAACAAAAgwQAA8MEAAACAAAAgwQAA4MEAAACAAAAgwQAAAMIAAACAAAAgwQAA8MEAAACAAAAwwQAAAMEAAACAAAA0wQAAgMAAAACAAAA0wQAAgMAAAACAAAAwwQAAAIAAAACAAAAwwQAAIMEAAACAAAAwwQAAAMEAAACAAAAwwQAAQMEAAACAAAAwwQAAIMEAAACAAAAwwQAAYMEAAACAAAAwwQAAQMEAAACAAAAwwQAAgMEAAACAAAAwwQAAYMEAAACAAAAwwQAAoMEAAACAAAA0wQAAkMEAAACAAAA0wQAAkMEAAACAAAAwwQAAgMEAAACAAAAwwQAAsMEAAACAAAAwwQAAoMEAAACAAAAwwQAA0MEAAACAAAA0wQAAwMEAAACAAAA0wQAAwMEAAACAAAAwwQAAsMEAAACAAAAwwQAA4MEAAACAAAAwwQAA0MEAAACAAAAwwQAA8MEAAACAAAAwwQAA4MEAAACAAAAwwQAAAMIAAACAAAAwwQAA8MEAAACAAABAwQAAAMEAAACAAABEwQAAoMAAAACAAABEwQAAoMAAAACAAABAwQAAAMAAAACAAABAwQAAIMEAAACAAABAwQAAAMEAAACAAABAwQAAQMEAAACAAABAwQAAIMEAAACAAABAwQAAYMEAAACAAABAwQAAQMEAAACAAABAwQAAgMEAAACAAABAwQAAYMEAAACAAABAwQAAkMEAAACAAABAwQAAgMEAAACAAABAwQAAoMEAAACAAABAwQAAkMEAAACAAABAwQAAsMEAAACAAABAwQAAoMEAAACAAABAwQAAwMEAAACAAABAwQAAsMEAAACAAABAwQAA0MEAAACAAABAwQAAwMEAAACAAABAwQAA4MEAAACAAABAwQAA0MEAAACAAABAwQAA8MEAAACAAABAwQAA4MEAAACAAABAwQAAAMIAAACAAABAwQAA8MEAAACAAABQwQAAIMEAAACAAABUwQAAwMAAAACAAABUwQAAwMAAAACAAABQwQAAAMAAAACAAABQwQAAQMEAAACAAABQwQAAIMEAAACAAABQwQAAYMEAAACAAABQwQAAQMEAAACAAABQwQAAgMEAAACAAABQwQAAYMEAAACAAABQwQAAkMEAAACAAABQwQAAgMEAAACAAABQwQAAoMEAAACAAABQwQAAkMEAAACAAABQwQAAsMEAAACAAABQwQAAoMEAAACAAABQwQAAwMEAAACAAABQwQAAsMEAAACAAABQwQAA4MEAAACAAABUwQAA0MEAAACAAABUwQAA0MEAAACAAABQwQAAwMEAAACAAABQwQAA8MEAAACAAABQwQAA4MEAAACAAABQwQAAAMIAAACAAABQwQAA8MEAAACAAABgwQAAYMEAAACAAABkwQAAEMEAAACAAABkwQAAEMEAAACAAABgwQAAgMAAAACAAABgwQAAgMEAAACAAABgwQAAYMEAAACAAABgwQAAkMEAAACAAABgwQAAgMEAAACAAABgwQAAoMEAAACAAABgwQAAkMEAAACAAABgwQAAsMEAAACAAABgwQAAoMEAAACAAABgwQAAwMEAAACAAABgwQAAsMEAAACAAABgwQAA0MEAAACAAABgwQAAwMEAAACAAABgwQAA8MEAAACAAABkwQAA4MEAAACAAABkwQAA4MEAAACAAABgwQAA0MEAAACAAABgwQAAAMIAAACAAABgwQAA8MEAAACAAABwwQAAAMEAAACAAAB0wQAAwMAAAACAAAB0wQAAwMAAAACAAABwwQAAgMAAAACAAABwwQAAYMEAAACAAAB0wQAAMMEAAACAAAB0wQAAMMEAAACAAABwwQAAAMEAAACAAABwwQAAgMEAAACAAABwwQAAYMEAAACAAABwwQAAkMEAAACAAABwwQAAgMEAAACAAABwwQAAoMEAAACAAABwwQAAkMEAAACAAABwwQAAsMEAAACAAABwwQAAoMEAAACAAABwwQAAwMEAAACAAABwwQAAsMEAAACAAABwwQAA0MEAAACAAABwwQAAwMEAAACAAABwwQAA4MEAAACAAABwwQAA0MEAAACAAABwwQAA8MEAAACAAABwwQAA4MEAAACAAABwwQAAAMIAAACAAABwwQAA8MEAAACAAACAwQAAAMEAAACAAACAwQAAwMAAAACAAACAwQAAIMEAAACAAACAwQAAAMEAAACAAACAwQAAQMEAAACAAACAwQAAIMEAAACAAACAwQAAYMEAAACAAACAwQAAQMEAAACAAACAwQAAkMEAAACAAACCwQAAgMEAAACAAACCwQAAgMEAAACAAACAwQAAYMEAAACAAACAwQAAoMEAAACAAACAwQAAkMEAAACAAACAwQAAwMEAAACAAACCwQAAsMEAAACAAACCwQAAsMEAAACAAACAwQAAoMEAAACAAACAwQAA0MEAAACAAACAwQAAwMEAAACAAACAwQAA4MEAAACAAACAwQAA0MEAAACAAACAwQAA8MEAAACAAACAwQAA4MEAAACAAACAwQAAAMIAAACAAACAwQAA8MEAAACAAACIwQAAIMEAAACAAACKwQAAAMEAAACAAACKwQAAAMEAAACAAACIwQAAwMAAAACAAACIwQAAQMEAAACAAACIwQAAIMEAAACAAACIwQAAYMEAAACAAACIwQAAQMEAAACAAACIwQAAkMEAAACAAACKwQAAgMEAAACAAACKwQAAgMEAAACAAACIwQAAYMEAAACAAACIwQAAoMEAAACAAACIwQAAkMEAAACAAACIwQAAwMEAAACAAACKwQAAsMEAAACAAACKwQAAsMEAAACAAACIwQAAoMEAAACAAACIwQAA0MEAAACAAACIwQAAwMEAAACAAACIwQAA8MEAAACAAACKwQAA4MEAAACAAACKwQAA4MEAAACAAACIwQAA0MEAAACAAACIwQAAAMIAAACAAACIwQAA8MEAAACAAACQwQAA0MEAAACAAACSwQAAiMEAAACAAACSwQAAiMEAAACAAACQwQAAAMEAAACAAACQwQAA4MEAAACAAACQwQAA0MEAAACAAACQwQAA8MEAAACAAACQwQAA4MEAAACAAACAPwAAAIAAAACAAACYwQAAAIAAAACAAACAPwAAAMAAAACAAACYwQAAAMAAAACAAACAPwAAgMAAAACAAACYwQAAgMAAAACAAACAPwAAwMAAAACAAACYwQAAwMAAAACAAACAPwAAAMEAAACAAACYwQAAAMEAAACAAACAPwAAIMEAAACAAACYwQAAIMEAAACAAACAPwAAQMEAAACAAACYwQAAQMEAAACAAACAPwAAYMEAAACAAACYwQAAYMEAAACAAACAPwAAgMEAAACAAACYwQAAgMEAAACAAACAPwAAkMEAAACAAACYwQAAkMEAAACAAACAPwAAoMEAAACAAACYwQAAoMEAAACAAACAPwAAsMEAAACAAACYwQAAsMEAAACAAACAPwAAwMEAAACAAACYwQAAwMEAAACAAACAPwAA0MEAAACAAACYwQAA0MEAAACAAACAPwAA4MEAAACAAACYwQAA4MEAAACAAACAPwAA8MEAAACAAACYwQAA8MEAAACAAACAPwAAAMIAAACAAACYwQAAAMIAAACAAACAPwAACMIAAACAAACYwQAACMIAAACAAACAPwAAEMIAAACAAACYwQAAEMIAAACAAACAPwAAGMIAAACAAACYwQAAGMIAAACAAACAPwAAIMIAAACAAACYwQAAIMIAAACA\"},{\"byteLength\":72,\"name\":\"buf_red_scattered_lines\",\"uri\":\"data:application/octet-stream;base64,AAAAAAAAAEAAAACAAABAwAAAAEAAAACAAAAgwAAAwD8AAACAAABAwAAAAEAAAACAAAAgwAAAIEAAAACAAABAwAAAAEAAAACA\"}],\"images\":[{\"uri\":\"\"}],\"materials\":[{\"doubleSided\":false,\"pbrMetallicRoughness\":{\"baseColorFactor\":[1,1,1,1],\"baseColorTexture\":{\"index\":0,\"texCoord\":0},\"metallicFactor\":0.4,\"roughnessFactor\":0.5}},{\"doubleSided\":true,\"pbrMetallicRoughness\":{\"baseColorFactor\":[0,0,0,1],\"metallicFactor\":1,\"roughnessFactor\":1}},{\"doubleSided\":true,\"pbrMetallicRoughness\":{\"baseColorFactor\":[1,0,0,1],\"metallicFactor\":1,\"roughnessFactor\":1}}],\"meshes\":[{\"primitives\":[{\"attributes\":{\"POSITION\":0,\"TEXCOORD_0\":1},\"material\":0,\"mode\":4}]},{\"primitives\":[{\"attributes\":{\"POSITION\":0,\"TEXCOORD_0\":2},\"material\":0,\"mode\":4}]},{\"primitives\":[{\"attributes\":{\"POSITION\":0,\"TEXCOORD_0\":3},\"material\":0,\"mode\":4}]},{\"primitives\":[{\"attributes\":{\"POSITION\":0,\"TEXCOORD_0\":4},\"material\":0,\"mode\":4}]},{\"primitives\":[{\"attributes\":{\"POSITION\":5},\"material\":1,\"mode\":1}]},{\"primitives\":[{\"attributes\":{\"POSITION\":6},\"material\":2,\"mode\":1}]}],\"nodes\":[{\"mesh\":0,\"translation\":[-0,-0,-0]},{\"mesh\":1,\"translation\":[-0,-10,-0]},{\"mesh\":1,\"translation\":[-0,-12,-0]},{\"mesh\":2,\"translation\":[-0,-14,-0]},{\"mesh\":0,\"translation\":[-0,-16,-0]},{\"mesh\":1,\"translation\":[-0,-20,-0]},{\"mesh\":1,\"translation\":[-0,-22,-0]},{\"mesh\":1,\"translation\":[-0,-28,-0]},{\"mesh\":0,\"translation\":[-0,-30,-0]},{\"mesh\":1,\"translation\":[-0,-32,-0]},{\"mesh\":2,\"translation\":[-1,-0,-0]},{\"mesh\":2,\"translation\":[-1,-8,-0]},{\"mesh\":0,\"translation\":[-1,-10,-0]},{\"mesh\":0,\"translation\":[-1,-12,-0]},{\"mesh\":1,\"translation\":[-1,-14,-0]},{\"mesh\":2,\"translation\":[-1,-16,-0]},{\"mesh\":0,\"translation\":[-1,-20,-0]},{\"mesh\":0,\"translation\":[-1,-22,-0]},{\"mesh\":2,\"translation\":[-1,-26,-0]},{\"mesh\":1,\"translation\":[-1,-28,-0]},{\"mesh\":0,\"translation\":[-1,-30,-0]},{\"mesh\":0,\"translation\":[-1,-32,-0]},{\"mesh\":0,\"translation\":[-2,-2,-0]},{\"mesh\":2,\"translation\":[-2,-8,-0]},{\"mesh\":1,\"translation\":[-2,-10,-0]},{\"mesh\":0,\"translation\":[-2,-12,-0]},{\"mesh\":2,\"translation\":[-2,-14,-0]},{\"mesh\":0,\"translation\":[-2,-16,-0]},{\"mesh\":0,\"translation\":[-2,-18,-0]},{\"mesh\":2,\"translation\":[-2,-20,-0]},{\"mesh\":0,\"translation\":[-2,-22,-0]},{\"mesh\":1,\"translation\":[-2,-24,-0]},{\"mesh\":2,\"translation\":[-2,-26,-0]},{\"mesh\":0,\"translation\":[-2,-28,-0]},{\"mesh\":2,\"translation\":[-2,-30,-0]},{\"mesh\":0,\"translation\":[-2,-32,-0]},{\"mesh\":2,\"translation\":[-3,-2,-0]},{\"mesh\":0,\"translation\":[-3,-10,-0]},{\"mesh\":2,\"translation\":[-3,-12,-0]},{\"mesh\":1,\"translation\":[-3,-14,-0]},{\"mesh\":2,\"translation\":[-3,-16,-0]},{\"mesh\":2,\"translation\":[-3,-18,-0]},{\"mesh\":1,\"translation\":[-3,-20,-0]},{\"mesh\":2,\"translation\":[-3,-22,-0]},{\"mesh\":0,\"translation\":[-3,-24,-0]},{\"mesh\":0,\"translation\":[-3,-28,-0]},{\"mesh\":2,\"translation\":[-3,-30,-0]},{\"mesh\":2,\"translation\":[-3,-32,-0]},{\"mesh\":0,\"translation\":[-4,-4,-0]},{\"mesh\":1,\"translation\":[-4,-14,-0]},{\"mesh\":1,\"translation\":[-4,-16,-0]},{\"mesh\":0,\"translation\":[-4,-18,-0]},{\"mesh\":2,\"translation\":[-4,-20,-0]},{\"mesh\":0,\"translation\":[-4,-22,-0]},{\"mesh\":0,\"translation\":[-4,-24,-0]},{\"mesh\":1,\"translation\":[-4,-26,-0]},{\"mesh\":0,\"translation\":[-4,-30,-0]},{\"mesh\":1,\"translation\":[-4,-32,-0]},{\"mesh\":2,\"translation\":[-5,-4,-0]},{\"mesh\":2,\"translation\":[-5,-8,-0]},{\"mesh\":0,\"translation\":[-5,-14,-0]},{\"mesh\":0,\"translation\":[-5,-16,-0]},{\"mesh\":2,\"translation\":[-5,-18,-0]},{\"mesh\":1,\"translation\":[-5,-20,-0]},{\"mesh\":2,\"translation\":[-5,-22,-0]},{\"mesh\":2,\"translation\":[-5,-24,-0]},{\"mesh\":1,\"translation\":[-5,-26,-0]},{\"mesh\":2,\"translation\":[-5,-28,-0]},{\"mesh\":0,\"translation\":[-5,-30,-0]},{\"mesh\":0,\"translation\":[-5,-32,-0]},{\"mesh\":0,\"translation\":[-6,-6,-0]},{\"mesh\":2,\"translation\":[-6,-8,-0]},{\"mesh\":1,\"translation\":[-6,-10,-0]},{\"mesh\":2,\"translation\":[-6,-12,-0]},{\"mesh\":0,\"translation\":[-6,-14,-0]},{\"mesh\":1,\"translation\":[-6,-18,-0]},{\"mesh\":1,\"translation\":[-6,-20,-0]},{\"mesh\":0,\"translation\":[-6,-24,-0]},{\"mesh\":1,\"translation\":[-6,-26,-0]},{\"mesh\":2,\"translation\":[-6,-28,-0]},{\"mesh\":0,\"translation\":[-6,-30,-0]},{\"mesh\":0,\"translation\":[-6,-32,-0]},{\"mesh\":2,\"translation\":[-7,-6,-0]},{\"mesh\":0,\"translation\":[-7,-10,-0]},{\"mesh\":1,\"translation\":[-7,-12,-0]},{\"mesh\":2,\"translation\":[-7,-14,-0]},{\"mesh\":0,\"translation\":[-7,-18,-0]},{\"mesh\":0,\"translation\":[-7,-20,-0]},{\"mesh\":2,\"translation\":[-7,-24,-0]},{\"mesh\":2,\"translation\":[-7,-26,-0]},{\"mesh\":1,\"translation\":[-7,-30,-0]},{\"mesh\":2,\"translation\":[-7,-32,-0]},{\"mesh\":0,\"translation\":[-8,-8,-0]},{\"mesh\":0,\"translation\":[-8,-26,-0]},{\"mesh\":0,\"translation\":[-8,-28,-0]},{\"mesh\":2,\"translation\":[-8,-30,-0]},{\"mesh\":0,\"translation\":[-8,-34,-0]},{\"mesh\":0,\"translation\":[-8,-36,-0]},{\"mesh\":0,\"translation\":[-8,-38,-0]},{\"mesh\":0,\"translation\":[-8,-40,-0]},{\"mesh\":3,\"translation\":[-8,-0,-0]},{\"mesh\":3,\"translation\":[-8,-2,-0]},{\"mesh\":3,\"translation\":[-8,-4,-0]},{\"mesh\":3,\"translation\":[-8,-6,-0]},{\"mesh\":3,\"translation\":[-9,-8,-0]},{\"mesh\":3,\"translation\":[-9,-10,-0]},{\"mesh\":3,\"translation\":[-9,-12,-0]},{\"mesh\":3,\"translation\":[-9,-14,-0]},{\"mesh\":3,\"translation\":[-9,-16,-0]},{\"mesh\":3,\"translation\":[-9,-18,-0]},{\"mesh\":3,\"translation\":[-9,-20,-0]},{\"mesh\":3,\"translation\":[-9,-22,-0]},{\"mesh\":3,\"translation\":[-9,-24,-0]},{\"mesh\":3,\"translation\":[-9,-26,-0]},{\"mesh\":3,\"translation\":[-9,-28,-0]},{\"mesh\":3,\"translation\":[-9,-30,-0]},{\"mesh\":3,\"translation\":[-9,-32,-0]},{\"mesh\":3,\"translation\":[-9,-34,-0]},{\"mesh\":3,\"translation\":[-9,-36,-0]},{\"mesh\":3,\"translation\":[-9,-38,-0]},{\"mesh\":3,\"translation\":[-9,-40,-0]},{\"mesh\":0,\"translation\":[-10,-0,-0]},{\"mesh\":1,\"translation\":[-10,-10,-0]},{\"mesh\":1,\"translation\":[-10,-12,-0]},{\"mesh\":2,\"translation\":[-10,-14,-0]},{\"mesh\":0,\"translation\":[-10,-16,-0]},{\"mesh\":1,\"translation\":[-10,-20,-0]},{\"mesh\":1,\"translation\":[-10,-22,-0]},{\"mesh\":1,\"translation\":[-10,-28,-0]},{\"mesh\":0,\"translation\":[-10,-30,-0]},{\"mesh\":1,\"translation\":[-10,-32,-0]},{\"mesh\":2,\"translation\":[-11,-0,-0]},{\"mesh\":2,\"translation\":[-11,-8,-0]},{\"mesh\":0,\"translation\":[-11,-10,-0]},{\"mesh\":0,\"translation\":[-11,-12,-0]},{\"mesh\":1,\"translation\":[-11,-14,-0]},{\"mesh\":2,\"translation\":[-11,-16,-0]},{\"mesh\":0,\"translation\":[-11,-20,-0]},{\"mesh\":0,\"translation\":[-11,-22,-0]},{\"mesh\":2,\"translation\":[-11,-26,-0]},{\"mesh\":1,\"translation\":[-11,-28,-0]},{\"mesh\":0,\"translation\":[-11,-30,-0]},{\"mesh\":0,\"translation\":[-11,-32,-0]},{\"mesh\":0,\"translation\":[-12,-2,-0]},{\"mesh\":2,\"translation\":[-12,-8,-0]},{\"mesh\":1,\"translation\":[-12,-10,-0]},{\"mesh\":0,\"translation\":[-12,-12,-0]},{\"mesh\":2,\"translation\":[-12,-14,-0]},{\"mesh\":0,\"translation\":[-12,-16,-0]},{\"mesh\":0,\"translation\":[-12,-18,-0]},{\"mesh\":2,\"translation\":[-12,-20,-0]},{\"mesh\":0,\"translation\":[-12,-22,-0]},{\"mesh\":1,\"translation\":[-12,-24,-0]},{\"mesh\":2,\"translation\":[-12,-26,-0]},{\"mesh\":0,\"translation\":[-12,-28,-0]},{\"mesh\":2,\"translation\":[-12,-30,-0]},{\"mesh\":0,\"translation\":[-12,-32,-0]},{\"mesh\":2,\"translation\":[-13,-2,-0]},{\"mesh\":0,\"translation\":[-13,-10,-0]},{\"mesh\":2,\"translation\":[-13,-12,-0]},{\"mesh\":1,\"translation\":[-13,-14,-0]},{\"mesh\":2,\"translation\":[-13,-16,-0]},{\"mesh\":2,\"translation\":[-13,-18,-0]},{\"mesh\":1,\"translation\":[-13,-20,-0]},{\"mesh\":2,\"translation\":[-13,-22,-0]},{\"mesh\":0,\"translation\":[-13,-24,-0]},{\"mesh\":0,\"translation\":[-13,-28,-0]},{\"mesh\":2,\"translation\":[-13,-30,-0]},{\"mesh\":2,\"translation\":[-13,-32,-0]},{\"mesh\":0,\"translation\":[-14,-4,-0]},{\"mesh\":1,\"translation\":[-14,-14,-0]},{\"mesh\":1,\"translation\":[-14,-16,-0]},{\"mesh\":0,\"translation\":[-14,-18,-0]},{\"mesh\":2,\"translation\":[-14,-20,-0]},{\"mesh\":0,\"translation\":[-14,-22,-0]},{\"mesh\":0,\"translation\":[-14,-24,-0]},{\"mesh\":1,\"translation\":[-14,-26,-0]},{\"mesh\":0,\"translation\":[-14,-30,-0]},{\"mesh\":1,\"translation\":[-14,-32,-0]},{\"mesh\":2,\"translation\":[-15,-4,-0]},{\"mesh\":2,\"translation\":[-15,-8,-0]},{\"mesh\":0,\"translation\":[-15,-14,-0]},{\"mesh\":0,\"translation\":[-15,-16,-0]},{\"mesh\":2,\"translation\":[-15,-18,-0]},{\"mesh\":1,\"translation\":[-15,-20,-0]},{\"mesh\":2,\"translation\":[-15,-22,-0]},{\"mesh\":2,\"translation\":[-15,-24,-0]},{\"mesh\":1,\"translation\":[-15,-26,-0]},{\"mesh\":2,\"translation\":[-15,-28,-0]},{\"mesh\":0,\"translation\":[-15,-30,-0]},{\"mesh\":0,\"translation\":[-15,-32,-0]},{\"mesh\":0,\"translation\":[-16,-6,-0]},{\"mesh\":2,\"translation\":[-16,-8,-0]},{\"mesh\":1,\"translation\":[-16,-10,-0]},{\"mesh\":2,\"translation\":[-16,-12,-0]},{\"mesh\":0,\"translation\":[-16,-14,-0]},{\"mesh\":1,\"translation\":[-16,-18,-0]},{\"mesh\":1,\"translation\":[-16,-20,-0]},{\"mesh\":0,\"translation\":[-16,-24,-0]},{\"mesh\":1,\"translation\":[-16,-26,-0]},{\"mesh\":2,\"translation\":[-16,-28,-0]},{\"mesh\":0,\"translation\":[-16,-30,-0]},{\"mesh\":0,\"translation\":[-16,-32,-0]},{\"mesh\":2,\"translation\":[-17,-6,-0]},{\"mesh\":0,\"translation\":[-17,-10,-0]},{\"mesh\":1,\"translation\":[-17,-12,-0]},{\"mesh\":2,\"translation\":[-17,-14,-0]},{\"mesh\":0,\"translation\":[-17,-18,-0]},{\"mesh\":0,\"translation\":[-17,-20,-0]},{\"mesh\":2,\"translation\":[-17,-24,-0]},{\"mesh\":2,\"translation\":[-17,-26,-0]},{\"mesh\":1,\"translation\":[-17,-30,-0]},{\"mesh\":2,\"translation\":[-17,-32,-0]},{\"mesh\":0,\"translation\":[-18,-8,-0]},{\"mesh\":0,\"translation\":[-18,-26,-0]},{\"mesh\":0,\"translation\":[-18,-28,-0]},{\"mesh\":2,\"translation\":[-18,-30,-0]},{\"mesh\":0,\"translation\":[-18,-34,-0]},{\"mesh\":0,\"translation\":[-18,-36,-0]},{\"mesh\":0,\"translation\":[-18,-38,-0]},{\"mesh\":0,\"translation\":[-18,-40,-0]},{\"mesh\":4,\"translation\":[0,0,0]},{\"mesh\":5,\"translation\":[0,0,0]}],\"samplers\":[{\"magFilter\":9728,\"minFilter\":9728,\"wrapS\":33071,\"wrapT\":33071}],\"scene\":0,\"scenes\":[{\"nodes\":[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222]}],\"textures\":[{\"sampler\":0,\"source\":0}]}" - ], - "text/html": [ - "" - ] - }, - "metadata": {}, - "execution_count": 19 - } + "data": { + "text/html": [ + "" ], - "source": [ - "# Example QEC code:\n", - "text = '''[1 0 0 0 0 1 1 0 1 0 1 1 0 0 1 1 1 0 0 0 0|0 0 0 0 0 1 1 1 0 0 1 1 0 0 1 0 1 0 0 0 0]\n", - " [0 0 0 0 0 1 1 1 0 0 1 1 0 0 1 1 1 0 0 0 0|1 0 0 0 1 0 0 1 1 0 0 0 0 1 1 0 0 0 0 0 0]\n", - " [0 1 0 0 0 1 1 0 1 1 0 1 1 0 1 0 1 0 0 0 0|0 0 0 0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 0 0 0]\n", - " [0 0 0 0 0 1 0 1 0 0 1 0 1 0 1 0 0 0 0 0 0|0 1 0 0 0 0 1 1 1 1 1 1 0 0 0 1 1 0 0 0 0]\n", - " [0 0 1 0 0 0 0 1 1 1 0 1 1 1 0 1 1 0 0 0 0|0 0 0 0 0 0 0 1 1 0 1 0 0 1 0 0 1 0 0 0 0]\n", - " [0 0 0 0 0 0 0 1 1 0 1 0 0 1 0 1 1 0 0 0 0|0 0 1 0 1 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0]\n", - " [0 0 0 1 0 1 0 1 0 1 1 0 1 1 0 1 1 0 0 0 0|0 0 0 0 1 1 1 0 0 1 1 0 0 1 1 0 0 0 0 0 0]\n", - " [0 0 0 0 0 1 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0|0 0 0 1 0 0 1 1 0 0 0 0 1 1 0 1 1 0 0 0 0]\n", - " [0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0]\n", - " [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]\n", - " [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]\n", - " [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]\n", - " [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]'''\n", - "\n", - "H = parse_symplectic_matrix(text)\n", - "\n", - "LX, LZ = stabilizer_code_logical_operators(check_matrix=H)\n", - "\n", - "circuit = code_capacity_circuit(\n", - " stabilizers=H,\n", - " x_logicals=LX,\n", - " z_logicals=LZ,\n", - " p=0.025\n", - ")\n", - "\n", - "circuit.diagram('timeline-3d')" + "text/plain": [ + "{\"accessors\":[{\"bufferView\":0,\"byteOffset\":0,\"componentType\":5126,\"count\":12,\"max\":[0,0.5,0.5],\"min\":[0,-0.5,-0.5],\"name\":\"cube\",\"type\":\"VEC3\"},{\"bufferView\":1,\"byteOffset\":0,\"componentType\":5126,\"count\":12,\"max\":[0.375,0.5625],\"min\":[0.3125,0.5],\"name\":\"tex_coords_gate_R\",\"type\":\"VEC2\"},{\"bufferView\":2,\"byteOffset\":0,\"componentType\":5126,\"count\":12,\"max\":[0.5,0.4375],\"min\":[0.4375,0.375],\"name\":\"tex_coords_gate_X_ERROR\",\"type\":\"VEC2\"},{\"bufferView\":3,\"byteOffset\":0,\"componentType\":5126,\"count\":12,\"max\":[0.125,0.5],\"min\":[0.0625,0.4375],\"name\":\"tex_coords_gate_H\",\"type\":\"VEC2\"},{\"bufferView\":4,\"byteOffset\":0,\"componentType\":5126,\"count\":12,\"max\":[0.25,0.625],\"min\":[0.1875,0.5625],\"name\":\"tex_coords_gate_DEPOLARIZE1\",\"type\":\"VEC2\"},{\"bufferView\":5,\"byteOffset\":0,\"componentType\":5126,\"count\":17,\"max\":[0,0.400000005960464,0.400000005960464],\"min\":[0,-0.400000005960464,-0.400000005960464],\"name\":\"circle_loop\",\"type\":\"VEC3\"},{\"bufferView\":6,\"byteOffset\":0,\"componentType\":5126,\"count\":12,\"max\":[0.3125,0.625],\"min\":[0.25,0.5625],\"name\":\"tex_coords_gate_DEPOLARIZE2\",\"type\":\"VEC2\"},{\"bufferView\":7,\"byteOffset\":0,\"componentType\":5126,\"count\":12,\"max\":[0.3125,0.5625],\"min\":[0.25,0.5],\"name\":\"tex_coords_gate_M\",\"type\":\"VEC2\"},{\"bufferView\":8,\"byteOffset\":0,\"componentType\":5126,\"count\":1298,\"max\":[1,-32,-32],\"min\":[-96,-48,-44],\"name\":\"buf_scattered_lines\",\"type\":\"VEC3\"},{\"bufferView\":9,\"byteOffset\":0,\"componentType\":5126,\"count\":30,\"max\":[0,-29.5,-31],\"min\":[-64.25,-49,-45],\"name\":\"buf_red_scattered_lines\",\"type\":\"VEC3\"},{\"bufferView\":10,\"byteOffset\":0,\"componentType\":5126,\"count\":704,\"max\":[0.25,-31.2000007629395,-31.5],\"min\":[-93.25,-31.6000003814697,-44.5],\"name\":\"buf_blue_scattered_lines\",\"type\":\"VEC3\"}],\"asset\":{\"version\":\"2.0\"},\"bufferViews\":[{\"buffer\":0,\"byteLength\":144,\"byteOffset\":0,\"name\":\"cube\",\"target\":34962},{\"buffer\":1,\"byteLength\":96,\"byteOffset\":0,\"name\":\"tex_coords_gate_R\",\"target\":34962},{\"buffer\":2,\"byteLength\":96,\"byteOffset\":0,\"name\":\"tex_coords_gate_X_ERROR\",\"target\":34962},{\"buffer\":3,\"byteLength\":96,\"byteOffset\":0,\"name\":\"tex_coords_gate_H\",\"target\":34962},{\"buffer\":4,\"byteLength\":96,\"byteOffset\":0,\"name\":\"tex_coords_gate_DEPOLARIZE1\",\"target\":34962},{\"buffer\":5,\"byteLength\":204,\"byteOffset\":0,\"name\":\"circle_loop\",\"target\":34962},{\"buffer\":6,\"byteLength\":96,\"byteOffset\":0,\"name\":\"tex_coords_gate_DEPOLARIZE2\",\"target\":34962},{\"buffer\":7,\"byteLength\":96,\"byteOffset\":0,\"name\":\"tex_coords_gate_M\",\"target\":34962},{\"buffer\":8,\"byteLength\":15576,\"byteOffset\":0,\"name\":\"buf_scattered_lines\",\"target\":34962},{\"buffer\":9,\"byteLength\":360,\"byteOffset\":0,\"name\":\"buf_red_scattered_lines\",\"target\":34962},{\"buffer\":10,\"byteLength\":8448,\"byteOffset\":0,\"name\":\"buf_blue_scattered_lines\",\"target\":34962}],\"buffers\":[{\"byteLength\":144,\"name\":\"cube\",\"uri\":\"data:application/octet-stream;base64,AAAAAAAAAD8AAAA/AAAAAAAAAD8AAAC/AAAAAAAAAL8AAAA/AAAAAAAAAD8AAAC/AAAAAAAAAL8AAAC/AAAAAAAAAL8AAAA/AAAAAAAAAL8AAAC/AAAAAAAAAD8AAAC/AAAAAAAAAL8AAAA/AAAAAAAAAL8AAAA/AAAAAAAAAD8AAAC/AAAAAAAAAD8AAAA/\"},{\"byteLength\":96,\"name\":\"tex_coords_gate_R\",\"uri\":\"data:application/octet-stream;base64,AADAPgAAAD8AAKA+AAAAPwAAwD4AABA/AACgPgAAAD8AAKA+AAAQPwAAwD4AABA/AADAPgAAED8AAMA+AAAAPwAAoD4AABA/AACgPgAAED8AAMA+AAAAPwAAoD4AAAA/\"},{\"byteLength\":96,\"name\":\"tex_coords_gate_X_ERROR\",\"uri\":\"data:application/octet-stream;base64,AAAAPwAAwD4AAOA+AADAPgAAAD8AAOA+AADgPgAAwD4AAOA+AADgPgAAAD8AAOA+AAAAPwAA4D4AAAA/AADAPgAA4D4AAOA+AADgPgAA4D4AAAA/AADAPgAA4D4AAMA+\"},{\"byteLength\":96,\"name\":\"tex_coords_gate_H\",\"uri\":\"data:application/octet-stream;base64,AAAAPgAA4D4AAIA9AADgPgAAAD4AAAA/AACAPQAA4D4AAIA9AAAAPwAAAD4AAAA/AAAAPgAAAD8AAAA+AADgPgAAgD0AAAA/AACAPQAAAD8AAAA+AADgPgAAgD0AAOA+\"},{\"byteLength\":96,\"name\":\"tex_coords_gate_DEPOLARIZE1\",\"uri\":\"data:application/octet-stream;base64,AACAPgAAED8AAEA+AAAQPwAAgD4AACA/AABAPgAAED8AAEA+AAAgPwAAgD4AACA/AACAPgAAID8AAIA+AAAQPwAAQD4AACA/AABAPgAAID8AAIA+AAAQPwAAQD4AABA/\"},{\"byteLength\":204,\"name\":\"circle_loop\",\"uri\":\"data:application/octet-stream;base64,AAAAAM3MzD4AAAAAAAAAAOU1vT5Fvxw+AAAAAMPQkD7D0JA+AAAAAES/HD7lNb0+AAAAAPIwlrLNzMw+AAAAAEe/HL7lNb0+AAAAAMPQkL7D0JA+AAAAAOc1vb5Avxw+AAAAAM3MzL7yMBazAAAAAOU1vb5Evxy+AAAAAMHQkL7E0JC+AAAAADy/HL7nNb2+AAAAAPLkozHNzMy+AAAAAEm/HD7kNb2+AAAAAMbQkD6/0JC+AAAAAOY1vT5Evxy+AAAAAM3MzD4AAAAA\"},{\"byteLength\":96,\"name\":\"tex_coords_gate_DEPOLARIZE2\",\"uri\":\"data:application/octet-stream;base64,AACgPgAAED8AAIA+AAAQPwAAoD4AACA/AACAPgAAED8AAIA+AAAgPwAAoD4AACA/AACgPgAAID8AAKA+AAAQPwAAgD4AACA/AACAPgAAID8AAKA+AAAQPwAAgD4AABA/\"},{\"byteLength\":96,\"name\":\"tex_coords_gate_M\",\"uri\":\"data:application/octet-stream;base64,AACgPgAAAD8AAIA+AAAAPwAAoD4AABA/AACAPgAAAD8AAIA+AAAQPwAAoD4AABA/AACgPgAAED8AAKA+AAAAPwAAgD4AABA/AACAPgAAED8AAKA+AAAAPwAAgD4AAAA/\"},{\"byteLength\":15576,\"name\":\"buf_scattered_lines\",\"uri\":\"data:application/octet-stream;base64,AACAwAAACMIAAADCAACAwAAAEMIAAADCAACAwAAACMIAABDCAACAwAAAEMIAABDCAACAwAAAGMIAAAjCAACAwAAAIMIAAAjCAACAwAAAGMIAABjCAACAwAAAIMIAABjCAACAwAAAGMIAACjCAACAwAAAIMIAACjCAACAwAAAKMIAAADCAACAwAAAMMIAAADCAACAwAAAKMIAABDCAACAwAAAMMIAABDCAACAwAAAKMIAACDCAACAwAAAMMIAACDCAACAwAAAOMIAAAjCAACAwAAAQMIAAAjCAACgwAAACMIAAADCAACgwAAAEMIAAADCAACgwAAACMIAABDCAACgwAAAEMIAABDCAACgwAAAGMIAAAjCAACgwAAAIMIAAAjCAACgwAAAGMIAABjCAACgwAAAIMIAABjCAACgwAAAGMIAACjCAACgwAAAIMIAACjCAACgwAAAKMIAAADCAACgwAAAMMIAAADCAACgwAAAKMIAABDCAACgwAAAMMIAABDCAACgwAAAKMIAACDCAACgwAAAMMIAACDCAACgwAAAOMIAAAjCAACgwAAAQMIAAAjCAAAAwQAACMIAAADCAAAAwQAACMIAAAjCAAAAwQAAEMIAAADCAAAAwQAAEMIAAAjCAAAAwQAAEMIAABDCAAAAwQAAEMIAABjCAAAAwQAAGMIAAAjCAAAAwQAAGMIAABDCAAAAwQAAGMIAABjCAAAAwQAAGMIAACDCAAAAwQAAIMIAAAjCAAAAwQAAIMIAABDCAAAAwQAAIMIAABjCAAAAwQAAIMIAACDCAAAAwQAAIMIAACjCAAAAwQAAIMIAADDCAAAAwQAAKMIAAADCAAAAwQAAKMIAAAjCAAAAwQAAKMIAABDCAAAAwQAAKMIAABjCAAAAwQAAKMIAACDCAAAAwQAAKMIAACjCAAAAwQAAMMIAAADCAAAAwQAAMMIAAAjCAAAAwQAAMMIAABDCAAAAwQAAMMIAABjCAAAAwQAAOMIAAAjCAAAAwQAAOMIAABDCAAAQwQAACMIAAADCAAAQwQAACMIAAAjCAAAQwQAAEMIAAADCAAAQwQAAEMIAAAjCAAAQwQAAEMIAABDCAAAQwQAAEMIAABjCAAAQwQAAGMIAAAjCAAAQwQAAGMIAABDCAAAQwQAAGMIAABjCAAAQwQAAGMIAACDCAAAQwQAAIMIAAAjCAAAQwQAAIMIAABDCAAAQwQAAIMIAABjCAAAQwQAAIMIAACDCAAAQwQAAIMIAACjCAAAQwQAAIMIAADDCAAAQwQAAKMIAAADCAAAQwQAAKMIAAAjCAAAQwQAAKMIAABDCAAAQwQAAKMIAABjCAAAQwQAAKMIAACDCAAAQwQAAKMIAACjCAAAQwQAAMMIAAADCAAAQwQAAMMIAAAjCAAAQwQAAMMIAABDCAAAQwQAAMMIAABjCAAAQwQAAOMIAAAjCAAAQwQAAOMIAABDCAAAgwQAAAMIAAADCAAAgwQAACMIAAADCAAAgwQAAEMIAAADCAAAgwQAAGMIAAADCAAAgwQAAEMIAAAjCAAAgwQAAGMIAAAjCAAAgwQAAEMIAABDCAAAgwQAAGMIAABDCAAAgwQAAEMIAABjCAAAgwQAAGMIAABjCAAAgwQAAIMIAAADCAAAgwQAAKMIAAADCAAAgwQAAIMIAAAjCAAAgwQAAKMIAAAjCAAAgwQAAIMIAABDCAAAgwQAAKMIAABDCAAAgwQAAIMIAABjCAAAgwQAAKMIAABjCAAAgwQAAIMIAACDCAAAgwQAAKMIAACDCAAAgwQAAIMIAACjCAAAgwQAAKMIAACjCAAAgwQAAMMIAAADCAAAgwQAAOMIAAADCAAAgwQAAMMIAAAjCAAAgwQAAOMIAAAjCAAAgwQAAMMIAABDCAAAgwQAAOMIAABDCAAAwwQAAAMIAAADCAAAwwQAACMIAAADCAAAwwQAAEMIAAADCAAAwwQAAGMIAAADCAAAwwQAAEMIAAAjCAAAwwQAAGMIAAAjCAAAwwQAAEMIAABDCAAAwwQAAGMIAABDCAAAwwQAAEMIAABjCAAAwwQAAGMIAABjCAAAwwQAAIMIAAADCAAAwwQAAKMIAAADCAAAwwQAAIMIAAAjCAAAwwQAAKMIAAAjCAAAwwQAAIMIAABDCAAAwwQAAKMIAABDCAAAwwQAAIMIAABjCAAAwwQAAKMIAABjCAAAwwQAAIMIAACDCAAAwwQAAKMIAACDCAAAwwQAAIMIAACjCAAAwwQAAKMIAACjCAAAwwQAAMMIAAADCAAAwwQAAOMIAAADCAAAwwQAAMMIAAAjCAAAwwQAAOMIAAAjCAAAwwQAAMMIAABDCAAAwwQAAOMIAABDCAABAwQAACMIAAAjCAABAwQAACMIAABDCAABAwQAAEMIAAAjCAABAwQAAEMIAABDCAABAwQAAGMIAAADCAABAwQAAGMIAAAjCAABAwQAAGMIAABDCAABAwQAAGMIAABjCAABAwQAAGMIAACDCAABAwQAAGMIAACjCAABAwQAAIMIAAADCAABAwQAAIMIAAAjCAABAwQAAIMIAABDCAABAwQAAIMIAABjCAABAwQAAIMIAACDCAABAwQAAIMIAACjCAABAwQAAKMIAAAjCAABAwQAAKMIAABDCAABAwQAAKMIAABjCAABAwQAAKMIAACDCAABAwQAAMMIAAAjCAABAwQAAMMIAABDCAABAwQAAMMIAABjCAABAwQAAMMIAACDCAABAwQAAOMIAAADCAABAwQAAOMIAAAjCAABAwQAAQMIAAADCAABAwQAAQMIAAAjCAABQwQAACMIAAAjCAABQwQAACMIAABDCAABQwQAAEMIAAAjCAABQwQAAEMIAABDCAABQwQAAGMIAAADCAABQwQAAGMIAAAjCAABQwQAAGMIAABDCAABQwQAAGMIAABjCAABQwQAAGMIAACDCAABQwQAAGMIAACjCAABQwQAAIMIAAADCAABQwQAAIMIAAAjCAABQwQAAIMIAABDCAABQwQAAIMIAABjCAABQwQAAIMIAACDCAABQwQAAIMIAACjCAABQwQAAKMIAAAjCAABQwQAAKMIAABDCAABQwQAAKMIAABjCAABQwQAAKMIAACDCAABQwQAAMMIAAAjCAABQwQAAMMIAABDCAABQwQAAMMIAABjCAABQwQAAMMIAACDCAABQwQAAOMIAAADCAABQwQAAOMIAAAjCAABQwQAAQMIAAADCAABQwQAAQMIAAAjCAACAwQAACMIAAADCAACAwQAACMIAAAjCAACAwQAAEMIAAADCAACAwQAAEMIAAAjCAACAwQAAEMIAABDCAACAwQAAEMIAABjCAACAwQAAGMIAAAjCAACAwQAAGMIAABDCAACAwQAAGMIAABjCAACAwQAAGMIAACDCAACAwQAAIMIAAAjCAACAwQAAIMIAABDCAACAwQAAIMIAABjCAACAwQAAIMIAACDCAACAwQAAIMIAACjCAACAwQAAIMIAADDCAACAwQAAKMIAAADCAACAwQAAKMIAAAjCAACAwQAAKMIAABDCAACAwQAAKMIAABjCAACAwQAAKMIAACDCAACAwQAAKMIAACjCAACAwQAAMMIAAADCAACAwQAAMMIAAAjCAACAwQAAMMIAABDCAACAwQAAMMIAABjCAACAwQAAOMIAAAjCAACAwQAAOMIAABDCAACIwQAACMIAAADCAACIwQAACMIAAAjCAACIwQAAEMIAAADCAACIwQAAEMIAAAjCAACIwQAAEMIAABDCAACIwQAAEMIAABjCAACIwQAAGMIAAAjCAACIwQAAGMIAABDCAACIwQAAGMIAABjCAACIwQAAGMIAACDCAACIwQAAIMIAAAjCAACIwQAAIMIAABDCAACIwQAAIMIAABjCAACIwQAAIMIAACDCAACIwQAAIMIAACjCAACIwQAAIMIAADDCAACIwQAAKMIAAADCAACIwQAAKMIAAAjCAACIwQAAKMIAABDCAACIwQAAKMIAABjCAACIwQAAKMIAACDCAACIwQAAKMIAACjCAACIwQAAMMIAAADCAACIwQAAMMIAAAjCAACIwQAAMMIAABDCAACIwQAAMMIAABjCAACIwQAAOMIAAAjCAACIwQAAOMIAABDCAACQwQAAAMIAAADCAACQwQAACMIAAADCAACQwQAAEMIAAADCAACQwQAAGMIAAADCAACQwQAAEMIAAAjCAACQwQAAGMIAAAjCAACQwQAAEMIAABDCAACQwQAAGMIAABDCAACQwQAAEMIAABjCAACQwQAAGMIAABjCAACQwQAAIMIAAADCAACQwQAAKMIAAADCAACQwQAAIMIAAAjCAACQwQAAKMIAAAjCAACQwQAAIMIAABDCAACQwQAAKMIAABDCAACQwQAAIMIAABjCAACQwQAAKMIAABjCAACQwQAAIMIAACDCAACQwQAAKMIAACDCAACQwQAAIMIAACjCAACQwQAAKMIAACjCAACQwQAAMMIAAADCAACQwQAAOMIAAADCAACQwQAAMMIAAAjCAACQwQAAOMIAAAjCAACQwQAAMMIAABDCAACQwQAAOMIAABDCAACYwQAAAMIAAADCAACYwQAACMIAAADCAACYwQAAEMIAAADCAACYwQAAGMIAAADCAACYwQAAEMIAAAjCAACYwQAAGMIAAAjCAACYwQAAEMIAABDCAACYwQAAGMIAABDCAACYwQAAEMIAABjCAACYwQAAGMIAABjCAACYwQAAIMIAAADCAACYwQAAKMIAAADCAACYwQAAIMIAAAjCAACYwQAAKMIAAAjCAACYwQAAIMIAABDCAACYwQAAKMIAABDCAACYwQAAIMIAABjCAACYwQAAKMIAABjCAACYwQAAIMIAACDCAACYwQAAKMIAACDCAACYwQAAIMIAACjCAACYwQAAKMIAACjCAACYwQAAMMIAAADCAACYwQAAOMIAAADCAACYwQAAMMIAAAjCAACYwQAAOMIAAAjCAACYwQAAMMIAABDCAACYwQAAOMIAABDCAACgwQAACMIAAAjCAACgwQAACMIAABDCAACgwQAAEMIAAAjCAACgwQAAEMIAABDCAACgwQAAGMIAAADCAACgwQAAGMIAAAjCAACgwQAAGMIAABDCAACgwQAAGMIAABjCAACgwQAAGMIAACDCAACgwQAAGMIAACjCAACgwQAAIMIAAADCAACgwQAAIMIAAAjCAACgwQAAIMIAABDCAACgwQAAIMIAABjCAACgwQAAIMIAACDCAACgwQAAIMIAACjCAACgwQAAKMIAAAjCAACgwQAAKMIAABDCAACgwQAAKMIAABjCAACgwQAAKMIAACDCAACgwQAAMMIAAAjCAACgwQAAMMIAABDCAACgwQAAMMIAABjCAACgwQAAMMIAACDCAACgwQAAOMIAAADCAACgwQAAOMIAAAjCAACgwQAAQMIAAADCAACgwQAAQMIAAAjCAACowQAACMIAAAjCAACowQAACMIAABDCAACowQAAEMIAAAjCAACowQAAEMIAABDCAACowQAAGMIAAADCAACowQAAGMIAAAjCAACowQAAGMIAABDCAACowQAAGMIAABjCAACowQAAGMIAACDCAACowQAAGMIAACjCAACowQAAIMIAAADCAACowQAAIMIAAAjCAACowQAAIMIAABDCAACowQAAIMIAABjCAACowQAAIMIAACDCAACowQAAIMIAACjCAACowQAAKMIAAAjCAACowQAAKMIAABDCAACowQAAKMIAABjCAACowQAAKMIAACDCAACowQAAMMIAAAjCAACowQAAMMIAABDCAACowQAAMMIAABjCAACowQAAMMIAACDCAACowQAAOMIAAADCAACowQAAOMIAAAjCAACowQAAQMIAAADCAACowQAAQMIAAAjCAADAwQAACMIAAADCAADAwQAAEMIAAADCAADAwQAACMIAABDCAADAwQAAEMIAABDCAADAwQAAGMIAAAjCAADAwQAAIMIAAAjCAADAwQAAGMIAABjCAADAwQAAIMIAABjCAADAwQAAGMIAACjCAADAwQAAIMIAACjCAADAwQAAKMIAAADCAADAwQAAMMIAAADCAADAwQAAKMIAABDCAADAwQAAMMIAABDCAADAwQAAKMIAACDCAADAwQAAMMIAACDCAADAwQAAOMIAAAjCAADAwQAAQMIAAAjCAADIwQAACMIAAADCAADIwQAAEMIAAADCAADIwQAACMIAABDCAADIwQAAEMIAABDCAADIwQAAGMIAAAjCAADIwQAAIMIAAAjCAADIwQAAGMIAABjCAADIwQAAIMIAABjCAADIwQAAGMIAACjCAADIwQAAIMIAACjCAADIwQAAKMIAAADCAADIwQAAMMIAAADCAADIwQAAKMIAABDCAADIwQAAMMIAABDCAADIwQAAKMIAACDCAADIwQAAMMIAACDCAADIwQAAOMIAAAjCAADIwQAAQMIAAAjCAAAUwgAACMIAAADCAAAUwgAAEMIAAADCAAAUwgAACMIAABDCAAAUwgAAEMIAABDCAAAUwgAAGMIAAAjCAAAUwgAAIMIAAAjCAAAUwgAAGMIAABjCAAAUwgAAIMIAABjCAAAUwgAAGMIAACjCAAAUwgAAIMIAACjCAAAUwgAAKMIAAADCAAAUwgAAMMIAAADCAAAUwgAAKMIAABDCAAAUwgAAMMIAABDCAAAUwgAAKMIAACDCAAAUwgAAMMIAACDCAAAUwgAAOMIAAAjCAAAUwgAAQMIAAAjCAAAYwgAACMIAAADCAAAYwgAAEMIAAADCAAAYwgAACMIAABDCAAAYwgAAEMIAABDCAAAYwgAAGMIAAAjCAAAYwgAAIMIAAAjCAAAYwgAAGMIAABjCAAAYwgAAIMIAABjCAAAYwgAAGMIAACjCAAAYwgAAIMIAACjCAAAYwgAAKMIAAADCAAAYwgAAMMIAAADCAAAYwgAAKMIAABDCAAAYwgAAMMIAABDCAAAYwgAAKMIAACDCAAAYwgAAMMIAACDCAAAYwgAAOMIAAAjCAAAYwgAAQMIAAAjCAAAkwgAACMIAAADCAAAkwgAACMIAAAjCAAAkwgAAEMIAAADCAAAkwgAAEMIAAAjCAAAkwgAAEMIAABDCAAAkwgAAEMIAABjCAAAkwgAAGMIAAAjCAAAkwgAAGMIAABDCAAAkwgAAGMIAABjCAAAkwgAAGMIAACDCAAAkwgAAIMIAAAjCAAAkwgAAIMIAABDCAAAkwgAAIMIAABjCAAAkwgAAIMIAACDCAAAkwgAAIMIAACjCAAAkwgAAIMIAADDCAAAkwgAAKMIAAADCAAAkwgAAKMIAAAjCAAAkwgAAKMIAABDCAAAkwgAAKMIAABjCAAAkwgAAKMIAACDCAAAkwgAAKMIAACjCAAAkwgAAMMIAAADCAAAkwgAAMMIAAAjCAAAkwgAAMMIAABDCAAAkwgAAMMIAABjCAAAkwgAAOMIAAAjCAAAkwgAAOMIAABDCAAAowgAACMIAAADCAAAowgAACMIAAAjCAAAowgAAEMIAAADCAAAowgAAEMIAAAjCAAAowgAAEMIAABDCAAAowgAAEMIAABjCAAAowgAAGMIAAAjCAAAowgAAGMIAABDCAAAowgAAGMIAABjCAAAowgAAGMIAACDCAAAowgAAIMIAAAjCAAAowgAAIMIAABDCAAAowgAAIMIAABjCAAAowgAAIMIAACDCAAAowgAAIMIAACjCAAAowgAAIMIAADDCAAAowgAAKMIAAADCAAAowgAAKMIAAAjCAAAowgAAKMIAABDCAAAowgAAKMIAABjCAAAowgAAKMIAACDCAAAowgAAKMIAACjCAAAowgAAMMIAAADCAAAowgAAMMIAAAjCAAAowgAAMMIAABDCAAAowgAAMMIAABjCAAAowgAAOMIAAAjCAAAowgAAOMIAABDCAAAswgAAAMIAAADCAAAswgAACMIAAADCAAAswgAAEMIAAADCAAAswgAAGMIAAADCAAAswgAAEMIAAAjCAAAswgAAGMIAAAjCAAAswgAAEMIAABDCAAAswgAAGMIAABDCAAAswgAAEMIAABjCAAAswgAAGMIAABjCAAAswgAAIMIAAADCAAAswgAAKMIAAADCAAAswgAAIMIAAAjCAAAswgAAKMIAAAjCAAAswgAAIMIAABDCAAAswgAAKMIAABDCAAAswgAAIMIAABjCAAAswgAAKMIAABjCAAAswgAAIMIAACDCAAAswgAAKMIAACDCAAAswgAAIMIAACjCAAAswgAAKMIAACjCAAAswgAAMMIAAADCAAAswgAAOMIAAADCAAAswgAAMMIAAAjCAAAswgAAOMIAAAjCAAAswgAAMMIAABDCAAAswgAAOMIAABDCAAAwwgAAAMIAAADCAAAwwgAACMIAAADCAAAwwgAAEMIAAADCAAAwwgAAGMIAAADCAAAwwgAAEMIAAAjCAAAwwgAAGMIAAAjCAAAwwgAAEMIAABDCAAAwwgAAGMIAABDCAAAwwgAAEMIAABjCAAAwwgAAGMIAABjCAAAwwgAAIMIAAADCAAAwwgAAKMIAAADCAAAwwgAAIMIAAAjCAAAwwgAAKMIAAAjCAAAwwgAAIMIAABDCAAAwwgAAKMIAABDCAAAwwgAAIMIAABjCAAAwwgAAKMIAABjCAAAwwgAAIMIAACDCAAAwwgAAKMIAACDCAAAwwgAAIMIAACjCAAAwwgAAKMIAACjCAAAwwgAAMMIAAADCAAAwwgAAOMIAAADCAAAwwgAAMMIAAAjCAAAwwgAAOMIAAAjCAAAwwgAAMMIAABDCAAAwwgAAOMIAABDCAAA0wgAACMIAAAjCAAA0wgAACMIAABDCAAA0wgAAEMIAAAjCAAA0wgAAEMIAABDCAAA0wgAAGMIAAADCAAA0wgAAGMIAAAjCAAA0wgAAGMIAABDCAAA0wgAAGMIAABjCAAA0wgAAGMIAACDCAAA0wgAAGMIAACjCAAA0wgAAIMIAAADCAAA0wgAAIMIAAAjCAAA0wgAAIMIAABDCAAA0wgAAIMIAABjCAAA0wgAAIMIAACDCAAA0wgAAIMIAACjCAAA0wgAAKMIAAAjCAAA0wgAAKMIAABDCAAA0wgAAKMIAABjCAAA0wgAAKMIAACDCAAA0wgAAMMIAAAjCAAA0wgAAMMIAABDCAAA0wgAAMMIAABjCAAA0wgAAMMIAACDCAAA0wgAAOMIAAADCAAA0wgAAOMIAAAjCAAA0wgAAQMIAAADCAAA0wgAAQMIAAAjCAAA4wgAACMIAAAjCAAA4wgAACMIAABDCAAA4wgAAEMIAAAjCAAA4wgAAEMIAABDCAAA4wgAAGMIAAADCAAA4wgAAGMIAAAjCAAA4wgAAGMIAABDCAAA4wgAAGMIAABjCAAA4wgAAGMIAACDCAAA4wgAAGMIAACjCAAA4wgAAIMIAAADCAAA4wgAAIMIAAAjCAAA4wgAAIMIAABDCAAA4wgAAIMIAABjCAAA4wgAAIMIAACDCAAA4wgAAIMIAACjCAAA4wgAAKMIAAAjCAAA4wgAAKMIAABDCAAA4wgAAKMIAABjCAAA4wgAAKMIAACDCAAA4wgAAMMIAAAjCAAA4wgAAMMIAABDCAAA4wgAAMMIAABjCAAA4wgAAMMIAACDCAAA4wgAAOMIAAADCAAA4wgAAOMIAAAjCAAA4wgAAQMIAAADCAAA4wgAAQMIAAAjCAABEwgAACMIAAADCAABEwgAACMIAAAjCAABEwgAAEMIAAADCAABEwgAAEMIAAAjCAABEwgAAEMIAABDCAABEwgAAEMIAABjCAABEwgAAGMIAAAjCAABEwgAAGMIAABDCAABEwgAAGMIAABjCAABEwgAAGMIAACDCAABEwgAAIMIAAAjCAABEwgAAIMIAABDCAABEwgAAIMIAABjCAABEwgAAIMIAACDCAABEwgAAIMIAACjCAABEwgAAIMIAADDCAABEwgAAKMIAAADCAABEwgAAKMIAAAjCAABEwgAAKMIAABDCAABEwgAAKMIAABjCAABEwgAAKMIAACDCAABEwgAAKMIAACjCAABEwgAAMMIAAADCAABEwgAAMMIAAAjCAABEwgAAMMIAABDCAABEwgAAMMIAABjCAABEwgAAOMIAAAjCAABEwgAAOMIAABDCAABIwgAACMIAAADCAABIwgAACMIAAAjCAABIwgAAEMIAAADCAABIwgAAEMIAAAjCAABIwgAAEMIAABDCAABIwgAAEMIAABjCAABIwgAAGMIAAAjCAABIwgAAGMIAABDCAABIwgAAGMIAABjCAABIwgAAGMIAACDCAABIwgAAIMIAAAjCAABIwgAAIMIAABDCAABIwgAAIMIAABjCAABIwgAAIMIAACDCAABIwgAAIMIAACjCAABIwgAAIMIAADDCAABIwgAAKMIAAADCAABIwgAAKMIAAAjCAABIwgAAKMIAABDCAABIwgAAKMIAABjCAABIwgAAKMIAACDCAABIwgAAKMIAACjCAABIwgAAMMIAAADCAABIwgAAMMIAAAjCAABIwgAAMMIAABDCAABIwgAAMMIAABjCAABIwgAAOMIAAAjCAABIwgAAOMIAABDCAABMwgAAAMIAAADCAABMwgAACMIAAADCAABMwgAAEMIAAADCAABMwgAAGMIAAADCAABMwgAAEMIAAAjCAABMwgAAGMIAAAjCAABMwgAAEMIAABDCAABMwgAAGMIAABDCAABMwgAAEMIAABjCAABMwgAAGMIAABjCAABMwgAAIMIAAADCAABMwgAAKMIAAADCAABMwgAAIMIAAAjCAABMwgAAKMIAAAjCAABMwgAAIMIAABDCAABMwgAAKMIAABDCAABMwgAAIMIAABjCAABMwgAAKMIAABjCAABMwgAAIMIAACDCAABMwgAAKMIAACDCAABMwgAAIMIAACjCAABMwgAAKMIAACjCAABMwgAAMMIAAADCAABMwgAAOMIAAADCAABMwgAAMMIAAAjCAABMwgAAOMIAAAjCAABMwgAAMMIAABDCAABMwgAAOMIAABDCAABQwgAAAMIAAADCAABQwgAACMIAAADCAABQwgAAEMIAAADCAABQwgAAGMIAAADCAABQwgAAEMIAAAjCAABQwgAAGMIAAAjCAABQwgAAEMIAABDCAABQwgAAGMIAABDCAABQwgAAEMIAABjCAABQwgAAGMIAABjCAABQwgAAIMIAAADCAABQwgAAKMIAAADCAABQwgAAIMIAAAjCAABQwgAAKMIAAAjCAABQwgAAIMIAABDCAABQwgAAKMIAABDCAABQwgAAIMIAABjCAABQwgAAKMIAABjCAABQwgAAIMIAACDCAABQwgAAKMIAACDCAABQwgAAIMIAACjCAABQwgAAKMIAACjCAABQwgAAMMIAAADCAABQwgAAOMIAAADCAABQwgAAMMIAAAjCAABQwgAAOMIAAAjCAABQwgAAMMIAABDCAABQwgAAOMIAABDCAABUwgAACMIAAAjCAABUwgAACMIAABDCAABUwgAAEMIAAAjCAABUwgAAEMIAABDCAABUwgAAGMIAAADCAABUwgAAGMIAAAjCAABUwgAAGMIAABDCAABUwgAAGMIAABjCAABUwgAAGMIAACDCAABUwgAAGMIAACjCAABUwgAAIMIAAADCAABUwgAAIMIAAAjCAABUwgAAIMIAABDCAABUwgAAIMIAABjCAABUwgAAIMIAACDCAABUwgAAIMIAACjCAABUwgAAKMIAAAjCAABUwgAAKMIAABDCAABUwgAAKMIAABjCAABUwgAAKMIAACDCAABUwgAAMMIAAAjCAABUwgAAMMIAABDCAABUwgAAMMIAABjCAABUwgAAMMIAACDCAABUwgAAOMIAAADCAABUwgAAOMIAAAjCAABUwgAAQMIAAADCAABUwgAAQMIAAAjCAABYwgAACMIAAAjCAABYwgAACMIAABDCAABYwgAAEMIAAAjCAABYwgAAEMIAABDCAABYwgAAGMIAAADCAABYwgAAGMIAAAjCAABYwgAAGMIAABDCAABYwgAAGMIAABjCAABYwgAAGMIAACDCAABYwgAAGMIAACjCAABYwgAAIMIAAADCAABYwgAAIMIAAAjCAABYwgAAIMIAABDCAABYwgAAIMIAABjCAABYwgAAIMIAACDCAABYwgAAIMIAACjCAABYwgAAKMIAAAjCAABYwgAAKMIAABDCAABYwgAAKMIAABjCAABYwgAAKMIAACDCAABYwgAAMMIAAAjCAABYwgAAMMIAABDCAABYwgAAMMIAABjCAABYwgAAMMIAACDCAABYwgAAOMIAAADCAABYwgAAOMIAAAjCAABYwgAAQMIAAADCAABYwgAAQMIAAAjCAABkwgAACMIAAADCAABkwgAAEMIAAADCAABkwgAACMIAABDCAABkwgAAEMIAABDCAABkwgAAGMIAAAjCAABkwgAAIMIAAAjCAABkwgAAGMIAABjCAABkwgAAIMIAABjCAABkwgAAGMIAACjCAABkwgAAIMIAACjCAABkwgAAKMIAAADCAABkwgAAMMIAAADCAABkwgAAKMIAABDCAABkwgAAMMIAABDCAABkwgAAKMIAACDCAABkwgAAMMIAACDCAABkwgAAOMIAAAjCAABkwgAAQMIAAAjCAABowgAACMIAAADCAABowgAAEMIAAADCAABowgAACMIAABDCAABowgAAEMIAABDCAABowgAAGMIAAAjCAABowgAAIMIAAAjCAABowgAAGMIAABjCAABowgAAIMIAABjCAABowgAAGMIAACjCAABowgAAIMIAACjCAABowgAAKMIAAADCAABowgAAMMIAAADCAABowgAAKMIAABDCAABowgAAMMIAABDCAABowgAAKMIAACDCAABowgAAMMIAACDCAABowgAAOMIAAAjCAABowgAAQMIAAAjCAACMwgAACMIAAADCAACMwgAAEMIAAADCAACMwgAACMIAABDCAACMwgAAEMIAABDCAACMwgAAGMIAAAjCAACMwgAAIMIAAAjCAACMwgAAGMIAABjCAACMwgAAIMIAABjCAACMwgAAGMIAACjCAACMwgAAIMIAACjCAACMwgAAKMIAAADCAACMwgAAMMIAAADCAACMwgAAKMIAABDCAACMwgAAMMIAABDCAACMwgAAKMIAACDCAACMwgAAMMIAACDCAACMwgAAOMIAAAjCAACMwgAAQMIAAAjCAACOwgAACMIAAADCAACOwgAAEMIAAADCAACOwgAACMIAABDCAACOwgAAEMIAABDCAACOwgAAGMIAAAjCAACOwgAAIMIAAAjCAACOwgAAGMIAABjCAACOwgAAIMIAABjCAACOwgAAGMIAACjCAACOwgAAIMIAACjCAACOwgAAKMIAAADCAACOwgAAMMIAAADCAACOwgAAKMIAABDCAACOwgAAMMIAABDCAACOwgAAKMIAACDCAACOwgAAMMIAACDCAACOwgAAOMIAAAjCAACOwgAAQMIAAAjCAACUwgAACMIAAAjCAACUwgAACMIAABDCAACUwgAAEMIAAAjCAACUwgAAEMIAABDCAACUwgAAGMIAAADCAACUwgAAGMIAAAjCAACUwgAAGMIAABDCAACUwgAAGMIAABjCAACUwgAAGMIAACDCAACUwgAAGMIAACjCAACUwgAAIMIAAADCAACUwgAAIMIAAAjCAACUwgAAIMIAABDCAACUwgAAIMIAABjCAACUwgAAIMIAACDCAACUwgAAIMIAACjCAACUwgAAKMIAAAjCAACUwgAAKMIAABDCAACUwgAAKMIAABjCAACUwgAAKMIAACDCAACUwgAAMMIAAAjCAACUwgAAMMIAABDCAACUwgAAMMIAABjCAACUwgAAMMIAACDCAACUwgAAOMIAAADCAACUwgAAOMIAAAjCAACUwgAAQMIAAADCAACUwgAAQMIAAAjCAACWwgAACMIAAAjCAACWwgAACMIAABDCAACWwgAAEMIAAAjCAACWwgAAEMIAABDCAACWwgAAGMIAAADCAACWwgAAGMIAAAjCAACWwgAAGMIAABDCAACWwgAAGMIAABjCAACWwgAAGMIAACDCAACWwgAAGMIAACjCAACWwgAAIMIAAADCAACWwgAAIMIAAAjCAACWwgAAIMIAABDCAACWwgAAIMIAABjCAACWwgAAIMIAACDCAACWwgAAIMIAACjCAACWwgAAKMIAAAjCAACWwgAAKMIAABDCAACWwgAAKMIAABjCAACWwgAAKMIAACDCAACWwgAAMMIAAAjCAACWwgAAMMIAABDCAACWwgAAMMIAABjCAACWwgAAMMIAACDCAACWwgAAOMIAAADCAACWwgAAOMIAAAjCAACWwgAAQMIAAADCAACWwgAAQMIAAAjCAACYwgAAAMIAAADCAACYwgAACMIAAADCAACYwgAAEMIAAADCAACYwgAAGMIAAADCAACYwgAAEMIAAAjCAACYwgAAGMIAAAjCAACYwgAAEMIAABDCAACYwgAAGMIAABDCAACYwgAAEMIAABjCAACYwgAAGMIAABjCAACYwgAAIMIAAADCAACYwgAAKMIAAADCAACYwgAAIMIAAAjCAACYwgAAKMIAAAjCAACYwgAAIMIAABDCAACYwgAAKMIAABDCAACYwgAAIMIAABjCAACYwgAAKMIAABjCAACYwgAAIMIAACDCAACYwgAAKMIAACDCAACYwgAAIMIAACjCAACYwgAAKMIAACjCAACYwgAAMMIAAADCAACYwgAAOMIAAADCAACYwgAAMMIAAAjCAACYwgAAOMIAAAjCAACYwgAAMMIAABDCAACYwgAAOMIAABDCAACawgAAAMIAAADCAACawgAACMIAAADCAACawgAAEMIAAADCAACawgAAGMIAAADCAACawgAAEMIAAAjCAACawgAAGMIAAAjCAACawgAAEMIAABDCAACawgAAGMIAABDCAACawgAAEMIAABjCAACawgAAGMIAABjCAACawgAAIMIAAADCAACawgAAKMIAAADCAACawgAAIMIAAAjCAACawgAAKMIAAAjCAACawgAAIMIAABDCAACawgAAKMIAABDCAACawgAAIMIAABjCAACawgAAKMIAABjCAACawgAAIMIAACDCAACawgAAKMIAACDCAACawgAAIMIAACjCAACawgAAKMIAACjCAACawgAAMMIAAADCAACawgAAOMIAAADCAACawgAAMMIAAAjCAACawgAAOMIAAAjCAACawgAAMMIAABDCAACawgAAOMIAABDCAACcwgAACMIAAADCAACcwgAACMIAAAjCAACcwgAAEMIAAADCAACcwgAAEMIAAAjCAACcwgAAEMIAABDCAACcwgAAEMIAABjCAACcwgAAGMIAAAjCAACcwgAAGMIAABDCAACcwgAAGMIAABjCAACcwgAAGMIAACDCAACcwgAAIMIAAAjCAACcwgAAIMIAABDCAACcwgAAIMIAABjCAACcwgAAIMIAACDCAACcwgAAIMIAACjCAACcwgAAIMIAADDCAACcwgAAKMIAAADCAACcwgAAKMIAAAjCAACcwgAAKMIAABDCAACcwgAAKMIAABjCAACcwgAAKMIAACDCAACcwgAAKMIAACjCAACcwgAAMMIAAADCAACcwgAAMMIAAAjCAACcwgAAMMIAABDCAACcwgAAMMIAABjCAACcwgAAOMIAAAjCAACcwgAAOMIAABDCAACewgAACMIAAADCAACewgAACMIAAAjCAACewgAAEMIAAADCAACewgAAEMIAAAjCAACewgAAEMIAABDCAACewgAAEMIAABjCAACewgAAGMIAAAjCAACewgAAGMIAABDCAACewgAAGMIAABjCAACewgAAGMIAACDCAACewgAAIMIAAAjCAACewgAAIMIAABDCAACewgAAIMIAABjCAACewgAAIMIAACDCAACewgAAIMIAACjCAACewgAAIMIAADDCAACewgAAKMIAAADCAACewgAAKMIAAAjCAACewgAAKMIAABDCAACewgAAKMIAABjCAACewgAAKMIAACDCAACewgAAKMIAACjCAACewgAAMMIAAADCAACewgAAMMIAAAjCAACewgAAMMIAABDCAACewgAAMMIAABjCAACewgAAOMIAAAjCAACewgAAOMIAABDCAACkwgAACMIAAAjCAACkwgAACMIAABDCAACkwgAAEMIAAAjCAACkwgAAEMIAABDCAACkwgAAGMIAAADCAACkwgAAGMIAAAjCAACkwgAAGMIAABDCAACkwgAAGMIAABjCAACkwgAAGMIAACDCAACkwgAAGMIAACjCAACkwgAAIMIAAADCAACkwgAAIMIAAAjCAACkwgAAIMIAABDCAACkwgAAIMIAABjCAACkwgAAIMIAACDCAACkwgAAIMIAACjCAACkwgAAKMIAAAjCAACkwgAAKMIAABDCAACkwgAAKMIAABjCAACkwgAAKMIAACDCAACkwgAAMMIAAAjCAACkwgAAMMIAABDCAACkwgAAMMIAABjCAACkwgAAMMIAACDCAACkwgAAOMIAAADCAACkwgAAOMIAAAjCAACkwgAAQMIAAADCAACkwgAAQMIAAAjCAACmwgAACMIAAAjCAACmwgAACMIAABDCAACmwgAAEMIAAAjCAACmwgAAEMIAABDCAACmwgAAGMIAAADCAACmwgAAGMIAAAjCAACmwgAAGMIAABDCAACmwgAAGMIAABjCAACmwgAAGMIAACDCAACmwgAAGMIAACjCAACmwgAAIMIAAADCAACmwgAAIMIAAAjCAACmwgAAIMIAABDCAACmwgAAIMIAABjCAACmwgAAIMIAACDCAACmwgAAIMIAACjCAACmwgAAKMIAAAjCAACmwgAAKMIAABDCAACmwgAAKMIAABjCAACmwgAAKMIAACDCAACmwgAAMMIAAAjCAACmwgAAMMIAABDCAACmwgAAMMIAABjCAACmwgAAMMIAACDCAACmwgAAOMIAAADCAACmwgAAOMIAAAjCAACmwgAAQMIAAADCAACmwgAAQMIAAAjCAACowgAAAMIAAADCAACowgAACMIAAADCAACowgAAEMIAAADCAACowgAAGMIAAADCAACowgAAEMIAAAjCAACowgAAGMIAAAjCAACowgAAEMIAABDCAACowgAAGMIAABDCAACowgAAEMIAABjCAACowgAAGMIAABjCAACowgAAIMIAAADCAACowgAAKMIAAADCAACowgAAIMIAAAjCAACowgAAKMIAAAjCAACowgAAIMIAABDCAACowgAAKMIAABDCAACowgAAIMIAABjCAACowgAAKMIAABjCAACowgAAIMIAACDCAACowgAAKMIAACDCAACowgAAIMIAACjCAACowgAAKMIAACjCAACowgAAMMIAAADCAACowgAAOMIAAADCAACowgAAMMIAAAjCAACowgAAOMIAAAjCAACowgAAMMIAABDCAACowgAAOMIAABDCAACqwgAAAMIAAADCAACqwgAACMIAAADCAACqwgAAEMIAAADCAACqwgAAGMIAAADCAACqwgAAEMIAAAjCAACqwgAAGMIAAAjCAACqwgAAEMIAABDCAACqwgAAGMIAABDCAACqwgAAEMIAABjCAACqwgAAGMIAABjCAACqwgAAIMIAAADCAACqwgAAKMIAAADCAACqwgAAIMIAAAjCAACqwgAAKMIAAAjCAACqwgAAIMIAABDCAACqwgAAKMIAABDCAACqwgAAIMIAABjCAACqwgAAKMIAABjCAACqwgAAIMIAACDCAACqwgAAKMIAACDCAACqwgAAIMIAACjCAACqwgAAKMIAACjCAACqwgAAMMIAAADCAACqwgAAOMIAAADCAACqwgAAMMIAAAjCAACqwgAAOMIAAAjCAACqwgAAMMIAABDCAACqwgAAOMIAABDCAACswgAACMIAAADCAACswgAACMIAAAjCAACswgAAEMIAAADCAACswgAAEMIAAAjCAACswgAAEMIAABDCAACswgAAEMIAABjCAACswgAAGMIAAAjCAACswgAAGMIAABDCAACswgAAGMIAABjCAACswgAAGMIAACDCAACswgAAIMIAAAjCAACswgAAIMIAABDCAACswgAAIMIAABjCAACswgAAIMIAACDCAACswgAAIMIAACjCAACswgAAIMIAADDCAACswgAAKMIAAADCAACswgAAKMIAAAjCAACswgAAKMIAABDCAACswgAAKMIAABjCAACswgAAKMIAACDCAACswgAAKMIAACjCAACswgAAMMIAAADCAACswgAAMMIAAAjCAACswgAAMMIAABDCAACswgAAMMIAABjCAACswgAAOMIAAAjCAACswgAAOMIAABDCAACuwgAACMIAAADCAACuwgAACMIAAAjCAACuwgAAEMIAAADCAACuwgAAEMIAAAjCAACuwgAAEMIAABDCAACuwgAAEMIAABjCAACuwgAAGMIAAAjCAACuwgAAGMIAABDCAACuwgAAGMIAABjCAACuwgAAGMIAACDCAACuwgAAIMIAAAjCAACuwgAAIMIAABDCAACuwgAAIMIAABjCAACuwgAAIMIAACDCAACuwgAAIMIAACjCAACuwgAAIMIAADDCAACuwgAAKMIAAADCAACuwgAAKMIAAAjCAACuwgAAKMIAABDCAACuwgAAKMIAABjCAACuwgAAKMIAACDCAACuwgAAKMIAACjCAACuwgAAMMIAAADCAACuwgAAMMIAAAjCAACuwgAAMMIAABDCAACuwgAAMMIAABjCAACuwgAAOMIAAAjCAACuwgAAOMIAABDCAAC0wgAACMIAAADCAAC0wgAAEMIAAADCAAC0wgAACMIAABDCAAC0wgAAEMIAABDCAAC0wgAAGMIAAAjCAAC0wgAAIMIAAAjCAAC0wgAAGMIAABjCAAC0wgAAIMIAABjCAAC0wgAAGMIAACjCAAC0wgAAIMIAACjCAAC0wgAAKMIAAADCAAC0wgAAMMIAAADCAAC0wgAAKMIAABDCAAC0wgAAMMIAABDCAAC0wgAAKMIAACDCAAC0wgAAMMIAACDCAAC0wgAAOMIAAAjCAAC0wgAAQMIAAAjCAAC2wgAACMIAAADCAAC2wgAAEMIAAADCAAC2wgAACMIAABDCAAC2wgAAEMIAABDCAAC2wgAAGMIAAAjCAAC2wgAAIMIAAAjCAAC2wgAAGMIAABjCAAC2wgAAIMIAABjCAAC2wgAAGMIAACjCAAC2wgAAIMIAACjCAAC2wgAAKMIAAADCAAC2wgAAMMIAAADCAAC2wgAAKMIAABDCAAC2wgAAMMIAABDCAAC2wgAAKMIAACDCAAC2wgAAMMIAACDCAAC2wgAAOMIAAAjCAAC2wgAAQMIAAAjCAACAPwAAAMIAAADCAADAwgAAAMIAAADCAACAPwAACMIAAADCAADAwgAACMIAAADCAACAPwAACMIAAAjCAADAwgAACMIAAAjCAACAPwAACMIAABDCAADAwgAACMIAABDCAACAPwAAEMIAAADCAADAwgAAEMIAAADCAACAPwAAEMIAAAjCAADAwgAAEMIAAAjCAACAPwAAEMIAABDCAADAwgAAEMIAABDCAACAPwAAEMIAABjCAADAwgAAEMIAABjCAACAPwAAGMIAAADCAADAwgAAGMIAAADCAACAPwAAGMIAAAjCAADAwgAAGMIAAAjCAACAPwAAGMIAABDCAADAwgAAGMIAABDCAACAPwAAGMIAABjCAADAwgAAGMIAABjCAACAPwAAGMIAACDCAADAwgAAGMIAACDCAACAPwAAGMIAACjCAADAwgAAGMIAACjCAACAPwAAIMIAAADCAADAwgAAIMIAAADCAACAPwAAIMIAAAjCAADAwgAAIMIAAAjCAACAPwAAIMIAABDCAADAwgAAIMIAABDCAACAPwAAIMIAABjCAADAwgAAIMIAABjCAACAPwAAIMIAACDCAADAwgAAIMIAACDCAACAPwAAIMIAACjCAADAwgAAIMIAACjCAACAPwAAIMIAADDCAADAwgAAIMIAADDCAACAPwAAKMIAAADCAADAwgAAKMIAAADCAACAPwAAKMIAAAjCAADAwgAAKMIAAAjCAACAPwAAKMIAABDCAADAwgAAKMIAABDCAACAPwAAKMIAABjCAADAwgAAKMIAABjCAACAPwAAKMIAACDCAADAwgAAKMIAACDCAACAPwAAKMIAACjCAADAwgAAKMIAACjCAACAPwAAMMIAAADCAADAwgAAMMIAAADCAACAPwAAMMIAAAjCAADAwgAAMMIAAAjCAACAPwAAMMIAABDCAADAwgAAMMIAABDCAACAPwAAMMIAABjCAADAwgAAMMIAABjCAACAPwAAMMIAACDCAADAwgAAMMIAACDCAACAPwAAOMIAAADCAADAwgAAOMIAAADCAACAPwAAOMIAAAjCAADAwgAAOMIAAAjCAACAPwAAOMIAABDCAADAwgAAOMIAABDCAACAPwAAQMIAAADCAADAwgAAQMIAAADCAACAPwAAQMIAAAjCAADAwgAAQMIAAAjC\"},{\"byteLength\":360,\"name\":\"buf_red_scattered_lines\",\"uri\":\"data:application/octet-stream;base64,AAAAAAAA8MEAABjCAABAwAAA8MEAABjCAAAgwAAA9MEAABjCAABAwAAA8MEAABjCAAAgwAAA7MEAABjCAABAwAAA8MEAABjCAAD+wQAA+MEAAPjBAAD+wQAA+MEAADTCAAD+wQAA+MEAAPjBAAD+wQAARMIAAPjBAAD+wQAA+MEAAPjBAICAwgAA+MEAAPjBAAD+wQAA+MEAADTCAAD+wQAARMIAADTCAAD+wQAA+MEAADTCAICAwgAA+MEAADTCAAD+wQAARMIAAPjBAAD+wQAARMIAADTCAAD+wQAARMIAAPjBAICAwgAARMIAAPjBAAD+wQAARMIAADTCAICAwgAARMIAADTCAICAwgAA+MEAAPjBAICAwgAA+MEAADTCAICAwgAA+MEAAPjBAICAwgAARMIAAPjBAICAwgAA+MEAADTCAICAwgAARMIAADTCAICAwgAARMIAAPjBAICAwgAARMIAADTC\"},{\"byteLength\":8448,\"name\":\"buf_blue_scattered_lines\",\"uri\":\"data:application/octet-stream;base64,AACAPs3M/MEAAPzBAACAPpqZ+cEAAPzBAACAPs3M/MEAADLCAACAPpqZ+cEAADLCAACAPpqZ+cEAAPzBAACAPpqZ+cEAADLCAACAPpqZ+cEAAPzBAACgv5qZ+cEAAPzBAACAPpqZ+cEAADLCAACgv5qZ+cEAADLCAACgv83M/MEAAPzBAACgv5qZ+cEAAPzBAACgv83M/MEAADLCAACgv5qZ+cEAADLCAACgv5qZ+cEAAPzBAACgv5qZ+cEAADLCAADgv83M/MEAAPzBAADgv5qZ+cEAAPzBAADgv83M/MEAADLCAADgv5qZ+cEAADLCAADgv5qZ+cEAAPzBAADgv5qZ+cEAADLCAADgv5qZ+cEAAPzBAABQwJqZ+cEAAPzBAADgv5qZ+cEAADLCAABQwJqZ+cEAADLCAABQwM3M/MEAAPzBAABQwJqZ+cEAAPzBAABQwM3M/MEAADLCAABQwJqZ+cEAADLCAABQwJqZ+cEAAPzBAABQwJqZ+cEAADLCAABwwM3M/MEAAPzBAABwwJqZ+cEAAPzBAABwwM3M/MEAADLCAABwwJqZ+cEAADLCAABwwJqZ+cEAAPzBAABwwJqZ+cEAADLCAABwwJqZ+cEAAPzBAACowJqZ+cEAAPzBAABwwJqZ+cEAADLCAACowJqZ+cEAADLCAACowM3M/MEAAPzBAACowJqZ+cEAAPzBAACowM3M/MEAADLCAACowJqZ+cEAADLCAACowJqZ+cEAAPzBAACowJqZ+cEAADLCAAC4wM3M/MEAAPzBAAC4wJqZ+cEAAPzBAAC4wM3M/MEAADLCAAC4wJqZ+cEAADLCAAC4wJqZ+cEAAPzBAAC4wJqZ+cEAADLCAAC4wJqZ+cEAAPzBAADowJqZ+cEAAPzBAAC4wJqZ+cEAADLCAADowJqZ+cEAADLCAADowM3M/MEAAPzBAADowJqZ+cEAAPzBAADowM3M/MEAADLCAADowJqZ+cEAADLCAADowJqZ+cEAAPzBAADowJqZ+cEAADLCAAD4wM3M/MEAAPzBAAD4wJqZ+cEAAPzBAAD4wM3M/MEAADLCAAD4wJqZ+cEAADLCAAD4wJqZ+cEAAPzBAAD4wJqZ+cEAADLCAAD4wJqZ+cEAAPzBAAAUwZqZ+cEAAPzBAAD4wJqZ+cEAADLCAAAUwZqZ+cEAADLCAAAUwc3M/MEAAPzBAAAUwZqZ+cEAAPzBAAAUwc3M/MEAADLCAAAUwZqZ+cEAADLCAAAUwZqZ+cEAAPzBAAAUwZqZ+cEAADLCAAAcwc3M/MEAAPzBAAAcwZqZ+cEAAPzBAAAcwc3M/MEAADLCAAAcwZqZ+cEAADLCAAAcwZqZ+cEAAPzBAAAcwZqZ+cEAADLCAAAcwZqZ+cEAAPzBAAA0wZqZ+cEAAPzBAAAcwZqZ+cEAADLCAAA0wZqZ+cEAADLCAAA0wc3M/MEAAPzBAAA0wZqZ+cEAAPzBAAA0wc3M/MEAADLCAAA0wZqZ+cEAADLCAAA0wZqZ+cEAAPzBAAA0wZqZ+cEAADLCAAA8wc3M/MEAAPzBAAA8wZqZ+cEAAPzBAAA8wc3M/MEAADLCAAA8wZqZ+cEAADLCAAA8wZqZ+cEAAPzBAAA8wZqZ+cEAADLCAAA8wZqZ+cEAAPzBAABUwZqZ+cEAAPzBAAA8wZqZ+cEAADLCAABUwZqZ+cEAADLCAABUwc3M/MEAAPzBAABUwZqZ+cEAAPzBAABUwc3M/MEAADLCAABUwZqZ+cEAADLCAABUwZqZ+cEAAPzBAABUwZqZ+cEAADLCAABcwc3M/MEAAPzBAABcwZqZ+cEAAPzBAABcwc3M/MEAADLCAABcwZqZ+cEAADLCAABcwZqZ+cEAAPzBAABcwZqZ+cEAADLCAABcwZqZ+cEAAPzBAAB0wZqZ+cEAAPzBAABcwZqZ+cEAADLCAAB0wZqZ+cEAADLCAAB0wc3M/MEAAPzBAAB0wZqZ+cEAAPzBAAB0wc3M/MEAADLCAAB0wZqZ+cEAADLCAAB0wZqZ+cEAAPzBAAB0wZqZ+cEAADLCAAB8wc3M/MEAAPzBAAB8wZqZ+cEAAPzBAAB8wc3M/MEAADLCAAB8wZqZ+cEAADLCAAB8wZqZ+cEAAPzBAAB8wZqZ+cEAADLCAAB8wZqZ+cEAAPzBAACKwZqZ+cEAAPzBAAB8wZqZ+cEAADLCAACKwZqZ+cEAADLCAACKwc3M/MEAAPzBAACKwZqZ+cEAAPzBAACKwc3M/MEAADLCAACKwZqZ+cEAADLCAACKwZqZ+cEAAPzBAACKwZqZ+cEAADLCAACOwc3M/MEAAPzBAACOwZqZ+cEAAPzBAACOwc3M/MEAADLCAACOwZqZ+cEAADLCAACOwZqZ+cEAAPzBAACOwZqZ+cEAADLCAACOwZqZ+cEAAPzBAACawZqZ+cEAAPzBAACOwZqZ+cEAADLCAACawZqZ+cEAADLCAACawc3M/MEAAPzBAACawZqZ+cEAAPzBAACawc3M/MEAADLCAACawZqZ+cEAADLCAACawZqZ+cEAAPzBAACawZqZ+cEAADLCAACewc3M/MEAAPzBAACewZqZ+cEAAPzBAACewc3M/MEAADLCAACewZqZ+cEAADLCAACewZqZ+cEAAPzBAACewZqZ+cEAADLCAACewZqZ+cEAAPzBAACqwZqZ+cEAAPzBAACewZqZ+cEAADLCAACqwZqZ+cEAADLCAACqwc3M/MEAAPzBAACqwZqZ+cEAAPzBAACqwc3M/MEAADLCAACqwZqZ+cEAADLCAACqwZqZ+cEAAPzBAACqwZqZ+cEAADLCAACuwc3M/MEAAPzBAACuwZqZ+cEAAPzBAACuwc3M/MEAADLCAACuwZqZ+cEAADLCAACuwZqZ+cEAAPzBAACuwZqZ+cEAADLCAACuwZqZ+cEAAPzBAAC6wZqZ+cEAAPzBAACuwZqZ+cEAADLCAAC6wZqZ+cEAADLCAAC6wc3M/MEAAPzBAAC6wZqZ+cEAAPzBAAC6wc3M/MEAADLCAAC6wZqZ+cEAADLCAAC6wZqZ+cEAAPzBAAC6wZqZ+cEAADLCAAC+wc3M/MEAAPzBAAC+wZqZ+cEAAPzBAAC+wc3M/MEAADLCAAC+wZqZ+cEAADLCAAC+wZqZ+cEAAPzBAAC+wZqZ+cEAADLCAAC+wZqZ+cEAAPzBAADKwZqZ+cEAAPzBAAC+wZqZ+cEAADLCAADKwZqZ+cEAADLCAADKwc3M/MEAAPzBAADKwZqZ+cEAAPzBAADKwc3M/MEAADLCAADKwZqZ+cEAADLCAADKwZqZ+cEAAPzBAADKwZqZ+cEAADLCAADOwc3M/MEAAPzBAADOwZqZ+cEAAPzBAADOwc3M/MEAADLCAADOwZqZ+cEAADLCAADOwZqZ+cEAAPzBAADOwZqZ+cEAADLCAADOwZqZ+cEAAPzBAADawZqZ+cEAAPzBAADOwZqZ+cEAADLCAADawZqZ+cEAADLCAADawc3M/MEAAPzBAADawZqZ+cEAAPzBAADawc3M/MEAADLCAADawZqZ+cEAADLCAADawZqZ+cEAAPzBAADawZqZ+cEAADLCAADewc3M/MEAAPzBAADewZqZ+cEAAPzBAADewc3M/MEAADLCAADewZqZ+cEAADLCAADewZqZ+cEAAPzBAADewZqZ+cEAADLCAADewZqZ+cEAAPzBAADywZqZ+cEAAPzBAADewZqZ+cEAADLCAADywZqZ+cEAADLCAADywc3M/MEAAPzBAADywZqZ+cEAAPzBAADywc3M/MEAADLCAADywZqZ+cEAADLCAADywZqZ+cEAAPzBAADywZqZ+cEAADLCAAD+wc3M/MEAAPzBAAD+wZqZ+cEAAPzBAAD+wc3M/MEAADLCAAD+wZqZ+cEAADLCAAD+wZqZ+cEAAPzBAAD+wZqZ+cEAADLCAAD+wZqZ+cEAAPzBAAAJwpqZ+cEAAPzBAAD+wZqZ+cEAADLCAAAJwpqZ+cEAADLCAAAJws3M/MEAAPzBAAAJwpqZ+cEAAPzBAAAJws3M/MEAADLCAAAJwpqZ+cEAADLCAAAJwpqZ+cEAAPzBAAAJwpqZ+cEAADLCAAALws3M/MEAAPzBAAALwpqZ+cEAAPzBAAALws3M/MEAADLCAAALwpqZ+cEAADLCAAALwpqZ+cEAAPzBAAALwpqZ+cEAADLCAAALwpqZ+cEAAPzBAAARwpqZ+cEAAPzBAAALwpqZ+cEAADLCAAARwpqZ+cEAADLCAAARws3M/MEAAPzBAAARwpqZ+cEAAPzBAAARws3M/MEAADLCAAARwpqZ+cEAADLCAAARwpqZ+cEAAPzBAAARwpqZ+cEAADLCAAATws3M/MEAAPzBAAATwpqZ+cEAAPzBAAATws3M/MEAADLCAAATwpqZ+cEAADLCAAATwpqZ+cEAAPzBAAATwpqZ+cEAADLCAAATwpqZ+cEAAPzBAAAZwpqZ+cEAAPzBAAATwpqZ+cEAADLCAAAZwpqZ+cEAADLCAAAZws3M/MEAAPzBAAAZwpqZ+cEAAPzBAAAZws3M/MEAADLCAAAZwpqZ+cEAADLCAAAZwpqZ+cEAAPzBAAAZwpqZ+cEAADLCAAAbws3M/MEAAPzBAAAbwpqZ+cEAAPzBAAAbws3M/MEAADLCAAAbwpqZ+cEAADLCAAAbwpqZ+cEAAPzBAAAbwpqZ+cEAADLCAAAbwpqZ+cEAAPzBAAAhwpqZ+cEAAPzBAAAbwpqZ+cEAADLCAAAhwpqZ+cEAADLCAAAhws3M/MEAAPzBAAAhwpqZ+cEAAPzBAAAhws3M/MEAADLCAAAhwpqZ+cEAADLCAAAhwpqZ+cEAAPzBAAAhwpqZ+cEAADLCAAAjws3M/MEAAPzBAAAjwpqZ+cEAAPzBAAAjws3M/MEAADLCAAAjwpqZ+cEAADLCAAAjwpqZ+cEAAPzBAAAjwpqZ+cEAADLCAAAjwpqZ+cEAAPzBAAApwpqZ+cEAAPzBAAAjwpqZ+cEAADLCAAApwpqZ+cEAADLCAAApws3M/MEAAPzBAAApwpqZ+cEAAPzBAAApws3M/MEAADLCAAApwpqZ+cEAADLCAAApwpqZ+cEAAPzBAAApwpqZ+cEAADLCAAArws3M/MEAAPzBAAArwpqZ+cEAAPzBAAArws3M/MEAADLCAAArwpqZ+cEAADLCAAArwpqZ+cEAAPzBAAArwpqZ+cEAADLCAAArwpqZ+cEAAPzBAAAxwpqZ+cEAAPzBAAArwpqZ+cEAADLCAAAxwpqZ+cEAADLCAAAxws3M/MEAAPzBAAAxwpqZ+cEAAPzBAAAxws3M/MEAADLCAAAxwpqZ+cEAADLCAAAxwpqZ+cEAAPzBAAAxwpqZ+cEAADLCAAAzws3M/MEAAPzBAAAzwpqZ+cEAAPzBAAAzws3M/MEAADLCAAAzwpqZ+cEAADLCAAAzwpqZ+cEAAPzBAAAzwpqZ+cEAADLCAAAzwpqZ+cEAAPzBAAA5wpqZ+cEAAPzBAAAzwpqZ+cEAADLCAAA5wpqZ+cEAADLCAAA5ws3M/MEAAPzBAAA5wpqZ+cEAAPzBAAA5ws3M/MEAADLCAAA5wpqZ+cEAADLCAAA5wpqZ+cEAAPzBAAA5wpqZ+cEAADLCAAA7ws3M/MEAAPzBAAA7wpqZ+cEAAPzBAAA7ws3M/MEAADLCAAA7wpqZ+cEAADLCAAA7wpqZ+cEAAPzBAAA7wpqZ+cEAADLCAAA7wpqZ+cEAAPzBAABBwpqZ+cEAAPzBAAA7wpqZ+cEAADLCAABBwpqZ+cEAADLCAABBws3M/MEAAPzBAABBwpqZ+cEAAPzBAABBws3M/MEAADLCAABBwpqZ+cEAADLCAABBwpqZ+cEAAPzBAABBwpqZ+cEAADLCAABDws3M/MEAAPzBAABDwpqZ+cEAAPzBAABDws3M/MEAADLCAABDwpqZ+cEAADLCAABDwpqZ+cEAAPzBAABDwpqZ+cEAADLCAABDwpqZ+cEAAPzBAABJwpqZ+cEAAPzBAABDwpqZ+cEAADLCAABJwpqZ+cEAADLCAABJws3M/MEAAPzBAABJwpqZ+cEAAPzBAABJws3M/MEAADLCAABJwpqZ+cEAADLCAABJwpqZ+cEAAPzBAABJwpqZ+cEAADLCAABLws3M/MEAAPzBAABLwpqZ+cEAAPzBAABLws3M/MEAADLCAABLwpqZ+cEAADLCAABLwpqZ+cEAAPzBAABLwpqZ+cEAADLCAABLwpqZ+cEAAPzBAABRwpqZ+cEAAPzBAABLwpqZ+cEAADLCAABRwpqZ+cEAADLCAABRws3M/MEAAPzBAABRwpqZ+cEAAPzBAABRws3M/MEAADLCAABRwpqZ+cEAADLCAABRwpqZ+cEAAPzBAABRwpqZ+cEAADLCAABTws3M/MEAAPzBAABTwpqZ+cEAAPzBAABTws3M/MEAADLCAABTwpqZ+cEAADLCAABTwpqZ+cEAAPzBAABTwpqZ+cEAADLCAABTwpqZ+cEAAPzBAABZwpqZ+cEAAPzBAABTwpqZ+cEAADLCAABZwpqZ+cEAADLCAABZws3M/MEAAPzBAABZwpqZ+cEAAPzBAABZws3M/MEAADLCAABZwpqZ+cEAADLCAABZwpqZ+cEAAPzBAABZwpqZ+cEAADLCAABbws3M/MEAAPzBAABbwpqZ+cEAAPzBAABbws3M/MEAADLCAABbwpqZ+cEAADLCAABbwpqZ+cEAAPzBAABbwpqZ+cEAADLCAABbwpqZ+cEAAPzBAABhwpqZ+cEAAPzBAABbwpqZ+cEAADLCAABhwpqZ+cEAADLCAABhws3M/MEAAPzBAABhwpqZ+cEAAPzBAABhws3M/MEAADLCAABhwpqZ+cEAADLCAABhwpqZ+cEAAPzBAABhwpqZ+cEAADLCAABjws3M/MEAAPzBAABjwpqZ+cEAAPzBAABjws3M/MEAADLCAABjwpqZ+cEAADLCAABjwpqZ+cEAAPzBAABjwpqZ+cEAADLCAABjwpqZ+cEAAPzBAABpwpqZ+cEAAPzBAABjwpqZ+cEAADLCAABpwpqZ+cEAADLCAABpws3M/MEAAPzBAABpwpqZ+cEAAPzBAABpws3M/MEAADLCAABpwpqZ+cEAADLCAABpwpqZ+cEAAPzBAABpwpqZ+cEAADLCAABrws3M/MEAAPzBAABrwpqZ+cEAAPzBAABrws3M/MEAADLCAABrwpqZ+cEAADLCAABrwpqZ+cEAAPzBAABrwpqZ+cEAADLCAABrwpqZ+cEAAPzBAABxwpqZ+cEAAPzBAABrwpqZ+cEAADLCAABxwpqZ+cEAADLCAABxws3M/MEAAPzBAABxwpqZ+cEAAPzBAABxws3M/MEAADLCAABxwpqZ+cEAADLCAABxwpqZ+cEAAPzBAABxwpqZ+cEAADLCAABzws3M/MEAAPzBAABzwpqZ+cEAAPzBAABzws3M/MEAADLCAABzwpqZ+cEAADLCAABzwpqZ+cEAAPzBAABzwpqZ+cEAADLCAABzwpqZ+cEAAPzBAAB9wpqZ+cEAAPzBAABzwpqZ+cEAADLCAAB9wpqZ+cEAADLCAAB9ws3M/MEAAPzBAAB9wpqZ+cEAAPzBAAB9ws3M/MEAADLCAAB9wpqZ+cEAADLCAAB9wpqZ+cEAAPzBAAB9wpqZ+cEAADLCAICBws3M/MEAAPzBAICBwpqZ+cEAAPzBAICBws3M/MEAADLCAICBwpqZ+cEAADLCAICBwpqZ+cEAAPzBAICBwpqZ+cEAADLCAICBwpqZ+cEAAPzBAICGwpqZ+cEAAPzBAICBwpqZ+cEAADLCAICGwpqZ+cEAADLCAICGws3M/MEAAPzBAICGwpqZ+cEAAPzBAICGws3M/MEAADLCAICGwpqZ+cEAADLCAICGwpqZ+cEAAPzBAICGwpqZ+cEAADLCAICHws3M/MEAAPzBAICHwpqZ+cEAAPzBAICHws3M/MEAADLCAICHwpqZ+cEAADLCAICHwpqZ+cEAAPzBAICHwpqZ+cEAADLCAICHwpqZ+cEAAPzBAICKwpqZ+cEAAPzBAICHwpqZ+cEAADLCAICKwpqZ+cEAADLCAICKws3M/MEAAPzBAICKwpqZ+cEAAPzBAICKws3M/MEAADLCAICKwpqZ+cEAADLCAICKwpqZ+cEAAPzBAICKwpqZ+cEAADLCAICLws3M/MEAAPzBAICLwpqZ+cEAAPzBAICLws3M/MEAADLCAICLwpqZ+cEAADLCAICLwpqZ+cEAAPzBAICLwpqZ+cEAADLCAICLwpqZ+cEAAPzBAICOwpqZ+cEAAPzBAICLwpqZ+cEAADLCAICOwpqZ+cEAADLCAICOws3M/MEAAPzBAICOwpqZ+cEAAPzBAICOws3M/MEAADLCAICOwpqZ+cEAADLCAICOwpqZ+cEAAPzBAICOwpqZ+cEAADLCAICPws3M/MEAAPzBAICPwpqZ+cEAAPzBAICPws3M/MEAADLCAICPwpqZ+cEAADLCAICPwpqZ+cEAAPzBAICPwpqZ+cEAADLCAICPwpqZ+cEAAPzBAICSwpqZ+cEAAPzBAICPwpqZ+cEAADLCAICSwpqZ+cEAADLCAICSws3M/MEAAPzBAICSwpqZ+cEAAPzBAICSws3M/MEAADLCAICSwpqZ+cEAADLCAICSwpqZ+cEAAPzBAICSwpqZ+cEAADLCAICTws3M/MEAAPzBAICTwpqZ+cEAAPzBAICTws3M/MEAADLCAICTwpqZ+cEAADLCAICTwpqZ+cEAAPzBAICTwpqZ+cEAADLCAICTwpqZ+cEAAPzBAICWwpqZ+cEAAPzBAICTwpqZ+cEAADLCAICWwpqZ+cEAADLCAICWws3M/MEAAPzBAICWwpqZ+cEAAPzBAICWws3M/MEAADLCAICWwpqZ+cEAADLCAICWwpqZ+cEAAPzBAICWwpqZ+cEAADLCAICXws3M/MEAAPzBAICXwpqZ+cEAAPzBAICXws3M/MEAADLCAICXwpqZ+cEAADLCAICXwpqZ+cEAAPzBAICXwpqZ+cEAADLCAICXwpqZ+cEAAPzBAICawpqZ+cEAAPzBAICXwpqZ+cEAADLCAICawpqZ+cEAADLCAICaws3M/MEAAPzBAICawpqZ+cEAAPzBAICaws3M/MEAADLCAICawpqZ+cEAADLCAICawpqZ+cEAAPzBAICawpqZ+cEAADLCAICbws3M/MEAAPzBAICbwpqZ+cEAAPzBAICbws3M/MEAADLCAICbwpqZ+cEAADLCAICbwpqZ+cEAAPzBAICbwpqZ+cEAADLCAICbwpqZ+cEAAPzBAICewpqZ+cEAAPzBAICbwpqZ+cEAADLCAICewpqZ+cEAADLCAICews3M/MEAAPzBAICewpqZ+cEAAPzBAICews3M/MEAADLCAICewpqZ+cEAADLCAICewpqZ+cEAAPzBAICewpqZ+cEAADLCAICfws3M/MEAAPzBAICfwpqZ+cEAAPzBAICfws3M/MEAADLCAICfwpqZ+cEAADLCAICfwpqZ+cEAAPzBAICfwpqZ+cEAADLCAICfwpqZ+cEAAPzBAICiwpqZ+cEAAPzBAICfwpqZ+cEAADLCAICiwpqZ+cEAADLCAICiws3M/MEAAPzBAICiwpqZ+cEAAPzBAICiws3M/MEAADLCAICiwpqZ+cEAADLCAICiwpqZ+cEAAPzBAICiwpqZ+cEAADLCAICjws3M/MEAAPzBAICjwpqZ+cEAAPzBAICjws3M/MEAADLCAICjwpqZ+cEAADLCAICjwpqZ+cEAAPzBAICjwpqZ+cEAADLCAICjwpqZ+cEAAPzBAICmwpqZ+cEAAPzBAICjwpqZ+cEAADLCAICmwpqZ+cEAADLCAICmws3M/MEAAPzBAICmwpqZ+cEAAPzBAICmws3M/MEAADLCAICmwpqZ+cEAADLCAICmwpqZ+cEAAPzBAICmwpqZ+cEAADLCAICnws3M/MEAAPzBAICnwpqZ+cEAAPzBAICnws3M/MEAADLCAICnwpqZ+cEAADLCAICnwpqZ+cEAAPzBAICnwpqZ+cEAADLCAICnwpqZ+cEAAPzBAICqwpqZ+cEAAPzBAICnwpqZ+cEAADLCAICqwpqZ+cEAADLCAICqws3M/MEAAPzBAICqwpqZ+cEAAPzBAICqws3M/MEAADLCAICqwpqZ+cEAADLCAICqwpqZ+cEAAPzBAICqwpqZ+cEAADLCAICrws3M/MEAAPzBAICrwpqZ+cEAAPzBAICrws3M/MEAADLCAICrwpqZ+cEAADLCAICrwpqZ+cEAAPzBAICrwpqZ+cEAADLCAICrwpqZ+cEAAPzBAICuwpqZ+cEAAPzBAICrwpqZ+cEAADLCAICuwpqZ+cEAADLCAICuws3M/MEAAPzBAICuwpqZ+cEAAPzBAICuws3M/MEAADLCAICuwpqZ+cEAADLCAICuwpqZ+cEAAPzBAICuwpqZ+cEAADLCAICvws3M/MEAAPzBAICvwpqZ+cEAAPzBAICvws3M/MEAADLCAICvwpqZ+cEAADLCAICvwpqZ+cEAAPzBAICvwpqZ+cEAADLCAICvwpqZ+cEAAPzBAICywpqZ+cEAAPzBAICvwpqZ+cEAADLCAICywpqZ+cEAADLCAICyws3M/MEAAPzBAICywpqZ+cEAAPzBAICyws3M/MEAADLCAICywpqZ+cEAADLCAICywpqZ+cEAAPzBAICywpqZ+cEAADLCAICzws3M/MEAAPzBAICzwpqZ+cEAAPzBAICzws3M/MEAADLCAICzwpqZ+cEAADLCAICzwpqZ+cEAAPzBAICzwpqZ+cEAADLCAICzwpqZ+cEAAPzBAIC2wpqZ+cEAAPzBAICzwpqZ+cEAADLCAIC2wpqZ+cEAADLCAIC2ws3M/MEAAPzBAIC2wpqZ+cEAAPzBAIC2ws3M/MEAADLCAIC2wpqZ+cEAADLCAIC2wpqZ+cEAAPzBAIC2wpqZ+cEAADLCAIC3ws3M/MEAAPzBAIC3wpqZ+cEAAPzBAIC3ws3M/MEAADLCAIC3wpqZ+cEAADLCAIC3wpqZ+cEAAPzBAIC3wpqZ+cEAADLCAIC3wpqZ+cEAAPzBAIC6wpqZ+cEAAPzBAIC3wpqZ+cEAADLCAIC6wpqZ+cEAADLCAIC6ws3M/MEAAPzBAIC6wpqZ+cEAAPzBAIC6ws3M/MEAADLCAIC6wpqZ+cEAADLCAIC6wpqZ+cEAAPzBAIC6wpqZ+cEAADLC\"}],\"images\":[{\"uri\":\"\"}],\"materials\":[{\"doubleSided\":false,\"pbrMetallicRoughness\":{\"baseColorFactor\":[1,1,1,1],\"baseColorTexture\":{\"index\":0,\"texCoord\":0},\"metallicFactor\":0.4,\"roughnessFactor\":0.5}},{\"doubleSided\":true,\"pbrMetallicRoughness\":{\"baseColorFactor\":[0,0,0,1],\"metallicFactor\":1,\"roughnessFactor\":1}},{\"doubleSided\":true,\"pbrMetallicRoughness\":{\"baseColorFactor\":[0,0,0,1],\"metallicFactor\":1,\"roughnessFactor\":1}},{\"doubleSided\":true,\"pbrMetallicRoughness\":{\"baseColorFactor\":[1,0,0,1],\"metallicFactor\":1,\"roughnessFactor\":1}},{\"doubleSided\":true,\"pbrMetallicRoughness\":{\"baseColorFactor\":[0,0,1,1],\"metallicFactor\":1,\"roughnessFactor\":1}}],\"meshes\":[{\"primitives\":[{\"attributes\":{\"POSITION\":0,\"TEXCOORD_0\":1},\"material\":0,\"mode\":4}]},{\"primitives\":[{\"attributes\":{\"POSITION\":0,\"TEXCOORD_0\":2},\"material\":0,\"mode\":4}]},{\"primitives\":[{\"attributes\":{\"POSITION\":0,\"TEXCOORD_0\":3},\"material\":0,\"mode\":4}]},{\"primitives\":[{\"attributes\":{\"POSITION\":0,\"TEXCOORD_0\":4},\"material\":0,\"mode\":4}]},{\"primitives\":[{\"attributes\":{\"POSITION\":5},\"material\":1,\"mode\":6}]},{\"primitives\":[{\"attributes\":{\"POSITION\":0,\"TEXCOORD_0\":6},\"material\":0,\"mode\":4}]},{\"primitives\":[{\"attributes\":{\"POSITION\":0,\"TEXCOORD_0\":7},\"material\":0,\"mode\":4}]},{\"primitives\":[{\"attributes\":{\"POSITION\":8},\"material\":2,\"mode\":1}]},{\"primitives\":[{\"attributes\":{\"POSITION\":9},\"material\":3,\"mode\":1}]},{\"primitives\":[{\"attributes\":{\"POSITION\":10},\"material\":4,\"mode\":1}]}],\"nodes\":[{\"mesh\":0,\"translation\":[-0,-34,-32]},{\"mesh\":0,\"translation\":[-0,-34,-36]},{\"mesh\":0,\"translation\":[-0,-38,-34]},{\"mesh\":0,\"translation\":[-0,-38,-38]},{\"mesh\":0,\"translation\":[-0,-38,-42]},{\"mesh\":0,\"translation\":[-0,-42,-32]},{\"mesh\":0,\"translation\":[-0,-42,-36]},{\"mesh\":0,\"translation\":[-0,-42,-40]},{\"mesh\":0,\"translation\":[-0,-46,-34]},{\"mesh\":0,\"translation\":[-0,-32,-32]},{\"mesh\":0,\"translation\":[-0,-34,-34]},{\"mesh\":0,\"translation\":[-0,-36,-34]},{\"mesh\":0,\"translation\":[-0,-36,-38]},{\"mesh\":0,\"translation\":[-0,-38,-32]},{\"mesh\":0,\"translation\":[-0,-38,-36]},{\"mesh\":0,\"translation\":[-0,-38,-40]},{\"mesh\":0,\"translation\":[-0,-40,-32]},{\"mesh\":0,\"translation\":[-0,-40,-36]},{\"mesh\":0,\"translation\":[-0,-40,-40]},{\"mesh\":0,\"translation\":[-0,-40,-44]},{\"mesh\":0,\"translation\":[-0,-42,-34]},{\"mesh\":0,\"translation\":[-0,-42,-38]},{\"mesh\":0,\"translation\":[-0,-42,-42]},{\"mesh\":0,\"translation\":[-0,-44,-34]},{\"mesh\":0,\"translation\":[-0,-44,-38]},{\"mesh\":0,\"translation\":[-0,-46,-32]},{\"mesh\":0,\"translation\":[-0,-46,-36]},{\"mesh\":0,\"translation\":[-0,-48,-32]},{\"mesh\":0,\"translation\":[-0,-36,-32]},{\"mesh\":0,\"translation\":[-0,-36,-36]},{\"mesh\":0,\"translation\":[-0,-40,-34]},{\"mesh\":0,\"translation\":[-0,-40,-38]},{\"mesh\":0,\"translation\":[-0,-40,-42]},{\"mesh\":0,\"translation\":[-0,-44,-32]},{\"mesh\":0,\"translation\":[-0,-44,-36]},{\"mesh\":0,\"translation\":[-0,-44,-40]},{\"mesh\":0,\"translation\":[-0,-48,-34]},{\"mesh\":1,\"translation\":[-1,-34,-32]},{\"mesh\":1,\"translation\":[-1,-34,-36]},{\"mesh\":1,\"translation\":[-1,-38,-34]},{\"mesh\":1,\"translation\":[-1,-38,-38]},{\"mesh\":1,\"translation\":[-1,-38,-42]},{\"mesh\":1,\"translation\":[-1,-42,-32]},{\"mesh\":1,\"translation\":[-1,-42,-36]},{\"mesh\":1,\"translation\":[-1,-42,-40]},{\"mesh\":1,\"translation\":[-1,-46,-34]},{\"mesh\":1,\"translation\":[-1,-32,-32]},{\"mesh\":1,\"translation\":[-1,-34,-34]},{\"mesh\":1,\"translation\":[-1,-36,-34]},{\"mesh\":1,\"translation\":[-1,-36,-38]},{\"mesh\":1,\"translation\":[-1,-38,-32]},{\"mesh\":1,\"translation\":[-1,-38,-36]},{\"mesh\":1,\"translation\":[-1,-38,-40]},{\"mesh\":1,\"translation\":[-1,-40,-32]},{\"mesh\":1,\"translation\":[-1,-40,-36]},{\"mesh\":1,\"translation\":[-1,-40,-40]},{\"mesh\":1,\"translation\":[-1,-40,-44]},{\"mesh\":1,\"translation\":[-1,-42,-34]},{\"mesh\":1,\"translation\":[-1,-42,-38]},{\"mesh\":1,\"translation\":[-1,-42,-42]},{\"mesh\":1,\"translation\":[-1,-44,-34]},{\"mesh\":1,\"translation\":[-1,-44,-38]},{\"mesh\":1,\"translation\":[-1,-46,-32]},{\"mesh\":1,\"translation\":[-1,-46,-36]},{\"mesh\":1,\"translation\":[-1,-48,-32]},{\"mesh\":1,\"translation\":[-1,-36,-32]},{\"mesh\":1,\"translation\":[-1,-36,-36]},{\"mesh\":1,\"translation\":[-1,-40,-34]},{\"mesh\":1,\"translation\":[-1,-40,-38]},{\"mesh\":1,\"translation\":[-1,-40,-42]},{\"mesh\":1,\"translation\":[-1,-44,-32]},{\"mesh\":1,\"translation\":[-1,-44,-36]},{\"mesh\":1,\"translation\":[-1,-44,-40]},{\"mesh\":1,\"translation\":[-1,-48,-34]},{\"mesh\":2,\"translation\":[-2,-34,-32]},{\"mesh\":2,\"translation\":[-2,-34,-36]},{\"mesh\":2,\"translation\":[-2,-36,-32]},{\"mesh\":2,\"translation\":[-2,-36,-36]},{\"mesh\":2,\"translation\":[-2,-38,-34]},{\"mesh\":2,\"translation\":[-2,-38,-38]},{\"mesh\":2,\"translation\":[-2,-38,-42]},{\"mesh\":2,\"translation\":[-2,-40,-34]},{\"mesh\":2,\"translation\":[-2,-40,-38]},{\"mesh\":2,\"translation\":[-2,-40,-42]},{\"mesh\":2,\"translation\":[-2,-42,-32]},{\"mesh\":2,\"translation\":[-2,-42,-36]},{\"mesh\":2,\"translation\":[-2,-42,-40]},{\"mesh\":2,\"translation\":[-2,-44,-32]},{\"mesh\":2,\"translation\":[-2,-44,-36]},{\"mesh\":2,\"translation\":[-2,-44,-40]},{\"mesh\":2,\"translation\":[-2,-46,-34]},{\"mesh\":2,\"translation\":[-2,-48,-34]},{\"mesh\":3,\"translation\":[-3,-34,-32]},{\"mesh\":3,\"translation\":[-3,-34,-36]},{\"mesh\":3,\"translation\":[-3,-36,-32]},{\"mesh\":3,\"translation\":[-3,-36,-36]},{\"mesh\":3,\"translation\":[-3,-38,-34]},{\"mesh\":3,\"translation\":[-3,-38,-38]},{\"mesh\":3,\"translation\":[-3,-38,-42]},{\"mesh\":3,\"translation\":[-3,-40,-34]},{\"mesh\":3,\"translation\":[-3,-40,-38]},{\"mesh\":3,\"translation\":[-3,-40,-42]},{\"mesh\":3,\"translation\":[-3,-42,-32]},{\"mesh\":3,\"translation\":[-3,-42,-36]},{\"mesh\":3,\"translation\":[-3,-42,-40]},{\"mesh\":3,\"translation\":[-3,-44,-32]},{\"mesh\":3,\"translation\":[-3,-44,-36]},{\"mesh\":3,\"translation\":[-3,-44,-40]},{\"mesh\":3,\"translation\":[-3,-46,-34]},{\"mesh\":3,\"translation\":[-3,-48,-34]},{\"mesh\":3,\"translation\":[-3,-32,-32]},{\"mesh\":3,\"translation\":[-3,-34,-34]},{\"mesh\":3,\"translation\":[-3,-36,-34]},{\"mesh\":3,\"translation\":[-3,-36,-38]},{\"mesh\":3,\"translation\":[-3,-38,-32]},{\"mesh\":3,\"translation\":[-3,-38,-36]},{\"mesh\":3,\"translation\":[-3,-38,-40]},{\"mesh\":3,\"translation\":[-3,-40,-32]},{\"mesh\":3,\"translation\":[-3,-40,-36]},{\"mesh\":3,\"translation\":[-3,-40,-40]},{\"mesh\":3,\"translation\":[-3,-40,-44]},{\"mesh\":3,\"translation\":[-3,-42,-34]},{\"mesh\":3,\"translation\":[-3,-42,-38]},{\"mesh\":3,\"translation\":[-3,-42,-42]},{\"mesh\":3,\"translation\":[-3,-44,-34]},{\"mesh\":3,\"translation\":[-3,-44,-38]},{\"mesh\":3,\"translation\":[-3,-46,-32]},{\"mesh\":3,\"translation\":[-3,-46,-36]},{\"mesh\":3,\"translation\":[-3,-48,-32]},{\"mesh\":4,\"translation\":[-4,-34,-32]},{\"mesh\":4,\"translation\":[-4,-36,-32]},{\"mesh\":4,\"translation\":[-4,-34,-36]},{\"mesh\":4,\"translation\":[-4,-36,-36]},{\"mesh\":4,\"translation\":[-4,-38,-34]},{\"mesh\":4,\"translation\":[-4,-40,-34]},{\"mesh\":4,\"translation\":[-4,-38,-38]},{\"mesh\":4,\"translation\":[-4,-40,-38]},{\"mesh\":4,\"translation\":[-4,-38,-42]},{\"mesh\":4,\"translation\":[-4,-40,-42]},{\"mesh\":4,\"translation\":[-4,-42,-32]},{\"mesh\":4,\"translation\":[-4,-44,-32]},{\"mesh\":4,\"translation\":[-4,-42,-36]},{\"mesh\":4,\"translation\":[-4,-44,-36]},{\"mesh\":4,\"translation\":[-4,-42,-40]},{\"mesh\":4,\"translation\":[-4,-44,-40]},{\"mesh\":4,\"translation\":[-4,-46,-34]},{\"mesh\":4,\"translation\":[-4,-48,-34]},{\"mesh\":5,\"translation\":[-5,-34,-32]},{\"mesh\":5,\"translation\":[-5,-36,-32]},{\"mesh\":5,\"translation\":[-5,-34,-36]},{\"mesh\":5,\"translation\":[-5,-36,-36]},{\"mesh\":5,\"translation\":[-5,-38,-34]},{\"mesh\":5,\"translation\":[-5,-40,-34]},{\"mesh\":5,\"translation\":[-5,-38,-38]},{\"mesh\":5,\"translation\":[-5,-40,-38]},{\"mesh\":5,\"translation\":[-5,-38,-42]},{\"mesh\":5,\"translation\":[-5,-40,-42]},{\"mesh\":5,\"translation\":[-5,-42,-32]},{\"mesh\":5,\"translation\":[-5,-44,-32]},{\"mesh\":5,\"translation\":[-5,-42,-36]},{\"mesh\":5,\"translation\":[-5,-44,-36]},{\"mesh\":5,\"translation\":[-5,-42,-40]},{\"mesh\":5,\"translation\":[-5,-44,-40]},{\"mesh\":5,\"translation\":[-5,-46,-34]},{\"mesh\":5,\"translation\":[-5,-48,-34]},{\"mesh\":3,\"translation\":[-5,-32,-32]},{\"mesh\":3,\"translation\":[-5,-34,-34]},{\"mesh\":3,\"translation\":[-5,-36,-34]},{\"mesh\":3,\"translation\":[-5,-36,-38]},{\"mesh\":3,\"translation\":[-5,-38,-32]},{\"mesh\":3,\"translation\":[-5,-38,-36]},{\"mesh\":3,\"translation\":[-5,-38,-40]},{\"mesh\":3,\"translation\":[-5,-40,-32]},{\"mesh\":3,\"translation\":[-5,-40,-36]},{\"mesh\":3,\"translation\":[-5,-40,-40]},{\"mesh\":3,\"translation\":[-5,-40,-44]},{\"mesh\":3,\"translation\":[-5,-42,-34]},{\"mesh\":3,\"translation\":[-5,-42,-38]},{\"mesh\":3,\"translation\":[-5,-42,-42]},{\"mesh\":3,\"translation\":[-5,-44,-34]},{\"mesh\":3,\"translation\":[-5,-44,-38]},{\"mesh\":3,\"translation\":[-5,-46,-32]},{\"mesh\":3,\"translation\":[-5,-46,-36]},{\"mesh\":3,\"translation\":[-5,-48,-32]},{\"mesh\":2,\"translation\":[-6,-34,-32]},{\"mesh\":2,\"translation\":[-6,-34,-36]},{\"mesh\":2,\"translation\":[-6,-38,-34]},{\"mesh\":2,\"translation\":[-6,-38,-38]},{\"mesh\":2,\"translation\":[-6,-38,-42]},{\"mesh\":2,\"translation\":[-6,-42,-32]},{\"mesh\":2,\"translation\":[-6,-42,-36]},{\"mesh\":2,\"translation\":[-6,-42,-40]},{\"mesh\":2,\"translation\":[-6,-46,-34]},{\"mesh\":3,\"translation\":[-7,-34,-32]},{\"mesh\":3,\"translation\":[-7,-34,-36]},{\"mesh\":3,\"translation\":[-7,-38,-34]},{\"mesh\":3,\"translation\":[-7,-38,-38]},{\"mesh\":3,\"translation\":[-7,-38,-42]},{\"mesh\":3,\"translation\":[-7,-42,-32]},{\"mesh\":3,\"translation\":[-7,-42,-36]},{\"mesh\":3,\"translation\":[-7,-42,-40]},{\"mesh\":3,\"translation\":[-7,-46,-34]},{\"mesh\":3,\"translation\":[-7,-32,-32]},{\"mesh\":3,\"translation\":[-7,-34,-34]},{\"mesh\":3,\"translation\":[-7,-36,-32]},{\"mesh\":3,\"translation\":[-7,-36,-34]},{\"mesh\":3,\"translation\":[-7,-36,-36]},{\"mesh\":3,\"translation\":[-7,-36,-38]},{\"mesh\":3,\"translation\":[-7,-38,-32]},{\"mesh\":3,\"translation\":[-7,-38,-36]},{\"mesh\":3,\"translation\":[-7,-38,-40]},{\"mesh\":3,\"translation\":[-7,-40,-32]},{\"mesh\":3,\"translation\":[-7,-40,-34]},{\"mesh\":3,\"translation\":[-7,-40,-36]},{\"mesh\":3,\"translation\":[-7,-40,-38]},{\"mesh\":3,\"translation\":[-7,-40,-40]},{\"mesh\":3,\"translation\":[-7,-40,-42]},{\"mesh\":3,\"translation\":[-7,-40,-44]},{\"mesh\":3,\"translation\":[-7,-42,-34]},{\"mesh\":3,\"translation\":[-7,-42,-38]},{\"mesh\":3,\"translation\":[-7,-42,-42]},{\"mesh\":3,\"translation\":[-7,-44,-32]},{\"mesh\":3,\"translation\":[-7,-44,-34]},{\"mesh\":3,\"translation\":[-7,-44,-36]},{\"mesh\":3,\"translation\":[-7,-44,-38]},{\"mesh\":3,\"translation\":[-7,-44,-40]},{\"mesh\":3,\"translation\":[-7,-46,-32]},{\"mesh\":3,\"translation\":[-7,-46,-36]},{\"mesh\":3,\"translation\":[-7,-48,-32]},{\"mesh\":3,\"translation\":[-7,-48,-34]},{\"mesh\":4,\"translation\":[-8,-34,-32]},{\"mesh\":4,\"translation\":[-8,-34,-34]},{\"mesh\":4,\"translation\":[-8,-36,-32]},{\"mesh\":4,\"translation\":[-8,-36,-34]},{\"mesh\":4,\"translation\":[-8,-36,-36]},{\"mesh\":4,\"translation\":[-8,-36,-38]},{\"mesh\":4,\"translation\":[-8,-38,-34]},{\"mesh\":4,\"translation\":[-8,-38,-36]},{\"mesh\":4,\"translation\":[-8,-38,-38]},{\"mesh\":4,\"translation\":[-8,-38,-40]},{\"mesh\":4,\"translation\":[-8,-40,-34]},{\"mesh\":4,\"translation\":[-8,-40,-36]},{\"mesh\":4,\"translation\":[-8,-40,-38]},{\"mesh\":4,\"translation\":[-8,-40,-40]},{\"mesh\":4,\"translation\":[-8,-40,-42]},{\"mesh\":4,\"translation\":[-8,-40,-44]},{\"mesh\":4,\"translation\":[-8,-42,-32]},{\"mesh\":4,\"translation\":[-8,-42,-34]},{\"mesh\":4,\"translation\":[-8,-42,-36]},{\"mesh\":4,\"translation\":[-8,-42,-38]},{\"mesh\":4,\"translation\":[-8,-42,-40]},{\"mesh\":4,\"translation\":[-8,-42,-42]},{\"mesh\":4,\"translation\":[-8,-44,-32]},{\"mesh\":4,\"translation\":[-8,-44,-34]},{\"mesh\":4,\"translation\":[-8,-44,-36]},{\"mesh\":4,\"translation\":[-8,-44,-38]},{\"mesh\":4,\"translation\":[-8,-46,-34]},{\"mesh\":4,\"translation\":[-8,-46,-36]},{\"mesh\":5,\"translation\":[-9,-34,-32]},{\"mesh\":5,\"translation\":[-9,-34,-34]},{\"mesh\":5,\"translation\":[-9,-36,-32]},{\"mesh\":5,\"translation\":[-9,-36,-34]},{\"mesh\":5,\"translation\":[-9,-36,-36]},{\"mesh\":5,\"translation\":[-9,-36,-38]},{\"mesh\":5,\"translation\":[-9,-38,-34]},{\"mesh\":5,\"translation\":[-9,-38,-36]},{\"mesh\":5,\"translation\":[-9,-38,-38]},{\"mesh\":5,\"translation\":[-9,-38,-40]},{\"mesh\":5,\"translation\":[-9,-40,-34]},{\"mesh\":5,\"translation\":[-9,-40,-36]},{\"mesh\":5,\"translation\":[-9,-40,-38]},{\"mesh\":5,\"translation\":[-9,-40,-40]},{\"mesh\":5,\"translation\":[-9,-40,-42]},{\"mesh\":5,\"translation\":[-9,-40,-44]},{\"mesh\":5,\"translation\":[-9,-42,-32]},{\"mesh\":5,\"translation\":[-9,-42,-34]},{\"mesh\":5,\"translation\":[-9,-42,-36]},{\"mesh\":5,\"translation\":[-9,-42,-38]},{\"mesh\":5,\"translation\":[-9,-42,-40]},{\"mesh\":5,\"translation\":[-9,-42,-42]},{\"mesh\":5,\"translation\":[-9,-44,-32]},{\"mesh\":5,\"translation\":[-9,-44,-34]},{\"mesh\":5,\"translation\":[-9,-44,-36]},{\"mesh\":5,\"translation\":[-9,-44,-38]},{\"mesh\":5,\"translation\":[-9,-46,-34]},{\"mesh\":5,\"translation\":[-9,-46,-36]},{\"mesh\":3,\"translation\":[-9,-32,-32]},{\"mesh\":3,\"translation\":[-9,-34,-36]},{\"mesh\":3,\"translation\":[-9,-38,-32]},{\"mesh\":3,\"translation\":[-9,-38,-42]},{\"mesh\":3,\"translation\":[-9,-40,-32]},{\"mesh\":3,\"translation\":[-9,-44,-40]},{\"mesh\":3,\"translation\":[-9,-46,-32]},{\"mesh\":3,\"translation\":[-9,-48,-32]},{\"mesh\":3,\"translation\":[-9,-48,-34]},{\"mesh\":4,\"translation\":[-10,-32,-32]},{\"mesh\":4,\"translation\":[-10,-34,-32]},{\"mesh\":4,\"translation\":[-10,-36,-32]},{\"mesh\":4,\"translation\":[-10,-38,-32]},{\"mesh\":4,\"translation\":[-10,-36,-34]},{\"mesh\":4,\"translation\":[-10,-38,-34]},{\"mesh\":4,\"translation\":[-10,-36,-36]},{\"mesh\":4,\"translation\":[-10,-38,-36]},{\"mesh\":4,\"translation\":[-10,-36,-38]},{\"mesh\":4,\"translation\":[-10,-38,-38]},{\"mesh\":4,\"translation\":[-10,-40,-32]},{\"mesh\":4,\"translation\":[-10,-42,-32]},{\"mesh\":4,\"translation\":[-10,-40,-34]},{\"mesh\":4,\"translation\":[-10,-42,-34]},{\"mesh\":4,\"translation\":[-10,-40,-36]},{\"mesh\":4,\"translation\":[-10,-42,-36]},{\"mesh\":4,\"translation\":[-10,-40,-38]},{\"mesh\":4,\"translation\":[-10,-42,-38]},{\"mesh\":4,\"translation\":[-10,-40,-40]},{\"mesh\":4,\"translation\":[-10,-42,-40]},{\"mesh\":4,\"translation\":[-10,-40,-42]},{\"mesh\":4,\"translation\":[-10,-42,-42]},{\"mesh\":4,\"translation\":[-10,-44,-32]},{\"mesh\":4,\"translation\":[-10,-46,-32]},{\"mesh\":4,\"translation\":[-10,-44,-34]},{\"mesh\":4,\"translation\":[-10,-46,-34]},{\"mesh\":4,\"translation\":[-10,-44,-36]},{\"mesh\":4,\"translation\":[-10,-46,-36]},{\"mesh\":5,\"translation\":[-11,-32,-32]},{\"mesh\":5,\"translation\":[-11,-34,-32]},{\"mesh\":5,\"translation\":[-11,-36,-32]},{\"mesh\":5,\"translation\":[-11,-38,-32]},{\"mesh\":5,\"translation\":[-11,-36,-34]},{\"mesh\":5,\"translation\":[-11,-38,-34]},{\"mesh\":5,\"translation\":[-11,-36,-36]},{\"mesh\":5,\"translation\":[-11,-38,-36]},{\"mesh\":5,\"translation\":[-11,-36,-38]},{\"mesh\":5,\"translation\":[-11,-38,-38]},{\"mesh\":5,\"translation\":[-11,-40,-32]},{\"mesh\":5,\"translation\":[-11,-42,-32]},{\"mesh\":5,\"translation\":[-11,-40,-34]},{\"mesh\":5,\"translation\":[-11,-42,-34]},{\"mesh\":5,\"translation\":[-11,-40,-36]},{\"mesh\":5,\"translation\":[-11,-42,-36]},{\"mesh\":5,\"translation\":[-11,-40,-38]},{\"mesh\":5,\"translation\":[-11,-42,-38]},{\"mesh\":5,\"translation\":[-11,-40,-40]},{\"mesh\":5,\"translation\":[-11,-42,-40]},{\"mesh\":5,\"translation\":[-11,-40,-42]},{\"mesh\":5,\"translation\":[-11,-42,-42]},{\"mesh\":5,\"translation\":[-11,-44,-32]},{\"mesh\":5,\"translation\":[-11,-46,-32]},{\"mesh\":5,\"translation\":[-11,-44,-34]},{\"mesh\":5,\"translation\":[-11,-46,-34]},{\"mesh\":5,\"translation\":[-11,-44,-36]},{\"mesh\":5,\"translation\":[-11,-46,-36]},{\"mesh\":3,\"translation\":[-11,-34,-34]},{\"mesh\":3,\"translation\":[-11,-34,-36]},{\"mesh\":3,\"translation\":[-11,-38,-40]},{\"mesh\":3,\"translation\":[-11,-38,-42]},{\"mesh\":3,\"translation\":[-11,-40,-44]},{\"mesh\":3,\"translation\":[-11,-44,-38]},{\"mesh\":3,\"translation\":[-11,-44,-40]},{\"mesh\":3,\"translation\":[-11,-48,-32]},{\"mesh\":3,\"translation\":[-11,-48,-34]},{\"mesh\":4,\"translation\":[-12,-34,-34]},{\"mesh\":4,\"translation\":[-12,-34,-36]},{\"mesh\":4,\"translation\":[-12,-36,-34]},{\"mesh\":4,\"translation\":[-12,-36,-36]},{\"mesh\":4,\"translation\":[-12,-38,-32]},{\"mesh\":4,\"translation\":[-12,-38,-34]},{\"mesh\":4,\"translation\":[-12,-38,-36]},{\"mesh\":4,\"translation\":[-12,-38,-38]},{\"mesh\":4,\"translation\":[-12,-38,-40]},{\"mesh\":4,\"translation\":[-12,-38,-42]},{\"mesh\":4,\"translation\":[-12,-40,-32]},{\"mesh\":4,\"translation\":[-12,-40,-34]},{\"mesh\":4,\"translation\":[-12,-40,-36]},{\"mesh\":4,\"translation\":[-12,-40,-38]},{\"mesh\":4,\"translation\":[-12,-40,-40]},{\"mesh\":4,\"translation\":[-12,-40,-42]},{\"mesh\":4,\"translation\":[-12,-42,-34]},{\"mesh\":4,\"translation\":[-12,-42,-36]},{\"mesh\":4,\"translation\":[-12,-42,-38]},{\"mesh\":4,\"translation\":[-12,-42,-40]},{\"mesh\":4,\"translation\":[-12,-44,-34]},{\"mesh\":4,\"translation\":[-12,-44,-36]},{\"mesh\":4,\"translation\":[-12,-44,-38]},{\"mesh\":4,\"translation\":[-12,-44,-40]},{\"mesh\":4,\"translation\":[-12,-46,-32]},{\"mesh\":4,\"translation\":[-12,-46,-34]},{\"mesh\":4,\"translation\":[-12,-48,-32]},{\"mesh\":4,\"translation\":[-12,-48,-34]},{\"mesh\":5,\"translation\":[-13,-34,-34]},{\"mesh\":5,\"translation\":[-13,-34,-36]},{\"mesh\":5,\"translation\":[-13,-36,-34]},{\"mesh\":5,\"translation\":[-13,-36,-36]},{\"mesh\":5,\"translation\":[-13,-38,-32]},{\"mesh\":5,\"translation\":[-13,-38,-34]},{\"mesh\":5,\"translation\":[-13,-38,-36]},{\"mesh\":5,\"translation\":[-13,-38,-38]},{\"mesh\":5,\"translation\":[-13,-38,-40]},{\"mesh\":5,\"translation\":[-13,-38,-42]},{\"mesh\":5,\"translation\":[-13,-40,-32]},{\"mesh\":5,\"translation\":[-13,-40,-34]},{\"mesh\":5,\"translation\":[-13,-40,-36]},{\"mesh\":5,\"translation\":[-13,-40,-38]},{\"mesh\":5,\"translation\":[-13,-40,-40]},{\"mesh\":5,\"translation\":[-13,-40,-42]},{\"mesh\":5,\"translation\":[-13,-42,-34]},{\"mesh\":5,\"translation\":[-13,-42,-36]},{\"mesh\":5,\"translation\":[-13,-42,-38]},{\"mesh\":5,\"translation\":[-13,-42,-40]},{\"mesh\":5,\"translation\":[-13,-44,-34]},{\"mesh\":5,\"translation\":[-13,-44,-36]},{\"mesh\":5,\"translation\":[-13,-44,-38]},{\"mesh\":5,\"translation\":[-13,-44,-40]},{\"mesh\":5,\"translation\":[-13,-46,-32]},{\"mesh\":5,\"translation\":[-13,-46,-34]},{\"mesh\":5,\"translation\":[-13,-48,-32]},{\"mesh\":5,\"translation\":[-13,-48,-34]},{\"mesh\":3,\"translation\":[-13,-32,-32]},{\"mesh\":3,\"translation\":[-13,-34,-32]},{\"mesh\":3,\"translation\":[-13,-36,-32]},{\"mesh\":3,\"translation\":[-13,-36,-38]},{\"mesh\":3,\"translation\":[-13,-40,-44]},{\"mesh\":3,\"translation\":[-13,-42,-32]},{\"mesh\":3,\"translation\":[-13,-42,-42]},{\"mesh\":3,\"translation\":[-13,-44,-32]},{\"mesh\":3,\"translation\":[-13,-46,-36]},{\"mesh\":2,\"translation\":[-14,-32,-32]},{\"mesh\":2,\"translation\":[-14,-34,-32]},{\"mesh\":2,\"translation\":[-14,-34,-34]},{\"mesh\":2,\"translation\":[-14,-34,-36]},{\"mesh\":2,\"translation\":[-14,-36,-32]},{\"mesh\":2,\"translation\":[-14,-36,-34]},{\"mesh\":2,\"translation\":[-14,-36,-36]},{\"mesh\":2,\"translation\":[-14,-36,-38]},{\"mesh\":2,\"translation\":[-14,-38,-32]},{\"mesh\":2,\"translation\":[-14,-38,-34]},{\"mesh\":2,\"translation\":[-14,-38,-36]},{\"mesh\":2,\"translation\":[-14,-38,-38]},{\"mesh\":2,\"translation\":[-14,-38,-40]},{\"mesh\":2,\"translation\":[-14,-38,-42]},{\"mesh\":2,\"translation\":[-14,-40,-32]},{\"mesh\":2,\"translation\":[-14,-40,-34]},{\"mesh\":2,\"translation\":[-14,-40,-36]},{\"mesh\":2,\"translation\":[-14,-40,-38]},{\"mesh\":2,\"translation\":[-14,-40,-40]},{\"mesh\":2,\"translation\":[-14,-40,-42]},{\"mesh\":2,\"translation\":[-14,-40,-44]},{\"mesh\":2,\"translation\":[-14,-42,-32]},{\"mesh\":2,\"translation\":[-14,-42,-34]},{\"mesh\":2,\"translation\":[-14,-42,-36]},{\"mesh\":2,\"translation\":[-14,-42,-38]},{\"mesh\":2,\"translation\":[-14,-42,-40]},{\"mesh\":2,\"translation\":[-14,-42,-42]},{\"mesh\":2,\"translation\":[-14,-44,-32]},{\"mesh\":2,\"translation\":[-14,-44,-34]},{\"mesh\":2,\"translation\":[-14,-44,-36]},{\"mesh\":2,\"translation\":[-14,-44,-38]},{\"mesh\":2,\"translation\":[-14,-44,-40]},{\"mesh\":2,\"translation\":[-14,-46,-32]},{\"mesh\":2,\"translation\":[-14,-46,-34]},{\"mesh\":2,\"translation\":[-14,-46,-36]},{\"mesh\":2,\"translation\":[-14,-48,-32]},{\"mesh\":2,\"translation\":[-14,-48,-34]},{\"mesh\":3,\"translation\":[-15,-32,-32]},{\"mesh\":3,\"translation\":[-15,-34,-32]},{\"mesh\":3,\"translation\":[-15,-34,-34]},{\"mesh\":3,\"translation\":[-15,-34,-36]},{\"mesh\":3,\"translation\":[-15,-36,-32]},{\"mesh\":3,\"translation\":[-15,-36,-34]},{\"mesh\":3,\"translation\":[-15,-36,-36]},{\"mesh\":3,\"translation\":[-15,-36,-38]},{\"mesh\":3,\"translation\":[-15,-38,-32]},{\"mesh\":3,\"translation\":[-15,-38,-34]},{\"mesh\":3,\"translation\":[-15,-38,-36]},{\"mesh\":3,\"translation\":[-15,-38,-38]},{\"mesh\":3,\"translation\":[-15,-38,-40]},{\"mesh\":3,\"translation\":[-15,-38,-42]},{\"mesh\":3,\"translation\":[-15,-40,-32]},{\"mesh\":3,\"translation\":[-15,-40,-34]},{\"mesh\":3,\"translation\":[-15,-40,-36]},{\"mesh\":3,\"translation\":[-15,-40,-38]},{\"mesh\":3,\"translation\":[-15,-40,-40]},{\"mesh\":3,\"translation\":[-15,-40,-42]},{\"mesh\":3,\"translation\":[-15,-40,-44]},{\"mesh\":3,\"translation\":[-15,-42,-32]},{\"mesh\":3,\"translation\":[-15,-42,-34]},{\"mesh\":3,\"translation\":[-15,-42,-36]},{\"mesh\":3,\"translation\":[-15,-42,-38]},{\"mesh\":3,\"translation\":[-15,-42,-40]},{\"mesh\":3,\"translation\":[-15,-42,-42]},{\"mesh\":3,\"translation\":[-15,-44,-32]},{\"mesh\":3,\"translation\":[-15,-44,-34]},{\"mesh\":3,\"translation\":[-15,-44,-36]},{\"mesh\":3,\"translation\":[-15,-44,-38]},{\"mesh\":3,\"translation\":[-15,-44,-40]},{\"mesh\":3,\"translation\":[-15,-46,-32]},{\"mesh\":3,\"translation\":[-15,-46,-34]},{\"mesh\":3,\"translation\":[-15,-46,-36]},{\"mesh\":3,\"translation\":[-15,-48,-32]},{\"mesh\":3,\"translation\":[-15,-48,-34]},{\"mesh\":4,\"translation\":[-16,-34,-32]},{\"mesh\":4,\"translation\":[-16,-34,-34]},{\"mesh\":4,\"translation\":[-16,-36,-32]},{\"mesh\":4,\"translation\":[-16,-36,-34]},{\"mesh\":4,\"translation\":[-16,-36,-36]},{\"mesh\":4,\"translation\":[-16,-36,-38]},{\"mesh\":4,\"translation\":[-16,-38,-34]},{\"mesh\":4,\"translation\":[-16,-38,-36]},{\"mesh\":4,\"translation\":[-16,-38,-38]},{\"mesh\":4,\"translation\":[-16,-38,-40]},{\"mesh\":4,\"translation\":[-16,-40,-34]},{\"mesh\":4,\"translation\":[-16,-40,-36]},{\"mesh\":4,\"translation\":[-16,-40,-38]},{\"mesh\":4,\"translation\":[-16,-40,-40]},{\"mesh\":4,\"translation\":[-16,-40,-42]},{\"mesh\":4,\"translation\":[-16,-40,-44]},{\"mesh\":4,\"translation\":[-16,-42,-32]},{\"mesh\":4,\"translation\":[-16,-42,-34]},{\"mesh\":4,\"translation\":[-16,-42,-36]},{\"mesh\":4,\"translation\":[-16,-42,-38]},{\"mesh\":4,\"translation\":[-16,-42,-40]},{\"mesh\":4,\"translation\":[-16,-42,-42]},{\"mesh\":4,\"translation\":[-16,-44,-32]},{\"mesh\":4,\"translation\":[-16,-44,-34]},{\"mesh\":4,\"translation\":[-16,-44,-36]},{\"mesh\":4,\"translation\":[-16,-44,-38]},{\"mesh\":4,\"translation\":[-16,-46,-34]},{\"mesh\":4,\"translation\":[-16,-46,-36]},{\"mesh\":5,\"translation\":[-17,-34,-32]},{\"mesh\":5,\"translation\":[-17,-34,-34]},{\"mesh\":5,\"translation\":[-17,-36,-32]},{\"mesh\":5,\"translation\":[-17,-36,-34]},{\"mesh\":5,\"translation\":[-17,-36,-36]},{\"mesh\":5,\"translation\":[-17,-36,-38]},{\"mesh\":5,\"translation\":[-17,-38,-34]},{\"mesh\":5,\"translation\":[-17,-38,-36]},{\"mesh\":5,\"translation\":[-17,-38,-38]},{\"mesh\":5,\"translation\":[-17,-38,-40]},{\"mesh\":5,\"translation\":[-17,-40,-34]},{\"mesh\":5,\"translation\":[-17,-40,-36]},{\"mesh\":5,\"translation\":[-17,-40,-38]},{\"mesh\":5,\"translation\":[-17,-40,-40]},{\"mesh\":5,\"translation\":[-17,-40,-42]},{\"mesh\":5,\"translation\":[-17,-40,-44]},{\"mesh\":5,\"translation\":[-17,-42,-32]},{\"mesh\":5,\"translation\":[-17,-42,-34]},{\"mesh\":5,\"translation\":[-17,-42,-36]},{\"mesh\":5,\"translation\":[-17,-42,-38]},{\"mesh\":5,\"translation\":[-17,-42,-40]},{\"mesh\":5,\"translation\":[-17,-42,-42]},{\"mesh\":5,\"translation\":[-17,-44,-32]},{\"mesh\":5,\"translation\":[-17,-44,-34]},{\"mesh\":5,\"translation\":[-17,-44,-36]},{\"mesh\":5,\"translation\":[-17,-44,-38]},{\"mesh\":5,\"translation\":[-17,-46,-34]},{\"mesh\":5,\"translation\":[-17,-46,-36]},{\"mesh\":3,\"translation\":[-17,-32,-32]},{\"mesh\":3,\"translation\":[-17,-34,-36]},{\"mesh\":3,\"translation\":[-17,-38,-32]},{\"mesh\":3,\"translation\":[-17,-38,-42]},{\"mesh\":3,\"translation\":[-17,-40,-32]},{\"mesh\":3,\"translation\":[-17,-44,-40]},{\"mesh\":3,\"translation\":[-17,-46,-32]},{\"mesh\":3,\"translation\":[-17,-48,-32]},{\"mesh\":3,\"translation\":[-17,-48,-34]},{\"mesh\":4,\"translation\":[-18,-32,-32]},{\"mesh\":4,\"translation\":[-18,-34,-32]},{\"mesh\":4,\"translation\":[-18,-36,-32]},{\"mesh\":4,\"translation\":[-18,-38,-32]},{\"mesh\":4,\"translation\":[-18,-36,-34]},{\"mesh\":4,\"translation\":[-18,-38,-34]},{\"mesh\":4,\"translation\":[-18,-36,-36]},{\"mesh\":4,\"translation\":[-18,-38,-36]},{\"mesh\":4,\"translation\":[-18,-36,-38]},{\"mesh\":4,\"translation\":[-18,-38,-38]},{\"mesh\":4,\"translation\":[-18,-40,-32]},{\"mesh\":4,\"translation\":[-18,-42,-32]},{\"mesh\":4,\"translation\":[-18,-40,-34]},{\"mesh\":4,\"translation\":[-18,-42,-34]},{\"mesh\":4,\"translation\":[-18,-40,-36]},{\"mesh\":4,\"translation\":[-18,-42,-36]},{\"mesh\":4,\"translation\":[-18,-40,-38]},{\"mesh\":4,\"translation\":[-18,-42,-38]},{\"mesh\":4,\"translation\":[-18,-40,-40]},{\"mesh\":4,\"translation\":[-18,-42,-40]},{\"mesh\":4,\"translation\":[-18,-40,-42]},{\"mesh\":4,\"translation\":[-18,-42,-42]},{\"mesh\":4,\"translation\":[-18,-44,-32]},{\"mesh\":4,\"translation\":[-18,-46,-32]},{\"mesh\":4,\"translation\":[-18,-44,-34]},{\"mesh\":4,\"translation\":[-18,-46,-34]},{\"mesh\":4,\"translation\":[-18,-44,-36]},{\"mesh\":4,\"translation\":[-18,-46,-36]},{\"mesh\":5,\"translation\":[-19,-32,-32]},{\"mesh\":5,\"translation\":[-19,-34,-32]},{\"mesh\":5,\"translation\":[-19,-36,-32]},{\"mesh\":5,\"translation\":[-19,-38,-32]},{\"mesh\":5,\"translation\":[-19,-36,-34]},{\"mesh\":5,\"translation\":[-19,-38,-34]},{\"mesh\":5,\"translation\":[-19,-36,-36]},{\"mesh\":5,\"translation\":[-19,-38,-36]},{\"mesh\":5,\"translation\":[-19,-36,-38]},{\"mesh\":5,\"translation\":[-19,-38,-38]},{\"mesh\":5,\"translation\":[-19,-40,-32]},{\"mesh\":5,\"translation\":[-19,-42,-32]},{\"mesh\":5,\"translation\":[-19,-40,-34]},{\"mesh\":5,\"translation\":[-19,-42,-34]},{\"mesh\":5,\"translation\":[-19,-40,-36]},{\"mesh\":5,\"translation\":[-19,-42,-36]},{\"mesh\":5,\"translation\":[-19,-40,-38]},{\"mesh\":5,\"translation\":[-19,-42,-38]},{\"mesh\":5,\"translation\":[-19,-40,-40]},{\"mesh\":5,\"translation\":[-19,-42,-40]},{\"mesh\":5,\"translation\":[-19,-40,-42]},{\"mesh\":5,\"translation\":[-19,-42,-42]},{\"mesh\":5,\"translation\":[-19,-44,-32]},{\"mesh\":5,\"translation\":[-19,-46,-32]},{\"mesh\":5,\"translation\":[-19,-44,-34]},{\"mesh\":5,\"translation\":[-19,-46,-34]},{\"mesh\":5,\"translation\":[-19,-44,-36]},{\"mesh\":5,\"translation\":[-19,-46,-36]},{\"mesh\":3,\"translation\":[-19,-34,-34]},{\"mesh\":3,\"translation\":[-19,-34,-36]},{\"mesh\":3,\"translation\":[-19,-38,-40]},{\"mesh\":3,\"translation\":[-19,-38,-42]},{\"mesh\":3,\"translation\":[-19,-40,-44]},{\"mesh\":3,\"translation\":[-19,-44,-38]},{\"mesh\":3,\"translation\":[-19,-44,-40]},{\"mesh\":3,\"translation\":[-19,-48,-32]},{\"mesh\":3,\"translation\":[-19,-48,-34]},{\"mesh\":4,\"translation\":[-20,-34,-34]},{\"mesh\":4,\"translation\":[-20,-34,-36]},{\"mesh\":4,\"translation\":[-20,-36,-34]},{\"mesh\":4,\"translation\":[-20,-36,-36]},{\"mesh\":4,\"translation\":[-20,-38,-32]},{\"mesh\":4,\"translation\":[-20,-38,-34]},{\"mesh\":4,\"translation\":[-20,-38,-36]},{\"mesh\":4,\"translation\":[-20,-38,-38]},{\"mesh\":4,\"translation\":[-20,-38,-40]},{\"mesh\":4,\"translation\":[-20,-38,-42]},{\"mesh\":4,\"translation\":[-20,-40,-32]},{\"mesh\":4,\"translation\":[-20,-40,-34]},{\"mesh\":4,\"translation\":[-20,-40,-36]},{\"mesh\":4,\"translation\":[-20,-40,-38]},{\"mesh\":4,\"translation\":[-20,-40,-40]},{\"mesh\":4,\"translation\":[-20,-40,-42]},{\"mesh\":4,\"translation\":[-20,-42,-34]},{\"mesh\":4,\"translation\":[-20,-42,-36]},{\"mesh\":4,\"translation\":[-20,-42,-38]},{\"mesh\":4,\"translation\":[-20,-42,-40]},{\"mesh\":4,\"translation\":[-20,-44,-34]},{\"mesh\":4,\"translation\":[-20,-44,-36]},{\"mesh\":4,\"translation\":[-20,-44,-38]},{\"mesh\":4,\"translation\":[-20,-44,-40]},{\"mesh\":4,\"translation\":[-20,-46,-32]},{\"mesh\":4,\"translation\":[-20,-46,-34]},{\"mesh\":4,\"translation\":[-20,-48,-32]},{\"mesh\":4,\"translation\":[-20,-48,-34]},{\"mesh\":5,\"translation\":[-21,-34,-34]},{\"mesh\":5,\"translation\":[-21,-34,-36]},{\"mesh\":5,\"translation\":[-21,-36,-34]},{\"mesh\":5,\"translation\":[-21,-36,-36]},{\"mesh\":5,\"translation\":[-21,-38,-32]},{\"mesh\":5,\"translation\":[-21,-38,-34]},{\"mesh\":5,\"translation\":[-21,-38,-36]},{\"mesh\":5,\"translation\":[-21,-38,-38]},{\"mesh\":5,\"translation\":[-21,-38,-40]},{\"mesh\":5,\"translation\":[-21,-38,-42]},{\"mesh\":5,\"translation\":[-21,-40,-32]},{\"mesh\":5,\"translation\":[-21,-40,-34]},{\"mesh\":5,\"translation\":[-21,-40,-36]},{\"mesh\":5,\"translation\":[-21,-40,-38]},{\"mesh\":5,\"translation\":[-21,-40,-40]},{\"mesh\":5,\"translation\":[-21,-40,-42]},{\"mesh\":5,\"translation\":[-21,-42,-34]},{\"mesh\":5,\"translation\":[-21,-42,-36]},{\"mesh\":5,\"translation\":[-21,-42,-38]},{\"mesh\":5,\"translation\":[-21,-42,-40]},{\"mesh\":5,\"translation\":[-21,-44,-34]},{\"mesh\":5,\"translation\":[-21,-44,-36]},{\"mesh\":5,\"translation\":[-21,-44,-38]},{\"mesh\":5,\"translation\":[-21,-44,-40]},{\"mesh\":5,\"translation\":[-21,-46,-32]},{\"mesh\":5,\"translation\":[-21,-46,-34]},{\"mesh\":5,\"translation\":[-21,-48,-32]},{\"mesh\":5,\"translation\":[-21,-48,-34]},{\"mesh\":3,\"translation\":[-21,-32,-32]},{\"mesh\":3,\"translation\":[-21,-34,-32]},{\"mesh\":3,\"translation\":[-21,-36,-32]},{\"mesh\":3,\"translation\":[-21,-36,-38]},{\"mesh\":3,\"translation\":[-21,-40,-44]},{\"mesh\":3,\"translation\":[-21,-42,-32]},{\"mesh\":3,\"translation\":[-21,-42,-42]},{\"mesh\":3,\"translation\":[-21,-44,-32]},{\"mesh\":3,\"translation\":[-21,-46,-36]},{\"mesh\":2,\"translation\":[-22,-32,-32]},{\"mesh\":2,\"translation\":[-22,-34,-34]},{\"mesh\":2,\"translation\":[-22,-36,-32]},{\"mesh\":2,\"translation\":[-22,-36,-34]},{\"mesh\":2,\"translation\":[-22,-36,-36]},{\"mesh\":2,\"translation\":[-22,-36,-38]},{\"mesh\":2,\"translation\":[-22,-38,-32]},{\"mesh\":2,\"translation\":[-22,-38,-36]},{\"mesh\":2,\"translation\":[-22,-38,-40]},{\"mesh\":2,\"translation\":[-22,-40,-32]},{\"mesh\":2,\"translation\":[-22,-40,-34]},{\"mesh\":2,\"translation\":[-22,-40,-36]},{\"mesh\":2,\"translation\":[-22,-40,-38]},{\"mesh\":2,\"translation\":[-22,-40,-40]},{\"mesh\":2,\"translation\":[-22,-40,-42]},{\"mesh\":2,\"translation\":[-22,-40,-44]},{\"mesh\":2,\"translation\":[-22,-42,-34]},{\"mesh\":2,\"translation\":[-22,-42,-38]},{\"mesh\":2,\"translation\":[-22,-42,-42]},{\"mesh\":2,\"translation\":[-22,-44,-32]},{\"mesh\":2,\"translation\":[-22,-44,-34]},{\"mesh\":2,\"translation\":[-22,-44,-36]},{\"mesh\":2,\"translation\":[-22,-44,-38]},{\"mesh\":2,\"translation\":[-22,-44,-40]},{\"mesh\":2,\"translation\":[-22,-46,-32]},{\"mesh\":2,\"translation\":[-22,-46,-36]},{\"mesh\":2,\"translation\":[-22,-48,-32]},{\"mesh\":2,\"translation\":[-22,-48,-34]},{\"mesh\":3,\"translation\":[-23,-32,-32]},{\"mesh\":3,\"translation\":[-23,-34,-34]},{\"mesh\":3,\"translation\":[-23,-36,-32]},{\"mesh\":3,\"translation\":[-23,-36,-34]},{\"mesh\":3,\"translation\":[-23,-36,-36]},{\"mesh\":3,\"translation\":[-23,-36,-38]},{\"mesh\":3,\"translation\":[-23,-38,-32]},{\"mesh\":3,\"translation\":[-23,-38,-36]},{\"mesh\":3,\"translation\":[-23,-38,-40]},{\"mesh\":3,\"translation\":[-23,-40,-32]},{\"mesh\":3,\"translation\":[-23,-40,-34]},{\"mesh\":3,\"translation\":[-23,-40,-36]},{\"mesh\":3,\"translation\":[-23,-40,-38]},{\"mesh\":3,\"translation\":[-23,-40,-40]},{\"mesh\":3,\"translation\":[-23,-40,-42]},{\"mesh\":3,\"translation\":[-23,-40,-44]},{\"mesh\":3,\"translation\":[-23,-42,-34]},{\"mesh\":3,\"translation\":[-23,-42,-38]},{\"mesh\":3,\"translation\":[-23,-42,-42]},{\"mesh\":3,\"translation\":[-23,-44,-32]},{\"mesh\":3,\"translation\":[-23,-44,-34]},{\"mesh\":3,\"translation\":[-23,-44,-36]},{\"mesh\":3,\"translation\":[-23,-44,-38]},{\"mesh\":3,\"translation\":[-23,-44,-40]},{\"mesh\":3,\"translation\":[-23,-46,-32]},{\"mesh\":3,\"translation\":[-23,-46,-36]},{\"mesh\":3,\"translation\":[-23,-48,-32]},{\"mesh\":3,\"translation\":[-23,-48,-34]},{\"mesh\":3,\"translation\":[-23,-34,-32]},{\"mesh\":3,\"translation\":[-23,-34,-36]},{\"mesh\":3,\"translation\":[-23,-38,-34]},{\"mesh\":3,\"translation\":[-23,-38,-38]},{\"mesh\":3,\"translation\":[-23,-38,-42]},{\"mesh\":3,\"translation\":[-23,-42,-32]},{\"mesh\":3,\"translation\":[-23,-42,-36]},{\"mesh\":3,\"translation\":[-23,-42,-40]},{\"mesh\":3,\"translation\":[-23,-46,-34]},{\"mesh\":4,\"translation\":[-24,-34,-32]},{\"mesh\":4,\"translation\":[-24,-36,-32]},{\"mesh\":4,\"translation\":[-24,-34,-36]},{\"mesh\":4,\"translation\":[-24,-36,-36]},{\"mesh\":4,\"translation\":[-24,-38,-34]},{\"mesh\":4,\"translation\":[-24,-40,-34]},{\"mesh\":4,\"translation\":[-24,-38,-38]},{\"mesh\":4,\"translation\":[-24,-40,-38]},{\"mesh\":4,\"translation\":[-24,-38,-42]},{\"mesh\":4,\"translation\":[-24,-40,-42]},{\"mesh\":4,\"translation\":[-24,-42,-32]},{\"mesh\":4,\"translation\":[-24,-44,-32]},{\"mesh\":4,\"translation\":[-24,-42,-36]},{\"mesh\":4,\"translation\":[-24,-44,-36]},{\"mesh\":4,\"translation\":[-24,-42,-40]},{\"mesh\":4,\"translation\":[-24,-44,-40]},{\"mesh\":4,\"translation\":[-24,-46,-34]},{\"mesh\":4,\"translation\":[-24,-48,-34]},{\"mesh\":5,\"translation\":[-25,-34,-32]},{\"mesh\":5,\"translation\":[-25,-36,-32]},{\"mesh\":5,\"translation\":[-25,-34,-36]},{\"mesh\":5,\"translation\":[-25,-36,-36]},{\"mesh\":5,\"translation\":[-25,-38,-34]},{\"mesh\":5,\"translation\":[-25,-40,-34]},{\"mesh\":5,\"translation\":[-25,-38,-38]},{\"mesh\":5,\"translation\":[-25,-40,-38]},{\"mesh\":5,\"translation\":[-25,-38,-42]},{\"mesh\":5,\"translation\":[-25,-40,-42]},{\"mesh\":5,\"translation\":[-25,-42,-32]},{\"mesh\":5,\"translation\":[-25,-44,-32]},{\"mesh\":5,\"translation\":[-25,-42,-36]},{\"mesh\":5,\"translation\":[-25,-44,-36]},{\"mesh\":5,\"translation\":[-25,-42,-40]},{\"mesh\":5,\"translation\":[-25,-44,-40]},{\"mesh\":5,\"translation\":[-25,-46,-34]},{\"mesh\":5,\"translation\":[-25,-48,-34]},{\"mesh\":3,\"translation\":[-25,-32,-32]},{\"mesh\":3,\"translation\":[-25,-34,-34]},{\"mesh\":3,\"translation\":[-25,-36,-34]},{\"mesh\":3,\"translation\":[-25,-36,-38]},{\"mesh\":3,\"translation\":[-25,-38,-32]},{\"mesh\":3,\"translation\":[-25,-38,-36]},{\"mesh\":3,\"translation\":[-25,-38,-40]},{\"mesh\":3,\"translation\":[-25,-40,-32]},{\"mesh\":3,\"translation\":[-25,-40,-36]},{\"mesh\":3,\"translation\":[-25,-40,-40]},{\"mesh\":3,\"translation\":[-25,-40,-44]},{\"mesh\":3,\"translation\":[-25,-42,-34]},{\"mesh\":3,\"translation\":[-25,-42,-38]},{\"mesh\":3,\"translation\":[-25,-42,-42]},{\"mesh\":3,\"translation\":[-25,-44,-34]},{\"mesh\":3,\"translation\":[-25,-44,-38]},{\"mesh\":3,\"translation\":[-25,-46,-32]},{\"mesh\":3,\"translation\":[-25,-46,-36]},{\"mesh\":3,\"translation\":[-25,-48,-32]},{\"mesh\":2,\"translation\":[-26,-34,-32]},{\"mesh\":2,\"translation\":[-26,-34,-36]},{\"mesh\":2,\"translation\":[-26,-36,-32]},{\"mesh\":2,\"translation\":[-26,-36,-36]},{\"mesh\":2,\"translation\":[-26,-38,-34]},{\"mesh\":2,\"translation\":[-26,-38,-38]},{\"mesh\":2,\"translation\":[-26,-38,-42]},{\"mesh\":2,\"translation\":[-26,-40,-34]},{\"mesh\":2,\"translation\":[-26,-40,-38]},{\"mesh\":2,\"translation\":[-26,-40,-42]},{\"mesh\":2,\"translation\":[-26,-42,-32]},{\"mesh\":2,\"translation\":[-26,-42,-36]},{\"mesh\":2,\"translation\":[-26,-42,-40]},{\"mesh\":2,\"translation\":[-26,-44,-32]},{\"mesh\":2,\"translation\":[-26,-44,-36]},{\"mesh\":2,\"translation\":[-26,-44,-40]},{\"mesh\":2,\"translation\":[-26,-46,-34]},{\"mesh\":2,\"translation\":[-26,-48,-34]},{\"mesh\":3,\"translation\":[-27,-34,-32]},{\"mesh\":3,\"translation\":[-27,-34,-36]},{\"mesh\":3,\"translation\":[-27,-36,-32]},{\"mesh\":3,\"translation\":[-27,-36,-36]},{\"mesh\":3,\"translation\":[-27,-38,-34]},{\"mesh\":3,\"translation\":[-27,-38,-38]},{\"mesh\":3,\"translation\":[-27,-38,-42]},{\"mesh\":3,\"translation\":[-27,-40,-34]},{\"mesh\":3,\"translation\":[-27,-40,-38]},{\"mesh\":3,\"translation\":[-27,-40,-42]},{\"mesh\":3,\"translation\":[-27,-42,-32]},{\"mesh\":3,\"translation\":[-27,-42,-36]},{\"mesh\":3,\"translation\":[-27,-42,-40]},{\"mesh\":3,\"translation\":[-27,-44,-32]},{\"mesh\":3,\"translation\":[-27,-44,-36]},{\"mesh\":3,\"translation\":[-27,-44,-40]},{\"mesh\":3,\"translation\":[-27,-46,-34]},{\"mesh\":3,\"translation\":[-27,-48,-34]},{\"mesh\":3,\"translation\":[-27,-32,-32]},{\"mesh\":3,\"translation\":[-27,-34,-34]},{\"mesh\":3,\"translation\":[-27,-36,-34]},{\"mesh\":3,\"translation\":[-27,-36,-38]},{\"mesh\":3,\"translation\":[-27,-38,-32]},{\"mesh\":3,\"translation\":[-27,-38,-36]},{\"mesh\":3,\"translation\":[-27,-38,-40]},{\"mesh\":3,\"translation\":[-27,-40,-32]},{\"mesh\":3,\"translation\":[-27,-40,-36]},{\"mesh\":3,\"translation\":[-27,-40,-40]},{\"mesh\":3,\"translation\":[-27,-40,-44]},{\"mesh\":3,\"translation\":[-27,-42,-34]},{\"mesh\":3,\"translation\":[-27,-42,-38]},{\"mesh\":3,\"translation\":[-27,-42,-42]},{\"mesh\":3,\"translation\":[-27,-44,-34]},{\"mesh\":3,\"translation\":[-27,-44,-38]},{\"mesh\":3,\"translation\":[-27,-46,-32]},{\"mesh\":3,\"translation\":[-27,-46,-36]},{\"mesh\":3,\"translation\":[-27,-48,-32]},{\"mesh\":6,\"translation\":[-28,-34,-32]},{\"mesh\":6,\"translation\":[-28,-34,-36]},{\"mesh\":6,\"translation\":[-28,-38,-34]},{\"mesh\":6,\"translation\":[-28,-38,-38]},{\"mesh\":6,\"translation\":[-28,-38,-42]},{\"mesh\":6,\"translation\":[-28,-42,-32]},{\"mesh\":6,\"translation\":[-28,-42,-36]},{\"mesh\":6,\"translation\":[-28,-42,-40]},{\"mesh\":6,\"translation\":[-28,-46,-34]},{\"mesh\":6,\"translation\":[-28,-36,-32]},{\"mesh\":6,\"translation\":[-28,-36,-36]},{\"mesh\":6,\"translation\":[-28,-40,-34]},{\"mesh\":6,\"translation\":[-28,-40,-38]},{\"mesh\":6,\"translation\":[-28,-40,-42]},{\"mesh\":6,\"translation\":[-28,-44,-32]},{\"mesh\":6,\"translation\":[-28,-44,-36]},{\"mesh\":6,\"translation\":[-28,-44,-40]},{\"mesh\":6,\"translation\":[-28,-48,-34]},{\"mesh\":3,\"translation\":[-29,-34,-32]},{\"mesh\":3,\"translation\":[-29,-34,-36]},{\"mesh\":3,\"translation\":[-29,-38,-34]},{\"mesh\":3,\"translation\":[-29,-38,-38]},{\"mesh\":3,\"translation\":[-29,-38,-42]},{\"mesh\":3,\"translation\":[-29,-42,-32]},{\"mesh\":3,\"translation\":[-29,-42,-36]},{\"mesh\":3,\"translation\":[-29,-42,-40]},{\"mesh\":3,\"translation\":[-29,-46,-34]},{\"mesh\":3,\"translation\":[-29,-36,-32]},{\"mesh\":3,\"translation\":[-29,-36,-36]},{\"mesh\":3,\"translation\":[-29,-40,-34]},{\"mesh\":3,\"translation\":[-29,-40,-38]},{\"mesh\":3,\"translation\":[-29,-40,-42]},{\"mesh\":3,\"translation\":[-29,-44,-32]},{\"mesh\":3,\"translation\":[-29,-44,-36]},{\"mesh\":3,\"translation\":[-29,-44,-40]},{\"mesh\":3,\"translation\":[-29,-48,-34]},{\"mesh\":3,\"translation\":[-29,-32,-32]},{\"mesh\":3,\"translation\":[-29,-34,-34]},{\"mesh\":3,\"translation\":[-29,-36,-34]},{\"mesh\":3,\"translation\":[-29,-36,-38]},{\"mesh\":3,\"translation\":[-29,-38,-32]},{\"mesh\":3,\"translation\":[-29,-38,-36]},{\"mesh\":3,\"translation\":[-29,-38,-40]},{\"mesh\":3,\"translation\":[-29,-40,-32]},{\"mesh\":3,\"translation\":[-29,-40,-36]},{\"mesh\":3,\"translation\":[-29,-40,-40]},{\"mesh\":3,\"translation\":[-29,-40,-44]},{\"mesh\":3,\"translation\":[-29,-42,-34]},{\"mesh\":3,\"translation\":[-29,-42,-38]},{\"mesh\":3,\"translation\":[-29,-42,-42]},{\"mesh\":3,\"translation\":[-29,-44,-34]},{\"mesh\":3,\"translation\":[-29,-44,-38]},{\"mesh\":3,\"translation\":[-29,-46,-32]},{\"mesh\":3,\"translation\":[-29,-46,-36]},{\"mesh\":3,\"translation\":[-29,-48,-32]},{\"mesh\":3,\"translation\":[-30,-32,-32]},{\"mesh\":3,\"translation\":[-30,-34,-34]},{\"mesh\":3,\"translation\":[-30,-36,-34]},{\"mesh\":3,\"translation\":[-30,-36,-38]},{\"mesh\":3,\"translation\":[-30,-38,-32]},{\"mesh\":3,\"translation\":[-30,-38,-36]},{\"mesh\":3,\"translation\":[-30,-38,-40]},{\"mesh\":3,\"translation\":[-30,-40,-32]},{\"mesh\":3,\"translation\":[-30,-40,-36]},{\"mesh\":3,\"translation\":[-30,-40,-40]},{\"mesh\":3,\"translation\":[-30,-40,-44]},{\"mesh\":3,\"translation\":[-30,-42,-34]},{\"mesh\":3,\"translation\":[-30,-42,-38]},{\"mesh\":3,\"translation\":[-30,-42,-42]},{\"mesh\":3,\"translation\":[-30,-44,-34]},{\"mesh\":3,\"translation\":[-30,-44,-38]},{\"mesh\":3,\"translation\":[-30,-46,-32]},{\"mesh\":3,\"translation\":[-30,-46,-36]},{\"mesh\":3,\"translation\":[-30,-48,-32]},{\"mesh\":0,\"translation\":[-32,-34,-32]},{\"mesh\":0,\"translation\":[-32,-34,-36]},{\"mesh\":0,\"translation\":[-32,-38,-34]},{\"mesh\":0,\"translation\":[-32,-38,-38]},{\"mesh\":0,\"translation\":[-32,-38,-42]},{\"mesh\":0,\"translation\":[-32,-42,-32]},{\"mesh\":0,\"translation\":[-32,-42,-36]},{\"mesh\":0,\"translation\":[-32,-42,-40]},{\"mesh\":0,\"translation\":[-32,-46,-34]},{\"mesh\":0,\"translation\":[-32,-36,-32]},{\"mesh\":0,\"translation\":[-32,-36,-36]},{\"mesh\":0,\"translation\":[-32,-40,-34]},{\"mesh\":0,\"translation\":[-32,-40,-38]},{\"mesh\":0,\"translation\":[-32,-40,-42]},{\"mesh\":0,\"translation\":[-32,-44,-32]},{\"mesh\":0,\"translation\":[-32,-44,-36]},{\"mesh\":0,\"translation\":[-32,-44,-40]},{\"mesh\":0,\"translation\":[-32,-48,-34]},{\"mesh\":1,\"translation\":[-33,-34,-32]},{\"mesh\":1,\"translation\":[-33,-34,-36]},{\"mesh\":1,\"translation\":[-33,-38,-34]},{\"mesh\":1,\"translation\":[-33,-38,-38]},{\"mesh\":1,\"translation\":[-33,-38,-42]},{\"mesh\":1,\"translation\":[-33,-42,-32]},{\"mesh\":1,\"translation\":[-33,-42,-36]},{\"mesh\":1,\"translation\":[-33,-42,-40]},{\"mesh\":1,\"translation\":[-33,-46,-34]},{\"mesh\":1,\"translation\":[-33,-36,-32]},{\"mesh\":1,\"translation\":[-33,-36,-36]},{\"mesh\":1,\"translation\":[-33,-40,-34]},{\"mesh\":1,\"translation\":[-33,-40,-38]},{\"mesh\":1,\"translation\":[-33,-40,-42]},{\"mesh\":1,\"translation\":[-33,-44,-32]},{\"mesh\":1,\"translation\":[-33,-44,-36]},{\"mesh\":1,\"translation\":[-33,-44,-40]},{\"mesh\":1,\"translation\":[-33,-48,-34]},{\"mesh\":3,\"translation\":[-33,-32,-32]},{\"mesh\":3,\"translation\":[-33,-34,-34]},{\"mesh\":3,\"translation\":[-33,-36,-34]},{\"mesh\":3,\"translation\":[-33,-36,-38]},{\"mesh\":3,\"translation\":[-33,-38,-32]},{\"mesh\":3,\"translation\":[-33,-38,-36]},{\"mesh\":3,\"translation\":[-33,-38,-40]},{\"mesh\":3,\"translation\":[-33,-40,-32]},{\"mesh\":3,\"translation\":[-33,-40,-36]},{\"mesh\":3,\"translation\":[-33,-40,-40]},{\"mesh\":3,\"translation\":[-33,-40,-44]},{\"mesh\":3,\"translation\":[-33,-42,-34]},{\"mesh\":3,\"translation\":[-33,-42,-38]},{\"mesh\":3,\"translation\":[-33,-42,-42]},{\"mesh\":3,\"translation\":[-33,-44,-34]},{\"mesh\":3,\"translation\":[-33,-44,-38]},{\"mesh\":3,\"translation\":[-33,-46,-32]},{\"mesh\":3,\"translation\":[-33,-46,-36]},{\"mesh\":3,\"translation\":[-33,-48,-32]},{\"mesh\":3,\"translation\":[-34,-32,-32]},{\"mesh\":3,\"translation\":[-34,-34,-34]},{\"mesh\":3,\"translation\":[-34,-36,-34]},{\"mesh\":3,\"translation\":[-34,-36,-38]},{\"mesh\":3,\"translation\":[-34,-38,-32]},{\"mesh\":3,\"translation\":[-34,-38,-36]},{\"mesh\":3,\"translation\":[-34,-38,-40]},{\"mesh\":3,\"translation\":[-34,-40,-32]},{\"mesh\":3,\"translation\":[-34,-40,-36]},{\"mesh\":3,\"translation\":[-34,-40,-40]},{\"mesh\":3,\"translation\":[-34,-40,-44]},{\"mesh\":3,\"translation\":[-34,-42,-34]},{\"mesh\":3,\"translation\":[-34,-42,-38]},{\"mesh\":3,\"translation\":[-34,-42,-42]},{\"mesh\":3,\"translation\":[-34,-44,-34]},{\"mesh\":3,\"translation\":[-34,-44,-38]},{\"mesh\":3,\"translation\":[-34,-46,-32]},{\"mesh\":3,\"translation\":[-34,-46,-36]},{\"mesh\":3,\"translation\":[-34,-48,-32]},{\"mesh\":2,\"translation\":[-35,-34,-32]},{\"mesh\":2,\"translation\":[-35,-34,-36]},{\"mesh\":2,\"translation\":[-35,-36,-32]},{\"mesh\":2,\"translation\":[-35,-36,-36]},{\"mesh\":2,\"translation\":[-35,-38,-34]},{\"mesh\":2,\"translation\":[-35,-38,-38]},{\"mesh\":2,\"translation\":[-35,-38,-42]},{\"mesh\":2,\"translation\":[-35,-40,-34]},{\"mesh\":2,\"translation\":[-35,-40,-38]},{\"mesh\":2,\"translation\":[-35,-40,-42]},{\"mesh\":2,\"translation\":[-35,-42,-32]},{\"mesh\":2,\"translation\":[-35,-42,-36]},{\"mesh\":2,\"translation\":[-35,-42,-40]},{\"mesh\":2,\"translation\":[-35,-44,-32]},{\"mesh\":2,\"translation\":[-35,-44,-36]},{\"mesh\":2,\"translation\":[-35,-44,-40]},{\"mesh\":2,\"translation\":[-35,-46,-34]},{\"mesh\":2,\"translation\":[-35,-48,-34]},{\"mesh\":3,\"translation\":[-36,-34,-32]},{\"mesh\":3,\"translation\":[-36,-34,-36]},{\"mesh\":3,\"translation\":[-36,-36,-32]},{\"mesh\":3,\"translation\":[-36,-36,-36]},{\"mesh\":3,\"translation\":[-36,-38,-34]},{\"mesh\":3,\"translation\":[-36,-38,-38]},{\"mesh\":3,\"translation\":[-36,-38,-42]},{\"mesh\":3,\"translation\":[-36,-40,-34]},{\"mesh\":3,\"translation\":[-36,-40,-38]},{\"mesh\":3,\"translation\":[-36,-40,-42]},{\"mesh\":3,\"translation\":[-36,-42,-32]},{\"mesh\":3,\"translation\":[-36,-42,-36]},{\"mesh\":3,\"translation\":[-36,-42,-40]},{\"mesh\":3,\"translation\":[-36,-44,-32]},{\"mesh\":3,\"translation\":[-36,-44,-36]},{\"mesh\":3,\"translation\":[-36,-44,-40]},{\"mesh\":3,\"translation\":[-36,-46,-34]},{\"mesh\":3,\"translation\":[-36,-48,-34]},{\"mesh\":3,\"translation\":[-36,-32,-32]},{\"mesh\":3,\"translation\":[-36,-34,-34]},{\"mesh\":3,\"translation\":[-36,-36,-34]},{\"mesh\":3,\"translation\":[-36,-36,-38]},{\"mesh\":3,\"translation\":[-36,-38,-32]},{\"mesh\":3,\"translation\":[-36,-38,-36]},{\"mesh\":3,\"translation\":[-36,-38,-40]},{\"mesh\":3,\"translation\":[-36,-40,-32]},{\"mesh\":3,\"translation\":[-36,-40,-36]},{\"mesh\":3,\"translation\":[-36,-40,-40]},{\"mesh\":3,\"translation\":[-36,-40,-44]},{\"mesh\":3,\"translation\":[-36,-42,-34]},{\"mesh\":3,\"translation\":[-36,-42,-38]},{\"mesh\":3,\"translation\":[-36,-42,-42]},{\"mesh\":3,\"translation\":[-36,-44,-34]},{\"mesh\":3,\"translation\":[-36,-44,-38]},{\"mesh\":3,\"translation\":[-36,-46,-32]},{\"mesh\":3,\"translation\":[-36,-46,-36]},{\"mesh\":3,\"translation\":[-36,-48,-32]},{\"mesh\":4,\"translation\":[-37,-34,-32]},{\"mesh\":4,\"translation\":[-37,-36,-32]},{\"mesh\":4,\"translation\":[-37,-34,-36]},{\"mesh\":4,\"translation\":[-37,-36,-36]},{\"mesh\":4,\"translation\":[-37,-38,-34]},{\"mesh\":4,\"translation\":[-37,-40,-34]},{\"mesh\":4,\"translation\":[-37,-38,-38]},{\"mesh\":4,\"translation\":[-37,-40,-38]},{\"mesh\":4,\"translation\":[-37,-38,-42]},{\"mesh\":4,\"translation\":[-37,-40,-42]},{\"mesh\":4,\"translation\":[-37,-42,-32]},{\"mesh\":4,\"translation\":[-37,-44,-32]},{\"mesh\":4,\"translation\":[-37,-42,-36]},{\"mesh\":4,\"translation\":[-37,-44,-36]},{\"mesh\":4,\"translation\":[-37,-42,-40]},{\"mesh\":4,\"translation\":[-37,-44,-40]},{\"mesh\":4,\"translation\":[-37,-46,-34]},{\"mesh\":4,\"translation\":[-37,-48,-34]},{\"mesh\":5,\"translation\":[-38,-34,-32]},{\"mesh\":5,\"translation\":[-38,-36,-32]},{\"mesh\":5,\"translation\":[-38,-34,-36]},{\"mesh\":5,\"translation\":[-38,-36,-36]},{\"mesh\":5,\"translation\":[-38,-38,-34]},{\"mesh\":5,\"translation\":[-38,-40,-34]},{\"mesh\":5,\"translation\":[-38,-38,-38]},{\"mesh\":5,\"translation\":[-38,-40,-38]},{\"mesh\":5,\"translation\":[-38,-38,-42]},{\"mesh\":5,\"translation\":[-38,-40,-42]},{\"mesh\":5,\"translation\":[-38,-42,-32]},{\"mesh\":5,\"translation\":[-38,-44,-32]},{\"mesh\":5,\"translation\":[-38,-42,-36]},{\"mesh\":5,\"translation\":[-38,-44,-36]},{\"mesh\":5,\"translation\":[-38,-42,-40]},{\"mesh\":5,\"translation\":[-38,-44,-40]},{\"mesh\":5,\"translation\":[-38,-46,-34]},{\"mesh\":5,\"translation\":[-38,-48,-34]},{\"mesh\":3,\"translation\":[-38,-32,-32]},{\"mesh\":3,\"translation\":[-38,-34,-34]},{\"mesh\":3,\"translation\":[-38,-36,-34]},{\"mesh\":3,\"translation\":[-38,-36,-38]},{\"mesh\":3,\"translation\":[-38,-38,-32]},{\"mesh\":3,\"translation\":[-38,-38,-36]},{\"mesh\":3,\"translation\":[-38,-38,-40]},{\"mesh\":3,\"translation\":[-38,-40,-32]},{\"mesh\":3,\"translation\":[-38,-40,-36]},{\"mesh\":3,\"translation\":[-38,-40,-40]},{\"mesh\":3,\"translation\":[-38,-40,-44]},{\"mesh\":3,\"translation\":[-38,-42,-34]},{\"mesh\":3,\"translation\":[-38,-42,-38]},{\"mesh\":3,\"translation\":[-38,-42,-42]},{\"mesh\":3,\"translation\":[-38,-44,-34]},{\"mesh\":3,\"translation\":[-38,-44,-38]},{\"mesh\":3,\"translation\":[-38,-46,-32]},{\"mesh\":3,\"translation\":[-38,-46,-36]},{\"mesh\":3,\"translation\":[-38,-48,-32]},{\"mesh\":2,\"translation\":[-39,-34,-32]},{\"mesh\":2,\"translation\":[-39,-34,-36]},{\"mesh\":2,\"translation\":[-39,-38,-34]},{\"mesh\":2,\"translation\":[-39,-38,-38]},{\"mesh\":2,\"translation\":[-39,-38,-42]},{\"mesh\":2,\"translation\":[-39,-42,-32]},{\"mesh\":2,\"translation\":[-39,-42,-36]},{\"mesh\":2,\"translation\":[-39,-42,-40]},{\"mesh\":2,\"translation\":[-39,-46,-34]},{\"mesh\":3,\"translation\":[-40,-34,-32]},{\"mesh\":3,\"translation\":[-40,-34,-36]},{\"mesh\":3,\"translation\":[-40,-38,-34]},{\"mesh\":3,\"translation\":[-40,-38,-38]},{\"mesh\":3,\"translation\":[-40,-38,-42]},{\"mesh\":3,\"translation\":[-40,-42,-32]},{\"mesh\":3,\"translation\":[-40,-42,-36]},{\"mesh\":3,\"translation\":[-40,-42,-40]},{\"mesh\":3,\"translation\":[-40,-46,-34]},{\"mesh\":3,\"translation\":[-40,-32,-32]},{\"mesh\":3,\"translation\":[-40,-34,-34]},{\"mesh\":3,\"translation\":[-40,-36,-32]},{\"mesh\":3,\"translation\":[-40,-36,-34]},{\"mesh\":3,\"translation\":[-40,-36,-36]},{\"mesh\":3,\"translation\":[-40,-36,-38]},{\"mesh\":3,\"translation\":[-40,-38,-32]},{\"mesh\":3,\"translation\":[-40,-38,-36]},{\"mesh\":3,\"translation\":[-40,-38,-40]},{\"mesh\":3,\"translation\":[-40,-40,-32]},{\"mesh\":3,\"translation\":[-40,-40,-34]},{\"mesh\":3,\"translation\":[-40,-40,-36]},{\"mesh\":3,\"translation\":[-40,-40,-38]},{\"mesh\":3,\"translation\":[-40,-40,-40]},{\"mesh\":3,\"translation\":[-40,-40,-42]},{\"mesh\":3,\"translation\":[-40,-40,-44]},{\"mesh\":3,\"translation\":[-40,-42,-34]},{\"mesh\":3,\"translation\":[-40,-42,-38]},{\"mesh\":3,\"translation\":[-40,-42,-42]},{\"mesh\":3,\"translation\":[-40,-44,-32]},{\"mesh\":3,\"translation\":[-40,-44,-34]},{\"mesh\":3,\"translation\":[-40,-44,-36]},{\"mesh\":3,\"translation\":[-40,-44,-38]},{\"mesh\":3,\"translation\":[-40,-44,-40]},{\"mesh\":3,\"translation\":[-40,-46,-32]},{\"mesh\":3,\"translation\":[-40,-46,-36]},{\"mesh\":3,\"translation\":[-40,-48,-32]},{\"mesh\":3,\"translation\":[-40,-48,-34]},{\"mesh\":4,\"translation\":[-41,-34,-32]},{\"mesh\":4,\"translation\":[-41,-34,-34]},{\"mesh\":4,\"translation\":[-41,-36,-32]},{\"mesh\":4,\"translation\":[-41,-36,-34]},{\"mesh\":4,\"translation\":[-41,-36,-36]},{\"mesh\":4,\"translation\":[-41,-36,-38]},{\"mesh\":4,\"translation\":[-41,-38,-34]},{\"mesh\":4,\"translation\":[-41,-38,-36]},{\"mesh\":4,\"translation\":[-41,-38,-38]},{\"mesh\":4,\"translation\":[-41,-38,-40]},{\"mesh\":4,\"translation\":[-41,-40,-34]},{\"mesh\":4,\"translation\":[-41,-40,-36]},{\"mesh\":4,\"translation\":[-41,-40,-38]},{\"mesh\":4,\"translation\":[-41,-40,-40]},{\"mesh\":4,\"translation\":[-41,-40,-42]},{\"mesh\":4,\"translation\":[-41,-40,-44]},{\"mesh\":4,\"translation\":[-41,-42,-32]},{\"mesh\":4,\"translation\":[-41,-42,-34]},{\"mesh\":4,\"translation\":[-41,-42,-36]},{\"mesh\":4,\"translation\":[-41,-42,-38]},{\"mesh\":4,\"translation\":[-41,-42,-40]},{\"mesh\":4,\"translation\":[-41,-42,-42]},{\"mesh\":4,\"translation\":[-41,-44,-32]},{\"mesh\":4,\"translation\":[-41,-44,-34]},{\"mesh\":4,\"translation\":[-41,-44,-36]},{\"mesh\":4,\"translation\":[-41,-44,-38]},{\"mesh\":4,\"translation\":[-41,-46,-34]},{\"mesh\":4,\"translation\":[-41,-46,-36]},{\"mesh\":5,\"translation\":[-42,-34,-32]},{\"mesh\":5,\"translation\":[-42,-34,-34]},{\"mesh\":5,\"translation\":[-42,-36,-32]},{\"mesh\":5,\"translation\":[-42,-36,-34]},{\"mesh\":5,\"translation\":[-42,-36,-36]},{\"mesh\":5,\"translation\":[-42,-36,-38]},{\"mesh\":5,\"translation\":[-42,-38,-34]},{\"mesh\":5,\"translation\":[-42,-38,-36]},{\"mesh\":5,\"translation\":[-42,-38,-38]},{\"mesh\":5,\"translation\":[-42,-38,-40]},{\"mesh\":5,\"translation\":[-42,-40,-34]},{\"mesh\":5,\"translation\":[-42,-40,-36]},{\"mesh\":5,\"translation\":[-42,-40,-38]},{\"mesh\":5,\"translation\":[-42,-40,-40]},{\"mesh\":5,\"translation\":[-42,-40,-42]},{\"mesh\":5,\"translation\":[-42,-40,-44]},{\"mesh\":5,\"translation\":[-42,-42,-32]},{\"mesh\":5,\"translation\":[-42,-42,-34]},{\"mesh\":5,\"translation\":[-42,-42,-36]},{\"mesh\":5,\"translation\":[-42,-42,-38]},{\"mesh\":5,\"translation\":[-42,-42,-40]},{\"mesh\":5,\"translation\":[-42,-42,-42]},{\"mesh\":5,\"translation\":[-42,-44,-32]},{\"mesh\":5,\"translation\":[-42,-44,-34]},{\"mesh\":5,\"translation\":[-42,-44,-36]},{\"mesh\":5,\"translation\":[-42,-44,-38]},{\"mesh\":5,\"translation\":[-42,-46,-34]},{\"mesh\":5,\"translation\":[-42,-46,-36]},{\"mesh\":3,\"translation\":[-42,-32,-32]},{\"mesh\":3,\"translation\":[-42,-34,-36]},{\"mesh\":3,\"translation\":[-42,-38,-32]},{\"mesh\":3,\"translation\":[-42,-38,-42]},{\"mesh\":3,\"translation\":[-42,-40,-32]},{\"mesh\":3,\"translation\":[-42,-44,-40]},{\"mesh\":3,\"translation\":[-42,-46,-32]},{\"mesh\":3,\"translation\":[-42,-48,-32]},{\"mesh\":3,\"translation\":[-42,-48,-34]},{\"mesh\":4,\"translation\":[-43,-32,-32]},{\"mesh\":4,\"translation\":[-43,-34,-32]},{\"mesh\":4,\"translation\":[-43,-36,-32]},{\"mesh\":4,\"translation\":[-43,-38,-32]},{\"mesh\":4,\"translation\":[-43,-36,-34]},{\"mesh\":4,\"translation\":[-43,-38,-34]},{\"mesh\":4,\"translation\":[-43,-36,-36]},{\"mesh\":4,\"translation\":[-43,-38,-36]},{\"mesh\":4,\"translation\":[-43,-36,-38]},{\"mesh\":4,\"translation\":[-43,-38,-38]},{\"mesh\":4,\"translation\":[-43,-40,-32]},{\"mesh\":4,\"translation\":[-43,-42,-32]},{\"mesh\":4,\"translation\":[-43,-40,-34]},{\"mesh\":4,\"translation\":[-43,-42,-34]},{\"mesh\":4,\"translation\":[-43,-40,-36]},{\"mesh\":4,\"translation\":[-43,-42,-36]},{\"mesh\":4,\"translation\":[-43,-40,-38]},{\"mesh\":4,\"translation\":[-43,-42,-38]},{\"mesh\":4,\"translation\":[-43,-40,-40]},{\"mesh\":4,\"translation\":[-43,-42,-40]},{\"mesh\":4,\"translation\":[-43,-40,-42]},{\"mesh\":4,\"translation\":[-43,-42,-42]},{\"mesh\":4,\"translation\":[-43,-44,-32]},{\"mesh\":4,\"translation\":[-43,-46,-32]},{\"mesh\":4,\"translation\":[-43,-44,-34]},{\"mesh\":4,\"translation\":[-43,-46,-34]},{\"mesh\":4,\"translation\":[-43,-44,-36]},{\"mesh\":4,\"translation\":[-43,-46,-36]},{\"mesh\":5,\"translation\":[-44,-32,-32]},{\"mesh\":5,\"translation\":[-44,-34,-32]},{\"mesh\":5,\"translation\":[-44,-36,-32]},{\"mesh\":5,\"translation\":[-44,-38,-32]},{\"mesh\":5,\"translation\":[-44,-36,-34]},{\"mesh\":5,\"translation\":[-44,-38,-34]},{\"mesh\":5,\"translation\":[-44,-36,-36]},{\"mesh\":5,\"translation\":[-44,-38,-36]},{\"mesh\":5,\"translation\":[-44,-36,-38]},{\"mesh\":5,\"translation\":[-44,-38,-38]},{\"mesh\":5,\"translation\":[-44,-40,-32]},{\"mesh\":5,\"translation\":[-44,-42,-32]},{\"mesh\":5,\"translation\":[-44,-40,-34]},{\"mesh\":5,\"translation\":[-44,-42,-34]},{\"mesh\":5,\"translation\":[-44,-40,-36]},{\"mesh\":5,\"translation\":[-44,-42,-36]},{\"mesh\":5,\"translation\":[-44,-40,-38]},{\"mesh\":5,\"translation\":[-44,-42,-38]},{\"mesh\":5,\"translation\":[-44,-40,-40]},{\"mesh\":5,\"translation\":[-44,-42,-40]},{\"mesh\":5,\"translation\":[-44,-40,-42]},{\"mesh\":5,\"translation\":[-44,-42,-42]},{\"mesh\":5,\"translation\":[-44,-44,-32]},{\"mesh\":5,\"translation\":[-44,-46,-32]},{\"mesh\":5,\"translation\":[-44,-44,-34]},{\"mesh\":5,\"translation\":[-44,-46,-34]},{\"mesh\":5,\"translation\":[-44,-44,-36]},{\"mesh\":5,\"translation\":[-44,-46,-36]},{\"mesh\":3,\"translation\":[-44,-34,-34]},{\"mesh\":3,\"translation\":[-44,-34,-36]},{\"mesh\":3,\"translation\":[-44,-38,-40]},{\"mesh\":3,\"translation\":[-44,-38,-42]},{\"mesh\":3,\"translation\":[-44,-40,-44]},{\"mesh\":3,\"translation\":[-44,-44,-38]},{\"mesh\":3,\"translation\":[-44,-44,-40]},{\"mesh\":3,\"translation\":[-44,-48,-32]},{\"mesh\":3,\"translation\":[-44,-48,-34]},{\"mesh\":4,\"translation\":[-45,-34,-34]},{\"mesh\":4,\"translation\":[-45,-34,-36]},{\"mesh\":4,\"translation\":[-45,-36,-34]},{\"mesh\":4,\"translation\":[-45,-36,-36]},{\"mesh\":4,\"translation\":[-45,-38,-32]},{\"mesh\":4,\"translation\":[-45,-38,-34]},{\"mesh\":4,\"translation\":[-45,-38,-36]},{\"mesh\":4,\"translation\":[-45,-38,-38]},{\"mesh\":4,\"translation\":[-45,-38,-40]},{\"mesh\":4,\"translation\":[-45,-38,-42]},{\"mesh\":4,\"translation\":[-45,-40,-32]},{\"mesh\":4,\"translation\":[-45,-40,-34]},{\"mesh\":4,\"translation\":[-45,-40,-36]},{\"mesh\":4,\"translation\":[-45,-40,-38]},{\"mesh\":4,\"translation\":[-45,-40,-40]},{\"mesh\":4,\"translation\":[-45,-40,-42]},{\"mesh\":4,\"translation\":[-45,-42,-34]},{\"mesh\":4,\"translation\":[-45,-42,-36]},{\"mesh\":4,\"translation\":[-45,-42,-38]},{\"mesh\":4,\"translation\":[-45,-42,-40]},{\"mesh\":4,\"translation\":[-45,-44,-34]},{\"mesh\":4,\"translation\":[-45,-44,-36]},{\"mesh\":4,\"translation\":[-45,-44,-38]},{\"mesh\":4,\"translation\":[-45,-44,-40]},{\"mesh\":4,\"translation\":[-45,-46,-32]},{\"mesh\":4,\"translation\":[-45,-46,-34]},{\"mesh\":4,\"translation\":[-45,-48,-32]},{\"mesh\":4,\"translation\":[-45,-48,-34]},{\"mesh\":5,\"translation\":[-46,-34,-34]},{\"mesh\":5,\"translation\":[-46,-34,-36]},{\"mesh\":5,\"translation\":[-46,-36,-34]},{\"mesh\":5,\"translation\":[-46,-36,-36]},{\"mesh\":5,\"translation\":[-46,-38,-32]},{\"mesh\":5,\"translation\":[-46,-38,-34]},{\"mesh\":5,\"translation\":[-46,-38,-36]},{\"mesh\":5,\"translation\":[-46,-38,-38]},{\"mesh\":5,\"translation\":[-46,-38,-40]},{\"mesh\":5,\"translation\":[-46,-38,-42]},{\"mesh\":5,\"translation\":[-46,-40,-32]},{\"mesh\":5,\"translation\":[-46,-40,-34]},{\"mesh\":5,\"translation\":[-46,-40,-36]},{\"mesh\":5,\"translation\":[-46,-40,-38]},{\"mesh\":5,\"translation\":[-46,-40,-40]},{\"mesh\":5,\"translation\":[-46,-40,-42]},{\"mesh\":5,\"translation\":[-46,-42,-34]},{\"mesh\":5,\"translation\":[-46,-42,-36]},{\"mesh\":5,\"translation\":[-46,-42,-38]},{\"mesh\":5,\"translation\":[-46,-42,-40]},{\"mesh\":5,\"translation\":[-46,-44,-34]},{\"mesh\":5,\"translation\":[-46,-44,-36]},{\"mesh\":5,\"translation\":[-46,-44,-38]},{\"mesh\":5,\"translation\":[-46,-44,-40]},{\"mesh\":5,\"translation\":[-46,-46,-32]},{\"mesh\":5,\"translation\":[-46,-46,-34]},{\"mesh\":5,\"translation\":[-46,-48,-32]},{\"mesh\":5,\"translation\":[-46,-48,-34]},{\"mesh\":3,\"translation\":[-46,-32,-32]},{\"mesh\":3,\"translation\":[-46,-34,-32]},{\"mesh\":3,\"translation\":[-46,-36,-32]},{\"mesh\":3,\"translation\":[-46,-36,-38]},{\"mesh\":3,\"translation\":[-46,-40,-44]},{\"mesh\":3,\"translation\":[-46,-42,-32]},{\"mesh\":3,\"translation\":[-46,-42,-42]},{\"mesh\":3,\"translation\":[-46,-44,-32]},{\"mesh\":3,\"translation\":[-46,-46,-36]},{\"mesh\":2,\"translation\":[-47,-32,-32]},{\"mesh\":2,\"translation\":[-47,-34,-32]},{\"mesh\":2,\"translation\":[-47,-34,-34]},{\"mesh\":2,\"translation\":[-47,-34,-36]},{\"mesh\":2,\"translation\":[-47,-36,-32]},{\"mesh\":2,\"translation\":[-47,-36,-34]},{\"mesh\":2,\"translation\":[-47,-36,-36]},{\"mesh\":2,\"translation\":[-47,-36,-38]},{\"mesh\":2,\"translation\":[-47,-38,-32]},{\"mesh\":2,\"translation\":[-47,-38,-34]},{\"mesh\":2,\"translation\":[-47,-38,-36]},{\"mesh\":2,\"translation\":[-47,-38,-38]},{\"mesh\":2,\"translation\":[-47,-38,-40]},{\"mesh\":2,\"translation\":[-47,-38,-42]},{\"mesh\":2,\"translation\":[-47,-40,-32]},{\"mesh\":2,\"translation\":[-47,-40,-34]},{\"mesh\":2,\"translation\":[-47,-40,-36]},{\"mesh\":2,\"translation\":[-47,-40,-38]},{\"mesh\":2,\"translation\":[-47,-40,-40]},{\"mesh\":2,\"translation\":[-47,-40,-42]},{\"mesh\":2,\"translation\":[-47,-40,-44]},{\"mesh\":2,\"translation\":[-47,-42,-32]},{\"mesh\":2,\"translation\":[-47,-42,-34]},{\"mesh\":2,\"translation\":[-47,-42,-36]},{\"mesh\":2,\"translation\":[-47,-42,-38]},{\"mesh\":2,\"translation\":[-47,-42,-40]},{\"mesh\":2,\"translation\":[-47,-42,-42]},{\"mesh\":2,\"translation\":[-47,-44,-32]},{\"mesh\":2,\"translation\":[-47,-44,-34]},{\"mesh\":2,\"translation\":[-47,-44,-36]},{\"mesh\":2,\"translation\":[-47,-44,-38]},{\"mesh\":2,\"translation\":[-47,-44,-40]},{\"mesh\":2,\"translation\":[-47,-46,-32]},{\"mesh\":2,\"translation\":[-47,-46,-34]},{\"mesh\":2,\"translation\":[-47,-46,-36]},{\"mesh\":2,\"translation\":[-47,-48,-32]},{\"mesh\":2,\"translation\":[-47,-48,-34]},{\"mesh\":3,\"translation\":[-48,-32,-32]},{\"mesh\":3,\"translation\":[-48,-34,-32]},{\"mesh\":3,\"translation\":[-48,-34,-34]},{\"mesh\":3,\"translation\":[-48,-34,-36]},{\"mesh\":3,\"translation\":[-48,-36,-32]},{\"mesh\":3,\"translation\":[-48,-36,-34]},{\"mesh\":3,\"translation\":[-48,-36,-36]},{\"mesh\":3,\"translation\":[-48,-36,-38]},{\"mesh\":3,\"translation\":[-48,-38,-32]},{\"mesh\":3,\"translation\":[-48,-38,-34]},{\"mesh\":3,\"translation\":[-48,-38,-36]},{\"mesh\":3,\"translation\":[-48,-38,-38]},{\"mesh\":3,\"translation\":[-48,-38,-40]},{\"mesh\":3,\"translation\":[-48,-38,-42]},{\"mesh\":3,\"translation\":[-48,-40,-32]},{\"mesh\":3,\"translation\":[-48,-40,-34]},{\"mesh\":3,\"translation\":[-48,-40,-36]},{\"mesh\":3,\"translation\":[-48,-40,-38]},{\"mesh\":3,\"translation\":[-48,-40,-40]},{\"mesh\":3,\"translation\":[-48,-40,-42]},{\"mesh\":3,\"translation\":[-48,-40,-44]},{\"mesh\":3,\"translation\":[-48,-42,-32]},{\"mesh\":3,\"translation\":[-48,-42,-34]},{\"mesh\":3,\"translation\":[-48,-42,-36]},{\"mesh\":3,\"translation\":[-48,-42,-38]},{\"mesh\":3,\"translation\":[-48,-42,-40]},{\"mesh\":3,\"translation\":[-48,-42,-42]},{\"mesh\":3,\"translation\":[-48,-44,-32]},{\"mesh\":3,\"translation\":[-48,-44,-34]},{\"mesh\":3,\"translation\":[-48,-44,-36]},{\"mesh\":3,\"translation\":[-48,-44,-38]},{\"mesh\":3,\"translation\":[-48,-44,-40]},{\"mesh\":3,\"translation\":[-48,-46,-32]},{\"mesh\":3,\"translation\":[-48,-46,-34]},{\"mesh\":3,\"translation\":[-48,-46,-36]},{\"mesh\":3,\"translation\":[-48,-48,-32]},{\"mesh\":3,\"translation\":[-48,-48,-34]},{\"mesh\":4,\"translation\":[-49,-34,-32]},{\"mesh\":4,\"translation\":[-49,-34,-34]},{\"mesh\":4,\"translation\":[-49,-36,-32]},{\"mesh\":4,\"translation\":[-49,-36,-34]},{\"mesh\":4,\"translation\":[-49,-36,-36]},{\"mesh\":4,\"translation\":[-49,-36,-38]},{\"mesh\":4,\"translation\":[-49,-38,-34]},{\"mesh\":4,\"translation\":[-49,-38,-36]},{\"mesh\":4,\"translation\":[-49,-38,-38]},{\"mesh\":4,\"translation\":[-49,-38,-40]},{\"mesh\":4,\"translation\":[-49,-40,-34]},{\"mesh\":4,\"translation\":[-49,-40,-36]},{\"mesh\":4,\"translation\":[-49,-40,-38]},{\"mesh\":4,\"translation\":[-49,-40,-40]},{\"mesh\":4,\"translation\":[-49,-40,-42]},{\"mesh\":4,\"translation\":[-49,-40,-44]},{\"mesh\":4,\"translation\":[-49,-42,-32]},{\"mesh\":4,\"translation\":[-49,-42,-34]},{\"mesh\":4,\"translation\":[-49,-42,-36]},{\"mesh\":4,\"translation\":[-49,-42,-38]},{\"mesh\":4,\"translation\":[-49,-42,-40]},{\"mesh\":4,\"translation\":[-49,-42,-42]},{\"mesh\":4,\"translation\":[-49,-44,-32]},{\"mesh\":4,\"translation\":[-49,-44,-34]},{\"mesh\":4,\"translation\":[-49,-44,-36]},{\"mesh\":4,\"translation\":[-49,-44,-38]},{\"mesh\":4,\"translation\":[-49,-46,-34]},{\"mesh\":4,\"translation\":[-49,-46,-36]},{\"mesh\":5,\"translation\":[-50,-34,-32]},{\"mesh\":5,\"translation\":[-50,-34,-34]},{\"mesh\":5,\"translation\":[-50,-36,-32]},{\"mesh\":5,\"translation\":[-50,-36,-34]},{\"mesh\":5,\"translation\":[-50,-36,-36]},{\"mesh\":5,\"translation\":[-50,-36,-38]},{\"mesh\":5,\"translation\":[-50,-38,-34]},{\"mesh\":5,\"translation\":[-50,-38,-36]},{\"mesh\":5,\"translation\":[-50,-38,-38]},{\"mesh\":5,\"translation\":[-50,-38,-40]},{\"mesh\":5,\"translation\":[-50,-40,-34]},{\"mesh\":5,\"translation\":[-50,-40,-36]},{\"mesh\":5,\"translation\":[-50,-40,-38]},{\"mesh\":5,\"translation\":[-50,-40,-40]},{\"mesh\":5,\"translation\":[-50,-40,-42]},{\"mesh\":5,\"translation\":[-50,-40,-44]},{\"mesh\":5,\"translation\":[-50,-42,-32]},{\"mesh\":5,\"translation\":[-50,-42,-34]},{\"mesh\":5,\"translation\":[-50,-42,-36]},{\"mesh\":5,\"translation\":[-50,-42,-38]},{\"mesh\":5,\"translation\":[-50,-42,-40]},{\"mesh\":5,\"translation\":[-50,-42,-42]},{\"mesh\":5,\"translation\":[-50,-44,-32]},{\"mesh\":5,\"translation\":[-50,-44,-34]},{\"mesh\":5,\"translation\":[-50,-44,-36]},{\"mesh\":5,\"translation\":[-50,-44,-38]},{\"mesh\":5,\"translation\":[-50,-46,-34]},{\"mesh\":5,\"translation\":[-50,-46,-36]},{\"mesh\":3,\"translation\":[-50,-32,-32]},{\"mesh\":3,\"translation\":[-50,-34,-36]},{\"mesh\":3,\"translation\":[-50,-38,-32]},{\"mesh\":3,\"translation\":[-50,-38,-42]},{\"mesh\":3,\"translation\":[-50,-40,-32]},{\"mesh\":3,\"translation\":[-50,-44,-40]},{\"mesh\":3,\"translation\":[-50,-46,-32]},{\"mesh\":3,\"translation\":[-50,-48,-32]},{\"mesh\":3,\"translation\":[-50,-48,-34]},{\"mesh\":4,\"translation\":[-51,-32,-32]},{\"mesh\":4,\"translation\":[-51,-34,-32]},{\"mesh\":4,\"translation\":[-51,-36,-32]},{\"mesh\":4,\"translation\":[-51,-38,-32]},{\"mesh\":4,\"translation\":[-51,-36,-34]},{\"mesh\":4,\"translation\":[-51,-38,-34]},{\"mesh\":4,\"translation\":[-51,-36,-36]},{\"mesh\":4,\"translation\":[-51,-38,-36]},{\"mesh\":4,\"translation\":[-51,-36,-38]},{\"mesh\":4,\"translation\":[-51,-38,-38]},{\"mesh\":4,\"translation\":[-51,-40,-32]},{\"mesh\":4,\"translation\":[-51,-42,-32]},{\"mesh\":4,\"translation\":[-51,-40,-34]},{\"mesh\":4,\"translation\":[-51,-42,-34]},{\"mesh\":4,\"translation\":[-51,-40,-36]},{\"mesh\":4,\"translation\":[-51,-42,-36]},{\"mesh\":4,\"translation\":[-51,-40,-38]},{\"mesh\":4,\"translation\":[-51,-42,-38]},{\"mesh\":4,\"translation\":[-51,-40,-40]},{\"mesh\":4,\"translation\":[-51,-42,-40]},{\"mesh\":4,\"translation\":[-51,-40,-42]},{\"mesh\":4,\"translation\":[-51,-42,-42]},{\"mesh\":4,\"translation\":[-51,-44,-32]},{\"mesh\":4,\"translation\":[-51,-46,-32]},{\"mesh\":4,\"translation\":[-51,-44,-34]},{\"mesh\":4,\"translation\":[-51,-46,-34]},{\"mesh\":4,\"translation\":[-51,-44,-36]},{\"mesh\":4,\"translation\":[-51,-46,-36]},{\"mesh\":5,\"translation\":[-52,-32,-32]},{\"mesh\":5,\"translation\":[-52,-34,-32]},{\"mesh\":5,\"translation\":[-52,-36,-32]},{\"mesh\":5,\"translation\":[-52,-38,-32]},{\"mesh\":5,\"translation\":[-52,-36,-34]},{\"mesh\":5,\"translation\":[-52,-38,-34]},{\"mesh\":5,\"translation\":[-52,-36,-36]},{\"mesh\":5,\"translation\":[-52,-38,-36]},{\"mesh\":5,\"translation\":[-52,-36,-38]},{\"mesh\":5,\"translation\":[-52,-38,-38]},{\"mesh\":5,\"translation\":[-52,-40,-32]},{\"mesh\":5,\"translation\":[-52,-42,-32]},{\"mesh\":5,\"translation\":[-52,-40,-34]},{\"mesh\":5,\"translation\":[-52,-42,-34]},{\"mesh\":5,\"translation\":[-52,-40,-36]},{\"mesh\":5,\"translation\":[-52,-42,-36]},{\"mesh\":5,\"translation\":[-52,-40,-38]},{\"mesh\":5,\"translation\":[-52,-42,-38]},{\"mesh\":5,\"translation\":[-52,-40,-40]},{\"mesh\":5,\"translation\":[-52,-42,-40]},{\"mesh\":5,\"translation\":[-52,-40,-42]},{\"mesh\":5,\"translation\":[-52,-42,-42]},{\"mesh\":5,\"translation\":[-52,-44,-32]},{\"mesh\":5,\"translation\":[-52,-46,-32]},{\"mesh\":5,\"translation\":[-52,-44,-34]},{\"mesh\":5,\"translation\":[-52,-46,-34]},{\"mesh\":5,\"translation\":[-52,-44,-36]},{\"mesh\":5,\"translation\":[-52,-46,-36]},{\"mesh\":3,\"translation\":[-52,-34,-34]},{\"mesh\":3,\"translation\":[-52,-34,-36]},{\"mesh\":3,\"translation\":[-52,-38,-40]},{\"mesh\":3,\"translation\":[-52,-38,-42]},{\"mesh\":3,\"translation\":[-52,-40,-44]},{\"mesh\":3,\"translation\":[-52,-44,-38]},{\"mesh\":3,\"translation\":[-52,-44,-40]},{\"mesh\":3,\"translation\":[-52,-48,-32]},{\"mesh\":3,\"translation\":[-52,-48,-34]},{\"mesh\":4,\"translation\":[-53,-34,-34]},{\"mesh\":4,\"translation\":[-53,-34,-36]},{\"mesh\":4,\"translation\":[-53,-36,-34]},{\"mesh\":4,\"translation\":[-53,-36,-36]},{\"mesh\":4,\"translation\":[-53,-38,-32]},{\"mesh\":4,\"translation\":[-53,-38,-34]},{\"mesh\":4,\"translation\":[-53,-38,-36]},{\"mesh\":4,\"translation\":[-53,-38,-38]},{\"mesh\":4,\"translation\":[-53,-38,-40]},{\"mesh\":4,\"translation\":[-53,-38,-42]},{\"mesh\":4,\"translation\":[-53,-40,-32]},{\"mesh\":4,\"translation\":[-53,-40,-34]},{\"mesh\":4,\"translation\":[-53,-40,-36]},{\"mesh\":4,\"translation\":[-53,-40,-38]},{\"mesh\":4,\"translation\":[-53,-40,-40]},{\"mesh\":4,\"translation\":[-53,-40,-42]},{\"mesh\":4,\"translation\":[-53,-42,-34]},{\"mesh\":4,\"translation\":[-53,-42,-36]},{\"mesh\":4,\"translation\":[-53,-42,-38]},{\"mesh\":4,\"translation\":[-53,-42,-40]},{\"mesh\":4,\"translation\":[-53,-44,-34]},{\"mesh\":4,\"translation\":[-53,-44,-36]},{\"mesh\":4,\"translation\":[-53,-44,-38]},{\"mesh\":4,\"translation\":[-53,-44,-40]},{\"mesh\":4,\"translation\":[-53,-46,-32]},{\"mesh\":4,\"translation\":[-53,-46,-34]},{\"mesh\":4,\"translation\":[-53,-48,-32]},{\"mesh\":4,\"translation\":[-53,-48,-34]},{\"mesh\":5,\"translation\":[-54,-34,-34]},{\"mesh\":5,\"translation\":[-54,-34,-36]},{\"mesh\":5,\"translation\":[-54,-36,-34]},{\"mesh\":5,\"translation\":[-54,-36,-36]},{\"mesh\":5,\"translation\":[-54,-38,-32]},{\"mesh\":5,\"translation\":[-54,-38,-34]},{\"mesh\":5,\"translation\":[-54,-38,-36]},{\"mesh\":5,\"translation\":[-54,-38,-38]},{\"mesh\":5,\"translation\":[-54,-38,-40]},{\"mesh\":5,\"translation\":[-54,-38,-42]},{\"mesh\":5,\"translation\":[-54,-40,-32]},{\"mesh\":5,\"translation\":[-54,-40,-34]},{\"mesh\":5,\"translation\":[-54,-40,-36]},{\"mesh\":5,\"translation\":[-54,-40,-38]},{\"mesh\":5,\"translation\":[-54,-40,-40]},{\"mesh\":5,\"translation\":[-54,-40,-42]},{\"mesh\":5,\"translation\":[-54,-42,-34]},{\"mesh\":5,\"translation\":[-54,-42,-36]},{\"mesh\":5,\"translation\":[-54,-42,-38]},{\"mesh\":5,\"translation\":[-54,-42,-40]},{\"mesh\":5,\"translation\":[-54,-44,-34]},{\"mesh\":5,\"translation\":[-54,-44,-36]},{\"mesh\":5,\"translation\":[-54,-44,-38]},{\"mesh\":5,\"translation\":[-54,-44,-40]},{\"mesh\":5,\"translation\":[-54,-46,-32]},{\"mesh\":5,\"translation\":[-54,-46,-34]},{\"mesh\":5,\"translation\":[-54,-48,-32]},{\"mesh\":5,\"translation\":[-54,-48,-34]},{\"mesh\":3,\"translation\":[-54,-32,-32]},{\"mesh\":3,\"translation\":[-54,-34,-32]},{\"mesh\":3,\"translation\":[-54,-36,-32]},{\"mesh\":3,\"translation\":[-54,-36,-38]},{\"mesh\":3,\"translation\":[-54,-40,-44]},{\"mesh\":3,\"translation\":[-54,-42,-32]},{\"mesh\":3,\"translation\":[-54,-42,-42]},{\"mesh\":3,\"translation\":[-54,-44,-32]},{\"mesh\":3,\"translation\":[-54,-46,-36]},{\"mesh\":2,\"translation\":[-55,-32,-32]},{\"mesh\":2,\"translation\":[-55,-34,-34]},{\"mesh\":2,\"translation\":[-55,-36,-32]},{\"mesh\":2,\"translation\":[-55,-36,-34]},{\"mesh\":2,\"translation\":[-55,-36,-36]},{\"mesh\":2,\"translation\":[-55,-36,-38]},{\"mesh\":2,\"translation\":[-55,-38,-32]},{\"mesh\":2,\"translation\":[-55,-38,-36]},{\"mesh\":2,\"translation\":[-55,-38,-40]},{\"mesh\":2,\"translation\":[-55,-40,-32]},{\"mesh\":2,\"translation\":[-55,-40,-34]},{\"mesh\":2,\"translation\":[-55,-40,-36]},{\"mesh\":2,\"translation\":[-55,-40,-38]},{\"mesh\":2,\"translation\":[-55,-40,-40]},{\"mesh\":2,\"translation\":[-55,-40,-42]},{\"mesh\":2,\"translation\":[-55,-40,-44]},{\"mesh\":2,\"translation\":[-55,-42,-34]},{\"mesh\":2,\"translation\":[-55,-42,-38]},{\"mesh\":2,\"translation\":[-55,-42,-42]},{\"mesh\":2,\"translation\":[-55,-44,-32]},{\"mesh\":2,\"translation\":[-55,-44,-34]},{\"mesh\":2,\"translation\":[-55,-44,-36]},{\"mesh\":2,\"translation\":[-55,-44,-38]},{\"mesh\":2,\"translation\":[-55,-44,-40]},{\"mesh\":2,\"translation\":[-55,-46,-32]},{\"mesh\":2,\"translation\":[-55,-46,-36]},{\"mesh\":2,\"translation\":[-55,-48,-32]},{\"mesh\":2,\"translation\":[-55,-48,-34]},{\"mesh\":3,\"translation\":[-56,-32,-32]},{\"mesh\":3,\"translation\":[-56,-34,-34]},{\"mesh\":3,\"translation\":[-56,-36,-32]},{\"mesh\":3,\"translation\":[-56,-36,-34]},{\"mesh\":3,\"translation\":[-56,-36,-36]},{\"mesh\":3,\"translation\":[-56,-36,-38]},{\"mesh\":3,\"translation\":[-56,-38,-32]},{\"mesh\":3,\"translation\":[-56,-38,-36]},{\"mesh\":3,\"translation\":[-56,-38,-40]},{\"mesh\":3,\"translation\":[-56,-40,-32]},{\"mesh\":3,\"translation\":[-56,-40,-34]},{\"mesh\":3,\"translation\":[-56,-40,-36]},{\"mesh\":3,\"translation\":[-56,-40,-38]},{\"mesh\":3,\"translation\":[-56,-40,-40]},{\"mesh\":3,\"translation\":[-56,-40,-42]},{\"mesh\":3,\"translation\":[-56,-40,-44]},{\"mesh\":3,\"translation\":[-56,-42,-34]},{\"mesh\":3,\"translation\":[-56,-42,-38]},{\"mesh\":3,\"translation\":[-56,-42,-42]},{\"mesh\":3,\"translation\":[-56,-44,-32]},{\"mesh\":3,\"translation\":[-56,-44,-34]},{\"mesh\":3,\"translation\":[-56,-44,-36]},{\"mesh\":3,\"translation\":[-56,-44,-38]},{\"mesh\":3,\"translation\":[-56,-44,-40]},{\"mesh\":3,\"translation\":[-56,-46,-32]},{\"mesh\":3,\"translation\":[-56,-46,-36]},{\"mesh\":3,\"translation\":[-56,-48,-32]},{\"mesh\":3,\"translation\":[-56,-48,-34]},{\"mesh\":3,\"translation\":[-56,-34,-32]},{\"mesh\":3,\"translation\":[-56,-34,-36]},{\"mesh\":3,\"translation\":[-56,-38,-34]},{\"mesh\":3,\"translation\":[-56,-38,-38]},{\"mesh\":3,\"translation\":[-56,-38,-42]},{\"mesh\":3,\"translation\":[-56,-42,-32]},{\"mesh\":3,\"translation\":[-56,-42,-36]},{\"mesh\":3,\"translation\":[-56,-42,-40]},{\"mesh\":3,\"translation\":[-56,-46,-34]},{\"mesh\":4,\"translation\":[-57,-34,-32]},{\"mesh\":4,\"translation\":[-57,-36,-32]},{\"mesh\":4,\"translation\":[-57,-34,-36]},{\"mesh\":4,\"translation\":[-57,-36,-36]},{\"mesh\":4,\"translation\":[-57,-38,-34]},{\"mesh\":4,\"translation\":[-57,-40,-34]},{\"mesh\":4,\"translation\":[-57,-38,-38]},{\"mesh\":4,\"translation\":[-57,-40,-38]},{\"mesh\":4,\"translation\":[-57,-38,-42]},{\"mesh\":4,\"translation\":[-57,-40,-42]},{\"mesh\":4,\"translation\":[-57,-42,-32]},{\"mesh\":4,\"translation\":[-57,-44,-32]},{\"mesh\":4,\"translation\":[-57,-42,-36]},{\"mesh\":4,\"translation\":[-57,-44,-36]},{\"mesh\":4,\"translation\":[-57,-42,-40]},{\"mesh\":4,\"translation\":[-57,-44,-40]},{\"mesh\":4,\"translation\":[-57,-46,-34]},{\"mesh\":4,\"translation\":[-57,-48,-34]},{\"mesh\":5,\"translation\":[-58,-34,-32]},{\"mesh\":5,\"translation\":[-58,-36,-32]},{\"mesh\":5,\"translation\":[-58,-34,-36]},{\"mesh\":5,\"translation\":[-58,-36,-36]},{\"mesh\":5,\"translation\":[-58,-38,-34]},{\"mesh\":5,\"translation\":[-58,-40,-34]},{\"mesh\":5,\"translation\":[-58,-38,-38]},{\"mesh\":5,\"translation\":[-58,-40,-38]},{\"mesh\":5,\"translation\":[-58,-38,-42]},{\"mesh\":5,\"translation\":[-58,-40,-42]},{\"mesh\":5,\"translation\":[-58,-42,-32]},{\"mesh\":5,\"translation\":[-58,-44,-32]},{\"mesh\":5,\"translation\":[-58,-42,-36]},{\"mesh\":5,\"translation\":[-58,-44,-36]},{\"mesh\":5,\"translation\":[-58,-42,-40]},{\"mesh\":5,\"translation\":[-58,-44,-40]},{\"mesh\":5,\"translation\":[-58,-46,-34]},{\"mesh\":5,\"translation\":[-58,-48,-34]},{\"mesh\":3,\"translation\":[-58,-32,-32]},{\"mesh\":3,\"translation\":[-58,-34,-34]},{\"mesh\":3,\"translation\":[-58,-36,-34]},{\"mesh\":3,\"translation\":[-58,-36,-38]},{\"mesh\":3,\"translation\":[-58,-38,-32]},{\"mesh\":3,\"translation\":[-58,-38,-36]},{\"mesh\":3,\"translation\":[-58,-38,-40]},{\"mesh\":3,\"translation\":[-58,-40,-32]},{\"mesh\":3,\"translation\":[-58,-40,-36]},{\"mesh\":3,\"translation\":[-58,-40,-40]},{\"mesh\":3,\"translation\":[-58,-40,-44]},{\"mesh\":3,\"translation\":[-58,-42,-34]},{\"mesh\":3,\"translation\":[-58,-42,-38]},{\"mesh\":3,\"translation\":[-58,-42,-42]},{\"mesh\":3,\"translation\":[-58,-44,-34]},{\"mesh\":3,\"translation\":[-58,-44,-38]},{\"mesh\":3,\"translation\":[-58,-46,-32]},{\"mesh\":3,\"translation\":[-58,-46,-36]},{\"mesh\":3,\"translation\":[-58,-48,-32]},{\"mesh\":2,\"translation\":[-59,-34,-32]},{\"mesh\":2,\"translation\":[-59,-34,-36]},{\"mesh\":2,\"translation\":[-59,-36,-32]},{\"mesh\":2,\"translation\":[-59,-36,-36]},{\"mesh\":2,\"translation\":[-59,-38,-34]},{\"mesh\":2,\"translation\":[-59,-38,-38]},{\"mesh\":2,\"translation\":[-59,-38,-42]},{\"mesh\":2,\"translation\":[-59,-40,-34]},{\"mesh\":2,\"translation\":[-59,-40,-38]},{\"mesh\":2,\"translation\":[-59,-40,-42]},{\"mesh\":2,\"translation\":[-59,-42,-32]},{\"mesh\":2,\"translation\":[-59,-42,-36]},{\"mesh\":2,\"translation\":[-59,-42,-40]},{\"mesh\":2,\"translation\":[-59,-44,-32]},{\"mesh\":2,\"translation\":[-59,-44,-36]},{\"mesh\":2,\"translation\":[-59,-44,-40]},{\"mesh\":2,\"translation\":[-59,-46,-34]},{\"mesh\":2,\"translation\":[-59,-48,-34]},{\"mesh\":3,\"translation\":[-60,-34,-32]},{\"mesh\":3,\"translation\":[-60,-34,-36]},{\"mesh\":3,\"translation\":[-60,-36,-32]},{\"mesh\":3,\"translation\":[-60,-36,-36]},{\"mesh\":3,\"translation\":[-60,-38,-34]},{\"mesh\":3,\"translation\":[-60,-38,-38]},{\"mesh\":3,\"translation\":[-60,-38,-42]},{\"mesh\":3,\"translation\":[-60,-40,-34]},{\"mesh\":3,\"translation\":[-60,-40,-38]},{\"mesh\":3,\"translation\":[-60,-40,-42]},{\"mesh\":3,\"translation\":[-60,-42,-32]},{\"mesh\":3,\"translation\":[-60,-42,-36]},{\"mesh\":3,\"translation\":[-60,-42,-40]},{\"mesh\":3,\"translation\":[-60,-44,-32]},{\"mesh\":3,\"translation\":[-60,-44,-36]},{\"mesh\":3,\"translation\":[-60,-44,-40]},{\"mesh\":3,\"translation\":[-60,-46,-34]},{\"mesh\":3,\"translation\":[-60,-48,-34]},{\"mesh\":3,\"translation\":[-60,-32,-32]},{\"mesh\":3,\"translation\":[-60,-34,-34]},{\"mesh\":3,\"translation\":[-60,-36,-34]},{\"mesh\":3,\"translation\":[-60,-36,-38]},{\"mesh\":3,\"translation\":[-60,-38,-32]},{\"mesh\":3,\"translation\":[-60,-38,-36]},{\"mesh\":3,\"translation\":[-60,-38,-40]},{\"mesh\":3,\"translation\":[-60,-40,-32]},{\"mesh\":3,\"translation\":[-60,-40,-36]},{\"mesh\":3,\"translation\":[-60,-40,-40]},{\"mesh\":3,\"translation\":[-60,-40,-44]},{\"mesh\":3,\"translation\":[-60,-42,-34]},{\"mesh\":3,\"translation\":[-60,-42,-38]},{\"mesh\":3,\"translation\":[-60,-42,-42]},{\"mesh\":3,\"translation\":[-60,-44,-34]},{\"mesh\":3,\"translation\":[-60,-44,-38]},{\"mesh\":3,\"translation\":[-60,-46,-32]},{\"mesh\":3,\"translation\":[-60,-46,-36]},{\"mesh\":3,\"translation\":[-60,-48,-32]},{\"mesh\":6,\"translation\":[-61,-34,-32]},{\"mesh\":6,\"translation\":[-61,-34,-36]},{\"mesh\":6,\"translation\":[-61,-38,-34]},{\"mesh\":6,\"translation\":[-61,-38,-38]},{\"mesh\":6,\"translation\":[-61,-38,-42]},{\"mesh\":6,\"translation\":[-61,-42,-32]},{\"mesh\":6,\"translation\":[-61,-42,-36]},{\"mesh\":6,\"translation\":[-61,-42,-40]},{\"mesh\":6,\"translation\":[-61,-46,-34]},{\"mesh\":6,\"translation\":[-61,-36,-32]},{\"mesh\":6,\"translation\":[-61,-36,-36]},{\"mesh\":6,\"translation\":[-61,-40,-34]},{\"mesh\":6,\"translation\":[-61,-40,-38]},{\"mesh\":6,\"translation\":[-61,-40,-42]},{\"mesh\":6,\"translation\":[-61,-44,-32]},{\"mesh\":6,\"translation\":[-61,-44,-36]},{\"mesh\":6,\"translation\":[-61,-44,-40]},{\"mesh\":6,\"translation\":[-61,-48,-34]},{\"mesh\":3,\"translation\":[-62,-34,-32]},{\"mesh\":3,\"translation\":[-62,-34,-36]},{\"mesh\":3,\"translation\":[-62,-38,-34]},{\"mesh\":3,\"translation\":[-62,-38,-38]},{\"mesh\":3,\"translation\":[-62,-38,-42]},{\"mesh\":3,\"translation\":[-62,-42,-32]},{\"mesh\":3,\"translation\":[-62,-42,-36]},{\"mesh\":3,\"translation\":[-62,-42,-40]},{\"mesh\":3,\"translation\":[-62,-46,-34]},{\"mesh\":3,\"translation\":[-62,-36,-32]},{\"mesh\":3,\"translation\":[-62,-36,-36]},{\"mesh\":3,\"translation\":[-62,-40,-34]},{\"mesh\":3,\"translation\":[-62,-40,-38]},{\"mesh\":3,\"translation\":[-62,-40,-42]},{\"mesh\":3,\"translation\":[-62,-44,-32]},{\"mesh\":3,\"translation\":[-62,-44,-36]},{\"mesh\":3,\"translation\":[-62,-44,-40]},{\"mesh\":3,\"translation\":[-62,-48,-34]},{\"mesh\":3,\"translation\":[-62,-32,-32]},{\"mesh\":3,\"translation\":[-62,-34,-34]},{\"mesh\":3,\"translation\":[-62,-36,-34]},{\"mesh\":3,\"translation\":[-62,-36,-38]},{\"mesh\":3,\"translation\":[-62,-38,-32]},{\"mesh\":3,\"translation\":[-62,-38,-36]},{\"mesh\":3,\"translation\":[-62,-38,-40]},{\"mesh\":3,\"translation\":[-62,-40,-32]},{\"mesh\":3,\"translation\":[-62,-40,-36]},{\"mesh\":3,\"translation\":[-62,-40,-40]},{\"mesh\":3,\"translation\":[-62,-40,-44]},{\"mesh\":3,\"translation\":[-62,-42,-34]},{\"mesh\":3,\"translation\":[-62,-42,-38]},{\"mesh\":3,\"translation\":[-62,-42,-42]},{\"mesh\":3,\"translation\":[-62,-44,-34]},{\"mesh\":3,\"translation\":[-62,-44,-38]},{\"mesh\":3,\"translation\":[-62,-46,-32]},{\"mesh\":3,\"translation\":[-62,-46,-36]},{\"mesh\":3,\"translation\":[-62,-48,-32]},{\"mesh\":3,\"translation\":[-63,-32,-32]},{\"mesh\":3,\"translation\":[-63,-34,-34]},{\"mesh\":3,\"translation\":[-63,-36,-34]},{\"mesh\":3,\"translation\":[-63,-36,-38]},{\"mesh\":3,\"translation\":[-63,-38,-32]},{\"mesh\":3,\"translation\":[-63,-38,-36]},{\"mesh\":3,\"translation\":[-63,-38,-40]},{\"mesh\":3,\"translation\":[-63,-40,-32]},{\"mesh\":3,\"translation\":[-63,-40,-36]},{\"mesh\":3,\"translation\":[-63,-40,-40]},{\"mesh\":3,\"translation\":[-63,-40,-44]},{\"mesh\":3,\"translation\":[-63,-42,-34]},{\"mesh\":3,\"translation\":[-63,-42,-38]},{\"mesh\":3,\"translation\":[-63,-42,-42]},{\"mesh\":3,\"translation\":[-63,-44,-34]},{\"mesh\":3,\"translation\":[-63,-44,-38]},{\"mesh\":3,\"translation\":[-63,-46,-32]},{\"mesh\":3,\"translation\":[-63,-46,-36]},{\"mesh\":3,\"translation\":[-63,-48,-32]},{\"mesh\":0,\"translation\":[-65,-48,-34]},{\"mesh\":0,\"translation\":[-65,-44,-40]},{\"mesh\":0,\"translation\":[-65,-44,-36]},{\"mesh\":0,\"translation\":[-65,-44,-32]},{\"mesh\":0,\"translation\":[-65,-40,-42]},{\"mesh\":0,\"translation\":[-65,-40,-38]},{\"mesh\":0,\"translation\":[-65,-40,-34]},{\"mesh\":0,\"translation\":[-65,-36,-36]},{\"mesh\":0,\"translation\":[-65,-36,-32]},{\"mesh\":0,\"translation\":[-65,-46,-34]},{\"mesh\":0,\"translation\":[-65,-42,-40]},{\"mesh\":0,\"translation\":[-65,-42,-36]},{\"mesh\":0,\"translation\":[-65,-42,-32]},{\"mesh\":0,\"translation\":[-65,-38,-42]},{\"mesh\":0,\"translation\":[-65,-38,-38]},{\"mesh\":0,\"translation\":[-65,-38,-34]},{\"mesh\":0,\"translation\":[-65,-34,-36]},{\"mesh\":0,\"translation\":[-65,-34,-32]},{\"mesh\":1,\"translation\":[-66,-48,-34]},{\"mesh\":1,\"translation\":[-66,-44,-40]},{\"mesh\":1,\"translation\":[-66,-44,-36]},{\"mesh\":1,\"translation\":[-66,-44,-32]},{\"mesh\":1,\"translation\":[-66,-40,-42]},{\"mesh\":1,\"translation\":[-66,-40,-38]},{\"mesh\":1,\"translation\":[-66,-40,-34]},{\"mesh\":1,\"translation\":[-66,-36,-36]},{\"mesh\":1,\"translation\":[-66,-36,-32]},{\"mesh\":1,\"translation\":[-66,-46,-34]},{\"mesh\":1,\"translation\":[-66,-42,-40]},{\"mesh\":1,\"translation\":[-66,-42,-36]},{\"mesh\":1,\"translation\":[-66,-42,-32]},{\"mesh\":1,\"translation\":[-66,-38,-42]},{\"mesh\":1,\"translation\":[-66,-38,-38]},{\"mesh\":1,\"translation\":[-66,-38,-34]},{\"mesh\":1,\"translation\":[-66,-34,-36]},{\"mesh\":1,\"translation\":[-66,-34,-32]},{\"mesh\":3,\"translation\":[-66,-32,-32]},{\"mesh\":3,\"translation\":[-66,-34,-34]},{\"mesh\":3,\"translation\":[-66,-36,-34]},{\"mesh\":3,\"translation\":[-66,-36,-38]},{\"mesh\":3,\"translation\":[-66,-38,-32]},{\"mesh\":3,\"translation\":[-66,-38,-36]},{\"mesh\":3,\"translation\":[-66,-38,-40]},{\"mesh\":3,\"translation\":[-66,-40,-32]},{\"mesh\":3,\"translation\":[-66,-40,-36]},{\"mesh\":3,\"translation\":[-66,-40,-40]},{\"mesh\":3,\"translation\":[-66,-40,-44]},{\"mesh\":3,\"translation\":[-66,-42,-34]},{\"mesh\":3,\"translation\":[-66,-42,-38]},{\"mesh\":3,\"translation\":[-66,-42,-42]},{\"mesh\":3,\"translation\":[-66,-44,-34]},{\"mesh\":3,\"translation\":[-66,-44,-38]},{\"mesh\":3,\"translation\":[-66,-46,-32]},{\"mesh\":3,\"translation\":[-66,-46,-36]},{\"mesh\":3,\"translation\":[-66,-48,-32]},{\"mesh\":3,\"translation\":[-67,-32,-32]},{\"mesh\":3,\"translation\":[-67,-34,-34]},{\"mesh\":3,\"translation\":[-67,-36,-34]},{\"mesh\":3,\"translation\":[-67,-36,-38]},{\"mesh\":3,\"translation\":[-67,-38,-32]},{\"mesh\":3,\"translation\":[-67,-38,-36]},{\"mesh\":3,\"translation\":[-67,-38,-40]},{\"mesh\":3,\"translation\":[-67,-40,-32]},{\"mesh\":3,\"translation\":[-67,-40,-36]},{\"mesh\":3,\"translation\":[-67,-40,-40]},{\"mesh\":3,\"translation\":[-67,-40,-44]},{\"mesh\":3,\"translation\":[-67,-42,-34]},{\"mesh\":3,\"translation\":[-67,-42,-38]},{\"mesh\":3,\"translation\":[-67,-42,-42]},{\"mesh\":3,\"translation\":[-67,-44,-34]},{\"mesh\":3,\"translation\":[-67,-44,-38]},{\"mesh\":3,\"translation\":[-67,-46,-32]},{\"mesh\":3,\"translation\":[-67,-46,-36]},{\"mesh\":3,\"translation\":[-67,-48,-32]},{\"mesh\":2,\"translation\":[-68,-34,-32]},{\"mesh\":2,\"translation\":[-68,-34,-36]},{\"mesh\":2,\"translation\":[-68,-36,-32]},{\"mesh\":2,\"translation\":[-68,-36,-36]},{\"mesh\":2,\"translation\":[-68,-38,-34]},{\"mesh\":2,\"translation\":[-68,-38,-38]},{\"mesh\":2,\"translation\":[-68,-38,-42]},{\"mesh\":2,\"translation\":[-68,-40,-34]},{\"mesh\":2,\"translation\":[-68,-40,-38]},{\"mesh\":2,\"translation\":[-68,-40,-42]},{\"mesh\":2,\"translation\":[-68,-42,-32]},{\"mesh\":2,\"translation\":[-68,-42,-36]},{\"mesh\":2,\"translation\":[-68,-42,-40]},{\"mesh\":2,\"translation\":[-68,-44,-32]},{\"mesh\":2,\"translation\":[-68,-44,-36]},{\"mesh\":2,\"translation\":[-68,-44,-40]},{\"mesh\":2,\"translation\":[-68,-46,-34]},{\"mesh\":2,\"translation\":[-68,-48,-34]},{\"mesh\":3,\"translation\":[-69,-34,-32]},{\"mesh\":3,\"translation\":[-69,-34,-36]},{\"mesh\":3,\"translation\":[-69,-36,-32]},{\"mesh\":3,\"translation\":[-69,-36,-36]},{\"mesh\":3,\"translation\":[-69,-38,-34]},{\"mesh\":3,\"translation\":[-69,-38,-38]},{\"mesh\":3,\"translation\":[-69,-38,-42]},{\"mesh\":3,\"translation\":[-69,-40,-34]},{\"mesh\":3,\"translation\":[-69,-40,-38]},{\"mesh\":3,\"translation\":[-69,-40,-42]},{\"mesh\":3,\"translation\":[-69,-42,-32]},{\"mesh\":3,\"translation\":[-69,-42,-36]},{\"mesh\":3,\"translation\":[-69,-42,-40]},{\"mesh\":3,\"translation\":[-69,-44,-32]},{\"mesh\":3,\"translation\":[-69,-44,-36]},{\"mesh\":3,\"translation\":[-69,-44,-40]},{\"mesh\":3,\"translation\":[-69,-46,-34]},{\"mesh\":3,\"translation\":[-69,-48,-34]},{\"mesh\":3,\"translation\":[-69,-32,-32]},{\"mesh\":3,\"translation\":[-69,-34,-34]},{\"mesh\":3,\"translation\":[-69,-36,-34]},{\"mesh\":3,\"translation\":[-69,-36,-38]},{\"mesh\":3,\"translation\":[-69,-38,-32]},{\"mesh\":3,\"translation\":[-69,-38,-36]},{\"mesh\":3,\"translation\":[-69,-38,-40]},{\"mesh\":3,\"translation\":[-69,-40,-32]},{\"mesh\":3,\"translation\":[-69,-40,-36]},{\"mesh\":3,\"translation\":[-69,-40,-40]},{\"mesh\":3,\"translation\":[-69,-40,-44]},{\"mesh\":3,\"translation\":[-69,-42,-34]},{\"mesh\":3,\"translation\":[-69,-42,-38]},{\"mesh\":3,\"translation\":[-69,-42,-42]},{\"mesh\":3,\"translation\":[-69,-44,-34]},{\"mesh\":3,\"translation\":[-69,-44,-38]},{\"mesh\":3,\"translation\":[-69,-46,-32]},{\"mesh\":3,\"translation\":[-69,-46,-36]},{\"mesh\":3,\"translation\":[-69,-48,-32]},{\"mesh\":4,\"translation\":[-70,-34,-32]},{\"mesh\":4,\"translation\":[-70,-36,-32]},{\"mesh\":4,\"translation\":[-70,-34,-36]},{\"mesh\":4,\"translation\":[-70,-36,-36]},{\"mesh\":4,\"translation\":[-70,-38,-34]},{\"mesh\":4,\"translation\":[-70,-40,-34]},{\"mesh\":4,\"translation\":[-70,-38,-38]},{\"mesh\":4,\"translation\":[-70,-40,-38]},{\"mesh\":4,\"translation\":[-70,-38,-42]},{\"mesh\":4,\"translation\":[-70,-40,-42]},{\"mesh\":4,\"translation\":[-70,-42,-32]},{\"mesh\":4,\"translation\":[-70,-44,-32]},{\"mesh\":4,\"translation\":[-70,-42,-36]},{\"mesh\":4,\"translation\":[-70,-44,-36]},{\"mesh\":4,\"translation\":[-70,-42,-40]},{\"mesh\":4,\"translation\":[-70,-44,-40]},{\"mesh\":4,\"translation\":[-70,-46,-34]},{\"mesh\":4,\"translation\":[-70,-48,-34]},{\"mesh\":5,\"translation\":[-71,-34,-32]},{\"mesh\":5,\"translation\":[-71,-36,-32]},{\"mesh\":5,\"translation\":[-71,-34,-36]},{\"mesh\":5,\"translation\":[-71,-36,-36]},{\"mesh\":5,\"translation\":[-71,-38,-34]},{\"mesh\":5,\"translation\":[-71,-40,-34]},{\"mesh\":5,\"translation\":[-71,-38,-38]},{\"mesh\":5,\"translation\":[-71,-40,-38]},{\"mesh\":5,\"translation\":[-71,-38,-42]},{\"mesh\":5,\"translation\":[-71,-40,-42]},{\"mesh\":5,\"translation\":[-71,-42,-32]},{\"mesh\":5,\"translation\":[-71,-44,-32]},{\"mesh\":5,\"translation\":[-71,-42,-36]},{\"mesh\":5,\"translation\":[-71,-44,-36]},{\"mesh\":5,\"translation\":[-71,-42,-40]},{\"mesh\":5,\"translation\":[-71,-44,-40]},{\"mesh\":5,\"translation\":[-71,-46,-34]},{\"mesh\":5,\"translation\":[-71,-48,-34]},{\"mesh\":3,\"translation\":[-71,-32,-32]},{\"mesh\":3,\"translation\":[-71,-34,-34]},{\"mesh\":3,\"translation\":[-71,-36,-34]},{\"mesh\":3,\"translation\":[-71,-36,-38]},{\"mesh\":3,\"translation\":[-71,-38,-32]},{\"mesh\":3,\"translation\":[-71,-38,-36]},{\"mesh\":3,\"translation\":[-71,-38,-40]},{\"mesh\":3,\"translation\":[-71,-40,-32]},{\"mesh\":3,\"translation\":[-71,-40,-36]},{\"mesh\":3,\"translation\":[-71,-40,-40]},{\"mesh\":3,\"translation\":[-71,-40,-44]},{\"mesh\":3,\"translation\":[-71,-42,-34]},{\"mesh\":3,\"translation\":[-71,-42,-38]},{\"mesh\":3,\"translation\":[-71,-42,-42]},{\"mesh\":3,\"translation\":[-71,-44,-34]},{\"mesh\":3,\"translation\":[-71,-44,-38]},{\"mesh\":3,\"translation\":[-71,-46,-32]},{\"mesh\":3,\"translation\":[-71,-46,-36]},{\"mesh\":3,\"translation\":[-71,-48,-32]},{\"mesh\":2,\"translation\":[-72,-32,-32]},{\"mesh\":2,\"translation\":[-72,-34,-34]},{\"mesh\":2,\"translation\":[-72,-36,-32]},{\"mesh\":2,\"translation\":[-72,-36,-34]},{\"mesh\":2,\"translation\":[-72,-36,-36]},{\"mesh\":2,\"translation\":[-72,-36,-38]},{\"mesh\":2,\"translation\":[-72,-38,-32]},{\"mesh\":2,\"translation\":[-72,-38,-36]},{\"mesh\":2,\"translation\":[-72,-38,-40]},{\"mesh\":2,\"translation\":[-72,-40,-32]},{\"mesh\":2,\"translation\":[-72,-40,-34]},{\"mesh\":2,\"translation\":[-72,-40,-36]},{\"mesh\":2,\"translation\":[-72,-40,-38]},{\"mesh\":2,\"translation\":[-72,-40,-40]},{\"mesh\":2,\"translation\":[-72,-40,-42]},{\"mesh\":2,\"translation\":[-72,-40,-44]},{\"mesh\":2,\"translation\":[-72,-42,-34]},{\"mesh\":2,\"translation\":[-72,-42,-38]},{\"mesh\":2,\"translation\":[-72,-42,-42]},{\"mesh\":2,\"translation\":[-72,-44,-32]},{\"mesh\":2,\"translation\":[-72,-44,-34]},{\"mesh\":2,\"translation\":[-72,-44,-36]},{\"mesh\":2,\"translation\":[-72,-44,-38]},{\"mesh\":2,\"translation\":[-72,-44,-40]},{\"mesh\":2,\"translation\":[-72,-46,-32]},{\"mesh\":2,\"translation\":[-72,-46,-36]},{\"mesh\":2,\"translation\":[-72,-48,-32]},{\"mesh\":2,\"translation\":[-72,-48,-34]},{\"mesh\":3,\"translation\":[-73,-32,-32]},{\"mesh\":3,\"translation\":[-73,-34,-34]},{\"mesh\":3,\"translation\":[-73,-36,-32]},{\"mesh\":3,\"translation\":[-73,-36,-34]},{\"mesh\":3,\"translation\":[-73,-36,-36]},{\"mesh\":3,\"translation\":[-73,-36,-38]},{\"mesh\":3,\"translation\":[-73,-38,-32]},{\"mesh\":3,\"translation\":[-73,-38,-36]},{\"mesh\":3,\"translation\":[-73,-38,-40]},{\"mesh\":3,\"translation\":[-73,-40,-32]},{\"mesh\":3,\"translation\":[-73,-40,-34]},{\"mesh\":3,\"translation\":[-73,-40,-36]},{\"mesh\":3,\"translation\":[-73,-40,-38]},{\"mesh\":3,\"translation\":[-73,-40,-40]},{\"mesh\":3,\"translation\":[-73,-40,-42]},{\"mesh\":3,\"translation\":[-73,-40,-44]},{\"mesh\":3,\"translation\":[-73,-42,-34]},{\"mesh\":3,\"translation\":[-73,-42,-38]},{\"mesh\":3,\"translation\":[-73,-42,-42]},{\"mesh\":3,\"translation\":[-73,-44,-32]},{\"mesh\":3,\"translation\":[-73,-44,-34]},{\"mesh\":3,\"translation\":[-73,-44,-36]},{\"mesh\":3,\"translation\":[-73,-44,-38]},{\"mesh\":3,\"translation\":[-73,-44,-40]},{\"mesh\":3,\"translation\":[-73,-46,-32]},{\"mesh\":3,\"translation\":[-73,-46,-36]},{\"mesh\":3,\"translation\":[-73,-48,-32]},{\"mesh\":3,\"translation\":[-73,-48,-34]},{\"mesh\":3,\"translation\":[-73,-34,-32]},{\"mesh\":3,\"translation\":[-73,-34,-36]},{\"mesh\":3,\"translation\":[-73,-38,-34]},{\"mesh\":3,\"translation\":[-73,-38,-38]},{\"mesh\":3,\"translation\":[-73,-38,-42]},{\"mesh\":3,\"translation\":[-73,-42,-32]},{\"mesh\":3,\"translation\":[-73,-42,-36]},{\"mesh\":3,\"translation\":[-73,-42,-40]},{\"mesh\":3,\"translation\":[-73,-46,-34]},{\"mesh\":4,\"translation\":[-74,-34,-34]},{\"mesh\":4,\"translation\":[-74,-34,-36]},{\"mesh\":4,\"translation\":[-74,-36,-34]},{\"mesh\":4,\"translation\":[-74,-36,-36]},{\"mesh\":4,\"translation\":[-74,-38,-32]},{\"mesh\":4,\"translation\":[-74,-38,-34]},{\"mesh\":4,\"translation\":[-74,-38,-36]},{\"mesh\":4,\"translation\":[-74,-38,-38]},{\"mesh\":4,\"translation\":[-74,-38,-40]},{\"mesh\":4,\"translation\":[-74,-38,-42]},{\"mesh\":4,\"translation\":[-74,-40,-32]},{\"mesh\":4,\"translation\":[-74,-40,-34]},{\"mesh\":4,\"translation\":[-74,-40,-36]},{\"mesh\":4,\"translation\":[-74,-40,-38]},{\"mesh\":4,\"translation\":[-74,-40,-40]},{\"mesh\":4,\"translation\":[-74,-40,-42]},{\"mesh\":4,\"translation\":[-74,-42,-34]},{\"mesh\":4,\"translation\":[-74,-42,-36]},{\"mesh\":4,\"translation\":[-74,-42,-38]},{\"mesh\":4,\"translation\":[-74,-42,-40]},{\"mesh\":4,\"translation\":[-74,-44,-34]},{\"mesh\":4,\"translation\":[-74,-44,-36]},{\"mesh\":4,\"translation\":[-74,-44,-38]},{\"mesh\":4,\"translation\":[-74,-44,-40]},{\"mesh\":4,\"translation\":[-74,-46,-32]},{\"mesh\":4,\"translation\":[-74,-46,-34]},{\"mesh\":4,\"translation\":[-74,-48,-32]},{\"mesh\":4,\"translation\":[-74,-48,-34]},{\"mesh\":5,\"translation\":[-75,-34,-34]},{\"mesh\":5,\"translation\":[-75,-34,-36]},{\"mesh\":5,\"translation\":[-75,-36,-34]},{\"mesh\":5,\"translation\":[-75,-36,-36]},{\"mesh\":5,\"translation\":[-75,-38,-32]},{\"mesh\":5,\"translation\":[-75,-38,-34]},{\"mesh\":5,\"translation\":[-75,-38,-36]},{\"mesh\":5,\"translation\":[-75,-38,-38]},{\"mesh\":5,\"translation\":[-75,-38,-40]},{\"mesh\":5,\"translation\":[-75,-38,-42]},{\"mesh\":5,\"translation\":[-75,-40,-32]},{\"mesh\":5,\"translation\":[-75,-40,-34]},{\"mesh\":5,\"translation\":[-75,-40,-36]},{\"mesh\":5,\"translation\":[-75,-40,-38]},{\"mesh\":5,\"translation\":[-75,-40,-40]},{\"mesh\":5,\"translation\":[-75,-40,-42]},{\"mesh\":5,\"translation\":[-75,-42,-34]},{\"mesh\":5,\"translation\":[-75,-42,-36]},{\"mesh\":5,\"translation\":[-75,-42,-38]},{\"mesh\":5,\"translation\":[-75,-42,-40]},{\"mesh\":5,\"translation\":[-75,-44,-34]},{\"mesh\":5,\"translation\":[-75,-44,-36]},{\"mesh\":5,\"translation\":[-75,-44,-38]},{\"mesh\":5,\"translation\":[-75,-44,-40]},{\"mesh\":5,\"translation\":[-75,-46,-32]},{\"mesh\":5,\"translation\":[-75,-46,-34]},{\"mesh\":5,\"translation\":[-75,-48,-32]},{\"mesh\":5,\"translation\":[-75,-48,-34]},{\"mesh\":3,\"translation\":[-75,-32,-32]},{\"mesh\":3,\"translation\":[-75,-34,-32]},{\"mesh\":3,\"translation\":[-75,-36,-32]},{\"mesh\":3,\"translation\":[-75,-36,-38]},{\"mesh\":3,\"translation\":[-75,-40,-44]},{\"mesh\":3,\"translation\":[-75,-42,-32]},{\"mesh\":3,\"translation\":[-75,-42,-42]},{\"mesh\":3,\"translation\":[-75,-44,-32]},{\"mesh\":3,\"translation\":[-75,-46,-36]},{\"mesh\":4,\"translation\":[-76,-32,-32]},{\"mesh\":4,\"translation\":[-76,-34,-32]},{\"mesh\":4,\"translation\":[-76,-36,-32]},{\"mesh\":4,\"translation\":[-76,-38,-32]},{\"mesh\":4,\"translation\":[-76,-36,-34]},{\"mesh\":4,\"translation\":[-76,-38,-34]},{\"mesh\":4,\"translation\":[-76,-36,-36]},{\"mesh\":4,\"translation\":[-76,-38,-36]},{\"mesh\":4,\"translation\":[-76,-36,-38]},{\"mesh\":4,\"translation\":[-76,-38,-38]},{\"mesh\":4,\"translation\":[-76,-40,-32]},{\"mesh\":4,\"translation\":[-76,-42,-32]},{\"mesh\":4,\"translation\":[-76,-40,-34]},{\"mesh\":4,\"translation\":[-76,-42,-34]},{\"mesh\":4,\"translation\":[-76,-40,-36]},{\"mesh\":4,\"translation\":[-76,-42,-36]},{\"mesh\":4,\"translation\":[-76,-40,-38]},{\"mesh\":4,\"translation\":[-76,-42,-38]},{\"mesh\":4,\"translation\":[-76,-40,-40]},{\"mesh\":4,\"translation\":[-76,-42,-40]},{\"mesh\":4,\"translation\":[-76,-40,-42]},{\"mesh\":4,\"translation\":[-76,-42,-42]},{\"mesh\":4,\"translation\":[-76,-44,-32]},{\"mesh\":4,\"translation\":[-76,-46,-32]},{\"mesh\":4,\"translation\":[-76,-44,-34]},{\"mesh\":4,\"translation\":[-76,-46,-34]},{\"mesh\":4,\"translation\":[-76,-44,-36]},{\"mesh\":4,\"translation\":[-76,-46,-36]},{\"mesh\":5,\"translation\":[-77,-32,-32]},{\"mesh\":5,\"translation\":[-77,-34,-32]},{\"mesh\":5,\"translation\":[-77,-36,-32]},{\"mesh\":5,\"translation\":[-77,-38,-32]},{\"mesh\":5,\"translation\":[-77,-36,-34]},{\"mesh\":5,\"translation\":[-77,-38,-34]},{\"mesh\":5,\"translation\":[-77,-36,-36]},{\"mesh\":5,\"translation\":[-77,-38,-36]},{\"mesh\":5,\"translation\":[-77,-36,-38]},{\"mesh\":5,\"translation\":[-77,-38,-38]},{\"mesh\":5,\"translation\":[-77,-40,-32]},{\"mesh\":5,\"translation\":[-77,-42,-32]},{\"mesh\":5,\"translation\":[-77,-40,-34]},{\"mesh\":5,\"translation\":[-77,-42,-34]},{\"mesh\":5,\"translation\":[-77,-40,-36]},{\"mesh\":5,\"translation\":[-77,-42,-36]},{\"mesh\":5,\"translation\":[-77,-40,-38]},{\"mesh\":5,\"translation\":[-77,-42,-38]},{\"mesh\":5,\"translation\":[-77,-40,-40]},{\"mesh\":5,\"translation\":[-77,-42,-40]},{\"mesh\":5,\"translation\":[-77,-40,-42]},{\"mesh\":5,\"translation\":[-77,-42,-42]},{\"mesh\":5,\"translation\":[-77,-44,-32]},{\"mesh\":5,\"translation\":[-77,-46,-32]},{\"mesh\":5,\"translation\":[-77,-44,-34]},{\"mesh\":5,\"translation\":[-77,-46,-34]},{\"mesh\":5,\"translation\":[-77,-44,-36]},{\"mesh\":5,\"translation\":[-77,-46,-36]},{\"mesh\":3,\"translation\":[-77,-34,-34]},{\"mesh\":3,\"translation\":[-77,-34,-36]},{\"mesh\":3,\"translation\":[-77,-38,-40]},{\"mesh\":3,\"translation\":[-77,-38,-42]},{\"mesh\":3,\"translation\":[-77,-40,-44]},{\"mesh\":3,\"translation\":[-77,-44,-38]},{\"mesh\":3,\"translation\":[-77,-44,-40]},{\"mesh\":3,\"translation\":[-77,-48,-32]},{\"mesh\":3,\"translation\":[-77,-48,-34]},{\"mesh\":4,\"translation\":[-78,-34,-32]},{\"mesh\":4,\"translation\":[-78,-34,-34]},{\"mesh\":4,\"translation\":[-78,-36,-32]},{\"mesh\":4,\"translation\":[-78,-36,-34]},{\"mesh\":4,\"translation\":[-78,-36,-36]},{\"mesh\":4,\"translation\":[-78,-36,-38]},{\"mesh\":4,\"translation\":[-78,-38,-34]},{\"mesh\":4,\"translation\":[-78,-38,-36]},{\"mesh\":4,\"translation\":[-78,-38,-38]},{\"mesh\":4,\"translation\":[-78,-38,-40]},{\"mesh\":4,\"translation\":[-78,-40,-34]},{\"mesh\":4,\"translation\":[-78,-40,-36]},{\"mesh\":4,\"translation\":[-78,-40,-38]},{\"mesh\":4,\"translation\":[-78,-40,-40]},{\"mesh\":4,\"translation\":[-78,-40,-42]},{\"mesh\":4,\"translation\":[-78,-40,-44]},{\"mesh\":4,\"translation\":[-78,-42,-32]},{\"mesh\":4,\"translation\":[-78,-42,-34]},{\"mesh\":4,\"translation\":[-78,-42,-36]},{\"mesh\":4,\"translation\":[-78,-42,-38]},{\"mesh\":4,\"translation\":[-78,-42,-40]},{\"mesh\":4,\"translation\":[-78,-42,-42]},{\"mesh\":4,\"translation\":[-78,-44,-32]},{\"mesh\":4,\"translation\":[-78,-44,-34]},{\"mesh\":4,\"translation\":[-78,-44,-36]},{\"mesh\":4,\"translation\":[-78,-44,-38]},{\"mesh\":4,\"translation\":[-78,-46,-34]},{\"mesh\":4,\"translation\":[-78,-46,-36]},{\"mesh\":5,\"translation\":[-79,-34,-32]},{\"mesh\":5,\"translation\":[-79,-34,-34]},{\"mesh\":5,\"translation\":[-79,-36,-32]},{\"mesh\":5,\"translation\":[-79,-36,-34]},{\"mesh\":5,\"translation\":[-79,-36,-36]},{\"mesh\":5,\"translation\":[-79,-36,-38]},{\"mesh\":5,\"translation\":[-79,-38,-34]},{\"mesh\":5,\"translation\":[-79,-38,-36]},{\"mesh\":5,\"translation\":[-79,-38,-38]},{\"mesh\":5,\"translation\":[-79,-38,-40]},{\"mesh\":5,\"translation\":[-79,-40,-34]},{\"mesh\":5,\"translation\":[-79,-40,-36]},{\"mesh\":5,\"translation\":[-79,-40,-38]},{\"mesh\":5,\"translation\":[-79,-40,-40]},{\"mesh\":5,\"translation\":[-79,-40,-42]},{\"mesh\":5,\"translation\":[-79,-40,-44]},{\"mesh\":5,\"translation\":[-79,-42,-32]},{\"mesh\":5,\"translation\":[-79,-42,-34]},{\"mesh\":5,\"translation\":[-79,-42,-36]},{\"mesh\":5,\"translation\":[-79,-42,-38]},{\"mesh\":5,\"translation\":[-79,-42,-40]},{\"mesh\":5,\"translation\":[-79,-42,-42]},{\"mesh\":5,\"translation\":[-79,-44,-32]},{\"mesh\":5,\"translation\":[-79,-44,-34]},{\"mesh\":5,\"translation\":[-79,-44,-36]},{\"mesh\":5,\"translation\":[-79,-44,-38]},{\"mesh\":5,\"translation\":[-79,-46,-34]},{\"mesh\":5,\"translation\":[-79,-46,-36]},{\"mesh\":3,\"translation\":[-79,-32,-32]},{\"mesh\":3,\"translation\":[-79,-34,-36]},{\"mesh\":3,\"translation\":[-79,-38,-32]},{\"mesh\":3,\"translation\":[-79,-38,-42]},{\"mesh\":3,\"translation\":[-79,-40,-32]},{\"mesh\":3,\"translation\":[-79,-44,-40]},{\"mesh\":3,\"translation\":[-79,-46,-32]},{\"mesh\":3,\"translation\":[-79,-48,-32]},{\"mesh\":3,\"translation\":[-79,-48,-34]},{\"mesh\":2,\"translation\":[-80,-32,-32]},{\"mesh\":2,\"translation\":[-80,-34,-32]},{\"mesh\":2,\"translation\":[-80,-34,-34]},{\"mesh\":2,\"translation\":[-80,-34,-36]},{\"mesh\":2,\"translation\":[-80,-36,-32]},{\"mesh\":2,\"translation\":[-80,-36,-34]},{\"mesh\":2,\"translation\":[-80,-36,-36]},{\"mesh\":2,\"translation\":[-80,-36,-38]},{\"mesh\":2,\"translation\":[-80,-38,-32]},{\"mesh\":2,\"translation\":[-80,-38,-34]},{\"mesh\":2,\"translation\":[-80,-38,-36]},{\"mesh\":2,\"translation\":[-80,-38,-38]},{\"mesh\":2,\"translation\":[-80,-38,-40]},{\"mesh\":2,\"translation\":[-80,-38,-42]},{\"mesh\":2,\"translation\":[-80,-40,-32]},{\"mesh\":2,\"translation\":[-80,-40,-34]},{\"mesh\":2,\"translation\":[-80,-40,-36]},{\"mesh\":2,\"translation\":[-80,-40,-38]},{\"mesh\":2,\"translation\":[-80,-40,-40]},{\"mesh\":2,\"translation\":[-80,-40,-42]},{\"mesh\":2,\"translation\":[-80,-40,-44]},{\"mesh\":2,\"translation\":[-80,-42,-32]},{\"mesh\":2,\"translation\":[-80,-42,-34]},{\"mesh\":2,\"translation\":[-80,-42,-36]},{\"mesh\":2,\"translation\":[-80,-42,-38]},{\"mesh\":2,\"translation\":[-80,-42,-40]},{\"mesh\":2,\"translation\":[-80,-42,-42]},{\"mesh\":2,\"translation\":[-80,-44,-32]},{\"mesh\":2,\"translation\":[-80,-44,-34]},{\"mesh\":2,\"translation\":[-80,-44,-36]},{\"mesh\":2,\"translation\":[-80,-44,-38]},{\"mesh\":2,\"translation\":[-80,-44,-40]},{\"mesh\":2,\"translation\":[-80,-46,-32]},{\"mesh\":2,\"translation\":[-80,-46,-34]},{\"mesh\":2,\"translation\":[-80,-46,-36]},{\"mesh\":2,\"translation\":[-80,-48,-32]},{\"mesh\":2,\"translation\":[-80,-48,-34]},{\"mesh\":3,\"translation\":[-81,-32,-32]},{\"mesh\":3,\"translation\":[-81,-34,-32]},{\"mesh\":3,\"translation\":[-81,-34,-34]},{\"mesh\":3,\"translation\":[-81,-34,-36]},{\"mesh\":3,\"translation\":[-81,-36,-32]},{\"mesh\":3,\"translation\":[-81,-36,-34]},{\"mesh\":3,\"translation\":[-81,-36,-36]},{\"mesh\":3,\"translation\":[-81,-36,-38]},{\"mesh\":3,\"translation\":[-81,-38,-32]},{\"mesh\":3,\"translation\":[-81,-38,-34]},{\"mesh\":3,\"translation\":[-81,-38,-36]},{\"mesh\":3,\"translation\":[-81,-38,-38]},{\"mesh\":3,\"translation\":[-81,-38,-40]},{\"mesh\":3,\"translation\":[-81,-38,-42]},{\"mesh\":3,\"translation\":[-81,-40,-32]},{\"mesh\":3,\"translation\":[-81,-40,-34]},{\"mesh\":3,\"translation\":[-81,-40,-36]},{\"mesh\":3,\"translation\":[-81,-40,-38]},{\"mesh\":3,\"translation\":[-81,-40,-40]},{\"mesh\":3,\"translation\":[-81,-40,-42]},{\"mesh\":3,\"translation\":[-81,-40,-44]},{\"mesh\":3,\"translation\":[-81,-42,-32]},{\"mesh\":3,\"translation\":[-81,-42,-34]},{\"mesh\":3,\"translation\":[-81,-42,-36]},{\"mesh\":3,\"translation\":[-81,-42,-38]},{\"mesh\":3,\"translation\":[-81,-42,-40]},{\"mesh\":3,\"translation\":[-81,-42,-42]},{\"mesh\":3,\"translation\":[-81,-44,-32]},{\"mesh\":3,\"translation\":[-81,-44,-34]},{\"mesh\":3,\"translation\":[-81,-44,-36]},{\"mesh\":3,\"translation\":[-81,-44,-38]},{\"mesh\":3,\"translation\":[-81,-44,-40]},{\"mesh\":3,\"translation\":[-81,-46,-32]},{\"mesh\":3,\"translation\":[-81,-46,-34]},{\"mesh\":3,\"translation\":[-81,-46,-36]},{\"mesh\":3,\"translation\":[-81,-48,-32]},{\"mesh\":3,\"translation\":[-81,-48,-34]},{\"mesh\":4,\"translation\":[-82,-34,-34]},{\"mesh\":4,\"translation\":[-82,-34,-36]},{\"mesh\":4,\"translation\":[-82,-36,-34]},{\"mesh\":4,\"translation\":[-82,-36,-36]},{\"mesh\":4,\"translation\":[-82,-38,-32]},{\"mesh\":4,\"translation\":[-82,-38,-34]},{\"mesh\":4,\"translation\":[-82,-38,-36]},{\"mesh\":4,\"translation\":[-82,-38,-38]},{\"mesh\":4,\"translation\":[-82,-38,-40]},{\"mesh\":4,\"translation\":[-82,-38,-42]},{\"mesh\":4,\"translation\":[-82,-40,-32]},{\"mesh\":4,\"translation\":[-82,-40,-34]},{\"mesh\":4,\"translation\":[-82,-40,-36]},{\"mesh\":4,\"translation\":[-82,-40,-38]},{\"mesh\":4,\"translation\":[-82,-40,-40]},{\"mesh\":4,\"translation\":[-82,-40,-42]},{\"mesh\":4,\"translation\":[-82,-42,-34]},{\"mesh\":4,\"translation\":[-82,-42,-36]},{\"mesh\":4,\"translation\":[-82,-42,-38]},{\"mesh\":4,\"translation\":[-82,-42,-40]},{\"mesh\":4,\"translation\":[-82,-44,-34]},{\"mesh\":4,\"translation\":[-82,-44,-36]},{\"mesh\":4,\"translation\":[-82,-44,-38]},{\"mesh\":4,\"translation\":[-82,-44,-40]},{\"mesh\":4,\"translation\":[-82,-46,-32]},{\"mesh\":4,\"translation\":[-82,-46,-34]},{\"mesh\":4,\"translation\":[-82,-48,-32]},{\"mesh\":4,\"translation\":[-82,-48,-34]},{\"mesh\":5,\"translation\":[-83,-34,-34]},{\"mesh\":5,\"translation\":[-83,-34,-36]},{\"mesh\":5,\"translation\":[-83,-36,-34]},{\"mesh\":5,\"translation\":[-83,-36,-36]},{\"mesh\":5,\"translation\":[-83,-38,-32]},{\"mesh\":5,\"translation\":[-83,-38,-34]},{\"mesh\":5,\"translation\":[-83,-38,-36]},{\"mesh\":5,\"translation\":[-83,-38,-38]},{\"mesh\":5,\"translation\":[-83,-38,-40]},{\"mesh\":5,\"translation\":[-83,-38,-42]},{\"mesh\":5,\"translation\":[-83,-40,-32]},{\"mesh\":5,\"translation\":[-83,-40,-34]},{\"mesh\":5,\"translation\":[-83,-40,-36]},{\"mesh\":5,\"translation\":[-83,-40,-38]},{\"mesh\":5,\"translation\":[-83,-40,-40]},{\"mesh\":5,\"translation\":[-83,-40,-42]},{\"mesh\":5,\"translation\":[-83,-42,-34]},{\"mesh\":5,\"translation\":[-83,-42,-36]},{\"mesh\":5,\"translation\":[-83,-42,-38]},{\"mesh\":5,\"translation\":[-83,-42,-40]},{\"mesh\":5,\"translation\":[-83,-44,-34]},{\"mesh\":5,\"translation\":[-83,-44,-36]},{\"mesh\":5,\"translation\":[-83,-44,-38]},{\"mesh\":5,\"translation\":[-83,-44,-40]},{\"mesh\":5,\"translation\":[-83,-46,-32]},{\"mesh\":5,\"translation\":[-83,-46,-34]},{\"mesh\":5,\"translation\":[-83,-48,-32]},{\"mesh\":5,\"translation\":[-83,-48,-34]},{\"mesh\":3,\"translation\":[-83,-32,-32]},{\"mesh\":3,\"translation\":[-83,-34,-32]},{\"mesh\":3,\"translation\":[-83,-36,-32]},{\"mesh\":3,\"translation\":[-83,-36,-38]},{\"mesh\":3,\"translation\":[-83,-40,-44]},{\"mesh\":3,\"translation\":[-83,-42,-32]},{\"mesh\":3,\"translation\":[-83,-42,-42]},{\"mesh\":3,\"translation\":[-83,-44,-32]},{\"mesh\":3,\"translation\":[-83,-46,-36]},{\"mesh\":4,\"translation\":[-84,-32,-32]},{\"mesh\":4,\"translation\":[-84,-34,-32]},{\"mesh\":4,\"translation\":[-84,-36,-32]},{\"mesh\":4,\"translation\":[-84,-38,-32]},{\"mesh\":4,\"translation\":[-84,-36,-34]},{\"mesh\":4,\"translation\":[-84,-38,-34]},{\"mesh\":4,\"translation\":[-84,-36,-36]},{\"mesh\":4,\"translation\":[-84,-38,-36]},{\"mesh\":4,\"translation\":[-84,-36,-38]},{\"mesh\":4,\"translation\":[-84,-38,-38]},{\"mesh\":4,\"translation\":[-84,-40,-32]},{\"mesh\":4,\"translation\":[-84,-42,-32]},{\"mesh\":4,\"translation\":[-84,-40,-34]},{\"mesh\":4,\"translation\":[-84,-42,-34]},{\"mesh\":4,\"translation\":[-84,-40,-36]},{\"mesh\":4,\"translation\":[-84,-42,-36]},{\"mesh\":4,\"translation\":[-84,-40,-38]},{\"mesh\":4,\"translation\":[-84,-42,-38]},{\"mesh\":4,\"translation\":[-84,-40,-40]},{\"mesh\":4,\"translation\":[-84,-42,-40]},{\"mesh\":4,\"translation\":[-84,-40,-42]},{\"mesh\":4,\"translation\":[-84,-42,-42]},{\"mesh\":4,\"translation\":[-84,-44,-32]},{\"mesh\":4,\"translation\":[-84,-46,-32]},{\"mesh\":4,\"translation\":[-84,-44,-34]},{\"mesh\":4,\"translation\":[-84,-46,-34]},{\"mesh\":4,\"translation\":[-84,-44,-36]},{\"mesh\":4,\"translation\":[-84,-46,-36]},{\"mesh\":5,\"translation\":[-85,-32,-32]},{\"mesh\":5,\"translation\":[-85,-34,-32]},{\"mesh\":5,\"translation\":[-85,-36,-32]},{\"mesh\":5,\"translation\":[-85,-38,-32]},{\"mesh\":5,\"translation\":[-85,-36,-34]},{\"mesh\":5,\"translation\":[-85,-38,-34]},{\"mesh\":5,\"translation\":[-85,-36,-36]},{\"mesh\":5,\"translation\":[-85,-38,-36]},{\"mesh\":5,\"translation\":[-85,-36,-38]},{\"mesh\":5,\"translation\":[-85,-38,-38]},{\"mesh\":5,\"translation\":[-85,-40,-32]},{\"mesh\":5,\"translation\":[-85,-42,-32]},{\"mesh\":5,\"translation\":[-85,-40,-34]},{\"mesh\":5,\"translation\":[-85,-42,-34]},{\"mesh\":5,\"translation\":[-85,-40,-36]},{\"mesh\":5,\"translation\":[-85,-42,-36]},{\"mesh\":5,\"translation\":[-85,-40,-38]},{\"mesh\":5,\"translation\":[-85,-42,-38]},{\"mesh\":5,\"translation\":[-85,-40,-40]},{\"mesh\":5,\"translation\":[-85,-42,-40]},{\"mesh\":5,\"translation\":[-85,-40,-42]},{\"mesh\":5,\"translation\":[-85,-42,-42]},{\"mesh\":5,\"translation\":[-85,-44,-32]},{\"mesh\":5,\"translation\":[-85,-46,-32]},{\"mesh\":5,\"translation\":[-85,-44,-34]},{\"mesh\":5,\"translation\":[-85,-46,-34]},{\"mesh\":5,\"translation\":[-85,-44,-36]},{\"mesh\":5,\"translation\":[-85,-46,-36]},{\"mesh\":3,\"translation\":[-85,-34,-34]},{\"mesh\":3,\"translation\":[-85,-34,-36]},{\"mesh\":3,\"translation\":[-85,-38,-40]},{\"mesh\":3,\"translation\":[-85,-38,-42]},{\"mesh\":3,\"translation\":[-85,-40,-44]},{\"mesh\":3,\"translation\":[-85,-44,-38]},{\"mesh\":3,\"translation\":[-85,-44,-40]},{\"mesh\":3,\"translation\":[-85,-48,-32]},{\"mesh\":3,\"translation\":[-85,-48,-34]},{\"mesh\":4,\"translation\":[-86,-34,-32]},{\"mesh\":4,\"translation\":[-86,-34,-34]},{\"mesh\":4,\"translation\":[-86,-36,-32]},{\"mesh\":4,\"translation\":[-86,-36,-34]},{\"mesh\":4,\"translation\":[-86,-36,-36]},{\"mesh\":4,\"translation\":[-86,-36,-38]},{\"mesh\":4,\"translation\":[-86,-38,-34]},{\"mesh\":4,\"translation\":[-86,-38,-36]},{\"mesh\":4,\"translation\":[-86,-38,-38]},{\"mesh\":4,\"translation\":[-86,-38,-40]},{\"mesh\":4,\"translation\":[-86,-40,-34]},{\"mesh\":4,\"translation\":[-86,-40,-36]},{\"mesh\":4,\"translation\":[-86,-40,-38]},{\"mesh\":4,\"translation\":[-86,-40,-40]},{\"mesh\":4,\"translation\":[-86,-40,-42]},{\"mesh\":4,\"translation\":[-86,-40,-44]},{\"mesh\":4,\"translation\":[-86,-42,-32]},{\"mesh\":4,\"translation\":[-86,-42,-34]},{\"mesh\":4,\"translation\":[-86,-42,-36]},{\"mesh\":4,\"translation\":[-86,-42,-38]},{\"mesh\":4,\"translation\":[-86,-42,-40]},{\"mesh\":4,\"translation\":[-86,-42,-42]},{\"mesh\":4,\"translation\":[-86,-44,-32]},{\"mesh\":4,\"translation\":[-86,-44,-34]},{\"mesh\":4,\"translation\":[-86,-44,-36]},{\"mesh\":4,\"translation\":[-86,-44,-38]},{\"mesh\":4,\"translation\":[-86,-46,-34]},{\"mesh\":4,\"translation\":[-86,-46,-36]},{\"mesh\":5,\"translation\":[-87,-34,-32]},{\"mesh\":5,\"translation\":[-87,-34,-34]},{\"mesh\":5,\"translation\":[-87,-36,-32]},{\"mesh\":5,\"translation\":[-87,-36,-34]},{\"mesh\":5,\"translation\":[-87,-36,-36]},{\"mesh\":5,\"translation\":[-87,-36,-38]},{\"mesh\":5,\"translation\":[-87,-38,-34]},{\"mesh\":5,\"translation\":[-87,-38,-36]},{\"mesh\":5,\"translation\":[-87,-38,-38]},{\"mesh\":5,\"translation\":[-87,-38,-40]},{\"mesh\":5,\"translation\":[-87,-40,-34]},{\"mesh\":5,\"translation\":[-87,-40,-36]},{\"mesh\":5,\"translation\":[-87,-40,-38]},{\"mesh\":5,\"translation\":[-87,-40,-40]},{\"mesh\":5,\"translation\":[-87,-40,-42]},{\"mesh\":5,\"translation\":[-87,-40,-44]},{\"mesh\":5,\"translation\":[-87,-42,-32]},{\"mesh\":5,\"translation\":[-87,-42,-34]},{\"mesh\":5,\"translation\":[-87,-42,-36]},{\"mesh\":5,\"translation\":[-87,-42,-38]},{\"mesh\":5,\"translation\":[-87,-42,-40]},{\"mesh\":5,\"translation\":[-87,-42,-42]},{\"mesh\":5,\"translation\":[-87,-44,-32]},{\"mesh\":5,\"translation\":[-87,-44,-34]},{\"mesh\":5,\"translation\":[-87,-44,-36]},{\"mesh\":5,\"translation\":[-87,-44,-38]},{\"mesh\":5,\"translation\":[-87,-46,-34]},{\"mesh\":5,\"translation\":[-87,-46,-36]},{\"mesh\":3,\"translation\":[-87,-32,-32]},{\"mesh\":3,\"translation\":[-87,-34,-36]},{\"mesh\":3,\"translation\":[-87,-38,-32]},{\"mesh\":3,\"translation\":[-87,-38,-42]},{\"mesh\":3,\"translation\":[-87,-40,-32]},{\"mesh\":3,\"translation\":[-87,-44,-40]},{\"mesh\":3,\"translation\":[-87,-46,-32]},{\"mesh\":3,\"translation\":[-87,-48,-32]},{\"mesh\":3,\"translation\":[-87,-48,-34]},{\"mesh\":2,\"translation\":[-88,-34,-32]},{\"mesh\":2,\"translation\":[-88,-34,-36]},{\"mesh\":2,\"translation\":[-88,-38,-34]},{\"mesh\":2,\"translation\":[-88,-38,-38]},{\"mesh\":2,\"translation\":[-88,-38,-42]},{\"mesh\":2,\"translation\":[-88,-42,-32]},{\"mesh\":2,\"translation\":[-88,-42,-36]},{\"mesh\":2,\"translation\":[-88,-42,-40]},{\"mesh\":2,\"translation\":[-88,-46,-34]},{\"mesh\":3,\"translation\":[-89,-34,-32]},{\"mesh\":3,\"translation\":[-89,-34,-36]},{\"mesh\":3,\"translation\":[-89,-38,-34]},{\"mesh\":3,\"translation\":[-89,-38,-38]},{\"mesh\":3,\"translation\":[-89,-38,-42]},{\"mesh\":3,\"translation\":[-89,-42,-32]},{\"mesh\":3,\"translation\":[-89,-42,-36]},{\"mesh\":3,\"translation\":[-89,-42,-40]},{\"mesh\":3,\"translation\":[-89,-46,-34]},{\"mesh\":3,\"translation\":[-89,-32,-32]},{\"mesh\":3,\"translation\":[-89,-34,-34]},{\"mesh\":3,\"translation\":[-89,-36,-32]},{\"mesh\":3,\"translation\":[-89,-36,-34]},{\"mesh\":3,\"translation\":[-89,-36,-36]},{\"mesh\":3,\"translation\":[-89,-36,-38]},{\"mesh\":3,\"translation\":[-89,-38,-32]},{\"mesh\":3,\"translation\":[-89,-38,-36]},{\"mesh\":3,\"translation\":[-89,-38,-40]},{\"mesh\":3,\"translation\":[-89,-40,-32]},{\"mesh\":3,\"translation\":[-89,-40,-34]},{\"mesh\":3,\"translation\":[-89,-40,-36]},{\"mesh\":3,\"translation\":[-89,-40,-38]},{\"mesh\":3,\"translation\":[-89,-40,-40]},{\"mesh\":3,\"translation\":[-89,-40,-42]},{\"mesh\":3,\"translation\":[-89,-40,-44]},{\"mesh\":3,\"translation\":[-89,-42,-34]},{\"mesh\":3,\"translation\":[-89,-42,-38]},{\"mesh\":3,\"translation\":[-89,-42,-42]},{\"mesh\":3,\"translation\":[-89,-44,-32]},{\"mesh\":3,\"translation\":[-89,-44,-34]},{\"mesh\":3,\"translation\":[-89,-44,-36]},{\"mesh\":3,\"translation\":[-89,-44,-38]},{\"mesh\":3,\"translation\":[-89,-44,-40]},{\"mesh\":3,\"translation\":[-89,-46,-32]},{\"mesh\":3,\"translation\":[-89,-46,-36]},{\"mesh\":3,\"translation\":[-89,-48,-32]},{\"mesh\":3,\"translation\":[-89,-48,-34]},{\"mesh\":4,\"translation\":[-90,-34,-32]},{\"mesh\":4,\"translation\":[-90,-36,-32]},{\"mesh\":4,\"translation\":[-90,-34,-36]},{\"mesh\":4,\"translation\":[-90,-36,-36]},{\"mesh\":4,\"translation\":[-90,-38,-34]},{\"mesh\":4,\"translation\":[-90,-40,-34]},{\"mesh\":4,\"translation\":[-90,-38,-38]},{\"mesh\":4,\"translation\":[-90,-40,-38]},{\"mesh\":4,\"translation\":[-90,-38,-42]},{\"mesh\":4,\"translation\":[-90,-40,-42]},{\"mesh\":4,\"translation\":[-90,-42,-32]},{\"mesh\":4,\"translation\":[-90,-44,-32]},{\"mesh\":4,\"translation\":[-90,-42,-36]},{\"mesh\":4,\"translation\":[-90,-44,-36]},{\"mesh\":4,\"translation\":[-90,-42,-40]},{\"mesh\":4,\"translation\":[-90,-44,-40]},{\"mesh\":4,\"translation\":[-90,-46,-34]},{\"mesh\":4,\"translation\":[-90,-48,-34]},{\"mesh\":5,\"translation\":[-91,-34,-32]},{\"mesh\":5,\"translation\":[-91,-36,-32]},{\"mesh\":5,\"translation\":[-91,-34,-36]},{\"mesh\":5,\"translation\":[-91,-36,-36]},{\"mesh\":5,\"translation\":[-91,-38,-34]},{\"mesh\":5,\"translation\":[-91,-40,-34]},{\"mesh\":5,\"translation\":[-91,-38,-38]},{\"mesh\":5,\"translation\":[-91,-40,-38]},{\"mesh\":5,\"translation\":[-91,-38,-42]},{\"mesh\":5,\"translation\":[-91,-40,-42]},{\"mesh\":5,\"translation\":[-91,-42,-32]},{\"mesh\":5,\"translation\":[-91,-44,-32]},{\"mesh\":5,\"translation\":[-91,-42,-36]},{\"mesh\":5,\"translation\":[-91,-44,-36]},{\"mesh\":5,\"translation\":[-91,-42,-40]},{\"mesh\":5,\"translation\":[-91,-44,-40]},{\"mesh\":5,\"translation\":[-91,-46,-34]},{\"mesh\":5,\"translation\":[-91,-48,-34]},{\"mesh\":3,\"translation\":[-91,-32,-32]},{\"mesh\":3,\"translation\":[-91,-34,-34]},{\"mesh\":3,\"translation\":[-91,-36,-34]},{\"mesh\":3,\"translation\":[-91,-36,-38]},{\"mesh\":3,\"translation\":[-91,-38,-32]},{\"mesh\":3,\"translation\":[-91,-38,-36]},{\"mesh\":3,\"translation\":[-91,-38,-40]},{\"mesh\":3,\"translation\":[-91,-40,-32]},{\"mesh\":3,\"translation\":[-91,-40,-36]},{\"mesh\":3,\"translation\":[-91,-40,-40]},{\"mesh\":3,\"translation\":[-91,-40,-44]},{\"mesh\":3,\"translation\":[-91,-42,-34]},{\"mesh\":3,\"translation\":[-91,-42,-38]},{\"mesh\":3,\"translation\":[-91,-42,-42]},{\"mesh\":3,\"translation\":[-91,-44,-34]},{\"mesh\":3,\"translation\":[-91,-44,-38]},{\"mesh\":3,\"translation\":[-91,-46,-32]},{\"mesh\":3,\"translation\":[-91,-46,-36]},{\"mesh\":3,\"translation\":[-91,-48,-32]},{\"mesh\":2,\"translation\":[-92,-34,-32]},{\"mesh\":2,\"translation\":[-92,-34,-36]},{\"mesh\":2,\"translation\":[-92,-36,-32]},{\"mesh\":2,\"translation\":[-92,-36,-36]},{\"mesh\":2,\"translation\":[-92,-38,-34]},{\"mesh\":2,\"translation\":[-92,-38,-38]},{\"mesh\":2,\"translation\":[-92,-38,-42]},{\"mesh\":2,\"translation\":[-92,-40,-34]},{\"mesh\":2,\"translation\":[-92,-40,-38]},{\"mesh\":2,\"translation\":[-92,-40,-42]},{\"mesh\":2,\"translation\":[-92,-42,-32]},{\"mesh\":2,\"translation\":[-92,-42,-36]},{\"mesh\":2,\"translation\":[-92,-42,-40]},{\"mesh\":2,\"translation\":[-92,-44,-32]},{\"mesh\":2,\"translation\":[-92,-44,-36]},{\"mesh\":2,\"translation\":[-92,-44,-40]},{\"mesh\":2,\"translation\":[-92,-46,-34]},{\"mesh\":2,\"translation\":[-92,-48,-34]},{\"mesh\":3,\"translation\":[-93,-34,-32]},{\"mesh\":3,\"translation\":[-93,-34,-36]},{\"mesh\":3,\"translation\":[-93,-36,-32]},{\"mesh\":3,\"translation\":[-93,-36,-36]},{\"mesh\":3,\"translation\":[-93,-38,-34]},{\"mesh\":3,\"translation\":[-93,-38,-38]},{\"mesh\":3,\"translation\":[-93,-38,-42]},{\"mesh\":3,\"translation\":[-93,-40,-34]},{\"mesh\":3,\"translation\":[-93,-40,-38]},{\"mesh\":3,\"translation\":[-93,-40,-42]},{\"mesh\":3,\"translation\":[-93,-42,-32]},{\"mesh\":3,\"translation\":[-93,-42,-36]},{\"mesh\":3,\"translation\":[-93,-42,-40]},{\"mesh\":3,\"translation\":[-93,-44,-32]},{\"mesh\":3,\"translation\":[-93,-44,-36]},{\"mesh\":3,\"translation\":[-93,-44,-40]},{\"mesh\":3,\"translation\":[-93,-46,-34]},{\"mesh\":3,\"translation\":[-93,-48,-34]},{\"mesh\":3,\"translation\":[-93,-32,-32]},{\"mesh\":3,\"translation\":[-93,-34,-34]},{\"mesh\":3,\"translation\":[-93,-36,-34]},{\"mesh\":3,\"translation\":[-93,-36,-38]},{\"mesh\":3,\"translation\":[-93,-38,-32]},{\"mesh\":3,\"translation\":[-93,-38,-36]},{\"mesh\":3,\"translation\":[-93,-38,-40]},{\"mesh\":3,\"translation\":[-93,-40,-32]},{\"mesh\":3,\"translation\":[-93,-40,-36]},{\"mesh\":3,\"translation\":[-93,-40,-40]},{\"mesh\":3,\"translation\":[-93,-40,-44]},{\"mesh\":3,\"translation\":[-93,-42,-34]},{\"mesh\":3,\"translation\":[-93,-42,-38]},{\"mesh\":3,\"translation\":[-93,-42,-42]},{\"mesh\":3,\"translation\":[-93,-44,-34]},{\"mesh\":3,\"translation\":[-93,-44,-38]},{\"mesh\":3,\"translation\":[-93,-46,-32]},{\"mesh\":3,\"translation\":[-93,-46,-36]},{\"mesh\":3,\"translation\":[-93,-48,-32]},{\"mesh\":6,\"translation\":[-94,-48,-34]},{\"mesh\":6,\"translation\":[-94,-44,-40]},{\"mesh\":6,\"translation\":[-94,-44,-36]},{\"mesh\":6,\"translation\":[-94,-44,-32]},{\"mesh\":6,\"translation\":[-94,-40,-42]},{\"mesh\":6,\"translation\":[-94,-40,-38]},{\"mesh\":6,\"translation\":[-94,-40,-34]},{\"mesh\":6,\"translation\":[-94,-36,-36]},{\"mesh\":6,\"translation\":[-94,-36,-32]},{\"mesh\":6,\"translation\":[-94,-48,-32]},{\"mesh\":6,\"translation\":[-94,-46,-36]},{\"mesh\":6,\"translation\":[-94,-46,-32]},{\"mesh\":6,\"translation\":[-94,-44,-38]},{\"mesh\":6,\"translation\":[-94,-44,-34]},{\"mesh\":6,\"translation\":[-94,-42,-42]},{\"mesh\":6,\"translation\":[-94,-42,-38]},{\"mesh\":6,\"translation\":[-94,-42,-34]},{\"mesh\":6,\"translation\":[-94,-40,-44]},{\"mesh\":6,\"translation\":[-94,-40,-40]},{\"mesh\":6,\"translation\":[-94,-40,-36]},{\"mesh\":6,\"translation\":[-94,-40,-32]},{\"mesh\":6,\"translation\":[-94,-38,-40]},{\"mesh\":6,\"translation\":[-94,-38,-36]},{\"mesh\":6,\"translation\":[-94,-38,-32]},{\"mesh\":6,\"translation\":[-94,-36,-38]},{\"mesh\":6,\"translation\":[-94,-36,-34]},{\"mesh\":6,\"translation\":[-94,-34,-34]},{\"mesh\":6,\"translation\":[-94,-32,-32]},{\"mesh\":6,\"translation\":[-94,-46,-34]},{\"mesh\":6,\"translation\":[-94,-42,-40]},{\"mesh\":6,\"translation\":[-94,-42,-36]},{\"mesh\":6,\"translation\":[-94,-42,-32]},{\"mesh\":6,\"translation\":[-94,-38,-42]},{\"mesh\":6,\"translation\":[-94,-38,-38]},{\"mesh\":6,\"translation\":[-94,-38,-34]},{\"mesh\":6,\"translation\":[-94,-34,-36]},{\"mesh\":6,\"translation\":[-94,-34,-32]},{\"mesh\":3,\"translation\":[-95,-48,-34]},{\"mesh\":3,\"translation\":[-95,-44,-40]},{\"mesh\":3,\"translation\":[-95,-44,-36]},{\"mesh\":3,\"translation\":[-95,-44,-32]},{\"mesh\":3,\"translation\":[-95,-40,-42]},{\"mesh\":3,\"translation\":[-95,-40,-38]},{\"mesh\":3,\"translation\":[-95,-40,-34]},{\"mesh\":3,\"translation\":[-95,-36,-36]},{\"mesh\":3,\"translation\":[-95,-36,-32]},{\"mesh\":3,\"translation\":[-95,-48,-32]},{\"mesh\":3,\"translation\":[-95,-46,-36]},{\"mesh\":3,\"translation\":[-95,-46,-32]},{\"mesh\":3,\"translation\":[-95,-44,-38]},{\"mesh\":3,\"translation\":[-95,-44,-34]},{\"mesh\":3,\"translation\":[-95,-42,-42]},{\"mesh\":3,\"translation\":[-95,-42,-38]},{\"mesh\":3,\"translation\":[-95,-42,-34]},{\"mesh\":3,\"translation\":[-95,-40,-44]},{\"mesh\":3,\"translation\":[-95,-40,-40]},{\"mesh\":3,\"translation\":[-95,-40,-36]},{\"mesh\":3,\"translation\":[-95,-40,-32]},{\"mesh\":3,\"translation\":[-95,-38,-40]},{\"mesh\":3,\"translation\":[-95,-38,-36]},{\"mesh\":3,\"translation\":[-95,-38,-32]},{\"mesh\":3,\"translation\":[-95,-36,-38]},{\"mesh\":3,\"translation\":[-95,-36,-34]},{\"mesh\":3,\"translation\":[-95,-34,-34]},{\"mesh\":3,\"translation\":[-95,-32,-32]},{\"mesh\":3,\"translation\":[-95,-46,-34]},{\"mesh\":3,\"translation\":[-95,-42,-40]},{\"mesh\":3,\"translation\":[-95,-42,-36]},{\"mesh\":3,\"translation\":[-95,-42,-32]},{\"mesh\":3,\"translation\":[-95,-38,-42]},{\"mesh\":3,\"translation\":[-95,-38,-38]},{\"mesh\":3,\"translation\":[-95,-38,-34]},{\"mesh\":3,\"translation\":[-95,-34,-36]},{\"mesh\":3,\"translation\":[-95,-34,-32]},{\"mesh\":7,\"translation\":[0,0,0]},{\"mesh\":8,\"translation\":[0,0,0]},{\"mesh\":9,\"translation\":[0,0,0]}],\"samplers\":[{\"magFilter\":9728,\"minFilter\":9728,\"wrapS\":33071,\"wrapT\":33071}],\"scene\":0,\"scenes\":[{\"nodes\":[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,296,297,298,299,300,301,302,303,304,305,306,307,308,309,310,311,312,313,314,315,316,317,318,319,320,321,322,323,324,325,326,327,328,329,330,331,332,333,334,335,336,337,338,339,340,341,342,343,344,345,346,347,348,349,350,351,352,353,354,355,356,357,358,359,360,361,362,363,364,365,366,367,368,369,370,371,372,373,374,375,376,377,378,379,380,381,382,383,384,385,386,387,388,389,390,391,392,393,394,395,396,397,398,399,400,401,402,403,404,405,406,407,408,409,410,411,412,413,414,415,416,417,418,419,420,421,422,423,424,425,426,427,428,429,430,431,432,433,434,435,436,437,438,439,440,441,442,443,444,445,446,447,448,449,450,451,452,453,454,455,456,457,458,459,460,461,462,463,464,465,466,467,468,469,470,471,472,473,474,475,476,477,478,479,480,481,482,483,484,485,486,487,488,489,490,491,492,493,494,495,496,497,498,499,500,501,502,503,504,505,506,507,508,509,510,511,512,513,514,515,516,517,518,519,520,521,522,523,524,525,526,527,528,529,530,531,532,533,534,535,536,537,538,539,540,541,542,543,544,545,546,547,548,549,550,551,552,553,554,555,556,557,558,559,560,561,562,563,564,565,566,567,568,569,570,571,572,573,574,575,576,577,578,579,580,581,582,583,584,585,586,587,588,589,590,591,592,593,594,595,596,597,598,599,600,601,602,603,604,605,606,607,608,609,610,611,612,613,614,615,616,617,618,619,620,621,622,623,624,625,626,627,628,629,630,631,632,633,634,635,636,637,638,639,640,641,642,643,644,645,646,647,648,649,650,651,652,653,654,655,656,657,658,659,660,661,662,663,664,665,666,667,668,669,670,671,672,673,674,675,676,677,678,679,680,681,682,683,684,685,686,687,688,689,690,691,692,693,694,695,696,697,698,699,700,701,702,703,704,705,706,707,708,709,710,711,712,713,714,715,716,717,718,719,720,721,722,723,724,725,726,727,728,729,730,731,732,733,734,735,736,737,738,739,740,741,742,743,744,745,746,747,748,749,750,751,752,753,754,755,756,757,758,759,760,761,762,763,764,765,766,767,768,769,770,771,772,773,774,775,776,777,778,779,780,781,782,783,784,785,786,787,788,789,790,791,792,793,794,795,796,797,798,799,800,801,802,803,804,805,806,807,808,809,810,811,812,813,814,815,816,817,818,819,820,821,822,823,824,825,826,827,828,829,830,831,832,833,834,835,836,837,838,839,840,841,842,843,844,845,846,847,848,849,850,851,852,853,854,855,856,857,858,859,860,861,862,863,864,865,866,867,868,869,870,871,872,873,874,875,876,877,878,879,880,881,882,883,884,885,886,887,888,889,890,891,892,893,894,895,896,897,898,899,900,901,902,903,904,905,906,907,908,909,910,911,912,913,914,915,916,917,918,919,920,921,922,923,924,925,926,927,928,929,930,931,932,933,934,935,936,937,938,939,940,941,942,943,944,945,946,947,948,949,950,951,952,953,954,955,956,957,958,959,960,961,962,963,964,965,966,967,968,969,970,971,972,973,974,975,976,977,978,979,980,981,982,983,984,985,986,987,988,989,990,991,992,993,994,995,996,997,998,999,1000,1001,1002,1003,1004,1005,1006,1007,1008,1009,1010,1011,1012,1013,1014,1015,1016,1017,1018,1019,1020,1021,1022,1023,1024,1025,1026,1027,1028,1029,1030,1031,1032,1033,1034,1035,1036,1037,1038,1039,1040,1041,1042,1043,1044,1045,1046,1047,1048,1049,1050,1051,1052,1053,1054,1055,1056,1057,1058,1059,1060,1061,1062,1063,1064,1065,1066,1067,1068,1069,1070,1071,1072,1073,1074,1075,1076,1077,1078,1079,1080,1081,1082,1083,1084,1085,1086,1087,1088,1089,1090,1091,1092,1093,1094,1095,1096,1097,1098,1099,1100,1101,1102,1103,1104,1105,1106,1107,1108,1109,1110,1111,1112,1113,1114,1115,1116,1117,1118,1119,1120,1121,1122,1123,1124,1125,1126,1127,1128,1129,1130,1131,1132,1133,1134,1135,1136,1137,1138,1139,1140,1141,1142,1143,1144,1145,1146,1147,1148,1149,1150,1151,1152,1153,1154,1155,1156,1157,1158,1159,1160,1161,1162,1163,1164,1165,1166,1167,1168,1169,1170,1171,1172,1173,1174,1175,1176,1177,1178,1179,1180,1181,1182,1183,1184,1185,1186,1187,1188,1189,1190,1191,1192,1193,1194,1195,1196,1197,1198,1199,1200,1201,1202,1203,1204,1205,1206,1207,1208,1209,1210,1211,1212,1213,1214,1215,1216,1217,1218,1219,1220,1221,1222,1223,1224,1225,1226,1227,1228,1229,1230,1231,1232,1233,1234,1235,1236,1237,1238,1239,1240,1241,1242,1243,1244,1245,1246,1247,1248,1249,1250,1251,1252,1253,1254,1255,1256,1257,1258,1259,1260,1261,1262,1263,1264,1265,1266,1267,1268,1269,1270,1271,1272,1273,1274,1275,1276,1277,1278,1279,1280,1281,1282,1283,1284,1285,1286,1287,1288,1289,1290,1291,1292,1293,1294,1295,1296,1297,1298,1299,1300,1301,1302,1303,1304,1305,1306,1307,1308,1309,1310,1311,1312,1313,1314,1315,1316,1317,1318,1319,1320,1321,1322,1323,1324,1325,1326,1327,1328,1329,1330,1331,1332,1333,1334,1335,1336,1337,1338,1339,1340,1341,1342,1343,1344,1345,1346,1347,1348,1349,1350,1351,1352,1353,1354,1355,1356,1357,1358,1359,1360,1361,1362,1363,1364,1365,1366,1367,1368,1369,1370,1371,1372,1373,1374,1375,1376,1377,1378,1379,1380,1381,1382,1383,1384,1385,1386,1387,1388,1389,1390,1391,1392,1393,1394,1395,1396,1397,1398,1399,1400,1401,1402,1403,1404,1405,1406,1407,1408,1409,1410,1411,1412,1413,1414,1415,1416,1417,1418,1419,1420,1421,1422,1423,1424,1425,1426,1427,1428,1429,1430,1431,1432,1433,1434,1435,1436,1437,1438,1439,1440,1441,1442,1443,1444,1445,1446,1447,1448,1449,1450,1451,1452,1453,1454,1455,1456,1457,1458,1459,1460,1461,1462,1463,1464,1465,1466,1467,1468,1469,1470,1471,1472,1473,1474,1475,1476,1477,1478,1479,1480,1481,1482,1483,1484,1485,1486,1487,1488,1489,1490,1491,1492,1493,1494,1495,1496,1497,1498,1499,1500,1501,1502,1503,1504,1505,1506,1507,1508,1509,1510,1511,1512,1513,1514,1515,1516,1517,1518,1519,1520,1521,1522,1523,1524,1525,1526,1527,1528,1529,1530,1531,1532,1533,1534,1535,1536,1537,1538,1539,1540,1541,1542,1543,1544,1545,1546,1547,1548,1549,1550,1551,1552,1553,1554,1555,1556,1557,1558,1559,1560,1561,1562,1563,1564,1565,1566,1567,1568,1569,1570,1571,1572,1573,1574,1575,1576,1577,1578,1579,1580,1581,1582,1583,1584,1585,1586,1587,1588,1589,1590,1591,1592,1593,1594,1595,1596,1597,1598,1599,1600,1601,1602,1603,1604,1605,1606,1607,1608,1609,1610,1611,1612,1613,1614,1615,1616,1617,1618,1619,1620,1621,1622,1623,1624,1625,1626,1627,1628,1629,1630,1631,1632,1633,1634,1635,1636,1637,1638,1639,1640,1641,1642,1643,1644,1645,1646,1647,1648,1649,1650,1651,1652,1653,1654,1655,1656,1657,1658,1659,1660,1661,1662,1663,1664,1665,1666,1667,1668,1669,1670,1671,1672,1673,1674,1675,1676,1677,1678,1679,1680,1681,1682,1683,1684,1685,1686,1687,1688,1689,1690,1691,1692,1693,1694,1695,1696,1697,1698,1699,1700,1701,1702,1703,1704,1705,1706,1707,1708,1709,1710,1711,1712,1713,1714,1715,1716,1717,1718,1719,1720,1721,1722,1723,1724,1725,1726,1727,1728,1729,1730,1731,1732,1733,1734,1735,1736,1737,1738,1739,1740,1741,1742,1743,1744,1745,1746,1747,1748,1749,1750,1751,1752,1753,1754,1755,1756,1757,1758,1759,1760,1761,1762,1763,1764,1765,1766,1767,1768,1769,1770,1771,1772,1773,1774,1775,1776,1777,1778,1779,1780,1781,1782,1783,1784,1785,1786,1787,1788,1789,1790,1791,1792,1793,1794,1795,1796,1797,1798,1799,1800,1801,1802,1803,1804,1805,1806,1807,1808,1809,1810,1811,1812,1813,1814,1815,1816,1817,1818,1819,1820,1821,1822,1823,1824,1825,1826,1827,1828,1829,1830,1831,1832,1833,1834,1835,1836,1837,1838,1839,1840,1841,1842,1843,1844,1845,1846,1847,1848,1849,1850,1851,1852,1853,1854,1855,1856,1857,1858,1859,1860,1861,1862,1863,1864,1865,1866,1867,1868,1869,1870,1871,1872,1873,1874,1875,1876,1877,1878,1879,1880,1881,1882,1883,1884,1885,1886,1887,1888,1889,1890,1891,1892,1893,1894,1895,1896,1897,1898,1899,1900,1901,1902,1903,1904,1905,1906,1907,1908,1909,1910,1911,1912,1913,1914,1915,1916,1917,1918,1919,1920,1921,1922,1923,1924,1925,1926,1927,1928,1929,1930,1931,1932,1933,1934,1935,1936,1937,1938,1939,1940,1941,1942,1943,1944,1945,1946,1947,1948,1949,1950,1951,1952,1953,1954,1955,1956,1957,1958,1959,1960,1961,1962,1963,1964,1965,1966,1967,1968,1969,1970,1971,1972,1973,1974,1975,1976,1977,1978,1979,1980,1981,1982,1983,1984,1985,1986,1987,1988,1989,1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013,2014,2015,2016,2017,2018,2019,2020,2021,2022,2023,2024,2025,2026,2027,2028,2029,2030,2031,2032,2033,2034,2035,2036,2037,2038,2039,2040,2041,2042,2043,2044,2045,2046,2047,2048,2049,2050,2051,2052,2053,2054,2055,2056,2057,2058,2059,2060,2061,2062,2063,2064,2065,2066,2067,2068,2069,2070,2071,2072,2073,2074,2075,2076,2077,2078,2079,2080,2081,2082,2083,2084,2085,2086,2087,2088,2089,2090,2091,2092,2093,2094,2095,2096,2097,2098,2099,2100,2101,2102,2103,2104,2105,2106,2107,2108,2109,2110,2111,2112,2113,2114,2115,2116,2117,2118,2119,2120,2121,2122,2123,2124,2125,2126,2127,2128,2129,2130,2131,2132,2133,2134,2135,2136,2137,2138,2139,2140,2141,2142,2143,2144,2145,2146,2147,2148,2149,2150,2151,2152,2153,2154,2155,2156,2157,2158,2159,2160,2161,2162,2163,2164,2165,2166,2167,2168,2169,2170,2171,2172,2173,2174,2175,2176,2177,2178,2179,2180,2181,2182,2183,2184,2185,2186,2187,2188,2189,2190,2191,2192,2193,2194,2195,2196,2197,2198,2199,2200,2201,2202,2203,2204,2205,2206,2207,2208,2209,2210,2211,2212,2213,2214,2215,2216,2217,2218,2219,2220,2221,2222,2223,2224,2225,2226,2227,2228,2229,2230,2231,2232,2233,2234,2235,2236,2237,2238,2239,2240,2241,2242,2243,2244,2245,2246,2247,2248,2249,2250,2251,2252,2253,2254,2255,2256,2257,2258,2259,2260,2261,2262,2263,2264,2265,2266,2267,2268,2269,2270,2271,2272,2273,2274,2275,2276,2277,2278,2279,2280,2281,2282,2283,2284,2285,2286,2287,2288,2289,2290,2291,2292,2293,2294,2295,2296,2297,2298,2299,2300,2301,2302,2303,2304,2305,2306,2307,2308,2309,2310,2311,2312,2313,2314,2315,2316,2317,2318,2319,2320,2321,2322,2323,2324,2325,2326,2327,2328,2329,2330,2331,2332,2333,2334,2335,2336,2337,2338,2339,2340,2341,2342,2343,2344,2345,2346,2347,2348,2349,2350,2351,2352,2353,2354,2355,2356,2357,2358,2359,2360,2361,2362,2363,2364,2365,2366,2367,2368,2369,2370,2371,2372,2373,2374,2375,2376,2377,2378,2379,2380,2381,2382,2383,2384,2385,2386,2387,2388,2389,2390,2391,2392,2393,2394,2395,2396,2397,2398,2399,2400,2401,2402,2403,2404,2405,2406,2407,2408,2409,2410,2411,2412,2413,2414,2415,2416,2417,2418,2419,2420,2421,2422,2423,2424,2425,2426,2427,2428,2429,2430,2431,2432,2433,2434,2435,2436,2437,2438,2439,2440,2441,2442,2443,2444,2445,2446,2447,2448,2449,2450,2451,2452,2453,2454,2455,2456,2457,2458,2459,2460,2461,2462,2463,2464,2465,2466,2467,2468,2469,2470,2471,2472,2473,2474,2475,2476,2477,2478,2479,2480,2481,2482,2483,2484,2485,2486,2487,2488,2489,2490,2491,2492,2493,2494,2495,2496,2497,2498,2499,2500,2501,2502,2503,2504,2505,2506,2507,2508,2509,2510,2511,2512,2513,2514,2515,2516,2517,2518,2519,2520,2521,2522,2523,2524,2525,2526,2527,2528,2529,2530,2531,2532,2533,2534,2535,2536,2537,2538,2539,2540,2541,2542,2543,2544,2545,2546,2547,2548,2549,2550,2551,2552,2553,2554,2555,2556,2557,2558,2559,2560,2561,2562,2563,2564,2565,2566,2567,2568,2569,2570,2571,2572,2573,2574,2575,2576,2577,2578,2579,2580,2581,2582,2583,2584,2585,2586,2587,2588,2589,2590,2591,2592,2593,2594,2595,2596,2597,2598,2599,2600,2601,2602,2603,2604,2605,2606,2607,2608,2609,2610,2611,2612,2613,2614,2615,2616,2617,2618,2619,2620,2621,2622,2623,2624,2625,2626,2627,2628,2629,2630,2631,2632,2633,2634,2635,2636,2637,2638,2639,2640,2641,2642,2643,2644,2645,2646,2647,2648,2649,2650,2651,2652,2653,2654,2655,2656,2657,2658,2659,2660,2661,2662,2663,2664,2665,2666,2667,2668,2669,2670,2671,2672,2673,2674,2675,2676,2677,2678,2679,2680,2681,2682,2683,2684,2685,2686,2687,2688,2689,2690,2691,2692,2693,2694,2695,2696,2697,2698,2699,2700,2701,2702,2703,2704,2705,2706,2707,2708,2709,2710,2711,2712,2713,2714,2715,2716,2717,2718,2719,2720,2721,2722,2723,2724,2725,2726,2727,2728,2729,2730,2731,2732,2733,2734,2735,2736,2737,2738,2739,2740,2741,2742,2743,2744,2745,2746,2747,2748,2749,2750,2751,2752,2753,2754,2755,2756,2757,2758,2759,2760,2761,2762,2763,2764,2765,2766,2767,2768,2769,2770,2771,2772,2773,2774,2775,2776,2777,2778,2779,2780,2781,2782,2783,2784,2785,2786,2787,2788,2789,2790,2791,2792,2793,2794,2795,2796,2797,2798,2799,2800,2801,2802,2803,2804,2805,2806,2807,2808,2809,2810,2811,2812,2813,2814,2815,2816,2817,2818,2819,2820,2821,2822,2823,2824,2825,2826,2827,2828,2829,2830,2831]}],\"textures\":[{\"sampler\":0,\"source\":0}]}" ] + }, + "execution_count": 7, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "import stim\n", + "\n", + "circuit = stim.Circuit.from_file('d5r5colorcode_p001.stim')\n", + "circuit.diagram('timeline-3d')" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "YDnwv2dacTbf" + }, + "source": [ + "# Estimating code distance with Stim" + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" }, + "id": "r2MFDDBMvkq3", + "outputId": "cc6b8bfe-9adb-4b55-9c47-ed2580177b44" + }, + "outputs": [ { - "cell_type": "markdown", - "metadata": { - "id": "cK2Mf2fTCAWO" - }, - "source": [ - "## Computing minimum distance with Stim + SAT Solver" - ] + "name": "stdout", + "output_type": "stream", + "text": [ + "estimated distance: 5\n" + ] + } + ], + "source": [ + "distance_estimate = len(circuit.search_for_undetectable_logical_errors(\n", + " dont_explore_detection_event_sets_with_size_above=6,\n", + " dont_explore_edges_with_degree_above=3,\n", + " dont_explore_edges_increasing_symptom_degree=False))\n", + "print(f'estimated distance: {distance_estimate}')" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "UuYvEwq9cgYc" + }, + "source": [ + "# Create DEM, detection events and observables with Stim" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "6oCW5jRsXy8-" + }, + "source": [ + "### Can't decode with pymatching..." + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" }, + "id": "x6TQbGZ7b06k", + "outputId": "c4caa541-cef7-498d-a410-c00b64cf8a79" + }, + "outputs": [ { - "cell_type": "code", - "execution_count": null, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "ZdVK4Dq1Bp1B", - "outputId": "61d8eb3e-7274-41c0-bd6b-af3e3ac75d54" - }, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "Distance of code: 4\n" - ] - } - ], - "source": [ - "# Note: this maxSAT solver only works for very small codes.\n", - "# For larger codes, use the solvers at https://maxsat-evaluations.github.io/2024/\n", - "from pysat.examples.rc2 import RC2\n", - "from pysat.formula import WCNF\n", - "\n", - "wcnf = WCNF(from_string=circuit.shortest_error_sat_problem())\n", - "\n", - "with RC2(wcnf) as rc2:\n", - " rc2.compute()\n", - " print(f'Distance of code: {rc2.cost}')" - ] - }, + "name": "stderr", + "output_type": "stream", + "text": [ + "Traceback (most recent call last):\n", + " File \"/tmp/ipykernel_3802485/2195602962.py\", line 5, in \n", + " circuit.detector_error_model(decompose_errors=True)\n", + " ~~~~~~~~~~~~~~~~~~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^\n", + "ValueError: Failed to decompose errors into graphlike components with at most two symptoms.\n", + "The error component that failed to decompose is 'D46, D49, D52, D63, D66, D73, D75'.\n", + "\n", + "In Python, you can ignore this error by passing `ignore_decomposition_failures=True` to `stim.Circuit.detector_error_model(...)`.\n", + "From the command line, you can ignore this error by passing the flag `--ignore_decomposition_failures` to `stim analyze_errors`.\n", + "\n", + "Circuit stack trace:\n", + " during TICK layer #46 of 75\n", + " at instruction #104 [which is a REPEAT 3 block]\n" + ] + } + ], + "source": [ + "import traceback\n", + "\n", + "try:\n", + " # decompose_errors=True needed for DEM to be matchable\n", + " circuit.detector_error_model(decompose_errors=True)\n", + "except:\n", + " traceback.print_exc()" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "ye5W7BJHX8DJ" + }, + "source": [ + "No need to decompose errors using tesseract:" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "metadata": { + "id": "AVu7idoTYAdM" + }, + "outputs": [], + "source": [ + "dem = circuit.detector_error_model()" + ] + }, + { + "cell_type": "code", + "execution_count": 11, + "metadata": { + "id": "vFDn06Xach0_" + }, + "outputs": [], + "source": [ + "num_shots = 1000\n", + "sampler = circuit.compile_detector_sampler()\n", + "dets, obs = sampler.sample(num_shots, separate_observables=True)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "JrX13vNQcrm3" + }, + "source": [ + "# Decoding with Tesseract and ILP decoder" + ] + }, + { + "cell_type": "code", + "execution_count": 12, + "metadata": { + "id": "Uds8S04a-z-G" + }, + "outputs": [ { - "cell_type": "markdown", - "metadata": { - "id": "GQjQkhD4C4rK" - }, - "source": [ - "## Sample new data for this stabilizer code" - ] + "ename": "ImportError", + "evalue": "/usr/local/google/home/shutty/pyenv/lib/python3.13/site-packages/tesseract_decoder.so: undefined symbol: _PyThreadState_UncheckedGet", + "output_type": "error", + "traceback": [ + "\u001b[31m---------------------------------------------------------------------------\u001b[39m", + "\u001b[31mImportError\u001b[39m Traceback (most recent call last)", + "\u001b[36mCell\u001b[39m\u001b[36m \u001b[39m\u001b[32mIn[12]\u001b[39m\u001b[32m, line 1\u001b[39m\n\u001b[32m----> \u001b[39m\u001b[32m1\u001b[39m \u001b[38;5;28;01mimport\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[34;01mtesseract_decoder\u001b[39;00m\n\u001b[32m 2\u001b[39m \u001b[38;5;28;01mimport\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[34;01mtesseract_decoder\u001b[39;00m\u001b[34;01m.\u001b[39;00m\u001b[34;01mtesseract\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[38;5;28;01mas\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[34;01mtesseract\u001b[39;00m\n\u001b[32m 3\u001b[39m \u001b[38;5;28;01mimport\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[34;01mnumpy\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[38;5;28;01mas\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[34;01mnp\u001b[39;00m\n", + "\u001b[31mImportError\u001b[39m: /usr/local/google/home/shutty/pyenv/lib/python3.13/site-packages/tesseract_decoder.so: undefined symbol: _PyThreadState_UncheckedGet" + ] + } + ], + "source": [ + "import tesseract_decoder\n", + "import tesseract_decoder.tesseract as tesseract\n", + "import numpy as np\n", + "import time\n", + "\n", + "# Helper functions for benchmarking\n", + "\n", + "def print_results(result):\n", + " print(\"Tesseract Decoder Stats:\")\n", + " print(f\" Number of Errors / num_shots: {results['num_errors']} / {results['num_shots']}\")\n", + " print(f\" Time: {results['time_seconds']:.4f} s\")\n", + " print()\n", + "\n", + "def run_tesseract_decoder(decoder, dets, obs):\n", + " # Run and time the Tesseract decoder\n", + " num_errors = 0\n", + " start_time = time.time()\n", + " obs_predicted = decoder.decode_batch(dets)\n", + " num_errors = np.sum(np.any(obs_predicted != obs, axis=1))\n", + " end_time = time.time()\n", + "\n", + " return {\n", + " 'num_errors': num_errors,\n", + " 'num_shots': len(dets),\n", + " 'time_seconds': end_time - start_time,\n", + " }\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" }, + "id": "D0Tx2eY3ctFw", + "outputId": "64f388af-f1db-4869-873f-3ab714ee8e9c" + }, + "outputs": [ { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "7iOIl7vjC3uG" - }, - "outputs": [], - "source": [ - "num_shots = 1000\n", - "dem = circuit.detector_error_model()\n", - "sampler = circuit.compile_detector_sampler(seed=23845386)\n", - "dets, obs = sampler.sample(num_shots, separate_observables=True)" - ] + "name": "stdout", + "output_type": "stream", + "text": [ + "Tesseract decoder configurations --> TesseractConfig(dem=DetectorErrorModel_Object, det_beam=65535, no_revisit_dets=1, at_most_two_errors_per_detector=0, verbose=0, pqlimit=10000, det_orders=[[89, 86, 85, 83, 81, 88, 84, 82, 87, 74, 71, 78, 75, 69, 67, 63, 77, 66, 61, 72, 64, 65, 79, 68, 62, 73, 80, 70, 42, 76, 43, 46, 33, 32, 50, 44, 31, 57, 35, 36, 59, 51, 30, 58, 60, 48, 39, 45, 49, 34, 25, 7, 47, 5, 18, 26, 21, 2, 40, 24, 12, 29, 28, 55, 37, 56, 54, 53, 38, 15, 3, 16, 52, 20, 9, 19, 13, 8, 11, 10, 17, 41, 22, 6, 14, 23, 0, 1, 27, 4]], det_penalty=0, create_visualization=0)\n", + "\n", + "Tesseract Decoder Stats:\n", + " Number of Errors / num_shots: 3 / 1000\n", + " Time: 3.6089 s\n", + "\n" + ] + } + ], + "source": [ + "# setup the tesseract decoder configuration\n", + "tesseract_config = tesseract.TesseractConfig(\n", + " dem=dem,\n", + " pqlimit=10000,\n", + " no_revisit_dets=True,\n", + " # verbose=True,\n", + " det_orders=tesseract_decoder.utils.build_det_orders(\n", + " dem, num_det_orders=1, det_order_bfs=True, seed=2384753),\n", + ")\n", + "print(f'Tesseract decoder configurations --> {tesseract_config}\\n')\n", + "\n", + "tesseract_dec = tesseract_config.compile_decoder()\n", + "\n", + "results = run_tesseract_decoder(tesseract_dec, dets, obs)\n", + "print_results(results)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "INvMKs7zc5T_" + }, + "source": [ + "#Decoding with ILP decoder" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" }, + "id": "9Npo7ibac4x5", + "outputId": "51af3bd2-5f53-43c8-a16d-f595a9596bde" + }, + "outputs": [ { - "cell_type": "markdown", - "metadata": { - "id": "63xjagbBCj8x" - }, - "source": [ - "## Decode code capacity noise data with ILP and Tesseract" - ] + "name": "stdout", + "output_type": "stream", + "text": [ + "ILP decoder configurations --> SimplexConfig(dem=DetectorErrorModel_Object, window_length=0, window_slide_length=0, verbose=0)\n", + "ILP stats:\n", + " Estimated time for full shots 1115.2181386947632 s\n", + " Number of Errors / num_shots: 0 / 10\n" + ] + } + ], + "source": [ + "simplex_config = tesseract_decoder.simplex.SimplexConfig(\n", + " dem=dem, parallelize=True\n", + ")\n", + "print(f'ILP decoder configurations --> {simplex_config}')\n", + "ilp_dec = simplex_config.compile_decoder()\n", + "\n", + "start_time = time.time()\n", + "\n", + "# Run and time ILP decoder -- so slow!\n", + "num_shots_to_decode = 10 # Only decoding 10 shots because it's soooo slow\n", + "obs_predicted = ilp_dec.decode_batch(dets[0:num_shots_to_decode])\n", + "num_errors = np.sum(np.any(obs_predicted != obs[0:num_shots_to_decode], axis=1))\n", + "\n", + "end_time = time.time()\n", + "print(f'ILP stats:\\n Estimated time for full shots {num_shots/num_shots_to_decode * (end_time - start_time)} s')\n", + "print(f\" Number of Errors / num_shots: {num_errors} / {num_shots_to_decode}\")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "VQqlMqFRIZ2J" + }, + "source": [ + "# Tesseract Config and impact of heuristic\n", + "You can tune tesseract decoder through the Config that is passed to the decoder with this set of parameters:\n", + "Explanation of configuration arguments:\n", + "\n", + "* `pqlimit` - An integer that sets a limit on the number of nodes in the priority queue. This can be used to constrain the memory usage of the decoder. The default value is `sys.maxsize`, which means the size is effectively unbounded.\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" }, + "id": "0pExdmuPQuGr", + "outputId": "45a20eca-fef6-425d-d6a2-9a619fe9e10c" + }, + "outputs": [ { - "cell_type": "code", - "execution_count": null, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "IM7W37cHaKfT", - "outputId": "3f2f7666-9586-4cb6-b422-1d295bf8747c" - }, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "Tesseract Decoder Stats:\n", - " Number of Errors / num_shots: 60 / 1000\n", - " Time: 0.2323 s\n", - "\n", - "ILP: num_errors / num_shots = 61 / 1000 time 11.911995649337769 s\n" - ] - } - ], - "source": [ - "tesseract_config = tesseract_decoder.tesseract.TesseractConfig(\n", - " dem=dem,\n", - " pqlimit=1000,\n", - " det_beam=10,\n", - " det_orders=tesseract_decoder.utils.build_det_orders(\n", - " dem, num_det_orders=10, det_order_bfs=True, seed=2384753),\n", - " # no_revisit_dets=True,\n", - ")\n", - "\n", - "results = run_tesseract_decoder(tesseract_config.compile_decoder(), dets, obs)\n", - "print_results(results)\n", - "\n", - "# Run and time ILP decoder\n", - "ilp_dec = tesseract_decoder.simplex.SimplexConfig(\n", - " dem=dem, parallelize=True).compile_decoder()\n", - "start_time = time.time()\n", - "obs_predicted = ilp_dec.decode_batch(dets)\n", - "num_errors_ilp = np.sum(np.any(obs_predicted != obs, axis=1))\n", - "end_time = time.time()\n", - "print(\n", - " f'ILP: num_errors / num_shots = {num_errors_ilp} / {len(dets)} time {end_time - start_time} s')" - ] + "name": "stdout", + "output_type": "stream", + "text": [ + "Smaller pqlimit\n", + "Tesseract Decoder Stats:\n", + " Number of Errors / num_shots: 183 / 1000\n", + " Time: 1.8420 s\n", + "\n", + "Larger pqlimit\n", + "Tesseract Decoder Stats:\n", + " Number of Errors / num_shots: 3 / 1000\n", + " Time: 8.4409 s\n", + "\n" + ] + } + ], + "source": [ + "tesseract_config1 = tesseract.TesseractConfig(\n", + " dem=dem,\n", + " pqlimit=100,\n", + " no_revisit_dets=True,\n", + " det_orders=tesseract_decoder.utils.build_det_orders(\n", + " dem, num_det_orders=5, det_order_bfs=True, seed=2384753),\n", + ")\n", + "\n", + "print (\"Smaller pqlimit\")\n", + "results = run_tesseract_decoder(tesseract_config1.compile_decoder(), dets, obs)\n", + "print_results(results)\n", + "\n", + "\n", + "tesseract_config2 = tesseract.TesseractConfig(\n", + " dem=dem,\n", + " pqlimit=20000,\n", + " no_revisit_dets=True,\n", + " det_orders=tesseract_decoder.utils.build_det_orders(\n", + " dem, num_det_orders=5, det_order_bfs=True, seed=2384753),\n", + ")\n", + "print (\"Larger pqlimit\")\n", + "results = run_tesseract_decoder(tesseract_config2.compile_decoder(), dets, obs)\n", + "print_results(results)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "ru-MRctAIq5-" + }, + "source": [ + "#More heurisitcs\n", + "* `det_beam` - This integer value represents the beam search cutoff. It specifies a threshold for the number of \"residual detection events\" a node can have before it is pruned from the search. A lower `det_beam` value makes the search more aggressive, potentially sacrificing accuracy for speed. The default value `INF_DET_BEAM` means no beam cutoff is applied.\n", + "* `beam_climbing` - A boolean flag that, when set to `True`, enables a heuristic called \"beam climbing.\" This optimization causes the decoder to try different `det_beam` values (up to a maximum) to find a good decoding path. This can improve the decoder's chance of finding the most likely error, even with an initial narrow beam search.\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" }, + "id": "cyctTUyzQ-cQ", + "outputId": "0f3c5a8a-0d09-49e4-e3b1-e193152bf2bf" + }, + "outputs": [ { - "cell_type": "markdown", - "metadata": { - "id": "K0QvSpXQIwgf" - }, - "source": [ - "# Visualize the Tesseract's decoding\n", - "For visualizing tesseract we use the `verbose` flag to get the decoding information.\n", - "## [Link to visualizer](https://quantumlib.github.io/tesseract-decoder/viz/)\n", - "* `verbose` - A boolean flag that, when `True`, enables verbose logging. This is useful for debugging and understanding the decoder's internal behavior, as it will print information about the search process." - ] + "name": "stdout", + "output_type": "stream", + "text": [ + "Smaller det_beam\n", + "Tesseract Decoder Stats:\n", + " Number of Errors / num_shots: 2 / 1000\n", + " Time: 5.8029 s\n", + "\n", + "Larger det_beam\n", + "Tesseract Decoder Stats:\n", + " Number of Errors / num_shots: 2 / 1000\n", + " Time: 6.1866 s\n", + "\n" + ] + } + ], + "source": [ + "tesseract_config1 = tesseract.TesseractConfig(\n", + " dem=dem,\n", + " pqlimit=1000,\n", + " det_beam=3,\n", + " beam_climbing=True,\n", + " det_orders=tesseract_decoder.utils.build_det_orders(\n", + " dem, num_det_orders=5, det_order_bfs=True, seed=2384753),\n", + ")\n", + "\n", + "print (\"Smaller det_beam\")\n", + "results = run_tesseract_decoder(tesseract_config1.compile_decoder(), dets, obs)\n", + "print_results(results)\n", + "\n", + "\n", + "tesseract_config2 = tesseract.TesseractConfig(\n", + " dem=dem,\n", + " pqlimit=1000,\n", + " det_beam=5,\n", + " beam_climbing=True,\n", + " det_orders=tesseract_decoder.utils.build_det_orders(\n", + " dem, num_det_orders=5, det_order_bfs=True, seed=2384753),\n", + ")\n", + "print (\"Larger det_beam\")\n", + "results = run_tesseract_decoder(tesseract_config2.compile_decoder(), dets, obs)\n", + "print_results(results)" + ] + }, + + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" }, + "id": "0VrW2z8sSXtN", + "outputId": "6f69c1ff-1c04-4dc6-d1a0-32aa0777d56b" + }, + "outputs": [ { - "cell_type": "code", - "execution_count": null, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "DzWRL1cNjyix", - "outputId": "4a3df084-499f-43b2-97ba-1874b697f06a" - }, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "Cloning into 'tesseract-decoder'...\n", - "remote: Enumerating objects: 2086, done.\u001b[K\n", - "remote: Counting objects: 100% (606/606), done.\u001b[K\n", - "remote: Compressing objects: 100% (304/304), done.\u001b[K\n", - "remote: Total 2086 (delta 493), reused 317 (delta 302), pack-reused 1480 (from 3)\u001b[K\n", - "Receiving objects: 100% (2086/2086), 3.17 MiB | 8.58 MiB/s, done.\n", - "Resolving deltas: 100% (1667/1667), done.\n" - ] - } - ], - "source": [ - "# Remove the existing directory and its contents\n", - "!rm -rf tesseract-decoder\n", - "# Clone the repository\n", - "!git clone https://github.com/quantumlib/tesseract-decoder.git" - ] + "name": "stdout", + "output_type": "stream", + "text": [ + "First version\n", + "Tesseract Decoder Stats:\n", + " Number of Errors / num_shots: 9 / 1000\n", + " Time: 1.1290 s\n", + "\n", + "Second version\n", + "Tesseract Decoder Stats:\n", + " Number of Errors / num_shots: 19 / 1000\n", + " Time: 0.9446 s\n", + "\n" + ] + } + ], + "source": [ + "tesseract_config1 = tesseract.TesseractConfig(\n", + " dem=dem,\n", + " pqlimit=1000,\n", + " # no_revisit_dets=True,\n", + " # at_most_two_errors_per_detector = True,\n", + " det_penalty = 10,\n", + " # det_orders=tesseract_decoder.utils.build_det_orders(\n", + " # dem, num_det_orders=2, det_order_bfs=True, seed=2384753),\n", + ")\n", + "\n", + "print (\"First version\")\n", + "results = run_tesseract_decoder(tesseract_config1.compile_decoder(), dets, obs)\n", + "print_results(results)\n", + "\n", + "\n", + "tesseract_config2 = tesseract.TesseractConfig(\n", + " dem=dem,\n", + " pqlimit=1000,\n", + " # no_revisit_dets=False,\n", + " # at_most_two_errors_per_detector = False,\n", + " det_penalty = 0,\n", + " # det_orders=tesseract_decoder.utils.build_det_orders(\n", + " # dem, num_det_orders=2, det_order_bfs=True, seed=2384753),\n", + ")\n", + "print (\"Second version\")\n", + "results = run_tesseract_decoder(tesseract_config2.compile_decoder(), dets, obs)\n", + "print_results(results)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "BoEALeo3OYGp" + }, + "source": [ + "# Decoding Wild Stabilizer Codes under Code Capacity Noise with Tesseract\n", + "\n", + "\n", + "\n", + "* checkout https://www.codetables.de/ for a qubit stabilizer code\n", + "* full table of qubit codes: [here](https://codetables.de/QECC/Tables_color.php?q=4&n0=1&n1=256&k0=0&k1=256)\n", + "* copy the stabilizer matrix for a code, such as: [this one used below](https://codetables.de/QECC/QECC.php?q=4&n=21&k=8)\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "pJ1gEKAgPbHO" + }, + "outputs": [], + "source": [ + "import time\n", + "import tesseract_decoder\n", + "import stim\n", + "import numpy as np\n", + "import numpy.typing as npt\n", + "from galois import GF2\n", + "from typing import List, Tuple\n", + "\n", + "\n", + "def paulis_from_symplectic_matrix(check_matrix: npt.NDArray[np.uint8]) -> List[stim.PauliString]:\n", + " n = check_matrix.shape[1] // 2\n", + " paulis = []\n", + " for i in range(check_matrix.shape[0]):\n", + " paulis.append(\n", + " stim.PauliString.from_numpy(\n", + " xs=check_matrix[i, :n].astype(bool), zs=check_matrix[i, n:].astype(bool)\n", + " )\n", + " )\n", + " return paulis\n", + "\n", + "def rank(H):\n", + " return np.linalg.matrix_rank(GF2(H))\n", + "\n", + "def stabilizer_code_logical_operators(\n", + " check_matrix: npt.NDArray[np.uint8]) -> Tuple[npt.NDArray[np.uint8], npt.NDArray[np.uint8]]:\n", + " check_matrix = np.array(check_matrix, dtype=np.uint8)\n", + "\n", + " r = rank(check_matrix)\n", + " n = check_matrix.shape[1] // 2\n", + "\n", + " stabilisers = paulis_from_symplectic_matrix(check_matrix=check_matrix)\n", + "\n", + " tableau = stim.Tableau.from_stabilizers(\n", + " stabilizers=stabilisers, allow_underconstrained=True, allow_redundant=True\n", + " )\n", + "\n", + " x2x, x2z, z2x, z2z, x_signs, z_signs = tableau.to_numpy()\n", + "\n", + " num_logicals = n - r\n", + "\n", + " Lx = np.zeros((num_logicals, check_matrix.shape[1]), dtype=np.uint8)\n", + " Lz = np.zeros((num_logicals, check_matrix.shape[1]), dtype=np.uint8)\n", + "\n", + " Lx[:, :n] = x2x[r:]\n", + " Lx[:, n:] = x2z[r:]\n", + " Lz[:, :n] = z2x[r:]\n", + " Lz[:, n:] = z2z[r:]\n", + " return Lx.astype(np.uint8), Lz.astype(np.uint8)\n", + "\n", + "\n", + "def pauli_to_observable_include_target(pauli: stim.PauliString) -> List[stim.GateTarget]:\n", + " obs_pauli_targets = []\n", + " for i in range(len(pauli)):\n", + " if pauli[i] != 0:\n", + " obs_pauli_targets.append(stim.target_pauli(i, pauli[i]))\n", + " return obs_pauli_targets\n", + "\n", + "\n", + "def append_observable_includes_for_paulis(circuit: stim.Circuit, paulis: List[stim.PauliString]) -> None:\n", + " for i, obs in enumerate(paulis):\n", + " circuit.append(\n", + " \"OBSERVABLE_INCLUDE\",\n", + " targets=pauli_to_observable_include_target(pauli=obs),\n", + " arg=i\n", + " )\n", + "\n", + "\n", + "def code_capacity_circuit(\n", + " stabilizers: npt.NDArray[np.uint8],\n", + " x_logicals: npt.NDArray[np.uint8],\n", + " z_logicals: npt.NDArray[np.uint8],\n", + " p: float\n", + ") -> stim.Circuit:\n", + " \"\"\"Generate a code capacity stim circuit for a stabilizer code\n", + "\n", + " Parameters\n", + " ----------\n", + " stabilizers : npt.NDArray[np.uint8]\n", + " The stabilizer generators of the code, as a binary symplectic matrix.\n", + " The matrix has dimensions (r, 2 * n) where r is the number of stabilizer\n", + " generators and n is the number of physical qubits.\n", + " `stabilizers[i, j]` is 1 if stabilizer i is X or Y on qubit j and 0 otherwise.\n", + " `stabilizers[i, n + j]` is 1 if stabilizer i is Z or Y on qubit j and 0 otherwise.\n", + " x_logicals : npt.NDArray[np.uint8]\n", + " The X logical operators of the code, as a binary symplectic matrix.\n", + " The matrix has dimensions (k, 2 * n) where k is the number of logical qubits\n", + " and n is the number of physical qubits.\n", + " z_logicals : npt.NDArray[np.uint8]\n", + " The Z logical operators of the code, as a binary symplectic matrix.\n", + " The matrix has dimensions (k, 2 * n) where k is the number of logical qubits\n", + " and n is the number of physical qubits.\n", + " p : float\n", + " The strength of single-qubit depolarizing noise to use\n", + "\n", + " Returns\n", + " -------\n", + " stim.Circuit\n", + " The stim circuit of the code capacity circuit\n", + " \"\"\"\n", + " num_qubits = stabilizers.shape[1] // 2\n", + " num_stabilizers = stabilizers.shape[0]\n", + " stabilizer_paulis = paulis_from_symplectic_matrix(stabilizers)\n", + " x_logicals_paulis = paulis_from_symplectic_matrix(x_logicals)\n", + " z_logicals_paulis = paulis_from_symplectic_matrix(z_logicals)\n", + " all_logicals_paulis = x_logicals_paulis + z_logicals_paulis\n", + "\n", + " circuit = stim.Circuit()\n", + "\n", + " append_observable_includes_for_paulis(\n", + " circuit=circuit, paulis=all_logicals_paulis)\n", + " circuit.append(\"MPP\", stabilizer_paulis)\n", + " circuit.append(\"DEPOLARIZE1\", targets=list(range(num_qubits)), arg=p)\n", + " circuit.append(\"MPP\", stabilizer_paulis)\n", + "\n", + " for i in range(num_stabilizers):\n", + " circuit.append(\n", + " \"DETECTOR\",\n", + " targets=[\n", + " stim.target_rec(i - 2 * num_stabilizers),\n", + " stim.target_rec(i - num_stabilizers)\n", + " ]\n", + " )\n", + "\n", + " append_observable_includes_for_paulis(\n", + " circuit=circuit, paulis=all_logicals_paulis)\n", + " return circuit\n", + "\n", + "\n", + "def parse_symplectic_matrix(text: str) -> npt.NDArray[np.uint8]:\n", + " rows = []\n", + " for line in text.strip().splitlines():\n", + " line = line.strip()\n", + " if not line or line[0] != '[' or line[-1] != ']':\n", + " continue # skip malformed lines\n", + " body = line[1:-1]\n", + " if \"|\" in body:\n", + " left, right = body.split(\"|\")\n", + " bits = left.strip().split() + right.strip().split()\n", + " else:\n", + " bits = body.strip().split()\n", + " row = [int(b) for b in bits]\n", + " rows.append(row)\n", + " return np.array(rows, dtype=np.uint8)\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 343 }, + "id": "pH_b3u1rBogl", + "outputId": "846dd807-82ed-4139-e46d-a3cfe65a7681" + }, + "outputs": [ { - "cell_type": "code", - "execution_count": null, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "ZNKaqvN8dE-X", - "outputId": "8d80e5bc-c30b-469d-d9cd-452d89604c30" - }, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - " % Total % Received % Xferd Average Speed Time Time Time Current\n", - " Dload Upload Total Spent Left Speed\n", - "\r 0 0 0 0 0 0 0 0 --:--:-- --:--:-- --:--:-- 0\r100 44154 100 44154 0 0 230k 0 --:--:-- --:--:-- --:--:-- 230k\n" - ] - } + "data": { + "text/html": [ + "" ], - "source": [ - "!curl 'https://raw.githubusercontent.com/quantumlib/tesseract-decoder/refs/heads/main/testdata/colorcodes/r%3D9%2Cd%3D9%2Cp%3D0.002%2Cnoise%3Dsi1000%2Cc%3Dsuperdense_color_code_X%2Cq%3D121%2Cgates%3Dcz.stim' > d9r9colorcode_p002.stim\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "Cdo-oenEdF1-" - }, - "outputs": [], - "source": [ - "import stim\n", - "\n", - "circuit = stim.Circuit.from_file('d9r9colorcode_p002.stim')" + "text/plain": [ + "{\"accessors\":[{\"bufferView\":0,\"byteOffset\":0,\"componentType\":5126,\"count\":12,\"max\":[0,0.5,0.5],\"min\":[0,-0.5,-0.5],\"name\":\"cube\",\"type\":\"VEC3\"},{\"bufferView\":1,\"byteOffset\":0,\"componentType\":5126,\"count\":12,\"max\":[0.6875,0.4375],\"min\":[0.625,0.375],\"name\":\"tex_coords_gate_MPP:X\",\"type\":\"VEC2\"},{\"bufferView\":2,\"byteOffset\":0,\"componentType\":5126,\"count\":12,\"max\":[0.6875,0.5],\"min\":[0.625,0.4375],\"name\":\"tex_coords_gate_MPP:Y\",\"type\":\"VEC2\"},{\"bufferView\":3,\"byteOffset\":0,\"componentType\":5126,\"count\":12,\"max\":[0.6875,0.5625],\"min\":[0.625,0.5],\"name\":\"tex_coords_gate_MPP:Z\",\"type\":\"VEC2\"},{\"bufferView\":4,\"byteOffset\":0,\"componentType\":5126,\"count\":12,\"max\":[0.25,0.625],\"min\":[0.1875,0.5625],\"name\":\"tex_coords_gate_DEPOLARIZE1\",\"type\":\"VEC2\"},{\"bufferView\":5,\"byteOffset\":0,\"componentType\":5126,\"count\":470,\"max\":[1,-0,-0],\"min\":[-19,-40,-0],\"name\":\"buf_scattered_lines\",\"type\":\"VEC3\"},{\"bufferView\":6,\"byteOffset\":0,\"componentType\":5126,\"count\":6,\"max\":[0,2.5,-0],\"min\":[-3,1.5,-0],\"name\":\"buf_red_scattered_lines\",\"type\":\"VEC3\"}],\"asset\":{\"version\":\"2.0\"},\"bufferViews\":[{\"buffer\":0,\"byteLength\":144,\"byteOffset\":0,\"name\":\"cube\",\"target\":34962},{\"buffer\":1,\"byteLength\":96,\"byteOffset\":0,\"name\":\"tex_coords_gate_MPP:X\",\"target\":34962},{\"buffer\":2,\"byteLength\":96,\"byteOffset\":0,\"name\":\"tex_coords_gate_MPP:Y\",\"target\":34962},{\"buffer\":3,\"byteLength\":96,\"byteOffset\":0,\"name\":\"tex_coords_gate_MPP:Z\",\"target\":34962},{\"buffer\":4,\"byteLength\":96,\"byteOffset\":0,\"name\":\"tex_coords_gate_DEPOLARIZE1\",\"target\":34962},{\"buffer\":5,\"byteLength\":5640,\"byteOffset\":0,\"name\":\"buf_scattered_lines\",\"target\":34962},{\"buffer\":6,\"byteLength\":72,\"byteOffset\":0,\"name\":\"buf_red_scattered_lines\",\"target\":34962}],\"buffers\":[{\"byteLength\":144,\"name\":\"cube\",\"uri\":\"data:application/octet-stream;base64,AAAAAAAAAD8AAAA/AAAAAAAAAD8AAAC/AAAAAAAAAL8AAAA/AAAAAAAAAD8AAAC/AAAAAAAAAL8AAAC/AAAAAAAAAL8AAAA/AAAAAAAAAL8AAAC/AAAAAAAAAD8AAAC/AAAAAAAAAL8AAAA/AAAAAAAAAL8AAAA/AAAAAAAAAD8AAAC/AAAAAAAAAD8AAAA/\"},{\"byteLength\":96,\"name\":\"tex_coords_gate_MPP:X\",\"uri\":\"data:application/octet-stream;base64,AAAwPwAAwD4AACA/AADAPgAAMD8AAOA+AAAgPwAAwD4AACA/AADgPgAAMD8AAOA+AAAwPwAA4D4AADA/AADAPgAAID8AAOA+AAAgPwAA4D4AADA/AADAPgAAID8AAMA+\"},{\"byteLength\":96,\"name\":\"tex_coords_gate_MPP:Y\",\"uri\":\"data:application/octet-stream;base64,AAAwPwAA4D4AACA/AADgPgAAMD8AAAA/AAAgPwAA4D4AACA/AAAAPwAAMD8AAAA/AAAwPwAAAD8AADA/AADgPgAAID8AAAA/AAAgPwAAAD8AADA/AADgPgAAID8AAOA+\"},{\"byteLength\":96,\"name\":\"tex_coords_gate_MPP:Z\",\"uri\":\"data:application/octet-stream;base64,AAAwPwAAAD8AACA/AAAAPwAAMD8AABA/AAAgPwAAAD8AACA/AAAQPwAAMD8AABA/AAAwPwAAED8AADA/AAAAPwAAID8AABA/AAAgPwAAED8AADA/AAAAPwAAID8AAAA/\"},{\"byteLength\":96,\"name\":\"tex_coords_gate_DEPOLARIZE1\",\"uri\":\"data:application/octet-stream;base64,AACAPgAAED8AAEA+AAAQPwAAgD4AACA/AABAPgAAED8AAEA+AAAgPwAAgD4AACA/AACAPgAAID8AAIA+AAAQPwAAQD4AACA/AABAPgAAID8AAIA+AAAQPwAAQD4AABA/\"},{\"byteLength\":5640,\"name\":\"buf_scattered_lines\",\"uri\":\"data:application/octet-stream;base64,AAAAgAAAIMEAAACAAACAvgAAoMAAAACAAACAvgAAoMAAAACAAAAAgAAAAIAAAACAAAAAgAAAQMEAAACAAAAAgAAAIMEAAACAAAAAgAAAYMEAAACAAAAAgAAAQMEAAACAAAAAgAAAgMEAAACAAAAAgAAAYMEAAACAAAAAgAAAoMEAAACAAACAvgAAkMEAAACAAACAvgAAkMEAAACAAAAAgAAAgMEAAACAAAAAgAAAsMEAAACAAAAAgAAAoMEAAACAAAAAgAAA4MEAAACAAACAvgAAyMEAAACAAACAvgAAyMEAAACAAAAAgAAAsMEAAACAAAAAgAAA8MEAAACAAAAAgAAA4MEAAACAAAAAgAAAAMIAAACAAAAAgAAA8MEAAACAAACAvwAAAMEAAACAAACgvwAAgMAAAACAAACgvwAAgMAAAACAAACAvwAAAIAAAACAAACAvwAAIMEAAACAAACAvwAAAMEAAACAAACAvwAAQMEAAACAAACAvwAAIMEAAACAAACAvwAAYMEAAACAAACAvwAAQMEAAACAAACAvwAAgMEAAACAAACAvwAAYMEAAACAAACAvwAAoMEAAACAAACgvwAAkMEAAACAAACgvwAAkMEAAACAAACAvwAAgMEAAACAAACAvwAAsMEAAACAAACAvwAAoMEAAACAAACAvwAA0MEAAACAAACgvwAAwMEAAACAAACgvwAAwMEAAACAAACAvwAAsMEAAACAAACAvwAA4MEAAACAAACAvwAA0MEAAACAAACAvwAA8MEAAACAAACAvwAA4MEAAACAAACAvwAAAMIAAACAAACAvwAA8MEAAACAAAAAwAAAAMEAAACAAAAQwAAAoMAAAACAAAAQwAAAoMAAAACAAAAAwAAAAMAAAACAAAAAwAAAIMEAAACAAAAAwAAAAMEAAACAAAAAwAAAQMEAAACAAAAAwAAAIMEAAACAAAAAwAAAYMEAAACAAAAAwAAAQMEAAACAAAAAwAAAgMEAAACAAAAAwAAAYMEAAACAAAAAwAAAkMEAAACAAAAAwAAAgMEAAACAAAAAwAAAoMEAAACAAAAAwAAAkMEAAACAAAAAwAAAsMEAAACAAAAAwAAAoMEAAACAAAAAwAAAwMEAAACAAAAAwAAAsMEAAACAAAAAwAAA0MEAAACAAAAAwAAAwMEAAACAAAAAwAAA4MEAAACAAAAAwAAA0MEAAACAAAAAwAAA8MEAAACAAAAAwAAA4MEAAACAAAAAwAAAAMIAAACAAAAAwAAA8MEAAACAAABAwAAAIMEAAACAAABQwAAAwMAAAACAAABQwAAAwMAAAACAAABAwAAAAMAAAACAAABAwAAAQMEAAACAAABAwAAAIMEAAACAAABAwAAAYMEAAACAAABAwAAAQMEAAACAAABAwAAAgMEAAACAAABAwAAAYMEAAACAAABAwAAAkMEAAACAAABAwAAAgMEAAACAAABAwAAAoMEAAACAAABAwAAAkMEAAACAAABAwAAAsMEAAACAAABAwAAAoMEAAACAAABAwAAAwMEAAACAAABAwAAAsMEAAACAAABAwAAA4MEAAACAAABQwAAA0MEAAACAAABQwAAA0MEAAACAAABAwAAAwMEAAACAAABAwAAA8MEAAACAAABAwAAA4MEAAACAAABAwAAAAMIAAACAAABAwAAA8MEAAACAAACAwAAAYMEAAACAAACIwAAAEMEAAACAAACIwAAAEMEAAACAAACAwAAAgMAAAACAAACAwAAAgMEAAACAAACAwAAAYMEAAACAAACAwAAAkMEAAACAAACAwAAAgMEAAACAAACAwAAAoMEAAACAAACAwAAAkMEAAACAAACAwAAAsMEAAACAAACAwAAAoMEAAACAAACAwAAAwMEAAACAAACAwAAAsMEAAACAAACAwAAA0MEAAACAAACAwAAAwMEAAACAAACAwAAA8MEAAACAAACIwAAA4MEAAACAAACIwAAA4MEAAACAAACAwAAA0MEAAACAAACAwAAAAMIAAACAAACAwAAA8MEAAACAAACgwAAAAMEAAACAAACowAAAwMAAAACAAACowAAAwMAAAACAAACgwAAAgMAAAACAAACgwAAAYMEAAACAAACowAAAMMEAAACAAACowAAAMMEAAACAAACgwAAAAMEAAACAAACgwAAAgMEAAACAAACgwAAAYMEAAACAAACgwAAAkMEAAACAAACgwAAAgMEAAACAAACgwAAAoMEAAACAAACgwAAAkMEAAACAAACgwAAAsMEAAACAAACgwAAAoMEAAACAAACgwAAAwMEAAACAAACgwAAAsMEAAACAAACgwAAA0MEAAACAAACgwAAAwMEAAACAAACgwAAA4MEAAACAAACgwAAA0MEAAACAAACgwAAA8MEAAACAAACgwAAA4MEAAACAAACgwAAAAMIAAACAAACgwAAA8MEAAACAAADAwAAAAMEAAACAAADAwAAAwMAAAACAAADAwAAAIMEAAACAAADAwAAAAMEAAACAAADAwAAAQMEAAACAAADAwAAAIMEAAACAAADAwAAAYMEAAACAAADAwAAAQMEAAACAAADAwAAAkMEAAACAAADIwAAAgMEAAACAAADIwAAAgMEAAACAAADAwAAAYMEAAACAAADAwAAAoMEAAACAAADAwAAAkMEAAACAAADAwAAAwMEAAACAAADIwAAAsMEAAACAAADIwAAAsMEAAACAAADAwAAAoMEAAACAAADAwAAA0MEAAACAAADAwAAAwMEAAACAAADAwAAA4MEAAACAAADAwAAA0MEAAACAAADAwAAA8MEAAACAAADAwAAA4MEAAACAAADAwAAAAMIAAACAAADAwAAA8MEAAACAAADgwAAAIMEAAACAAADowAAAAMEAAACAAADowAAAAMEAAACAAADgwAAAwMAAAACAAADgwAAAQMEAAACAAADgwAAAIMEAAACAAADgwAAAYMEAAACAAADgwAAAQMEAAACAAADgwAAAkMEAAACAAADowAAAgMEAAACAAADowAAAgMEAAACAAADgwAAAYMEAAACAAADgwAAAoMEAAACAAADgwAAAkMEAAACAAADgwAAAwMEAAACAAADowAAAsMEAAACAAADowAAAsMEAAACAAADgwAAAoMEAAACAAADgwAAA0MEAAACAAADgwAAAwMEAAACAAADgwAAA8MEAAACAAADowAAA4MEAAACAAADowAAA4MEAAACAAADgwAAA0MEAAACAAADgwAAAAMIAAACAAADgwAAA8MEAAACAAAAAwQAA0MEAAACAAAAEwQAAiMEAAACAAAAEwQAAiMEAAACAAAAAwQAAAMEAAACAAAAAwQAA4MEAAACAAAAAwQAA0MEAAACAAAAAwQAA8MEAAACAAAAAwQAA4MEAAACAAAAgwQAAIMEAAACAAAAkwQAAoMAAAACAAAAkwQAAoMAAAACAAAAgwQAAAIAAAACAAAAgwQAAQMEAAACAAAAgwQAAIMEAAACAAAAgwQAAYMEAAACAAAAgwQAAQMEAAACAAAAgwQAAgMEAAACAAAAgwQAAYMEAAACAAAAgwQAAoMEAAACAAAAkwQAAkMEAAACAAAAkwQAAkMEAAACAAAAgwQAAgMEAAACAAAAgwQAAsMEAAACAAAAgwQAAoMEAAACAAAAgwQAA4MEAAACAAAAkwQAAyMEAAACAAAAkwQAAyMEAAACAAAAgwQAAsMEAAACAAAAgwQAA8MEAAACAAAAgwQAA4MEAAACAAAAgwQAAAMIAAACAAAAgwQAA8MEAAACAAAAwwQAAAMEAAACAAAA0wQAAgMAAAACAAAA0wQAAgMAAAACAAAAwwQAAAIAAAACAAAAwwQAAIMEAAACAAAAwwQAAAMEAAACAAAAwwQAAQMEAAACAAAAwwQAAIMEAAACAAAAwwQAAYMEAAACAAAAwwQAAQMEAAACAAAAwwQAAgMEAAACAAAAwwQAAYMEAAACAAAAwwQAAoMEAAACAAAA0wQAAkMEAAACAAAA0wQAAkMEAAACAAAAwwQAAgMEAAACAAAAwwQAAsMEAAACAAAAwwQAAoMEAAACAAAAwwQAA0MEAAACAAAA0wQAAwMEAAACAAAA0wQAAwMEAAACAAAAwwQAAsMEAAACAAAAwwQAA4MEAAACAAAAwwQAA0MEAAACAAAAwwQAA8MEAAACAAAAwwQAA4MEAAACAAAAwwQAAAMIAAACAAAAwwQAA8MEAAACAAABAwQAAAMEAAACAAABEwQAAoMAAAACAAABEwQAAoMAAAACAAABAwQAAAMAAAACAAABAwQAAIMEAAACAAABAwQAAAMEAAACAAABAwQAAQMEAAACAAABAwQAAIMEAAACAAABAwQAAYMEAAACAAABAwQAAQMEAAACAAABAwQAAgMEAAACAAABAwQAAYMEAAACAAABAwQAAkMEAAACAAABAwQAAgMEAAACAAABAwQAAoMEAAACAAABAwQAAkMEAAACAAABAwQAAsMEAAACAAABAwQAAoMEAAACAAABAwQAAwMEAAACAAABAwQAAsMEAAACAAABAwQAA0MEAAACAAABAwQAAwMEAAACAAABAwQAA4MEAAACAAABAwQAA0MEAAACAAABAwQAA8MEAAACAAABAwQAA4MEAAACAAABAwQAAAMIAAACAAABAwQAA8MEAAACAAABQwQAAIMEAAACAAABUwQAAwMAAAACAAABUwQAAwMAAAACAAABQwQAAAMAAAACAAABQwQAAQMEAAACAAABQwQAAIMEAAACAAABQwQAAYMEAAACAAABQwQAAQMEAAACAAABQwQAAgMEAAACAAABQwQAAYMEAAACAAABQwQAAkMEAAACAAABQwQAAgMEAAACAAABQwQAAoMEAAACAAABQwQAAkMEAAACAAABQwQAAsMEAAACAAABQwQAAoMEAAACAAABQwQAAwMEAAACAAABQwQAAsMEAAACAAABQwQAA4MEAAACAAABUwQAA0MEAAACAAABUwQAA0MEAAACAAABQwQAAwMEAAACAAABQwQAA8MEAAACAAABQwQAA4MEAAACAAABQwQAAAMIAAACAAABQwQAA8MEAAACAAABgwQAAYMEAAACAAABkwQAAEMEAAACAAABkwQAAEMEAAACAAABgwQAAgMAAAACAAABgwQAAgMEAAACAAABgwQAAYMEAAACAAABgwQAAkMEAAACAAABgwQAAgMEAAACAAABgwQAAoMEAAACAAABgwQAAkMEAAACAAABgwQAAsMEAAACAAABgwQAAoMEAAACAAABgwQAAwMEAAACAAABgwQAAsMEAAACAAABgwQAA0MEAAACAAABgwQAAwMEAAACAAABgwQAA8MEAAACAAABkwQAA4MEAAACAAABkwQAA4MEAAACAAABgwQAA0MEAAACAAABgwQAAAMIAAACAAABgwQAA8MEAAACAAABwwQAAAMEAAACAAAB0wQAAwMAAAACAAAB0wQAAwMAAAACAAABwwQAAgMAAAACAAABwwQAAYMEAAACAAAB0wQAAMMEAAACAAAB0wQAAMMEAAACAAABwwQAAAMEAAACAAABwwQAAgMEAAACAAABwwQAAYMEAAACAAABwwQAAkMEAAACAAABwwQAAgMEAAACAAABwwQAAoMEAAACAAABwwQAAkMEAAACAAABwwQAAsMEAAACAAABwwQAAoMEAAACAAABwwQAAwMEAAACAAABwwQAAsMEAAACAAABwwQAA0MEAAACAAABwwQAAwMEAAACAAABwwQAA4MEAAACAAABwwQAA0MEAAACAAABwwQAA8MEAAACAAABwwQAA4MEAAACAAABwwQAAAMIAAACAAABwwQAA8MEAAACAAACAwQAAAMEAAACAAACAwQAAwMAAAACAAACAwQAAIMEAAACAAACAwQAAAMEAAACAAACAwQAAQMEAAACAAACAwQAAIMEAAACAAACAwQAAYMEAAACAAACAwQAAQMEAAACAAACAwQAAkMEAAACAAACCwQAAgMEAAACAAACCwQAAgMEAAACAAACAwQAAYMEAAACAAACAwQAAoMEAAACAAACAwQAAkMEAAACAAACAwQAAwMEAAACAAACCwQAAsMEAAACAAACCwQAAsMEAAACAAACAwQAAoMEAAACAAACAwQAA0MEAAACAAACAwQAAwMEAAACAAACAwQAA4MEAAACAAACAwQAA0MEAAACAAACAwQAA8MEAAACAAACAwQAA4MEAAACAAACAwQAAAMIAAACAAACAwQAA8MEAAACAAACIwQAAIMEAAACAAACKwQAAAMEAAACAAACKwQAAAMEAAACAAACIwQAAwMAAAACAAACIwQAAQMEAAACAAACIwQAAIMEAAACAAACIwQAAYMEAAACAAACIwQAAQMEAAACAAACIwQAAkMEAAACAAACKwQAAgMEAAACAAACKwQAAgMEAAACAAACIwQAAYMEAAACAAACIwQAAoMEAAACAAACIwQAAkMEAAACAAACIwQAAwMEAAACAAACKwQAAsMEAAACAAACKwQAAsMEAAACAAACIwQAAoMEAAACAAACIwQAA0MEAAACAAACIwQAAwMEAAACAAACIwQAA8MEAAACAAACKwQAA4MEAAACAAACKwQAA4MEAAACAAACIwQAA0MEAAACAAACIwQAAAMIAAACAAACIwQAA8MEAAACAAACQwQAA0MEAAACAAACSwQAAiMEAAACAAACSwQAAiMEAAACAAACQwQAAAMEAAACAAACQwQAA4MEAAACAAACQwQAA0MEAAACAAACQwQAA8MEAAACAAACQwQAA4MEAAACAAACAPwAAAIAAAACAAACYwQAAAIAAAACAAACAPwAAAMAAAACAAACYwQAAAMAAAACAAACAPwAAgMAAAACAAACYwQAAgMAAAACAAACAPwAAwMAAAACAAACYwQAAwMAAAACAAACAPwAAAMEAAACAAACYwQAAAMEAAACAAACAPwAAIMEAAACAAACYwQAAIMEAAACAAACAPwAAQMEAAACAAACYwQAAQMEAAACAAACAPwAAYMEAAACAAACYwQAAYMEAAACAAACAPwAAgMEAAACAAACYwQAAgMEAAACAAACAPwAAkMEAAACAAACYwQAAkMEAAACAAACAPwAAoMEAAACAAACYwQAAoMEAAACAAACAPwAAsMEAAACAAACYwQAAsMEAAACAAACAPwAAwMEAAACAAACYwQAAwMEAAACAAACAPwAA0MEAAACAAACYwQAA0MEAAACAAACAPwAA4MEAAACAAACYwQAA4MEAAACAAACAPwAA8MEAAACAAACYwQAA8MEAAACAAACAPwAAAMIAAACAAACYwQAAAMIAAACAAACAPwAACMIAAACAAACYwQAACMIAAACAAACAPwAAEMIAAACAAACYwQAAEMIAAACAAACAPwAAGMIAAACAAACYwQAAGMIAAACAAACAPwAAIMIAAACAAACYwQAAIMIAAACA\"},{\"byteLength\":72,\"name\":\"buf_red_scattered_lines\",\"uri\":\"data:application/octet-stream;base64,AAAAAAAAAEAAAACAAABAwAAAAEAAAACAAAAgwAAAwD8AAACAAABAwAAAAEAAAACAAAAgwAAAIEAAAACAAABAwAAAAEAAAACA\"}],\"images\":[{\"uri\":\"\"}],\"materials\":[{\"doubleSided\":false,\"pbrMetallicRoughness\":{\"baseColorFactor\":[1,1,1,1],\"baseColorTexture\":{\"index\":0,\"texCoord\":0},\"metallicFactor\":0.4,\"roughnessFactor\":0.5}},{\"doubleSided\":true,\"pbrMetallicRoughness\":{\"baseColorFactor\":[0,0,0,1],\"metallicFactor\":1,\"roughnessFactor\":1}},{\"doubleSided\":true,\"pbrMetallicRoughness\":{\"baseColorFactor\":[1,0,0,1],\"metallicFactor\":1,\"roughnessFactor\":1}}],\"meshes\":[{\"primitives\":[{\"attributes\":{\"POSITION\":0,\"TEXCOORD_0\":1},\"material\":0,\"mode\":4}]},{\"primitives\":[{\"attributes\":{\"POSITION\":0,\"TEXCOORD_0\":2},\"material\":0,\"mode\":4}]},{\"primitives\":[{\"attributes\":{\"POSITION\":0,\"TEXCOORD_0\":3},\"material\":0,\"mode\":4}]},{\"primitives\":[{\"attributes\":{\"POSITION\":0,\"TEXCOORD_0\":4},\"material\":0,\"mode\":4}]},{\"primitives\":[{\"attributes\":{\"POSITION\":5},\"material\":1,\"mode\":1}]},{\"primitives\":[{\"attributes\":{\"POSITION\":6},\"material\":2,\"mode\":1}]}],\"nodes\":[{\"mesh\":0,\"translation\":[-0,-0,-0]},{\"mesh\":1,\"translation\":[-0,-10,-0]},{\"mesh\":1,\"translation\":[-0,-12,-0]},{\"mesh\":2,\"translation\":[-0,-14,-0]},{\"mesh\":0,\"translation\":[-0,-16,-0]},{\"mesh\":1,\"translation\":[-0,-20,-0]},{\"mesh\":1,\"translation\":[-0,-22,-0]},{\"mesh\":1,\"translation\":[-0,-28,-0]},{\"mesh\":0,\"translation\":[-0,-30,-0]},{\"mesh\":1,\"translation\":[-0,-32,-0]},{\"mesh\":2,\"translation\":[-1,-0,-0]},{\"mesh\":2,\"translation\":[-1,-8,-0]},{\"mesh\":0,\"translation\":[-1,-10,-0]},{\"mesh\":0,\"translation\":[-1,-12,-0]},{\"mesh\":1,\"translation\":[-1,-14,-0]},{\"mesh\":2,\"translation\":[-1,-16,-0]},{\"mesh\":0,\"translation\":[-1,-20,-0]},{\"mesh\":0,\"translation\":[-1,-22,-0]},{\"mesh\":2,\"translation\":[-1,-26,-0]},{\"mesh\":1,\"translation\":[-1,-28,-0]},{\"mesh\":0,\"translation\":[-1,-30,-0]},{\"mesh\":0,\"translation\":[-1,-32,-0]},{\"mesh\":0,\"translation\":[-2,-2,-0]},{\"mesh\":2,\"translation\":[-2,-8,-0]},{\"mesh\":1,\"translation\":[-2,-10,-0]},{\"mesh\":0,\"translation\":[-2,-12,-0]},{\"mesh\":2,\"translation\":[-2,-14,-0]},{\"mesh\":0,\"translation\":[-2,-16,-0]},{\"mesh\":0,\"translation\":[-2,-18,-0]},{\"mesh\":2,\"translation\":[-2,-20,-0]},{\"mesh\":0,\"translation\":[-2,-22,-0]},{\"mesh\":1,\"translation\":[-2,-24,-0]},{\"mesh\":2,\"translation\":[-2,-26,-0]},{\"mesh\":0,\"translation\":[-2,-28,-0]},{\"mesh\":2,\"translation\":[-2,-30,-0]},{\"mesh\":0,\"translation\":[-2,-32,-0]},{\"mesh\":2,\"translation\":[-3,-2,-0]},{\"mesh\":0,\"translation\":[-3,-10,-0]},{\"mesh\":2,\"translation\":[-3,-12,-0]},{\"mesh\":1,\"translation\":[-3,-14,-0]},{\"mesh\":2,\"translation\":[-3,-16,-0]},{\"mesh\":2,\"translation\":[-3,-18,-0]},{\"mesh\":1,\"translation\":[-3,-20,-0]},{\"mesh\":2,\"translation\":[-3,-22,-0]},{\"mesh\":0,\"translation\":[-3,-24,-0]},{\"mesh\":0,\"translation\":[-3,-28,-0]},{\"mesh\":2,\"translation\":[-3,-30,-0]},{\"mesh\":2,\"translation\":[-3,-32,-0]},{\"mesh\":0,\"translation\":[-4,-4,-0]},{\"mesh\":1,\"translation\":[-4,-14,-0]},{\"mesh\":1,\"translation\":[-4,-16,-0]},{\"mesh\":0,\"translation\":[-4,-18,-0]},{\"mesh\":2,\"translation\":[-4,-20,-0]},{\"mesh\":0,\"translation\":[-4,-22,-0]},{\"mesh\":0,\"translation\":[-4,-24,-0]},{\"mesh\":1,\"translation\":[-4,-26,-0]},{\"mesh\":0,\"translation\":[-4,-30,-0]},{\"mesh\":1,\"translation\":[-4,-32,-0]},{\"mesh\":2,\"translation\":[-5,-4,-0]},{\"mesh\":2,\"translation\":[-5,-8,-0]},{\"mesh\":0,\"translation\":[-5,-14,-0]},{\"mesh\":0,\"translation\":[-5,-16,-0]},{\"mesh\":2,\"translation\":[-5,-18,-0]},{\"mesh\":1,\"translation\":[-5,-20,-0]},{\"mesh\":2,\"translation\":[-5,-22,-0]},{\"mesh\":2,\"translation\":[-5,-24,-0]},{\"mesh\":1,\"translation\":[-5,-26,-0]},{\"mesh\":2,\"translation\":[-5,-28,-0]},{\"mesh\":0,\"translation\":[-5,-30,-0]},{\"mesh\":0,\"translation\":[-5,-32,-0]},{\"mesh\":0,\"translation\":[-6,-6,-0]},{\"mesh\":2,\"translation\":[-6,-8,-0]},{\"mesh\":1,\"translation\":[-6,-10,-0]},{\"mesh\":2,\"translation\":[-6,-12,-0]},{\"mesh\":0,\"translation\":[-6,-14,-0]},{\"mesh\":1,\"translation\":[-6,-18,-0]},{\"mesh\":1,\"translation\":[-6,-20,-0]},{\"mesh\":0,\"translation\":[-6,-24,-0]},{\"mesh\":1,\"translation\":[-6,-26,-0]},{\"mesh\":2,\"translation\":[-6,-28,-0]},{\"mesh\":0,\"translation\":[-6,-30,-0]},{\"mesh\":0,\"translation\":[-6,-32,-0]},{\"mesh\":2,\"translation\":[-7,-6,-0]},{\"mesh\":0,\"translation\":[-7,-10,-0]},{\"mesh\":1,\"translation\":[-7,-12,-0]},{\"mesh\":2,\"translation\":[-7,-14,-0]},{\"mesh\":0,\"translation\":[-7,-18,-0]},{\"mesh\":0,\"translation\":[-7,-20,-0]},{\"mesh\":2,\"translation\":[-7,-24,-0]},{\"mesh\":2,\"translation\":[-7,-26,-0]},{\"mesh\":1,\"translation\":[-7,-30,-0]},{\"mesh\":2,\"translation\":[-7,-32,-0]},{\"mesh\":0,\"translation\":[-8,-8,-0]},{\"mesh\":0,\"translation\":[-8,-26,-0]},{\"mesh\":0,\"translation\":[-8,-28,-0]},{\"mesh\":2,\"translation\":[-8,-30,-0]},{\"mesh\":0,\"translation\":[-8,-34,-0]},{\"mesh\":0,\"translation\":[-8,-36,-0]},{\"mesh\":0,\"translation\":[-8,-38,-0]},{\"mesh\":0,\"translation\":[-8,-40,-0]},{\"mesh\":3,\"translation\":[-8,-0,-0]},{\"mesh\":3,\"translation\":[-8,-2,-0]},{\"mesh\":3,\"translation\":[-8,-4,-0]},{\"mesh\":3,\"translation\":[-8,-6,-0]},{\"mesh\":3,\"translation\":[-9,-8,-0]},{\"mesh\":3,\"translation\":[-9,-10,-0]},{\"mesh\":3,\"translation\":[-9,-12,-0]},{\"mesh\":3,\"translation\":[-9,-14,-0]},{\"mesh\":3,\"translation\":[-9,-16,-0]},{\"mesh\":3,\"translation\":[-9,-18,-0]},{\"mesh\":3,\"translation\":[-9,-20,-0]},{\"mesh\":3,\"translation\":[-9,-22,-0]},{\"mesh\":3,\"translation\":[-9,-24,-0]},{\"mesh\":3,\"translation\":[-9,-26,-0]},{\"mesh\":3,\"translation\":[-9,-28,-0]},{\"mesh\":3,\"translation\":[-9,-30,-0]},{\"mesh\":3,\"translation\":[-9,-32,-0]},{\"mesh\":3,\"translation\":[-9,-34,-0]},{\"mesh\":3,\"translation\":[-9,-36,-0]},{\"mesh\":3,\"translation\":[-9,-38,-0]},{\"mesh\":3,\"translation\":[-9,-40,-0]},{\"mesh\":0,\"translation\":[-10,-0,-0]},{\"mesh\":1,\"translation\":[-10,-10,-0]},{\"mesh\":1,\"translation\":[-10,-12,-0]},{\"mesh\":2,\"translation\":[-10,-14,-0]},{\"mesh\":0,\"translation\":[-10,-16,-0]},{\"mesh\":1,\"translation\":[-10,-20,-0]},{\"mesh\":1,\"translation\":[-10,-22,-0]},{\"mesh\":1,\"translation\":[-10,-28,-0]},{\"mesh\":0,\"translation\":[-10,-30,-0]},{\"mesh\":1,\"translation\":[-10,-32,-0]},{\"mesh\":2,\"translation\":[-11,-0,-0]},{\"mesh\":2,\"translation\":[-11,-8,-0]},{\"mesh\":0,\"translation\":[-11,-10,-0]},{\"mesh\":0,\"translation\":[-11,-12,-0]},{\"mesh\":1,\"translation\":[-11,-14,-0]},{\"mesh\":2,\"translation\":[-11,-16,-0]},{\"mesh\":0,\"translation\":[-11,-20,-0]},{\"mesh\":0,\"translation\":[-11,-22,-0]},{\"mesh\":2,\"translation\":[-11,-26,-0]},{\"mesh\":1,\"translation\":[-11,-28,-0]},{\"mesh\":0,\"translation\":[-11,-30,-0]},{\"mesh\":0,\"translation\":[-11,-32,-0]},{\"mesh\":0,\"translation\":[-12,-2,-0]},{\"mesh\":2,\"translation\":[-12,-8,-0]},{\"mesh\":1,\"translation\":[-12,-10,-0]},{\"mesh\":0,\"translation\":[-12,-12,-0]},{\"mesh\":2,\"translation\":[-12,-14,-0]},{\"mesh\":0,\"translation\":[-12,-16,-0]},{\"mesh\":0,\"translation\":[-12,-18,-0]},{\"mesh\":2,\"translation\":[-12,-20,-0]},{\"mesh\":0,\"translation\":[-12,-22,-0]},{\"mesh\":1,\"translation\":[-12,-24,-0]},{\"mesh\":2,\"translation\":[-12,-26,-0]},{\"mesh\":0,\"translation\":[-12,-28,-0]},{\"mesh\":2,\"translation\":[-12,-30,-0]},{\"mesh\":0,\"translation\":[-12,-32,-0]},{\"mesh\":2,\"translation\":[-13,-2,-0]},{\"mesh\":0,\"translation\":[-13,-10,-0]},{\"mesh\":2,\"translation\":[-13,-12,-0]},{\"mesh\":1,\"translation\":[-13,-14,-0]},{\"mesh\":2,\"translation\":[-13,-16,-0]},{\"mesh\":2,\"translation\":[-13,-18,-0]},{\"mesh\":1,\"translation\":[-13,-20,-0]},{\"mesh\":2,\"translation\":[-13,-22,-0]},{\"mesh\":0,\"translation\":[-13,-24,-0]},{\"mesh\":0,\"translation\":[-13,-28,-0]},{\"mesh\":2,\"translation\":[-13,-30,-0]},{\"mesh\":2,\"translation\":[-13,-32,-0]},{\"mesh\":0,\"translation\":[-14,-4,-0]},{\"mesh\":1,\"translation\":[-14,-14,-0]},{\"mesh\":1,\"translation\":[-14,-16,-0]},{\"mesh\":0,\"translation\":[-14,-18,-0]},{\"mesh\":2,\"translation\":[-14,-20,-0]},{\"mesh\":0,\"translation\":[-14,-22,-0]},{\"mesh\":0,\"translation\":[-14,-24,-0]},{\"mesh\":1,\"translation\":[-14,-26,-0]},{\"mesh\":0,\"translation\":[-14,-30,-0]},{\"mesh\":1,\"translation\":[-14,-32,-0]},{\"mesh\":2,\"translation\":[-15,-4,-0]},{\"mesh\":2,\"translation\":[-15,-8,-0]},{\"mesh\":0,\"translation\":[-15,-14,-0]},{\"mesh\":0,\"translation\":[-15,-16,-0]},{\"mesh\":2,\"translation\":[-15,-18,-0]},{\"mesh\":1,\"translation\":[-15,-20,-0]},{\"mesh\":2,\"translation\":[-15,-22,-0]},{\"mesh\":2,\"translation\":[-15,-24,-0]},{\"mesh\":1,\"translation\":[-15,-26,-0]},{\"mesh\":2,\"translation\":[-15,-28,-0]},{\"mesh\":0,\"translation\":[-15,-30,-0]},{\"mesh\":0,\"translation\":[-15,-32,-0]},{\"mesh\":0,\"translation\":[-16,-6,-0]},{\"mesh\":2,\"translation\":[-16,-8,-0]},{\"mesh\":1,\"translation\":[-16,-10,-0]},{\"mesh\":2,\"translation\":[-16,-12,-0]},{\"mesh\":0,\"translation\":[-16,-14,-0]},{\"mesh\":1,\"translation\":[-16,-18,-0]},{\"mesh\":1,\"translation\":[-16,-20,-0]},{\"mesh\":0,\"translation\":[-16,-24,-0]},{\"mesh\":1,\"translation\":[-16,-26,-0]},{\"mesh\":2,\"translation\":[-16,-28,-0]},{\"mesh\":0,\"translation\":[-16,-30,-0]},{\"mesh\":0,\"translation\":[-16,-32,-0]},{\"mesh\":2,\"translation\":[-17,-6,-0]},{\"mesh\":0,\"translation\":[-17,-10,-0]},{\"mesh\":1,\"translation\":[-17,-12,-0]},{\"mesh\":2,\"translation\":[-17,-14,-0]},{\"mesh\":0,\"translation\":[-17,-18,-0]},{\"mesh\":0,\"translation\":[-17,-20,-0]},{\"mesh\":2,\"translation\":[-17,-24,-0]},{\"mesh\":2,\"translation\":[-17,-26,-0]},{\"mesh\":1,\"translation\":[-17,-30,-0]},{\"mesh\":2,\"translation\":[-17,-32,-0]},{\"mesh\":0,\"translation\":[-18,-8,-0]},{\"mesh\":0,\"translation\":[-18,-26,-0]},{\"mesh\":0,\"translation\":[-18,-28,-0]},{\"mesh\":2,\"translation\":[-18,-30,-0]},{\"mesh\":0,\"translation\":[-18,-34,-0]},{\"mesh\":0,\"translation\":[-18,-36,-0]},{\"mesh\":0,\"translation\":[-18,-38,-0]},{\"mesh\":0,\"translation\":[-18,-40,-0]},{\"mesh\":4,\"translation\":[0,0,0]},{\"mesh\":5,\"translation\":[0,0,0]}],\"samplers\":[{\"magFilter\":9728,\"minFilter\":9728,\"wrapS\":33071,\"wrapT\":33071}],\"scene\":0,\"scenes\":[{\"nodes\":[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222]}],\"textures\":[{\"sampler\":0,\"source\":0}]}" ] + }, + "execution_count": 19, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Example QEC code:\n", + "text = '''[1 0 0 0 0 1 1 0 1 0 1 1 0 0 1 1 1 0 0 0 0|0 0 0 0 0 1 1 1 0 0 1 1 0 0 1 0 1 0 0 0 0]\n", + " [0 0 0 0 0 1 1 1 0 0 1 1 0 0 1 1 1 0 0 0 0|1 0 0 0 1 0 0 1 1 0 0 0 0 1 1 0 0 0 0 0 0]\n", + " [0 1 0 0 0 1 1 0 1 1 0 1 1 0 1 0 1 0 0 0 0|0 0 0 0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 0 0 0]\n", + " [0 0 0 0 0 1 0 1 0 0 1 0 1 0 1 0 0 0 0 0 0|0 1 0 0 0 0 1 1 1 1 1 1 0 0 0 1 1 0 0 0 0]\n", + " [0 0 1 0 0 0 0 1 1 1 0 1 1 1 0 1 1 0 0 0 0|0 0 0 0 0 0 0 1 1 0 1 0 0 1 0 0 1 0 0 0 0]\n", + " [0 0 0 0 0 0 0 1 1 0 1 0 0 1 0 1 1 0 0 0 0|0 0 1 0 1 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0]\n", + " [0 0 0 1 0 1 0 1 0 1 1 0 1 1 0 1 1 0 0 0 0|0 0 0 0 1 1 1 0 0 1 1 0 0 1 1 0 0 0 0 0 0]\n", + " [0 0 0 0 0 1 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0|0 0 0 1 0 0 1 1 0 0 0 0 1 1 0 1 1 0 0 0 0]\n", + " [0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0]\n", + " [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]\n", + " [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]\n", + " [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]\n", + " [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]'''\n", + "\n", + "H = parse_symplectic_matrix(text)\n", + "\n", + "LX, LZ = stabilizer_code_logical_operators(check_matrix=H)\n", + "\n", + "circuit = code_capacity_circuit(\n", + " stabilizers=H,\n", + " x_logicals=LX,\n", + " z_logicals=LZ,\n", + " p=0.025\n", + ")\n", + "\n", + "circuit.diagram('timeline-3d')" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "cK2Mf2fTCAWO" + }, + "source": [ + "## Computing minimum distance with Stim + SAT Solver" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" }, + "id": "ZdVK4Dq1Bp1B", + "outputId": "61d8eb3e-7274-41c0-bd6b-af3e3ac75d54" + }, + "outputs": [ { - "cell_type": "code", - "execution_count": null, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "collapsed": true, - "id": "awJYxAOMTc3t", - "outputId": "2da93975-0ede-41cb-897b-23b7da9dca93" - }, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "Tesseract: num_errors / num_shots = 51 / 100 \n", - " time 16.068939685821533 s\n" - ] - } - ], - "source": [ - "import tesseract_decoder\n", - "import tesseract_decoder.tesseract as tesseract\n", - "import numpy as np\n", - "import time\n", - "import contextlib\n", - "import io\n", - "\n", - "num_shots = 100\n", - "dem = circuit.detector_error_model()\n", - "dets, obs = circuit.compile_detector_sampler().sample(num_shots, separate_observables=True)\n", - "\n", - "tesseract_config1 = tesseract.TesseractConfig(\n", - " dem=dem,\n", - " pqlimit=10000,\n", - " verbose=False,\n", - " create_visualization=True,\n", - " det_orders=tesseract_decoder.utils.build_det_orders(\n", - " dem, num_det_orders=2, det_order_bfs=True, seed=2384753),\n", - ")\n", - "\n", - "tesseract_dec = tesseract.TesseractDecoder(tesseract_config1)\n", - "\n", - "# Run and time the Tesseract decoder\n", - "num_errors = 0\n", - "start_time = time.time()\n", - "for shot in range(len(dets)):\n", - " obs_predicted = tesseract_dec.decode(dets[shot])\n", - " obs_actual = obs[shot]\n", - " if np.any(obs_predicted != obs_actual):\n", - " num_errors += 1\n", - "end_time = time.time()\n", - "print(f'Tesseract: num_errors / num_shots = {num_errors} / {len(dets)} \\n time {end_time - start_time} s')\n", - "\n", - "# Print with the visualizer\n", - "tesseract_dec.visualizer.write('/content/tmp.txt')" - ] + "name": "stdout", + "output_type": "stream", + "text": [ + "Distance of code: 4\n" + ] + } + ], + "source": [ + "# Note: this maxSAT solver only works for very small codes.\n", + "# For larger codes, use the solvers at https://maxsat-evaluations.github.io/2024/\n", + "from pysat.examples.rc2 import RC2\n", + "from pysat.formula import WCNF\n", + "\n", + "wcnf = WCNF(from_string=circuit.shortest_error_sat_problem())\n", + "\n", + "with RC2(wcnf) as rc2:\n", + " rc2.compute()\n", + " print(f'Distance of code: {rc2.cost}')" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "GQjQkhD4C4rK" + }, + "source": [ + "## Sample new data for this stabilizer code" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "7iOIl7vjC3uG" + }, + "outputs": [], + "source": [ + "num_shots = 1000\n", + "dem = circuit.detector_error_model()\n", + "sampler = circuit.compile_detector_sampler(seed=23845386)\n", + "dets, obs = sampler.sample(num_shots, separate_observables=True)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "63xjagbBCj8x" + }, + "source": [ + "## Decode code capacity noise data with ILP and Tesseract" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" }, + "id": "IM7W37cHaKfT", + "outputId": "3f2f7666-9586-4cb6-b422-1d295bf8747c" + }, + "outputs": [ { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "MuQb8XQlpvU6" - }, - "outputs": [], - "source": [ - "!cat tmp.txt | grep -E 'Error|Detector|activated_errors|activated_detectors' > logfile.txt" - ] + "name": "stdout", + "output_type": "stream", + "text": [ + "Tesseract Decoder Stats:\n", + " Number of Errors / num_shots: 60 / 1000\n", + " Time: 0.2323 s\n", + "\n", + "ILP: num_errors / num_shots = 61 / 1000 time 11.911995649337769 s\n" + ] + } + ], + "source": [ + "tesseract_config = tesseract_decoder.tesseract.TesseractConfig(\n", + " dem=dem,\n", + " pqlimit=1000,\n", + " det_beam=10,\n", + " det_orders=tesseract_decoder.utils.build_det_orders(\n", + " dem, num_det_orders=10, det_order_bfs=True, seed=2384753),\n", + " # no_revisit_dets=True,\n", + ")\n", + "\n", + "results = run_tesseract_decoder(tesseract_config.compile_decoder(), dets, obs)\n", + "print_results(results)\n", + "\n", + "# Run and time ILP decoder\n", + "ilp_dec = tesseract_decoder.simplex.SimplexConfig(\n", + " dem=dem, parallelize=True).compile_decoder()\n", + "start_time = time.time()\n", + "obs_predicted = ilp_dec.decode_batch(dets)\n", + "num_errors_ilp = np.sum(np.any(obs_predicted != obs, axis=1))\n", + "end_time = time.time()\n", + "print(\n", + " f'ILP: num_errors / num_shots = {num_errors_ilp} / {len(dets)} time {end_time - start_time} s')" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "K0QvSpXQIwgf" + }, + "source": [ + "# Visualize the Tesseract's decoding\n", + "For visualizing tesseract we use the `verbose` flag to get the decoding information.\n", + "## [Link to visualizer](https://quantumlib.github.io/tesseract-decoder/viz/)\n", + "* `verbose` - A boolean flag that, when `True`, enables verbose logging. This is useful for debugging and understanding the decoder's internal behavior, as it will print information about the search process." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" }, + "id": "DzWRL1cNjyix", + "outputId": "4a3df084-499f-43b2-97ba-1874b697f06a" + }, + "outputs": [ { - "cell_type": "code", - "execution_count": null, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "WExtQ3x4j_Md", - "outputId": "b8ad37c9-4d69-4abd-f176-71dc76042687" - }, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "✅ JSON written to logfile.json with 10215 frames and 23994 error coords.\n" - ] - } - ], - "source": [ - "!python tesseract-decoder/viz/to_json.py logfile.txt -o logfile.json" - ] + "name": "stdout", + "output_type": "stream", + "text": [ + "Cloning into 'tesseract-decoder'...\n", + "remote: Enumerating objects: 2086, done.\u001b[K\n", + "remote: Counting objects: 100% (606/606), done.\u001b[K\n", + "remote: Compressing objects: 100% (304/304), done.\u001b[K\n", + "remote: Total 2086 (delta 493), reused 317 (delta 302), pack-reused 1480 (from 3)\u001b[K\n", + "Receiving objects: 100% (2086/2086), 3.17 MiB | 8.58 MiB/s, done.\n", + "Resolving deltas: 100% (1667/1667), done.\n" + ] + } + ], + "source": [ + "# Remove the existing directory and its contents\n", + "!rm -rf tesseract-decoder\n", + "# Clone the repository\n", + "!git clone https://github.com/quantumlib/tesseract-decoder.git" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" }, + "id": "ZNKaqvN8dE-X", + "outputId": "8d80e5bc-c30b-469d-d9cd-452d89604c30" + }, + "outputs": [ { - "cell_type": "markdown", - "metadata": { - "id": "HSdTwXBINjkH" - }, - "source": [ - "copy the json file and upload it [here to see the visualizaion](https://quantumlib.github.io/tesseract-decoder/viz/)" - ] + "name": "stdout", + "output_type": "stream", + "text": [ + " % Total % Received % Xferd Average Speed Time Time Time Current\n", + " Dload Upload Total Spent Left Speed\n", + "\r", + " 0 0 0 0 0 0 0 0 --:--:-- --:--:-- --:--:-- 0\r", + "100 44154 100 44154 0 0 230k 0 --:--:-- --:--:-- --:--:-- 230k\n" + ] + } + ], + "source": [ + "!curl 'https://raw.githubusercontent.com/quantumlib/tesseract-decoder/refs/heads/main/testdata/colorcodes/r%3D9%2Cd%3D9%2Cp%3D0.002%2Cnoise%3Dsi1000%2Cc%3Dsuperdense_color_code_X%2Cq%3D121%2Cgates%3Dcz.stim' > d9r9colorcode_p002.stim\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "Cdo-oenEdF1-" + }, + "outputs": [], + "source": [ + "import stim\n", + "\n", + "circuit = stim.Circuit.from_file('d9r9colorcode_p002.stim')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" }, - { - "cell_type": "markdown", - "metadata": { - "id": "QehTGJcB7-Ca" - }, - "source": [ - "# Accuracy Comparison between Tesseract and ILP" - ] + "collapsed": true, + "id": "awJYxAOMTc3t", + "jupyter": { + "outputs_hidden": true }, + "outputId": "2da93975-0ede-41cb-897b-23b7da9dca93" + }, + "outputs": [ { - "cell_type": "code", - "execution_count": null, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" - }, - "id": "GOY0hHYx79HC", - "outputId": "c73ea4f6-ea5b-42c4-8271-fe6320c790ab" - }, - "outputs": [ - { - "output_type": "stream", - "name": "stdout", - "text": [ - "Tesseract: num_errors / num_shots = 2 / 1000\n", - "num_errors_tesseract_no_error_ilp = 0\n", - "time 25.137925148010254 s\n" - ] - } - ], - "source": [ - "circuit = stim.Circuit.from_file('d5r5colorcode_p001.stim')\n", - "dem = circuit.detector_error_model()\n", - "\n", - "tesseract_dec = tesseract_decoder.tesseract.TesseractConfig(\n", - " dem=dem,\n", - " pqlimit=10000,\n", - " det_beam=5,\n", - " det_orders=tesseract_decoder.utils.build_det_orders(\n", - " dem, num_det_orders=10, det_order_bfs=True, seed=2384753),\n", - " no_revisit_dets=True,\n", - ").compile_decoder()\n", - "\n", - "ilp_dec = tesseract_decoder.simplex.SimplexConfig(\n", - " dem=dem, parallelize=True).compile_decoder()\n", - "\n", - "num_shots = 1000\n", - "dets, obs = circuit.compile_detector_sampler(seed=237435).sample(num_shots, separate_observables=True)\n", - "\n", - "num_errors_tesseract = 0\n", - "num_errors_tesseract_no_error_ilp = 0\n", - "start_time = time.time()\n", - "for shot in range(len(dets)):\n", - " obs_predicted = tesseract_dec.decode(dets[shot])\n", - " obs_actual = obs[shot]\n", - " if np.any(obs_predicted != obs_actual):\n", - " num_errors_tesseract += 1\n", - " obs_predicted_ilp = ilp_dec.decode(dets[shot])\n", - " if not np.any(obs_predicted_ilp != obs_actual):\n", - " num_errors_tesseract_no_error_ilp += 1\n", - "\n", - "end_time = time.time()\n", - "print(f'Tesseract: num_errors / num_shots = {num_errors_tesseract} / {len(dets)}')\n", - "print(f'num_errors_tesseract_no_error_ilp = {num_errors_tesseract_no_error_ilp}')\n", - "print(f'time {end_time - start_time} s')" - ] + "name": "stdout", + "output_type": "stream", + "text": [ + "Tesseract: num_errors / num_shots = 51 / 100 \n", + " time 16.068939685821533 s\n" + ] + } + ], + "source": [ + "import tesseract_decoder\n", + "import tesseract_decoder.tesseract as tesseract\n", + "import numpy as np\n", + "import time\n", + "import contextlib\n", + "import io\n", + "\n", + "num_shots = 100\n", + "dem = circuit.detector_error_model()\n", + "dets, obs = circuit.compile_detector_sampler().sample(num_shots, separate_observables=True)\n", + "\n", + "tesseract_config1 = tesseract.TesseractConfig(\n", + " dem=dem,\n", + " pqlimit=10000,\n", + " verbose=False,\n", + " create_visualization=True,\n", + " det_orders=tesseract_decoder.utils.build_det_orders(\n", + " dem, num_det_orders=2, det_order_bfs=True, seed=2384753),\n", + ")\n", + "\n", + "tesseract_dec = tesseract.TesseractDecoder(tesseract_config1)\n", + "\n", + "# Run and time the Tesseract decoder\n", + "num_errors = 0\n", + "start_time = time.time()\n", + "for shot in range(len(dets)):\n", + " obs_predicted = tesseract_dec.decode(dets[shot])\n", + " obs_actual = obs[shot]\n", + " if np.any(obs_predicted != obs_actual):\n", + " num_errors += 1\n", + "end_time = time.time()\n", + "print(f'Tesseract: num_errors / num_shots = {num_errors} / {len(dets)} \\n time {end_time - start_time} s')\n", + "\n", + "# Print with the visualizer\n", + "tesseract_dec.visualizer.write('/content/tmp.txt')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "MuQb8XQlpvU6" + }, + "outputs": [], + "source": [ + "!cat tmp.txt | grep -E 'Error|Detector|activated_errors|activated_detectors' > logfile.txt" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" }, + "id": "WExtQ3x4j_Md", + "outputId": "b8ad37c9-4d69-4abd-f176-71dc76042687" + }, + "outputs": [ { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "44xKnbKb2y_b" - }, - "outputs": [], - "source": [] + "name": "stdout", + "output_type": "stream", + "text": [ + "✅ JSON written to logfile.json with 10215 frames and 23994 error coords.\n" + ] } - ], - "metadata": { + ], + "source": [ + "!python tesseract-decoder/viz/to_json.py logfile.txt -o logfile.json" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "HSdTwXBINjkH" + }, + "source": [ + "copy the json file and upload it [here to see the visualizaion](https://quantumlib.github.io/tesseract-decoder/viz/)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "QehTGJcB7-Ca" + }, + "source": [ + "# Accuracy Comparison between Tesseract and ILP" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { "colab": { - "provenance": [] - }, - "kernelspec": { - "display_name": "Python 3", - "name": "python3" + "base_uri": "https://localhost:8080/" }, - "language_info": { - "name": "python" + "id": "GOY0hHYx79HC", + "outputId": "c73ea4f6-ea5b-42c4-8271-fe6320c790ab" + }, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Tesseract: num_errors / num_shots = 2 / 1000\n", + "num_errors_tesseract_no_error_ilp = 0\n", + "time 25.137925148010254 s\n" + ] } + ], + "source": [ + "circuit = stim.Circuit.from_file('d5r5colorcode_p001.stim')\n", + "dem = circuit.detector_error_model()\n", + "\n", + "tesseract_dec = tesseract_decoder.tesseract.TesseractConfig(\n", + " dem=dem,\n", + " pqlimit=10000,\n", + " det_beam=5,\n", + " det_orders=tesseract_decoder.utils.build_det_orders(\n", + " dem, num_det_orders=10, det_order_bfs=True, seed=2384753),\n", + " no_revisit_dets=True,\n", + ").compile_decoder()\n", + "\n", + "ilp_dec = tesseract_decoder.simplex.SimplexConfig(\n", + " dem=dem, parallelize=True).compile_decoder()\n", + "\n", + "num_shots = 1000\n", + "dets, obs = circuit.compile_detector_sampler(seed=237435).sample(num_shots, separate_observables=True)\n", + "\n", + "num_errors_tesseract = 0\n", + "num_errors_tesseract_no_error_ilp = 0\n", + "start_time = time.time()\n", + "for shot in range(len(dets)):\n", + " obs_predicted = tesseract_dec.decode(dets[shot])\n", + " obs_actual = obs[shot]\n", + " if np.any(obs_predicted != obs_actual):\n", + " num_errors_tesseract += 1\n", + " obs_predicted_ilp = ilp_dec.decode(dets[shot])\n", + " if not np.any(obs_predicted_ilp != obs_actual):\n", + " num_errors_tesseract_no_error_ilp += 1\n", + "\n", + "end_time = time.time()\n", + "print(f'Tesseract: num_errors / num_shots = {num_errors_tesseract} / {len(dets)}')\n", + "print(f'num_errors_tesseract_no_error_ilp = {num_errors_tesseract_no_error_ilp}')\n", + "print(f'time {end_time - start_time} s')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "44xKnbKb2y_b" + }, + "outputs": [], + "source": [] + } + ], + "metadata": { + "colab": { + "provenance": [] + }, + "kernelspec": { + "display_name": "Python 3 (ipykernel)", + "language": "python", + "name": "python3" }, - "nbformat": 4, - "nbformat_minor": 0 + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.13.3" + } + }, + "nbformat": 4, + "nbformat_minor": 4 } diff --git a/src/py/README.md b/src/py/README.md index a7bc6452..bc42efd8 100644 --- a/src/py/README.md +++ b/src/py/README.md @@ -5,7 +5,7 @@ The `tesseract_decoder.tesseract` module provides the Tesseract decoder, which e #### Class `tesseract.TesseractConfig` This class holds the configuration parameters that control the behavior of the Tesseract decoder. -* `TesseractConfig(dem: stim.DetectorErrorModel, det_beam: int = INF_DET_BEAM, beam_climbing: bool = False, no_revisit_dets: bool = False, at_most_two_errors_per_detector: bool = False, verbose: bool = False, pqlimit: int = sys.maxsize, det_orders: list[list[int]] = [], det_penalty: float = 0.0)` +* `TesseractConfig(dem: stim.DetectorErrorModel, det_beam: int = INF_DET_BEAM, beam_climbing: bool = False, no_revisit_dets: bool = False, verbose: bool = False, pqlimit: int = sys.maxsize, det_orders: list[list[int]] = [], det_penalty: float = 0.0)` * `__str__()` Explanation of configuration arguments: @@ -13,7 +13,7 @@ Explanation of configuration arguments: * `det_beam` - This integer value represents the beam search cutoff. It specifies a threshold for the number of "residual detection events" a node can have before it is pruned from the search. A lower `det_beam` value makes the search more aggressive, potentially sacrificing accuracy for speed. The default value `INF_DET_BEAM` means no beam cutoff is applied. * `beam_climbing` - A boolean flag that, when set to `True`, enables a heuristic called "beam climbing." This optimization causes the decoder to try different `det_beam` values (up to a maximum) to find a good decoding path. This can improve the decoder's chance of finding the most likely error, even with an initial narrow beam search. * `no_revisit_dets` - A boolean flag that, when `True`, activates a heuristic to prevent the decoder from revisiting nodes that have the same set of leftover detection events as a node it has already visited. This can help to reduce search redundancy and improve decoding speed. -* `at_most_two_errors_per_detector` - This boolean flag is a specific constraint that assumes at most two errors can affect a given detector. This can be a useful optimization for certain types of codes and noise models, as it prunes the search space by making a stronger assumption about the error distribution. + * `verbose` - A boolean flag that, when `True`, enables verbose logging. This is useful for debugging and understanding the decoder's internal behavior, as it will print information about the search process. * `pqlimit` - An integer that sets a limit on the number of nodes in the priority queue. This can be used to constrain the memory usage of the decoder. The default value is `sys.maxsize`, which means the size is effectively unbounded. * `det_orders` - A list of lists of integers, where each inner list represents an ordering of the detectors. This is used for "ensemble reordering," an optimization that tries different detector orderings to improve the search's convergence. The default is an empty list, meaning a single, fixed ordering is used. diff --git a/src/py/tesseract_test.py b/src/py/tesseract_test.py index 476d0775..69b72e26 100644 --- a/src/py/tesseract_test.py +++ b/src/py/tesseract_test.py @@ -52,7 +52,7 @@ def test_create_tesseract_config(): assert config.dem == _DETECTOR_ERROR_MODEL assert config.det_beam == 5 assert config.no_revisit_dets is True - assert config.at_most_two_errors_per_detector is False + assert config.verbose is False assert config.merge_errors is True assert config.pqlimit == 200000 @@ -71,7 +71,7 @@ def test_create_tesseract_config_with_dem(): assert config.dem == _DETECTOR_ERROR_MODEL assert config.det_beam == 5 assert config.no_revisit_dets is True - assert config.at_most_two_errors_per_detector is False + assert config.verbose is False assert config.merge_errors is True assert config.pqlimit == 200000 @@ -94,7 +94,7 @@ def test_create_tesseract_config_with_dem_and_custom_args(): assert config.dem == _DETECTOR_ERROR_MODEL assert config.det_beam == 100 assert config.no_revisit_dets is True - assert config.at_most_two_errors_per_detector is False + assert config.verbose is False assert config.merge_errors is False assert config.pqlimit == 200000 @@ -167,7 +167,7 @@ def test_create_tesseract_config_no_dem(): assert config.dem == stim.DetectorErrorModel() assert config.det_beam == 5 assert config.no_revisit_dets is True - assert config.at_most_two_errors_per_detector is False + assert config.verbose is False assert config.merge_errors is True assert config.pqlimit == 200000 @@ -184,7 +184,7 @@ def test_create_tesseract_config_no_dem_with_custom_args(): assert config.dem == stim.DetectorErrorModel() assert config.det_beam == 15 assert config.no_revisit_dets is True - assert config.at_most_two_errors_per_detector is False + assert config.verbose is True assert config.merge_errors is True assert config.pqlimit == 200000 diff --git a/src/tesseract.cc b/src/tesseract.cc index ca441331..f3d24601 100644 --- a/src/tesseract.cc +++ b/src/tesseract.cc @@ -57,7 +57,7 @@ std::string TesseractConfig::str() { ss << "dem=DetectorErrorModel_Object" << ", "; ss << "det_beam=" << config.det_beam << ", "; ss << "no_revisit_dets=" << config.no_revisit_dets << ", "; - ss << "at_most_two_errors_per_detector=" << config.at_most_two_errors_per_detector << ", "; + ss << "verbose=" << config.verbose << ", "; ss << "merge_errors=" << config.merge_errors << ", "; ss << "pqlimit=" << config.pqlimit << ", "; @@ -256,16 +256,11 @@ void TesseractDecoder::flip_detectors_and_block_errors( for (int oei : d2e[min_detector]) { detector_cost_tuples[oei].error_blocked = 1; - if (!config.at_most_two_errors_per_detector && oei == ei) break; + if (oei == ei) break; } for (int d : edets[ei]) { detectors[d] = !detectors[d]; - if (!detectors[d] && config.at_most_two_errors_per_detector) { - for (int oei : d2e[d]) { - detector_cost_tuples[oei].error_blocked = 1; - } - } } } } @@ -398,12 +393,6 @@ void TesseractDecoder::decode_to_errors(const std::vector& detections, } } - if (config.at_most_two_errors_per_detector) { - for (int ei : d2e[min_detector]) { - next_detector_cost_tuples[ei].error_blocked = 1; - } - } - size_t prev_ei = std::numeric_limits::max(); std::vector detector_cost_cache(num_detectors, -1); @@ -415,11 +404,6 @@ void TesseractDecoder::decode_to_errors(const std::vector& detections, int fired = detectors[d] ? 1 : -1; for (int oei : d2e[d]) { next_detector_cost_tuples[oei].detectors_count += fired; - - if (config.at_most_two_errors_per_detector && - next_detector_cost_tuples[oei].error_blocked == 2) { - next_detector_cost_tuples[oei].error_blocked = 0; - } } } } @@ -440,17 +424,6 @@ void TesseractDecoder::decode_to_errors(const std::vector& detections, for (int oei : d2e[d]) { next_detector_cost_tuples[oei].detectors_count += fired; } - - if (!next_detectors[d] && config.at_most_two_errors_per_detector) { - for (int oei : d2e[d]) { - next_detector_cost_tuples[oei].error_blocked = - next_detector_cost_tuples[oei].error_blocked == 1 - ? 1 - : 2; // we store '2' value to indicate an error that was blocked due to the - // '--at-most-two-error-per-detector' heuristic, in order to revert it in - // the next decoding iteration - } - } } if (next_num_detectors > max_num_detectors) continue; diff --git a/src/tesseract.h b/src/tesseract.h index ead2b2ac..62d6ed62 100644 --- a/src/tesseract.h +++ b/src/tesseract.h @@ -36,7 +36,7 @@ struct TesseractConfig { int det_beam = DEFAULT_DET_BEAM; bool beam_climbing = false; bool no_revisit_dets = true; - bool at_most_two_errors_per_detector = false; + bool verbose = false; bool merge_errors = true; size_t pqlimit = DEFAULT_PQLIMIT; diff --git a/src/tesseract.pybind.h b/src/tesseract.pybind.h index 65111f0b..85603be9 100644 --- a/src/tesseract.pybind.h +++ b/src/tesseract.pybind.h @@ -35,7 +35,7 @@ std::unique_ptr _compile_tesseract_decoder_helper(const Tesser TesseractConfig tesseract_config_maker_no_dem( int det_beam = INF_DET_BEAM, bool beam_climbing = false, bool no_revisit_dets = false, - bool at_most_two_errors_per_detector = false, bool verbose = false, bool merge_errors = true, + bool verbose = false, bool merge_errors = true, size_t pqlimit = std::numeric_limits::max(), std::vector> det_orders = std::vector>(), double det_penalty = 0.0, bool create_visualization = false) { @@ -43,15 +43,13 @@ TesseractConfig tesseract_config_maker_no_dem( if (det_orders.empty()) { det_orders = build_det_orders(empty_dem, 20, DetOrder::DetBFS, 2384753); } - return TesseractConfig({empty_dem, det_beam, beam_climbing, no_revisit_dets, - at_most_two_errors_per_detector, verbose, merge_errors, pqlimit, - det_orders, det_penalty, create_visualization}); + return TesseractConfig({empty_dem, det_beam, beam_climbing, no_revisit_dets, verbose, + merge_errors, pqlimit, det_orders, det_penalty, create_visualization}); } TesseractConfig tesseract_config_maker( py::object dem, int det_beam = INF_DET_BEAM, bool beam_climbing = false, - bool no_revisit_dets = false, bool at_most_two_errors_per_detector = false, - bool verbose = false, bool merge_errors = true, + bool no_revisit_dets = false, bool verbose = false, bool merge_errors = true, size_t pqlimit = std::numeric_limits::max(), std::vector> det_orders = std::vector>(), double det_penalty = 0.0, bool create_visualization = false) { @@ -59,9 +57,8 @@ TesseractConfig tesseract_config_maker( if (det_orders.empty()) { det_orders = build_det_orders(input_dem, 20, DetOrder::DetBFS, 2384753); } - return TesseractConfig({input_dem, det_beam, beam_climbing, no_revisit_dets, - at_most_two_errors_per_detector, verbose, merge_errors, pqlimit, - det_orders, det_penalty, create_visualization}); + return TesseractConfig({input_dem, det_beam, beam_climbing, no_revisit_dets, verbose, + merge_errors, pqlimit, det_orders, det_penalty, create_visualization}); } }; // namespace @@ -83,8 +80,7 @@ void add_tesseract_module(py::module& root) { )pbdoc") .def(py::init(&tesseract_config_maker_no_dem), py::arg("det_beam") = 5, py::arg("beam_climbing") = false, py::arg("no_revisit_dets") = true, - py::arg("at_most_two_errors_per_detector") = false, py::arg("verbose") = false, - py::arg("merge_errors") = true, py::arg("pqlimit") = 200000, + py::arg("verbose") = false, py::arg("merge_errors") = true, py::arg("pqlimit") = 200000, py::arg("det_orders") = std::vector>(), py::arg("det_penalty") = 0.0, py::arg("create_visualization") = false, R"pbdoc( @@ -99,9 +95,7 @@ void add_tesseract_module(py::module& root) { If True, enables a beam climbing heuristic. no_revisit_dets : bool, default=False If True, prevents the decoder from revisiting a syndrome pattern more than once. - at_most_two_errors_per_detector : bool, default=False - If True, an optimization is enabled that assumes at most two errors - are correlated with each detector. + verbose : bool, default=False If True, enables verbose logging from the decoder. merge_errors : bool, default=True @@ -118,8 +112,7 @@ void add_tesseract_module(py::module& root) { )pbdoc") .def(py::init(&tesseract_config_maker), py::arg("dem"), py::arg("det_beam") = 5, py::arg("beam_climbing") = false, py::arg("no_revisit_dets") = true, - py::arg("at_most_two_errors_per_detector") = false, py::arg("verbose") = false, - py::arg("merge_errors") = true, py::arg("pqlimit") = 200000, + py::arg("verbose") = false, py::arg("merge_errors") = true, py::arg("pqlimit") = 200000, py::arg("det_orders") = std::vector>(), py::arg("det_penalty") = 0.0, py::arg("create_visualization") = false, R"pbdoc( @@ -135,9 +128,7 @@ void add_tesseract_module(py::module& root) { If True, enables a beam climbing heuristic. no_revisit_dets : bool, default=False If True, prevents the decoder from revisiting a syndrome pattern more than once. - at_most_two_errors_per_detector : bool, default=False - If True, an optimization is enabled that assumes at most two errors - are correlated with each detector. + verbose : bool, default=False If True, enables verbose logging from the decoder. merge_errors : bool, default=True @@ -160,9 +151,7 @@ void add_tesseract_module(py::module& root) { "Whether to use a beam climbing heuristic.") .def_readwrite("no_revisit_dets", &TesseractConfig::no_revisit_dets, "Whether to prevent revisiting same syndrome patterns during decoding.") - .def_readwrite("at_most_two_errors_per_detector", - &TesseractConfig::at_most_two_errors_per_detector, - "Whether to assume at most two errors per detector for optimization.") + .def_readwrite("verbose", &TesseractConfig::verbose, "If True, the decoder will print verbose output.") .def_readwrite("merge_errors", &TesseractConfig::merge_errors, diff --git a/src/tesseract_main.cc b/src/tesseract_main.cc index 4785570e..5b483b7b 100644 --- a/src/tesseract_main.cc +++ b/src/tesseract_main.cc @@ -75,7 +75,7 @@ struct Args { double det_penalty = 0; bool beam_climbing = false; bool no_revisit_dets = false; - bool at_most_two_errors_per_detector = false; + size_t pqlimit; bool verbose = false; @@ -289,7 +289,7 @@ struct Args { config.det_penalty = det_penalty; config.beam_climbing = beam_climbing; config.no_revisit_dets = no_revisit_dets; - config.at_most_two_errors_per_detector = at_most_two_errors_per_detector; + config.pqlimit = pqlimit; config.verbose = verbose; } @@ -445,10 +445,7 @@ int main(int argc, char* argv[]) { .help("Use no-revisit-dets heuristic") .flag() .store_into(args.no_revisit_dets); - program.add_argument("--at-most-two-errors-per-detector") - .help("Use heuristic limitation of at most 2 errors per detector") - .flag() - .store_into(args.at_most_two_errors_per_detector); + program.add_argument("--pqlimit") .help("Maximum size of the priority queue (default = infinity)") .metavar("N") @@ -594,25 +591,24 @@ int main(int argc, char* argv[]) { bool print_final_stats = true; if (!args.stats_out_fname.empty()) { - nlohmann::json stats_json = { - {"circuit_path", args.circuit_path}, - {"dem_path", args.dem_path}, - {"max_errors", args.max_errors}, - {"sample_seed", args.sample_seed}, - {"at_most_two_errors_per_detector", args.at_most_two_errors_per_detector}, - {"det_beam", args.det_beam}, - {"det_penalty", args.det_penalty}, - {"beam_climbing", args.beam_climbing}, - {"no_revisit_dets", args.no_revisit_dets}, - {"pqlimit", args.pqlimit}, - {"num_det_orders", args.num_det_orders}, - {"det_order_seed", args.det_order_seed}, - {"total_time_seconds", total_time_seconds}, - {"num_errors", num_errors}, - {"num_low_confidence", num_low_confidence}, - {"num_shots", shot}, - {"num_threads", args.num_threads}, - {"sample_num_shots", args.sample_num_shots}}; + nlohmann::json stats_json = {{"circuit_path", args.circuit_path}, + {"dem_path", args.dem_path}, + {"max_errors", args.max_errors}, + {"sample_seed", args.sample_seed}, + + {"det_beam", args.det_beam}, + {"det_penalty", args.det_penalty}, + {"beam_climbing", args.beam_climbing}, + {"no_revisit_dets", args.no_revisit_dets}, + {"pqlimit", args.pqlimit}, + {"num_det_orders", args.num_det_orders}, + {"det_order_seed", args.det_order_seed}, + {"total_time_seconds", total_time_seconds}, + {"num_errors", num_errors}, + {"num_low_confidence", num_low_confidence}, + {"num_shots", shot}, + {"num_threads", args.num_threads}, + {"sample_num_shots", args.sample_num_shots}}; if (args.stats_out_fname == "-") { std::cout << stats_json << std::endl; diff --git a/src/tesseract_sinter_compat.pybind.h b/src/tesseract_sinter_compat.pybind.h index 623253d9..6dcbcc72 100644 --- a/src/tesseract_sinter_compat.pybind.h +++ b/src/tesseract_sinter_compat.pybind.h @@ -292,14 +292,14 @@ void pybind_sinter_compat(py::module& root) { R"pbdoc(Checks if two TesseractSinterDecoder instances are not equal.)pbdoc") .def(py::pickle( [](const TesseractSinterDecoder& self) -> py::tuple { // __getstate__ - return py::make_tuple( - std::string(self.config.dem.str()), self.config.det_beam, self.config.beam_climbing, - self.config.no_revisit_dets, self.config.at_most_two_errors_per_detector, - self.config.verbose, self.config.merge_errors, self.config.pqlimit, - self.config.det_orders, self.config.det_penalty, self.config.create_visualization); + return py::make_tuple(std::string(self.config.dem.str()), self.config.det_beam, + self.config.beam_climbing, self.config.no_revisit_dets, + self.config.verbose, self.config.merge_errors, + self.config.pqlimit, self.config.det_orders, + self.config.det_penalty, self.config.create_visualization); }, [](py::tuple t) { // __setstate__ - if (t.size() != 11) { + if (t.size() != 10) { throw std::runtime_error("Invalid state for TesseractSinterDecoder!"); } TesseractConfig config; @@ -307,13 +307,12 @@ void pybind_sinter_compat(py::module& root) { config.det_beam = t[1].cast(); config.beam_climbing = t[2].cast(); config.no_revisit_dets = t[3].cast(); - config.at_most_two_errors_per_detector = t[4].cast(); - config.verbose = t[5].cast(); - config.merge_errors = t[6].cast(); - config.pqlimit = t[7].cast(); - config.det_orders = t[8].cast>>(); - config.det_penalty = t[9].cast(); - config.create_visualization = t[10].cast(); + config.verbose = t[4].cast(); + config.merge_errors = t[5].cast(); + config.pqlimit = t[6].cast(); + config.det_orders = t[7].cast>>(); + config.det_penalty = t[8].cast(); + config.create_visualization = t[9].cast(); return TesseractSinterDecoder(config); })); From a1e86a762ee4809a2d340551c11c45a18ee4f68f Mon Sep 17 00:00:00 2001 From: noajshu Date: Sun, 31 Aug 2025 00:43:35 +0000 Subject: [PATCH 12/14] Refactor: Rename num_detectors to num_dets --- src/tesseract.cc | 40 ++++++++++++++++++++-------------------- src/tesseract.h | 5 +++-- src/tesseract.pybind.h | 6 +++--- 3 files changed, 26 insertions(+), 25 deletions(-) diff --git a/src/tesseract.cc b/src/tesseract.cc index f3d24601..ba3e06d1 100644 --- a/src/tesseract.cc +++ b/src/tesseract.cc @@ -74,12 +74,12 @@ std::string Node::str() { ss << "Node("; ss << "errors=" << self.errors << ", "; ss << "cost=" << self.cost << ", "; - ss << "num_detectors=" << self.num_detectors << ", "; + ss << "num_dets=" << self.num_dets << ", "; return ss.str(); } bool Node::operator>(const Node& other) const { - return cost > other.cost || (cost == other.cost && num_detectors < other.num_detectors); + return cost > other.cost || (cost == other.cost && num_dets < other.num_dets); } double TesseractDecoder::get_detcost( @@ -293,27 +293,27 @@ void TesseractDecoder::decode_to_errors(const std::vector& detections, return; } - size_t min_num_detectors = detections.size(); - size_t max_num_detectors = min_num_detectors + detector_beam; + size_t min_num_dets = detections.size(); + size_t max_num_dets = min_num_dets + detector_beam; std::vector next_errors; boost::dynamic_bitset<> next_detectors; std::vector next_detector_cost_tuples; - pq.push({initial_cost, min_num_detectors, std::vector()}); + pq.push({initial_cost, min_num_dets, std::vector()}); size_t num_pq_pushed = 1; while (!pq.empty()) { const Node node = pq.top(); pq.pop(); - if (node.num_detectors > max_num_detectors) continue; + if (node.num_dets > max_num_dets) continue; boost::dynamic_bitset<> detectors = initial_detectors; std::vector detector_cost_tuples(num_errors); flip_detectors_and_block_errors(detector_order, node.errors, detectors, detector_cost_tuples); - if (node.num_detectors == 0) { + if (node.num_dets == 0) { if (config.create_visualization) { visualizer.add_activated_errors(node.errors); visualizer.add_activated_detectors(detectors, num_detectors); @@ -339,7 +339,7 @@ void TesseractDecoder::decode_to_errors(const std::vector& detections, return; } - if (config.no_revisit_dets && !visited_detectors[node.num_detectors].insert(detectors).second) + if (config.no_revisit_dets && !visited_detectors[node.num_dets].insert(detectors).second) continue; if (config.create_visualization) { @@ -349,8 +349,8 @@ void TesseractDecoder::decode_to_errors(const std::vector& detections, if (config.verbose) { std::cout.precision(13); std::cout << "len(pq) = " << pq.size() << " num_pq_pushed = " << num_pq_pushed << std::endl; - std::cout << "num_detectors = " << node.num_detectors - << " max_num_detectors = " << max_num_detectors << " cost = " << node.cost + std::cout << "num_dets = " << node.num_dets + << " max_num_dets = " << max_num_dets << " cost = " << node.cost << std::endl; std::cout << "activated_errors = "; for (size_t oei : node.errors) { @@ -366,14 +366,14 @@ void TesseractDecoder::decode_to_errors(const std::vector& detections, std::cout << std::endl; } - if (node.num_detectors < min_num_detectors) { - min_num_detectors = node.num_detectors; + if (node.num_dets < min_num_dets) { + min_num_dets = node.num_dets; if (config.no_revisit_dets) { - for (size_t i = min_num_detectors + detector_beam + 1; i <= max_num_detectors; ++i) { + for (size_t i = min_num_dets + detector_beam + 1; i <= max_num_dets; ++i) { visited_detectors[i].clear(); } } - max_num_detectors = std::min(max_num_detectors, min_num_detectors + detector_beam); + max_num_dets = std::min(max_num_dets, min_num_dets + detector_beam); } for (size_t d = 0; d < num_detectors; ++d) { @@ -415,21 +415,21 @@ void TesseractDecoder::decode_to_errors(const std::vector& detections, next_detector_cost_tuples[ei].error_blocked = 1; double next_cost = node.cost + errors[ei].likelihood_cost; - size_t next_num_detectors = node.num_detectors; + size_t next_num_dets = node.num_dets; for (int d : edets[ei]) { next_detectors[d] = !next_detectors[d]; int fired = next_detectors[d] ? 1 : -1; - next_num_detectors += fired; + next_num_dets += fired; for (int oei : d2e[d]) { next_detector_cost_tuples[oei].detectors_count += fired; } } - if (next_num_detectors > max_num_detectors) continue; + if (next_num_dets > max_num_dets) continue; - if (config.no_revisit_dets && visited_detectors[next_num_detectors].find(next_detectors) != - visited_detectors[next_num_detectors].end()) + if (config.no_revisit_dets && visited_detectors[next_num_dets].find(next_detectors) != + visited_detectors[next_num_dets].end()) continue; for (int d : edets[ei]) { @@ -454,7 +454,7 @@ void TesseractDecoder::decode_to_errors(const std::vector& detections, if (next_cost == INF) continue; - pq.push({next_cost, next_num_detectors, next_errors}); + pq.push({next_cost, next_num_dets, next_errors}); ++num_pq_pushed; if (num_pq_pushed > config.pqlimit) { diff --git a/src/tesseract.h b/src/tesseract.h index 62d6ed62..0eeb3ea3 100644 --- a/src/tesseract.h +++ b/src/tesseract.h @@ -50,7 +50,8 @@ struct TesseractConfig { class Node { public: double cost; - size_t num_detectors; + // The number of activated detectors (dets for short) at this node + size_t num_dets; std::vector errors; bool operator>(const Node& other) const; @@ -118,4 +119,4 @@ struct TesseractDecoder { std::vector& detector_cost_tuples) const; }; -#endif // TESSERACT_DECODER_H \ No newline at end of file +#endif // TESSERACT_DECODER_H diff --git a/src/tesseract.pybind.h b/src/tesseract.pybind.h index 85603be9..d40173d6 100644 --- a/src/tesseract.pybind.h +++ b/src/tesseract.pybind.h @@ -205,20 +205,20 @@ void add_tesseract_module(py::module& root) { This is used internally by the decoder to track decoding progress. )pbdoc") .def(py::init>(), py::arg("cost") = 0.0, - py::arg("num_detectors") = 0, py::arg("errors") = std::vector(), R"pbdoc( + py::arg("num_dets") = 0, py::arg("errors") = std::vector(), R"pbdoc( The constructor for the `Node` class. Parameters ---------- cost : float, default=0.0 The cost of the path to this node. - num_detectors : int, default=0 + num_dets : int, default=0 The number of detectors this search node has. errors : list[int], default=empty The list of error indices this search node has. )pbdoc") .def_readwrite("cost", &Node::cost, "The cost of the node.") - .def_readwrite("num_detectors", &Node::num_detectors, + .def_readwrite("num_dets", &Node::num_dets, "The number of detectors this search node has.") .def_readwrite("errors", &Node::errors, "The list of error indices this search node has.") .def(py::self > py::self, From 1902a2ce0708078864d8780fd8f7c4d79e433168 Mon Sep 17 00:00:00 2001 From: noajshu Date: Sun, 31 Aug 2025 01:12:02 +0000 Subject: [PATCH 13/14] Style: Apply clang-format --- src/tesseract.cc | 5 ++--- src/tesseract.pybind.h | 3 +-- 2 files changed, 3 insertions(+), 5 deletions(-) diff --git a/src/tesseract.cc b/src/tesseract.cc index ba3e06d1..a2c16915 100644 --- a/src/tesseract.cc +++ b/src/tesseract.cc @@ -349,9 +349,8 @@ void TesseractDecoder::decode_to_errors(const std::vector& detections, if (config.verbose) { std::cout.precision(13); std::cout << "len(pq) = " << pq.size() << " num_pq_pushed = " << num_pq_pushed << std::endl; - std::cout << "num_dets = " << node.num_dets - << " max_num_dets = " << max_num_dets << " cost = " << node.cost - << std::endl; + std::cout << "num_dets = " << node.num_dets << " max_num_dets = " << max_num_dets + << " cost = " << node.cost << std::endl; std::cout << "activated_errors = "; for (size_t oei : node.errors) { std::cout << oei << ", "; diff --git a/src/tesseract.pybind.h b/src/tesseract.pybind.h index d40173d6..72f92e5a 100644 --- a/src/tesseract.pybind.h +++ b/src/tesseract.pybind.h @@ -218,8 +218,7 @@ void add_tesseract_module(py::module& root) { The list of error indices this search node has. )pbdoc") .def_readwrite("cost", &Node::cost, "The cost of the node.") - .def_readwrite("num_dets", &Node::num_dets, - "The number of detectors this search node has.") + .def_readwrite("num_dets", &Node::num_dets, "The number of detectors this search node has.") .def_readwrite("errors", &Node::errors, "The list of error indices this search node has.") .def(py::self > py::self, "Comparison operator for nodes based on cost. This is necessary to prioritize " From a4ed74a961c2ecf97d535a87c3f71b6f31c0ea58 Mon Sep 17 00:00:00 2001 From: noajshu Date: Sun, 31 Aug 2025 01:26:21 +0000 Subject: [PATCH 14/14] undo changes to tutorial --- docs/tutorial.ipynb | 3149 +++++++++++++++++++++---------------------- 1 file changed, 1567 insertions(+), 1582 deletions(-) diff --git a/docs/tutorial.ipynb b/docs/tutorial.ipynb index 89e9754b..056ee540 100644 --- a/docs/tutorial.ipynb +++ b/docs/tutorial.ipynb @@ -1,1631 +1,1616 @@ { - "cells": [ - { - "cell_type": "markdown", - "metadata": { - "id": "KBmkwvhmupn-" - }, - "source": [ - "# Tesseract Tutorial\n", - "\n", - "- We will also, partly, explain how to use features of Stim and PyMatching\n", - "- Stim is a dependency of Tesseract but you can also use other sources of data\n", - "- This is not a comprehensive introduction." - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "jaZcr-NevBSB" - }, - "source": [ - "## Installation" - ] - }, - { - "cell_type": "code", - "execution_count": 1, - "metadata": { - "id": "i6_88o7kKOVJ" - }, - "outputs": [], - "source": [ - "!pip install --quiet --upgrade stim galois tesseract-decoder pymatching python-sat -U" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "RLXXX3eMT_LR" - }, - "source": [ - "## Getting a Surface Code Circuit" - ] - }, - { - "cell_type": "code", - "execution_count": 2, - "metadata": { - "id": "8zcmVHFFUPq2" - }, - "outputs": [], - "source": [ - "import stim\n", - "\n", - "d = 11\n", - "p = 0.005\n", - "circuit = stim.Circuit.generated(\n", - " code_task=\"surface_code:rotated_memory_x\",\n", - " distance=d,\n", - " rounds=d,\n", - " after_clifford_depolarization=p,\n", - " before_round_data_depolarization=p,\n", - " before_measure_flip_probability=p,\n", - " after_reset_flip_probability=p\n", - ")" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "UBMIlXY9U30Y" - }, - "source": [ - "## Sample" - ] - }, - { - "cell_type": "code", - "execution_count": 3, - "metadata": { - "id": "GCkUlTJZU2T_" - }, - "outputs": [], - "source": [ - "sampler = circuit.compile_detector_sampler()\n", - "\n", - "num_shots = 10000\n", - "detector_outcomes, actual_observables = sampler.sample(shots=num_shots, separate_observables=True)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "m9x8pivTVCir" - }, - "source": [ - "## Decode with uncorrelated matching" - ] - }, - { - "cell_type": "code", - "execution_count": 4, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" + "cells": [ + { + "cell_type": "markdown", + "metadata": { + "id": "KBmkwvhmupn-" + }, + "source": [ + "# Tesseract Tutorial\n", + "\n", + "- We will also, partly, explain how to use features of Stim and PyMatching\n", + "- Stim is a dependency of Tesseract but you can also use other sources of data\n", + "- This is not a comprehensive introduction." + ] }, - "id": "-5W0AX8nVEyU", - "outputId": "562e78d3-4fef-449e-92ae-403e5ed7c862" - }, - "outputs": [ { - "name": "stdout", - "output_type": "stream", - "text": [ - "Logical error rate: 61/10000\n" - ] - } - ], - "source": [ - "import pymatching\n", - "import numpy as np\n", - "\n", - "dem = circuit.detector_error_model(decompose_errors=True)\n", - "matching = pymatching.Matching.from_detector_error_model(model=dem)\n", - "predicted_observables = matching.decode_batch(shots=detector_outcomes)\n", - "num_errors = np.sum(np.any(predicted_observables != actual_observables, axis=1))\n", - "\n", - "print(f\"Logical error rate: {num_errors}/{num_shots}\")" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "Xp7MyK0XVs_6" - }, - "source": [ - "## Decode with new correlated matching!" - ] - }, - { - "cell_type": "code", - "execution_count": 5, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" + "cell_type": "markdown", + "metadata": { + "id": "jaZcr-NevBSB" + }, + "source": [ + "## Installation" + ] }, - "id": "vufQ8G5iVx7b", - "outputId": "1e12759c-e1e4-4c51-8103-98ec2d6906f8" - }, - "outputs": [ { - "name": "stdout", - "output_type": "stream", - "text": [ - "Logical error rate: 18/10000\n" - ] - } - ], - "source": [ - "dem = circuit.detector_error_model(decompose_errors=True)\n", - "matching_corr = pymatching.Matching.from_detector_error_model(\n", - " model=dem, enable_correlations=True\n", - " )\n", - "predicted_observables_corr = matching_corr.decode_batch(\n", - " shots=detector_outcomes,\n", - " enable_correlations=True\n", - " )\n", - "num_errors_corr = np.sum(np.any(predicted_observables_corr != actual_observables, axis=1))\n", - "\n", - "print(f\"Logical error rate: {num_errors_corr}/{num_shots}\")" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "a-AMqTUeuqOe" - }, - "source": [ - "## Getting a Color Code Circuit" - ] - }, - { - "cell_type": "code", - "execution_count": 6, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "i6_88o7kKOVJ" + }, + "outputs": [], + "source": [ + "!pip install --quiet --upgrade stim galois tesseract-decoder pymatching python-sat -U" + ] }, - "id": "W7fU_MYJCRen", - "outputId": "6038fc3e-8707-4bac-fd69-b9d08a90f167" - }, - "outputs": [ { - "name": "stdout", - "output_type": "stream", - "text": [ - " % Total % Received % Xferd Average Speed Time Time Time Current\n", - " Dload Upload Total Spent Left Speed\n", - "100 13295 100 13295 0 0 124k 0 --:--:-- --:--:-- --:--:-- 124k\n" - ] - } - ], - "source": [ - "!curl 'https://raw.githubusercontent.com/quantumlib/tesseract-decoder/refs/heads/main/testdata/colorcodes/r%3D5%2Cd%3D5%2Cp%3D0.001%2Cnoise%3Dsi1000%2Cc%3Dsuperdense_color_code_Z%2Cq%3D37%2Cgates%3Dcz.stim' > d5r5colorcode_p001.stim" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "E-vXEhbaTeQI" - }, - "source": [ - "# Visualizing with Stim" - ] - }, - { - "cell_type": "code", - "execution_count": 7, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 343 + "cell_type": "markdown", + "metadata": { + "id": "RLXXX3eMT_LR" + }, + "source": [ + "## Getting a Surface Code Circuit" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "8zcmVHFFUPq2" + }, + "outputs": [], + "source": [ + "import stim\n", + "\n", + "d = 11\n", + "p = 0.005\n", + "circuit = stim.Circuit.generated(\n", + " code_task=\"surface_code:rotated_memory_x\",\n", + " distance=d,\n", + " rounds=d,\n", + " after_clifford_depolarization=p,\n", + " before_round_data_depolarization=p,\n", + " before_measure_flip_probability=p,\n", + " after_reset_flip_probability=p\n", + ")" + ] }, - "id": "2jTOVijwKPXm", - "outputId": "5a0c63b5-384b-4729-8bf1-d205552de185" - }, - "outputs": [ { - "data": { - "text/html": [ - "" + "cell_type": "markdown", + "metadata": { + "id": "UBMIlXY9U30Y" + }, + "source": [ + "## Sample" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "GCkUlTJZU2T_" + }, + "outputs": [], + "source": [ + "sampler = circuit.compile_detector_sampler()\n", + "\n", + "num_shots = 10000\n", + "detector_outcomes, actual_observables = sampler.sample(shots=num_shots, separate_observables=True)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "m9x8pivTVCir" + }, + "source": [ + "## Decode with uncorrelated matching" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "-5W0AX8nVEyU", + "outputId": "562e78d3-4fef-449e-92ae-403e5ed7c862" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Logical error rate: 69/10000\n" + ] + } ], - "text/plain": [ - "{\"accessors\":[{\"bufferView\":0,\"byteOffset\":0,\"componentType\":5126,\"count\":12,\"max\":[0,0.5,0.5],\"min\":[0,-0.5,-0.5],\"name\":\"cube\",\"type\":\"VEC3\"},{\"bufferView\":1,\"byteOffset\":0,\"componentType\":5126,\"count\":12,\"max\":[0.375,0.5625],\"min\":[0.3125,0.5],\"name\":\"tex_coords_gate_R\",\"type\":\"VEC2\"},{\"bufferView\":2,\"byteOffset\":0,\"componentType\":5126,\"count\":12,\"max\":[0.5,0.4375],\"min\":[0.4375,0.375],\"name\":\"tex_coords_gate_X_ERROR\",\"type\":\"VEC2\"},{\"bufferView\":3,\"byteOffset\":0,\"componentType\":5126,\"count\":12,\"max\":[0.125,0.5],\"min\":[0.0625,0.4375],\"name\":\"tex_coords_gate_H\",\"type\":\"VEC2\"},{\"bufferView\":4,\"byteOffset\":0,\"componentType\":5126,\"count\":12,\"max\":[0.25,0.625],\"min\":[0.1875,0.5625],\"name\":\"tex_coords_gate_DEPOLARIZE1\",\"type\":\"VEC2\"},{\"bufferView\":5,\"byteOffset\":0,\"componentType\":5126,\"count\":17,\"max\":[0,0.400000005960464,0.400000005960464],\"min\":[0,-0.400000005960464,-0.400000005960464],\"name\":\"circle_loop\",\"type\":\"VEC3\"},{\"bufferView\":6,\"byteOffset\":0,\"componentType\":5126,\"count\":12,\"max\":[0.3125,0.625],\"min\":[0.25,0.5625],\"name\":\"tex_coords_gate_DEPOLARIZE2\",\"type\":\"VEC2\"},{\"bufferView\":7,\"byteOffset\":0,\"componentType\":5126,\"count\":12,\"max\":[0.3125,0.5625],\"min\":[0.25,0.5],\"name\":\"tex_coords_gate_M\",\"type\":\"VEC2\"},{\"bufferView\":8,\"byteOffset\":0,\"componentType\":5126,\"count\":1298,\"max\":[1,-32,-32],\"min\":[-96,-48,-44],\"name\":\"buf_scattered_lines\",\"type\":\"VEC3\"},{\"bufferView\":9,\"byteOffset\":0,\"componentType\":5126,\"count\":30,\"max\":[0,-29.5,-31],\"min\":[-64.25,-49,-45],\"name\":\"buf_red_scattered_lines\",\"type\":\"VEC3\"},{\"bufferView\":10,\"byteOffset\":0,\"componentType\":5126,\"count\":704,\"max\":[0.25,-31.2000007629395,-31.5],\"min\":[-93.25,-31.6000003814697,-44.5],\"name\":\"buf_blue_scattered_lines\",\"type\":\"VEC3\"}],\"asset\":{\"version\":\"2.0\"},\"bufferViews\":[{\"buffer\":0,\"byteLength\":144,\"byteOffset\":0,\"name\":\"cube\",\"target\":34962},{\"buffer\":1,\"byteLength\":96,\"byteOffset\":0,\"name\":\"tex_coords_gate_R\",\"target\":34962},{\"buffer\":2,\"byteLength\":96,\"byteOffset\":0,\"name\":\"tex_coords_gate_X_ERROR\",\"target\":34962},{\"buffer\":3,\"byteLength\":96,\"byteOffset\":0,\"name\":\"tex_coords_gate_H\",\"target\":34962},{\"buffer\":4,\"byteLength\":96,\"byteOffset\":0,\"name\":\"tex_coords_gate_DEPOLARIZE1\",\"target\":34962},{\"buffer\":5,\"byteLength\":204,\"byteOffset\":0,\"name\":\"circle_loop\",\"target\":34962},{\"buffer\":6,\"byteLength\":96,\"byteOffset\":0,\"name\":\"tex_coords_gate_DEPOLARIZE2\",\"target\":34962},{\"buffer\":7,\"byteLength\":96,\"byteOffset\":0,\"name\":\"tex_coords_gate_M\",\"target\":34962},{\"buffer\":8,\"byteLength\":15576,\"byteOffset\":0,\"name\":\"buf_scattered_lines\",\"target\":34962},{\"buffer\":9,\"byteLength\":360,\"byteOffset\":0,\"name\":\"buf_red_scattered_lines\",\"target\":34962},{\"buffer\":10,\"byteLength\":8448,\"byteOffset\":0,\"name\":\"buf_blue_scattered_lines\",\"target\":34962}],\"buffers\":[{\"byteLength\":144,\"name\":\"cube\",\"uri\":\"data:application/octet-stream;base64,AAAAAAAAAD8AAAA/AAAAAAAAAD8AAAC/AAAAAAAAAL8AAAA/AAAAAAAAAD8AAAC/AAAAAAAAAL8AAAC/AAAAAAAAAL8AAAA/AAAAAAAAAL8AAAC/AAAAAAAAAD8AAAC/AAAAAAAAAL8AAAA/AAAAAAAAAL8AAAA/AAAAAAAAAD8AAAC/AAAAAAAAAD8AAAA/\"},{\"byteLength\":96,\"name\":\"tex_coords_gate_R\",\"uri\":\"data:application/octet-stream;base64,AADAPgAAAD8AAKA+AAAAPwAAwD4AABA/AACgPgAAAD8AAKA+AAAQPwAAwD4AABA/AADAPgAAED8AAMA+AAAAPwAAoD4AABA/AACgPgAAED8AAMA+AAAAPwAAoD4AAAA/\"},{\"byteLength\":96,\"name\":\"tex_coords_gate_X_ERROR\",\"uri\":\"data:application/octet-stream;base64,AAAAPwAAwD4AAOA+AADAPgAAAD8AAOA+AADgPgAAwD4AAOA+AADgPgAAAD8AAOA+AAAAPwAA4D4AAAA/AADAPgAA4D4AAOA+AADgPgAA4D4AAAA/AADAPgAA4D4AAMA+\"},{\"byteLength\":96,\"name\":\"tex_coords_gate_H\",\"uri\":\"data:application/octet-stream;base64,AAAAPgAA4D4AAIA9AADgPgAAAD4AAAA/AACAPQAA4D4AAIA9AAAAPwAAAD4AAAA/AAAAPgAAAD8AAAA+AADgPgAAgD0AAAA/AACAPQAAAD8AAAA+AADgPgAAgD0AAOA+\"},{\"byteLength\":96,\"name\":\"tex_coords_gate_DEPOLARIZE1\",\"uri\":\"data:application/octet-stream;base64,AACAPgAAED8AAEA+AAAQPwAAgD4AACA/AABAPgAAED8AAEA+AAAgPwAAgD4AACA/AACAPgAAID8AAIA+AAAQPwAAQD4AACA/AABAPgAAID8AAIA+AAAQPwAAQD4AABA/\"},{\"byteLength\":204,\"name\":\"circle_loop\",\"uri\":\"data:application/octet-stream;base64,AAAAAM3MzD4AAAAAAAAAAOU1vT5Fvxw+AAAAAMPQkD7D0JA+AAAAAES/HD7lNb0+AAAAAPIwlrLNzMw+AAAAAEe/HL7lNb0+AAAAAMPQkL7D0JA+AAAAAOc1vb5Avxw+AAAAAM3MzL7yMBazAAAAAOU1vb5Evxy+AAAAAMHQkL7E0JC+AAAAADy/HL7nNb2+AAAAAPLkozHNzMy+AAAAAEm/HD7kNb2+AAAAAMbQkD6/0JC+AAAAAOY1vT5Evxy+AAAAAM3MzD4AAAAA\"},{\"byteLength\":96,\"name\":\"tex_coords_gate_DEPOLARIZE2\",\"uri\":\"data:application/octet-stream;base64,AACgPgAAED8AAIA+AAAQPwAAoD4AACA/AACAPgAAED8AAIA+AAAgPwAAoD4AACA/AACgPgAAID8AAKA+AAAQPwAAgD4AACA/AACAPgAAID8AAKA+AAAQPwAAgD4AABA/\"},{\"byteLength\":96,\"name\":\"tex_coords_gate_M\",\"uri\":\"data:application/octet-stream;base64,AACgPgAAAD8AAIA+AAAAPwAAoD4AABA/AACAPgAAAD8AAIA+AAAQPwAAoD4AABA/AACgPgAAED8AAKA+AAAAPwAAgD4AABA/AACAPgAAED8AAKA+AAAAPwAAgD4AAAA/\"},{\"byteLength\":15576,\"name\":\"buf_scattered_lines\",\"uri\":\"data:application/octet-stream;base64,AACAwAAACMIAAADCAACAwAAAEMIAAADCAACAwAAACMIAABDCAACAwAAAEMIAABDCAACAwAAAGMIAAAjCAACAwAAAIMIAAAjCAACAwAAAGMIAABjCAACAwAAAIMIAABjCAACAwAAAGMIAACjCAACAwAAAIMIAACjCAACAwAAAKMIAAADCAACAwAAAMMIAAADCAACAwAAAKMIAABDCAACAwAAAMMIAABDCAACAwAAAKMIAACDCAACAwAAAMMIAACDCAACAwAAAOMIAAAjCAACAwAAAQMIAAAjCAACgwAAACMIAAADCAACgwAAAEMIAAADCAACgwAAACMIAABDCAACgwAAAEMIAABDCAACgwAAAGMIAAAjCAACgwAAAIMIAAAjCAACgwAAAGMIAABjCAACgwAAAIMIAABjCAACgwAAAGMIAACjCAACgwAAAIMIAACjCAACgwAAAKMIAAADCAACgwAAAMMIAAADCAACgwAAAKMIAABDCAACgwAAAMMIAABDCAACgwAAAKMIAACDCAACgwAAAMMIAACDCAACgwAAAOMIAAAjCAACgwAAAQMIAAAjCAAAAwQAACMIAAADCAAAAwQAACMIAAAjCAAAAwQAAEMIAAADCAAAAwQAAEMIAAAjCAAAAwQAAEMIAABDCAAAAwQAAEMIAABjCAAAAwQAAGMIAAAjCAAAAwQAAGMIAABDCAAAAwQAAGMIAABjCAAAAwQAAGMIAACDCAAAAwQAAIMIAAAjCAAAAwQAAIMIAABDCAAAAwQAAIMIAABjCAAAAwQAAIMIAACDCAAAAwQAAIMIAACjCAAAAwQAAIMIAADDCAAAAwQAAKMIAAADCAAAAwQAAKMIAAAjCAAAAwQAAKMIAABDCAAAAwQAAKMIAABjCAAAAwQAAKMIAACDCAAAAwQAAKMIAACjCAAAAwQAAMMIAAADCAAAAwQAAMMIAAAjCAAAAwQAAMMIAABDCAAAAwQAAMMIAABjCAAAAwQAAOMIAAAjCAAAAwQAAOMIAABDCAAAQwQAACMIAAADCAAAQwQAACMIAAAjCAAAQwQAAEMIAAADCAAAQwQAAEMIAAAjCAAAQwQAAEMIAABDCAAAQwQAAEMIAABjCAAAQwQAAGMIAAAjCAAAQwQAAGMIAABDCAAAQwQAAGMIAABjCAAAQwQAAGMIAACDCAAAQwQAAIMIAAAjCAAAQwQAAIMIAABDCAAAQwQAAIMIAABjCAAAQwQAAIMIAACDCAAAQwQAAIMIAACjCAAAQwQAAIMIAADDCAAAQwQAAKMIAAADCAAAQwQAAKMIAAAjCAAAQwQAAKMIAABDCAAAQwQAAKMIAABjCAAAQwQAAKMIAACDCAAAQwQAAKMIAACjCAAAQwQAAMMIAAADCAAAQwQAAMMIAAAjCAAAQwQAAMMIAABDCAAAQwQAAMMIAABjCAAAQwQAAOMIAAAjCAAAQwQAAOMIAABDCAAAgwQAAAMIAAADCAAAgwQAACMIAAADCAAAgwQAAEMIAAADCAAAgwQAAGMIAAADCAAAgwQAAEMIAAAjCAAAgwQAAGMIAAAjCAAAgwQAAEMIAABDCAAAgwQAAGMIAABDCAAAgwQAAEMIAABjCAAAgwQAAGMIAABjCAAAgwQAAIMIAAADCAAAgwQAAKMIAAADCAAAgwQAAIMIAAAjCAAAgwQAAKMIAAAjCAAAgwQAAIMIAABDCAAAgwQAAKMIAABDCAAAgwQAAIMIAABjCAAAgwQAAKMIAABjCAAAgwQAAIMIAACDCAAAgwQAAKMIAACDCAAAgwQAAIMIAACjCAAAgwQAAKMIAACjCAAAgwQAAMMIAAADCAAAgwQAAOMIAAADCAAAgwQAAMMIAAAjCAAAgwQAAOMIAAAjCAAAgwQAAMMIAABDCAAAgwQAAOMIAABDCAAAwwQAAAMIAAADCAAAwwQAACMIAAADCAAAwwQAAEMIAAADCAAAwwQAAGMIAAADCAAAwwQAAEMIAAAjCAAAwwQAAGMIAAAjCAAAwwQAAEMIAABDCAAAwwQAAGMIAABDCAAAwwQAAEMIAABjCAAAwwQAAGMIAABjCAAAwwQAAIMIAAADCAAAwwQAAKMIAAADCAAAwwQAAIMIAAAjCAAAwwQAAKMIAAAjCAAAwwQAAIMIAABDCAAAwwQAAKMIAABDCAAAwwQAAIMIAABjCAAAwwQAAKMIAABjCAAAwwQAAIMIAACDCAAAwwQAAKMIAACDCAAAwwQAAIMIAACjCAAAwwQAAKMIAACjCAAAwwQAAMMIAAADCAAAwwQAAOMIAAADCAAAwwQAAMMIAAAjCAAAwwQAAOMIAAAjCAAAwwQAAMMIAABDCAAAwwQAAOMIAABDCAABAwQAACMIAAAjCAABAwQAACMIAABDCAABAwQAAEMIAAAjCAABAwQAAEMIAABDCAABAwQAAGMIAAADCAABAwQAAGMIAAAjCAABAwQAAGMIAABDCAABAwQAAGMIAABjCAABAwQAAGMIAACDCAABAwQAAGMIAACjCAABAwQAAIMIAAADCAABAwQAAIMIAAAjCAABAwQAAIMIAABDCAABAwQAAIMIAABjCAABAwQAAIMIAACDCAABAwQAAIMIAACjCAABAwQAAKMIAAAjCAABAwQAAKMIAABDCAABAwQAAKMIAABjCAABAwQAAKMIAACDCAABAwQAAMMIAAAjCAABAwQAAMMIAABDCAABAwQAAMMIAABjCAABAwQAAMMIAACDCAABAwQAAOMIAAADCAABAwQAAOMIAAAjCAABAwQAAQMIAAADCAABAwQAAQMIAAAjCAABQwQAACMIAAAjCAABQwQAACMIAABDCAABQwQAAEMIAAAjCAABQwQAAEMIAABDCAABQwQAAGMIAAADCAABQwQAAGMIAAAjCAABQwQAAGMIAABDCAABQwQAAGMIAABjCAABQwQAAGMIAACDCAABQwQAAGMIAACjCAABQwQAAIMIAAADCAABQwQAAIMIAAAjCAABQwQAAIMIAABDCAABQwQAAIMIAABjCAABQwQAAIMIAACDCAABQwQAAIMIAACjCAABQwQAAKMIAAAjCAABQwQAAKMIAABDCAABQwQAAKMIAABjCAABQwQAAKMIAACDCAABQwQAAMMIAAAjCAABQwQAAMMIAABDCAABQwQAAMMIAABjCAABQwQAAMMIAACDCAABQwQAAOMIAAADCAABQwQAAOMIAAAjCAABQwQAAQMIAAADCAABQwQAAQMIAAAjCAACAwQAACMIAAADCAACAwQAACMIAAAjCAACAwQAAEMIAAADCAACAwQAAEMIAAAjCAACAwQAAEMIAABDCAACAwQAAEMIAABjCAACAwQAAGMIAAAjCAACAwQAAGMIAABDCAACAwQAAGMIAABjCAACAwQAAGMIAACDCAACAwQAAIMIAAAjCAACAwQAAIMIAABDCAACAwQAAIMIAABjCAACAwQAAIMIAACDCAACAwQAAIMIAACjCAACAwQAAIMIAADDCAACAwQAAKMIAAADCAACAwQAAKMIAAAjCAACAwQAAKMIAABDCAACAwQAAKMIAABjCAACAwQAAKMIAACDCAACAwQAAKMIAACjCAACAwQAAMMIAAADCAACAwQAAMMIAAAjCAACAwQAAMMIAABDCAACAwQAAMMIAABjCAACAwQAAOMIAAAjCAACAwQAAOMIAABDCAACIwQAACMIAAADCAACIwQAACMIAAAjCAACIwQAAEMIAAADCAACIwQAAEMIAAAjCAACIwQAAEMIAABDCAACIwQAAEMIAABjCAACIwQAAGMIAAAjCAACIwQAAGMIAABDCAACIwQAAGMIAABjCAACIwQAAGMIAACDCAACIwQAAIMIAAAjCAACIwQAAIMIAABDCAACIwQAAIMIAABjCAACIwQAAIMIAACDCAACIwQAAIMIAACjCAACIwQAAIMIAADDCAACIwQAAKMIAAADCAACIwQAAKMIAAAjCAACIwQAAKMIAABDCAACIwQAAKMIAABjCAACIwQAAKMIAACDCAACIwQAAKMIAACjCAACIwQAAMMIAAADCAACIwQAAMMIAAAjCAACIwQAAMMIAABDCAACIwQAAMMIAABjCAACIwQAAOMIAAAjCAACIwQAAOMIAABDCAACQwQAAAMIAAADCAACQwQAACMIAAADCAACQwQAAEMIAAADCAACQwQAAGMIAAADCAACQwQAAEMIAAAjCAACQwQAAGMIAAAjCAACQwQAAEMIAABDCAACQwQAAGMIAABDCAACQwQAAEMIAABjCAACQwQAAGMIAABjCAACQwQAAIMIAAADCAACQwQAAKMIAAADCAACQwQAAIMIAAAjCAACQwQAAKMIAAAjCAACQwQAAIMIAABDCAACQwQAAKMIAABDCAACQwQAAIMIAABjCAACQwQAAKMIAABjCAACQwQAAIMIAACDCAACQwQAAKMIAACDCAACQwQAAIMIAACjCAACQwQAAKMIAACjCAACQwQAAMMIAAADCAACQwQAAOMIAAADCAACQwQAAMMIAAAjCAACQwQAAOMIAAAjCAACQwQAAMMIAABDCAACQwQAAOMIAABDCAACYwQAAAMIAAADCAACYwQAACMIAAADCAACYwQAAEMIAAADCAACYwQAAGMIAAADCAACYwQAAEMIAAAjCAACYwQAAGMIAAAjCAACYwQAAEMIAABDCAACYwQAAGMIAABDCAACYwQAAEMIAABjCAACYwQAAGMIAABjCAACYwQAAIMIAAADCAACYwQAAKMIAAADCAACYwQAAIMIAAAjCAACYwQAAKMIAAAjCAACYwQAAIMIAABDCAACYwQAAKMIAABDCAACYwQAAIMIAABjCAACYwQAAKMIAABjCAACYwQAAIMIAACDCAACYwQAAKMIAACDCAACYwQAAIMIAACjCAACYwQAAKMIAACjCAACYwQAAMMIAAADCAACYwQAAOMIAAADCAACYwQAAMMIAAAjCAACYwQAAOMIAAAjCAACYwQAAMMIAABDCAACYwQAAOMIAABDCAACgwQAACMIAAAjCAACgwQAACMIAABDCAACgwQAAEMIAAAjCAACgwQAAEMIAABDCAACgwQAAGMIAAADCAACgwQAAGMIAAAjCAACgwQAAGMIAABDCAACgwQAAGMIAABjCAACgwQAAGMIAACDCAACgwQAAGMIAACjCAACgwQAAIMIAAADCAACgwQAAIMIAAAjCAACgwQAAIMIAABDCAACgwQAAIMIAABjCAACgwQAAIMIAACDCAACgwQAAIMIAACjCAACgwQAAKMIAAAjCAACgwQAAKMIAABDCAACgwQAAKMIAABjCAACgwQAAKMIAACDCAACgwQAAMMIAAAjCAACgwQAAMMIAABDCAACgwQAAMMIAABjCAACgwQAAMMIAACDCAACgwQAAOMIAAADCAACgwQAAOMIAAAjCAACgwQAAQMIAAADCAACgwQAAQMIAAAjCAACowQAACMIAAAjCAACowQAACMIAABDCAACowQAAEMIAAAjCAACowQAAEMIAABDCAACowQAAGMIAAADCAACowQAAGMIAAAjCAACowQAAGMIAABDCAACowQAAGMIAABjCAACowQAAGMIAACDCAACowQAAGMIAACjCAACowQAAIMIAAADCAACowQAAIMIAAAjCAACowQAAIMIAABDCAACowQAAIMIAABjCAACowQAAIMIAACDCAACowQAAIMIAACjCAACowQAAKMIAAAjCAACowQAAKMIAABDCAACowQAAKMIAABjCAACowQAAKMIAACDCAACowQAAMMIAAAjCAACowQAAMMIAABDCAACowQAAMMIAABjCAACowQAAMMIAACDCAACowQAAOMIAAADCAACowQAAOMIAAAjCAACowQAAQMIAAADCAACowQAAQMIAAAjCAADAwQAACMIAAADCAADAwQAAEMIAAADCAADAwQAACMIAABDCAADAwQAAEMIAABDCAADAwQAAGMIAAAjCAADAwQAAIMIAAAjCAADAwQAAGMIAABjCAADAwQAAIMIAABjCAADAwQAAGMIAACjCAADAwQAAIMIAACjCAADAwQAAKMIAAADCAADAwQAAMMIAAADCAADAwQAAKMIAABDCAADAwQAAMMIAABDCAADAwQAAKMIAACDCAADAwQAAMMIAACDCAADAwQAAOMIAAAjCAADAwQAAQMIAAAjCAADIwQAACMIAAADCAADIwQAAEMIAAADCAADIwQAACMIAABDCAADIwQAAEMIAABDCAADIwQAAGMIAAAjCAADIwQAAIMIAAAjCAADIwQAAGMIAABjCAADIwQAAIMIAABjCAADIwQAAGMIAACjCAADIwQAAIMIAACjCAADIwQAAKMIAAADCAADIwQAAMMIAAADCAADIwQAAKMIAABDCAADIwQAAMMIAABDCAADIwQAAKMIAACDCAADIwQAAMMIAACDCAADIwQAAOMIAAAjCAADIwQAAQMIAAAjCAAAUwgAACMIAAADCAAAUwgAAEMIAAADCAAAUwgAACMIAABDCAAAUwgAAEMIAABDCAAAUwgAAGMIAAAjCAAAUwgAAIMIAAAjCAAAUwgAAGMIAABjCAAAUwgAAIMIAABjCAAAUwgAAGMIAACjCAAAUwgAAIMIAACjCAAAUwgAAKMIAAADCAAAUwgAAMMIAAADCAAAUwgAAKMIAABDCAAAUwgAAMMIAABDCAAAUwgAAKMIAACDCAAAUwgAAMMIAACDCAAAUwgAAOMIAAAjCAAAUwgAAQMIAAAjCAAAYwgAACMIAAADCAAAYwgAAEMIAAADCAAAYwgAACMIAABDCAAAYwgAAEMIAABDCAAAYwgAAGMIAAAjCAAAYwgAAIMIAAAjCAAAYwgAAGMIAABjCAAAYwgAAIMIAABjCAAAYwgAAGMIAACjCAAAYwgAAIMIAACjCAAAYwgAAKMIAAADCAAAYwgAAMMIAAADCAAAYwgAAKMIAABDCAAAYwgAAMMIAABDCAAAYwgAAKMIAACDCAAAYwgAAMMIAACDCAAAYwgAAOMIAAAjCAAAYwgAAQMIAAAjCAAAkwgAACMIAAADCAAAkwgAACMIAAAjCAAAkwgAAEMIAAADCAAAkwgAAEMIAAAjCAAAkwgAAEMIAABDCAAAkwgAAEMIAABjCAAAkwgAAGMIAAAjCAAAkwgAAGMIAABDCAAAkwgAAGMIAABjCAAAkwgAAGMIAACDCAAAkwgAAIMIAAAjCAAAkwgAAIMIAABDCAAAkwgAAIMIAABjCAAAkwgAAIMIAACDCAAAkwgAAIMIAACjCAAAkwgAAIMIAADDCAAAkwgAAKMIAAADCAAAkwgAAKMIAAAjCAAAkwgAAKMIAABDCAAAkwgAAKMIAABjCAAAkwgAAKMIAACDCAAAkwgAAKMIAACjCAAAkwgAAMMIAAADCAAAkwgAAMMIAAAjCAAAkwgAAMMIAABDCAAAkwgAAMMIAABjCAAAkwgAAOMIAAAjCAAAkwgAAOMIAABDCAAAowgAACMIAAADCAAAowgAACMIAAAjCAAAowgAAEMIAAADCAAAowgAAEMIAAAjCAAAowgAAEMIAABDCAAAowgAAEMIAABjCAAAowgAAGMIAAAjCAAAowgAAGMIAABDCAAAowgAAGMIAABjCAAAowgAAGMIAACDCAAAowgAAIMIAAAjCAAAowgAAIMIAABDCAAAowgAAIMIAABjCAAAowgAAIMIAACDCAAAowgAAIMIAACjCAAAowgAAIMIAADDCAAAowgAAKMIAAADCAAAowgAAKMIAAAjCAAAowgAAKMIAABDCAAAowgAAKMIAABjCAAAowgAAKMIAACDCAAAowgAAKMIAACjCAAAowgAAMMIAAADCAAAowgAAMMIAAAjCAAAowgAAMMIAABDCAAAowgAAMMIAABjCAAAowgAAOMIAAAjCAAAowgAAOMIAABDCAAAswgAAAMIAAADCAAAswgAACMIAAADCAAAswgAAEMIAAADCAAAswgAAGMIAAADCAAAswgAAEMIAAAjCAAAswgAAGMIAAAjCAAAswgAAEMIAABDCAAAswgAAGMIAABDCAAAswgAAEMIAABjCAAAswgAAGMIAABjCAAAswgAAIMIAAADCAAAswgAAKMIAAADCAAAswgAAIMIAAAjCAAAswgAAKMIAAAjCAAAswgAAIMIAABDCAAAswgAAKMIAABDCAAAswgAAIMIAABjCAAAswgAAKMIAABjCAAAswgAAIMIAACDCAAAswgAAKMIAACDCAAAswgAAIMIAACjCAAAswgAAKMIAACjCAAAswgAAMMIAAADCAAAswgAAOMIAAADCAAAswgAAMMIAAAjCAAAswgAAOMIAAAjCAAAswgAAMMIAABDCAAAswgAAOMIAABDCAAAwwgAAAMIAAADCAAAwwgAACMIAAADCAAAwwgAAEMIAAADCAAAwwgAAGMIAAADCAAAwwgAAEMIAAAjCAAAwwgAAGMIAAAjCAAAwwgAAEMIAABDCAAAwwgAAGMIAABDCAAAwwgAAEMIAABjCAAAwwgAAGMIAABjCAAAwwgAAIMIAAADCAAAwwgAAKMIAAADCAAAwwgAAIMIAAAjCAAAwwgAAKMIAAAjCAAAwwgAAIMIAABDCAAAwwgAAKMIAABDCAAAwwgAAIMIAABjCAAAwwgAAKMIAABjCAAAwwgAAIMIAACDCAAAwwgAAKMIAACDCAAAwwgAAIMIAACjCAAAwwgAAKMIAACjCAAAwwgAAMMIAAADCAAAwwgAAOMIAAADCAAAwwgAAMMIAAAjCAAAwwgAAOMIAAAjCAAAwwgAAMMIAABDCAAAwwgAAOMIAABDCAAA0wgAACMIAAAjCAAA0wgAACMIAABDCAAA0wgAAEMIAAAjCAAA0wgAAEMIAABDCAAA0wgAAGMIAAADCAAA0wgAAGMIAAAjCAAA0wgAAGMIAABDCAAA0wgAAGMIAABjCAAA0wgAAGMIAACDCAAA0wgAAGMIAACjCAAA0wgAAIMIAAADCAAA0wgAAIMIAAAjCAAA0wgAAIMIAABDCAAA0wgAAIMIAABjCAAA0wgAAIMIAACDCAAA0wgAAIMIAACjCAAA0wgAAKMIAAAjCAAA0wgAAKMIAABDCAAA0wgAAKMIAABjCAAA0wgAAKMIAACDCAAA0wgAAMMIAAAjCAAA0wgAAMMIAABDCAAA0wgAAMMIAABjCAAA0wgAAMMIAACDCAAA0wgAAOMIAAADCAAA0wgAAOMIAAAjCAAA0wgAAQMIAAADCAAA0wgAAQMIAAAjCAAA4wgAACMIAAAjCAAA4wgAACMIAABDCAAA4wgAAEMIAAAjCAAA4wgAAEMIAABDCAAA4wgAAGMIAAADCAAA4wgAAGMIAAAjCAAA4wgAAGMIAABDCAAA4wgAAGMIAABjCAAA4wgAAGMIAACDCAAA4wgAAGMIAACjCAAA4wgAAIMIAAADCAAA4wgAAIMIAAAjCAAA4wgAAIMIAABDCAAA4wgAAIMIAABjCAAA4wgAAIMIAACDCAAA4wgAAIMIAACjCAAA4wgAAKMIAAAjCAAA4wgAAKMIAABDCAAA4wgAAKMIAABjCAAA4wgAAKMIAACDCAAA4wgAAMMIAAAjCAAA4wgAAMMIAABDCAAA4wgAAMMIAABjCAAA4wgAAMMIAACDCAAA4wgAAOMIAAADCAAA4wgAAOMIAAAjCAAA4wgAAQMIAAADCAAA4wgAAQMIAAAjCAABEwgAACMIAAADCAABEwgAACMIAAAjCAABEwgAAEMIAAADCAABEwgAAEMIAAAjCAABEwgAAEMIAABDCAABEwgAAEMIAABjCAABEwgAAGMIAAAjCAABEwgAAGMIAABDCAABEwgAAGMIAABjCAABEwgAAGMIAACDCAABEwgAAIMIAAAjCAABEwgAAIMIAABDCAABEwgAAIMIAABjCAABEwgAAIMIAACDCAABEwgAAIMIAACjCAABEwgAAIMIAADDCAABEwgAAKMIAAADCAABEwgAAKMIAAAjCAABEwgAAKMIAABDCAABEwgAAKMIAABjCAABEwgAAKMIAACDCAABEwgAAKMIAACjCAABEwgAAMMIAAADCAABEwgAAMMIAAAjCAABEwgAAMMIAABDCAABEwgAAMMIAABjCAABEwgAAOMIAAAjCAABEwgAAOMIAABDCAABIwgAACMIAAADCAABIwgAACMIAAAjCAABIwgAAEMIAAADCAABIwgAAEMIAAAjCAABIwgAAEMIAABDCAABIwgAAEMIAABjCAABIwgAAGMIAAAjCAABIwgAAGMIAABDCAABIwgAAGMIAABjCAABIwgAAGMIAACDCAABIwgAAIMIAAAjCAABIwgAAIMIAABDCAABIwgAAIMIAABjCAABIwgAAIMIAACDCAABIwgAAIMIAACjCAABIwgAAIMIAADDCAABIwgAAKMIAAADCAABIwgAAKMIAAAjCAABIwgAAKMIAABDCAABIwgAAKMIAABjCAABIwgAAKMIAACDCAABIwgAAKMIAACjCAABIwgAAMMIAAADCAABIwgAAMMIAAAjCAABIwgAAMMIAABDCAABIwgAAMMIAABjCAABIwgAAOMIAAAjCAABIwgAAOMIAABDCAABMwgAAAMIAAADCAABMwgAACMIAAADCAABMwgAAEMIAAADCAABMwgAAGMIAAADCAABMwgAAEMIAAAjCAABMwgAAGMIAAAjCAABMwgAAEMIAABDCAABMwgAAGMIAABDCAABMwgAAEMIAABjCAABMwgAAGMIAABjCAABMwgAAIMIAAADCAABMwgAAKMIAAADCAABMwgAAIMIAAAjCAABMwgAAKMIAAAjCAABMwgAAIMIAABDCAABMwgAAKMIAABDCAABMwgAAIMIAABjCAABMwgAAKMIAABjCAABMwgAAIMIAACDCAABMwgAAKMIAACDCAABMwgAAIMIAACjCAABMwgAAKMIAACjCAABMwgAAMMIAAADCAABMwgAAOMIAAADCAABMwgAAMMIAAAjCAABMwgAAOMIAAAjCAABMwgAAMMIAABDCAABMwgAAOMIAABDCAABQwgAAAMIAAADCAABQwgAACMIAAADCAABQwgAAEMIAAADCAABQwgAAGMIAAADCAABQwgAAEMIAAAjCAABQwgAAGMIAAAjCAABQwgAAEMIAABDCAABQwgAAGMIAABDCAABQwgAAEMIAABjCAABQwgAAGMIAABjCAABQwgAAIMIAAADCAABQwgAAKMIAAADCAABQwgAAIMIAAAjCAABQwgAAKMIAAAjCAABQwgAAIMIAABDCAABQwgAAKMIAABDCAABQwgAAIMIAABjCAABQwgAAKMIAABjCAABQwgAAIMIAACDCAABQwgAAKMIAACDCAABQwgAAIMIAACjCAABQwgAAKMIAACjCAABQwgAAMMIAAADCAABQwgAAOMIAAADCAABQwgAAMMIAAAjCAABQwgAAOMIAAAjCAABQwgAAMMIAABDCAABQwgAAOMIAABDCAABUwgAACMIAAAjCAABUwgAACMIAABDCAABUwgAAEMIAAAjCAABUwgAAEMIAABDCAABUwgAAGMIAAADCAABUwgAAGMIAAAjCAABUwgAAGMIAABDCAABUwgAAGMIAABjCAABUwgAAGMIAACDCAABUwgAAGMIAACjCAABUwgAAIMIAAADCAABUwgAAIMIAAAjCAABUwgAAIMIAABDCAABUwgAAIMIAABjCAABUwgAAIMIAACDCAABUwgAAIMIAACjCAABUwgAAKMIAAAjCAABUwgAAKMIAABDCAABUwgAAKMIAABjCAABUwgAAKMIAACDCAABUwgAAMMIAAAjCAABUwgAAMMIAABDCAABUwgAAMMIAABjCAABUwgAAMMIAACDCAABUwgAAOMIAAADCAABUwgAAOMIAAAjCAABUwgAAQMIAAADCAABUwgAAQMIAAAjCAABYwgAACMIAAAjCAABYwgAACMIAABDCAABYwgAAEMIAAAjCAABYwgAAEMIAABDCAABYwgAAGMIAAADCAABYwgAAGMIAAAjCAABYwgAAGMIAABDCAABYwgAAGMIAABjCAABYwgAAGMIAACDCAABYwgAAGMIAACjCAABYwgAAIMIAAADCAABYwgAAIMIAAAjCAABYwgAAIMIAABDCAABYwgAAIMIAABjCAABYwgAAIMIAACDCAABYwgAAIMIAACjCAABYwgAAKMIAAAjCAABYwgAAKMIAABDCAABYwgAAKMIAABjCAABYwgAAKMIAACDCAABYwgAAMMIAAAjCAABYwgAAMMIAABDCAABYwgAAMMIAABjCAABYwgAAMMIAACDCAABYwgAAOMIAAADCAABYwgAAOMIAAAjCAABYwgAAQMIAAADCAABYwgAAQMIAAAjCAABkwgAACMIAAADCAABkwgAAEMIAAADCAABkwgAACMIAABDCAABkwgAAEMIAABDCAABkwgAAGMIAAAjCAABkwgAAIMIAAAjCAABkwgAAGMIAABjCAABkwgAAIMIAABjCAABkwgAAGMIAACjCAABkwgAAIMIAACjCAABkwgAAKMIAAADCAABkwgAAMMIAAADCAABkwgAAKMIAABDCAABkwgAAMMIAABDCAABkwgAAKMIAACDCAABkwgAAMMIAACDCAABkwgAAOMIAAAjCAABkwgAAQMIAAAjCAABowgAACMIAAADCAABowgAAEMIAAADCAABowgAACMIAABDCAABowgAAEMIAABDCAABowgAAGMIAAAjCAABowgAAIMIAAAjCAABowgAAGMIAABjCAABowgAAIMIAABjCAABowgAAGMIAACjCAABowgAAIMIAACjCAABowgAAKMIAAADCAABowgAAMMIAAADCAABowgAAKMIAABDCAABowgAAMMIAABDCAABowgAAKMIAACDCAABowgAAMMIAACDCAABowgAAOMIAAAjCAABowgAAQMIAAAjCAACMwgAACMIAAADCAACMwgAAEMIAAADCAACMwgAACMIAABDCAACMwgAAEMIAABDCAACMwgAAGMIAAAjCAACMwgAAIMIAAAjCAACMwgAAGMIAABjCAACMwgAAIMIAABjCAACMwgAAGMIAACjCAACMwgAAIMIAACjCAACMwgAAKMIAAADCAACMwgAAMMIAAADCAACMwgAAKMIAABDCAACMwgAAMMIAABDCAACMwgAAKMIAACDCAACMwgAAMMIAACDCAACMwgAAOMIAAAjCAACMwgAAQMIAAAjCAACOwgAACMIAAADCAACOwgAAEMIAAADCAACOwgAACMIAABDCAACOwgAAEMIAABDCAACOwgAAGMIAAAjCAACOwgAAIMIAAAjCAACOwgAAGMIAABjCAACOwgAAIMIAABjCAACOwgAAGMIAACjCAACOwgAAIMIAACjCAACOwgAAKMIAAADCAACOwgAAMMIAAADCAACOwgAAKMIAABDCAACOwgAAMMIAABDCAACOwgAAKMIAACDCAACOwgAAMMIAACDCAACOwgAAOMIAAAjCAACOwgAAQMIAAAjCAACUwgAACMIAAAjCAACUwgAACMIAABDCAACUwgAAEMIAAAjCAACUwgAAEMIAABDCAACUwgAAGMIAAADCAACUwgAAGMIAAAjCAACUwgAAGMIAABDCAACUwgAAGMIAABjCAACUwgAAGMIAACDCAACUwgAAGMIAACjCAACUwgAAIMIAAADCAACUwgAAIMIAAAjCAACUwgAAIMIAABDCAACUwgAAIMIAABjCAACUwgAAIMIAACDCAACUwgAAIMIAACjCAACUwgAAKMIAAAjCAACUwgAAKMIAABDCAACUwgAAKMIAABjCAACUwgAAKMIAACDCAACUwgAAMMIAAAjCAACUwgAAMMIAABDCAACUwgAAMMIAABjCAACUwgAAMMIAACDCAACUwgAAOMIAAADCAACUwgAAOMIAAAjCAACUwgAAQMIAAADCAACUwgAAQMIAAAjCAACWwgAACMIAAAjCAACWwgAACMIAABDCAACWwgAAEMIAAAjCAACWwgAAEMIAABDCAACWwgAAGMIAAADCAACWwgAAGMIAAAjCAACWwgAAGMIAABDCAACWwgAAGMIAABjCAACWwgAAGMIAACDCAACWwgAAGMIAACjCAACWwgAAIMIAAADCAACWwgAAIMIAAAjCAACWwgAAIMIAABDCAACWwgAAIMIAABjCAACWwgAAIMIAACDCAACWwgAAIMIAACjCAACWwgAAKMIAAAjCAACWwgAAKMIAABDCAACWwgAAKMIAABjCAACWwgAAKMIAACDCAACWwgAAMMIAAAjCAACWwgAAMMIAABDCAACWwgAAMMIAABjCAACWwgAAMMIAACDCAACWwgAAOMIAAADCAACWwgAAOMIAAAjCAACWwgAAQMIAAADCAACWwgAAQMIAAAjCAACYwgAAAMIAAADCAACYwgAACMIAAADCAACYwgAAEMIAAADCAACYwgAAGMIAAADCAACYwgAAEMIAAAjCAACYwgAAGMIAAAjCAACYwgAAEMIAABDCAACYwgAAGMIAABDCAACYwgAAEMIAABjCAACYwgAAGMIAABjCAACYwgAAIMIAAADCAACYwgAAKMIAAADCAACYwgAAIMIAAAjCAACYwgAAKMIAAAjCAACYwgAAIMIAABDCAACYwgAAKMIAABDCAACYwgAAIMIAABjCAACYwgAAKMIAABjCAACYwgAAIMIAACDCAACYwgAAKMIAACDCAACYwgAAIMIAACjCAACYwgAAKMIAACjCAACYwgAAMMIAAADCAACYwgAAOMIAAADCAACYwgAAMMIAAAjCAACYwgAAOMIAAAjCAACYwgAAMMIAABDCAACYwgAAOMIAABDCAACawgAAAMIAAADCAACawgAACMIAAADCAACawgAAEMIAAADCAACawgAAGMIAAADCAACawgAAEMIAAAjCAACawgAAGMIAAAjCAACawgAAEMIAABDCAACawgAAGMIAABDCAACawgAAEMIAABjCAACawgAAGMIAABjCAACawgAAIMIAAADCAACawgAAKMIAAADCAACawgAAIMIAAAjCAACawgAAKMIAAAjCAACawgAAIMIAABDCAACawgAAKMIAABDCAACawgAAIMIAABjCAACawgAAKMIAABjCAACawgAAIMIAACDCAACawgAAKMIAACDCAACawgAAIMIAACjCAACawgAAKMIAACjCAACawgAAMMIAAADCAACawgAAOMIAAADCAACawgAAMMIAAAjCAACawgAAOMIAAAjCAACawgAAMMIAABDCAACawgAAOMIAABDCAACcwgAACMIAAADCAACcwgAACMIAAAjCAACcwgAAEMIAAADCAACcwgAAEMIAAAjCAACcwgAAEMIAABDCAACcwgAAEMIAABjCAACcwgAAGMIAAAjCAACcwgAAGMIAABDCAACcwgAAGMIAABjCAACcwgAAGMIAACDCAACcwgAAIMIAAAjCAACcwgAAIMIAABDCAACcwgAAIMIAABjCAACcwgAAIMIAACDCAACcwgAAIMIAACjCAACcwgAAIMIAADDCAACcwgAAKMIAAADCAACcwgAAKMIAAAjCAACcwgAAKMIAABDCAACcwgAAKMIAABjCAACcwgAAKMIAACDCAACcwgAAKMIAACjCAACcwgAAMMIAAADCAACcwgAAMMIAAAjCAACcwgAAMMIAABDCAACcwgAAMMIAABjCAACcwgAAOMIAAAjCAACcwgAAOMIAABDCAACewgAACMIAAADCAACewgAACMIAAAjCAACewgAAEMIAAADCAACewgAAEMIAAAjCAACewgAAEMIAABDCAACewgAAEMIAABjCAACewgAAGMIAAAjCAACewgAAGMIAABDCAACewgAAGMIAABjCAACewgAAGMIAACDCAACewgAAIMIAAAjCAACewgAAIMIAABDCAACewgAAIMIAABjCAACewgAAIMIAACDCAACewgAAIMIAACjCAACewgAAIMIAADDCAACewgAAKMIAAADCAACewgAAKMIAAAjCAACewgAAKMIAABDCAACewgAAKMIAABjCAACewgAAKMIAACDCAACewgAAKMIAACjCAACewgAAMMIAAADCAACewgAAMMIAAAjCAACewgAAMMIAABDCAACewgAAMMIAABjCAACewgAAOMIAAAjCAACewgAAOMIAABDCAACkwgAACMIAAAjCAACkwgAACMIAABDCAACkwgAAEMIAAAjCAACkwgAAEMIAABDCAACkwgAAGMIAAADCAACkwgAAGMIAAAjCAACkwgAAGMIAABDCAACkwgAAGMIAABjCAACkwgAAGMIAACDCAACkwgAAGMIAACjCAACkwgAAIMIAAADCAACkwgAAIMIAAAjCAACkwgAAIMIAABDCAACkwgAAIMIAABjCAACkwgAAIMIAACDCAACkwgAAIMIAACjCAACkwgAAKMIAAAjCAACkwgAAKMIAABDCAACkwgAAKMIAABjCAACkwgAAKMIAACDCAACkwgAAMMIAAAjCAACkwgAAMMIAABDCAACkwgAAMMIAABjCAACkwgAAMMIAACDCAACkwgAAOMIAAADCAACkwgAAOMIAAAjCAACkwgAAQMIAAADCAACkwgAAQMIAAAjCAACmwgAACMIAAAjCAACmwgAACMIAABDCAACmwgAAEMIAAAjCAACmwgAAEMIAABDCAACmwgAAGMIAAADCAACmwgAAGMIAAAjCAACmwgAAGMIAABDCAACmwgAAGMIAABjCAACmwgAAGMIAACDCAACmwgAAGMIAACjCAACmwgAAIMIAAADCAACmwgAAIMIAAAjCAACmwgAAIMIAABDCAACmwgAAIMIAABjCAACmwgAAIMIAACDCAACmwgAAIMIAACjCAACmwgAAKMIAAAjCAACmwgAAKMIAABDCAACmwgAAKMIAABjCAACmwgAAKMIAACDCAACmwgAAMMIAAAjCAACmwgAAMMIAABDCAACmwgAAMMIAABjCAACmwgAAMMIAACDCAACmwgAAOMIAAADCAACmwgAAOMIAAAjCAACmwgAAQMIAAADCAACmwgAAQMIAAAjCAACowgAAAMIAAADCAACowgAACMIAAADCAACowgAAEMIAAADCAACowgAAGMIAAADCAACowgAAEMIAAAjCAACowgAAGMIAAAjCAACowgAAEMIAABDCAACowgAAGMIAABDCAACowgAAEMIAABjCAACowgAAGMIAABjCAACowgAAIMIAAADCAACowgAAKMIAAADCAACowgAAIMIAAAjCAACowgAAKMIAAAjCAACowgAAIMIAABDCAACowgAAKMIAABDCAACowgAAIMIAABjCAACowgAAKMIAABjCAACowgAAIMIAACDCAACowgAAKMIAACDCAACowgAAIMIAACjCAACowgAAKMIAACjCAACowgAAMMIAAADCAACowgAAOMIAAADCAACowgAAMMIAAAjCAACowgAAOMIAAAjCAACowgAAMMIAABDCAACowgAAOMIAABDCAACqwgAAAMIAAADCAACqwgAACMIAAADCAACqwgAAEMIAAADCAACqwgAAGMIAAADCAACqwgAAEMIAAAjCAACqwgAAGMIAAAjCAACqwgAAEMIAABDCAACqwgAAGMIAABDCAACqwgAAEMIAABjCAACqwgAAGMIAABjCAACqwgAAIMIAAADCAACqwgAAKMIAAADCAACqwgAAIMIAAAjCAACqwgAAKMIAAAjCAACqwgAAIMIAABDCAACqwgAAKMIAABDCAACqwgAAIMIAABjCAACqwgAAKMIAABjCAACqwgAAIMIAACDCAACqwgAAKMIAACDCAACqwgAAIMIAACjCAACqwgAAKMIAACjCAACqwgAAMMIAAADCAACqwgAAOMIAAADCAACqwgAAMMIAAAjCAACqwgAAOMIAAAjCAACqwgAAMMIAABDCAACqwgAAOMIAABDCAACswgAACMIAAADCAACswgAACMIAAAjCAACswgAAEMIAAADCAACswgAAEMIAAAjCAACswgAAEMIAABDCAACswgAAEMIAABjCAACswgAAGMIAAAjCAACswgAAGMIAABDCAACswgAAGMIAABjCAACswgAAGMIAACDCAACswgAAIMIAAAjCAACswgAAIMIAABDCAACswgAAIMIAABjCAACswgAAIMIAACDCAACswgAAIMIAACjCAACswgAAIMIAADDCAACswgAAKMIAAADCAACswgAAKMIAAAjCAACswgAAKMIAABDCAACswgAAKMIAABjCAACswgAAKMIAACDCAACswgAAKMIAACjCAACswgAAMMIAAADCAACswgAAMMIAAAjCAACswgAAMMIAABDCAACswgAAMMIAABjCAACswgAAOMIAAAjCAACswgAAOMIAABDCAACuwgAACMIAAADCAACuwgAACMIAAAjCAACuwgAAEMIAAADCAACuwgAAEMIAAAjCAACuwgAAEMIAABDCAACuwgAAEMIAABjCAACuwgAAGMIAAAjCAACuwgAAGMIAABDCAACuwgAAGMIAABjCAACuwgAAGMIAACDCAACuwgAAIMIAAAjCAACuwgAAIMIAABDCAACuwgAAIMIAABjCAACuwgAAIMIAACDCAACuwgAAIMIAACjCAACuwgAAIMIAADDCAACuwgAAKMIAAADCAACuwgAAKMIAAAjCAACuwgAAKMIAABDCAACuwgAAKMIAABjCAACuwgAAKMIAACDCAACuwgAAKMIAACjCAACuwgAAMMIAAADCAACuwgAAMMIAAAjCAACuwgAAMMIAABDCAACuwgAAMMIAABjCAACuwgAAOMIAAAjCAACuwgAAOMIAABDCAAC0wgAACMIAAADCAAC0wgAAEMIAAADCAAC0wgAACMIAABDCAAC0wgAAEMIAABDCAAC0wgAAGMIAAAjCAAC0wgAAIMIAAAjCAAC0wgAAGMIAABjCAAC0wgAAIMIAABjCAAC0wgAAGMIAACjCAAC0wgAAIMIAACjCAAC0wgAAKMIAAADCAAC0wgAAMMIAAADCAAC0wgAAKMIAABDCAAC0wgAAMMIAABDCAAC0wgAAKMIAACDCAAC0wgAAMMIAACDCAAC0wgAAOMIAAAjCAAC0wgAAQMIAAAjCAAC2wgAACMIAAADCAAC2wgAAEMIAAADCAAC2wgAACMIAABDCAAC2wgAAEMIAABDCAAC2wgAAGMIAAAjCAAC2wgAAIMIAAAjCAAC2wgAAGMIAABjCAAC2wgAAIMIAABjCAAC2wgAAGMIAACjCAAC2wgAAIMIAACjCAAC2wgAAKMIAAADCAAC2wgAAMMIAAADCAAC2wgAAKMIAABDCAAC2wgAAMMIAABDCAAC2wgAAKMIAACDCAAC2wgAAMMIAACDCAAC2wgAAOMIAAAjCAAC2wgAAQMIAAAjCAACAPwAAAMIAAADCAADAwgAAAMIAAADCAACAPwAACMIAAADCAADAwgAACMIAAADCAACAPwAACMIAAAjCAADAwgAACMIAAAjCAACAPwAACMIAABDCAADAwgAACMIAABDCAACAPwAAEMIAAADCAADAwgAAEMIAAADCAACAPwAAEMIAAAjCAADAwgAAEMIAAAjCAACAPwAAEMIAABDCAADAwgAAEMIAABDCAACAPwAAEMIAABjCAADAwgAAEMIAABjCAACAPwAAGMIAAADCAADAwgAAGMIAAADCAACAPwAAGMIAAAjCAADAwgAAGMIAAAjCAACAPwAAGMIAABDCAADAwgAAGMIAABDCAACAPwAAGMIAABjCAADAwgAAGMIAABjCAACAPwAAGMIAACDCAADAwgAAGMIAACDCAACAPwAAGMIAACjCAADAwgAAGMIAACjCAACAPwAAIMIAAADCAADAwgAAIMIAAADCAACAPwAAIMIAAAjCAADAwgAAIMIAAAjCAACAPwAAIMIAABDCAADAwgAAIMIAABDCAACAPwAAIMIAABjCAADAwgAAIMIAABjCAACAPwAAIMIAACDCAADAwgAAIMIAACDCAACAPwAAIMIAACjCAADAwgAAIMIAACjCAACAPwAAIMIAADDCAADAwgAAIMIAADDCAACAPwAAKMIAAADCAADAwgAAKMIAAADCAACAPwAAKMIAAAjCAADAwgAAKMIAAAjCAACAPwAAKMIAABDCAADAwgAAKMIAABDCAACAPwAAKMIAABjCAADAwgAAKMIAABjCAACAPwAAKMIAACDCAADAwgAAKMIAACDCAACAPwAAKMIAACjCAADAwgAAKMIAACjCAACAPwAAMMIAAADCAADAwgAAMMIAAADCAACAPwAAMMIAAAjCAADAwgAAMMIAAAjCAACAPwAAMMIAABDCAADAwgAAMMIAABDCAACAPwAAMMIAABjCAADAwgAAMMIAABjCAACAPwAAMMIAACDCAADAwgAAMMIAACDCAACAPwAAOMIAAADCAADAwgAAOMIAAADCAACAPwAAOMIAAAjCAADAwgAAOMIAAAjCAACAPwAAOMIAABDCAADAwgAAOMIAABDCAACAPwAAQMIAAADCAADAwgAAQMIAAADCAACAPwAAQMIAAAjCAADAwgAAQMIAAAjC\"},{\"byteLength\":360,\"name\":\"buf_red_scattered_lines\",\"uri\":\"data:application/octet-stream;base64,AAAAAAAA8MEAABjCAABAwAAA8MEAABjCAAAgwAAA9MEAABjCAABAwAAA8MEAABjCAAAgwAAA7MEAABjCAABAwAAA8MEAABjCAAD+wQAA+MEAAPjBAAD+wQAA+MEAADTCAAD+wQAA+MEAAPjBAAD+wQAARMIAAPjBAAD+wQAA+MEAAPjBAICAwgAA+MEAAPjBAAD+wQAA+MEAADTCAAD+wQAARMIAADTCAAD+wQAA+MEAADTCAICAwgAA+MEAADTCAAD+wQAARMIAAPjBAAD+wQAARMIAADTCAAD+wQAARMIAAPjBAICAwgAARMIAAPjBAAD+wQAARMIAADTCAICAwgAARMIAADTCAICAwgAA+MEAAPjBAICAwgAA+MEAADTCAICAwgAA+MEAAPjBAICAwgAARMIAAPjBAICAwgAA+MEAADTCAICAwgAARMIAADTCAICAwgAARMIAAPjBAICAwgAARMIAADTC\"},{\"byteLength\":8448,\"name\":\"buf_blue_scattered_lines\",\"uri\":\"data:application/octet-stream;base64,AACAPs3M/MEAAPzBAACAPpqZ+cEAAPzBAACAPs3M/MEAADLCAACAPpqZ+cEAADLCAACAPpqZ+cEAAPzBAACAPpqZ+cEAADLCAACAPpqZ+cEAAPzBAACgv5qZ+cEAAPzBAACAPpqZ+cEAADLCAACgv5qZ+cEAADLCAACgv83M/MEAAPzBAACgv5qZ+cEAAPzBAACgv83M/MEAADLCAACgv5qZ+cEAADLCAACgv5qZ+cEAAPzBAACgv5qZ+cEAADLCAADgv83M/MEAAPzBAADgv5qZ+cEAAPzBAADgv83M/MEAADLCAADgv5qZ+cEAADLCAADgv5qZ+cEAAPzBAADgv5qZ+cEAADLCAADgv5qZ+cEAAPzBAABQwJqZ+cEAAPzBAADgv5qZ+cEAADLCAABQwJqZ+cEAADLCAABQwM3M/MEAAPzBAABQwJqZ+cEAAPzBAABQwM3M/MEAADLCAABQwJqZ+cEAADLCAABQwJqZ+cEAAPzBAABQwJqZ+cEAADLCAABwwM3M/MEAAPzBAABwwJqZ+cEAAPzBAABwwM3M/MEAADLCAABwwJqZ+cEAADLCAABwwJqZ+cEAAPzBAABwwJqZ+cEAADLCAABwwJqZ+cEAAPzBAACowJqZ+cEAAPzBAABwwJqZ+cEAADLCAACowJqZ+cEAADLCAACowM3M/MEAAPzBAACowJqZ+cEAAPzBAACowM3M/MEAADLCAACowJqZ+cEAADLCAACowJqZ+cEAAPzBAACowJqZ+cEAADLCAAC4wM3M/MEAAPzBAAC4wJqZ+cEAAPzBAAC4wM3M/MEAADLCAAC4wJqZ+cEAADLCAAC4wJqZ+cEAAPzBAAC4wJqZ+cEAADLCAAC4wJqZ+cEAAPzBAADowJqZ+cEAAPzBAAC4wJqZ+cEAADLCAADowJqZ+cEAADLCAADowM3M/MEAAPzBAADowJqZ+cEAAPzBAADowM3M/MEAADLCAADowJqZ+cEAADLCAADowJqZ+cEAAPzBAADowJqZ+cEAADLCAAD4wM3M/MEAAPzBAAD4wJqZ+cEAAPzBAAD4wM3M/MEAADLCAAD4wJqZ+cEAADLCAAD4wJqZ+cEAAPzBAAD4wJqZ+cEAADLCAAD4wJqZ+cEAAPzBAAAUwZqZ+cEAAPzBAAD4wJqZ+cEAADLCAAAUwZqZ+cEAADLCAAAUwc3M/MEAAPzBAAAUwZqZ+cEAAPzBAAAUwc3M/MEAADLCAAAUwZqZ+cEAADLCAAAUwZqZ+cEAAPzBAAAUwZqZ+cEAADLCAAAcwc3M/MEAAPzBAAAcwZqZ+cEAAPzBAAAcwc3M/MEAADLCAAAcwZqZ+cEAADLCAAAcwZqZ+cEAAPzBAAAcwZqZ+cEAADLCAAAcwZqZ+cEAAPzBAAA0wZqZ+cEAAPzBAAAcwZqZ+cEAADLCAAA0wZqZ+cEAADLCAAA0wc3M/MEAAPzBAAA0wZqZ+cEAAPzBAAA0wc3M/MEAADLCAAA0wZqZ+cEAADLCAAA0wZqZ+cEAAPzBAAA0wZqZ+cEAADLCAAA8wc3M/MEAAPzBAAA8wZqZ+cEAAPzBAAA8wc3M/MEAADLCAAA8wZqZ+cEAADLCAAA8wZqZ+cEAAPzBAAA8wZqZ+cEAADLCAAA8wZqZ+cEAAPzBAABUwZqZ+cEAAPzBAAA8wZqZ+cEAADLCAABUwZqZ+cEAADLCAABUwc3M/MEAAPzBAABUwZqZ+cEAAPzBAABUwc3M/MEAADLCAABUwZqZ+cEAADLCAABUwZqZ+cEAAPzBAABUwZqZ+cEAADLCAABcwc3M/MEAAPzBAABcwZqZ+cEAAPzBAABcwc3M/MEAADLCAABcwZqZ+cEAADLCAABcwZqZ+cEAAPzBAABcwZqZ+cEAADLCAABcwZqZ+cEAAPzBAAB0wZqZ+cEAAPzBAABcwZqZ+cEAADLCAAB0wZqZ+cEAADLCAAB0wc3M/MEAAPzBAAB0wZqZ+cEAAPzBAAB0wc3M/MEAADLCAAB0wZqZ+cEAADLCAAB0wZqZ+cEAAPzBAAB0wZqZ+cEAADLCAAB8wc3M/MEAAPzBAAB8wZqZ+cEAAPzBAAB8wc3M/MEAADLCAAB8wZqZ+cEAADLCAAB8wZqZ+cEAAPzBAAB8wZqZ+cEAADLCAAB8wZqZ+cEAAPzBAACKwZqZ+cEAAPzBAAB8wZqZ+cEAADLCAACKwZqZ+cEAADLCAACKwc3M/MEAAPzBAACKwZqZ+cEAAPzBAACKwc3M/MEAADLCAACKwZqZ+cEAADLCAACKwZqZ+cEAAPzBAACKwZqZ+cEAADLCAACOwc3M/MEAAPzBAACOwZqZ+cEAAPzBAACOwc3M/MEAADLCAACOwZqZ+cEAADLCAACOwZqZ+cEAAPzBAACOwZqZ+cEAADLCAACOwZqZ+cEAAPzBAACawZqZ+cEAAPzBAACOwZqZ+cEAADLCAACawZqZ+cEAADLCAACawc3M/MEAAPzBAACawZqZ+cEAAPzBAACawc3M/MEAADLCAACawZqZ+cEAADLCAACawZqZ+cEAAPzBAACawZqZ+cEAADLCAACewc3M/MEAAPzBAACewZqZ+cEAAPzBAACewc3M/MEAADLCAACewZqZ+cEAADLCAACewZqZ+cEAAPzBAACewZqZ+cEAADLCAACewZqZ+cEAAPzBAACqwZqZ+cEAAPzBAACewZqZ+cEAADLCAACqwZqZ+cEAADLCAACqwc3M/MEAAPzBAACqwZqZ+cEAAPzBAACqwc3M/MEAADLCAACqwZqZ+cEAADLCAACqwZqZ+cEAAPzBAACqwZqZ+cEAADLCAACuwc3M/MEAAPzBAACuwZqZ+cEAAPzBAACuwc3M/MEAADLCAACuwZqZ+cEAADLCAACuwZqZ+cEAAPzBAACuwZqZ+cEAADLCAACuwZqZ+cEAAPzBAAC6wZqZ+cEAAPzBAACuwZqZ+cEAADLCAAC6wZqZ+cEAADLCAAC6wc3M/MEAAPzBAAC6wZqZ+cEAAPzBAAC6wc3M/MEAADLCAAC6wZqZ+cEAADLCAAC6wZqZ+cEAAPzBAAC6wZqZ+cEAADLCAAC+wc3M/MEAAPzBAAC+wZqZ+cEAAPzBAAC+wc3M/MEAADLCAAC+wZqZ+cEAADLCAAC+wZqZ+cEAAPzBAAC+wZqZ+cEAADLCAAC+wZqZ+cEAAPzBAADKwZqZ+cEAAPzBAAC+wZqZ+cEAADLCAADKwZqZ+cEAADLCAADKwc3M/MEAAPzBAADKwZqZ+cEAAPzBAADKwc3M/MEAADLCAADKwZqZ+cEAADLCAADKwZqZ+cEAAPzBAADKwZqZ+cEAADLCAADOwc3M/MEAAPzBAADOwZqZ+cEAAPzBAADOwc3M/MEAADLCAADOwZqZ+cEAADLCAADOwZqZ+cEAAPzBAADOwZqZ+cEAADLCAADOwZqZ+cEAAPzBAADawZqZ+cEAAPzBAADOwZqZ+cEAADLCAADawZqZ+cEAADLCAADawc3M/MEAAPzBAADawZqZ+cEAAPzBAADawc3M/MEAADLCAADawZqZ+cEAADLCAADawZqZ+cEAAPzBAADawZqZ+cEAADLCAADewc3M/MEAAPzBAADewZqZ+cEAAPzBAADewc3M/MEAADLCAADewZqZ+cEAADLCAADewZqZ+cEAAPzBAADewZqZ+cEAADLCAADewZqZ+cEAAPzBAADywZqZ+cEAAPzBAADewZqZ+cEAADLCAADywZqZ+cEAADLCAADywc3M/MEAAPzBAADywZqZ+cEAAPzBAADywc3M/MEAADLCAADywZqZ+cEAADLCAADywZqZ+cEAAPzBAADywZqZ+cEAADLCAAD+wc3M/MEAAPzBAAD+wZqZ+cEAAPzBAAD+wc3M/MEAADLCAAD+wZqZ+cEAADLCAAD+wZqZ+cEAAPzBAAD+wZqZ+cEAADLCAAD+wZqZ+cEAAPzBAAAJwpqZ+cEAAPzBAAD+wZqZ+cEAADLCAAAJwpqZ+cEAADLCAAAJws3M/MEAAPzBAAAJwpqZ+cEAAPzBAAAJws3M/MEAADLCAAAJwpqZ+cEAADLCAAAJwpqZ+cEAAPzBAAAJwpqZ+cEAADLCAAALws3M/MEAAPzBAAALwpqZ+cEAAPzBAAALws3M/MEAADLCAAALwpqZ+cEAADLCAAALwpqZ+cEAAPzBAAALwpqZ+cEAADLCAAALwpqZ+cEAAPzBAAARwpqZ+cEAAPzBAAALwpqZ+cEAADLCAAARwpqZ+cEAADLCAAARws3M/MEAAPzBAAARwpqZ+cEAAPzBAAARws3M/MEAADLCAAARwpqZ+cEAADLCAAARwpqZ+cEAAPzBAAARwpqZ+cEAADLCAAATws3M/MEAAPzBAAATwpqZ+cEAAPzBAAATws3M/MEAADLCAAATwpqZ+cEAADLCAAATwpqZ+cEAAPzBAAATwpqZ+cEAADLCAAATwpqZ+cEAAPzBAAAZwpqZ+cEAAPzBAAATwpqZ+cEAADLCAAAZwpqZ+cEAADLCAAAZws3M/MEAAPzBAAAZwpqZ+cEAAPzBAAAZws3M/MEAADLCAAAZwpqZ+cEAADLCAAAZwpqZ+cEAAPzBAAAZwpqZ+cEAADLCAAAbws3M/MEAAPzBAAAbwpqZ+cEAAPzBAAAbws3M/MEAADLCAAAbwpqZ+cEAADLCAAAbwpqZ+cEAAPzBAAAbwpqZ+cEAADLCAAAbwpqZ+cEAAPzBAAAhwpqZ+cEAAPzBAAAbwpqZ+cEAADLCAAAhwpqZ+cEAADLCAAAhws3M/MEAAPzBAAAhwpqZ+cEAAPzBAAAhws3M/MEAADLCAAAhwpqZ+cEAADLCAAAhwpqZ+cEAAPzBAAAhwpqZ+cEAADLCAAAjws3M/MEAAPzBAAAjwpqZ+cEAAPzBAAAjws3M/MEAADLCAAAjwpqZ+cEAADLCAAAjwpqZ+cEAAPzBAAAjwpqZ+cEAADLCAAAjwpqZ+cEAAPzBAAApwpqZ+cEAAPzBAAAjwpqZ+cEAADLCAAApwpqZ+cEAADLCAAApws3M/MEAAPzBAAApwpqZ+cEAAPzBAAApws3M/MEAADLCAAApwpqZ+cEAADLCAAApwpqZ+cEAAPzBAAApwpqZ+cEAADLCAAArws3M/MEAAPzBAAArwpqZ+cEAAPzBAAArws3M/MEAADLCAAArwpqZ+cEAADLCAAArwpqZ+cEAAPzBAAArwpqZ+cEAADLCAAArwpqZ+cEAAPzBAAAxwpqZ+cEAAPzBAAArwpqZ+cEAADLCAAAxwpqZ+cEAADLCAAAxws3M/MEAAPzBAAAxwpqZ+cEAAPzBAAAxws3M/MEAADLCAAAxwpqZ+cEAADLCAAAxwpqZ+cEAAPzBAAAxwpqZ+cEAADLCAAAzws3M/MEAAPzBAAAzwpqZ+cEAAPzBAAAzws3M/MEAADLCAAAzwpqZ+cEAADLCAAAzwpqZ+cEAAPzBAAAzwpqZ+cEAADLCAAAzwpqZ+cEAAPzBAAA5wpqZ+cEAAPzBAAAzwpqZ+cEAADLCAAA5wpqZ+cEAADLCAAA5ws3M/MEAAPzBAAA5wpqZ+cEAAPzBAAA5ws3M/MEAADLCAAA5wpqZ+cEAADLCAAA5wpqZ+cEAAPzBAAA5wpqZ+cEAADLCAAA7ws3M/MEAAPzBAAA7wpqZ+cEAAPzBAAA7ws3M/MEAADLCAAA7wpqZ+cEAADLCAAA7wpqZ+cEAAPzBAAA7wpqZ+cEAADLCAAA7wpqZ+cEAAPzBAABBwpqZ+cEAAPzBAAA7wpqZ+cEAADLCAABBwpqZ+cEAADLCAABBws3M/MEAAPzBAABBwpqZ+cEAAPzBAABBws3M/MEAADLCAABBwpqZ+cEAADLCAABBwpqZ+cEAAPzBAABBwpqZ+cEAADLCAABDws3M/MEAAPzBAABDwpqZ+cEAAPzBAABDws3M/MEAADLCAABDwpqZ+cEAADLCAABDwpqZ+cEAAPzBAABDwpqZ+cEAADLCAABDwpqZ+cEAAPzBAABJwpqZ+cEAAPzBAABDwpqZ+cEAADLCAABJwpqZ+cEAADLCAABJws3M/MEAAPzBAABJwpqZ+cEAAPzBAABJws3M/MEAADLCAABJwpqZ+cEAADLCAABJwpqZ+cEAAPzBAABJwpqZ+cEAADLCAABLws3M/MEAAPzBAABLwpqZ+cEAAPzBAABLws3M/MEAADLCAABLwpqZ+cEAADLCAABLwpqZ+cEAAPzBAABLwpqZ+cEAADLCAABLwpqZ+cEAAPzBAABRwpqZ+cEAAPzBAABLwpqZ+cEAADLCAABRwpqZ+cEAADLCAABRws3M/MEAAPzBAABRwpqZ+cEAAPzBAABRws3M/MEAADLCAABRwpqZ+cEAADLCAABRwpqZ+cEAAPzBAABRwpqZ+cEAADLCAABTws3M/MEAAPzBAABTwpqZ+cEAAPzBAABTws3M/MEAADLCAABTwpqZ+cEAADLCAABTwpqZ+cEAAPzBAABTwpqZ+cEAADLCAABTwpqZ+cEAAPzBAABZwpqZ+cEAAPzBAABTwpqZ+cEAADLCAABZwpqZ+cEAADLCAABZws3M/MEAAPzBAABZwpqZ+cEAAPzBAABZws3M/MEAADLCAABZwpqZ+cEAADLCAABZwpqZ+cEAAPzBAABZwpqZ+cEAADLCAABbws3M/MEAAPzBAABbwpqZ+cEAAPzBAABbws3M/MEAADLCAABbwpqZ+cEAADLCAABbwpqZ+cEAAPzBAABbwpqZ+cEAADLCAABbwpqZ+cEAAPzBAABhwpqZ+cEAAPzBAABbwpqZ+cEAADLCAABhwpqZ+cEAADLCAABhws3M/MEAAPzBAABhwpqZ+cEAAPzBAABhws3M/MEAADLCAABhwpqZ+cEAADLCAABhwpqZ+cEAAPzBAABhwpqZ+cEAADLCAABjws3M/MEAAPzBAABjwpqZ+cEAAPzBAABjws3M/MEAADLCAABjwpqZ+cEAADLCAABjwpqZ+cEAAPzBAABjwpqZ+cEAADLCAABjwpqZ+cEAAPzBAABpwpqZ+cEAAPzBAABjwpqZ+cEAADLCAABpwpqZ+cEAADLCAABpws3M/MEAAPzBAABpwpqZ+cEAAPzBAABpws3M/MEAADLCAABpwpqZ+cEAADLCAABpwpqZ+cEAAPzBAABpwpqZ+cEAADLCAABrws3M/MEAAPzBAABrwpqZ+cEAAPzBAABrws3M/MEAADLCAABrwpqZ+cEAADLCAABrwpqZ+cEAAPzBAABrwpqZ+cEAADLCAABrwpqZ+cEAAPzBAABxwpqZ+cEAAPzBAABrwpqZ+cEAADLCAABxwpqZ+cEAADLCAABxws3M/MEAAPzBAABxwpqZ+cEAAPzBAABxws3M/MEAADLCAABxwpqZ+cEAADLCAABxwpqZ+cEAAPzBAABxwpqZ+cEAADLCAABzws3M/MEAAPzBAABzwpqZ+cEAAPzBAABzws3M/MEAADLCAABzwpqZ+cEAADLCAABzwpqZ+cEAAPzBAABzwpqZ+cEAADLCAABzwpqZ+cEAAPzBAAB9wpqZ+cEAAPzBAABzwpqZ+cEAADLCAAB9wpqZ+cEAADLCAAB9ws3M/MEAAPzBAAB9wpqZ+cEAAPzBAAB9ws3M/MEAADLCAAB9wpqZ+cEAADLCAAB9wpqZ+cEAAPzBAAB9wpqZ+cEAADLCAICBws3M/MEAAPzBAICBwpqZ+cEAAPzBAICBws3M/MEAADLCAICBwpqZ+cEAADLCAICBwpqZ+cEAAPzBAICBwpqZ+cEAADLCAICBwpqZ+cEAAPzBAICGwpqZ+cEAAPzBAICBwpqZ+cEAADLCAICGwpqZ+cEAADLCAICGws3M/MEAAPzBAICGwpqZ+cEAAPzBAICGws3M/MEAADLCAICGwpqZ+cEAADLCAICGwpqZ+cEAAPzBAICGwpqZ+cEAADLCAICHws3M/MEAAPzBAICHwpqZ+cEAAPzBAICHws3M/MEAADLCAICHwpqZ+cEAADLCAICHwpqZ+cEAAPzBAICHwpqZ+cEAADLCAICHwpqZ+cEAAPzBAICKwpqZ+cEAAPzBAICHwpqZ+cEAADLCAICKwpqZ+cEAADLCAICKws3M/MEAAPzBAICKwpqZ+cEAAPzBAICKws3M/MEAADLCAICKwpqZ+cEAADLCAICKwpqZ+cEAAPzBAICKwpqZ+cEAADLCAICLws3M/MEAAPzBAICLwpqZ+cEAAPzBAICLws3M/MEAADLCAICLwpqZ+cEAADLCAICLwpqZ+cEAAPzBAICLwpqZ+cEAADLCAICLwpqZ+cEAAPzBAICOwpqZ+cEAAPzBAICLwpqZ+cEAADLCAICOwpqZ+cEAADLCAICOws3M/MEAAPzBAICOwpqZ+cEAAPzBAICOws3M/MEAADLCAICOwpqZ+cEAADLCAICOwpqZ+cEAAPzBAICOwpqZ+cEAADLCAICPws3M/MEAAPzBAICPwpqZ+cEAAPzBAICPws3M/MEAADLCAICPwpqZ+cEAADLCAICPwpqZ+cEAAPzBAICPwpqZ+cEAADLCAICPwpqZ+cEAAPzBAICSwpqZ+cEAAPzBAICPwpqZ+cEAADLCAICSwpqZ+cEAADLCAICSws3M/MEAAPzBAICSwpqZ+cEAAPzBAICSws3M/MEAADLCAICSwpqZ+cEAADLCAICSwpqZ+cEAAPzBAICSwpqZ+cEAADLCAICTws3M/MEAAPzBAICTwpqZ+cEAAPzBAICTws3M/MEAADLCAICTwpqZ+cEAADLCAICTwpqZ+cEAAPzBAICTwpqZ+cEAADLCAICTwpqZ+cEAAPzBAICWwpqZ+cEAAPzBAICTwpqZ+cEAADLCAICWwpqZ+cEAADLCAICWws3M/MEAAPzBAICWwpqZ+cEAAPzBAICWws3M/MEAADLCAICWwpqZ+cEAADLCAICWwpqZ+cEAAPzBAICWwpqZ+cEAADLCAICXws3M/MEAAPzBAICXwpqZ+cEAAPzBAICXws3M/MEAADLCAICXwpqZ+cEAADLCAICXwpqZ+cEAAPzBAICXwpqZ+cEAADLCAICXwpqZ+cEAAPzBAICawpqZ+cEAAPzBAICXwpqZ+cEAADLCAICawpqZ+cEAADLCAICaws3M/MEAAPzBAICawpqZ+cEAAPzBAICaws3M/MEAADLCAICawpqZ+cEAADLCAICawpqZ+cEAAPzBAICawpqZ+cEAADLCAICbws3M/MEAAPzBAICbwpqZ+cEAAPzBAICbws3M/MEAADLCAICbwpqZ+cEAADLCAICbwpqZ+cEAAPzBAICbwpqZ+cEAADLCAICbwpqZ+cEAAPzBAICewpqZ+cEAAPzBAICbwpqZ+cEAADLCAICewpqZ+cEAADLCAICews3M/MEAAPzBAICewpqZ+cEAAPzBAICews3M/MEAADLCAICewpqZ+cEAADLCAICewpqZ+cEAAPzBAICewpqZ+cEAADLCAICfws3M/MEAAPzBAICfwpqZ+cEAAPzBAICfws3M/MEAADLCAICfwpqZ+cEAADLCAICfwpqZ+cEAAPzBAICfwpqZ+cEAADLCAICfwpqZ+cEAAPzBAICiwpqZ+cEAAPzBAICfwpqZ+cEAADLCAICiwpqZ+cEAADLCAICiws3M/MEAAPzBAICiwpqZ+cEAAPzBAICiws3M/MEAADLCAICiwpqZ+cEAADLCAICiwpqZ+cEAAPzBAICiwpqZ+cEAADLCAICjws3M/MEAAPzBAICjwpqZ+cEAAPzBAICjws3M/MEAADLCAICjwpqZ+cEAADLCAICjwpqZ+cEAAPzBAICjwpqZ+cEAADLCAICjwpqZ+cEAAPzBAICmwpqZ+cEAAPzBAICjwpqZ+cEAADLCAICmwpqZ+cEAADLCAICmws3M/MEAAPzBAICmwpqZ+cEAAPzBAICmws3M/MEAADLCAICmwpqZ+cEAADLCAICmwpqZ+cEAAPzBAICmwpqZ+cEAADLCAICnws3M/MEAAPzBAICnwpqZ+cEAAPzBAICnws3M/MEAADLCAICnwpqZ+cEAADLCAICnwpqZ+cEAAPzBAICnwpqZ+cEAADLCAICnwpqZ+cEAAPzBAICqwpqZ+cEAAPzBAICnwpqZ+cEAADLCAICqwpqZ+cEAADLCAICqws3M/MEAAPzBAICqwpqZ+cEAAPzBAICqws3M/MEAADLCAICqwpqZ+cEAADLCAICqwpqZ+cEAAPzBAICqwpqZ+cEAADLCAICrws3M/MEAAPzBAICrwpqZ+cEAAPzBAICrws3M/MEAADLCAICrwpqZ+cEAADLCAICrwpqZ+cEAAPzBAICrwpqZ+cEAADLCAICrwpqZ+cEAAPzBAICuwpqZ+cEAAPzBAICrwpqZ+cEAADLCAICuwpqZ+cEAADLCAICuws3M/MEAAPzBAICuwpqZ+cEAAPzBAICuws3M/MEAADLCAICuwpqZ+cEAADLCAICuwpqZ+cEAAPzBAICuwpqZ+cEAADLCAICvws3M/MEAAPzBAICvwpqZ+cEAAPzBAICvws3M/MEAADLCAICvwpqZ+cEAADLCAICvwpqZ+cEAAPzBAICvwpqZ+cEAADLCAICvwpqZ+cEAAPzBAICywpqZ+cEAAPzBAICvwpqZ+cEAADLCAICywpqZ+cEAADLCAICyws3M/MEAAPzBAICywpqZ+cEAAPzBAICyws3M/MEAADLCAICywpqZ+cEAADLCAICywpqZ+cEAAPzBAICywpqZ+cEAADLCAICzws3M/MEAAPzBAICzwpqZ+cEAAPzBAICzws3M/MEAADLCAICzwpqZ+cEAADLCAICzwpqZ+cEAAPzBAICzwpqZ+cEAADLCAICzwpqZ+cEAAPzBAIC2wpqZ+cEAAPzBAICzwpqZ+cEAADLCAIC2wpqZ+cEAADLCAIC2ws3M/MEAAPzBAIC2wpqZ+cEAAPzBAIC2ws3M/MEAADLCAIC2wpqZ+cEAADLCAIC2wpqZ+cEAAPzBAIC2wpqZ+cEAADLCAIC3ws3M/MEAAPzBAIC3wpqZ+cEAAPzBAIC3ws3M/MEAADLCAIC3wpqZ+cEAADLCAIC3wpqZ+cEAAPzBAIC3wpqZ+cEAADLCAIC3wpqZ+cEAAPzBAIC6wpqZ+cEAAPzBAIC3wpqZ+cEAADLCAIC6wpqZ+cEAADLCAIC6ws3M/MEAAPzBAIC6wpqZ+cEAAPzBAIC6ws3M/MEAADLCAIC6wpqZ+cEAADLCAIC6wpqZ+cEAAPzBAIC6wpqZ+cEAADLC\"}],\"images\":[{\"uri\":\"\"}],\"materials\":[{\"doubleSided\":false,\"pbrMetallicRoughness\":{\"baseColorFactor\":[1,1,1,1],\"baseColorTexture\":{\"index\":0,\"texCoord\":0},\"metallicFactor\":0.4,\"roughnessFactor\":0.5}},{\"doubleSided\":true,\"pbrMetallicRoughness\":{\"baseColorFactor\":[0,0,0,1],\"metallicFactor\":1,\"roughnessFactor\":1}},{\"doubleSided\":true,\"pbrMetallicRoughness\":{\"baseColorFactor\":[0,0,0,1],\"metallicFactor\":1,\"roughnessFactor\":1}},{\"doubleSided\":true,\"pbrMetallicRoughness\":{\"baseColorFactor\":[1,0,0,1],\"metallicFactor\":1,\"roughnessFactor\":1}},{\"doubleSided\":true,\"pbrMetallicRoughness\":{\"baseColorFactor\":[0,0,1,1],\"metallicFactor\":1,\"roughnessFactor\":1}}],\"meshes\":[{\"primitives\":[{\"attributes\":{\"POSITION\":0,\"TEXCOORD_0\":1},\"material\":0,\"mode\":4}]},{\"primitives\":[{\"attributes\":{\"POSITION\":0,\"TEXCOORD_0\":2},\"material\":0,\"mode\":4}]},{\"primitives\":[{\"attributes\":{\"POSITION\":0,\"TEXCOORD_0\":3},\"material\":0,\"mode\":4}]},{\"primitives\":[{\"attributes\":{\"POSITION\":0,\"TEXCOORD_0\":4},\"material\":0,\"mode\":4}]},{\"primitives\":[{\"attributes\":{\"POSITION\":5},\"material\":1,\"mode\":6}]},{\"primitives\":[{\"attributes\":{\"POSITION\":0,\"TEXCOORD_0\":6},\"material\":0,\"mode\":4}]},{\"primitives\":[{\"attributes\":{\"POSITION\":0,\"TEXCOORD_0\":7},\"material\":0,\"mode\":4}]},{\"primitives\":[{\"attributes\":{\"POSITION\":8},\"material\":2,\"mode\":1}]},{\"primitives\":[{\"attributes\":{\"POSITION\":9},\"material\":3,\"mode\":1}]},{\"primitives\":[{\"attributes\":{\"POSITION\":10},\"material\":4,\"mode\":1}]}],\"nodes\":[{\"mesh\":0,\"translation\":[-0,-34,-32]},{\"mesh\":0,\"translation\":[-0,-34,-36]},{\"mesh\":0,\"translation\":[-0,-38,-34]},{\"mesh\":0,\"translation\":[-0,-38,-38]},{\"mesh\":0,\"translation\":[-0,-38,-42]},{\"mesh\":0,\"translation\":[-0,-42,-32]},{\"mesh\":0,\"translation\":[-0,-42,-36]},{\"mesh\":0,\"translation\":[-0,-42,-40]},{\"mesh\":0,\"translation\":[-0,-46,-34]},{\"mesh\":0,\"translation\":[-0,-32,-32]},{\"mesh\":0,\"translation\":[-0,-34,-34]},{\"mesh\":0,\"translation\":[-0,-36,-34]},{\"mesh\":0,\"translation\":[-0,-36,-38]},{\"mesh\":0,\"translation\":[-0,-38,-32]},{\"mesh\":0,\"translation\":[-0,-38,-36]},{\"mesh\":0,\"translation\":[-0,-38,-40]},{\"mesh\":0,\"translation\":[-0,-40,-32]},{\"mesh\":0,\"translation\":[-0,-40,-36]},{\"mesh\":0,\"translation\":[-0,-40,-40]},{\"mesh\":0,\"translation\":[-0,-40,-44]},{\"mesh\":0,\"translation\":[-0,-42,-34]},{\"mesh\":0,\"translation\":[-0,-42,-38]},{\"mesh\":0,\"translation\":[-0,-42,-42]},{\"mesh\":0,\"translation\":[-0,-44,-34]},{\"mesh\":0,\"translation\":[-0,-44,-38]},{\"mesh\":0,\"translation\":[-0,-46,-32]},{\"mesh\":0,\"translation\":[-0,-46,-36]},{\"mesh\":0,\"translation\":[-0,-48,-32]},{\"mesh\":0,\"translation\":[-0,-36,-32]},{\"mesh\":0,\"translation\":[-0,-36,-36]},{\"mesh\":0,\"translation\":[-0,-40,-34]},{\"mesh\":0,\"translation\":[-0,-40,-38]},{\"mesh\":0,\"translation\":[-0,-40,-42]},{\"mesh\":0,\"translation\":[-0,-44,-32]},{\"mesh\":0,\"translation\":[-0,-44,-36]},{\"mesh\":0,\"translation\":[-0,-44,-40]},{\"mesh\":0,\"translation\":[-0,-48,-34]},{\"mesh\":1,\"translation\":[-1,-34,-32]},{\"mesh\":1,\"translation\":[-1,-34,-36]},{\"mesh\":1,\"translation\":[-1,-38,-34]},{\"mesh\":1,\"translation\":[-1,-38,-38]},{\"mesh\":1,\"translation\":[-1,-38,-42]},{\"mesh\":1,\"translation\":[-1,-42,-32]},{\"mesh\":1,\"translation\":[-1,-42,-36]},{\"mesh\":1,\"translation\":[-1,-42,-40]},{\"mesh\":1,\"translation\":[-1,-46,-34]},{\"mesh\":1,\"translation\":[-1,-32,-32]},{\"mesh\":1,\"translation\":[-1,-34,-34]},{\"mesh\":1,\"translation\":[-1,-36,-34]},{\"mesh\":1,\"translation\":[-1,-36,-38]},{\"mesh\":1,\"translation\":[-1,-38,-32]},{\"mesh\":1,\"translation\":[-1,-38,-36]},{\"mesh\":1,\"translation\":[-1,-38,-40]},{\"mesh\":1,\"translation\":[-1,-40,-32]},{\"mesh\":1,\"translation\":[-1,-40,-36]},{\"mesh\":1,\"translation\":[-1,-40,-40]},{\"mesh\":1,\"translation\":[-1,-40,-44]},{\"mesh\":1,\"translation\":[-1,-42,-34]},{\"mesh\":1,\"translation\":[-1,-42,-38]},{\"mesh\":1,\"translation\":[-1,-42,-42]},{\"mesh\":1,\"translation\":[-1,-44,-34]},{\"mesh\":1,\"translation\":[-1,-44,-38]},{\"mesh\":1,\"translation\":[-1,-46,-32]},{\"mesh\":1,\"translation\":[-1,-46,-36]},{\"mesh\":1,\"translation\":[-1,-48,-32]},{\"mesh\":1,\"translation\":[-1,-36,-32]},{\"mesh\":1,\"translation\":[-1,-36,-36]},{\"mesh\":1,\"translation\":[-1,-40,-34]},{\"mesh\":1,\"translation\":[-1,-40,-38]},{\"mesh\":1,\"translation\":[-1,-40,-42]},{\"mesh\":1,\"translation\":[-1,-44,-32]},{\"mesh\":1,\"translation\":[-1,-44,-36]},{\"mesh\":1,\"translation\":[-1,-44,-40]},{\"mesh\":1,\"translation\":[-1,-48,-34]},{\"mesh\":2,\"translation\":[-2,-34,-32]},{\"mesh\":2,\"translation\":[-2,-34,-36]},{\"mesh\":2,\"translation\":[-2,-36,-32]},{\"mesh\":2,\"translation\":[-2,-36,-36]},{\"mesh\":2,\"translation\":[-2,-38,-34]},{\"mesh\":2,\"translation\":[-2,-38,-38]},{\"mesh\":2,\"translation\":[-2,-38,-42]},{\"mesh\":2,\"translation\":[-2,-40,-34]},{\"mesh\":2,\"translation\":[-2,-40,-38]},{\"mesh\":2,\"translation\":[-2,-40,-42]},{\"mesh\":2,\"translation\":[-2,-42,-32]},{\"mesh\":2,\"translation\":[-2,-42,-36]},{\"mesh\":2,\"translation\":[-2,-42,-40]},{\"mesh\":2,\"translation\":[-2,-44,-32]},{\"mesh\":2,\"translation\":[-2,-44,-36]},{\"mesh\":2,\"translation\":[-2,-44,-40]},{\"mesh\":2,\"translation\":[-2,-46,-34]},{\"mesh\":2,\"translation\":[-2,-48,-34]},{\"mesh\":3,\"translation\":[-3,-34,-32]},{\"mesh\":3,\"translation\":[-3,-34,-36]},{\"mesh\":3,\"translation\":[-3,-36,-32]},{\"mesh\":3,\"translation\":[-3,-36,-36]},{\"mesh\":3,\"translation\":[-3,-38,-34]},{\"mesh\":3,\"translation\":[-3,-38,-38]},{\"mesh\":3,\"translation\":[-3,-38,-42]},{\"mesh\":3,\"translation\":[-3,-40,-34]},{\"mesh\":3,\"translation\":[-3,-40,-38]},{\"mesh\":3,\"translation\":[-3,-40,-42]},{\"mesh\":3,\"translation\":[-3,-42,-32]},{\"mesh\":3,\"translation\":[-3,-42,-36]},{\"mesh\":3,\"translation\":[-3,-42,-40]},{\"mesh\":3,\"translation\":[-3,-44,-32]},{\"mesh\":3,\"translation\":[-3,-44,-36]},{\"mesh\":3,\"translation\":[-3,-44,-40]},{\"mesh\":3,\"translation\":[-3,-46,-34]},{\"mesh\":3,\"translation\":[-3,-48,-34]},{\"mesh\":3,\"translation\":[-3,-32,-32]},{\"mesh\":3,\"translation\":[-3,-34,-34]},{\"mesh\":3,\"translation\":[-3,-36,-34]},{\"mesh\":3,\"translation\":[-3,-36,-38]},{\"mesh\":3,\"translation\":[-3,-38,-32]},{\"mesh\":3,\"translation\":[-3,-38,-36]},{\"mesh\":3,\"translation\":[-3,-38,-40]},{\"mesh\":3,\"translation\":[-3,-40,-32]},{\"mesh\":3,\"translation\":[-3,-40,-36]},{\"mesh\":3,\"translation\":[-3,-40,-40]},{\"mesh\":3,\"translation\":[-3,-40,-44]},{\"mesh\":3,\"translation\":[-3,-42,-34]},{\"mesh\":3,\"translation\":[-3,-42,-38]},{\"mesh\":3,\"translation\":[-3,-42,-42]},{\"mesh\":3,\"translation\":[-3,-44,-34]},{\"mesh\":3,\"translation\":[-3,-44,-38]},{\"mesh\":3,\"translation\":[-3,-46,-32]},{\"mesh\":3,\"translation\":[-3,-46,-36]},{\"mesh\":3,\"translation\":[-3,-48,-32]},{\"mesh\":4,\"translation\":[-4,-34,-32]},{\"mesh\":4,\"translation\":[-4,-36,-32]},{\"mesh\":4,\"translation\":[-4,-34,-36]},{\"mesh\":4,\"translation\":[-4,-36,-36]},{\"mesh\":4,\"translation\":[-4,-38,-34]},{\"mesh\":4,\"translation\":[-4,-40,-34]},{\"mesh\":4,\"translation\":[-4,-38,-38]},{\"mesh\":4,\"translation\":[-4,-40,-38]},{\"mesh\":4,\"translation\":[-4,-38,-42]},{\"mesh\":4,\"translation\":[-4,-40,-42]},{\"mesh\":4,\"translation\":[-4,-42,-32]},{\"mesh\":4,\"translation\":[-4,-44,-32]},{\"mesh\":4,\"translation\":[-4,-42,-36]},{\"mesh\":4,\"translation\":[-4,-44,-36]},{\"mesh\":4,\"translation\":[-4,-42,-40]},{\"mesh\":4,\"translation\":[-4,-44,-40]},{\"mesh\":4,\"translation\":[-4,-46,-34]},{\"mesh\":4,\"translation\":[-4,-48,-34]},{\"mesh\":5,\"translation\":[-5,-34,-32]},{\"mesh\":5,\"translation\":[-5,-36,-32]},{\"mesh\":5,\"translation\":[-5,-34,-36]},{\"mesh\":5,\"translation\":[-5,-36,-36]},{\"mesh\":5,\"translation\":[-5,-38,-34]},{\"mesh\":5,\"translation\":[-5,-40,-34]},{\"mesh\":5,\"translation\":[-5,-38,-38]},{\"mesh\":5,\"translation\":[-5,-40,-38]},{\"mesh\":5,\"translation\":[-5,-38,-42]},{\"mesh\":5,\"translation\":[-5,-40,-42]},{\"mesh\":5,\"translation\":[-5,-42,-32]},{\"mesh\":5,\"translation\":[-5,-44,-32]},{\"mesh\":5,\"translation\":[-5,-42,-36]},{\"mesh\":5,\"translation\":[-5,-44,-36]},{\"mesh\":5,\"translation\":[-5,-42,-40]},{\"mesh\":5,\"translation\":[-5,-44,-40]},{\"mesh\":5,\"translation\":[-5,-46,-34]},{\"mesh\":5,\"translation\":[-5,-48,-34]},{\"mesh\":3,\"translation\":[-5,-32,-32]},{\"mesh\":3,\"translation\":[-5,-34,-34]},{\"mesh\":3,\"translation\":[-5,-36,-34]},{\"mesh\":3,\"translation\":[-5,-36,-38]},{\"mesh\":3,\"translation\":[-5,-38,-32]},{\"mesh\":3,\"translation\":[-5,-38,-36]},{\"mesh\":3,\"translation\":[-5,-38,-40]},{\"mesh\":3,\"translation\":[-5,-40,-32]},{\"mesh\":3,\"translation\":[-5,-40,-36]},{\"mesh\":3,\"translation\":[-5,-40,-40]},{\"mesh\":3,\"translation\":[-5,-40,-44]},{\"mesh\":3,\"translation\":[-5,-42,-34]},{\"mesh\":3,\"translation\":[-5,-42,-38]},{\"mesh\":3,\"translation\":[-5,-42,-42]},{\"mesh\":3,\"translation\":[-5,-44,-34]},{\"mesh\":3,\"translation\":[-5,-44,-38]},{\"mesh\":3,\"translation\":[-5,-46,-32]},{\"mesh\":3,\"translation\":[-5,-46,-36]},{\"mesh\":3,\"translation\":[-5,-48,-32]},{\"mesh\":2,\"translation\":[-6,-34,-32]},{\"mesh\":2,\"translation\":[-6,-34,-36]},{\"mesh\":2,\"translation\":[-6,-38,-34]},{\"mesh\":2,\"translation\":[-6,-38,-38]},{\"mesh\":2,\"translation\":[-6,-38,-42]},{\"mesh\":2,\"translation\":[-6,-42,-32]},{\"mesh\":2,\"translation\":[-6,-42,-36]},{\"mesh\":2,\"translation\":[-6,-42,-40]},{\"mesh\":2,\"translation\":[-6,-46,-34]},{\"mesh\":3,\"translation\":[-7,-34,-32]},{\"mesh\":3,\"translation\":[-7,-34,-36]},{\"mesh\":3,\"translation\":[-7,-38,-34]},{\"mesh\":3,\"translation\":[-7,-38,-38]},{\"mesh\":3,\"translation\":[-7,-38,-42]},{\"mesh\":3,\"translation\":[-7,-42,-32]},{\"mesh\":3,\"translation\":[-7,-42,-36]},{\"mesh\":3,\"translation\":[-7,-42,-40]},{\"mesh\":3,\"translation\":[-7,-46,-34]},{\"mesh\":3,\"translation\":[-7,-32,-32]},{\"mesh\":3,\"translation\":[-7,-34,-34]},{\"mesh\":3,\"translation\":[-7,-36,-32]},{\"mesh\":3,\"translation\":[-7,-36,-34]},{\"mesh\":3,\"translation\":[-7,-36,-36]},{\"mesh\":3,\"translation\":[-7,-36,-38]},{\"mesh\":3,\"translation\":[-7,-38,-32]},{\"mesh\":3,\"translation\":[-7,-38,-36]},{\"mesh\":3,\"translation\":[-7,-38,-40]},{\"mesh\":3,\"translation\":[-7,-40,-32]},{\"mesh\":3,\"translation\":[-7,-40,-34]},{\"mesh\":3,\"translation\":[-7,-40,-36]},{\"mesh\":3,\"translation\":[-7,-40,-38]},{\"mesh\":3,\"translation\":[-7,-40,-40]},{\"mesh\":3,\"translation\":[-7,-40,-42]},{\"mesh\":3,\"translation\":[-7,-40,-44]},{\"mesh\":3,\"translation\":[-7,-42,-34]},{\"mesh\":3,\"translation\":[-7,-42,-38]},{\"mesh\":3,\"translation\":[-7,-42,-42]},{\"mesh\":3,\"translation\":[-7,-44,-32]},{\"mesh\":3,\"translation\":[-7,-44,-34]},{\"mesh\":3,\"translation\":[-7,-44,-36]},{\"mesh\":3,\"translation\":[-7,-44,-38]},{\"mesh\":3,\"translation\":[-7,-44,-40]},{\"mesh\":3,\"translation\":[-7,-46,-32]},{\"mesh\":3,\"translation\":[-7,-46,-36]},{\"mesh\":3,\"translation\":[-7,-48,-32]},{\"mesh\":3,\"translation\":[-7,-48,-34]},{\"mesh\":4,\"translation\":[-8,-34,-32]},{\"mesh\":4,\"translation\":[-8,-34,-34]},{\"mesh\":4,\"translation\":[-8,-36,-32]},{\"mesh\":4,\"translation\":[-8,-36,-34]},{\"mesh\":4,\"translation\":[-8,-36,-36]},{\"mesh\":4,\"translation\":[-8,-36,-38]},{\"mesh\":4,\"translation\":[-8,-38,-34]},{\"mesh\":4,\"translation\":[-8,-38,-36]},{\"mesh\":4,\"translation\":[-8,-38,-38]},{\"mesh\":4,\"translation\":[-8,-38,-40]},{\"mesh\":4,\"translation\":[-8,-40,-34]},{\"mesh\":4,\"translation\":[-8,-40,-36]},{\"mesh\":4,\"translation\":[-8,-40,-38]},{\"mesh\":4,\"translation\":[-8,-40,-40]},{\"mesh\":4,\"translation\":[-8,-40,-42]},{\"mesh\":4,\"translation\":[-8,-40,-44]},{\"mesh\":4,\"translation\":[-8,-42,-32]},{\"mesh\":4,\"translation\":[-8,-42,-34]},{\"mesh\":4,\"translation\":[-8,-42,-36]},{\"mesh\":4,\"translation\":[-8,-42,-38]},{\"mesh\":4,\"translation\":[-8,-42,-40]},{\"mesh\":4,\"translation\":[-8,-42,-42]},{\"mesh\":4,\"translation\":[-8,-44,-32]},{\"mesh\":4,\"translation\":[-8,-44,-34]},{\"mesh\":4,\"translation\":[-8,-44,-36]},{\"mesh\":4,\"translation\":[-8,-44,-38]},{\"mesh\":4,\"translation\":[-8,-46,-34]},{\"mesh\":4,\"translation\":[-8,-46,-36]},{\"mesh\":5,\"translation\":[-9,-34,-32]},{\"mesh\":5,\"translation\":[-9,-34,-34]},{\"mesh\":5,\"translation\":[-9,-36,-32]},{\"mesh\":5,\"translation\":[-9,-36,-34]},{\"mesh\":5,\"translation\":[-9,-36,-36]},{\"mesh\":5,\"translation\":[-9,-36,-38]},{\"mesh\":5,\"translation\":[-9,-38,-34]},{\"mesh\":5,\"translation\":[-9,-38,-36]},{\"mesh\":5,\"translation\":[-9,-38,-38]},{\"mesh\":5,\"translation\":[-9,-38,-40]},{\"mesh\":5,\"translation\":[-9,-40,-34]},{\"mesh\":5,\"translation\":[-9,-40,-36]},{\"mesh\":5,\"translation\":[-9,-40,-38]},{\"mesh\":5,\"translation\":[-9,-40,-40]},{\"mesh\":5,\"translation\":[-9,-40,-42]},{\"mesh\":5,\"translation\":[-9,-40,-44]},{\"mesh\":5,\"translation\":[-9,-42,-32]},{\"mesh\":5,\"translation\":[-9,-42,-34]},{\"mesh\":5,\"translation\":[-9,-42,-36]},{\"mesh\":5,\"translation\":[-9,-42,-38]},{\"mesh\":5,\"translation\":[-9,-42,-40]},{\"mesh\":5,\"translation\":[-9,-42,-42]},{\"mesh\":5,\"translation\":[-9,-44,-32]},{\"mesh\":5,\"translation\":[-9,-44,-34]},{\"mesh\":5,\"translation\":[-9,-44,-36]},{\"mesh\":5,\"translation\":[-9,-44,-38]},{\"mesh\":5,\"translation\":[-9,-46,-34]},{\"mesh\":5,\"translation\":[-9,-46,-36]},{\"mesh\":3,\"translation\":[-9,-32,-32]},{\"mesh\":3,\"translation\":[-9,-34,-36]},{\"mesh\":3,\"translation\":[-9,-38,-32]},{\"mesh\":3,\"translation\":[-9,-38,-42]},{\"mesh\":3,\"translation\":[-9,-40,-32]},{\"mesh\":3,\"translation\":[-9,-44,-40]},{\"mesh\":3,\"translation\":[-9,-46,-32]},{\"mesh\":3,\"translation\":[-9,-48,-32]},{\"mesh\":3,\"translation\":[-9,-48,-34]},{\"mesh\":4,\"translation\":[-10,-32,-32]},{\"mesh\":4,\"translation\":[-10,-34,-32]},{\"mesh\":4,\"translation\":[-10,-36,-32]},{\"mesh\":4,\"translation\":[-10,-38,-32]},{\"mesh\":4,\"translation\":[-10,-36,-34]},{\"mesh\":4,\"translation\":[-10,-38,-34]},{\"mesh\":4,\"translation\":[-10,-36,-36]},{\"mesh\":4,\"translation\":[-10,-38,-36]},{\"mesh\":4,\"translation\":[-10,-36,-38]},{\"mesh\":4,\"translation\":[-10,-38,-38]},{\"mesh\":4,\"translation\":[-10,-40,-32]},{\"mesh\":4,\"translation\":[-10,-42,-32]},{\"mesh\":4,\"translation\":[-10,-40,-34]},{\"mesh\":4,\"translation\":[-10,-42,-34]},{\"mesh\":4,\"translation\":[-10,-40,-36]},{\"mesh\":4,\"translation\":[-10,-42,-36]},{\"mesh\":4,\"translation\":[-10,-40,-38]},{\"mesh\":4,\"translation\":[-10,-42,-38]},{\"mesh\":4,\"translation\":[-10,-40,-40]},{\"mesh\":4,\"translation\":[-10,-42,-40]},{\"mesh\":4,\"translation\":[-10,-40,-42]},{\"mesh\":4,\"translation\":[-10,-42,-42]},{\"mesh\":4,\"translation\":[-10,-44,-32]},{\"mesh\":4,\"translation\":[-10,-46,-32]},{\"mesh\":4,\"translation\":[-10,-44,-34]},{\"mesh\":4,\"translation\":[-10,-46,-34]},{\"mesh\":4,\"translation\":[-10,-44,-36]},{\"mesh\":4,\"translation\":[-10,-46,-36]},{\"mesh\":5,\"translation\":[-11,-32,-32]},{\"mesh\":5,\"translation\":[-11,-34,-32]},{\"mesh\":5,\"translation\":[-11,-36,-32]},{\"mesh\":5,\"translation\":[-11,-38,-32]},{\"mesh\":5,\"translation\":[-11,-36,-34]},{\"mesh\":5,\"translation\":[-11,-38,-34]},{\"mesh\":5,\"translation\":[-11,-36,-36]},{\"mesh\":5,\"translation\":[-11,-38,-36]},{\"mesh\":5,\"translation\":[-11,-36,-38]},{\"mesh\":5,\"translation\":[-11,-38,-38]},{\"mesh\":5,\"translation\":[-11,-40,-32]},{\"mesh\":5,\"translation\":[-11,-42,-32]},{\"mesh\":5,\"translation\":[-11,-40,-34]},{\"mesh\":5,\"translation\":[-11,-42,-34]},{\"mesh\":5,\"translation\":[-11,-40,-36]},{\"mesh\":5,\"translation\":[-11,-42,-36]},{\"mesh\":5,\"translation\":[-11,-40,-38]},{\"mesh\":5,\"translation\":[-11,-42,-38]},{\"mesh\":5,\"translation\":[-11,-40,-40]},{\"mesh\":5,\"translation\":[-11,-42,-40]},{\"mesh\":5,\"translation\":[-11,-40,-42]},{\"mesh\":5,\"translation\":[-11,-42,-42]},{\"mesh\":5,\"translation\":[-11,-44,-32]},{\"mesh\":5,\"translation\":[-11,-46,-32]},{\"mesh\":5,\"translation\":[-11,-44,-34]},{\"mesh\":5,\"translation\":[-11,-46,-34]},{\"mesh\":5,\"translation\":[-11,-44,-36]},{\"mesh\":5,\"translation\":[-11,-46,-36]},{\"mesh\":3,\"translation\":[-11,-34,-34]},{\"mesh\":3,\"translation\":[-11,-34,-36]},{\"mesh\":3,\"translation\":[-11,-38,-40]},{\"mesh\":3,\"translation\":[-11,-38,-42]},{\"mesh\":3,\"translation\":[-11,-40,-44]},{\"mesh\":3,\"translation\":[-11,-44,-38]},{\"mesh\":3,\"translation\":[-11,-44,-40]},{\"mesh\":3,\"translation\":[-11,-48,-32]},{\"mesh\":3,\"translation\":[-11,-48,-34]},{\"mesh\":4,\"translation\":[-12,-34,-34]},{\"mesh\":4,\"translation\":[-12,-34,-36]},{\"mesh\":4,\"translation\":[-12,-36,-34]},{\"mesh\":4,\"translation\":[-12,-36,-36]},{\"mesh\":4,\"translation\":[-12,-38,-32]},{\"mesh\":4,\"translation\":[-12,-38,-34]},{\"mesh\":4,\"translation\":[-12,-38,-36]},{\"mesh\":4,\"translation\":[-12,-38,-38]},{\"mesh\":4,\"translation\":[-12,-38,-40]},{\"mesh\":4,\"translation\":[-12,-38,-42]},{\"mesh\":4,\"translation\":[-12,-40,-32]},{\"mesh\":4,\"translation\":[-12,-40,-34]},{\"mesh\":4,\"translation\":[-12,-40,-36]},{\"mesh\":4,\"translation\":[-12,-40,-38]},{\"mesh\":4,\"translation\":[-12,-40,-40]},{\"mesh\":4,\"translation\":[-12,-40,-42]},{\"mesh\":4,\"translation\":[-12,-42,-34]},{\"mesh\":4,\"translation\":[-12,-42,-36]},{\"mesh\":4,\"translation\":[-12,-42,-38]},{\"mesh\":4,\"translation\":[-12,-42,-40]},{\"mesh\":4,\"translation\":[-12,-44,-34]},{\"mesh\":4,\"translation\":[-12,-44,-36]},{\"mesh\":4,\"translation\":[-12,-44,-38]},{\"mesh\":4,\"translation\":[-12,-44,-40]},{\"mesh\":4,\"translation\":[-12,-46,-32]},{\"mesh\":4,\"translation\":[-12,-46,-34]},{\"mesh\":4,\"translation\":[-12,-48,-32]},{\"mesh\":4,\"translation\":[-12,-48,-34]},{\"mesh\":5,\"translation\":[-13,-34,-34]},{\"mesh\":5,\"translation\":[-13,-34,-36]},{\"mesh\":5,\"translation\":[-13,-36,-34]},{\"mesh\":5,\"translation\":[-13,-36,-36]},{\"mesh\":5,\"translation\":[-13,-38,-32]},{\"mesh\":5,\"translation\":[-13,-38,-34]},{\"mesh\":5,\"translation\":[-13,-38,-36]},{\"mesh\":5,\"translation\":[-13,-38,-38]},{\"mesh\":5,\"translation\":[-13,-38,-40]},{\"mesh\":5,\"translation\":[-13,-38,-42]},{\"mesh\":5,\"translation\":[-13,-40,-32]},{\"mesh\":5,\"translation\":[-13,-40,-34]},{\"mesh\":5,\"translation\":[-13,-40,-36]},{\"mesh\":5,\"translation\":[-13,-40,-38]},{\"mesh\":5,\"translation\":[-13,-40,-40]},{\"mesh\":5,\"translation\":[-13,-40,-42]},{\"mesh\":5,\"translation\":[-13,-42,-34]},{\"mesh\":5,\"translation\":[-13,-42,-36]},{\"mesh\":5,\"translation\":[-13,-42,-38]},{\"mesh\":5,\"translation\":[-13,-42,-40]},{\"mesh\":5,\"translation\":[-13,-44,-34]},{\"mesh\":5,\"translation\":[-13,-44,-36]},{\"mesh\":5,\"translation\":[-13,-44,-38]},{\"mesh\":5,\"translation\":[-13,-44,-40]},{\"mesh\":5,\"translation\":[-13,-46,-32]},{\"mesh\":5,\"translation\":[-13,-46,-34]},{\"mesh\":5,\"translation\":[-13,-48,-32]},{\"mesh\":5,\"translation\":[-13,-48,-34]},{\"mesh\":3,\"translation\":[-13,-32,-32]},{\"mesh\":3,\"translation\":[-13,-34,-32]},{\"mesh\":3,\"translation\":[-13,-36,-32]},{\"mesh\":3,\"translation\":[-13,-36,-38]},{\"mesh\":3,\"translation\":[-13,-40,-44]},{\"mesh\":3,\"translation\":[-13,-42,-32]},{\"mesh\":3,\"translation\":[-13,-42,-42]},{\"mesh\":3,\"translation\":[-13,-44,-32]},{\"mesh\":3,\"translation\":[-13,-46,-36]},{\"mesh\":2,\"translation\":[-14,-32,-32]},{\"mesh\":2,\"translation\":[-14,-34,-32]},{\"mesh\":2,\"translation\":[-14,-34,-34]},{\"mesh\":2,\"translation\":[-14,-34,-36]},{\"mesh\":2,\"translation\":[-14,-36,-32]},{\"mesh\":2,\"translation\":[-14,-36,-34]},{\"mesh\":2,\"translation\":[-14,-36,-36]},{\"mesh\":2,\"translation\":[-14,-36,-38]},{\"mesh\":2,\"translation\":[-14,-38,-32]},{\"mesh\":2,\"translation\":[-14,-38,-34]},{\"mesh\":2,\"translation\":[-14,-38,-36]},{\"mesh\":2,\"translation\":[-14,-38,-38]},{\"mesh\":2,\"translation\":[-14,-38,-40]},{\"mesh\":2,\"translation\":[-14,-38,-42]},{\"mesh\":2,\"translation\":[-14,-40,-32]},{\"mesh\":2,\"translation\":[-14,-40,-34]},{\"mesh\":2,\"translation\":[-14,-40,-36]},{\"mesh\":2,\"translation\":[-14,-40,-38]},{\"mesh\":2,\"translation\":[-14,-40,-40]},{\"mesh\":2,\"translation\":[-14,-40,-42]},{\"mesh\":2,\"translation\":[-14,-40,-44]},{\"mesh\":2,\"translation\":[-14,-42,-32]},{\"mesh\":2,\"translation\":[-14,-42,-34]},{\"mesh\":2,\"translation\":[-14,-42,-36]},{\"mesh\":2,\"translation\":[-14,-42,-38]},{\"mesh\":2,\"translation\":[-14,-42,-40]},{\"mesh\":2,\"translation\":[-14,-42,-42]},{\"mesh\":2,\"translation\":[-14,-44,-32]},{\"mesh\":2,\"translation\":[-14,-44,-34]},{\"mesh\":2,\"translation\":[-14,-44,-36]},{\"mesh\":2,\"translation\":[-14,-44,-38]},{\"mesh\":2,\"translation\":[-14,-44,-40]},{\"mesh\":2,\"translation\":[-14,-46,-32]},{\"mesh\":2,\"translation\":[-14,-46,-34]},{\"mesh\":2,\"translation\":[-14,-46,-36]},{\"mesh\":2,\"translation\":[-14,-48,-32]},{\"mesh\":2,\"translation\":[-14,-48,-34]},{\"mesh\":3,\"translation\":[-15,-32,-32]},{\"mesh\":3,\"translation\":[-15,-34,-32]},{\"mesh\":3,\"translation\":[-15,-34,-34]},{\"mesh\":3,\"translation\":[-15,-34,-36]},{\"mesh\":3,\"translation\":[-15,-36,-32]},{\"mesh\":3,\"translation\":[-15,-36,-34]},{\"mesh\":3,\"translation\":[-15,-36,-36]},{\"mesh\":3,\"translation\":[-15,-36,-38]},{\"mesh\":3,\"translation\":[-15,-38,-32]},{\"mesh\":3,\"translation\":[-15,-38,-34]},{\"mesh\":3,\"translation\":[-15,-38,-36]},{\"mesh\":3,\"translation\":[-15,-38,-38]},{\"mesh\":3,\"translation\":[-15,-38,-40]},{\"mesh\":3,\"translation\":[-15,-38,-42]},{\"mesh\":3,\"translation\":[-15,-40,-32]},{\"mesh\":3,\"translation\":[-15,-40,-34]},{\"mesh\":3,\"translation\":[-15,-40,-36]},{\"mesh\":3,\"translation\":[-15,-40,-38]},{\"mesh\":3,\"translation\":[-15,-40,-40]},{\"mesh\":3,\"translation\":[-15,-40,-42]},{\"mesh\":3,\"translation\":[-15,-40,-44]},{\"mesh\":3,\"translation\":[-15,-42,-32]},{\"mesh\":3,\"translation\":[-15,-42,-34]},{\"mesh\":3,\"translation\":[-15,-42,-36]},{\"mesh\":3,\"translation\":[-15,-42,-38]},{\"mesh\":3,\"translation\":[-15,-42,-40]},{\"mesh\":3,\"translation\":[-15,-42,-42]},{\"mesh\":3,\"translation\":[-15,-44,-32]},{\"mesh\":3,\"translation\":[-15,-44,-34]},{\"mesh\":3,\"translation\":[-15,-44,-36]},{\"mesh\":3,\"translation\":[-15,-44,-38]},{\"mesh\":3,\"translation\":[-15,-44,-40]},{\"mesh\":3,\"translation\":[-15,-46,-32]},{\"mesh\":3,\"translation\":[-15,-46,-34]},{\"mesh\":3,\"translation\":[-15,-46,-36]},{\"mesh\":3,\"translation\":[-15,-48,-32]},{\"mesh\":3,\"translation\":[-15,-48,-34]},{\"mesh\":4,\"translation\":[-16,-34,-32]},{\"mesh\":4,\"translation\":[-16,-34,-34]},{\"mesh\":4,\"translation\":[-16,-36,-32]},{\"mesh\":4,\"translation\":[-16,-36,-34]},{\"mesh\":4,\"translation\":[-16,-36,-36]},{\"mesh\":4,\"translation\":[-16,-36,-38]},{\"mesh\":4,\"translation\":[-16,-38,-34]},{\"mesh\":4,\"translation\":[-16,-38,-36]},{\"mesh\":4,\"translation\":[-16,-38,-38]},{\"mesh\":4,\"translation\":[-16,-38,-40]},{\"mesh\":4,\"translation\":[-16,-40,-34]},{\"mesh\":4,\"translation\":[-16,-40,-36]},{\"mesh\":4,\"translation\":[-16,-40,-38]},{\"mesh\":4,\"translation\":[-16,-40,-40]},{\"mesh\":4,\"translation\":[-16,-40,-42]},{\"mesh\":4,\"translation\":[-16,-40,-44]},{\"mesh\":4,\"translation\":[-16,-42,-32]},{\"mesh\":4,\"translation\":[-16,-42,-34]},{\"mesh\":4,\"translation\":[-16,-42,-36]},{\"mesh\":4,\"translation\":[-16,-42,-38]},{\"mesh\":4,\"translation\":[-16,-42,-40]},{\"mesh\":4,\"translation\":[-16,-42,-42]},{\"mesh\":4,\"translation\":[-16,-44,-32]},{\"mesh\":4,\"translation\":[-16,-44,-34]},{\"mesh\":4,\"translation\":[-16,-44,-36]},{\"mesh\":4,\"translation\":[-16,-44,-38]},{\"mesh\":4,\"translation\":[-16,-46,-34]},{\"mesh\":4,\"translation\":[-16,-46,-36]},{\"mesh\":5,\"translation\":[-17,-34,-32]},{\"mesh\":5,\"translation\":[-17,-34,-34]},{\"mesh\":5,\"translation\":[-17,-36,-32]},{\"mesh\":5,\"translation\":[-17,-36,-34]},{\"mesh\":5,\"translation\":[-17,-36,-36]},{\"mesh\":5,\"translation\":[-17,-36,-38]},{\"mesh\":5,\"translation\":[-17,-38,-34]},{\"mesh\":5,\"translation\":[-17,-38,-36]},{\"mesh\":5,\"translation\":[-17,-38,-38]},{\"mesh\":5,\"translation\":[-17,-38,-40]},{\"mesh\":5,\"translation\":[-17,-40,-34]},{\"mesh\":5,\"translation\":[-17,-40,-36]},{\"mesh\":5,\"translation\":[-17,-40,-38]},{\"mesh\":5,\"translation\":[-17,-40,-40]},{\"mesh\":5,\"translation\":[-17,-40,-42]},{\"mesh\":5,\"translation\":[-17,-40,-44]},{\"mesh\":5,\"translation\":[-17,-42,-32]},{\"mesh\":5,\"translation\":[-17,-42,-34]},{\"mesh\":5,\"translation\":[-17,-42,-36]},{\"mesh\":5,\"translation\":[-17,-42,-38]},{\"mesh\":5,\"translation\":[-17,-42,-40]},{\"mesh\":5,\"translation\":[-17,-42,-42]},{\"mesh\":5,\"translation\":[-17,-44,-32]},{\"mesh\":5,\"translation\":[-17,-44,-34]},{\"mesh\":5,\"translation\":[-17,-44,-36]},{\"mesh\":5,\"translation\":[-17,-44,-38]},{\"mesh\":5,\"translation\":[-17,-46,-34]},{\"mesh\":5,\"translation\":[-17,-46,-36]},{\"mesh\":3,\"translation\":[-17,-32,-32]},{\"mesh\":3,\"translation\":[-17,-34,-36]},{\"mesh\":3,\"translation\":[-17,-38,-32]},{\"mesh\":3,\"translation\":[-17,-38,-42]},{\"mesh\":3,\"translation\":[-17,-40,-32]},{\"mesh\":3,\"translation\":[-17,-44,-40]},{\"mesh\":3,\"translation\":[-17,-46,-32]},{\"mesh\":3,\"translation\":[-17,-48,-32]},{\"mesh\":3,\"translation\":[-17,-48,-34]},{\"mesh\":4,\"translation\":[-18,-32,-32]},{\"mesh\":4,\"translation\":[-18,-34,-32]},{\"mesh\":4,\"translation\":[-18,-36,-32]},{\"mesh\":4,\"translation\":[-18,-38,-32]},{\"mesh\":4,\"translation\":[-18,-36,-34]},{\"mesh\":4,\"translation\":[-18,-38,-34]},{\"mesh\":4,\"translation\":[-18,-36,-36]},{\"mesh\":4,\"translation\":[-18,-38,-36]},{\"mesh\":4,\"translation\":[-18,-36,-38]},{\"mesh\":4,\"translation\":[-18,-38,-38]},{\"mesh\":4,\"translation\":[-18,-40,-32]},{\"mesh\":4,\"translation\":[-18,-42,-32]},{\"mesh\":4,\"translation\":[-18,-40,-34]},{\"mesh\":4,\"translation\":[-18,-42,-34]},{\"mesh\":4,\"translation\":[-18,-40,-36]},{\"mesh\":4,\"translation\":[-18,-42,-36]},{\"mesh\":4,\"translation\":[-18,-40,-38]},{\"mesh\":4,\"translation\":[-18,-42,-38]},{\"mesh\":4,\"translation\":[-18,-40,-40]},{\"mesh\":4,\"translation\":[-18,-42,-40]},{\"mesh\":4,\"translation\":[-18,-40,-42]},{\"mesh\":4,\"translation\":[-18,-42,-42]},{\"mesh\":4,\"translation\":[-18,-44,-32]},{\"mesh\":4,\"translation\":[-18,-46,-32]},{\"mesh\":4,\"translation\":[-18,-44,-34]},{\"mesh\":4,\"translation\":[-18,-46,-34]},{\"mesh\":4,\"translation\":[-18,-44,-36]},{\"mesh\":4,\"translation\":[-18,-46,-36]},{\"mesh\":5,\"translation\":[-19,-32,-32]},{\"mesh\":5,\"translation\":[-19,-34,-32]},{\"mesh\":5,\"translation\":[-19,-36,-32]},{\"mesh\":5,\"translation\":[-19,-38,-32]},{\"mesh\":5,\"translation\":[-19,-36,-34]},{\"mesh\":5,\"translation\":[-19,-38,-34]},{\"mesh\":5,\"translation\":[-19,-36,-36]},{\"mesh\":5,\"translation\":[-19,-38,-36]},{\"mesh\":5,\"translation\":[-19,-36,-38]},{\"mesh\":5,\"translation\":[-19,-38,-38]},{\"mesh\":5,\"translation\":[-19,-40,-32]},{\"mesh\":5,\"translation\":[-19,-42,-32]},{\"mesh\":5,\"translation\":[-19,-40,-34]},{\"mesh\":5,\"translation\":[-19,-42,-34]},{\"mesh\":5,\"translation\":[-19,-40,-36]},{\"mesh\":5,\"translation\":[-19,-42,-36]},{\"mesh\":5,\"translation\":[-19,-40,-38]},{\"mesh\":5,\"translation\":[-19,-42,-38]},{\"mesh\":5,\"translation\":[-19,-40,-40]},{\"mesh\":5,\"translation\":[-19,-42,-40]},{\"mesh\":5,\"translation\":[-19,-40,-42]},{\"mesh\":5,\"translation\":[-19,-42,-42]},{\"mesh\":5,\"translation\":[-19,-44,-32]},{\"mesh\":5,\"translation\":[-19,-46,-32]},{\"mesh\":5,\"translation\":[-19,-44,-34]},{\"mesh\":5,\"translation\":[-19,-46,-34]},{\"mesh\":5,\"translation\":[-19,-44,-36]},{\"mesh\":5,\"translation\":[-19,-46,-36]},{\"mesh\":3,\"translation\":[-19,-34,-34]},{\"mesh\":3,\"translation\":[-19,-34,-36]},{\"mesh\":3,\"translation\":[-19,-38,-40]},{\"mesh\":3,\"translation\":[-19,-38,-42]},{\"mesh\":3,\"translation\":[-19,-40,-44]},{\"mesh\":3,\"translation\":[-19,-44,-38]},{\"mesh\":3,\"translation\":[-19,-44,-40]},{\"mesh\":3,\"translation\":[-19,-48,-32]},{\"mesh\":3,\"translation\":[-19,-48,-34]},{\"mesh\":4,\"translation\":[-20,-34,-34]},{\"mesh\":4,\"translation\":[-20,-34,-36]},{\"mesh\":4,\"translation\":[-20,-36,-34]},{\"mesh\":4,\"translation\":[-20,-36,-36]},{\"mesh\":4,\"translation\":[-20,-38,-32]},{\"mesh\":4,\"translation\":[-20,-38,-34]},{\"mesh\":4,\"translation\":[-20,-38,-36]},{\"mesh\":4,\"translation\":[-20,-38,-38]},{\"mesh\":4,\"translation\":[-20,-38,-40]},{\"mesh\":4,\"translation\":[-20,-38,-42]},{\"mesh\":4,\"translation\":[-20,-40,-32]},{\"mesh\":4,\"translation\":[-20,-40,-34]},{\"mesh\":4,\"translation\":[-20,-40,-36]},{\"mesh\":4,\"translation\":[-20,-40,-38]},{\"mesh\":4,\"translation\":[-20,-40,-40]},{\"mesh\":4,\"translation\":[-20,-40,-42]},{\"mesh\":4,\"translation\":[-20,-42,-34]},{\"mesh\":4,\"translation\":[-20,-42,-36]},{\"mesh\":4,\"translation\":[-20,-42,-38]},{\"mesh\":4,\"translation\":[-20,-42,-40]},{\"mesh\":4,\"translation\":[-20,-44,-34]},{\"mesh\":4,\"translation\":[-20,-44,-36]},{\"mesh\":4,\"translation\":[-20,-44,-38]},{\"mesh\":4,\"translation\":[-20,-44,-40]},{\"mesh\":4,\"translation\":[-20,-46,-32]},{\"mesh\":4,\"translation\":[-20,-46,-34]},{\"mesh\":4,\"translation\":[-20,-48,-32]},{\"mesh\":4,\"translation\":[-20,-48,-34]},{\"mesh\":5,\"translation\":[-21,-34,-34]},{\"mesh\":5,\"translation\":[-21,-34,-36]},{\"mesh\":5,\"translation\":[-21,-36,-34]},{\"mesh\":5,\"translation\":[-21,-36,-36]},{\"mesh\":5,\"translation\":[-21,-38,-32]},{\"mesh\":5,\"translation\":[-21,-38,-34]},{\"mesh\":5,\"translation\":[-21,-38,-36]},{\"mesh\":5,\"translation\":[-21,-38,-38]},{\"mesh\":5,\"translation\":[-21,-38,-40]},{\"mesh\":5,\"translation\":[-21,-38,-42]},{\"mesh\":5,\"translation\":[-21,-40,-32]},{\"mesh\":5,\"translation\":[-21,-40,-34]},{\"mesh\":5,\"translation\":[-21,-40,-36]},{\"mesh\":5,\"translation\":[-21,-40,-38]},{\"mesh\":5,\"translation\":[-21,-40,-40]},{\"mesh\":5,\"translation\":[-21,-40,-42]},{\"mesh\":5,\"translation\":[-21,-42,-34]},{\"mesh\":5,\"translation\":[-21,-42,-36]},{\"mesh\":5,\"translation\":[-21,-42,-38]},{\"mesh\":5,\"translation\":[-21,-42,-40]},{\"mesh\":5,\"translation\":[-21,-44,-34]},{\"mesh\":5,\"translation\":[-21,-44,-36]},{\"mesh\":5,\"translation\":[-21,-44,-38]},{\"mesh\":5,\"translation\":[-21,-44,-40]},{\"mesh\":5,\"translation\":[-21,-46,-32]},{\"mesh\":5,\"translation\":[-21,-46,-34]},{\"mesh\":5,\"translation\":[-21,-48,-32]},{\"mesh\":5,\"translation\":[-21,-48,-34]},{\"mesh\":3,\"translation\":[-21,-32,-32]},{\"mesh\":3,\"translation\":[-21,-34,-32]},{\"mesh\":3,\"translation\":[-21,-36,-32]},{\"mesh\":3,\"translation\":[-21,-36,-38]},{\"mesh\":3,\"translation\":[-21,-40,-44]},{\"mesh\":3,\"translation\":[-21,-42,-32]},{\"mesh\":3,\"translation\":[-21,-42,-42]},{\"mesh\":3,\"translation\":[-21,-44,-32]},{\"mesh\":3,\"translation\":[-21,-46,-36]},{\"mesh\":2,\"translation\":[-22,-32,-32]},{\"mesh\":2,\"translation\":[-22,-34,-34]},{\"mesh\":2,\"translation\":[-22,-36,-32]},{\"mesh\":2,\"translation\":[-22,-36,-34]},{\"mesh\":2,\"translation\":[-22,-36,-36]},{\"mesh\":2,\"translation\":[-22,-36,-38]},{\"mesh\":2,\"translation\":[-22,-38,-32]},{\"mesh\":2,\"translation\":[-22,-38,-36]},{\"mesh\":2,\"translation\":[-22,-38,-40]},{\"mesh\":2,\"translation\":[-22,-40,-32]},{\"mesh\":2,\"translation\":[-22,-40,-34]},{\"mesh\":2,\"translation\":[-22,-40,-36]},{\"mesh\":2,\"translation\":[-22,-40,-38]},{\"mesh\":2,\"translation\":[-22,-40,-40]},{\"mesh\":2,\"translation\":[-22,-40,-42]},{\"mesh\":2,\"translation\":[-22,-40,-44]},{\"mesh\":2,\"translation\":[-22,-42,-34]},{\"mesh\":2,\"translation\":[-22,-42,-38]},{\"mesh\":2,\"translation\":[-22,-42,-42]},{\"mesh\":2,\"translation\":[-22,-44,-32]},{\"mesh\":2,\"translation\":[-22,-44,-34]},{\"mesh\":2,\"translation\":[-22,-44,-36]},{\"mesh\":2,\"translation\":[-22,-44,-38]},{\"mesh\":2,\"translation\":[-22,-44,-40]},{\"mesh\":2,\"translation\":[-22,-46,-32]},{\"mesh\":2,\"translation\":[-22,-46,-36]},{\"mesh\":2,\"translation\":[-22,-48,-32]},{\"mesh\":2,\"translation\":[-22,-48,-34]},{\"mesh\":3,\"translation\":[-23,-32,-32]},{\"mesh\":3,\"translation\":[-23,-34,-34]},{\"mesh\":3,\"translation\":[-23,-36,-32]},{\"mesh\":3,\"translation\":[-23,-36,-34]},{\"mesh\":3,\"translation\":[-23,-36,-36]},{\"mesh\":3,\"translation\":[-23,-36,-38]},{\"mesh\":3,\"translation\":[-23,-38,-32]},{\"mesh\":3,\"translation\":[-23,-38,-36]},{\"mesh\":3,\"translation\":[-23,-38,-40]},{\"mesh\":3,\"translation\":[-23,-40,-32]},{\"mesh\":3,\"translation\":[-23,-40,-34]},{\"mesh\":3,\"translation\":[-23,-40,-36]},{\"mesh\":3,\"translation\":[-23,-40,-38]},{\"mesh\":3,\"translation\":[-23,-40,-40]},{\"mesh\":3,\"translation\":[-23,-40,-42]},{\"mesh\":3,\"translation\":[-23,-40,-44]},{\"mesh\":3,\"translation\":[-23,-42,-34]},{\"mesh\":3,\"translation\":[-23,-42,-38]},{\"mesh\":3,\"translation\":[-23,-42,-42]},{\"mesh\":3,\"translation\":[-23,-44,-32]},{\"mesh\":3,\"translation\":[-23,-44,-34]},{\"mesh\":3,\"translation\":[-23,-44,-36]},{\"mesh\":3,\"translation\":[-23,-44,-38]},{\"mesh\":3,\"translation\":[-23,-44,-40]},{\"mesh\":3,\"translation\":[-23,-46,-32]},{\"mesh\":3,\"translation\":[-23,-46,-36]},{\"mesh\":3,\"translation\":[-23,-48,-32]},{\"mesh\":3,\"translation\":[-23,-48,-34]},{\"mesh\":3,\"translation\":[-23,-34,-32]},{\"mesh\":3,\"translation\":[-23,-34,-36]},{\"mesh\":3,\"translation\":[-23,-38,-34]},{\"mesh\":3,\"translation\":[-23,-38,-38]},{\"mesh\":3,\"translation\":[-23,-38,-42]},{\"mesh\":3,\"translation\":[-23,-42,-32]},{\"mesh\":3,\"translation\":[-23,-42,-36]},{\"mesh\":3,\"translation\":[-23,-42,-40]},{\"mesh\":3,\"translation\":[-23,-46,-34]},{\"mesh\":4,\"translation\":[-24,-34,-32]},{\"mesh\":4,\"translation\":[-24,-36,-32]},{\"mesh\":4,\"translation\":[-24,-34,-36]},{\"mesh\":4,\"translation\":[-24,-36,-36]},{\"mesh\":4,\"translation\":[-24,-38,-34]},{\"mesh\":4,\"translation\":[-24,-40,-34]},{\"mesh\":4,\"translation\":[-24,-38,-38]},{\"mesh\":4,\"translation\":[-24,-40,-38]},{\"mesh\":4,\"translation\":[-24,-38,-42]},{\"mesh\":4,\"translation\":[-24,-40,-42]},{\"mesh\":4,\"translation\":[-24,-42,-32]},{\"mesh\":4,\"translation\":[-24,-44,-32]},{\"mesh\":4,\"translation\":[-24,-42,-36]},{\"mesh\":4,\"translation\":[-24,-44,-36]},{\"mesh\":4,\"translation\":[-24,-42,-40]},{\"mesh\":4,\"translation\":[-24,-44,-40]},{\"mesh\":4,\"translation\":[-24,-46,-34]},{\"mesh\":4,\"translation\":[-24,-48,-34]},{\"mesh\":5,\"translation\":[-25,-34,-32]},{\"mesh\":5,\"translation\":[-25,-36,-32]},{\"mesh\":5,\"translation\":[-25,-34,-36]},{\"mesh\":5,\"translation\":[-25,-36,-36]},{\"mesh\":5,\"translation\":[-25,-38,-34]},{\"mesh\":5,\"translation\":[-25,-40,-34]},{\"mesh\":5,\"translation\":[-25,-38,-38]},{\"mesh\":5,\"translation\":[-25,-40,-38]},{\"mesh\":5,\"translation\":[-25,-38,-42]},{\"mesh\":5,\"translation\":[-25,-40,-42]},{\"mesh\":5,\"translation\":[-25,-42,-32]},{\"mesh\":5,\"translation\":[-25,-44,-32]},{\"mesh\":5,\"translation\":[-25,-42,-36]},{\"mesh\":5,\"translation\":[-25,-44,-36]},{\"mesh\":5,\"translation\":[-25,-42,-40]},{\"mesh\":5,\"translation\":[-25,-44,-40]},{\"mesh\":5,\"translation\":[-25,-46,-34]},{\"mesh\":5,\"translation\":[-25,-48,-34]},{\"mesh\":3,\"translation\":[-25,-32,-32]},{\"mesh\":3,\"translation\":[-25,-34,-34]},{\"mesh\":3,\"translation\":[-25,-36,-34]},{\"mesh\":3,\"translation\":[-25,-36,-38]},{\"mesh\":3,\"translation\":[-25,-38,-32]},{\"mesh\":3,\"translation\":[-25,-38,-36]},{\"mesh\":3,\"translation\":[-25,-38,-40]},{\"mesh\":3,\"translation\":[-25,-40,-32]},{\"mesh\":3,\"translation\":[-25,-40,-36]},{\"mesh\":3,\"translation\":[-25,-40,-40]},{\"mesh\":3,\"translation\":[-25,-40,-44]},{\"mesh\":3,\"translation\":[-25,-42,-34]},{\"mesh\":3,\"translation\":[-25,-42,-38]},{\"mesh\":3,\"translation\":[-25,-42,-42]},{\"mesh\":3,\"translation\":[-25,-44,-34]},{\"mesh\":3,\"translation\":[-25,-44,-38]},{\"mesh\":3,\"translation\":[-25,-46,-32]},{\"mesh\":3,\"translation\":[-25,-46,-36]},{\"mesh\":3,\"translation\":[-25,-48,-32]},{\"mesh\":2,\"translation\":[-26,-34,-32]},{\"mesh\":2,\"translation\":[-26,-34,-36]},{\"mesh\":2,\"translation\":[-26,-36,-32]},{\"mesh\":2,\"translation\":[-26,-36,-36]},{\"mesh\":2,\"translation\":[-26,-38,-34]},{\"mesh\":2,\"translation\":[-26,-38,-38]},{\"mesh\":2,\"translation\":[-26,-38,-42]},{\"mesh\":2,\"translation\":[-26,-40,-34]},{\"mesh\":2,\"translation\":[-26,-40,-38]},{\"mesh\":2,\"translation\":[-26,-40,-42]},{\"mesh\":2,\"translation\":[-26,-42,-32]},{\"mesh\":2,\"translation\":[-26,-42,-36]},{\"mesh\":2,\"translation\":[-26,-42,-40]},{\"mesh\":2,\"translation\":[-26,-44,-32]},{\"mesh\":2,\"translation\":[-26,-44,-36]},{\"mesh\":2,\"translation\":[-26,-44,-40]},{\"mesh\":2,\"translation\":[-26,-46,-34]},{\"mesh\":2,\"translation\":[-26,-48,-34]},{\"mesh\":3,\"translation\":[-27,-34,-32]},{\"mesh\":3,\"translation\":[-27,-34,-36]},{\"mesh\":3,\"translation\":[-27,-36,-32]},{\"mesh\":3,\"translation\":[-27,-36,-36]},{\"mesh\":3,\"translation\":[-27,-38,-34]},{\"mesh\":3,\"translation\":[-27,-38,-38]},{\"mesh\":3,\"translation\":[-27,-38,-42]},{\"mesh\":3,\"translation\":[-27,-40,-34]},{\"mesh\":3,\"translation\":[-27,-40,-38]},{\"mesh\":3,\"translation\":[-27,-40,-42]},{\"mesh\":3,\"translation\":[-27,-42,-32]},{\"mesh\":3,\"translation\":[-27,-42,-36]},{\"mesh\":3,\"translation\":[-27,-42,-40]},{\"mesh\":3,\"translation\":[-27,-44,-32]},{\"mesh\":3,\"translation\":[-27,-44,-36]},{\"mesh\":3,\"translation\":[-27,-44,-40]},{\"mesh\":3,\"translation\":[-27,-46,-34]},{\"mesh\":3,\"translation\":[-27,-48,-34]},{\"mesh\":3,\"translation\":[-27,-32,-32]},{\"mesh\":3,\"translation\":[-27,-34,-34]},{\"mesh\":3,\"translation\":[-27,-36,-34]},{\"mesh\":3,\"translation\":[-27,-36,-38]},{\"mesh\":3,\"translation\":[-27,-38,-32]},{\"mesh\":3,\"translation\":[-27,-38,-36]},{\"mesh\":3,\"translation\":[-27,-38,-40]},{\"mesh\":3,\"translation\":[-27,-40,-32]},{\"mesh\":3,\"translation\":[-27,-40,-36]},{\"mesh\":3,\"translation\":[-27,-40,-40]},{\"mesh\":3,\"translation\":[-27,-40,-44]},{\"mesh\":3,\"translation\":[-27,-42,-34]},{\"mesh\":3,\"translation\":[-27,-42,-38]},{\"mesh\":3,\"translation\":[-27,-42,-42]},{\"mesh\":3,\"translation\":[-27,-44,-34]},{\"mesh\":3,\"translation\":[-27,-44,-38]},{\"mesh\":3,\"translation\":[-27,-46,-32]},{\"mesh\":3,\"translation\":[-27,-46,-36]},{\"mesh\":3,\"translation\":[-27,-48,-32]},{\"mesh\":6,\"translation\":[-28,-34,-32]},{\"mesh\":6,\"translation\":[-28,-34,-36]},{\"mesh\":6,\"translation\":[-28,-38,-34]},{\"mesh\":6,\"translation\":[-28,-38,-38]},{\"mesh\":6,\"translation\":[-28,-38,-42]},{\"mesh\":6,\"translation\":[-28,-42,-32]},{\"mesh\":6,\"translation\":[-28,-42,-36]},{\"mesh\":6,\"translation\":[-28,-42,-40]},{\"mesh\":6,\"translation\":[-28,-46,-34]},{\"mesh\":6,\"translation\":[-28,-36,-32]},{\"mesh\":6,\"translation\":[-28,-36,-36]},{\"mesh\":6,\"translation\":[-28,-40,-34]},{\"mesh\":6,\"translation\":[-28,-40,-38]},{\"mesh\":6,\"translation\":[-28,-40,-42]},{\"mesh\":6,\"translation\":[-28,-44,-32]},{\"mesh\":6,\"translation\":[-28,-44,-36]},{\"mesh\":6,\"translation\":[-28,-44,-40]},{\"mesh\":6,\"translation\":[-28,-48,-34]},{\"mesh\":3,\"translation\":[-29,-34,-32]},{\"mesh\":3,\"translation\":[-29,-34,-36]},{\"mesh\":3,\"translation\":[-29,-38,-34]},{\"mesh\":3,\"translation\":[-29,-38,-38]},{\"mesh\":3,\"translation\":[-29,-38,-42]},{\"mesh\":3,\"translation\":[-29,-42,-32]},{\"mesh\":3,\"translation\":[-29,-42,-36]},{\"mesh\":3,\"translation\":[-29,-42,-40]},{\"mesh\":3,\"translation\":[-29,-46,-34]},{\"mesh\":3,\"translation\":[-29,-36,-32]},{\"mesh\":3,\"translation\":[-29,-36,-36]},{\"mesh\":3,\"translation\":[-29,-40,-34]},{\"mesh\":3,\"translation\":[-29,-40,-38]},{\"mesh\":3,\"translation\":[-29,-40,-42]},{\"mesh\":3,\"translation\":[-29,-44,-32]},{\"mesh\":3,\"translation\":[-29,-44,-36]},{\"mesh\":3,\"translation\":[-29,-44,-40]},{\"mesh\":3,\"translation\":[-29,-48,-34]},{\"mesh\":3,\"translation\":[-29,-32,-32]},{\"mesh\":3,\"translation\":[-29,-34,-34]},{\"mesh\":3,\"translation\":[-29,-36,-34]},{\"mesh\":3,\"translation\":[-29,-36,-38]},{\"mesh\":3,\"translation\":[-29,-38,-32]},{\"mesh\":3,\"translation\":[-29,-38,-36]},{\"mesh\":3,\"translation\":[-29,-38,-40]},{\"mesh\":3,\"translation\":[-29,-40,-32]},{\"mesh\":3,\"translation\":[-29,-40,-36]},{\"mesh\":3,\"translation\":[-29,-40,-40]},{\"mesh\":3,\"translation\":[-29,-40,-44]},{\"mesh\":3,\"translation\":[-29,-42,-34]},{\"mesh\":3,\"translation\":[-29,-42,-38]},{\"mesh\":3,\"translation\":[-29,-42,-42]},{\"mesh\":3,\"translation\":[-29,-44,-34]},{\"mesh\":3,\"translation\":[-29,-44,-38]},{\"mesh\":3,\"translation\":[-29,-46,-32]},{\"mesh\":3,\"translation\":[-29,-46,-36]},{\"mesh\":3,\"translation\":[-29,-48,-32]},{\"mesh\":3,\"translation\":[-30,-32,-32]},{\"mesh\":3,\"translation\":[-30,-34,-34]},{\"mesh\":3,\"translation\":[-30,-36,-34]},{\"mesh\":3,\"translation\":[-30,-36,-38]},{\"mesh\":3,\"translation\":[-30,-38,-32]},{\"mesh\":3,\"translation\":[-30,-38,-36]},{\"mesh\":3,\"translation\":[-30,-38,-40]},{\"mesh\":3,\"translation\":[-30,-40,-32]},{\"mesh\":3,\"translation\":[-30,-40,-36]},{\"mesh\":3,\"translation\":[-30,-40,-40]},{\"mesh\":3,\"translation\":[-30,-40,-44]},{\"mesh\":3,\"translation\":[-30,-42,-34]},{\"mesh\":3,\"translation\":[-30,-42,-38]},{\"mesh\":3,\"translation\":[-30,-42,-42]},{\"mesh\":3,\"translation\":[-30,-44,-34]},{\"mesh\":3,\"translation\":[-30,-44,-38]},{\"mesh\":3,\"translation\":[-30,-46,-32]},{\"mesh\":3,\"translation\":[-30,-46,-36]},{\"mesh\":3,\"translation\":[-30,-48,-32]},{\"mesh\":0,\"translation\":[-32,-34,-32]},{\"mesh\":0,\"translation\":[-32,-34,-36]},{\"mesh\":0,\"translation\":[-32,-38,-34]},{\"mesh\":0,\"translation\":[-32,-38,-38]},{\"mesh\":0,\"translation\":[-32,-38,-42]},{\"mesh\":0,\"translation\":[-32,-42,-32]},{\"mesh\":0,\"translation\":[-32,-42,-36]},{\"mesh\":0,\"translation\":[-32,-42,-40]},{\"mesh\":0,\"translation\":[-32,-46,-34]},{\"mesh\":0,\"translation\":[-32,-36,-32]},{\"mesh\":0,\"translation\":[-32,-36,-36]},{\"mesh\":0,\"translation\":[-32,-40,-34]},{\"mesh\":0,\"translation\":[-32,-40,-38]},{\"mesh\":0,\"translation\":[-32,-40,-42]},{\"mesh\":0,\"translation\":[-32,-44,-32]},{\"mesh\":0,\"translation\":[-32,-44,-36]},{\"mesh\":0,\"translation\":[-32,-44,-40]},{\"mesh\":0,\"translation\":[-32,-48,-34]},{\"mesh\":1,\"translation\":[-33,-34,-32]},{\"mesh\":1,\"translation\":[-33,-34,-36]},{\"mesh\":1,\"translation\":[-33,-38,-34]},{\"mesh\":1,\"translation\":[-33,-38,-38]},{\"mesh\":1,\"translation\":[-33,-38,-42]},{\"mesh\":1,\"translation\":[-33,-42,-32]},{\"mesh\":1,\"translation\":[-33,-42,-36]},{\"mesh\":1,\"translation\":[-33,-42,-40]},{\"mesh\":1,\"translation\":[-33,-46,-34]},{\"mesh\":1,\"translation\":[-33,-36,-32]},{\"mesh\":1,\"translation\":[-33,-36,-36]},{\"mesh\":1,\"translation\":[-33,-40,-34]},{\"mesh\":1,\"translation\":[-33,-40,-38]},{\"mesh\":1,\"translation\":[-33,-40,-42]},{\"mesh\":1,\"translation\":[-33,-44,-32]},{\"mesh\":1,\"translation\":[-33,-44,-36]},{\"mesh\":1,\"translation\":[-33,-44,-40]},{\"mesh\":1,\"translation\":[-33,-48,-34]},{\"mesh\":3,\"translation\":[-33,-32,-32]},{\"mesh\":3,\"translation\":[-33,-34,-34]},{\"mesh\":3,\"translation\":[-33,-36,-34]},{\"mesh\":3,\"translation\":[-33,-36,-38]},{\"mesh\":3,\"translation\":[-33,-38,-32]},{\"mesh\":3,\"translation\":[-33,-38,-36]},{\"mesh\":3,\"translation\":[-33,-38,-40]},{\"mesh\":3,\"translation\":[-33,-40,-32]},{\"mesh\":3,\"translation\":[-33,-40,-36]},{\"mesh\":3,\"translation\":[-33,-40,-40]},{\"mesh\":3,\"translation\":[-33,-40,-44]},{\"mesh\":3,\"translation\":[-33,-42,-34]},{\"mesh\":3,\"translation\":[-33,-42,-38]},{\"mesh\":3,\"translation\":[-33,-42,-42]},{\"mesh\":3,\"translation\":[-33,-44,-34]},{\"mesh\":3,\"translation\":[-33,-44,-38]},{\"mesh\":3,\"translation\":[-33,-46,-32]},{\"mesh\":3,\"translation\":[-33,-46,-36]},{\"mesh\":3,\"translation\":[-33,-48,-32]},{\"mesh\":3,\"translation\":[-34,-32,-32]},{\"mesh\":3,\"translation\":[-34,-34,-34]},{\"mesh\":3,\"translation\":[-34,-36,-34]},{\"mesh\":3,\"translation\":[-34,-36,-38]},{\"mesh\":3,\"translation\":[-34,-38,-32]},{\"mesh\":3,\"translation\":[-34,-38,-36]},{\"mesh\":3,\"translation\":[-34,-38,-40]},{\"mesh\":3,\"translation\":[-34,-40,-32]},{\"mesh\":3,\"translation\":[-34,-40,-36]},{\"mesh\":3,\"translation\":[-34,-40,-40]},{\"mesh\":3,\"translation\":[-34,-40,-44]},{\"mesh\":3,\"translation\":[-34,-42,-34]},{\"mesh\":3,\"translation\":[-34,-42,-38]},{\"mesh\":3,\"translation\":[-34,-42,-42]},{\"mesh\":3,\"translation\":[-34,-44,-34]},{\"mesh\":3,\"translation\":[-34,-44,-38]},{\"mesh\":3,\"translation\":[-34,-46,-32]},{\"mesh\":3,\"translation\":[-34,-46,-36]},{\"mesh\":3,\"translation\":[-34,-48,-32]},{\"mesh\":2,\"translation\":[-35,-34,-32]},{\"mesh\":2,\"translation\":[-35,-34,-36]},{\"mesh\":2,\"translation\":[-35,-36,-32]},{\"mesh\":2,\"translation\":[-35,-36,-36]},{\"mesh\":2,\"translation\":[-35,-38,-34]},{\"mesh\":2,\"translation\":[-35,-38,-38]},{\"mesh\":2,\"translation\":[-35,-38,-42]},{\"mesh\":2,\"translation\":[-35,-40,-34]},{\"mesh\":2,\"translation\":[-35,-40,-38]},{\"mesh\":2,\"translation\":[-35,-40,-42]},{\"mesh\":2,\"translation\":[-35,-42,-32]},{\"mesh\":2,\"translation\":[-35,-42,-36]},{\"mesh\":2,\"translation\":[-35,-42,-40]},{\"mesh\":2,\"translation\":[-35,-44,-32]},{\"mesh\":2,\"translation\":[-35,-44,-36]},{\"mesh\":2,\"translation\":[-35,-44,-40]},{\"mesh\":2,\"translation\":[-35,-46,-34]},{\"mesh\":2,\"translation\":[-35,-48,-34]},{\"mesh\":3,\"translation\":[-36,-34,-32]},{\"mesh\":3,\"translation\":[-36,-34,-36]},{\"mesh\":3,\"translation\":[-36,-36,-32]},{\"mesh\":3,\"translation\":[-36,-36,-36]},{\"mesh\":3,\"translation\":[-36,-38,-34]},{\"mesh\":3,\"translation\":[-36,-38,-38]},{\"mesh\":3,\"translation\":[-36,-38,-42]},{\"mesh\":3,\"translation\":[-36,-40,-34]},{\"mesh\":3,\"translation\":[-36,-40,-38]},{\"mesh\":3,\"translation\":[-36,-40,-42]},{\"mesh\":3,\"translation\":[-36,-42,-32]},{\"mesh\":3,\"translation\":[-36,-42,-36]},{\"mesh\":3,\"translation\":[-36,-42,-40]},{\"mesh\":3,\"translation\":[-36,-44,-32]},{\"mesh\":3,\"translation\":[-36,-44,-36]},{\"mesh\":3,\"translation\":[-36,-44,-40]},{\"mesh\":3,\"translation\":[-36,-46,-34]},{\"mesh\":3,\"translation\":[-36,-48,-34]},{\"mesh\":3,\"translation\":[-36,-32,-32]},{\"mesh\":3,\"translation\":[-36,-34,-34]},{\"mesh\":3,\"translation\":[-36,-36,-34]},{\"mesh\":3,\"translation\":[-36,-36,-38]},{\"mesh\":3,\"translation\":[-36,-38,-32]},{\"mesh\":3,\"translation\":[-36,-38,-36]},{\"mesh\":3,\"translation\":[-36,-38,-40]},{\"mesh\":3,\"translation\":[-36,-40,-32]},{\"mesh\":3,\"translation\":[-36,-40,-36]},{\"mesh\":3,\"translation\":[-36,-40,-40]},{\"mesh\":3,\"translation\":[-36,-40,-44]},{\"mesh\":3,\"translation\":[-36,-42,-34]},{\"mesh\":3,\"translation\":[-36,-42,-38]},{\"mesh\":3,\"translation\":[-36,-42,-42]},{\"mesh\":3,\"translation\":[-36,-44,-34]},{\"mesh\":3,\"translation\":[-36,-44,-38]},{\"mesh\":3,\"translation\":[-36,-46,-32]},{\"mesh\":3,\"translation\":[-36,-46,-36]},{\"mesh\":3,\"translation\":[-36,-48,-32]},{\"mesh\":4,\"translation\":[-37,-34,-32]},{\"mesh\":4,\"translation\":[-37,-36,-32]},{\"mesh\":4,\"translation\":[-37,-34,-36]},{\"mesh\":4,\"translation\":[-37,-36,-36]},{\"mesh\":4,\"translation\":[-37,-38,-34]},{\"mesh\":4,\"translation\":[-37,-40,-34]},{\"mesh\":4,\"translation\":[-37,-38,-38]},{\"mesh\":4,\"translation\":[-37,-40,-38]},{\"mesh\":4,\"translation\":[-37,-38,-42]},{\"mesh\":4,\"translation\":[-37,-40,-42]},{\"mesh\":4,\"translation\":[-37,-42,-32]},{\"mesh\":4,\"translation\":[-37,-44,-32]},{\"mesh\":4,\"translation\":[-37,-42,-36]},{\"mesh\":4,\"translation\":[-37,-44,-36]},{\"mesh\":4,\"translation\":[-37,-42,-40]},{\"mesh\":4,\"translation\":[-37,-44,-40]},{\"mesh\":4,\"translation\":[-37,-46,-34]},{\"mesh\":4,\"translation\":[-37,-48,-34]},{\"mesh\":5,\"translation\":[-38,-34,-32]},{\"mesh\":5,\"translation\":[-38,-36,-32]},{\"mesh\":5,\"translation\":[-38,-34,-36]},{\"mesh\":5,\"translation\":[-38,-36,-36]},{\"mesh\":5,\"translation\":[-38,-38,-34]},{\"mesh\":5,\"translation\":[-38,-40,-34]},{\"mesh\":5,\"translation\":[-38,-38,-38]},{\"mesh\":5,\"translation\":[-38,-40,-38]},{\"mesh\":5,\"translation\":[-38,-38,-42]},{\"mesh\":5,\"translation\":[-38,-40,-42]},{\"mesh\":5,\"translation\":[-38,-42,-32]},{\"mesh\":5,\"translation\":[-38,-44,-32]},{\"mesh\":5,\"translation\":[-38,-42,-36]},{\"mesh\":5,\"translation\":[-38,-44,-36]},{\"mesh\":5,\"translation\":[-38,-42,-40]},{\"mesh\":5,\"translation\":[-38,-44,-40]},{\"mesh\":5,\"translation\":[-38,-46,-34]},{\"mesh\":5,\"translation\":[-38,-48,-34]},{\"mesh\":3,\"translation\":[-38,-32,-32]},{\"mesh\":3,\"translation\":[-38,-34,-34]},{\"mesh\":3,\"translation\":[-38,-36,-34]},{\"mesh\":3,\"translation\":[-38,-36,-38]},{\"mesh\":3,\"translation\":[-38,-38,-32]},{\"mesh\":3,\"translation\":[-38,-38,-36]},{\"mesh\":3,\"translation\":[-38,-38,-40]},{\"mesh\":3,\"translation\":[-38,-40,-32]},{\"mesh\":3,\"translation\":[-38,-40,-36]},{\"mesh\":3,\"translation\":[-38,-40,-40]},{\"mesh\":3,\"translation\":[-38,-40,-44]},{\"mesh\":3,\"translation\":[-38,-42,-34]},{\"mesh\":3,\"translation\":[-38,-42,-38]},{\"mesh\":3,\"translation\":[-38,-42,-42]},{\"mesh\":3,\"translation\":[-38,-44,-34]},{\"mesh\":3,\"translation\":[-38,-44,-38]},{\"mesh\":3,\"translation\":[-38,-46,-32]},{\"mesh\":3,\"translation\":[-38,-46,-36]},{\"mesh\":3,\"translation\":[-38,-48,-32]},{\"mesh\":2,\"translation\":[-39,-34,-32]},{\"mesh\":2,\"translation\":[-39,-34,-36]},{\"mesh\":2,\"translation\":[-39,-38,-34]},{\"mesh\":2,\"translation\":[-39,-38,-38]},{\"mesh\":2,\"translation\":[-39,-38,-42]},{\"mesh\":2,\"translation\":[-39,-42,-32]},{\"mesh\":2,\"translation\":[-39,-42,-36]},{\"mesh\":2,\"translation\":[-39,-42,-40]},{\"mesh\":2,\"translation\":[-39,-46,-34]},{\"mesh\":3,\"translation\":[-40,-34,-32]},{\"mesh\":3,\"translation\":[-40,-34,-36]},{\"mesh\":3,\"translation\":[-40,-38,-34]},{\"mesh\":3,\"translation\":[-40,-38,-38]},{\"mesh\":3,\"translation\":[-40,-38,-42]},{\"mesh\":3,\"translation\":[-40,-42,-32]},{\"mesh\":3,\"translation\":[-40,-42,-36]},{\"mesh\":3,\"translation\":[-40,-42,-40]},{\"mesh\":3,\"translation\":[-40,-46,-34]},{\"mesh\":3,\"translation\":[-40,-32,-32]},{\"mesh\":3,\"translation\":[-40,-34,-34]},{\"mesh\":3,\"translation\":[-40,-36,-32]},{\"mesh\":3,\"translation\":[-40,-36,-34]},{\"mesh\":3,\"translation\":[-40,-36,-36]},{\"mesh\":3,\"translation\":[-40,-36,-38]},{\"mesh\":3,\"translation\":[-40,-38,-32]},{\"mesh\":3,\"translation\":[-40,-38,-36]},{\"mesh\":3,\"translation\":[-40,-38,-40]},{\"mesh\":3,\"translation\":[-40,-40,-32]},{\"mesh\":3,\"translation\":[-40,-40,-34]},{\"mesh\":3,\"translation\":[-40,-40,-36]},{\"mesh\":3,\"translation\":[-40,-40,-38]},{\"mesh\":3,\"translation\":[-40,-40,-40]},{\"mesh\":3,\"translation\":[-40,-40,-42]},{\"mesh\":3,\"translation\":[-40,-40,-44]},{\"mesh\":3,\"translation\":[-40,-42,-34]},{\"mesh\":3,\"translation\":[-40,-42,-38]},{\"mesh\":3,\"translation\":[-40,-42,-42]},{\"mesh\":3,\"translation\":[-40,-44,-32]},{\"mesh\":3,\"translation\":[-40,-44,-34]},{\"mesh\":3,\"translation\":[-40,-44,-36]},{\"mesh\":3,\"translation\":[-40,-44,-38]},{\"mesh\":3,\"translation\":[-40,-44,-40]},{\"mesh\":3,\"translation\":[-40,-46,-32]},{\"mesh\":3,\"translation\":[-40,-46,-36]},{\"mesh\":3,\"translation\":[-40,-48,-32]},{\"mesh\":3,\"translation\":[-40,-48,-34]},{\"mesh\":4,\"translation\":[-41,-34,-32]},{\"mesh\":4,\"translation\":[-41,-34,-34]},{\"mesh\":4,\"translation\":[-41,-36,-32]},{\"mesh\":4,\"translation\":[-41,-36,-34]},{\"mesh\":4,\"translation\":[-41,-36,-36]},{\"mesh\":4,\"translation\":[-41,-36,-38]},{\"mesh\":4,\"translation\":[-41,-38,-34]},{\"mesh\":4,\"translation\":[-41,-38,-36]},{\"mesh\":4,\"translation\":[-41,-38,-38]},{\"mesh\":4,\"translation\":[-41,-38,-40]},{\"mesh\":4,\"translation\":[-41,-40,-34]},{\"mesh\":4,\"translation\":[-41,-40,-36]},{\"mesh\":4,\"translation\":[-41,-40,-38]},{\"mesh\":4,\"translation\":[-41,-40,-40]},{\"mesh\":4,\"translation\":[-41,-40,-42]},{\"mesh\":4,\"translation\":[-41,-40,-44]},{\"mesh\":4,\"translation\":[-41,-42,-32]},{\"mesh\":4,\"translation\":[-41,-42,-34]},{\"mesh\":4,\"translation\":[-41,-42,-36]},{\"mesh\":4,\"translation\":[-41,-42,-38]},{\"mesh\":4,\"translation\":[-41,-42,-40]},{\"mesh\":4,\"translation\":[-41,-42,-42]},{\"mesh\":4,\"translation\":[-41,-44,-32]},{\"mesh\":4,\"translation\":[-41,-44,-34]},{\"mesh\":4,\"translation\":[-41,-44,-36]},{\"mesh\":4,\"translation\":[-41,-44,-38]},{\"mesh\":4,\"translation\":[-41,-46,-34]},{\"mesh\":4,\"translation\":[-41,-46,-36]},{\"mesh\":5,\"translation\":[-42,-34,-32]},{\"mesh\":5,\"translation\":[-42,-34,-34]},{\"mesh\":5,\"translation\":[-42,-36,-32]},{\"mesh\":5,\"translation\":[-42,-36,-34]},{\"mesh\":5,\"translation\":[-42,-36,-36]},{\"mesh\":5,\"translation\":[-42,-36,-38]},{\"mesh\":5,\"translation\":[-42,-38,-34]},{\"mesh\":5,\"translation\":[-42,-38,-36]},{\"mesh\":5,\"translation\":[-42,-38,-38]},{\"mesh\":5,\"translation\":[-42,-38,-40]},{\"mesh\":5,\"translation\":[-42,-40,-34]},{\"mesh\":5,\"translation\":[-42,-40,-36]},{\"mesh\":5,\"translation\":[-42,-40,-38]},{\"mesh\":5,\"translation\":[-42,-40,-40]},{\"mesh\":5,\"translation\":[-42,-40,-42]},{\"mesh\":5,\"translation\":[-42,-40,-44]},{\"mesh\":5,\"translation\":[-42,-42,-32]},{\"mesh\":5,\"translation\":[-42,-42,-34]},{\"mesh\":5,\"translation\":[-42,-42,-36]},{\"mesh\":5,\"translation\":[-42,-42,-38]},{\"mesh\":5,\"translation\":[-42,-42,-40]},{\"mesh\":5,\"translation\":[-42,-42,-42]},{\"mesh\":5,\"translation\":[-42,-44,-32]},{\"mesh\":5,\"translation\":[-42,-44,-34]},{\"mesh\":5,\"translation\":[-42,-44,-36]},{\"mesh\":5,\"translation\":[-42,-44,-38]},{\"mesh\":5,\"translation\":[-42,-46,-34]},{\"mesh\":5,\"translation\":[-42,-46,-36]},{\"mesh\":3,\"translation\":[-42,-32,-32]},{\"mesh\":3,\"translation\":[-42,-34,-36]},{\"mesh\":3,\"translation\":[-42,-38,-32]},{\"mesh\":3,\"translation\":[-42,-38,-42]},{\"mesh\":3,\"translation\":[-42,-40,-32]},{\"mesh\":3,\"translation\":[-42,-44,-40]},{\"mesh\":3,\"translation\":[-42,-46,-32]},{\"mesh\":3,\"translation\":[-42,-48,-32]},{\"mesh\":3,\"translation\":[-42,-48,-34]},{\"mesh\":4,\"translation\":[-43,-32,-32]},{\"mesh\":4,\"translation\":[-43,-34,-32]},{\"mesh\":4,\"translation\":[-43,-36,-32]},{\"mesh\":4,\"translation\":[-43,-38,-32]},{\"mesh\":4,\"translation\":[-43,-36,-34]},{\"mesh\":4,\"translation\":[-43,-38,-34]},{\"mesh\":4,\"translation\":[-43,-36,-36]},{\"mesh\":4,\"translation\":[-43,-38,-36]},{\"mesh\":4,\"translation\":[-43,-36,-38]},{\"mesh\":4,\"translation\":[-43,-38,-38]},{\"mesh\":4,\"translation\":[-43,-40,-32]},{\"mesh\":4,\"translation\":[-43,-42,-32]},{\"mesh\":4,\"translation\":[-43,-40,-34]},{\"mesh\":4,\"translation\":[-43,-42,-34]},{\"mesh\":4,\"translation\":[-43,-40,-36]},{\"mesh\":4,\"translation\":[-43,-42,-36]},{\"mesh\":4,\"translation\":[-43,-40,-38]},{\"mesh\":4,\"translation\":[-43,-42,-38]},{\"mesh\":4,\"translation\":[-43,-40,-40]},{\"mesh\":4,\"translation\":[-43,-42,-40]},{\"mesh\":4,\"translation\":[-43,-40,-42]},{\"mesh\":4,\"translation\":[-43,-42,-42]},{\"mesh\":4,\"translation\":[-43,-44,-32]},{\"mesh\":4,\"translation\":[-43,-46,-32]},{\"mesh\":4,\"translation\":[-43,-44,-34]},{\"mesh\":4,\"translation\":[-43,-46,-34]},{\"mesh\":4,\"translation\":[-43,-44,-36]},{\"mesh\":4,\"translation\":[-43,-46,-36]},{\"mesh\":5,\"translation\":[-44,-32,-32]},{\"mesh\":5,\"translation\":[-44,-34,-32]},{\"mesh\":5,\"translation\":[-44,-36,-32]},{\"mesh\":5,\"translation\":[-44,-38,-32]},{\"mesh\":5,\"translation\":[-44,-36,-34]},{\"mesh\":5,\"translation\":[-44,-38,-34]},{\"mesh\":5,\"translation\":[-44,-36,-36]},{\"mesh\":5,\"translation\":[-44,-38,-36]},{\"mesh\":5,\"translation\":[-44,-36,-38]},{\"mesh\":5,\"translation\":[-44,-38,-38]},{\"mesh\":5,\"translation\":[-44,-40,-32]},{\"mesh\":5,\"translation\":[-44,-42,-32]},{\"mesh\":5,\"translation\":[-44,-40,-34]},{\"mesh\":5,\"translation\":[-44,-42,-34]},{\"mesh\":5,\"translation\":[-44,-40,-36]},{\"mesh\":5,\"translation\":[-44,-42,-36]},{\"mesh\":5,\"translation\":[-44,-40,-38]},{\"mesh\":5,\"translation\":[-44,-42,-38]},{\"mesh\":5,\"translation\":[-44,-40,-40]},{\"mesh\":5,\"translation\":[-44,-42,-40]},{\"mesh\":5,\"translation\":[-44,-40,-42]},{\"mesh\":5,\"translation\":[-44,-42,-42]},{\"mesh\":5,\"translation\":[-44,-44,-32]},{\"mesh\":5,\"translation\":[-44,-46,-32]},{\"mesh\":5,\"translation\":[-44,-44,-34]},{\"mesh\":5,\"translation\":[-44,-46,-34]},{\"mesh\":5,\"translation\":[-44,-44,-36]},{\"mesh\":5,\"translation\":[-44,-46,-36]},{\"mesh\":3,\"translation\":[-44,-34,-34]},{\"mesh\":3,\"translation\":[-44,-34,-36]},{\"mesh\":3,\"translation\":[-44,-38,-40]},{\"mesh\":3,\"translation\":[-44,-38,-42]},{\"mesh\":3,\"translation\":[-44,-40,-44]},{\"mesh\":3,\"translation\":[-44,-44,-38]},{\"mesh\":3,\"translation\":[-44,-44,-40]},{\"mesh\":3,\"translation\":[-44,-48,-32]},{\"mesh\":3,\"translation\":[-44,-48,-34]},{\"mesh\":4,\"translation\":[-45,-34,-34]},{\"mesh\":4,\"translation\":[-45,-34,-36]},{\"mesh\":4,\"translation\":[-45,-36,-34]},{\"mesh\":4,\"translation\":[-45,-36,-36]},{\"mesh\":4,\"translation\":[-45,-38,-32]},{\"mesh\":4,\"translation\":[-45,-38,-34]},{\"mesh\":4,\"translation\":[-45,-38,-36]},{\"mesh\":4,\"translation\":[-45,-38,-38]},{\"mesh\":4,\"translation\":[-45,-38,-40]},{\"mesh\":4,\"translation\":[-45,-38,-42]},{\"mesh\":4,\"translation\":[-45,-40,-32]},{\"mesh\":4,\"translation\":[-45,-40,-34]},{\"mesh\":4,\"translation\":[-45,-40,-36]},{\"mesh\":4,\"translation\":[-45,-40,-38]},{\"mesh\":4,\"translation\":[-45,-40,-40]},{\"mesh\":4,\"translation\":[-45,-40,-42]},{\"mesh\":4,\"translation\":[-45,-42,-34]},{\"mesh\":4,\"translation\":[-45,-42,-36]},{\"mesh\":4,\"translation\":[-45,-42,-38]},{\"mesh\":4,\"translation\":[-45,-42,-40]},{\"mesh\":4,\"translation\":[-45,-44,-34]},{\"mesh\":4,\"translation\":[-45,-44,-36]},{\"mesh\":4,\"translation\":[-45,-44,-38]},{\"mesh\":4,\"translation\":[-45,-44,-40]},{\"mesh\":4,\"translation\":[-45,-46,-32]},{\"mesh\":4,\"translation\":[-45,-46,-34]},{\"mesh\":4,\"translation\":[-45,-48,-32]},{\"mesh\":4,\"translation\":[-45,-48,-34]},{\"mesh\":5,\"translation\":[-46,-34,-34]},{\"mesh\":5,\"translation\":[-46,-34,-36]},{\"mesh\":5,\"translation\":[-46,-36,-34]},{\"mesh\":5,\"translation\":[-46,-36,-36]},{\"mesh\":5,\"translation\":[-46,-38,-32]},{\"mesh\":5,\"translation\":[-46,-38,-34]},{\"mesh\":5,\"translation\":[-46,-38,-36]},{\"mesh\":5,\"translation\":[-46,-38,-38]},{\"mesh\":5,\"translation\":[-46,-38,-40]},{\"mesh\":5,\"translation\":[-46,-38,-42]},{\"mesh\":5,\"translation\":[-46,-40,-32]},{\"mesh\":5,\"translation\":[-46,-40,-34]},{\"mesh\":5,\"translation\":[-46,-40,-36]},{\"mesh\":5,\"translation\":[-46,-40,-38]},{\"mesh\":5,\"translation\":[-46,-40,-40]},{\"mesh\":5,\"translation\":[-46,-40,-42]},{\"mesh\":5,\"translation\":[-46,-42,-34]},{\"mesh\":5,\"translation\":[-46,-42,-36]},{\"mesh\":5,\"translation\":[-46,-42,-38]},{\"mesh\":5,\"translation\":[-46,-42,-40]},{\"mesh\":5,\"translation\":[-46,-44,-34]},{\"mesh\":5,\"translation\":[-46,-44,-36]},{\"mesh\":5,\"translation\":[-46,-44,-38]},{\"mesh\":5,\"translation\":[-46,-44,-40]},{\"mesh\":5,\"translation\":[-46,-46,-32]},{\"mesh\":5,\"translation\":[-46,-46,-34]},{\"mesh\":5,\"translation\":[-46,-48,-32]},{\"mesh\":5,\"translation\":[-46,-48,-34]},{\"mesh\":3,\"translation\":[-46,-32,-32]},{\"mesh\":3,\"translation\":[-46,-34,-32]},{\"mesh\":3,\"translation\":[-46,-36,-32]},{\"mesh\":3,\"translation\":[-46,-36,-38]},{\"mesh\":3,\"translation\":[-46,-40,-44]},{\"mesh\":3,\"translation\":[-46,-42,-32]},{\"mesh\":3,\"translation\":[-46,-42,-42]},{\"mesh\":3,\"translation\":[-46,-44,-32]},{\"mesh\":3,\"translation\":[-46,-46,-36]},{\"mesh\":2,\"translation\":[-47,-32,-32]},{\"mesh\":2,\"translation\":[-47,-34,-32]},{\"mesh\":2,\"translation\":[-47,-34,-34]},{\"mesh\":2,\"translation\":[-47,-34,-36]},{\"mesh\":2,\"translation\":[-47,-36,-32]},{\"mesh\":2,\"translation\":[-47,-36,-34]},{\"mesh\":2,\"translation\":[-47,-36,-36]},{\"mesh\":2,\"translation\":[-47,-36,-38]},{\"mesh\":2,\"translation\":[-47,-38,-32]},{\"mesh\":2,\"translation\":[-47,-38,-34]},{\"mesh\":2,\"translation\":[-47,-38,-36]},{\"mesh\":2,\"translation\":[-47,-38,-38]},{\"mesh\":2,\"translation\":[-47,-38,-40]},{\"mesh\":2,\"translation\":[-47,-38,-42]},{\"mesh\":2,\"translation\":[-47,-40,-32]},{\"mesh\":2,\"translation\":[-47,-40,-34]},{\"mesh\":2,\"translation\":[-47,-40,-36]},{\"mesh\":2,\"translation\":[-47,-40,-38]},{\"mesh\":2,\"translation\":[-47,-40,-40]},{\"mesh\":2,\"translation\":[-47,-40,-42]},{\"mesh\":2,\"translation\":[-47,-40,-44]},{\"mesh\":2,\"translation\":[-47,-42,-32]},{\"mesh\":2,\"translation\":[-47,-42,-34]},{\"mesh\":2,\"translation\":[-47,-42,-36]},{\"mesh\":2,\"translation\":[-47,-42,-38]},{\"mesh\":2,\"translation\":[-47,-42,-40]},{\"mesh\":2,\"translation\":[-47,-42,-42]},{\"mesh\":2,\"translation\":[-47,-44,-32]},{\"mesh\":2,\"translation\":[-47,-44,-34]},{\"mesh\":2,\"translation\":[-47,-44,-36]},{\"mesh\":2,\"translation\":[-47,-44,-38]},{\"mesh\":2,\"translation\":[-47,-44,-40]},{\"mesh\":2,\"translation\":[-47,-46,-32]},{\"mesh\":2,\"translation\":[-47,-46,-34]},{\"mesh\":2,\"translation\":[-47,-46,-36]},{\"mesh\":2,\"translation\":[-47,-48,-32]},{\"mesh\":2,\"translation\":[-47,-48,-34]},{\"mesh\":3,\"translation\":[-48,-32,-32]},{\"mesh\":3,\"translation\":[-48,-34,-32]},{\"mesh\":3,\"translation\":[-48,-34,-34]},{\"mesh\":3,\"translation\":[-48,-34,-36]},{\"mesh\":3,\"translation\":[-48,-36,-32]},{\"mesh\":3,\"translation\":[-48,-36,-34]},{\"mesh\":3,\"translation\":[-48,-36,-36]},{\"mesh\":3,\"translation\":[-48,-36,-38]},{\"mesh\":3,\"translation\":[-48,-38,-32]},{\"mesh\":3,\"translation\":[-48,-38,-34]},{\"mesh\":3,\"translation\":[-48,-38,-36]},{\"mesh\":3,\"translation\":[-48,-38,-38]},{\"mesh\":3,\"translation\":[-48,-38,-40]},{\"mesh\":3,\"translation\":[-48,-38,-42]},{\"mesh\":3,\"translation\":[-48,-40,-32]},{\"mesh\":3,\"translation\":[-48,-40,-34]},{\"mesh\":3,\"translation\":[-48,-40,-36]},{\"mesh\":3,\"translation\":[-48,-40,-38]},{\"mesh\":3,\"translation\":[-48,-40,-40]},{\"mesh\":3,\"translation\":[-48,-40,-42]},{\"mesh\":3,\"translation\":[-48,-40,-44]},{\"mesh\":3,\"translation\":[-48,-42,-32]},{\"mesh\":3,\"translation\":[-48,-42,-34]},{\"mesh\":3,\"translation\":[-48,-42,-36]},{\"mesh\":3,\"translation\":[-48,-42,-38]},{\"mesh\":3,\"translation\":[-48,-42,-40]},{\"mesh\":3,\"translation\":[-48,-42,-42]},{\"mesh\":3,\"translation\":[-48,-44,-32]},{\"mesh\":3,\"translation\":[-48,-44,-34]},{\"mesh\":3,\"translation\":[-48,-44,-36]},{\"mesh\":3,\"translation\":[-48,-44,-38]},{\"mesh\":3,\"translation\":[-48,-44,-40]},{\"mesh\":3,\"translation\":[-48,-46,-32]},{\"mesh\":3,\"translation\":[-48,-46,-34]},{\"mesh\":3,\"translation\":[-48,-46,-36]},{\"mesh\":3,\"translation\":[-48,-48,-32]},{\"mesh\":3,\"translation\":[-48,-48,-34]},{\"mesh\":4,\"translation\":[-49,-34,-32]},{\"mesh\":4,\"translation\":[-49,-34,-34]},{\"mesh\":4,\"translation\":[-49,-36,-32]},{\"mesh\":4,\"translation\":[-49,-36,-34]},{\"mesh\":4,\"translation\":[-49,-36,-36]},{\"mesh\":4,\"translation\":[-49,-36,-38]},{\"mesh\":4,\"translation\":[-49,-38,-34]},{\"mesh\":4,\"translation\":[-49,-38,-36]},{\"mesh\":4,\"translation\":[-49,-38,-38]},{\"mesh\":4,\"translation\":[-49,-38,-40]},{\"mesh\":4,\"translation\":[-49,-40,-34]},{\"mesh\":4,\"translation\":[-49,-40,-36]},{\"mesh\":4,\"translation\":[-49,-40,-38]},{\"mesh\":4,\"translation\":[-49,-40,-40]},{\"mesh\":4,\"translation\":[-49,-40,-42]},{\"mesh\":4,\"translation\":[-49,-40,-44]},{\"mesh\":4,\"translation\":[-49,-42,-32]},{\"mesh\":4,\"translation\":[-49,-42,-34]},{\"mesh\":4,\"translation\":[-49,-42,-36]},{\"mesh\":4,\"translation\":[-49,-42,-38]},{\"mesh\":4,\"translation\":[-49,-42,-40]},{\"mesh\":4,\"translation\":[-49,-42,-42]},{\"mesh\":4,\"translation\":[-49,-44,-32]},{\"mesh\":4,\"translation\":[-49,-44,-34]},{\"mesh\":4,\"translation\":[-49,-44,-36]},{\"mesh\":4,\"translation\":[-49,-44,-38]},{\"mesh\":4,\"translation\":[-49,-46,-34]},{\"mesh\":4,\"translation\":[-49,-46,-36]},{\"mesh\":5,\"translation\":[-50,-34,-32]},{\"mesh\":5,\"translation\":[-50,-34,-34]},{\"mesh\":5,\"translation\":[-50,-36,-32]},{\"mesh\":5,\"translation\":[-50,-36,-34]},{\"mesh\":5,\"translation\":[-50,-36,-36]},{\"mesh\":5,\"translation\":[-50,-36,-38]},{\"mesh\":5,\"translation\":[-50,-38,-34]},{\"mesh\":5,\"translation\":[-50,-38,-36]},{\"mesh\":5,\"translation\":[-50,-38,-38]},{\"mesh\":5,\"translation\":[-50,-38,-40]},{\"mesh\":5,\"translation\":[-50,-40,-34]},{\"mesh\":5,\"translation\":[-50,-40,-36]},{\"mesh\":5,\"translation\":[-50,-40,-38]},{\"mesh\":5,\"translation\":[-50,-40,-40]},{\"mesh\":5,\"translation\":[-50,-40,-42]},{\"mesh\":5,\"translation\":[-50,-40,-44]},{\"mesh\":5,\"translation\":[-50,-42,-32]},{\"mesh\":5,\"translation\":[-50,-42,-34]},{\"mesh\":5,\"translation\":[-50,-42,-36]},{\"mesh\":5,\"translation\":[-50,-42,-38]},{\"mesh\":5,\"translation\":[-50,-42,-40]},{\"mesh\":5,\"translation\":[-50,-42,-42]},{\"mesh\":5,\"translation\":[-50,-44,-32]},{\"mesh\":5,\"translation\":[-50,-44,-34]},{\"mesh\":5,\"translation\":[-50,-44,-36]},{\"mesh\":5,\"translation\":[-50,-44,-38]},{\"mesh\":5,\"translation\":[-50,-46,-34]},{\"mesh\":5,\"translation\":[-50,-46,-36]},{\"mesh\":3,\"translation\":[-50,-32,-32]},{\"mesh\":3,\"translation\":[-50,-34,-36]},{\"mesh\":3,\"translation\":[-50,-38,-32]},{\"mesh\":3,\"translation\":[-50,-38,-42]},{\"mesh\":3,\"translation\":[-50,-40,-32]},{\"mesh\":3,\"translation\":[-50,-44,-40]},{\"mesh\":3,\"translation\":[-50,-46,-32]},{\"mesh\":3,\"translation\":[-50,-48,-32]},{\"mesh\":3,\"translation\":[-50,-48,-34]},{\"mesh\":4,\"translation\":[-51,-32,-32]},{\"mesh\":4,\"translation\":[-51,-34,-32]},{\"mesh\":4,\"translation\":[-51,-36,-32]},{\"mesh\":4,\"translation\":[-51,-38,-32]},{\"mesh\":4,\"translation\":[-51,-36,-34]},{\"mesh\":4,\"translation\":[-51,-38,-34]},{\"mesh\":4,\"translation\":[-51,-36,-36]},{\"mesh\":4,\"translation\":[-51,-38,-36]},{\"mesh\":4,\"translation\":[-51,-36,-38]},{\"mesh\":4,\"translation\":[-51,-38,-38]},{\"mesh\":4,\"translation\":[-51,-40,-32]},{\"mesh\":4,\"translation\":[-51,-42,-32]},{\"mesh\":4,\"translation\":[-51,-40,-34]},{\"mesh\":4,\"translation\":[-51,-42,-34]},{\"mesh\":4,\"translation\":[-51,-40,-36]},{\"mesh\":4,\"translation\":[-51,-42,-36]},{\"mesh\":4,\"translation\":[-51,-40,-38]},{\"mesh\":4,\"translation\":[-51,-42,-38]},{\"mesh\":4,\"translation\":[-51,-40,-40]},{\"mesh\":4,\"translation\":[-51,-42,-40]},{\"mesh\":4,\"translation\":[-51,-40,-42]},{\"mesh\":4,\"translation\":[-51,-42,-42]},{\"mesh\":4,\"translation\":[-51,-44,-32]},{\"mesh\":4,\"translation\":[-51,-46,-32]},{\"mesh\":4,\"translation\":[-51,-44,-34]},{\"mesh\":4,\"translation\":[-51,-46,-34]},{\"mesh\":4,\"translation\":[-51,-44,-36]},{\"mesh\":4,\"translation\":[-51,-46,-36]},{\"mesh\":5,\"translation\":[-52,-32,-32]},{\"mesh\":5,\"translation\":[-52,-34,-32]},{\"mesh\":5,\"translation\":[-52,-36,-32]},{\"mesh\":5,\"translation\":[-52,-38,-32]},{\"mesh\":5,\"translation\":[-52,-36,-34]},{\"mesh\":5,\"translation\":[-52,-38,-34]},{\"mesh\":5,\"translation\":[-52,-36,-36]},{\"mesh\":5,\"translation\":[-52,-38,-36]},{\"mesh\":5,\"translation\":[-52,-36,-38]},{\"mesh\":5,\"translation\":[-52,-38,-38]},{\"mesh\":5,\"translation\":[-52,-40,-32]},{\"mesh\":5,\"translation\":[-52,-42,-32]},{\"mesh\":5,\"translation\":[-52,-40,-34]},{\"mesh\":5,\"translation\":[-52,-42,-34]},{\"mesh\":5,\"translation\":[-52,-40,-36]},{\"mesh\":5,\"translation\":[-52,-42,-36]},{\"mesh\":5,\"translation\":[-52,-40,-38]},{\"mesh\":5,\"translation\":[-52,-42,-38]},{\"mesh\":5,\"translation\":[-52,-40,-40]},{\"mesh\":5,\"translation\":[-52,-42,-40]},{\"mesh\":5,\"translation\":[-52,-40,-42]},{\"mesh\":5,\"translation\":[-52,-42,-42]},{\"mesh\":5,\"translation\":[-52,-44,-32]},{\"mesh\":5,\"translation\":[-52,-46,-32]},{\"mesh\":5,\"translation\":[-52,-44,-34]},{\"mesh\":5,\"translation\":[-52,-46,-34]},{\"mesh\":5,\"translation\":[-52,-44,-36]},{\"mesh\":5,\"translation\":[-52,-46,-36]},{\"mesh\":3,\"translation\":[-52,-34,-34]},{\"mesh\":3,\"translation\":[-52,-34,-36]},{\"mesh\":3,\"translation\":[-52,-38,-40]},{\"mesh\":3,\"translation\":[-52,-38,-42]},{\"mesh\":3,\"translation\":[-52,-40,-44]},{\"mesh\":3,\"translation\":[-52,-44,-38]},{\"mesh\":3,\"translation\":[-52,-44,-40]},{\"mesh\":3,\"translation\":[-52,-48,-32]},{\"mesh\":3,\"translation\":[-52,-48,-34]},{\"mesh\":4,\"translation\":[-53,-34,-34]},{\"mesh\":4,\"translation\":[-53,-34,-36]},{\"mesh\":4,\"translation\":[-53,-36,-34]},{\"mesh\":4,\"translation\":[-53,-36,-36]},{\"mesh\":4,\"translation\":[-53,-38,-32]},{\"mesh\":4,\"translation\":[-53,-38,-34]},{\"mesh\":4,\"translation\":[-53,-38,-36]},{\"mesh\":4,\"translation\":[-53,-38,-38]},{\"mesh\":4,\"translation\":[-53,-38,-40]},{\"mesh\":4,\"translation\":[-53,-38,-42]},{\"mesh\":4,\"translation\":[-53,-40,-32]},{\"mesh\":4,\"translation\":[-53,-40,-34]},{\"mesh\":4,\"translation\":[-53,-40,-36]},{\"mesh\":4,\"translation\":[-53,-40,-38]},{\"mesh\":4,\"translation\":[-53,-40,-40]},{\"mesh\":4,\"translation\":[-53,-40,-42]},{\"mesh\":4,\"translation\":[-53,-42,-34]},{\"mesh\":4,\"translation\":[-53,-42,-36]},{\"mesh\":4,\"translation\":[-53,-42,-38]},{\"mesh\":4,\"translation\":[-53,-42,-40]},{\"mesh\":4,\"translation\":[-53,-44,-34]},{\"mesh\":4,\"translation\":[-53,-44,-36]},{\"mesh\":4,\"translation\":[-53,-44,-38]},{\"mesh\":4,\"translation\":[-53,-44,-40]},{\"mesh\":4,\"translation\":[-53,-46,-32]},{\"mesh\":4,\"translation\":[-53,-46,-34]},{\"mesh\":4,\"translation\":[-53,-48,-32]},{\"mesh\":4,\"translation\":[-53,-48,-34]},{\"mesh\":5,\"translation\":[-54,-34,-34]},{\"mesh\":5,\"translation\":[-54,-34,-36]},{\"mesh\":5,\"translation\":[-54,-36,-34]},{\"mesh\":5,\"translation\":[-54,-36,-36]},{\"mesh\":5,\"translation\":[-54,-38,-32]},{\"mesh\":5,\"translation\":[-54,-38,-34]},{\"mesh\":5,\"translation\":[-54,-38,-36]},{\"mesh\":5,\"translation\":[-54,-38,-38]},{\"mesh\":5,\"translation\":[-54,-38,-40]},{\"mesh\":5,\"translation\":[-54,-38,-42]},{\"mesh\":5,\"translation\":[-54,-40,-32]},{\"mesh\":5,\"translation\":[-54,-40,-34]},{\"mesh\":5,\"translation\":[-54,-40,-36]},{\"mesh\":5,\"translation\":[-54,-40,-38]},{\"mesh\":5,\"translation\":[-54,-40,-40]},{\"mesh\":5,\"translation\":[-54,-40,-42]},{\"mesh\":5,\"translation\":[-54,-42,-34]},{\"mesh\":5,\"translation\":[-54,-42,-36]},{\"mesh\":5,\"translation\":[-54,-42,-38]},{\"mesh\":5,\"translation\":[-54,-42,-40]},{\"mesh\":5,\"translation\":[-54,-44,-34]},{\"mesh\":5,\"translation\":[-54,-44,-36]},{\"mesh\":5,\"translation\":[-54,-44,-38]},{\"mesh\":5,\"translation\":[-54,-44,-40]},{\"mesh\":5,\"translation\":[-54,-46,-32]},{\"mesh\":5,\"translation\":[-54,-46,-34]},{\"mesh\":5,\"translation\":[-54,-48,-32]},{\"mesh\":5,\"translation\":[-54,-48,-34]},{\"mesh\":3,\"translation\":[-54,-32,-32]},{\"mesh\":3,\"translation\":[-54,-34,-32]},{\"mesh\":3,\"translation\":[-54,-36,-32]},{\"mesh\":3,\"translation\":[-54,-36,-38]},{\"mesh\":3,\"translation\":[-54,-40,-44]},{\"mesh\":3,\"translation\":[-54,-42,-32]},{\"mesh\":3,\"translation\":[-54,-42,-42]},{\"mesh\":3,\"translation\":[-54,-44,-32]},{\"mesh\":3,\"translation\":[-54,-46,-36]},{\"mesh\":2,\"translation\":[-55,-32,-32]},{\"mesh\":2,\"translation\":[-55,-34,-34]},{\"mesh\":2,\"translation\":[-55,-36,-32]},{\"mesh\":2,\"translation\":[-55,-36,-34]},{\"mesh\":2,\"translation\":[-55,-36,-36]},{\"mesh\":2,\"translation\":[-55,-36,-38]},{\"mesh\":2,\"translation\":[-55,-38,-32]},{\"mesh\":2,\"translation\":[-55,-38,-36]},{\"mesh\":2,\"translation\":[-55,-38,-40]},{\"mesh\":2,\"translation\":[-55,-40,-32]},{\"mesh\":2,\"translation\":[-55,-40,-34]},{\"mesh\":2,\"translation\":[-55,-40,-36]},{\"mesh\":2,\"translation\":[-55,-40,-38]},{\"mesh\":2,\"translation\":[-55,-40,-40]},{\"mesh\":2,\"translation\":[-55,-40,-42]},{\"mesh\":2,\"translation\":[-55,-40,-44]},{\"mesh\":2,\"translation\":[-55,-42,-34]},{\"mesh\":2,\"translation\":[-55,-42,-38]},{\"mesh\":2,\"translation\":[-55,-42,-42]},{\"mesh\":2,\"translation\":[-55,-44,-32]},{\"mesh\":2,\"translation\":[-55,-44,-34]},{\"mesh\":2,\"translation\":[-55,-44,-36]},{\"mesh\":2,\"translation\":[-55,-44,-38]},{\"mesh\":2,\"translation\":[-55,-44,-40]},{\"mesh\":2,\"translation\":[-55,-46,-32]},{\"mesh\":2,\"translation\":[-55,-46,-36]},{\"mesh\":2,\"translation\":[-55,-48,-32]},{\"mesh\":2,\"translation\":[-55,-48,-34]},{\"mesh\":3,\"translation\":[-56,-32,-32]},{\"mesh\":3,\"translation\":[-56,-34,-34]},{\"mesh\":3,\"translation\":[-56,-36,-32]},{\"mesh\":3,\"translation\":[-56,-36,-34]},{\"mesh\":3,\"translation\":[-56,-36,-36]},{\"mesh\":3,\"translation\":[-56,-36,-38]},{\"mesh\":3,\"translation\":[-56,-38,-32]},{\"mesh\":3,\"translation\":[-56,-38,-36]},{\"mesh\":3,\"translation\":[-56,-38,-40]},{\"mesh\":3,\"translation\":[-56,-40,-32]},{\"mesh\":3,\"translation\":[-56,-40,-34]},{\"mesh\":3,\"translation\":[-56,-40,-36]},{\"mesh\":3,\"translation\":[-56,-40,-38]},{\"mesh\":3,\"translation\":[-56,-40,-40]},{\"mesh\":3,\"translation\":[-56,-40,-42]},{\"mesh\":3,\"translation\":[-56,-40,-44]},{\"mesh\":3,\"translation\":[-56,-42,-34]},{\"mesh\":3,\"translation\":[-56,-42,-38]},{\"mesh\":3,\"translation\":[-56,-42,-42]},{\"mesh\":3,\"translation\":[-56,-44,-32]},{\"mesh\":3,\"translation\":[-56,-44,-34]},{\"mesh\":3,\"translation\":[-56,-44,-36]},{\"mesh\":3,\"translation\":[-56,-44,-38]},{\"mesh\":3,\"translation\":[-56,-44,-40]},{\"mesh\":3,\"translation\":[-56,-46,-32]},{\"mesh\":3,\"translation\":[-56,-46,-36]},{\"mesh\":3,\"translation\":[-56,-48,-32]},{\"mesh\":3,\"translation\":[-56,-48,-34]},{\"mesh\":3,\"translation\":[-56,-34,-32]},{\"mesh\":3,\"translation\":[-56,-34,-36]},{\"mesh\":3,\"translation\":[-56,-38,-34]},{\"mesh\":3,\"translation\":[-56,-38,-38]},{\"mesh\":3,\"translation\":[-56,-38,-42]},{\"mesh\":3,\"translation\":[-56,-42,-32]},{\"mesh\":3,\"translation\":[-56,-42,-36]},{\"mesh\":3,\"translation\":[-56,-42,-40]},{\"mesh\":3,\"translation\":[-56,-46,-34]},{\"mesh\":4,\"translation\":[-57,-34,-32]},{\"mesh\":4,\"translation\":[-57,-36,-32]},{\"mesh\":4,\"translation\":[-57,-34,-36]},{\"mesh\":4,\"translation\":[-57,-36,-36]},{\"mesh\":4,\"translation\":[-57,-38,-34]},{\"mesh\":4,\"translation\":[-57,-40,-34]},{\"mesh\":4,\"translation\":[-57,-38,-38]},{\"mesh\":4,\"translation\":[-57,-40,-38]},{\"mesh\":4,\"translation\":[-57,-38,-42]},{\"mesh\":4,\"translation\":[-57,-40,-42]},{\"mesh\":4,\"translation\":[-57,-42,-32]},{\"mesh\":4,\"translation\":[-57,-44,-32]},{\"mesh\":4,\"translation\":[-57,-42,-36]},{\"mesh\":4,\"translation\":[-57,-44,-36]},{\"mesh\":4,\"translation\":[-57,-42,-40]},{\"mesh\":4,\"translation\":[-57,-44,-40]},{\"mesh\":4,\"translation\":[-57,-46,-34]},{\"mesh\":4,\"translation\":[-57,-48,-34]},{\"mesh\":5,\"translation\":[-58,-34,-32]},{\"mesh\":5,\"translation\":[-58,-36,-32]},{\"mesh\":5,\"translation\":[-58,-34,-36]},{\"mesh\":5,\"translation\":[-58,-36,-36]},{\"mesh\":5,\"translation\":[-58,-38,-34]},{\"mesh\":5,\"translation\":[-58,-40,-34]},{\"mesh\":5,\"translation\":[-58,-38,-38]},{\"mesh\":5,\"translation\":[-58,-40,-38]},{\"mesh\":5,\"translation\":[-58,-38,-42]},{\"mesh\":5,\"translation\":[-58,-40,-42]},{\"mesh\":5,\"translation\":[-58,-42,-32]},{\"mesh\":5,\"translation\":[-58,-44,-32]},{\"mesh\":5,\"translation\":[-58,-42,-36]},{\"mesh\":5,\"translation\":[-58,-44,-36]},{\"mesh\":5,\"translation\":[-58,-42,-40]},{\"mesh\":5,\"translation\":[-58,-44,-40]},{\"mesh\":5,\"translation\":[-58,-46,-34]},{\"mesh\":5,\"translation\":[-58,-48,-34]},{\"mesh\":3,\"translation\":[-58,-32,-32]},{\"mesh\":3,\"translation\":[-58,-34,-34]},{\"mesh\":3,\"translation\":[-58,-36,-34]},{\"mesh\":3,\"translation\":[-58,-36,-38]},{\"mesh\":3,\"translation\":[-58,-38,-32]},{\"mesh\":3,\"translation\":[-58,-38,-36]},{\"mesh\":3,\"translation\":[-58,-38,-40]},{\"mesh\":3,\"translation\":[-58,-40,-32]},{\"mesh\":3,\"translation\":[-58,-40,-36]},{\"mesh\":3,\"translation\":[-58,-40,-40]},{\"mesh\":3,\"translation\":[-58,-40,-44]},{\"mesh\":3,\"translation\":[-58,-42,-34]},{\"mesh\":3,\"translation\":[-58,-42,-38]},{\"mesh\":3,\"translation\":[-58,-42,-42]},{\"mesh\":3,\"translation\":[-58,-44,-34]},{\"mesh\":3,\"translation\":[-58,-44,-38]},{\"mesh\":3,\"translation\":[-58,-46,-32]},{\"mesh\":3,\"translation\":[-58,-46,-36]},{\"mesh\":3,\"translation\":[-58,-48,-32]},{\"mesh\":2,\"translation\":[-59,-34,-32]},{\"mesh\":2,\"translation\":[-59,-34,-36]},{\"mesh\":2,\"translation\":[-59,-36,-32]},{\"mesh\":2,\"translation\":[-59,-36,-36]},{\"mesh\":2,\"translation\":[-59,-38,-34]},{\"mesh\":2,\"translation\":[-59,-38,-38]},{\"mesh\":2,\"translation\":[-59,-38,-42]},{\"mesh\":2,\"translation\":[-59,-40,-34]},{\"mesh\":2,\"translation\":[-59,-40,-38]},{\"mesh\":2,\"translation\":[-59,-40,-42]},{\"mesh\":2,\"translation\":[-59,-42,-32]},{\"mesh\":2,\"translation\":[-59,-42,-36]},{\"mesh\":2,\"translation\":[-59,-42,-40]},{\"mesh\":2,\"translation\":[-59,-44,-32]},{\"mesh\":2,\"translation\":[-59,-44,-36]},{\"mesh\":2,\"translation\":[-59,-44,-40]},{\"mesh\":2,\"translation\":[-59,-46,-34]},{\"mesh\":2,\"translation\":[-59,-48,-34]},{\"mesh\":3,\"translation\":[-60,-34,-32]},{\"mesh\":3,\"translation\":[-60,-34,-36]},{\"mesh\":3,\"translation\":[-60,-36,-32]},{\"mesh\":3,\"translation\":[-60,-36,-36]},{\"mesh\":3,\"translation\":[-60,-38,-34]},{\"mesh\":3,\"translation\":[-60,-38,-38]},{\"mesh\":3,\"translation\":[-60,-38,-42]},{\"mesh\":3,\"translation\":[-60,-40,-34]},{\"mesh\":3,\"translation\":[-60,-40,-38]},{\"mesh\":3,\"translation\":[-60,-40,-42]},{\"mesh\":3,\"translation\":[-60,-42,-32]},{\"mesh\":3,\"translation\":[-60,-42,-36]},{\"mesh\":3,\"translation\":[-60,-42,-40]},{\"mesh\":3,\"translation\":[-60,-44,-32]},{\"mesh\":3,\"translation\":[-60,-44,-36]},{\"mesh\":3,\"translation\":[-60,-44,-40]},{\"mesh\":3,\"translation\":[-60,-46,-34]},{\"mesh\":3,\"translation\":[-60,-48,-34]},{\"mesh\":3,\"translation\":[-60,-32,-32]},{\"mesh\":3,\"translation\":[-60,-34,-34]},{\"mesh\":3,\"translation\":[-60,-36,-34]},{\"mesh\":3,\"translation\":[-60,-36,-38]},{\"mesh\":3,\"translation\":[-60,-38,-32]},{\"mesh\":3,\"translation\":[-60,-38,-36]},{\"mesh\":3,\"translation\":[-60,-38,-40]},{\"mesh\":3,\"translation\":[-60,-40,-32]},{\"mesh\":3,\"translation\":[-60,-40,-36]},{\"mesh\":3,\"translation\":[-60,-40,-40]},{\"mesh\":3,\"translation\":[-60,-40,-44]},{\"mesh\":3,\"translation\":[-60,-42,-34]},{\"mesh\":3,\"translation\":[-60,-42,-38]},{\"mesh\":3,\"translation\":[-60,-42,-42]},{\"mesh\":3,\"translation\":[-60,-44,-34]},{\"mesh\":3,\"translation\":[-60,-44,-38]},{\"mesh\":3,\"translation\":[-60,-46,-32]},{\"mesh\":3,\"translation\":[-60,-46,-36]},{\"mesh\":3,\"translation\":[-60,-48,-32]},{\"mesh\":6,\"translation\":[-61,-34,-32]},{\"mesh\":6,\"translation\":[-61,-34,-36]},{\"mesh\":6,\"translation\":[-61,-38,-34]},{\"mesh\":6,\"translation\":[-61,-38,-38]},{\"mesh\":6,\"translation\":[-61,-38,-42]},{\"mesh\":6,\"translation\":[-61,-42,-32]},{\"mesh\":6,\"translation\":[-61,-42,-36]},{\"mesh\":6,\"translation\":[-61,-42,-40]},{\"mesh\":6,\"translation\":[-61,-46,-34]},{\"mesh\":6,\"translation\":[-61,-36,-32]},{\"mesh\":6,\"translation\":[-61,-36,-36]},{\"mesh\":6,\"translation\":[-61,-40,-34]},{\"mesh\":6,\"translation\":[-61,-40,-38]},{\"mesh\":6,\"translation\":[-61,-40,-42]},{\"mesh\":6,\"translation\":[-61,-44,-32]},{\"mesh\":6,\"translation\":[-61,-44,-36]},{\"mesh\":6,\"translation\":[-61,-44,-40]},{\"mesh\":6,\"translation\":[-61,-48,-34]},{\"mesh\":3,\"translation\":[-62,-34,-32]},{\"mesh\":3,\"translation\":[-62,-34,-36]},{\"mesh\":3,\"translation\":[-62,-38,-34]},{\"mesh\":3,\"translation\":[-62,-38,-38]},{\"mesh\":3,\"translation\":[-62,-38,-42]},{\"mesh\":3,\"translation\":[-62,-42,-32]},{\"mesh\":3,\"translation\":[-62,-42,-36]},{\"mesh\":3,\"translation\":[-62,-42,-40]},{\"mesh\":3,\"translation\":[-62,-46,-34]},{\"mesh\":3,\"translation\":[-62,-36,-32]},{\"mesh\":3,\"translation\":[-62,-36,-36]},{\"mesh\":3,\"translation\":[-62,-40,-34]},{\"mesh\":3,\"translation\":[-62,-40,-38]},{\"mesh\":3,\"translation\":[-62,-40,-42]},{\"mesh\":3,\"translation\":[-62,-44,-32]},{\"mesh\":3,\"translation\":[-62,-44,-36]},{\"mesh\":3,\"translation\":[-62,-44,-40]},{\"mesh\":3,\"translation\":[-62,-48,-34]},{\"mesh\":3,\"translation\":[-62,-32,-32]},{\"mesh\":3,\"translation\":[-62,-34,-34]},{\"mesh\":3,\"translation\":[-62,-36,-34]},{\"mesh\":3,\"translation\":[-62,-36,-38]},{\"mesh\":3,\"translation\":[-62,-38,-32]},{\"mesh\":3,\"translation\":[-62,-38,-36]},{\"mesh\":3,\"translation\":[-62,-38,-40]},{\"mesh\":3,\"translation\":[-62,-40,-32]},{\"mesh\":3,\"translation\":[-62,-40,-36]},{\"mesh\":3,\"translation\":[-62,-40,-40]},{\"mesh\":3,\"translation\":[-62,-40,-44]},{\"mesh\":3,\"translation\":[-62,-42,-34]},{\"mesh\":3,\"translation\":[-62,-42,-38]},{\"mesh\":3,\"translation\":[-62,-42,-42]},{\"mesh\":3,\"translation\":[-62,-44,-34]},{\"mesh\":3,\"translation\":[-62,-44,-38]},{\"mesh\":3,\"translation\":[-62,-46,-32]},{\"mesh\":3,\"translation\":[-62,-46,-36]},{\"mesh\":3,\"translation\":[-62,-48,-32]},{\"mesh\":3,\"translation\":[-63,-32,-32]},{\"mesh\":3,\"translation\":[-63,-34,-34]},{\"mesh\":3,\"translation\":[-63,-36,-34]},{\"mesh\":3,\"translation\":[-63,-36,-38]},{\"mesh\":3,\"translation\":[-63,-38,-32]},{\"mesh\":3,\"translation\":[-63,-38,-36]},{\"mesh\":3,\"translation\":[-63,-38,-40]},{\"mesh\":3,\"translation\":[-63,-40,-32]},{\"mesh\":3,\"translation\":[-63,-40,-36]},{\"mesh\":3,\"translation\":[-63,-40,-40]},{\"mesh\":3,\"translation\":[-63,-40,-44]},{\"mesh\":3,\"translation\":[-63,-42,-34]},{\"mesh\":3,\"translation\":[-63,-42,-38]},{\"mesh\":3,\"translation\":[-63,-42,-42]},{\"mesh\":3,\"translation\":[-63,-44,-34]},{\"mesh\":3,\"translation\":[-63,-44,-38]},{\"mesh\":3,\"translation\":[-63,-46,-32]},{\"mesh\":3,\"translation\":[-63,-46,-36]},{\"mesh\":3,\"translation\":[-63,-48,-32]},{\"mesh\":0,\"translation\":[-65,-48,-34]},{\"mesh\":0,\"translation\":[-65,-44,-40]},{\"mesh\":0,\"translation\":[-65,-44,-36]},{\"mesh\":0,\"translation\":[-65,-44,-32]},{\"mesh\":0,\"translation\":[-65,-40,-42]},{\"mesh\":0,\"translation\":[-65,-40,-38]},{\"mesh\":0,\"translation\":[-65,-40,-34]},{\"mesh\":0,\"translation\":[-65,-36,-36]},{\"mesh\":0,\"translation\":[-65,-36,-32]},{\"mesh\":0,\"translation\":[-65,-46,-34]},{\"mesh\":0,\"translation\":[-65,-42,-40]},{\"mesh\":0,\"translation\":[-65,-42,-36]},{\"mesh\":0,\"translation\":[-65,-42,-32]},{\"mesh\":0,\"translation\":[-65,-38,-42]},{\"mesh\":0,\"translation\":[-65,-38,-38]},{\"mesh\":0,\"translation\":[-65,-38,-34]},{\"mesh\":0,\"translation\":[-65,-34,-36]},{\"mesh\":0,\"translation\":[-65,-34,-32]},{\"mesh\":1,\"translation\":[-66,-48,-34]},{\"mesh\":1,\"translation\":[-66,-44,-40]},{\"mesh\":1,\"translation\":[-66,-44,-36]},{\"mesh\":1,\"translation\":[-66,-44,-32]},{\"mesh\":1,\"translation\":[-66,-40,-42]},{\"mesh\":1,\"translation\":[-66,-40,-38]},{\"mesh\":1,\"translation\":[-66,-40,-34]},{\"mesh\":1,\"translation\":[-66,-36,-36]},{\"mesh\":1,\"translation\":[-66,-36,-32]},{\"mesh\":1,\"translation\":[-66,-46,-34]},{\"mesh\":1,\"translation\":[-66,-42,-40]},{\"mesh\":1,\"translation\":[-66,-42,-36]},{\"mesh\":1,\"translation\":[-66,-42,-32]},{\"mesh\":1,\"translation\":[-66,-38,-42]},{\"mesh\":1,\"translation\":[-66,-38,-38]},{\"mesh\":1,\"translation\":[-66,-38,-34]},{\"mesh\":1,\"translation\":[-66,-34,-36]},{\"mesh\":1,\"translation\":[-66,-34,-32]},{\"mesh\":3,\"translation\":[-66,-32,-32]},{\"mesh\":3,\"translation\":[-66,-34,-34]},{\"mesh\":3,\"translation\":[-66,-36,-34]},{\"mesh\":3,\"translation\":[-66,-36,-38]},{\"mesh\":3,\"translation\":[-66,-38,-32]},{\"mesh\":3,\"translation\":[-66,-38,-36]},{\"mesh\":3,\"translation\":[-66,-38,-40]},{\"mesh\":3,\"translation\":[-66,-40,-32]},{\"mesh\":3,\"translation\":[-66,-40,-36]},{\"mesh\":3,\"translation\":[-66,-40,-40]},{\"mesh\":3,\"translation\":[-66,-40,-44]},{\"mesh\":3,\"translation\":[-66,-42,-34]},{\"mesh\":3,\"translation\":[-66,-42,-38]},{\"mesh\":3,\"translation\":[-66,-42,-42]},{\"mesh\":3,\"translation\":[-66,-44,-34]},{\"mesh\":3,\"translation\":[-66,-44,-38]},{\"mesh\":3,\"translation\":[-66,-46,-32]},{\"mesh\":3,\"translation\":[-66,-46,-36]},{\"mesh\":3,\"translation\":[-66,-48,-32]},{\"mesh\":3,\"translation\":[-67,-32,-32]},{\"mesh\":3,\"translation\":[-67,-34,-34]},{\"mesh\":3,\"translation\":[-67,-36,-34]},{\"mesh\":3,\"translation\":[-67,-36,-38]},{\"mesh\":3,\"translation\":[-67,-38,-32]},{\"mesh\":3,\"translation\":[-67,-38,-36]},{\"mesh\":3,\"translation\":[-67,-38,-40]},{\"mesh\":3,\"translation\":[-67,-40,-32]},{\"mesh\":3,\"translation\":[-67,-40,-36]},{\"mesh\":3,\"translation\":[-67,-40,-40]},{\"mesh\":3,\"translation\":[-67,-40,-44]},{\"mesh\":3,\"translation\":[-67,-42,-34]},{\"mesh\":3,\"translation\":[-67,-42,-38]},{\"mesh\":3,\"translation\":[-67,-42,-42]},{\"mesh\":3,\"translation\":[-67,-44,-34]},{\"mesh\":3,\"translation\":[-67,-44,-38]},{\"mesh\":3,\"translation\":[-67,-46,-32]},{\"mesh\":3,\"translation\":[-67,-46,-36]},{\"mesh\":3,\"translation\":[-67,-48,-32]},{\"mesh\":2,\"translation\":[-68,-34,-32]},{\"mesh\":2,\"translation\":[-68,-34,-36]},{\"mesh\":2,\"translation\":[-68,-36,-32]},{\"mesh\":2,\"translation\":[-68,-36,-36]},{\"mesh\":2,\"translation\":[-68,-38,-34]},{\"mesh\":2,\"translation\":[-68,-38,-38]},{\"mesh\":2,\"translation\":[-68,-38,-42]},{\"mesh\":2,\"translation\":[-68,-40,-34]},{\"mesh\":2,\"translation\":[-68,-40,-38]},{\"mesh\":2,\"translation\":[-68,-40,-42]},{\"mesh\":2,\"translation\":[-68,-42,-32]},{\"mesh\":2,\"translation\":[-68,-42,-36]},{\"mesh\":2,\"translation\":[-68,-42,-40]},{\"mesh\":2,\"translation\":[-68,-44,-32]},{\"mesh\":2,\"translation\":[-68,-44,-36]},{\"mesh\":2,\"translation\":[-68,-44,-40]},{\"mesh\":2,\"translation\":[-68,-46,-34]},{\"mesh\":2,\"translation\":[-68,-48,-34]},{\"mesh\":3,\"translation\":[-69,-34,-32]},{\"mesh\":3,\"translation\":[-69,-34,-36]},{\"mesh\":3,\"translation\":[-69,-36,-32]},{\"mesh\":3,\"translation\":[-69,-36,-36]},{\"mesh\":3,\"translation\":[-69,-38,-34]},{\"mesh\":3,\"translation\":[-69,-38,-38]},{\"mesh\":3,\"translation\":[-69,-38,-42]},{\"mesh\":3,\"translation\":[-69,-40,-34]},{\"mesh\":3,\"translation\":[-69,-40,-38]},{\"mesh\":3,\"translation\":[-69,-40,-42]},{\"mesh\":3,\"translation\":[-69,-42,-32]},{\"mesh\":3,\"translation\":[-69,-42,-36]},{\"mesh\":3,\"translation\":[-69,-42,-40]},{\"mesh\":3,\"translation\":[-69,-44,-32]},{\"mesh\":3,\"translation\":[-69,-44,-36]},{\"mesh\":3,\"translation\":[-69,-44,-40]},{\"mesh\":3,\"translation\":[-69,-46,-34]},{\"mesh\":3,\"translation\":[-69,-48,-34]},{\"mesh\":3,\"translation\":[-69,-32,-32]},{\"mesh\":3,\"translation\":[-69,-34,-34]},{\"mesh\":3,\"translation\":[-69,-36,-34]},{\"mesh\":3,\"translation\":[-69,-36,-38]},{\"mesh\":3,\"translation\":[-69,-38,-32]},{\"mesh\":3,\"translation\":[-69,-38,-36]},{\"mesh\":3,\"translation\":[-69,-38,-40]},{\"mesh\":3,\"translation\":[-69,-40,-32]},{\"mesh\":3,\"translation\":[-69,-40,-36]},{\"mesh\":3,\"translation\":[-69,-40,-40]},{\"mesh\":3,\"translation\":[-69,-40,-44]},{\"mesh\":3,\"translation\":[-69,-42,-34]},{\"mesh\":3,\"translation\":[-69,-42,-38]},{\"mesh\":3,\"translation\":[-69,-42,-42]},{\"mesh\":3,\"translation\":[-69,-44,-34]},{\"mesh\":3,\"translation\":[-69,-44,-38]},{\"mesh\":3,\"translation\":[-69,-46,-32]},{\"mesh\":3,\"translation\":[-69,-46,-36]},{\"mesh\":3,\"translation\":[-69,-48,-32]},{\"mesh\":4,\"translation\":[-70,-34,-32]},{\"mesh\":4,\"translation\":[-70,-36,-32]},{\"mesh\":4,\"translation\":[-70,-34,-36]},{\"mesh\":4,\"translation\":[-70,-36,-36]},{\"mesh\":4,\"translation\":[-70,-38,-34]},{\"mesh\":4,\"translation\":[-70,-40,-34]},{\"mesh\":4,\"translation\":[-70,-38,-38]},{\"mesh\":4,\"translation\":[-70,-40,-38]},{\"mesh\":4,\"translation\":[-70,-38,-42]},{\"mesh\":4,\"translation\":[-70,-40,-42]},{\"mesh\":4,\"translation\":[-70,-42,-32]},{\"mesh\":4,\"translation\":[-70,-44,-32]},{\"mesh\":4,\"translation\":[-70,-42,-36]},{\"mesh\":4,\"translation\":[-70,-44,-36]},{\"mesh\":4,\"translation\":[-70,-42,-40]},{\"mesh\":4,\"translation\":[-70,-44,-40]},{\"mesh\":4,\"translation\":[-70,-46,-34]},{\"mesh\":4,\"translation\":[-70,-48,-34]},{\"mesh\":5,\"translation\":[-71,-34,-32]},{\"mesh\":5,\"translation\":[-71,-36,-32]},{\"mesh\":5,\"translation\":[-71,-34,-36]},{\"mesh\":5,\"translation\":[-71,-36,-36]},{\"mesh\":5,\"translation\":[-71,-38,-34]},{\"mesh\":5,\"translation\":[-71,-40,-34]},{\"mesh\":5,\"translation\":[-71,-38,-38]},{\"mesh\":5,\"translation\":[-71,-40,-38]},{\"mesh\":5,\"translation\":[-71,-38,-42]},{\"mesh\":5,\"translation\":[-71,-40,-42]},{\"mesh\":5,\"translation\":[-71,-42,-32]},{\"mesh\":5,\"translation\":[-71,-44,-32]},{\"mesh\":5,\"translation\":[-71,-42,-36]},{\"mesh\":5,\"translation\":[-71,-44,-36]},{\"mesh\":5,\"translation\":[-71,-42,-40]},{\"mesh\":5,\"translation\":[-71,-44,-40]},{\"mesh\":5,\"translation\":[-71,-46,-34]},{\"mesh\":5,\"translation\":[-71,-48,-34]},{\"mesh\":3,\"translation\":[-71,-32,-32]},{\"mesh\":3,\"translation\":[-71,-34,-34]},{\"mesh\":3,\"translation\":[-71,-36,-34]},{\"mesh\":3,\"translation\":[-71,-36,-38]},{\"mesh\":3,\"translation\":[-71,-38,-32]},{\"mesh\":3,\"translation\":[-71,-38,-36]},{\"mesh\":3,\"translation\":[-71,-38,-40]},{\"mesh\":3,\"translation\":[-71,-40,-32]},{\"mesh\":3,\"translation\":[-71,-40,-36]},{\"mesh\":3,\"translation\":[-71,-40,-40]},{\"mesh\":3,\"translation\":[-71,-40,-44]},{\"mesh\":3,\"translation\":[-71,-42,-34]},{\"mesh\":3,\"translation\":[-71,-42,-38]},{\"mesh\":3,\"translation\":[-71,-42,-42]},{\"mesh\":3,\"translation\":[-71,-44,-34]},{\"mesh\":3,\"translation\":[-71,-44,-38]},{\"mesh\":3,\"translation\":[-71,-46,-32]},{\"mesh\":3,\"translation\":[-71,-46,-36]},{\"mesh\":3,\"translation\":[-71,-48,-32]},{\"mesh\":2,\"translation\":[-72,-32,-32]},{\"mesh\":2,\"translation\":[-72,-34,-34]},{\"mesh\":2,\"translation\":[-72,-36,-32]},{\"mesh\":2,\"translation\":[-72,-36,-34]},{\"mesh\":2,\"translation\":[-72,-36,-36]},{\"mesh\":2,\"translation\":[-72,-36,-38]},{\"mesh\":2,\"translation\":[-72,-38,-32]},{\"mesh\":2,\"translation\":[-72,-38,-36]},{\"mesh\":2,\"translation\":[-72,-38,-40]},{\"mesh\":2,\"translation\":[-72,-40,-32]},{\"mesh\":2,\"translation\":[-72,-40,-34]},{\"mesh\":2,\"translation\":[-72,-40,-36]},{\"mesh\":2,\"translation\":[-72,-40,-38]},{\"mesh\":2,\"translation\":[-72,-40,-40]},{\"mesh\":2,\"translation\":[-72,-40,-42]},{\"mesh\":2,\"translation\":[-72,-40,-44]},{\"mesh\":2,\"translation\":[-72,-42,-34]},{\"mesh\":2,\"translation\":[-72,-42,-38]},{\"mesh\":2,\"translation\":[-72,-42,-42]},{\"mesh\":2,\"translation\":[-72,-44,-32]},{\"mesh\":2,\"translation\":[-72,-44,-34]},{\"mesh\":2,\"translation\":[-72,-44,-36]},{\"mesh\":2,\"translation\":[-72,-44,-38]},{\"mesh\":2,\"translation\":[-72,-44,-40]},{\"mesh\":2,\"translation\":[-72,-46,-32]},{\"mesh\":2,\"translation\":[-72,-46,-36]},{\"mesh\":2,\"translation\":[-72,-48,-32]},{\"mesh\":2,\"translation\":[-72,-48,-34]},{\"mesh\":3,\"translation\":[-73,-32,-32]},{\"mesh\":3,\"translation\":[-73,-34,-34]},{\"mesh\":3,\"translation\":[-73,-36,-32]},{\"mesh\":3,\"translation\":[-73,-36,-34]},{\"mesh\":3,\"translation\":[-73,-36,-36]},{\"mesh\":3,\"translation\":[-73,-36,-38]},{\"mesh\":3,\"translation\":[-73,-38,-32]},{\"mesh\":3,\"translation\":[-73,-38,-36]},{\"mesh\":3,\"translation\":[-73,-38,-40]},{\"mesh\":3,\"translation\":[-73,-40,-32]},{\"mesh\":3,\"translation\":[-73,-40,-34]},{\"mesh\":3,\"translation\":[-73,-40,-36]},{\"mesh\":3,\"translation\":[-73,-40,-38]},{\"mesh\":3,\"translation\":[-73,-40,-40]},{\"mesh\":3,\"translation\":[-73,-40,-42]},{\"mesh\":3,\"translation\":[-73,-40,-44]},{\"mesh\":3,\"translation\":[-73,-42,-34]},{\"mesh\":3,\"translation\":[-73,-42,-38]},{\"mesh\":3,\"translation\":[-73,-42,-42]},{\"mesh\":3,\"translation\":[-73,-44,-32]},{\"mesh\":3,\"translation\":[-73,-44,-34]},{\"mesh\":3,\"translation\":[-73,-44,-36]},{\"mesh\":3,\"translation\":[-73,-44,-38]},{\"mesh\":3,\"translation\":[-73,-44,-40]},{\"mesh\":3,\"translation\":[-73,-46,-32]},{\"mesh\":3,\"translation\":[-73,-46,-36]},{\"mesh\":3,\"translation\":[-73,-48,-32]},{\"mesh\":3,\"translation\":[-73,-48,-34]},{\"mesh\":3,\"translation\":[-73,-34,-32]},{\"mesh\":3,\"translation\":[-73,-34,-36]},{\"mesh\":3,\"translation\":[-73,-38,-34]},{\"mesh\":3,\"translation\":[-73,-38,-38]},{\"mesh\":3,\"translation\":[-73,-38,-42]},{\"mesh\":3,\"translation\":[-73,-42,-32]},{\"mesh\":3,\"translation\":[-73,-42,-36]},{\"mesh\":3,\"translation\":[-73,-42,-40]},{\"mesh\":3,\"translation\":[-73,-46,-34]},{\"mesh\":4,\"translation\":[-74,-34,-34]},{\"mesh\":4,\"translation\":[-74,-34,-36]},{\"mesh\":4,\"translation\":[-74,-36,-34]},{\"mesh\":4,\"translation\":[-74,-36,-36]},{\"mesh\":4,\"translation\":[-74,-38,-32]},{\"mesh\":4,\"translation\":[-74,-38,-34]},{\"mesh\":4,\"translation\":[-74,-38,-36]},{\"mesh\":4,\"translation\":[-74,-38,-38]},{\"mesh\":4,\"translation\":[-74,-38,-40]},{\"mesh\":4,\"translation\":[-74,-38,-42]},{\"mesh\":4,\"translation\":[-74,-40,-32]},{\"mesh\":4,\"translation\":[-74,-40,-34]},{\"mesh\":4,\"translation\":[-74,-40,-36]},{\"mesh\":4,\"translation\":[-74,-40,-38]},{\"mesh\":4,\"translation\":[-74,-40,-40]},{\"mesh\":4,\"translation\":[-74,-40,-42]},{\"mesh\":4,\"translation\":[-74,-42,-34]},{\"mesh\":4,\"translation\":[-74,-42,-36]},{\"mesh\":4,\"translation\":[-74,-42,-38]},{\"mesh\":4,\"translation\":[-74,-42,-40]},{\"mesh\":4,\"translation\":[-74,-44,-34]},{\"mesh\":4,\"translation\":[-74,-44,-36]},{\"mesh\":4,\"translation\":[-74,-44,-38]},{\"mesh\":4,\"translation\":[-74,-44,-40]},{\"mesh\":4,\"translation\":[-74,-46,-32]},{\"mesh\":4,\"translation\":[-74,-46,-34]},{\"mesh\":4,\"translation\":[-74,-48,-32]},{\"mesh\":4,\"translation\":[-74,-48,-34]},{\"mesh\":5,\"translation\":[-75,-34,-34]},{\"mesh\":5,\"translation\":[-75,-34,-36]},{\"mesh\":5,\"translation\":[-75,-36,-34]},{\"mesh\":5,\"translation\":[-75,-36,-36]},{\"mesh\":5,\"translation\":[-75,-38,-32]},{\"mesh\":5,\"translation\":[-75,-38,-34]},{\"mesh\":5,\"translation\":[-75,-38,-36]},{\"mesh\":5,\"translation\":[-75,-38,-38]},{\"mesh\":5,\"translation\":[-75,-38,-40]},{\"mesh\":5,\"translation\":[-75,-38,-42]},{\"mesh\":5,\"translation\":[-75,-40,-32]},{\"mesh\":5,\"translation\":[-75,-40,-34]},{\"mesh\":5,\"translation\":[-75,-40,-36]},{\"mesh\":5,\"translation\":[-75,-40,-38]},{\"mesh\":5,\"translation\":[-75,-40,-40]},{\"mesh\":5,\"translation\":[-75,-40,-42]},{\"mesh\":5,\"translation\":[-75,-42,-34]},{\"mesh\":5,\"translation\":[-75,-42,-36]},{\"mesh\":5,\"translation\":[-75,-42,-38]},{\"mesh\":5,\"translation\":[-75,-42,-40]},{\"mesh\":5,\"translation\":[-75,-44,-34]},{\"mesh\":5,\"translation\":[-75,-44,-36]},{\"mesh\":5,\"translation\":[-75,-44,-38]},{\"mesh\":5,\"translation\":[-75,-44,-40]},{\"mesh\":5,\"translation\":[-75,-46,-32]},{\"mesh\":5,\"translation\":[-75,-46,-34]},{\"mesh\":5,\"translation\":[-75,-48,-32]},{\"mesh\":5,\"translation\":[-75,-48,-34]},{\"mesh\":3,\"translation\":[-75,-32,-32]},{\"mesh\":3,\"translation\":[-75,-34,-32]},{\"mesh\":3,\"translation\":[-75,-36,-32]},{\"mesh\":3,\"translation\":[-75,-36,-38]},{\"mesh\":3,\"translation\":[-75,-40,-44]},{\"mesh\":3,\"translation\":[-75,-42,-32]},{\"mesh\":3,\"translation\":[-75,-42,-42]},{\"mesh\":3,\"translation\":[-75,-44,-32]},{\"mesh\":3,\"translation\":[-75,-46,-36]},{\"mesh\":4,\"translation\":[-76,-32,-32]},{\"mesh\":4,\"translation\":[-76,-34,-32]},{\"mesh\":4,\"translation\":[-76,-36,-32]},{\"mesh\":4,\"translation\":[-76,-38,-32]},{\"mesh\":4,\"translation\":[-76,-36,-34]},{\"mesh\":4,\"translation\":[-76,-38,-34]},{\"mesh\":4,\"translation\":[-76,-36,-36]},{\"mesh\":4,\"translation\":[-76,-38,-36]},{\"mesh\":4,\"translation\":[-76,-36,-38]},{\"mesh\":4,\"translation\":[-76,-38,-38]},{\"mesh\":4,\"translation\":[-76,-40,-32]},{\"mesh\":4,\"translation\":[-76,-42,-32]},{\"mesh\":4,\"translation\":[-76,-40,-34]},{\"mesh\":4,\"translation\":[-76,-42,-34]},{\"mesh\":4,\"translation\":[-76,-40,-36]},{\"mesh\":4,\"translation\":[-76,-42,-36]},{\"mesh\":4,\"translation\":[-76,-40,-38]},{\"mesh\":4,\"translation\":[-76,-42,-38]},{\"mesh\":4,\"translation\":[-76,-40,-40]},{\"mesh\":4,\"translation\":[-76,-42,-40]},{\"mesh\":4,\"translation\":[-76,-40,-42]},{\"mesh\":4,\"translation\":[-76,-42,-42]},{\"mesh\":4,\"translation\":[-76,-44,-32]},{\"mesh\":4,\"translation\":[-76,-46,-32]},{\"mesh\":4,\"translation\":[-76,-44,-34]},{\"mesh\":4,\"translation\":[-76,-46,-34]},{\"mesh\":4,\"translation\":[-76,-44,-36]},{\"mesh\":4,\"translation\":[-76,-46,-36]},{\"mesh\":5,\"translation\":[-77,-32,-32]},{\"mesh\":5,\"translation\":[-77,-34,-32]},{\"mesh\":5,\"translation\":[-77,-36,-32]},{\"mesh\":5,\"translation\":[-77,-38,-32]},{\"mesh\":5,\"translation\":[-77,-36,-34]},{\"mesh\":5,\"translation\":[-77,-38,-34]},{\"mesh\":5,\"translation\":[-77,-36,-36]},{\"mesh\":5,\"translation\":[-77,-38,-36]},{\"mesh\":5,\"translation\":[-77,-36,-38]},{\"mesh\":5,\"translation\":[-77,-38,-38]},{\"mesh\":5,\"translation\":[-77,-40,-32]},{\"mesh\":5,\"translation\":[-77,-42,-32]},{\"mesh\":5,\"translation\":[-77,-40,-34]},{\"mesh\":5,\"translation\":[-77,-42,-34]},{\"mesh\":5,\"translation\":[-77,-40,-36]},{\"mesh\":5,\"translation\":[-77,-42,-36]},{\"mesh\":5,\"translation\":[-77,-40,-38]},{\"mesh\":5,\"translation\":[-77,-42,-38]},{\"mesh\":5,\"translation\":[-77,-40,-40]},{\"mesh\":5,\"translation\":[-77,-42,-40]},{\"mesh\":5,\"translation\":[-77,-40,-42]},{\"mesh\":5,\"translation\":[-77,-42,-42]},{\"mesh\":5,\"translation\":[-77,-44,-32]},{\"mesh\":5,\"translation\":[-77,-46,-32]},{\"mesh\":5,\"translation\":[-77,-44,-34]},{\"mesh\":5,\"translation\":[-77,-46,-34]},{\"mesh\":5,\"translation\":[-77,-44,-36]},{\"mesh\":5,\"translation\":[-77,-46,-36]},{\"mesh\":3,\"translation\":[-77,-34,-34]},{\"mesh\":3,\"translation\":[-77,-34,-36]},{\"mesh\":3,\"translation\":[-77,-38,-40]},{\"mesh\":3,\"translation\":[-77,-38,-42]},{\"mesh\":3,\"translation\":[-77,-40,-44]},{\"mesh\":3,\"translation\":[-77,-44,-38]},{\"mesh\":3,\"translation\":[-77,-44,-40]},{\"mesh\":3,\"translation\":[-77,-48,-32]},{\"mesh\":3,\"translation\":[-77,-48,-34]},{\"mesh\":4,\"translation\":[-78,-34,-32]},{\"mesh\":4,\"translation\":[-78,-34,-34]},{\"mesh\":4,\"translation\":[-78,-36,-32]},{\"mesh\":4,\"translation\":[-78,-36,-34]},{\"mesh\":4,\"translation\":[-78,-36,-36]},{\"mesh\":4,\"translation\":[-78,-36,-38]},{\"mesh\":4,\"translation\":[-78,-38,-34]},{\"mesh\":4,\"translation\":[-78,-38,-36]},{\"mesh\":4,\"translation\":[-78,-38,-38]},{\"mesh\":4,\"translation\":[-78,-38,-40]},{\"mesh\":4,\"translation\":[-78,-40,-34]},{\"mesh\":4,\"translation\":[-78,-40,-36]},{\"mesh\":4,\"translation\":[-78,-40,-38]},{\"mesh\":4,\"translation\":[-78,-40,-40]},{\"mesh\":4,\"translation\":[-78,-40,-42]},{\"mesh\":4,\"translation\":[-78,-40,-44]},{\"mesh\":4,\"translation\":[-78,-42,-32]},{\"mesh\":4,\"translation\":[-78,-42,-34]},{\"mesh\":4,\"translation\":[-78,-42,-36]},{\"mesh\":4,\"translation\":[-78,-42,-38]},{\"mesh\":4,\"translation\":[-78,-42,-40]},{\"mesh\":4,\"translation\":[-78,-42,-42]},{\"mesh\":4,\"translation\":[-78,-44,-32]},{\"mesh\":4,\"translation\":[-78,-44,-34]},{\"mesh\":4,\"translation\":[-78,-44,-36]},{\"mesh\":4,\"translation\":[-78,-44,-38]},{\"mesh\":4,\"translation\":[-78,-46,-34]},{\"mesh\":4,\"translation\":[-78,-46,-36]},{\"mesh\":5,\"translation\":[-79,-34,-32]},{\"mesh\":5,\"translation\":[-79,-34,-34]},{\"mesh\":5,\"translation\":[-79,-36,-32]},{\"mesh\":5,\"translation\":[-79,-36,-34]},{\"mesh\":5,\"translation\":[-79,-36,-36]},{\"mesh\":5,\"translation\":[-79,-36,-38]},{\"mesh\":5,\"translation\":[-79,-38,-34]},{\"mesh\":5,\"translation\":[-79,-38,-36]},{\"mesh\":5,\"translation\":[-79,-38,-38]},{\"mesh\":5,\"translation\":[-79,-38,-40]},{\"mesh\":5,\"translation\":[-79,-40,-34]},{\"mesh\":5,\"translation\":[-79,-40,-36]},{\"mesh\":5,\"translation\":[-79,-40,-38]},{\"mesh\":5,\"translation\":[-79,-40,-40]},{\"mesh\":5,\"translation\":[-79,-40,-42]},{\"mesh\":5,\"translation\":[-79,-40,-44]},{\"mesh\":5,\"translation\":[-79,-42,-32]},{\"mesh\":5,\"translation\":[-79,-42,-34]},{\"mesh\":5,\"translation\":[-79,-42,-36]},{\"mesh\":5,\"translation\":[-79,-42,-38]},{\"mesh\":5,\"translation\":[-79,-42,-40]},{\"mesh\":5,\"translation\":[-79,-42,-42]},{\"mesh\":5,\"translation\":[-79,-44,-32]},{\"mesh\":5,\"translation\":[-79,-44,-34]},{\"mesh\":5,\"translation\":[-79,-44,-36]},{\"mesh\":5,\"translation\":[-79,-44,-38]},{\"mesh\":5,\"translation\":[-79,-46,-34]},{\"mesh\":5,\"translation\":[-79,-46,-36]},{\"mesh\":3,\"translation\":[-79,-32,-32]},{\"mesh\":3,\"translation\":[-79,-34,-36]},{\"mesh\":3,\"translation\":[-79,-38,-32]},{\"mesh\":3,\"translation\":[-79,-38,-42]},{\"mesh\":3,\"translation\":[-79,-40,-32]},{\"mesh\":3,\"translation\":[-79,-44,-40]},{\"mesh\":3,\"translation\":[-79,-46,-32]},{\"mesh\":3,\"translation\":[-79,-48,-32]},{\"mesh\":3,\"translation\":[-79,-48,-34]},{\"mesh\":2,\"translation\":[-80,-32,-32]},{\"mesh\":2,\"translation\":[-80,-34,-32]},{\"mesh\":2,\"translation\":[-80,-34,-34]},{\"mesh\":2,\"translation\":[-80,-34,-36]},{\"mesh\":2,\"translation\":[-80,-36,-32]},{\"mesh\":2,\"translation\":[-80,-36,-34]},{\"mesh\":2,\"translation\":[-80,-36,-36]},{\"mesh\":2,\"translation\":[-80,-36,-38]},{\"mesh\":2,\"translation\":[-80,-38,-32]},{\"mesh\":2,\"translation\":[-80,-38,-34]},{\"mesh\":2,\"translation\":[-80,-38,-36]},{\"mesh\":2,\"translation\":[-80,-38,-38]},{\"mesh\":2,\"translation\":[-80,-38,-40]},{\"mesh\":2,\"translation\":[-80,-38,-42]},{\"mesh\":2,\"translation\":[-80,-40,-32]},{\"mesh\":2,\"translation\":[-80,-40,-34]},{\"mesh\":2,\"translation\":[-80,-40,-36]},{\"mesh\":2,\"translation\":[-80,-40,-38]},{\"mesh\":2,\"translation\":[-80,-40,-40]},{\"mesh\":2,\"translation\":[-80,-40,-42]},{\"mesh\":2,\"translation\":[-80,-40,-44]},{\"mesh\":2,\"translation\":[-80,-42,-32]},{\"mesh\":2,\"translation\":[-80,-42,-34]},{\"mesh\":2,\"translation\":[-80,-42,-36]},{\"mesh\":2,\"translation\":[-80,-42,-38]},{\"mesh\":2,\"translation\":[-80,-42,-40]},{\"mesh\":2,\"translation\":[-80,-42,-42]},{\"mesh\":2,\"translation\":[-80,-44,-32]},{\"mesh\":2,\"translation\":[-80,-44,-34]},{\"mesh\":2,\"translation\":[-80,-44,-36]},{\"mesh\":2,\"translation\":[-80,-44,-38]},{\"mesh\":2,\"translation\":[-80,-44,-40]},{\"mesh\":2,\"translation\":[-80,-46,-32]},{\"mesh\":2,\"translation\":[-80,-46,-34]},{\"mesh\":2,\"translation\":[-80,-46,-36]},{\"mesh\":2,\"translation\":[-80,-48,-32]},{\"mesh\":2,\"translation\":[-80,-48,-34]},{\"mesh\":3,\"translation\":[-81,-32,-32]},{\"mesh\":3,\"translation\":[-81,-34,-32]},{\"mesh\":3,\"translation\":[-81,-34,-34]},{\"mesh\":3,\"translation\":[-81,-34,-36]},{\"mesh\":3,\"translation\":[-81,-36,-32]},{\"mesh\":3,\"translation\":[-81,-36,-34]},{\"mesh\":3,\"translation\":[-81,-36,-36]},{\"mesh\":3,\"translation\":[-81,-36,-38]},{\"mesh\":3,\"translation\":[-81,-38,-32]},{\"mesh\":3,\"translation\":[-81,-38,-34]},{\"mesh\":3,\"translation\":[-81,-38,-36]},{\"mesh\":3,\"translation\":[-81,-38,-38]},{\"mesh\":3,\"translation\":[-81,-38,-40]},{\"mesh\":3,\"translation\":[-81,-38,-42]},{\"mesh\":3,\"translation\":[-81,-40,-32]},{\"mesh\":3,\"translation\":[-81,-40,-34]},{\"mesh\":3,\"translation\":[-81,-40,-36]},{\"mesh\":3,\"translation\":[-81,-40,-38]},{\"mesh\":3,\"translation\":[-81,-40,-40]},{\"mesh\":3,\"translation\":[-81,-40,-42]},{\"mesh\":3,\"translation\":[-81,-40,-44]},{\"mesh\":3,\"translation\":[-81,-42,-32]},{\"mesh\":3,\"translation\":[-81,-42,-34]},{\"mesh\":3,\"translation\":[-81,-42,-36]},{\"mesh\":3,\"translation\":[-81,-42,-38]},{\"mesh\":3,\"translation\":[-81,-42,-40]},{\"mesh\":3,\"translation\":[-81,-42,-42]},{\"mesh\":3,\"translation\":[-81,-44,-32]},{\"mesh\":3,\"translation\":[-81,-44,-34]},{\"mesh\":3,\"translation\":[-81,-44,-36]},{\"mesh\":3,\"translation\":[-81,-44,-38]},{\"mesh\":3,\"translation\":[-81,-44,-40]},{\"mesh\":3,\"translation\":[-81,-46,-32]},{\"mesh\":3,\"translation\":[-81,-46,-34]},{\"mesh\":3,\"translation\":[-81,-46,-36]},{\"mesh\":3,\"translation\":[-81,-48,-32]},{\"mesh\":3,\"translation\":[-81,-48,-34]},{\"mesh\":4,\"translation\":[-82,-34,-34]},{\"mesh\":4,\"translation\":[-82,-34,-36]},{\"mesh\":4,\"translation\":[-82,-36,-34]},{\"mesh\":4,\"translation\":[-82,-36,-36]},{\"mesh\":4,\"translation\":[-82,-38,-32]},{\"mesh\":4,\"translation\":[-82,-38,-34]},{\"mesh\":4,\"translation\":[-82,-38,-36]},{\"mesh\":4,\"translation\":[-82,-38,-38]},{\"mesh\":4,\"translation\":[-82,-38,-40]},{\"mesh\":4,\"translation\":[-82,-38,-42]},{\"mesh\":4,\"translation\":[-82,-40,-32]},{\"mesh\":4,\"translation\":[-82,-40,-34]},{\"mesh\":4,\"translation\":[-82,-40,-36]},{\"mesh\":4,\"translation\":[-82,-40,-38]},{\"mesh\":4,\"translation\":[-82,-40,-40]},{\"mesh\":4,\"translation\":[-82,-40,-42]},{\"mesh\":4,\"translation\":[-82,-42,-34]},{\"mesh\":4,\"translation\":[-82,-42,-36]},{\"mesh\":4,\"translation\":[-82,-42,-38]},{\"mesh\":4,\"translation\":[-82,-42,-40]},{\"mesh\":4,\"translation\":[-82,-44,-34]},{\"mesh\":4,\"translation\":[-82,-44,-36]},{\"mesh\":4,\"translation\":[-82,-44,-38]},{\"mesh\":4,\"translation\":[-82,-44,-40]},{\"mesh\":4,\"translation\":[-82,-46,-32]},{\"mesh\":4,\"translation\":[-82,-46,-34]},{\"mesh\":4,\"translation\":[-82,-48,-32]},{\"mesh\":4,\"translation\":[-82,-48,-34]},{\"mesh\":5,\"translation\":[-83,-34,-34]},{\"mesh\":5,\"translation\":[-83,-34,-36]},{\"mesh\":5,\"translation\":[-83,-36,-34]},{\"mesh\":5,\"translation\":[-83,-36,-36]},{\"mesh\":5,\"translation\":[-83,-38,-32]},{\"mesh\":5,\"translation\":[-83,-38,-34]},{\"mesh\":5,\"translation\":[-83,-38,-36]},{\"mesh\":5,\"translation\":[-83,-38,-38]},{\"mesh\":5,\"translation\":[-83,-38,-40]},{\"mesh\":5,\"translation\":[-83,-38,-42]},{\"mesh\":5,\"translation\":[-83,-40,-32]},{\"mesh\":5,\"translation\":[-83,-40,-34]},{\"mesh\":5,\"translation\":[-83,-40,-36]},{\"mesh\":5,\"translation\":[-83,-40,-38]},{\"mesh\":5,\"translation\":[-83,-40,-40]},{\"mesh\":5,\"translation\":[-83,-40,-42]},{\"mesh\":5,\"translation\":[-83,-42,-34]},{\"mesh\":5,\"translation\":[-83,-42,-36]},{\"mesh\":5,\"translation\":[-83,-42,-38]},{\"mesh\":5,\"translation\":[-83,-42,-40]},{\"mesh\":5,\"translation\":[-83,-44,-34]},{\"mesh\":5,\"translation\":[-83,-44,-36]},{\"mesh\":5,\"translation\":[-83,-44,-38]},{\"mesh\":5,\"translation\":[-83,-44,-40]},{\"mesh\":5,\"translation\":[-83,-46,-32]},{\"mesh\":5,\"translation\":[-83,-46,-34]},{\"mesh\":5,\"translation\":[-83,-48,-32]},{\"mesh\":5,\"translation\":[-83,-48,-34]},{\"mesh\":3,\"translation\":[-83,-32,-32]},{\"mesh\":3,\"translation\":[-83,-34,-32]},{\"mesh\":3,\"translation\":[-83,-36,-32]},{\"mesh\":3,\"translation\":[-83,-36,-38]},{\"mesh\":3,\"translation\":[-83,-40,-44]},{\"mesh\":3,\"translation\":[-83,-42,-32]},{\"mesh\":3,\"translation\":[-83,-42,-42]},{\"mesh\":3,\"translation\":[-83,-44,-32]},{\"mesh\":3,\"translation\":[-83,-46,-36]},{\"mesh\":4,\"translation\":[-84,-32,-32]},{\"mesh\":4,\"translation\":[-84,-34,-32]},{\"mesh\":4,\"translation\":[-84,-36,-32]},{\"mesh\":4,\"translation\":[-84,-38,-32]},{\"mesh\":4,\"translation\":[-84,-36,-34]},{\"mesh\":4,\"translation\":[-84,-38,-34]},{\"mesh\":4,\"translation\":[-84,-36,-36]},{\"mesh\":4,\"translation\":[-84,-38,-36]},{\"mesh\":4,\"translation\":[-84,-36,-38]},{\"mesh\":4,\"translation\":[-84,-38,-38]},{\"mesh\":4,\"translation\":[-84,-40,-32]},{\"mesh\":4,\"translation\":[-84,-42,-32]},{\"mesh\":4,\"translation\":[-84,-40,-34]},{\"mesh\":4,\"translation\":[-84,-42,-34]},{\"mesh\":4,\"translation\":[-84,-40,-36]},{\"mesh\":4,\"translation\":[-84,-42,-36]},{\"mesh\":4,\"translation\":[-84,-40,-38]},{\"mesh\":4,\"translation\":[-84,-42,-38]},{\"mesh\":4,\"translation\":[-84,-40,-40]},{\"mesh\":4,\"translation\":[-84,-42,-40]},{\"mesh\":4,\"translation\":[-84,-40,-42]},{\"mesh\":4,\"translation\":[-84,-42,-42]},{\"mesh\":4,\"translation\":[-84,-44,-32]},{\"mesh\":4,\"translation\":[-84,-46,-32]},{\"mesh\":4,\"translation\":[-84,-44,-34]},{\"mesh\":4,\"translation\":[-84,-46,-34]},{\"mesh\":4,\"translation\":[-84,-44,-36]},{\"mesh\":4,\"translation\":[-84,-46,-36]},{\"mesh\":5,\"translation\":[-85,-32,-32]},{\"mesh\":5,\"translation\":[-85,-34,-32]},{\"mesh\":5,\"translation\":[-85,-36,-32]},{\"mesh\":5,\"translation\":[-85,-38,-32]},{\"mesh\":5,\"translation\":[-85,-36,-34]},{\"mesh\":5,\"translation\":[-85,-38,-34]},{\"mesh\":5,\"translation\":[-85,-36,-36]},{\"mesh\":5,\"translation\":[-85,-38,-36]},{\"mesh\":5,\"translation\":[-85,-36,-38]},{\"mesh\":5,\"translation\":[-85,-38,-38]},{\"mesh\":5,\"translation\":[-85,-40,-32]},{\"mesh\":5,\"translation\":[-85,-42,-32]},{\"mesh\":5,\"translation\":[-85,-40,-34]},{\"mesh\":5,\"translation\":[-85,-42,-34]},{\"mesh\":5,\"translation\":[-85,-40,-36]},{\"mesh\":5,\"translation\":[-85,-42,-36]},{\"mesh\":5,\"translation\":[-85,-40,-38]},{\"mesh\":5,\"translation\":[-85,-42,-38]},{\"mesh\":5,\"translation\":[-85,-40,-40]},{\"mesh\":5,\"translation\":[-85,-42,-40]},{\"mesh\":5,\"translation\":[-85,-40,-42]},{\"mesh\":5,\"translation\":[-85,-42,-42]},{\"mesh\":5,\"translation\":[-85,-44,-32]},{\"mesh\":5,\"translation\":[-85,-46,-32]},{\"mesh\":5,\"translation\":[-85,-44,-34]},{\"mesh\":5,\"translation\":[-85,-46,-34]},{\"mesh\":5,\"translation\":[-85,-44,-36]},{\"mesh\":5,\"translation\":[-85,-46,-36]},{\"mesh\":3,\"translation\":[-85,-34,-34]},{\"mesh\":3,\"translation\":[-85,-34,-36]},{\"mesh\":3,\"translation\":[-85,-38,-40]},{\"mesh\":3,\"translation\":[-85,-38,-42]},{\"mesh\":3,\"translation\":[-85,-40,-44]},{\"mesh\":3,\"translation\":[-85,-44,-38]},{\"mesh\":3,\"translation\":[-85,-44,-40]},{\"mesh\":3,\"translation\":[-85,-48,-32]},{\"mesh\":3,\"translation\":[-85,-48,-34]},{\"mesh\":4,\"translation\":[-86,-34,-32]},{\"mesh\":4,\"translation\":[-86,-34,-34]},{\"mesh\":4,\"translation\":[-86,-36,-32]},{\"mesh\":4,\"translation\":[-86,-36,-34]},{\"mesh\":4,\"translation\":[-86,-36,-36]},{\"mesh\":4,\"translation\":[-86,-36,-38]},{\"mesh\":4,\"translation\":[-86,-38,-34]},{\"mesh\":4,\"translation\":[-86,-38,-36]},{\"mesh\":4,\"translation\":[-86,-38,-38]},{\"mesh\":4,\"translation\":[-86,-38,-40]},{\"mesh\":4,\"translation\":[-86,-40,-34]},{\"mesh\":4,\"translation\":[-86,-40,-36]},{\"mesh\":4,\"translation\":[-86,-40,-38]},{\"mesh\":4,\"translation\":[-86,-40,-40]},{\"mesh\":4,\"translation\":[-86,-40,-42]},{\"mesh\":4,\"translation\":[-86,-40,-44]},{\"mesh\":4,\"translation\":[-86,-42,-32]},{\"mesh\":4,\"translation\":[-86,-42,-34]},{\"mesh\":4,\"translation\":[-86,-42,-36]},{\"mesh\":4,\"translation\":[-86,-42,-38]},{\"mesh\":4,\"translation\":[-86,-42,-40]},{\"mesh\":4,\"translation\":[-86,-42,-42]},{\"mesh\":4,\"translation\":[-86,-44,-32]},{\"mesh\":4,\"translation\":[-86,-44,-34]},{\"mesh\":4,\"translation\":[-86,-44,-36]},{\"mesh\":4,\"translation\":[-86,-44,-38]},{\"mesh\":4,\"translation\":[-86,-46,-34]},{\"mesh\":4,\"translation\":[-86,-46,-36]},{\"mesh\":5,\"translation\":[-87,-34,-32]},{\"mesh\":5,\"translation\":[-87,-34,-34]},{\"mesh\":5,\"translation\":[-87,-36,-32]},{\"mesh\":5,\"translation\":[-87,-36,-34]},{\"mesh\":5,\"translation\":[-87,-36,-36]},{\"mesh\":5,\"translation\":[-87,-36,-38]},{\"mesh\":5,\"translation\":[-87,-38,-34]},{\"mesh\":5,\"translation\":[-87,-38,-36]},{\"mesh\":5,\"translation\":[-87,-38,-38]},{\"mesh\":5,\"translation\":[-87,-38,-40]},{\"mesh\":5,\"translation\":[-87,-40,-34]},{\"mesh\":5,\"translation\":[-87,-40,-36]},{\"mesh\":5,\"translation\":[-87,-40,-38]},{\"mesh\":5,\"translation\":[-87,-40,-40]},{\"mesh\":5,\"translation\":[-87,-40,-42]},{\"mesh\":5,\"translation\":[-87,-40,-44]},{\"mesh\":5,\"translation\":[-87,-42,-32]},{\"mesh\":5,\"translation\":[-87,-42,-34]},{\"mesh\":5,\"translation\":[-87,-42,-36]},{\"mesh\":5,\"translation\":[-87,-42,-38]},{\"mesh\":5,\"translation\":[-87,-42,-40]},{\"mesh\":5,\"translation\":[-87,-42,-42]},{\"mesh\":5,\"translation\":[-87,-44,-32]},{\"mesh\":5,\"translation\":[-87,-44,-34]},{\"mesh\":5,\"translation\":[-87,-44,-36]},{\"mesh\":5,\"translation\":[-87,-44,-38]},{\"mesh\":5,\"translation\":[-87,-46,-34]},{\"mesh\":5,\"translation\":[-87,-46,-36]},{\"mesh\":3,\"translation\":[-87,-32,-32]},{\"mesh\":3,\"translation\":[-87,-34,-36]},{\"mesh\":3,\"translation\":[-87,-38,-32]},{\"mesh\":3,\"translation\":[-87,-38,-42]},{\"mesh\":3,\"translation\":[-87,-40,-32]},{\"mesh\":3,\"translation\":[-87,-44,-40]},{\"mesh\":3,\"translation\":[-87,-46,-32]},{\"mesh\":3,\"translation\":[-87,-48,-32]},{\"mesh\":3,\"translation\":[-87,-48,-34]},{\"mesh\":2,\"translation\":[-88,-34,-32]},{\"mesh\":2,\"translation\":[-88,-34,-36]},{\"mesh\":2,\"translation\":[-88,-38,-34]},{\"mesh\":2,\"translation\":[-88,-38,-38]},{\"mesh\":2,\"translation\":[-88,-38,-42]},{\"mesh\":2,\"translation\":[-88,-42,-32]},{\"mesh\":2,\"translation\":[-88,-42,-36]},{\"mesh\":2,\"translation\":[-88,-42,-40]},{\"mesh\":2,\"translation\":[-88,-46,-34]},{\"mesh\":3,\"translation\":[-89,-34,-32]},{\"mesh\":3,\"translation\":[-89,-34,-36]},{\"mesh\":3,\"translation\":[-89,-38,-34]},{\"mesh\":3,\"translation\":[-89,-38,-38]},{\"mesh\":3,\"translation\":[-89,-38,-42]},{\"mesh\":3,\"translation\":[-89,-42,-32]},{\"mesh\":3,\"translation\":[-89,-42,-36]},{\"mesh\":3,\"translation\":[-89,-42,-40]},{\"mesh\":3,\"translation\":[-89,-46,-34]},{\"mesh\":3,\"translation\":[-89,-32,-32]},{\"mesh\":3,\"translation\":[-89,-34,-34]},{\"mesh\":3,\"translation\":[-89,-36,-32]},{\"mesh\":3,\"translation\":[-89,-36,-34]},{\"mesh\":3,\"translation\":[-89,-36,-36]},{\"mesh\":3,\"translation\":[-89,-36,-38]},{\"mesh\":3,\"translation\":[-89,-38,-32]},{\"mesh\":3,\"translation\":[-89,-38,-36]},{\"mesh\":3,\"translation\":[-89,-38,-40]},{\"mesh\":3,\"translation\":[-89,-40,-32]},{\"mesh\":3,\"translation\":[-89,-40,-34]},{\"mesh\":3,\"translation\":[-89,-40,-36]},{\"mesh\":3,\"translation\":[-89,-40,-38]},{\"mesh\":3,\"translation\":[-89,-40,-40]},{\"mesh\":3,\"translation\":[-89,-40,-42]},{\"mesh\":3,\"translation\":[-89,-40,-44]},{\"mesh\":3,\"translation\":[-89,-42,-34]},{\"mesh\":3,\"translation\":[-89,-42,-38]},{\"mesh\":3,\"translation\":[-89,-42,-42]},{\"mesh\":3,\"translation\":[-89,-44,-32]},{\"mesh\":3,\"translation\":[-89,-44,-34]},{\"mesh\":3,\"translation\":[-89,-44,-36]},{\"mesh\":3,\"translation\":[-89,-44,-38]},{\"mesh\":3,\"translation\":[-89,-44,-40]},{\"mesh\":3,\"translation\":[-89,-46,-32]},{\"mesh\":3,\"translation\":[-89,-46,-36]},{\"mesh\":3,\"translation\":[-89,-48,-32]},{\"mesh\":3,\"translation\":[-89,-48,-34]},{\"mesh\":4,\"translation\":[-90,-34,-32]},{\"mesh\":4,\"translation\":[-90,-36,-32]},{\"mesh\":4,\"translation\":[-90,-34,-36]},{\"mesh\":4,\"translation\":[-90,-36,-36]},{\"mesh\":4,\"translation\":[-90,-38,-34]},{\"mesh\":4,\"translation\":[-90,-40,-34]},{\"mesh\":4,\"translation\":[-90,-38,-38]},{\"mesh\":4,\"translation\":[-90,-40,-38]},{\"mesh\":4,\"translation\":[-90,-38,-42]},{\"mesh\":4,\"translation\":[-90,-40,-42]},{\"mesh\":4,\"translation\":[-90,-42,-32]},{\"mesh\":4,\"translation\":[-90,-44,-32]},{\"mesh\":4,\"translation\":[-90,-42,-36]},{\"mesh\":4,\"translation\":[-90,-44,-36]},{\"mesh\":4,\"translation\":[-90,-42,-40]},{\"mesh\":4,\"translation\":[-90,-44,-40]},{\"mesh\":4,\"translation\":[-90,-46,-34]},{\"mesh\":4,\"translation\":[-90,-48,-34]},{\"mesh\":5,\"translation\":[-91,-34,-32]},{\"mesh\":5,\"translation\":[-91,-36,-32]},{\"mesh\":5,\"translation\":[-91,-34,-36]},{\"mesh\":5,\"translation\":[-91,-36,-36]},{\"mesh\":5,\"translation\":[-91,-38,-34]},{\"mesh\":5,\"translation\":[-91,-40,-34]},{\"mesh\":5,\"translation\":[-91,-38,-38]},{\"mesh\":5,\"translation\":[-91,-40,-38]},{\"mesh\":5,\"translation\":[-91,-38,-42]},{\"mesh\":5,\"translation\":[-91,-40,-42]},{\"mesh\":5,\"translation\":[-91,-42,-32]},{\"mesh\":5,\"translation\":[-91,-44,-32]},{\"mesh\":5,\"translation\":[-91,-42,-36]},{\"mesh\":5,\"translation\":[-91,-44,-36]},{\"mesh\":5,\"translation\":[-91,-42,-40]},{\"mesh\":5,\"translation\":[-91,-44,-40]},{\"mesh\":5,\"translation\":[-91,-46,-34]},{\"mesh\":5,\"translation\":[-91,-48,-34]},{\"mesh\":3,\"translation\":[-91,-32,-32]},{\"mesh\":3,\"translation\":[-91,-34,-34]},{\"mesh\":3,\"translation\":[-91,-36,-34]},{\"mesh\":3,\"translation\":[-91,-36,-38]},{\"mesh\":3,\"translation\":[-91,-38,-32]},{\"mesh\":3,\"translation\":[-91,-38,-36]},{\"mesh\":3,\"translation\":[-91,-38,-40]},{\"mesh\":3,\"translation\":[-91,-40,-32]},{\"mesh\":3,\"translation\":[-91,-40,-36]},{\"mesh\":3,\"translation\":[-91,-40,-40]},{\"mesh\":3,\"translation\":[-91,-40,-44]},{\"mesh\":3,\"translation\":[-91,-42,-34]},{\"mesh\":3,\"translation\":[-91,-42,-38]},{\"mesh\":3,\"translation\":[-91,-42,-42]},{\"mesh\":3,\"translation\":[-91,-44,-34]},{\"mesh\":3,\"translation\":[-91,-44,-38]},{\"mesh\":3,\"translation\":[-91,-46,-32]},{\"mesh\":3,\"translation\":[-91,-46,-36]},{\"mesh\":3,\"translation\":[-91,-48,-32]},{\"mesh\":2,\"translation\":[-92,-34,-32]},{\"mesh\":2,\"translation\":[-92,-34,-36]},{\"mesh\":2,\"translation\":[-92,-36,-32]},{\"mesh\":2,\"translation\":[-92,-36,-36]},{\"mesh\":2,\"translation\":[-92,-38,-34]},{\"mesh\":2,\"translation\":[-92,-38,-38]},{\"mesh\":2,\"translation\":[-92,-38,-42]},{\"mesh\":2,\"translation\":[-92,-40,-34]},{\"mesh\":2,\"translation\":[-92,-40,-38]},{\"mesh\":2,\"translation\":[-92,-40,-42]},{\"mesh\":2,\"translation\":[-92,-42,-32]},{\"mesh\":2,\"translation\":[-92,-42,-36]},{\"mesh\":2,\"translation\":[-92,-42,-40]},{\"mesh\":2,\"translation\":[-92,-44,-32]},{\"mesh\":2,\"translation\":[-92,-44,-36]},{\"mesh\":2,\"translation\":[-92,-44,-40]},{\"mesh\":2,\"translation\":[-92,-46,-34]},{\"mesh\":2,\"translation\":[-92,-48,-34]},{\"mesh\":3,\"translation\":[-93,-34,-32]},{\"mesh\":3,\"translation\":[-93,-34,-36]},{\"mesh\":3,\"translation\":[-93,-36,-32]},{\"mesh\":3,\"translation\":[-93,-36,-36]},{\"mesh\":3,\"translation\":[-93,-38,-34]},{\"mesh\":3,\"translation\":[-93,-38,-38]},{\"mesh\":3,\"translation\":[-93,-38,-42]},{\"mesh\":3,\"translation\":[-93,-40,-34]},{\"mesh\":3,\"translation\":[-93,-40,-38]},{\"mesh\":3,\"translation\":[-93,-40,-42]},{\"mesh\":3,\"translation\":[-93,-42,-32]},{\"mesh\":3,\"translation\":[-93,-42,-36]},{\"mesh\":3,\"translation\":[-93,-42,-40]},{\"mesh\":3,\"translation\":[-93,-44,-32]},{\"mesh\":3,\"translation\":[-93,-44,-36]},{\"mesh\":3,\"translation\":[-93,-44,-40]},{\"mesh\":3,\"translation\":[-93,-46,-34]},{\"mesh\":3,\"translation\":[-93,-48,-34]},{\"mesh\":3,\"translation\":[-93,-32,-32]},{\"mesh\":3,\"translation\":[-93,-34,-34]},{\"mesh\":3,\"translation\":[-93,-36,-34]},{\"mesh\":3,\"translation\":[-93,-36,-38]},{\"mesh\":3,\"translation\":[-93,-38,-32]},{\"mesh\":3,\"translation\":[-93,-38,-36]},{\"mesh\":3,\"translation\":[-93,-38,-40]},{\"mesh\":3,\"translation\":[-93,-40,-32]},{\"mesh\":3,\"translation\":[-93,-40,-36]},{\"mesh\":3,\"translation\":[-93,-40,-40]},{\"mesh\":3,\"translation\":[-93,-40,-44]},{\"mesh\":3,\"translation\":[-93,-42,-34]},{\"mesh\":3,\"translation\":[-93,-42,-38]},{\"mesh\":3,\"translation\":[-93,-42,-42]},{\"mesh\":3,\"translation\":[-93,-44,-34]},{\"mesh\":3,\"translation\":[-93,-44,-38]},{\"mesh\":3,\"translation\":[-93,-46,-32]},{\"mesh\":3,\"translation\":[-93,-46,-36]},{\"mesh\":3,\"translation\":[-93,-48,-32]},{\"mesh\":6,\"translation\":[-94,-48,-34]},{\"mesh\":6,\"translation\":[-94,-44,-40]},{\"mesh\":6,\"translation\":[-94,-44,-36]},{\"mesh\":6,\"translation\":[-94,-44,-32]},{\"mesh\":6,\"translation\":[-94,-40,-42]},{\"mesh\":6,\"translation\":[-94,-40,-38]},{\"mesh\":6,\"translation\":[-94,-40,-34]},{\"mesh\":6,\"translation\":[-94,-36,-36]},{\"mesh\":6,\"translation\":[-94,-36,-32]},{\"mesh\":6,\"translation\":[-94,-48,-32]},{\"mesh\":6,\"translation\":[-94,-46,-36]},{\"mesh\":6,\"translation\":[-94,-46,-32]},{\"mesh\":6,\"translation\":[-94,-44,-38]},{\"mesh\":6,\"translation\":[-94,-44,-34]},{\"mesh\":6,\"translation\":[-94,-42,-42]},{\"mesh\":6,\"translation\":[-94,-42,-38]},{\"mesh\":6,\"translation\":[-94,-42,-34]},{\"mesh\":6,\"translation\":[-94,-40,-44]},{\"mesh\":6,\"translation\":[-94,-40,-40]},{\"mesh\":6,\"translation\":[-94,-40,-36]},{\"mesh\":6,\"translation\":[-94,-40,-32]},{\"mesh\":6,\"translation\":[-94,-38,-40]},{\"mesh\":6,\"translation\":[-94,-38,-36]},{\"mesh\":6,\"translation\":[-94,-38,-32]},{\"mesh\":6,\"translation\":[-94,-36,-38]},{\"mesh\":6,\"translation\":[-94,-36,-34]},{\"mesh\":6,\"translation\":[-94,-34,-34]},{\"mesh\":6,\"translation\":[-94,-32,-32]},{\"mesh\":6,\"translation\":[-94,-46,-34]},{\"mesh\":6,\"translation\":[-94,-42,-40]},{\"mesh\":6,\"translation\":[-94,-42,-36]},{\"mesh\":6,\"translation\":[-94,-42,-32]},{\"mesh\":6,\"translation\":[-94,-38,-42]},{\"mesh\":6,\"translation\":[-94,-38,-38]},{\"mesh\":6,\"translation\":[-94,-38,-34]},{\"mesh\":6,\"translation\":[-94,-34,-36]},{\"mesh\":6,\"translation\":[-94,-34,-32]},{\"mesh\":3,\"translation\":[-95,-48,-34]},{\"mesh\":3,\"translation\":[-95,-44,-40]},{\"mesh\":3,\"translation\":[-95,-44,-36]},{\"mesh\":3,\"translation\":[-95,-44,-32]},{\"mesh\":3,\"translation\":[-95,-40,-42]},{\"mesh\":3,\"translation\":[-95,-40,-38]},{\"mesh\":3,\"translation\":[-95,-40,-34]},{\"mesh\":3,\"translation\":[-95,-36,-36]},{\"mesh\":3,\"translation\":[-95,-36,-32]},{\"mesh\":3,\"translation\":[-95,-48,-32]},{\"mesh\":3,\"translation\":[-95,-46,-36]},{\"mesh\":3,\"translation\":[-95,-46,-32]},{\"mesh\":3,\"translation\":[-95,-44,-38]},{\"mesh\":3,\"translation\":[-95,-44,-34]},{\"mesh\":3,\"translation\":[-95,-42,-42]},{\"mesh\":3,\"translation\":[-95,-42,-38]},{\"mesh\":3,\"translation\":[-95,-42,-34]},{\"mesh\":3,\"translation\":[-95,-40,-44]},{\"mesh\":3,\"translation\":[-95,-40,-40]},{\"mesh\":3,\"translation\":[-95,-40,-36]},{\"mesh\":3,\"translation\":[-95,-40,-32]},{\"mesh\":3,\"translation\":[-95,-38,-40]},{\"mesh\":3,\"translation\":[-95,-38,-36]},{\"mesh\":3,\"translation\":[-95,-38,-32]},{\"mesh\":3,\"translation\":[-95,-36,-38]},{\"mesh\":3,\"translation\":[-95,-36,-34]},{\"mesh\":3,\"translation\":[-95,-34,-34]},{\"mesh\":3,\"translation\":[-95,-32,-32]},{\"mesh\":3,\"translation\":[-95,-46,-34]},{\"mesh\":3,\"translation\":[-95,-42,-40]},{\"mesh\":3,\"translation\":[-95,-42,-36]},{\"mesh\":3,\"translation\":[-95,-42,-32]},{\"mesh\":3,\"translation\":[-95,-38,-42]},{\"mesh\":3,\"translation\":[-95,-38,-38]},{\"mesh\":3,\"translation\":[-95,-38,-34]},{\"mesh\":3,\"translation\":[-95,-34,-36]},{\"mesh\":3,\"translation\":[-95,-34,-32]},{\"mesh\":7,\"translation\":[0,0,0]},{\"mesh\":8,\"translation\":[0,0,0]},{\"mesh\":9,\"translation\":[0,0,0]}],\"samplers\":[{\"magFilter\":9728,\"minFilter\":9728,\"wrapS\":33071,\"wrapT\":33071}],\"scene\":0,\"scenes\":[{\"nodes\":[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,296,297,298,299,300,301,302,303,304,305,306,307,308,309,310,311,312,313,314,315,316,317,318,319,320,321,322,323,324,325,326,327,328,329,330,331,332,333,334,335,336,337,338,339,340,341,342,343,344,345,346,347,348,349,350,351,352,353,354,355,356,357,358,359,360,361,362,363,364,365,366,367,368,369,370,371,372,373,374,375,376,377,378,379,380,381,382,383,384,385,386,387,388,389,390,391,392,393,394,395,396,397,398,399,400,401,402,403,404,405,406,407,408,409,410,411,412,413,414,415,416,417,418,419,420,421,422,423,424,425,426,427,428,429,430,431,432,433,434,435,436,437,438,439,440,441,442,443,444,445,446,447,448,449,450,451,452,453,454,455,456,457,458,459,460,461,462,463,464,465,466,467,468,469,470,471,472,473,474,475,476,477,478,479,480,481,482,483,484,485,486,487,488,489,490,491,492,493,494,495,496,497,498,499,500,501,502,503,504,505,506,507,508,509,510,511,512,513,514,515,516,517,518,519,520,521,522,523,524,525,526,527,528,529,530,531,532,533,534,535,536,537,538,539,540,541,542,543,544,545,546,547,548,549,550,551,552,553,554,555,556,557,558,559,560,561,562,563,564,565,566,567,568,569,570,571,572,573,574,575,576,577,578,579,580,581,582,583,584,585,586,587,588,589,590,591,592,593,594,595,596,597,598,599,600,601,602,603,604,605,606,607,608,609,610,611,612,613,614,615,616,617,618,619,620,621,622,623,624,625,626,627,628,629,630,631,632,633,634,635,636,637,638,639,640,641,642,643,644,645,646,647,648,649,650,651,652,653,654,655,656,657,658,659,660,661,662,663,664,665,666,667,668,669,670,671,672,673,674,675,676,677,678,679,680,681,682,683,684,685,686,687,688,689,690,691,692,693,694,695,696,697,698,699,700,701,702,703,704,705,706,707,708,709,710,711,712,713,714,715,716,717,718,719,720,721,722,723,724,725,726,727,728,729,730,731,732,733,734,735,736,737,738,739,740,741,742,743,744,745,746,747,748,749,750,751,752,753,754,755,756,757,758,759,760,761,762,763,764,765,766,767,768,769,770,771,772,773,774,775,776,777,778,779,780,781,782,783,784,785,786,787,788,789,790,791,792,793,794,795,796,797,798,799,800,801,802,803,804,805,806,807,808,809,810,811,812,813,814,815,816,817,818,819,820,821,822,823,824,825,826,827,828,829,830,831,832,833,834,835,836,837,838,839,840,841,842,843,844,845,846,847,848,849,850,851,852,853,854,855,856,857,858,859,860,861,862,863,864,865,866,867,868,869,870,871,872,873,874,875,876,877,878,879,880,881,882,883,884,885,886,887,888,889,890,891,892,893,894,895,896,897,898,899,900,901,902,903,904,905,906,907,908,909,910,911,912,913,914,915,916,917,918,919,920,921,922,923,924,925,926,927,928,929,930,931,932,933,934,935,936,937,938,939,940,941,942,943,944,945,946,947,948,949,950,951,952,953,954,955,956,957,958,959,960,961,962,963,964,965,966,967,968,969,970,971,972,973,974,975,976,977,978,979,980,981,982,983,984,985,986,987,988,989,990,991,992,993,994,995,996,997,998,999,1000,1001,1002,1003,1004,1005,1006,1007,1008,1009,1010,1011,1012,1013,1014,1015,1016,1017,1018,1019,1020,1021,1022,1023,1024,1025,1026,1027,1028,1029,1030,1031,1032,1033,1034,1035,1036,1037,1038,1039,1040,1041,1042,1043,1044,1045,1046,1047,1048,1049,1050,1051,1052,1053,1054,1055,1056,1057,1058,1059,1060,1061,1062,1063,1064,1065,1066,1067,1068,1069,1070,1071,1072,1073,1074,1075,1076,1077,1078,1079,1080,1081,1082,1083,1084,1085,1086,1087,1088,1089,1090,1091,1092,1093,1094,1095,1096,1097,1098,1099,1100,1101,1102,1103,1104,1105,1106,1107,1108,1109,1110,1111,1112,1113,1114,1115,1116,1117,1118,1119,1120,1121,1122,1123,1124,1125,1126,1127,1128,1129,1130,1131,1132,1133,1134,1135,1136,1137,1138,1139,1140,1141,1142,1143,1144,1145,1146,1147,1148,1149,1150,1151,1152,1153,1154,1155,1156,1157,1158,1159,1160,1161,1162,1163,1164,1165,1166,1167,1168,1169,1170,1171,1172,1173,1174,1175,1176,1177,1178,1179,1180,1181,1182,1183,1184,1185,1186,1187,1188,1189,1190,1191,1192,1193,1194,1195,1196,1197,1198,1199,1200,1201,1202,1203,1204,1205,1206,1207,1208,1209,1210,1211,1212,1213,1214,1215,1216,1217,1218,1219,1220,1221,1222,1223,1224,1225,1226,1227,1228,1229,1230,1231,1232,1233,1234,1235,1236,1237,1238,1239,1240,1241,1242,1243,1244,1245,1246,1247,1248,1249,1250,1251,1252,1253,1254,1255,1256,1257,1258,1259,1260,1261,1262,1263,1264,1265,1266,1267,1268,1269,1270,1271,1272,1273,1274,1275,1276,1277,1278,1279,1280,1281,1282,1283,1284,1285,1286,1287,1288,1289,1290,1291,1292,1293,1294,1295,1296,1297,1298,1299,1300,1301,1302,1303,1304,1305,1306,1307,1308,1309,1310,1311,1312,1313,1314,1315,1316,1317,1318,1319,1320,1321,1322,1323,1324,1325,1326,1327,1328,1329,1330,1331,1332,1333,1334,1335,1336,1337,1338,1339,1340,1341,1342,1343,1344,1345,1346,1347,1348,1349,1350,1351,1352,1353,1354,1355,1356,1357,1358,1359,1360,1361,1362,1363,1364,1365,1366,1367,1368,1369,1370,1371,1372,1373,1374,1375,1376,1377,1378,1379,1380,1381,1382,1383,1384,1385,1386,1387,1388,1389,1390,1391,1392,1393,1394,1395,1396,1397,1398,1399,1400,1401,1402,1403,1404,1405,1406,1407,1408,1409,1410,1411,1412,1413,1414,1415,1416,1417,1418,1419,1420,1421,1422,1423,1424,1425,1426,1427,1428,1429,1430,1431,1432,1433,1434,1435,1436,1437,1438,1439,1440,1441,1442,1443,1444,1445,1446,1447,1448,1449,1450,1451,1452,1453,1454,1455,1456,1457,1458,1459,1460,1461,1462,1463,1464,1465,1466,1467,1468,1469,1470,1471,1472,1473,1474,1475,1476,1477,1478,1479,1480,1481,1482,1483,1484,1485,1486,1487,1488,1489,1490,1491,1492,1493,1494,1495,1496,1497,1498,1499,1500,1501,1502,1503,1504,1505,1506,1507,1508,1509,1510,1511,1512,1513,1514,1515,1516,1517,1518,1519,1520,1521,1522,1523,1524,1525,1526,1527,1528,1529,1530,1531,1532,1533,1534,1535,1536,1537,1538,1539,1540,1541,1542,1543,1544,1545,1546,1547,1548,1549,1550,1551,1552,1553,1554,1555,1556,1557,1558,1559,1560,1561,1562,1563,1564,1565,1566,1567,1568,1569,1570,1571,1572,1573,1574,1575,1576,1577,1578,1579,1580,1581,1582,1583,1584,1585,1586,1587,1588,1589,1590,1591,1592,1593,1594,1595,1596,1597,1598,1599,1600,1601,1602,1603,1604,1605,1606,1607,1608,1609,1610,1611,1612,1613,1614,1615,1616,1617,1618,1619,1620,1621,1622,1623,1624,1625,1626,1627,1628,1629,1630,1631,1632,1633,1634,1635,1636,1637,1638,1639,1640,1641,1642,1643,1644,1645,1646,1647,1648,1649,1650,1651,1652,1653,1654,1655,1656,1657,1658,1659,1660,1661,1662,1663,1664,1665,1666,1667,1668,1669,1670,1671,1672,1673,1674,1675,1676,1677,1678,1679,1680,1681,1682,1683,1684,1685,1686,1687,1688,1689,1690,1691,1692,1693,1694,1695,1696,1697,1698,1699,1700,1701,1702,1703,1704,1705,1706,1707,1708,1709,1710,1711,1712,1713,1714,1715,1716,1717,1718,1719,1720,1721,1722,1723,1724,1725,1726,1727,1728,1729,1730,1731,1732,1733,1734,1735,1736,1737,1738,1739,1740,1741,1742,1743,1744,1745,1746,1747,1748,1749,1750,1751,1752,1753,1754,1755,1756,1757,1758,1759,1760,1761,1762,1763,1764,1765,1766,1767,1768,1769,1770,1771,1772,1773,1774,1775,1776,1777,1778,1779,1780,1781,1782,1783,1784,1785,1786,1787,1788,1789,1790,1791,1792,1793,1794,1795,1796,1797,1798,1799,1800,1801,1802,1803,1804,1805,1806,1807,1808,1809,1810,1811,1812,1813,1814,1815,1816,1817,1818,1819,1820,1821,1822,1823,1824,1825,1826,1827,1828,1829,1830,1831,1832,1833,1834,1835,1836,1837,1838,1839,1840,1841,1842,1843,1844,1845,1846,1847,1848,1849,1850,1851,1852,1853,1854,1855,1856,1857,1858,1859,1860,1861,1862,1863,1864,1865,1866,1867,1868,1869,1870,1871,1872,1873,1874,1875,1876,1877,1878,1879,1880,1881,1882,1883,1884,1885,1886,1887,1888,1889,1890,1891,1892,1893,1894,1895,1896,1897,1898,1899,1900,1901,1902,1903,1904,1905,1906,1907,1908,1909,1910,1911,1912,1913,1914,1915,1916,1917,1918,1919,1920,1921,1922,1923,1924,1925,1926,1927,1928,1929,1930,1931,1932,1933,1934,1935,1936,1937,1938,1939,1940,1941,1942,1943,1944,1945,1946,1947,1948,1949,1950,1951,1952,1953,1954,1955,1956,1957,1958,1959,1960,1961,1962,1963,1964,1965,1966,1967,1968,1969,1970,1971,1972,1973,1974,1975,1976,1977,1978,1979,1980,1981,1982,1983,1984,1985,1986,1987,1988,1989,1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013,2014,2015,2016,2017,2018,2019,2020,2021,2022,2023,2024,2025,2026,2027,2028,2029,2030,2031,2032,2033,2034,2035,2036,2037,2038,2039,2040,2041,2042,2043,2044,2045,2046,2047,2048,2049,2050,2051,2052,2053,2054,2055,2056,2057,2058,2059,2060,2061,2062,2063,2064,2065,2066,2067,2068,2069,2070,2071,2072,2073,2074,2075,2076,2077,2078,2079,2080,2081,2082,2083,2084,2085,2086,2087,2088,2089,2090,2091,2092,2093,2094,2095,2096,2097,2098,2099,2100,2101,2102,2103,2104,2105,2106,2107,2108,2109,2110,2111,2112,2113,2114,2115,2116,2117,2118,2119,2120,2121,2122,2123,2124,2125,2126,2127,2128,2129,2130,2131,2132,2133,2134,2135,2136,2137,2138,2139,2140,2141,2142,2143,2144,2145,2146,2147,2148,2149,2150,2151,2152,2153,2154,2155,2156,2157,2158,2159,2160,2161,2162,2163,2164,2165,2166,2167,2168,2169,2170,2171,2172,2173,2174,2175,2176,2177,2178,2179,2180,2181,2182,2183,2184,2185,2186,2187,2188,2189,2190,2191,2192,2193,2194,2195,2196,2197,2198,2199,2200,2201,2202,2203,2204,2205,2206,2207,2208,2209,2210,2211,2212,2213,2214,2215,2216,2217,2218,2219,2220,2221,2222,2223,2224,2225,2226,2227,2228,2229,2230,2231,2232,2233,2234,2235,2236,2237,2238,2239,2240,2241,2242,2243,2244,2245,2246,2247,2248,2249,2250,2251,2252,2253,2254,2255,2256,2257,2258,2259,2260,2261,2262,2263,2264,2265,2266,2267,2268,2269,2270,2271,2272,2273,2274,2275,2276,2277,2278,2279,2280,2281,2282,2283,2284,2285,2286,2287,2288,2289,2290,2291,2292,2293,2294,2295,2296,2297,2298,2299,2300,2301,2302,2303,2304,2305,2306,2307,2308,2309,2310,2311,2312,2313,2314,2315,2316,2317,2318,2319,2320,2321,2322,2323,2324,2325,2326,2327,2328,2329,2330,2331,2332,2333,2334,2335,2336,2337,2338,2339,2340,2341,2342,2343,2344,2345,2346,2347,2348,2349,2350,2351,2352,2353,2354,2355,2356,2357,2358,2359,2360,2361,2362,2363,2364,2365,2366,2367,2368,2369,2370,2371,2372,2373,2374,2375,2376,2377,2378,2379,2380,2381,2382,2383,2384,2385,2386,2387,2388,2389,2390,2391,2392,2393,2394,2395,2396,2397,2398,2399,2400,2401,2402,2403,2404,2405,2406,2407,2408,2409,2410,2411,2412,2413,2414,2415,2416,2417,2418,2419,2420,2421,2422,2423,2424,2425,2426,2427,2428,2429,2430,2431,2432,2433,2434,2435,2436,2437,2438,2439,2440,2441,2442,2443,2444,2445,2446,2447,2448,2449,2450,2451,2452,2453,2454,2455,2456,2457,2458,2459,2460,2461,2462,2463,2464,2465,2466,2467,2468,2469,2470,2471,2472,2473,2474,2475,2476,2477,2478,2479,2480,2481,2482,2483,2484,2485,2486,2487,2488,2489,2490,2491,2492,2493,2494,2495,2496,2497,2498,2499,2500,2501,2502,2503,2504,2505,2506,2507,2508,2509,2510,2511,2512,2513,2514,2515,2516,2517,2518,2519,2520,2521,2522,2523,2524,2525,2526,2527,2528,2529,2530,2531,2532,2533,2534,2535,2536,2537,2538,2539,2540,2541,2542,2543,2544,2545,2546,2547,2548,2549,2550,2551,2552,2553,2554,2555,2556,2557,2558,2559,2560,2561,2562,2563,2564,2565,2566,2567,2568,2569,2570,2571,2572,2573,2574,2575,2576,2577,2578,2579,2580,2581,2582,2583,2584,2585,2586,2587,2588,2589,2590,2591,2592,2593,2594,2595,2596,2597,2598,2599,2600,2601,2602,2603,2604,2605,2606,2607,2608,2609,2610,2611,2612,2613,2614,2615,2616,2617,2618,2619,2620,2621,2622,2623,2624,2625,2626,2627,2628,2629,2630,2631,2632,2633,2634,2635,2636,2637,2638,2639,2640,2641,2642,2643,2644,2645,2646,2647,2648,2649,2650,2651,2652,2653,2654,2655,2656,2657,2658,2659,2660,2661,2662,2663,2664,2665,2666,2667,2668,2669,2670,2671,2672,2673,2674,2675,2676,2677,2678,2679,2680,2681,2682,2683,2684,2685,2686,2687,2688,2689,2690,2691,2692,2693,2694,2695,2696,2697,2698,2699,2700,2701,2702,2703,2704,2705,2706,2707,2708,2709,2710,2711,2712,2713,2714,2715,2716,2717,2718,2719,2720,2721,2722,2723,2724,2725,2726,2727,2728,2729,2730,2731,2732,2733,2734,2735,2736,2737,2738,2739,2740,2741,2742,2743,2744,2745,2746,2747,2748,2749,2750,2751,2752,2753,2754,2755,2756,2757,2758,2759,2760,2761,2762,2763,2764,2765,2766,2767,2768,2769,2770,2771,2772,2773,2774,2775,2776,2777,2778,2779,2780,2781,2782,2783,2784,2785,2786,2787,2788,2789,2790,2791,2792,2793,2794,2795,2796,2797,2798,2799,2800,2801,2802,2803,2804,2805,2806,2807,2808,2809,2810,2811,2812,2813,2814,2815,2816,2817,2818,2819,2820,2821,2822,2823,2824,2825,2826,2827,2828,2829,2830,2831]}],\"textures\":[{\"sampler\":0,\"source\":0}]}" + "source": [ + "import pymatching\n", + "import numpy as np\n", + "\n", + "dem = circuit.detector_error_model(decompose_errors=True)\n", + "matching = pymatching.Matching.from_detector_error_model(model=dem)\n", + "predicted_observables = matching.decode_batch(shots=detector_outcomes)\n", + "num_errors = np.sum(np.any(predicted_observables != actual_observables, axis=1))\n", + "\n", + "print(f\"Logical error rate: {num_errors}/{num_shots}\")" ] - }, - "execution_count": 7, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "import stim\n", - "\n", - "circuit = stim.Circuit.from_file('d5r5colorcode_p001.stim')\n", - "circuit.diagram('timeline-3d')" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "YDnwv2dacTbf" - }, - "source": [ - "# Estimating code distance with Stim" - ] - }, - { - "cell_type": "code", - "execution_count": 8, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" }, - "id": "r2MFDDBMvkq3", - "outputId": "cc6b8bfe-9adb-4b55-9c47-ed2580177b44" - }, - "outputs": [ { - "name": "stdout", - "output_type": "stream", - "text": [ - "estimated distance: 5\n" - ] - } - ], - "source": [ - "distance_estimate = len(circuit.search_for_undetectable_logical_errors(\n", - " dont_explore_detection_event_sets_with_size_above=6,\n", - " dont_explore_edges_with_degree_above=3,\n", - " dont_explore_edges_increasing_symptom_degree=False))\n", - "print(f'estimated distance: {distance_estimate}')" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "UuYvEwq9cgYc" - }, - "source": [ - "# Create DEM, detection events and observables with Stim" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "6oCW5jRsXy8-" - }, - "source": [ - "### Can't decode with pymatching..." - ] - }, - { - "cell_type": "code", - "execution_count": 9, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" + "cell_type": "markdown", + "metadata": { + "id": "Xp7MyK0XVs_6" + }, + "source": [ + "## Decode with new correlated matching!" + ] }, - "id": "x6TQbGZ7b06k", - "outputId": "c4caa541-cef7-498d-a410-c00b64cf8a79" - }, - "outputs": [ { - "name": "stderr", - "output_type": "stream", - "text": [ - "Traceback (most recent call last):\n", - " File \"/tmp/ipykernel_3802485/2195602962.py\", line 5, in \n", - " circuit.detector_error_model(decompose_errors=True)\n", - " ~~~~~~~~~~~~~~~~~~~~~~~~~~~~^^^^^^^^^^^^^^^^^^^^^^^\n", - "ValueError: Failed to decompose errors into graphlike components with at most two symptoms.\n", - "The error component that failed to decompose is 'D46, D49, D52, D63, D66, D73, D75'.\n", - "\n", - "In Python, you can ignore this error by passing `ignore_decomposition_failures=True` to `stim.Circuit.detector_error_model(...)`.\n", - "From the command line, you can ignore this error by passing the flag `--ignore_decomposition_failures` to `stim analyze_errors`.\n", - "\n", - "Circuit stack trace:\n", - " during TICK layer #46 of 75\n", - " at instruction #104 [which is a REPEAT 3 block]\n" - ] - } - ], - "source": [ - "import traceback\n", - "\n", - "try:\n", - " # decompose_errors=True needed for DEM to be matchable\n", - " circuit.detector_error_model(decompose_errors=True)\n", - "except:\n", - " traceback.print_exc()" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "ye5W7BJHX8DJ" - }, - "source": [ - "No need to decompose errors using tesseract:" - ] - }, - { - "cell_type": "code", - "execution_count": 10, - "metadata": { - "id": "AVu7idoTYAdM" - }, - "outputs": [], - "source": [ - "dem = circuit.detector_error_model()" - ] - }, - { - "cell_type": "code", - "execution_count": 11, - "metadata": { - "id": "vFDn06Xach0_" - }, - "outputs": [], - "source": [ - "num_shots = 1000\n", - "sampler = circuit.compile_detector_sampler()\n", - "dets, obs = sampler.sample(num_shots, separate_observables=True)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "JrX13vNQcrm3" - }, - "source": [ - "# Decoding with Tesseract and ILP decoder" - ] - }, - { - "cell_type": "code", - "execution_count": 12, - "metadata": { - "id": "Uds8S04a-z-G" - }, - "outputs": [ + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "vufQ8G5iVx7b", + "outputId": "1e12759c-e1e4-4c51-8103-98ec2d6906f8" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Logical error rate: 22/10000\n" + ] + } + ], + "source": [ + "dem = circuit.detector_error_model(decompose_errors=True)\n", + "matching_corr = pymatching.Matching.from_detector_error_model(\n", + " model=dem, enable_correlations=True\n", + " )\n", + "predicted_observables_corr = matching_corr.decode_batch(\n", + " shots=detector_outcomes,\n", + " enable_correlations=True\n", + " )\n", + "num_errors_corr = np.sum(np.any(predicted_observables_corr != actual_observables, axis=1))\n", + "\n", + "print(f\"Logical error rate: {num_errors_corr}/{num_shots}\")" + ] + }, { - "ename": "ImportError", - "evalue": "/usr/local/google/home/shutty/pyenv/lib/python3.13/site-packages/tesseract_decoder.so: undefined symbol: _PyThreadState_UncheckedGet", - "output_type": "error", - "traceback": [ - "\u001b[31m---------------------------------------------------------------------------\u001b[39m", - "\u001b[31mImportError\u001b[39m Traceback (most recent call last)", - "\u001b[36mCell\u001b[39m\u001b[36m \u001b[39m\u001b[32mIn[12]\u001b[39m\u001b[32m, line 1\u001b[39m\n\u001b[32m----> \u001b[39m\u001b[32m1\u001b[39m \u001b[38;5;28;01mimport\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[34;01mtesseract_decoder\u001b[39;00m\n\u001b[32m 2\u001b[39m \u001b[38;5;28;01mimport\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[34;01mtesseract_decoder\u001b[39;00m\u001b[34;01m.\u001b[39;00m\u001b[34;01mtesseract\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[38;5;28;01mas\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[34;01mtesseract\u001b[39;00m\n\u001b[32m 3\u001b[39m \u001b[38;5;28;01mimport\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[34;01mnumpy\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[38;5;28;01mas\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[34;01mnp\u001b[39;00m\n", - "\u001b[31mImportError\u001b[39m: /usr/local/google/home/shutty/pyenv/lib/python3.13/site-packages/tesseract_decoder.so: undefined symbol: _PyThreadState_UncheckedGet" - ] - } - ], - "source": [ - "import tesseract_decoder\n", - "import tesseract_decoder.tesseract as tesseract\n", - "import numpy as np\n", - "import time\n", - "\n", - "# Helper functions for benchmarking\n", - "\n", - "def print_results(result):\n", - " print(\"Tesseract Decoder Stats:\")\n", - " print(f\" Number of Errors / num_shots: {results['num_errors']} / {results['num_shots']}\")\n", - " print(f\" Time: {results['time_seconds']:.4f} s\")\n", - " print()\n", - "\n", - "def run_tesseract_decoder(decoder, dets, obs):\n", - " # Run and time the Tesseract decoder\n", - " num_errors = 0\n", - " start_time = time.time()\n", - " obs_predicted = decoder.decode_batch(dets)\n", - " num_errors = np.sum(np.any(obs_predicted != obs, axis=1))\n", - " end_time = time.time()\n", - "\n", - " return {\n", - " 'num_errors': num_errors,\n", - " 'num_shots': len(dets),\n", - " 'time_seconds': end_time - start_time,\n", - " }\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" + "cell_type": "markdown", + "metadata": { + "id": "a-AMqTUeuqOe" + }, + "source": [ + "## Getting a Color Code Circuit" + ] }, - "id": "D0Tx2eY3ctFw", - "outputId": "64f388af-f1db-4869-873f-3ab714ee8e9c" - }, - "outputs": [ { - "name": "stdout", - "output_type": "stream", - "text": [ - "Tesseract decoder configurations --> TesseractConfig(dem=DetectorErrorModel_Object, det_beam=65535, no_revisit_dets=1, at_most_two_errors_per_detector=0, verbose=0, pqlimit=10000, det_orders=[[89, 86, 85, 83, 81, 88, 84, 82, 87, 74, 71, 78, 75, 69, 67, 63, 77, 66, 61, 72, 64, 65, 79, 68, 62, 73, 80, 70, 42, 76, 43, 46, 33, 32, 50, 44, 31, 57, 35, 36, 59, 51, 30, 58, 60, 48, 39, 45, 49, 34, 25, 7, 47, 5, 18, 26, 21, 2, 40, 24, 12, 29, 28, 55, 37, 56, 54, 53, 38, 15, 3, 16, 52, 20, 9, 19, 13, 8, 11, 10, 17, 41, 22, 6, 14, 23, 0, 1, 27, 4]], det_penalty=0, create_visualization=0)\n", - "\n", - "Tesseract Decoder Stats:\n", - " Number of Errors / num_shots: 3 / 1000\n", - " Time: 3.6089 s\n", - "\n" - ] - } - ], - "source": [ - "# setup the tesseract decoder configuration\n", - "tesseract_config = tesseract.TesseractConfig(\n", - " dem=dem,\n", - " pqlimit=10000,\n", - " no_revisit_dets=True,\n", - " # verbose=True,\n", - " det_orders=tesseract_decoder.utils.build_det_orders(\n", - " dem, num_det_orders=1, det_order_bfs=True, seed=2384753),\n", - ")\n", - "print(f'Tesseract decoder configurations --> {tesseract_config}\\n')\n", - "\n", - "tesseract_dec = tesseract_config.compile_decoder()\n", - "\n", - "results = run_tesseract_decoder(tesseract_dec, dets, obs)\n", - "print_results(results)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "INvMKs7zc5T_" - }, - "source": [ - "#Decoding with ILP decoder" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "W7fU_MYJCRen", + "outputId": "6038fc3e-8707-4bac-fd69-b9d08a90f167" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + " % Total % Received % Xferd Average Speed Time Time Time Current\n", + " Dload Upload Total Spent Left Speed\n", + "100 13295 100 13295 0 0 72032 0 --:--:-- --:--:-- --:--:-- 72255\n" + ] + } + ], + "source": [ + "!curl 'https://raw.githubusercontent.com/quantumlib/tesseract-decoder/refs/heads/main/testdata/colorcodes/r%3D5%2Cd%3D5%2Cp%3D0.001%2Cnoise%3Dsi1000%2Cc%3Dsuperdense_color_code_Z%2Cq%3D37%2Cgates%3Dcz.stim' > d5r5colorcode_p001.stim" + ] }, - "id": "9Npo7ibac4x5", - "outputId": "51af3bd2-5f53-43c8-a16d-f595a9596bde" - }, - "outputs": [ { - "name": "stdout", - "output_type": "stream", - "text": [ - "ILP decoder configurations --> SimplexConfig(dem=DetectorErrorModel_Object, window_length=0, window_slide_length=0, verbose=0)\n", - "ILP stats:\n", - " Estimated time for full shots 1115.2181386947632 s\n", - " Number of Errors / num_shots: 0 / 10\n" - ] - } - ], - "source": [ - "simplex_config = tesseract_decoder.simplex.SimplexConfig(\n", - " dem=dem, parallelize=True\n", - ")\n", - "print(f'ILP decoder configurations --> {simplex_config}')\n", - "ilp_dec = simplex_config.compile_decoder()\n", - "\n", - "start_time = time.time()\n", - "\n", - "# Run and time ILP decoder -- so slow!\n", - "num_shots_to_decode = 10 # Only decoding 10 shots because it's soooo slow\n", - "obs_predicted = ilp_dec.decode_batch(dets[0:num_shots_to_decode])\n", - "num_errors = np.sum(np.any(obs_predicted != obs[0:num_shots_to_decode], axis=1))\n", - "\n", - "end_time = time.time()\n", - "print(f'ILP stats:\\n Estimated time for full shots {num_shots/num_shots_to_decode * (end_time - start_time)} s')\n", - "print(f\" Number of Errors / num_shots: {num_errors} / {num_shots_to_decode}\")" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "VQqlMqFRIZ2J" - }, - "source": [ - "# Tesseract Config and impact of heuristic\n", - "You can tune tesseract decoder through the Config that is passed to the decoder with this set of parameters:\n", - "Explanation of configuration arguments:\n", - "\n", - "* `pqlimit` - An integer that sets a limit on the number of nodes in the priority queue. This can be used to constrain the memory usage of the decoder. The default value is `sys.maxsize`, which means the size is effectively unbounded.\n", - "\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" + "cell_type": "markdown", + "metadata": { + "id": "E-vXEhbaTeQI" + }, + "source": [ + "# Visualizing with Stim" + ] }, - "id": "0pExdmuPQuGr", - "outputId": "45a20eca-fef6-425d-d6a2-9a619fe9e10c" - }, - "outputs": [ { - "name": "stdout", - "output_type": "stream", - "text": [ - "Smaller pqlimit\n", - "Tesseract Decoder Stats:\n", - " Number of Errors / num_shots: 183 / 1000\n", - " Time: 1.8420 s\n", - "\n", - "Larger pqlimit\n", - "Tesseract Decoder Stats:\n", - " Number of Errors / num_shots: 3 / 1000\n", - " Time: 8.4409 s\n", - "\n" - ] - } - ], - "source": [ - "tesseract_config1 = tesseract.TesseractConfig(\n", - " dem=dem,\n", - " pqlimit=100,\n", - " no_revisit_dets=True,\n", - " det_orders=tesseract_decoder.utils.build_det_orders(\n", - " dem, num_det_orders=5, det_order_bfs=True, seed=2384753),\n", - ")\n", - "\n", - "print (\"Smaller pqlimit\")\n", - "results = run_tesseract_decoder(tesseract_config1.compile_decoder(), dets, obs)\n", - "print_results(results)\n", - "\n", - "\n", - "tesseract_config2 = tesseract.TesseractConfig(\n", - " dem=dem,\n", - " pqlimit=20000,\n", - " no_revisit_dets=True,\n", - " det_orders=tesseract_decoder.utils.build_det_orders(\n", - " dem, num_det_orders=5, det_order_bfs=True, seed=2384753),\n", - ")\n", - "print (\"Larger pqlimit\")\n", - "results = run_tesseract_decoder(tesseract_config2.compile_decoder(), dets, obs)\n", - "print_results(results)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "ru-MRctAIq5-" - }, - "source": [ - "#More heurisitcs\n", - "* `det_beam` - This integer value represents the beam search cutoff. It specifies a threshold for the number of \"residual detection events\" a node can have before it is pruned from the search. A lower `det_beam` value makes the search more aggressive, potentially sacrificing accuracy for speed. The default value `INF_DET_BEAM` means no beam cutoff is applied.\n", - "* `beam_climbing` - A boolean flag that, when set to `True`, enables a heuristic called \"beam climbing.\" This optimization causes the decoder to try different `det_beam` values (up to a maximum) to find a good decoding path. This can improve the decoder's chance of finding the most likely error, even with an initial narrow beam search.\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 343 + }, + "id": "2jTOVijwKPXm", + "outputId": "5a0c63b5-384b-4729-8bf1-d205552de185" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "{\"accessors\":[{\"bufferView\":0,\"byteOffset\":0,\"componentType\":5126,\"count\":12,\"max\":[0,0.5,0.5],\"min\":[0,-0.5,-0.5],\"name\":\"cube\",\"type\":\"VEC3\"},{\"bufferView\":1,\"byteOffset\":0,\"componentType\":5126,\"count\":12,\"max\":[0.375,0.5625],\"min\":[0.3125,0.5],\"name\":\"tex_coords_gate_R\",\"type\":\"VEC2\"},{\"bufferView\":2,\"byteOffset\":0,\"componentType\":5126,\"count\":12,\"max\":[0.5,0.4375],\"min\":[0.4375,0.375],\"name\":\"tex_coords_gate_X_ERROR\",\"type\":\"VEC2\"},{\"bufferView\":3,\"byteOffset\":0,\"componentType\":5126,\"count\":12,\"max\":[0.125,0.5],\"min\":[0.0625,0.4375],\"name\":\"tex_coords_gate_H\",\"type\":\"VEC2\"},{\"bufferView\":4,\"byteOffset\":0,\"componentType\":5126,\"count\":12,\"max\":[0.25,0.625],\"min\":[0.1875,0.5625],\"name\":\"tex_coords_gate_DEPOLARIZE1\",\"type\":\"VEC2\"},{\"bufferView\":5,\"byteOffset\":0,\"componentType\":5126,\"count\":17,\"max\":[0,0.400000005960464,0.400000005960464],\"min\":[0,-0.400000005960464,-0.400000005960464],\"name\":\"circle_loop\",\"type\":\"VEC3\"},{\"bufferView\":6,\"byteOffset\":0,\"componentType\":5126,\"count\":12,\"max\":[0.3125,0.625],\"min\":[0.25,0.5625],\"name\":\"tex_coords_gate_DEPOLARIZE2\",\"type\":\"VEC2\"},{\"bufferView\":7,\"byteOffset\":0,\"componentType\":5126,\"count\":12,\"max\":[0.3125,0.5625],\"min\":[0.25,0.5],\"name\":\"tex_coords_gate_M\",\"type\":\"VEC2\"},{\"bufferView\":8,\"byteOffset\":0,\"componentType\":5126,\"count\":1298,\"max\":[1,-32,-32],\"min\":[-96,-48,-44],\"name\":\"buf_scattered_lines\",\"type\":\"VEC3\"},{\"bufferView\":9,\"byteOffset\":0,\"componentType\":5126,\"count\":30,\"max\":[0,-29.5,-31],\"min\":[-64.25,-49,-45],\"name\":\"buf_red_scattered_lines\",\"type\":\"VEC3\"},{\"bufferView\":10,\"byteOffset\":0,\"componentType\":5126,\"count\":704,\"max\":[0.25,-31.2000007629395,-31.5],\"min\":[-93.25,-31.6000003814697,-44.5],\"name\":\"buf_blue_scattered_lines\",\"type\":\"VEC3\"}],\"asset\":{\"version\":\"2.0\"},\"bufferViews\":[{\"buffer\":0,\"byteLength\":144,\"byteOffset\":0,\"name\":\"cube\",\"target\":34962},{\"buffer\":1,\"byteLength\":96,\"byteOffset\":0,\"name\":\"tex_coords_gate_R\",\"target\":34962},{\"buffer\":2,\"byteLength\":96,\"byteOffset\":0,\"name\":\"tex_coords_gate_X_ERROR\",\"target\":34962},{\"buffer\":3,\"byteLength\":96,\"byteOffset\":0,\"name\":\"tex_coords_gate_H\",\"target\":34962},{\"buffer\":4,\"byteLength\":96,\"byteOffset\":0,\"name\":\"tex_coords_gate_DEPOLARIZE1\",\"target\":34962},{\"buffer\":5,\"byteLength\":204,\"byteOffset\":0,\"name\":\"circle_loop\",\"target\":34962},{\"buffer\":6,\"byteLength\":96,\"byteOffset\":0,\"name\":\"tex_coords_gate_DEPOLARIZE2\",\"target\":34962},{\"buffer\":7,\"byteLength\":96,\"byteOffset\":0,\"name\":\"tex_coords_gate_M\",\"target\":34962},{\"buffer\":8,\"byteLength\":15576,\"byteOffset\":0,\"name\":\"buf_scattered_lines\",\"target\":34962},{\"buffer\":9,\"byteLength\":360,\"byteOffset\":0,\"name\":\"buf_red_scattered_lines\",\"target\":34962},{\"buffer\":10,\"byteLength\":8448,\"byteOffset\":0,\"name\":\"buf_blue_scattered_lines\",\"target\":34962}],\"buffers\":[{\"byteLength\":144,\"name\":\"cube\",\"uri\":\"data:application/octet-stream;base64,AAAAAAAAAD8AAAA/AAAAAAAAAD8AAAC/AAAAAAAAAL8AAAA/AAAAAAAAAD8AAAC/AAAAAAAAAL8AAAC/AAAAAAAAAL8AAAA/AAAAAAAAAL8AAAC/AAAAAAAAAD8AAAC/AAAAAAAAAL8AAAA/AAAAAAAAAL8AAAA/AAAAAAAAAD8AAAC/AAAAAAAAAD8AAAA/\"},{\"byteLength\":96,\"name\":\"tex_coords_gate_R\",\"uri\":\"data:application/octet-stream;base64,AADAPgAAAD8AAKA+AAAAPwAAwD4AABA/AACgPgAAAD8AAKA+AAAQPwAAwD4AABA/AADAPgAAED8AAMA+AAAAPwAAoD4AABA/AACgPgAAED8AAMA+AAAAPwAAoD4AAAA/\"},{\"byteLength\":96,\"name\":\"tex_coords_gate_X_ERROR\",\"uri\":\"data:application/octet-stream;base64,AAAAPwAAwD4AAOA+AADAPgAAAD8AAOA+AADgPgAAwD4AAOA+AADgPgAAAD8AAOA+AAAAPwAA4D4AAAA/AADAPgAA4D4AAOA+AADgPgAA4D4AAAA/AADAPgAA4D4AAMA+\"},{\"byteLength\":96,\"name\":\"tex_coords_gate_H\",\"uri\":\"data:application/octet-stream;base64,AAAAPgAA4D4AAIA9AADgPgAAAD4AAAA/AACAPQAA4D4AAIA9AAAAPwAAAD4AAAA/AAAAPgAAAD8AAAA+AADgPgAAgD0AAAA/AACAPQAAAD8AAAA+AADgPgAAgD0AAOA+\"},{\"byteLength\":96,\"name\":\"tex_coords_gate_DEPOLARIZE1\",\"uri\":\"data:application/octet-stream;base64,AACAPgAAED8AAEA+AAAQPwAAgD4AACA/AABAPgAAED8AAEA+AAAgPwAAgD4AACA/AACAPgAAID8AAIA+AAAQPwAAQD4AACA/AABAPgAAID8AAIA+AAAQPwAAQD4AABA/\"},{\"byteLength\":204,\"name\":\"circle_loop\",\"uri\":\"data:application/octet-stream;base64,AAAAAM3MzD4AAAAAAAAAAOU1vT5Fvxw+AAAAAMPQkD7D0JA+AAAAAES/HD7lNb0+AAAAAPIwlrLNzMw+AAAAAEe/HL7lNb0+AAAAAMPQkL7D0JA+AAAAAOc1vb5Avxw+AAAAAM3MzL7yMBazAAAAAOU1vb5Evxy+AAAAAMHQkL7E0JC+AAAAADy/HL7nNb2+AAAAAPLkozHNzMy+AAAAAEm/HD7kNb2+AAAAAMbQkD6/0JC+AAAAAOY1vT5Evxy+AAAAAM3MzD4AAAAA\"},{\"byteLength\":96,\"name\":\"tex_coords_gate_DEPOLARIZE2\",\"uri\":\"data:application/octet-stream;base64,AACgPgAAED8AAIA+AAAQPwAAoD4AACA/AACAPgAAED8AAIA+AAAgPwAAoD4AACA/AACgPgAAID8AAKA+AAAQPwAAgD4AACA/AACAPgAAID8AAKA+AAAQPwAAgD4AABA/\"},{\"byteLength\":96,\"name\":\"tex_coords_gate_M\",\"uri\":\"data:application/octet-stream;base64,AACgPgAAAD8AAIA+AAAAPwAAoD4AABA/AACAPgAAAD8AAIA+AAAQPwAAoD4AABA/AACgPgAAED8AAKA+AAAAPwAAgD4AABA/AACAPgAAED8AAKA+AAAAPwAAgD4AAAA/\"},{\"byteLength\":15576,\"name\":\"buf_scattered_lines\",\"uri\":\"data:application/octet-stream;base64,AACAwAAACMIAAADCAACAwAAAEMIAAADCAACAwAAACMIAABDCAACAwAAAEMIAABDCAACAwAAAGMIAAAjCAACAwAAAIMIAAAjCAACAwAAAGMIAABjCAACAwAAAIMIAABjCAACAwAAAGMIAACjCAACAwAAAIMIAACjCAACAwAAAKMIAAADCAACAwAAAMMIAAADCAACAwAAAKMIAABDCAACAwAAAMMIAABDCAACAwAAAKMIAACDCAACAwAAAMMIAACDCAACAwAAAOMIAAAjCAACAwAAAQMIAAAjCAACgwAAACMIAAADCAACgwAAAEMIAAADCAACgwAAACMIAABDCAACgwAAAEMIAABDCAACgwAAAGMIAAAjCAACgwAAAIMIAAAjCAACgwAAAGMIAABjCAACgwAAAIMIAABjCAACgwAAAGMIAACjCAACgwAAAIMIAACjCAACgwAAAKMIAAADCAACgwAAAMMIAAADCAACgwAAAKMIAABDCAACgwAAAMMIAABDCAACgwAAAKMIAACDCAACgwAAAMMIAACDCAACgwAAAOMIAAAjCAACgwAAAQMIAAAjCAAAAwQAACMIAAADCAAAAwQAACMIAAAjCAAAAwQAAEMIAAADCAAAAwQAAEMIAAAjCAAAAwQAAEMIAABDCAAAAwQAAEMIAABjCAAAAwQAAGMIAAAjCAAAAwQAAGMIAABDCAAAAwQAAGMIAABjCAAAAwQAAGMIAACDCAAAAwQAAIMIAAAjCAAAAwQAAIMIAABDCAAAAwQAAIMIAABjCAAAAwQAAIMIAACDCAAAAwQAAIMIAACjCAAAAwQAAIMIAADDCAAAAwQAAKMIAAADCAAAAwQAAKMIAAAjCAAAAwQAAKMIAABDCAAAAwQAAKMIAABjCAAAAwQAAKMIAACDCAAAAwQAAKMIAACjCAAAAwQAAMMIAAADCAAAAwQAAMMIAAAjCAAAAwQAAMMIAABDCAAAAwQAAMMIAABjCAAAAwQAAOMIAAAjCAAAAwQAAOMIAABDCAAAQwQAACMIAAADCAAAQwQAACMIAAAjCAAAQwQAAEMIAAADCAAAQwQAAEMIAAAjCAAAQwQAAEMIAABDCAAAQwQAAEMIAABjCAAAQwQAAGMIAAAjCAAAQwQAAGMIAABDCAAAQwQAAGMIAABjCAAAQwQAAGMIAACDCAAAQwQAAIMIAAAjCAAAQwQAAIMIAABDCAAAQwQAAIMIAABjCAAAQwQAAIMIAACDCAAAQwQAAIMIAACjCAAAQwQAAIMIAADDCAAAQwQAAKMIAAADCAAAQwQAAKMIAAAjCAAAQwQAAKMIAABDCAAAQwQAAKMIAABjCAAAQwQAAKMIAACDCAAAQwQAAKMIAACjCAAAQwQAAMMIAAADCAAAQwQAAMMIAAAjCAAAQwQAAMMIAABDCAAAQwQAAMMIAABjCAAAQwQAAOMIAAAjCAAAQwQAAOMIAABDCAAAgwQAAAMIAAADCAAAgwQAACMIAAADCAAAgwQAAEMIAAADCAAAgwQAAGMIAAADCAAAgwQAAEMIAAAjCAAAgwQAAGMIAAAjCAAAgwQAAEMIAABDCAAAgwQAAGMIAABDCAAAgwQAAEMIAABjCAAAgwQAAGMIAABjCAAAgwQAAIMIAAADCAAAgwQAAKMIAAADCAAAgwQAAIMIAAAjCAAAgwQAAKMIAAAjCAAAgwQAAIMIAABDCAAAgwQAAKMIAABDCAAAgwQAAIMIAABjCAAAgwQAAKMIAABjCAAAgwQAAIMIAACDCAAAgwQAAKMIAACDCAAAgwQAAIMIAACjCAAAgwQAAKMIAACjCAAAgwQAAMMIAAADCAAAgwQAAOMIAAADCAAAgwQAAMMIAAAjCAAAgwQAAOMIAAAjCAAAgwQAAMMIAABDCAAAgwQAAOMIAABDCAAAwwQAAAMIAAADCAAAwwQAACMIAAADCAAAwwQAAEMIAAADCAAAwwQAAGMIAAADCAAAwwQAAEMIAAAjCAAAwwQAAGMIAAAjCAAAwwQAAEMIAABDCAAAwwQAAGMIAABDCAAAwwQAAEMIAABjCAAAwwQAAGMIAABjCAAAwwQAAIMIAAADCAAAwwQAAKMIAAADCAAAwwQAAIMIAAAjCAAAwwQAAKMIAAAjCAAAwwQAAIMIAABDCAAAwwQAAKMIAABDCAAAwwQAAIMIAABjCAAAwwQAAKMIAABjCAAAwwQAAIMIAACDCAAAwwQAAKMIAACDCAAAwwQAAIMIAACjCAAAwwQAAKMIAACjCAAAwwQAAMMIAAADCAAAwwQAAOMIAAADCAAAwwQAAMMIAAAjCAAAwwQAAOMIAAAjCAAAwwQAAMMIAABDCAAAwwQAAOMIAABDCAABAwQAACMIAAAjCAABAwQAACMIAABDCAABAwQAAEMIAAAjCAABAwQAAEMIAABDCAABAwQAAGMIAAADCAABAwQAAGMIAAAjCAABAwQAAGMIAABDCAABAwQAAGMIAABjCAABAwQAAGMIAACDCAABAwQAAGMIAACjCAABAwQAAIMIAAADCAABAwQAAIMIAAAjCAABAwQAAIMIAABDCAABAwQAAIMIAABjCAABAwQAAIMIAACDCAABAwQAAIMIAACjCAABAwQAAKMIAAAjCAABAwQAAKMIAABDCAABAwQAAKMIAABjCAABAwQAAKMIAACDCAABAwQAAMMIAAAjCAABAwQAAMMIAABDCAABAwQAAMMIAABjCAABAwQAAMMIAACDCAABAwQAAOMIAAADCAABAwQAAOMIAAAjCAABAwQAAQMIAAADCAABAwQAAQMIAAAjCAABQwQAACMIAAAjCAABQwQAACMIAABDCAABQwQAAEMIAAAjCAABQwQAAEMIAABDCAABQwQAAGMIAAADCAABQwQAAGMIAAAjCAABQwQAAGMIAABDCAABQwQAAGMIAABjCAABQwQAAGMIAACDCAABQwQAAGMIAACjCAABQwQAAIMIAAADCAABQwQAAIMIAAAjCAABQwQAAIMIAABDCAABQwQAAIMIAABjCAABQwQAAIMIAACDCAABQwQAAIMIAACjCAABQwQAAKMIAAAjCAABQwQAAKMIAABDCAABQwQAAKMIAABjCAABQwQAAKMIAACDCAABQwQAAMMIAAAjCAABQwQAAMMIAABDCAABQwQAAMMIAABjCAABQwQAAMMIAACDCAABQwQAAOMIAAADCAABQwQAAOMIAAAjCAABQwQAAQMIAAADCAABQwQAAQMIAAAjCAACAwQAACMIAAADCAACAwQAACMIAAAjCAACAwQAAEMIAAADCAACAwQAAEMIAAAjCAACAwQAAEMIAABDCAACAwQAAEMIAABjCAACAwQAAGMIAAAjCAACAwQAAGMIAABDCAACAwQAAGMIAABjCAACAwQAAGMIAACDCAACAwQAAIMIAAAjCAACAwQAAIMIAABDCAACAwQAAIMIAABjCAACAwQAAIMIAACDCAACAwQAAIMIAACjCAACAwQAAIMIAADDCAACAwQAAKMIAAADCAACAwQAAKMIAAAjCAACAwQAAKMIAABDCAACAwQAAKMIAABjCAACAwQAAKMIAACDCAACAwQAAKMIAACjCAACAwQAAMMIAAADCAACAwQAAMMIAAAjCAACAwQAAMMIAABDCAACAwQAAMMIAABjCAACAwQAAOMIAAAjCAACAwQAAOMIAABDCAACIwQAACMIAAADCAACIwQAACMIAAAjCAACIwQAAEMIAAADCAACIwQAAEMIAAAjCAACIwQAAEMIAABDCAACIwQAAEMIAABjCAACIwQAAGMIAAAjCAACIwQAAGMIAABDCAACIwQAAGMIAABjCAACIwQAAGMIAACDCAACIwQAAIMIAAAjCAACIwQAAIMIAABDCAACIwQAAIMIAABjCAACIwQAAIMIAACDCAACIwQAAIMIAACjCAACIwQAAIMIAADDCAACIwQAAKMIAAADCAACIwQAAKMIAAAjCAACIwQAAKMIAABDCAACIwQAAKMIAABjCAACIwQAAKMIAACDCAACIwQAAKMIAACjCAACIwQAAMMIAAADCAACIwQAAMMIAAAjCAACIwQAAMMIAABDCAACIwQAAMMIAABjCAACIwQAAOMIAAAjCAACIwQAAOMIAABDCAACQwQAAAMIAAADCAACQwQAACMIAAADCAACQwQAAEMIAAADCAACQwQAAGMIAAADCAACQwQAAEMIAAAjCAACQwQAAGMIAAAjCAACQwQAAEMIAABDCAACQwQAAGMIAABDCAACQwQAAEMIAABjCAACQwQAAGMIAABjCAACQwQAAIMIAAADCAACQwQAAKMIAAADCAACQwQAAIMIAAAjCAACQwQAAKMIAAAjCAACQwQAAIMIAABDCAACQwQAAKMIAABDCAACQwQAAIMIAABjCAACQwQAAKMIAABjCAACQwQAAIMIAACDCAACQwQAAKMIAACDCAACQwQAAIMIAACjCAACQwQAAKMIAACjCAACQwQAAMMIAAADCAACQwQAAOMIAAADCAACQwQAAMMIAAAjCAACQwQAAOMIAAAjCAACQwQAAMMIAABDCAACQwQAAOMIAABDCAACYwQAAAMIAAADCAACYwQAACMIAAADCAACYwQAAEMIAAADCAACYwQAAGMIAAADCAACYwQAAEMIAAAjCAACYwQAAGMIAAAjCAACYwQAAEMIAABDCAACYwQAAGMIAABDCAACYwQAAEMIAABjCAACYwQAAGMIAABjCAACYwQAAIMIAAADCAACYwQAAKMIAAADCAACYwQAAIMIAAAjCAACYwQAAKMIAAAjCAACYwQAAIMIAABDCAACYwQAAKMIAABDCAACYwQAAIMIAABjCAACYwQAAKMIAABjCAACYwQAAIMIAACDCAACYwQAAKMIAACDCAACYwQAAIMIAACjCAACYwQAAKMIAACjCAACYwQAAMMIAAADCAACYwQAAOMIAAADCAACYwQAAMMIAAAjCAACYwQAAOMIAAAjCAACYwQAAMMIAABDCAACYwQAAOMIAABDCAACgwQAACMIAAAjCAACgwQAACMIAABDCAACgwQAAEMIAAAjCAACgwQAAEMIAABDCAACgwQAAGMIAAADCAACgwQAAGMIAAAjCAACgwQAAGMIAABDCAACgwQAAGMIAABjCAACgwQAAGMIAACDCAACgwQAAGMIAACjCAACgwQAAIMIAAADCAACgwQAAIMIAAAjCAACgwQAAIMIAABDCAACgwQAAIMIAABjCAACgwQAAIMIAACDCAACgwQAAIMIAACjCAACgwQAAKMIAAAjCAACgwQAAKMIAABDCAACgwQAAKMIAABjCAACgwQAAKMIAACDCAACgwQAAMMIAAAjCAACgwQAAMMIAABDCAACgwQAAMMIAABjCAACgwQAAMMIAACDCAACgwQAAOMIAAADCAACgwQAAOMIAAAjCAACgwQAAQMIAAADCAACgwQAAQMIAAAjCAACowQAACMIAAAjCAACowQAACMIAABDCAACowQAAEMIAAAjCAACowQAAEMIAABDCAACowQAAGMIAAADCAACowQAAGMIAAAjCAACowQAAGMIAABDCAACowQAAGMIAABjCAACowQAAGMIAACDCAACowQAAGMIAACjCAACowQAAIMIAAADCAACowQAAIMIAAAjCAACowQAAIMIAABDCAACowQAAIMIAABjCAACowQAAIMIAACDCAACowQAAIMIAACjCAACowQAAKMIAAAjCAACowQAAKMIAABDCAACowQAAKMIAABjCAACowQAAKMIAACDCAACowQAAMMIAAAjCAACowQAAMMIAABDCAACowQAAMMIAABjCAACowQAAMMIAACDCAACowQAAOMIAAADCAACowQAAOMIAAAjCAACowQAAQMIAAADCAACowQAAQMIAAAjCAADAwQAACMIAAADCAADAwQAAEMIAAADCAADAwQAACMIAABDCAADAwQAAEMIAABDCAADAwQAAGMIAAAjCAADAwQAAIMIAAAjCAADAwQAAGMIAABjCAADAwQAAIMIAABjCAADAwQAAGMIAACjCAADAwQAAIMIAACjCAADAwQAAKMIAAADCAADAwQAAMMIAAADCAADAwQAAKMIAABDCAADAwQAAMMIAABDCAADAwQAAKMIAACDCAADAwQAAMMIAACDCAADAwQAAOMIAAAjCAADAwQAAQMIAAAjCAADIwQAACMIAAADCAADIwQAAEMIAAADCAADIwQAACMIAABDCAADIwQAAEMIAABDCAADIwQAAGMIAAAjCAADIwQAAIMIAAAjCAADIwQAAGMIAABjCAADIwQAAIMIAABjCAADIwQAAGMIAACjCAADIwQAAIMIAACjCAADIwQAAKMIAAADCAADIwQAAMMIAAADCAADIwQAAKMIAABDCAADIwQAAMMIAABDCAADIwQAAKMIAACDCAADIwQAAMMIAACDCAADIwQAAOMIAAAjCAADIwQAAQMIAAAjCAAAUwgAACMIAAADCAAAUwgAAEMIAAADCAAAUwgAACMIAABDCAAAUwgAAEMIAABDCAAAUwgAAGMIAAAjCAAAUwgAAIMIAAAjCAAAUwgAAGMIAABjCAAAUwgAAIMIAABjCAAAUwgAAGMIAACjCAAAUwgAAIMIAACjCAAAUwgAAKMIAAADCAAAUwgAAMMIAAADCAAAUwgAAKMIAABDCAAAUwgAAMMIAABDCAAAUwgAAKMIAACDCAAAUwgAAMMIAACDCAAAUwgAAOMIAAAjCAAAUwgAAQMIAAAjCAAAYwgAACMIAAADCAAAYwgAAEMIAAADCAAAYwgAACMIAABDCAAAYwgAAEMIAABDCAAAYwgAAGMIAAAjCAAAYwgAAIMIAAAjCAAAYwgAAGMIAABjCAAAYwgAAIMIAABjCAAAYwgAAGMIAACjCAAAYwgAAIMIAACjCAAAYwgAAKMIAAADCAAAYwgAAMMIAAADCAAAYwgAAKMIAABDCAAAYwgAAMMIAABDCAAAYwgAAKMIAACDCAAAYwgAAMMIAACDCAAAYwgAAOMIAAAjCAAAYwgAAQMIAAAjCAAAkwgAACMIAAADCAAAkwgAACMIAAAjCAAAkwgAAEMIAAADCAAAkwgAAEMIAAAjCAAAkwgAAEMIAABDCAAAkwgAAEMIAABjCAAAkwgAAGMIAAAjCAAAkwgAAGMIAABDCAAAkwgAAGMIAABjCAAAkwgAAGMIAACDCAAAkwgAAIMIAAAjCAAAkwgAAIMIAABDCAAAkwgAAIMIAABjCAAAkwgAAIMIAACDCAAAkwgAAIMIAACjCAAAkwgAAIMIAADDCAAAkwgAAKMIAAADCAAAkwgAAKMIAAAjCAAAkwgAAKMIAABDCAAAkwgAAKMIAABjCAAAkwgAAKMIAACDCAAAkwgAAKMIAACjCAAAkwgAAMMIAAADCAAAkwgAAMMIAAAjCAAAkwgAAMMIAABDCAAAkwgAAMMIAABjCAAAkwgAAOMIAAAjCAAAkwgAAOMIAABDCAAAowgAACMIAAADCAAAowgAACMIAAAjCAAAowgAAEMIAAADCAAAowgAAEMIAAAjCAAAowgAAEMIAABDCAAAowgAAEMIAABjCAAAowgAAGMIAAAjCAAAowgAAGMIAABDCAAAowgAAGMIAABjCAAAowgAAGMIAACDCAAAowgAAIMIAAAjCAAAowgAAIMIAABDCAAAowgAAIMIAABjCAAAowgAAIMIAACDCAAAowgAAIMIAACjCAAAowgAAIMIAADDCAAAowgAAKMIAAADCAAAowgAAKMIAAAjCAAAowgAAKMIAABDCAAAowgAAKMIAABjCAAAowgAAKMIAACDCAAAowgAAKMIAACjCAAAowgAAMMIAAADCAAAowgAAMMIAAAjCAAAowgAAMMIAABDCAAAowgAAMMIAABjCAAAowgAAOMIAAAjCAAAowgAAOMIAABDCAAAswgAAAMIAAADCAAAswgAACMIAAADCAAAswgAAEMIAAADCAAAswgAAGMIAAADCAAAswgAAEMIAAAjCAAAswgAAGMIAAAjCAAAswgAAEMIAABDCAAAswgAAGMIAABDCAAAswgAAEMIAABjCAAAswgAAGMIAABjCAAAswgAAIMIAAADCAAAswgAAKMIAAADCAAAswgAAIMIAAAjCAAAswgAAKMIAAAjCAAAswgAAIMIAABDCAAAswgAAKMIAABDCAAAswgAAIMIAABjCAAAswgAAKMIAABjCAAAswgAAIMIAACDCAAAswgAAKMIAACDCAAAswgAAIMIAACjCAAAswgAAKMIAACjCAAAswgAAMMIAAADCAAAswgAAOMIAAADCAAAswgAAMMIAAAjCAAAswgAAOMIAAAjCAAAswgAAMMIAABDCAAAswgAAOMIAABDCAAAwwgAAAMIAAADCAAAwwgAACMIAAADCAAAwwgAAEMIAAADCAAAwwgAAGMIAAADCAAAwwgAAEMIAAAjCAAAwwgAAGMIAAAjCAAAwwgAAEMIAABDCAAAwwgAAGMIAABDCAAAwwgAAEMIAABjCAAAwwgAAGMIAABjCAAAwwgAAIMIAAADCAAAwwgAAKMIAAADCAAAwwgAAIMIAAAjCAAAwwgAAKMIAAAjCAAAwwgAAIMIAABDCAAAwwgAAKMIAABDCAAAwwgAAIMIAABjCAAAwwgAAKMIAABjCAAAwwgAAIMIAACDCAAAwwgAAKMIAACDCAAAwwgAAIMIAACjCAAAwwgAAKMIAACjCAAAwwgAAMMIAAADCAAAwwgAAOMIAAADCAAAwwgAAMMIAAAjCAAAwwgAAOMIAAAjCAAAwwgAAMMIAABDCAAAwwgAAOMIAABDCAAA0wgAACMIAAAjCAAA0wgAACMIAABDCAAA0wgAAEMIAAAjCAAA0wgAAEMIAABDCAAA0wgAAGMIAAADCAAA0wgAAGMIAAAjCAAA0wgAAGMIAABDCAAA0wgAAGMIAABjCAAA0wgAAGMIAACDCAAA0wgAAGMIAACjCAAA0wgAAIMIAAADCAAA0wgAAIMIAAAjCAAA0wgAAIMIAABDCAAA0wgAAIMIAABjCAAA0wgAAIMIAACDCAAA0wgAAIMIAACjCAAA0wgAAKMIAAAjCAAA0wgAAKMIAABDCAAA0wgAAKMIAABjCAAA0wgAAKMIAACDCAAA0wgAAMMIAAAjCAAA0wgAAMMIAABDCAAA0wgAAMMIAABjCAAA0wgAAMMIAACDCAAA0wgAAOMIAAADCAAA0wgAAOMIAAAjCAAA0wgAAQMIAAADCAAA0wgAAQMIAAAjCAAA4wgAACMIAAAjCAAA4wgAACMIAABDCAAA4wgAAEMIAAAjCAAA4wgAAEMIAABDCAAA4wgAAGMIAAADCAAA4wgAAGMIAAAjCAAA4wgAAGMIAABDCAAA4wgAAGMIAABjCAAA4wgAAGMIAACDCAAA4wgAAGMIAACjCAAA4wgAAIMIAAADCAAA4wgAAIMIAAAjCAAA4wgAAIMIAABDCAAA4wgAAIMIAABjCAAA4wgAAIMIAACDCAAA4wgAAIMIAACjCAAA4wgAAKMIAAAjCAAA4wgAAKMIAABDCAAA4wgAAKMIAABjCAAA4wgAAKMIAACDCAAA4wgAAMMIAAAjCAAA4wgAAMMIAABDCAAA4wgAAMMIAABjCAAA4wgAAMMIAACDCAAA4wgAAOMIAAADCAAA4wgAAOMIAAAjCAAA4wgAAQMIAAADCAAA4wgAAQMIAAAjCAABEwgAACMIAAADCAABEwgAACMIAAAjCAABEwgAAEMIAAADCAABEwgAAEMIAAAjCAABEwgAAEMIAABDCAABEwgAAEMIAABjCAABEwgAAGMIAAAjCAABEwgAAGMIAABDCAABEwgAAGMIAABjCAABEwgAAGMIAACDCAABEwgAAIMIAAAjCAABEwgAAIMIAABDCAABEwgAAIMIAABjCAABEwgAAIMIAACDCAABEwgAAIMIAACjCAABEwgAAIMIAADDCAABEwgAAKMIAAADCAABEwgAAKMIAAAjCAABEwgAAKMIAABDCAABEwgAAKMIAABjCAABEwgAAKMIAACDCAABEwgAAKMIAACjCAABEwgAAMMIAAADCAABEwgAAMMIAAAjCAABEwgAAMMIAABDCAABEwgAAMMIAABjCAABEwgAAOMIAAAjCAABEwgAAOMIAABDCAABIwgAACMIAAADCAABIwgAACMIAAAjCAABIwgAAEMIAAADCAABIwgAAEMIAAAjCAABIwgAAEMIAABDCAABIwgAAEMIAABjCAABIwgAAGMIAAAjCAABIwgAAGMIAABDCAABIwgAAGMIAABjCAABIwgAAGMIAACDCAABIwgAAIMIAAAjCAABIwgAAIMIAABDCAABIwgAAIMIAABjCAABIwgAAIMIAACDCAABIwgAAIMIAACjCAABIwgAAIMIAADDCAABIwgAAKMIAAADCAABIwgAAKMIAAAjCAABIwgAAKMIAABDCAABIwgAAKMIAABjCAABIwgAAKMIAACDCAABIwgAAKMIAACjCAABIwgAAMMIAAADCAABIwgAAMMIAAAjCAABIwgAAMMIAABDCAABIwgAAMMIAABjCAABIwgAAOMIAAAjCAABIwgAAOMIAABDCAABMwgAAAMIAAADCAABMwgAACMIAAADCAABMwgAAEMIAAADCAABMwgAAGMIAAADCAABMwgAAEMIAAAjCAABMwgAAGMIAAAjCAABMwgAAEMIAABDCAABMwgAAGMIAABDCAABMwgAAEMIAABjCAABMwgAAGMIAABjCAABMwgAAIMIAAADCAABMwgAAKMIAAADCAABMwgAAIMIAAAjCAABMwgAAKMIAAAjCAABMwgAAIMIAABDCAABMwgAAKMIAABDCAABMwgAAIMIAABjCAABMwgAAKMIAABjCAABMwgAAIMIAACDCAABMwgAAKMIAACDCAABMwgAAIMIAACjCAABMwgAAKMIAACjCAABMwgAAMMIAAADCAABMwgAAOMIAAADCAABMwgAAMMIAAAjCAABMwgAAOMIAAAjCAABMwgAAMMIAABDCAABMwgAAOMIAABDCAABQwgAAAMIAAADCAABQwgAACMIAAADCAABQwgAAEMIAAADCAABQwgAAGMIAAADCAABQwgAAEMIAAAjCAABQwgAAGMIAAAjCAABQwgAAEMIAABDCAABQwgAAGMIAABDCAABQwgAAEMIAABjCAABQwgAAGMIAABjCAABQwgAAIMIAAADCAABQwgAAKMIAAADCAABQwgAAIMIAAAjCAABQwgAAKMIAAAjCAABQwgAAIMIAABDCAABQwgAAKMIAABDCAABQwgAAIMIAABjCAABQwgAAKMIAABjCAABQwgAAIMIAACDCAABQwgAAKMIAACDCAABQwgAAIMIAACjCAABQwgAAKMIAACjCAABQwgAAMMIAAADCAABQwgAAOMIAAADCAABQwgAAMMIAAAjCAABQwgAAOMIAAAjCAABQwgAAMMIAABDCAABQwgAAOMIAABDCAABUwgAACMIAAAjCAABUwgAACMIAABDCAABUwgAAEMIAAAjCAABUwgAAEMIAABDCAABUwgAAGMIAAADCAABUwgAAGMIAAAjCAABUwgAAGMIAABDCAABUwgAAGMIAABjCAABUwgAAGMIAACDCAABUwgAAGMIAACjCAABUwgAAIMIAAADCAABUwgAAIMIAAAjCAABUwgAAIMIAABDCAABUwgAAIMIAABjCAABUwgAAIMIAACDCAABUwgAAIMIAACjCAABUwgAAKMIAAAjCAABUwgAAKMIAABDCAABUwgAAKMIAABjCAABUwgAAKMIAACDCAABUwgAAMMIAAAjCAABUwgAAMMIAABDCAABUwgAAMMIAABjCAABUwgAAMMIAACDCAABUwgAAOMIAAADCAABUwgAAOMIAAAjCAABUwgAAQMIAAADCAABUwgAAQMIAAAjCAABYwgAACMIAAAjCAABYwgAACMIAABDCAABYwgAAEMIAAAjCAABYwgAAEMIAABDCAABYwgAAGMIAAADCAABYwgAAGMIAAAjCAABYwgAAGMIAABDCAABYwgAAGMIAABjCAABYwgAAGMIAACDCAABYwgAAGMIAACjCAABYwgAAIMIAAADCAABYwgAAIMIAAAjCAABYwgAAIMIAABDCAABYwgAAIMIAABjCAABYwgAAIMIAACDCAABYwgAAIMIAACjCAABYwgAAKMIAAAjCAABYwgAAKMIAABDCAABYwgAAKMIAABjCAABYwgAAKMIAACDCAABYwgAAMMIAAAjCAABYwgAAMMIAABDCAABYwgAAMMIAABjCAABYwgAAMMIAACDCAABYwgAAOMIAAADCAABYwgAAOMIAAAjCAABYwgAAQMIAAADCAABYwgAAQMIAAAjCAABkwgAACMIAAADCAABkwgAAEMIAAADCAABkwgAACMIAABDCAABkwgAAEMIAABDCAABkwgAAGMIAAAjCAABkwgAAIMIAAAjCAABkwgAAGMIAABjCAABkwgAAIMIAABjCAABkwgAAGMIAACjCAABkwgAAIMIAACjCAABkwgAAKMIAAADCAABkwgAAMMIAAADCAABkwgAAKMIAABDCAABkwgAAMMIAABDCAABkwgAAKMIAACDCAABkwgAAMMIAACDCAABkwgAAOMIAAAjCAABkwgAAQMIAAAjCAABowgAACMIAAADCAABowgAAEMIAAADCAABowgAACMIAABDCAABowgAAEMIAABDCAABowgAAGMIAAAjCAABowgAAIMIAAAjCAABowgAAGMIAABjCAABowgAAIMIAABjCAABowgAAGMIAACjCAABowgAAIMIAACjCAABowgAAKMIAAADCAABowgAAMMIAAADCAABowgAAKMIAABDCAABowgAAMMIAABDCAABowgAAKMIAACDCAABowgAAMMIAACDCAABowgAAOMIAAAjCAABowgAAQMIAAAjCAACMwgAACMIAAADCAACMwgAAEMIAAADCAACMwgAACMIAABDCAACMwgAAEMIAABDCAACMwgAAGMIAAAjCAACMwgAAIMIAAAjCAACMwgAAGMIAABjCAACMwgAAIMIAABjCAACMwgAAGMIAACjCAACMwgAAIMIAACjCAACMwgAAKMIAAADCAACMwgAAMMIAAADCAACMwgAAKMIAABDCAACMwgAAMMIAABDCAACMwgAAKMIAACDCAACMwgAAMMIAACDCAACMwgAAOMIAAAjCAACMwgAAQMIAAAjCAACOwgAACMIAAADCAACOwgAAEMIAAADCAACOwgAACMIAABDCAACOwgAAEMIAABDCAACOwgAAGMIAAAjCAACOwgAAIMIAAAjCAACOwgAAGMIAABjCAACOwgAAIMIAABjCAACOwgAAGMIAACjCAACOwgAAIMIAACjCAACOwgAAKMIAAADCAACOwgAAMMIAAADCAACOwgAAKMIAABDCAACOwgAAMMIAABDCAACOwgAAKMIAACDCAACOwgAAMMIAACDCAACOwgAAOMIAAAjCAACOwgAAQMIAAAjCAACUwgAACMIAAAjCAACUwgAACMIAABDCAACUwgAAEMIAAAjCAACUwgAAEMIAABDCAACUwgAAGMIAAADCAACUwgAAGMIAAAjCAACUwgAAGMIAABDCAACUwgAAGMIAABjCAACUwgAAGMIAACDCAACUwgAAGMIAACjCAACUwgAAIMIAAADCAACUwgAAIMIAAAjCAACUwgAAIMIAABDCAACUwgAAIMIAABjCAACUwgAAIMIAACDCAACUwgAAIMIAACjCAACUwgAAKMIAAAjCAACUwgAAKMIAABDCAACUwgAAKMIAABjCAACUwgAAKMIAACDCAACUwgAAMMIAAAjCAACUwgAAMMIAABDCAACUwgAAMMIAABjCAACUwgAAMMIAACDCAACUwgAAOMIAAADCAACUwgAAOMIAAAjCAACUwgAAQMIAAADCAACUwgAAQMIAAAjCAACWwgAACMIAAAjCAACWwgAACMIAABDCAACWwgAAEMIAAAjCAACWwgAAEMIAABDCAACWwgAAGMIAAADCAACWwgAAGMIAAAjCAACWwgAAGMIAABDCAACWwgAAGMIAABjCAACWwgAAGMIAACDCAACWwgAAGMIAACjCAACWwgAAIMIAAADCAACWwgAAIMIAAAjCAACWwgAAIMIAABDCAACWwgAAIMIAABjCAACWwgAAIMIAACDCAACWwgAAIMIAACjCAACWwgAAKMIAAAjCAACWwgAAKMIAABDCAACWwgAAKMIAABjCAACWwgAAKMIAACDCAACWwgAAMMIAAAjCAACWwgAAMMIAABDCAACWwgAAMMIAABjCAACWwgAAMMIAACDCAACWwgAAOMIAAADCAACWwgAAOMIAAAjCAACWwgAAQMIAAADCAACWwgAAQMIAAAjCAACYwgAAAMIAAADCAACYwgAACMIAAADCAACYwgAAEMIAAADCAACYwgAAGMIAAADCAACYwgAAEMIAAAjCAACYwgAAGMIAAAjCAACYwgAAEMIAABDCAACYwgAAGMIAABDCAACYwgAAEMIAABjCAACYwgAAGMIAABjCAACYwgAAIMIAAADCAACYwgAAKMIAAADCAACYwgAAIMIAAAjCAACYwgAAKMIAAAjCAACYwgAAIMIAABDCAACYwgAAKMIAABDCAACYwgAAIMIAABjCAACYwgAAKMIAABjCAACYwgAAIMIAACDCAACYwgAAKMIAACDCAACYwgAAIMIAACjCAACYwgAAKMIAACjCAACYwgAAMMIAAADCAACYwgAAOMIAAADCAACYwgAAMMIAAAjCAACYwgAAOMIAAAjCAACYwgAAMMIAABDCAACYwgAAOMIAABDCAACawgAAAMIAAADCAACawgAACMIAAADCAACawgAAEMIAAADCAACawgAAGMIAAADCAACawgAAEMIAAAjCAACawgAAGMIAAAjCAACawgAAEMIAABDCAACawgAAGMIAABDCAACawgAAEMIAABjCAACawgAAGMIAABjCAACawgAAIMIAAADCAACawgAAKMIAAADCAACawgAAIMIAAAjCAACawgAAKMIAAAjCAACawgAAIMIAABDCAACawgAAKMIAABDCAACawgAAIMIAABjCAACawgAAKMIAABjCAACawgAAIMIAACDCAACawgAAKMIAACDCAACawgAAIMIAACjCAACawgAAKMIAACjCAACawgAAMMIAAADCAACawgAAOMIAAADCAACawgAAMMIAAAjCAACawgAAOMIAAAjCAACawgAAMMIAABDCAACawgAAOMIAABDCAACcwgAACMIAAADCAACcwgAACMIAAAjCAACcwgAAEMIAAADCAACcwgAAEMIAAAjCAACcwgAAEMIAABDCAACcwgAAEMIAABjCAACcwgAAGMIAAAjCAACcwgAAGMIAABDCAACcwgAAGMIAABjCAACcwgAAGMIAACDCAACcwgAAIMIAAAjCAACcwgAAIMIAABDCAACcwgAAIMIAABjCAACcwgAAIMIAACDCAACcwgAAIMIAACjCAACcwgAAIMIAADDCAACcwgAAKMIAAADCAACcwgAAKMIAAAjCAACcwgAAKMIAABDCAACcwgAAKMIAABjCAACcwgAAKMIAACDCAACcwgAAKMIAACjCAACcwgAAMMIAAADCAACcwgAAMMIAAAjCAACcwgAAMMIAABDCAACcwgAAMMIAABjCAACcwgAAOMIAAAjCAACcwgAAOMIAABDCAACewgAACMIAAADCAACewgAACMIAAAjCAACewgAAEMIAAADCAACewgAAEMIAAAjCAACewgAAEMIAABDCAACewgAAEMIAABjCAACewgAAGMIAAAjCAACewgAAGMIAABDCAACewgAAGMIAABjCAACewgAAGMIAACDCAACewgAAIMIAAAjCAACewgAAIMIAABDCAACewgAAIMIAABjCAACewgAAIMIAACDCAACewgAAIMIAACjCAACewgAAIMIAADDCAACewgAAKMIAAADCAACewgAAKMIAAAjCAACewgAAKMIAABDCAACewgAAKMIAABjCAACewgAAKMIAACDCAACewgAAKMIAACjCAACewgAAMMIAAADCAACewgAAMMIAAAjCAACewgAAMMIAABDCAACewgAAMMIAABjCAACewgAAOMIAAAjCAACewgAAOMIAABDCAACkwgAACMIAAAjCAACkwgAACMIAABDCAACkwgAAEMIAAAjCAACkwgAAEMIAABDCAACkwgAAGMIAAADCAACkwgAAGMIAAAjCAACkwgAAGMIAABDCAACkwgAAGMIAABjCAACkwgAAGMIAACDCAACkwgAAGMIAACjCAACkwgAAIMIAAADCAACkwgAAIMIAAAjCAACkwgAAIMIAABDCAACkwgAAIMIAABjCAACkwgAAIMIAACDCAACkwgAAIMIAACjCAACkwgAAKMIAAAjCAACkwgAAKMIAABDCAACkwgAAKMIAABjCAACkwgAAKMIAACDCAACkwgAAMMIAAAjCAACkwgAAMMIAABDCAACkwgAAMMIAABjCAACkwgAAMMIAACDCAACkwgAAOMIAAADCAACkwgAAOMIAAAjCAACkwgAAQMIAAADCAACkwgAAQMIAAAjCAACmwgAACMIAAAjCAACmwgAACMIAABDCAACmwgAAEMIAAAjCAACmwgAAEMIAABDCAACmwgAAGMIAAADCAACmwgAAGMIAAAjCAACmwgAAGMIAABDCAACmwgAAGMIAABjCAACmwgAAGMIAACDCAACmwgAAGMIAACjCAACmwgAAIMIAAADCAACmwgAAIMIAAAjCAACmwgAAIMIAABDCAACmwgAAIMIAABjCAACmwgAAIMIAACDCAACmwgAAIMIAACjCAACmwgAAKMIAAAjCAACmwgAAKMIAABDCAACmwgAAKMIAABjCAACmwgAAKMIAACDCAACmwgAAMMIAAAjCAACmwgAAMMIAABDCAACmwgAAMMIAABjCAACmwgAAMMIAACDCAACmwgAAOMIAAADCAACmwgAAOMIAAAjCAACmwgAAQMIAAADCAACmwgAAQMIAAAjCAACowgAAAMIAAADCAACowgAACMIAAADCAACowgAAEMIAAADCAACowgAAGMIAAADCAACowgAAEMIAAAjCAACowgAAGMIAAAjCAACowgAAEMIAABDCAACowgAAGMIAABDCAACowgAAEMIAABjCAACowgAAGMIAABjCAACowgAAIMIAAADCAACowgAAKMIAAADCAACowgAAIMIAAAjCAACowgAAKMIAAAjCAACowgAAIMIAABDCAACowgAAKMIAABDCAACowgAAIMIAABjCAACowgAAKMIAABjCAACowgAAIMIAACDCAACowgAAKMIAACDCAACowgAAIMIAACjCAACowgAAKMIAACjCAACowgAAMMIAAADCAACowgAAOMIAAADCAACowgAAMMIAAAjCAACowgAAOMIAAAjCAACowgAAMMIAABDCAACowgAAOMIAABDCAACqwgAAAMIAAADCAACqwgAACMIAAADCAACqwgAAEMIAAADCAACqwgAAGMIAAADCAACqwgAAEMIAAAjCAACqwgAAGMIAAAjCAACqwgAAEMIAABDCAACqwgAAGMIAABDCAACqwgAAEMIAABjCAACqwgAAGMIAABjCAACqwgAAIMIAAADCAACqwgAAKMIAAADCAACqwgAAIMIAAAjCAACqwgAAKMIAAAjCAACqwgAAIMIAABDCAACqwgAAKMIAABDCAACqwgAAIMIAABjCAACqwgAAKMIAABjCAACqwgAAIMIAACDCAACqwgAAKMIAACDCAACqwgAAIMIAACjCAACqwgAAKMIAACjCAACqwgAAMMIAAADCAACqwgAAOMIAAADCAACqwgAAMMIAAAjCAACqwgAAOMIAAAjCAACqwgAAMMIAABDCAACqwgAAOMIAABDCAACswgAACMIAAADCAACswgAACMIAAAjCAACswgAAEMIAAADCAACswgAAEMIAAAjCAACswgAAEMIAABDCAACswgAAEMIAABjCAACswgAAGMIAAAjCAACswgAAGMIAABDCAACswgAAGMIAABjCAACswgAAGMIAACDCAACswgAAIMIAAAjCAACswgAAIMIAABDCAACswgAAIMIAABjCAACswgAAIMIAACDCAACswgAAIMIAACjCAACswgAAIMIAADDCAACswgAAKMIAAADCAACswgAAKMIAAAjCAACswgAAKMIAABDCAACswgAAKMIAABjCAACswgAAKMIAACDCAACswgAAKMIAACjCAACswgAAMMIAAADCAACswgAAMMIAAAjCAACswgAAMMIAABDCAACswgAAMMIAABjCAACswgAAOMIAAAjCAACswgAAOMIAABDCAACuwgAACMIAAADCAACuwgAACMIAAAjCAACuwgAAEMIAAADCAACuwgAAEMIAAAjCAACuwgAAEMIAABDCAACuwgAAEMIAABjCAACuwgAAGMIAAAjCAACuwgAAGMIAABDCAACuwgAAGMIAABjCAACuwgAAGMIAACDCAACuwgAAIMIAAAjCAACuwgAAIMIAABDCAACuwgAAIMIAABjCAACuwgAAIMIAACDCAACuwgAAIMIAACjCAACuwgAAIMIAADDCAACuwgAAKMIAAADCAACuwgAAKMIAAAjCAACuwgAAKMIAABDCAACuwgAAKMIAABjCAACuwgAAKMIAACDCAACuwgAAKMIAACjCAACuwgAAMMIAAADCAACuwgAAMMIAAAjCAACuwgAAMMIAABDCAACuwgAAMMIAABjCAACuwgAAOMIAAAjCAACuwgAAOMIAABDCAAC0wgAACMIAAADCAAC0wgAAEMIAAADCAAC0wgAACMIAABDCAAC0wgAAEMIAABDCAAC0wgAAGMIAAAjCAAC0wgAAIMIAAAjCAAC0wgAAGMIAABjCAAC0wgAAIMIAABjCAAC0wgAAGMIAACjCAAC0wgAAIMIAACjCAAC0wgAAKMIAAADCAAC0wgAAMMIAAADCAAC0wgAAKMIAABDCAAC0wgAAMMIAABDCAAC0wgAAKMIAACDCAAC0wgAAMMIAACDCAAC0wgAAOMIAAAjCAAC0wgAAQMIAAAjCAAC2wgAACMIAAADCAAC2wgAAEMIAAADCAAC2wgAACMIAABDCAAC2wgAAEMIAABDCAAC2wgAAGMIAAAjCAAC2wgAAIMIAAAjCAAC2wgAAGMIAABjCAAC2wgAAIMIAABjCAAC2wgAAGMIAACjCAAC2wgAAIMIAACjCAAC2wgAAKMIAAADCAAC2wgAAMMIAAADCAAC2wgAAKMIAABDCAAC2wgAAMMIAABDCAAC2wgAAKMIAACDCAAC2wgAAMMIAACDCAAC2wgAAOMIAAAjCAAC2wgAAQMIAAAjCAACAPwAAAMIAAADCAADAwgAAAMIAAADCAACAPwAACMIAAADCAADAwgAACMIAAADCAACAPwAACMIAAAjCAADAwgAACMIAAAjCAACAPwAACMIAABDCAADAwgAACMIAABDCAACAPwAAEMIAAADCAADAwgAAEMIAAADCAACAPwAAEMIAAAjCAADAwgAAEMIAAAjCAACAPwAAEMIAABDCAADAwgAAEMIAABDCAACAPwAAEMIAABjCAADAwgAAEMIAABjCAACAPwAAGMIAAADCAADAwgAAGMIAAADCAACAPwAAGMIAAAjCAADAwgAAGMIAAAjCAACAPwAAGMIAABDCAADAwgAAGMIAABDCAACAPwAAGMIAABjCAADAwgAAGMIAABjCAACAPwAAGMIAACDCAADAwgAAGMIAACDCAACAPwAAGMIAACjCAADAwgAAGMIAACjCAACAPwAAIMIAAADCAADAwgAAIMIAAADCAACAPwAAIMIAAAjCAADAwgAAIMIAAAjCAACAPwAAIMIAABDCAADAwgAAIMIAABDCAACAPwAAIMIAABjCAADAwgAAIMIAABjCAACAPwAAIMIAACDCAADAwgAAIMIAACDCAACAPwAAIMIAACjCAADAwgAAIMIAACjCAACAPwAAIMIAADDCAADAwgAAIMIAADDCAACAPwAAKMIAAADCAADAwgAAKMIAAADCAACAPwAAKMIAAAjCAADAwgAAKMIAAAjCAACAPwAAKMIAABDCAADAwgAAKMIAABDCAACAPwAAKMIAABjCAADAwgAAKMIAABjCAACAPwAAKMIAACDCAADAwgAAKMIAACDCAACAPwAAKMIAACjCAADAwgAAKMIAACjCAACAPwAAMMIAAADCAADAwgAAMMIAAADCAACAPwAAMMIAAAjCAADAwgAAMMIAAAjCAACAPwAAMMIAABDCAADAwgAAMMIAABDCAACAPwAAMMIAABjCAADAwgAAMMIAABjCAACAPwAAMMIAACDCAADAwgAAMMIAACDCAACAPwAAOMIAAADCAADAwgAAOMIAAADCAACAPwAAOMIAAAjCAADAwgAAOMIAAAjCAACAPwAAOMIAABDCAADAwgAAOMIAABDCAACAPwAAQMIAAADCAADAwgAAQMIAAADCAACAPwAAQMIAAAjCAADAwgAAQMIAAAjC\"},{\"byteLength\":360,\"name\":\"buf_red_scattered_lines\",\"uri\":\"data:application/octet-stream;base64,AAAAAAAA8MEAABjCAABAwAAA8MEAABjCAAAgwAAA9MEAABjCAABAwAAA8MEAABjCAAAgwAAA7MEAABjCAABAwAAA8MEAABjCAAD+wQAA+MEAAPjBAAD+wQAA+MEAADTCAAD+wQAA+MEAAPjBAAD+wQAARMIAAPjBAAD+wQAA+MEAAPjBAICAwgAA+MEAAPjBAAD+wQAA+MEAADTCAAD+wQAARMIAADTCAAD+wQAA+MEAADTCAICAwgAA+MEAADTCAAD+wQAARMIAAPjBAAD+wQAARMIAADTCAAD+wQAARMIAAPjBAICAwgAARMIAAPjBAAD+wQAARMIAADTCAICAwgAARMIAADTCAICAwgAA+MEAAPjBAICAwgAA+MEAADTCAICAwgAA+MEAAPjBAICAwgAARMIAAPjBAICAwgAA+MEAADTCAICAwgAARMIAADTCAICAwgAARMIAAPjBAICAwgAARMIAADTC\"},{\"byteLength\":8448,\"name\":\"buf_blue_scattered_lines\",\"uri\":\"data:application/octet-stream;base64,AACAPs3M/MEAAPzBAACAPpqZ+cEAAPzBAACAPs3M/MEAADLCAACAPpqZ+cEAADLCAACAPpqZ+cEAAPzBAACAPpqZ+cEAADLCAACAPpqZ+cEAAPzBAACgv5qZ+cEAAPzBAACAPpqZ+cEAADLCAACgv5qZ+cEAADLCAACgv83M/MEAAPzBAACgv5qZ+cEAAPzBAACgv83M/MEAADLCAACgv5qZ+cEAADLCAACgv5qZ+cEAAPzBAACgv5qZ+cEAADLCAADgv83M/MEAAPzBAADgv5qZ+cEAAPzBAADgv83M/MEAADLCAADgv5qZ+cEAADLCAADgv5qZ+cEAAPzBAADgv5qZ+cEAADLCAADgv5qZ+cEAAPzBAABQwJqZ+cEAAPzBAADgv5qZ+cEAADLCAABQwJqZ+cEAADLCAABQwM3M/MEAAPzBAABQwJqZ+cEAAPzBAABQwM3M/MEAADLCAABQwJqZ+cEAADLCAABQwJqZ+cEAAPzBAABQwJqZ+cEAADLCAABwwM3M/MEAAPzBAABwwJqZ+cEAAPzBAABwwM3M/MEAADLCAABwwJqZ+cEAADLCAABwwJqZ+cEAAPzBAABwwJqZ+cEAADLCAABwwJqZ+cEAAPzBAACowJqZ+cEAAPzBAABwwJqZ+cEAADLCAACowJqZ+cEAADLCAACowM3M/MEAAPzBAACowJqZ+cEAAPzBAACowM3M/MEAADLCAACowJqZ+cEAADLCAACowJqZ+cEAAPzBAACowJqZ+cEAADLCAAC4wM3M/MEAAPzBAAC4wJqZ+cEAAPzBAAC4wM3M/MEAADLCAAC4wJqZ+cEAADLCAAC4wJqZ+cEAAPzBAAC4wJqZ+cEAADLCAAC4wJqZ+cEAAPzBAADowJqZ+cEAAPzBAAC4wJqZ+cEAADLCAADowJqZ+cEAADLCAADowM3M/MEAAPzBAADowJqZ+cEAAPzBAADowM3M/MEAADLCAADowJqZ+cEAADLCAADowJqZ+cEAAPzBAADowJqZ+cEAADLCAAD4wM3M/MEAAPzBAAD4wJqZ+cEAAPzBAAD4wM3M/MEAADLCAAD4wJqZ+cEAADLCAAD4wJqZ+cEAAPzBAAD4wJqZ+cEAADLCAAD4wJqZ+cEAAPzBAAAUwZqZ+cEAAPzBAAD4wJqZ+cEAADLCAAAUwZqZ+cEAADLCAAAUwc3M/MEAAPzBAAAUwZqZ+cEAAPzBAAAUwc3M/MEAADLCAAAUwZqZ+cEAADLCAAAUwZqZ+cEAAPzBAAAUwZqZ+cEAADLCAAAcwc3M/MEAAPzBAAAcwZqZ+cEAAPzBAAAcwc3M/MEAADLCAAAcwZqZ+cEAADLCAAAcwZqZ+cEAAPzBAAAcwZqZ+cEAADLCAAAcwZqZ+cEAAPzBAAA0wZqZ+cEAAPzBAAAcwZqZ+cEAADLCAAA0wZqZ+cEAADLCAAA0wc3M/MEAAPzBAAA0wZqZ+cEAAPzBAAA0wc3M/MEAADLCAAA0wZqZ+cEAADLCAAA0wZqZ+cEAAPzBAAA0wZqZ+cEAADLCAAA8wc3M/MEAAPzBAAA8wZqZ+cEAAPzBAAA8wc3M/MEAADLCAAA8wZqZ+cEAADLCAAA8wZqZ+cEAAPzBAAA8wZqZ+cEAADLCAAA8wZqZ+cEAAPzBAABUwZqZ+cEAAPzBAAA8wZqZ+cEAADLCAABUwZqZ+cEAADLCAABUwc3M/MEAAPzBAABUwZqZ+cEAAPzBAABUwc3M/MEAADLCAABUwZqZ+cEAADLCAABUwZqZ+cEAAPzBAABUwZqZ+cEAADLCAABcwc3M/MEAAPzBAABcwZqZ+cEAAPzBAABcwc3M/MEAADLCAABcwZqZ+cEAADLCAABcwZqZ+cEAAPzBAABcwZqZ+cEAADLCAABcwZqZ+cEAAPzBAAB0wZqZ+cEAAPzBAABcwZqZ+cEAADLCAAB0wZqZ+cEAADLCAAB0wc3M/MEAAPzBAAB0wZqZ+cEAAPzBAAB0wc3M/MEAADLCAAB0wZqZ+cEAADLCAAB0wZqZ+cEAAPzBAAB0wZqZ+cEAADLCAAB8wc3M/MEAAPzBAAB8wZqZ+cEAAPzBAAB8wc3M/MEAADLCAAB8wZqZ+cEAADLCAAB8wZqZ+cEAAPzBAAB8wZqZ+cEAADLCAAB8wZqZ+cEAAPzBAACKwZqZ+cEAAPzBAAB8wZqZ+cEAADLCAACKwZqZ+cEAADLCAACKwc3M/MEAAPzBAACKwZqZ+cEAAPzBAACKwc3M/MEAADLCAACKwZqZ+cEAADLCAACKwZqZ+cEAAPzBAACKwZqZ+cEAADLCAACOwc3M/MEAAPzBAACOwZqZ+cEAAPzBAACOwc3M/MEAADLCAACOwZqZ+cEAADLCAACOwZqZ+cEAAPzBAACOwZqZ+cEAADLCAACOwZqZ+cEAAPzBAACawZqZ+cEAAPzBAACOwZqZ+cEAADLCAACawZqZ+cEAADLCAACawc3M/MEAAPzBAACawZqZ+cEAAPzBAACawc3M/MEAADLCAACawZqZ+cEAADLCAACawZqZ+cEAAPzBAACawZqZ+cEAADLCAACewc3M/MEAAPzBAACewZqZ+cEAAPzBAACewc3M/MEAADLCAACewZqZ+cEAADLCAACewZqZ+cEAAPzBAACewZqZ+cEAADLCAACewZqZ+cEAAPzBAACqwZqZ+cEAAPzBAACewZqZ+cEAADLCAACqwZqZ+cEAADLCAACqwc3M/MEAAPzBAACqwZqZ+cEAAPzBAACqwc3M/MEAADLCAACqwZqZ+cEAADLCAACqwZqZ+cEAAPzBAACqwZqZ+cEAADLCAACuwc3M/MEAAPzBAACuwZqZ+cEAAPzBAACuwc3M/MEAADLCAACuwZqZ+cEAADLCAACuwZqZ+cEAAPzBAACuwZqZ+cEAADLCAACuwZqZ+cEAAPzBAAC6wZqZ+cEAAPzBAACuwZqZ+cEAADLCAAC6wZqZ+cEAADLCAAC6wc3M/MEAAPzBAAC6wZqZ+cEAAPzBAAC6wc3M/MEAADLCAAC6wZqZ+cEAADLCAAC6wZqZ+cEAAPzBAAC6wZqZ+cEAADLCAAC+wc3M/MEAAPzBAAC+wZqZ+cEAAPzBAAC+wc3M/MEAADLCAAC+wZqZ+cEAADLCAAC+wZqZ+cEAAPzBAAC+wZqZ+cEAADLCAAC+wZqZ+cEAAPzBAADKwZqZ+cEAAPzBAAC+wZqZ+cEAADLCAADKwZqZ+cEAADLCAADKwc3M/MEAAPzBAADKwZqZ+cEAAPzBAADKwc3M/MEAADLCAADKwZqZ+cEAADLCAADKwZqZ+cEAAPzBAADKwZqZ+cEAADLCAADOwc3M/MEAAPzBAADOwZqZ+cEAAPzBAADOwc3M/MEAADLCAADOwZqZ+cEAADLCAADOwZqZ+cEAAPzBAADOwZqZ+cEAADLCAADOwZqZ+cEAAPzBAADawZqZ+cEAAPzBAADOwZqZ+cEAADLCAADawZqZ+cEAADLCAADawc3M/MEAAPzBAADawZqZ+cEAAPzBAADawc3M/MEAADLCAADawZqZ+cEAADLCAADawZqZ+cEAAPzBAADawZqZ+cEAADLCAADewc3M/MEAAPzBAADewZqZ+cEAAPzBAADewc3M/MEAADLCAADewZqZ+cEAADLCAADewZqZ+cEAAPzBAADewZqZ+cEAADLCAADewZqZ+cEAAPzBAADywZqZ+cEAAPzBAADewZqZ+cEAADLCAADywZqZ+cEAADLCAADywc3M/MEAAPzBAADywZqZ+cEAAPzBAADywc3M/MEAADLCAADywZqZ+cEAADLCAADywZqZ+cEAAPzBAADywZqZ+cEAADLCAAD+wc3M/MEAAPzBAAD+wZqZ+cEAAPzBAAD+wc3M/MEAADLCAAD+wZqZ+cEAADLCAAD+wZqZ+cEAAPzBAAD+wZqZ+cEAADLCAAD+wZqZ+cEAAPzBAAAJwpqZ+cEAAPzBAAD+wZqZ+cEAADLCAAAJwpqZ+cEAADLCAAAJws3M/MEAAPzBAAAJwpqZ+cEAAPzBAAAJws3M/MEAADLCAAAJwpqZ+cEAADLCAAAJwpqZ+cEAAPzBAAAJwpqZ+cEAADLCAAALws3M/MEAAPzBAAALwpqZ+cEAAPzBAAALws3M/MEAADLCAAALwpqZ+cEAADLCAAALwpqZ+cEAAPzBAAALwpqZ+cEAADLCAAALwpqZ+cEAAPzBAAARwpqZ+cEAAPzBAAALwpqZ+cEAADLCAAARwpqZ+cEAADLCAAARws3M/MEAAPzBAAARwpqZ+cEAAPzBAAARws3M/MEAADLCAAARwpqZ+cEAADLCAAARwpqZ+cEAAPzBAAARwpqZ+cEAADLCAAATws3M/MEAAPzBAAATwpqZ+cEAAPzBAAATws3M/MEAADLCAAATwpqZ+cEAADLCAAATwpqZ+cEAAPzBAAATwpqZ+cEAADLCAAATwpqZ+cEAAPzBAAAZwpqZ+cEAAPzBAAATwpqZ+cEAADLCAAAZwpqZ+cEAADLCAAAZws3M/MEAAPzBAAAZwpqZ+cEAAPzBAAAZws3M/MEAADLCAAAZwpqZ+cEAADLCAAAZwpqZ+cEAAPzBAAAZwpqZ+cEAADLCAAAbws3M/MEAAPzBAAAbwpqZ+cEAAPzBAAAbws3M/MEAADLCAAAbwpqZ+cEAADLCAAAbwpqZ+cEAAPzBAAAbwpqZ+cEAADLCAAAbwpqZ+cEAAPzBAAAhwpqZ+cEAAPzBAAAbwpqZ+cEAADLCAAAhwpqZ+cEAADLCAAAhws3M/MEAAPzBAAAhwpqZ+cEAAPzBAAAhws3M/MEAADLCAAAhwpqZ+cEAADLCAAAhwpqZ+cEAAPzBAAAhwpqZ+cEAADLCAAAjws3M/MEAAPzBAAAjwpqZ+cEAAPzBAAAjws3M/MEAADLCAAAjwpqZ+cEAADLCAAAjwpqZ+cEAAPzBAAAjwpqZ+cEAADLCAAAjwpqZ+cEAAPzBAAApwpqZ+cEAAPzBAAAjwpqZ+cEAADLCAAApwpqZ+cEAADLCAAApws3M/MEAAPzBAAApwpqZ+cEAAPzBAAApws3M/MEAADLCAAApwpqZ+cEAADLCAAApwpqZ+cEAAPzBAAApwpqZ+cEAADLCAAArws3M/MEAAPzBAAArwpqZ+cEAAPzBAAArws3M/MEAADLCAAArwpqZ+cEAADLCAAArwpqZ+cEAAPzBAAArwpqZ+cEAADLCAAArwpqZ+cEAAPzBAAAxwpqZ+cEAAPzBAAArwpqZ+cEAADLCAAAxwpqZ+cEAADLCAAAxws3M/MEAAPzBAAAxwpqZ+cEAAPzBAAAxws3M/MEAADLCAAAxwpqZ+cEAADLCAAAxwpqZ+cEAAPzBAAAxwpqZ+cEAADLCAAAzws3M/MEAAPzBAAAzwpqZ+cEAAPzBAAAzws3M/MEAADLCAAAzwpqZ+cEAADLCAAAzwpqZ+cEAAPzBAAAzwpqZ+cEAADLCAAAzwpqZ+cEAAPzBAAA5wpqZ+cEAAPzBAAAzwpqZ+cEAADLCAAA5wpqZ+cEAADLCAAA5ws3M/MEAAPzBAAA5wpqZ+cEAAPzBAAA5ws3M/MEAADLCAAA5wpqZ+cEAADLCAAA5wpqZ+cEAAPzBAAA5wpqZ+cEAADLCAAA7ws3M/MEAAPzBAAA7wpqZ+cEAAPzBAAA7ws3M/MEAADLCAAA7wpqZ+cEAADLCAAA7wpqZ+cEAAPzBAAA7wpqZ+cEAADLCAAA7wpqZ+cEAAPzBAABBwpqZ+cEAAPzBAAA7wpqZ+cEAADLCAABBwpqZ+cEAADLCAABBws3M/MEAAPzBAABBwpqZ+cEAAPzBAABBws3M/MEAADLCAABBwpqZ+cEAADLCAABBwpqZ+cEAAPzBAABBwpqZ+cEAADLCAABDws3M/MEAAPzBAABDwpqZ+cEAAPzBAABDws3M/MEAADLCAABDwpqZ+cEAADLCAABDwpqZ+cEAAPzBAABDwpqZ+cEAADLCAABDwpqZ+cEAAPzBAABJwpqZ+cEAAPzBAABDwpqZ+cEAADLCAABJwpqZ+cEAADLCAABJws3M/MEAAPzBAABJwpqZ+cEAAPzBAABJws3M/MEAADLCAABJwpqZ+cEAADLCAABJwpqZ+cEAAPzBAABJwpqZ+cEAADLCAABLws3M/MEAAPzBAABLwpqZ+cEAAPzBAABLws3M/MEAADLCAABLwpqZ+cEAADLCAABLwpqZ+cEAAPzBAABLwpqZ+cEAADLCAABLwpqZ+cEAAPzBAABRwpqZ+cEAAPzBAABLwpqZ+cEAADLCAABRwpqZ+cEAADLCAABRws3M/MEAAPzBAABRwpqZ+cEAAPzBAABRws3M/MEAADLCAABRwpqZ+cEAADLCAABRwpqZ+cEAAPzBAABRwpqZ+cEAADLCAABTws3M/MEAAPzBAABTwpqZ+cEAAPzBAABTws3M/MEAADLCAABTwpqZ+cEAADLCAABTwpqZ+cEAAPzBAABTwpqZ+cEAADLCAABTwpqZ+cEAAPzBAABZwpqZ+cEAAPzBAABTwpqZ+cEAADLCAABZwpqZ+cEAADLCAABZws3M/MEAAPzBAABZwpqZ+cEAAPzBAABZws3M/MEAADLCAABZwpqZ+cEAADLCAABZwpqZ+cEAAPzBAABZwpqZ+cEAADLCAABbws3M/MEAAPzBAABbwpqZ+cEAAPzBAABbws3M/MEAADLCAABbwpqZ+cEAADLCAABbwpqZ+cEAAPzBAABbwpqZ+cEAADLCAABbwpqZ+cEAAPzBAABhwpqZ+cEAAPzBAABbwpqZ+cEAADLCAABhwpqZ+cEAADLCAABhws3M/MEAAPzBAABhwpqZ+cEAAPzBAABhws3M/MEAADLCAABhwpqZ+cEAADLCAABhwpqZ+cEAAPzBAABhwpqZ+cEAADLCAABjws3M/MEAAPzBAABjwpqZ+cEAAPzBAABjws3M/MEAADLCAABjwpqZ+cEAADLCAABjwpqZ+cEAAPzBAABjwpqZ+cEAADLCAABjwpqZ+cEAAPzBAABpwpqZ+cEAAPzBAABjwpqZ+cEAADLCAABpwpqZ+cEAADLCAABpws3M/MEAAPzBAABpwpqZ+cEAAPzBAABpws3M/MEAADLCAABpwpqZ+cEAADLCAABpwpqZ+cEAAPzBAABpwpqZ+cEAADLCAABrws3M/MEAAPzBAABrwpqZ+cEAAPzBAABrws3M/MEAADLCAABrwpqZ+cEAADLCAABrwpqZ+cEAAPzBAABrwpqZ+cEAADLCAABrwpqZ+cEAAPzBAABxwpqZ+cEAAPzBAABrwpqZ+cEAADLCAABxwpqZ+cEAADLCAABxws3M/MEAAPzBAABxwpqZ+cEAAPzBAABxws3M/MEAADLCAABxwpqZ+cEAADLCAABxwpqZ+cEAAPzBAABxwpqZ+cEAADLCAABzws3M/MEAAPzBAABzwpqZ+cEAAPzBAABzws3M/MEAADLCAABzwpqZ+cEAADLCAABzwpqZ+cEAAPzBAABzwpqZ+cEAADLCAABzwpqZ+cEAAPzBAAB9wpqZ+cEAAPzBAABzwpqZ+cEAADLCAAB9wpqZ+cEAADLCAAB9ws3M/MEAAPzBAAB9wpqZ+cEAAPzBAAB9ws3M/MEAADLCAAB9wpqZ+cEAADLCAAB9wpqZ+cEAAPzBAAB9wpqZ+cEAADLCAICBws3M/MEAAPzBAICBwpqZ+cEAAPzBAICBws3M/MEAADLCAICBwpqZ+cEAADLCAICBwpqZ+cEAAPzBAICBwpqZ+cEAADLCAICBwpqZ+cEAAPzBAICGwpqZ+cEAAPzBAICBwpqZ+cEAADLCAICGwpqZ+cEAADLCAICGws3M/MEAAPzBAICGwpqZ+cEAAPzBAICGws3M/MEAADLCAICGwpqZ+cEAADLCAICGwpqZ+cEAAPzBAICGwpqZ+cEAADLCAICHws3M/MEAAPzBAICHwpqZ+cEAAPzBAICHws3M/MEAADLCAICHwpqZ+cEAADLCAICHwpqZ+cEAAPzBAICHwpqZ+cEAADLCAICHwpqZ+cEAAPzBAICKwpqZ+cEAAPzBAICHwpqZ+cEAADLCAICKwpqZ+cEAADLCAICKws3M/MEAAPzBAICKwpqZ+cEAAPzBAICKws3M/MEAADLCAICKwpqZ+cEAADLCAICKwpqZ+cEAAPzBAICKwpqZ+cEAADLCAICLws3M/MEAAPzBAICLwpqZ+cEAAPzBAICLws3M/MEAADLCAICLwpqZ+cEAADLCAICLwpqZ+cEAAPzBAICLwpqZ+cEAADLCAICLwpqZ+cEAAPzBAICOwpqZ+cEAAPzBAICLwpqZ+cEAADLCAICOwpqZ+cEAADLCAICOws3M/MEAAPzBAICOwpqZ+cEAAPzBAICOws3M/MEAADLCAICOwpqZ+cEAADLCAICOwpqZ+cEAAPzBAICOwpqZ+cEAADLCAICPws3M/MEAAPzBAICPwpqZ+cEAAPzBAICPws3M/MEAADLCAICPwpqZ+cEAADLCAICPwpqZ+cEAAPzBAICPwpqZ+cEAADLCAICPwpqZ+cEAAPzBAICSwpqZ+cEAAPzBAICPwpqZ+cEAADLCAICSwpqZ+cEAADLCAICSws3M/MEAAPzBAICSwpqZ+cEAAPzBAICSws3M/MEAADLCAICSwpqZ+cEAADLCAICSwpqZ+cEAAPzBAICSwpqZ+cEAADLCAICTws3M/MEAAPzBAICTwpqZ+cEAAPzBAICTws3M/MEAADLCAICTwpqZ+cEAADLCAICTwpqZ+cEAAPzBAICTwpqZ+cEAADLCAICTwpqZ+cEAAPzBAICWwpqZ+cEAAPzBAICTwpqZ+cEAADLCAICWwpqZ+cEAADLCAICWws3M/MEAAPzBAICWwpqZ+cEAAPzBAICWws3M/MEAADLCAICWwpqZ+cEAADLCAICWwpqZ+cEAAPzBAICWwpqZ+cEAADLCAICXws3M/MEAAPzBAICXwpqZ+cEAAPzBAICXws3M/MEAADLCAICXwpqZ+cEAADLCAICXwpqZ+cEAAPzBAICXwpqZ+cEAADLCAICXwpqZ+cEAAPzBAICawpqZ+cEAAPzBAICXwpqZ+cEAADLCAICawpqZ+cEAADLCAICaws3M/MEAAPzBAICawpqZ+cEAAPzBAICaws3M/MEAADLCAICawpqZ+cEAADLCAICawpqZ+cEAAPzBAICawpqZ+cEAADLCAICbws3M/MEAAPzBAICbwpqZ+cEAAPzBAICbws3M/MEAADLCAICbwpqZ+cEAADLCAICbwpqZ+cEAAPzBAICbwpqZ+cEAADLCAICbwpqZ+cEAAPzBAICewpqZ+cEAAPzBAICbwpqZ+cEAADLCAICewpqZ+cEAADLCAICews3M/MEAAPzBAICewpqZ+cEAAPzBAICews3M/MEAADLCAICewpqZ+cEAADLCAICewpqZ+cEAAPzBAICewpqZ+cEAADLCAICfws3M/MEAAPzBAICfwpqZ+cEAAPzBAICfws3M/MEAADLCAICfwpqZ+cEAADLCAICfwpqZ+cEAAPzBAICfwpqZ+cEAADLCAICfwpqZ+cEAAPzBAICiwpqZ+cEAAPzBAICfwpqZ+cEAADLCAICiwpqZ+cEAADLCAICiws3M/MEAAPzBAICiwpqZ+cEAAPzBAICiws3M/MEAADLCAICiwpqZ+cEAADLCAICiwpqZ+cEAAPzBAICiwpqZ+cEAADLCAICjws3M/MEAAPzBAICjwpqZ+cEAAPzBAICjws3M/MEAADLCAICjwpqZ+cEAADLCAICjwpqZ+cEAAPzBAICjwpqZ+cEAADLCAICjwpqZ+cEAAPzBAICmwpqZ+cEAAPzBAICjwpqZ+cEAADLCAICmwpqZ+cEAADLCAICmws3M/MEAAPzBAICmwpqZ+cEAAPzBAICmws3M/MEAADLCAICmwpqZ+cEAADLCAICmwpqZ+cEAAPzBAICmwpqZ+cEAADLCAICnws3M/MEAAPzBAICnwpqZ+cEAAPzBAICnws3M/MEAADLCAICnwpqZ+cEAADLCAICnwpqZ+cEAAPzBAICnwpqZ+cEAADLCAICnwpqZ+cEAAPzBAICqwpqZ+cEAAPzBAICnwpqZ+cEAADLCAICqwpqZ+cEAADLCAICqws3M/MEAAPzBAICqwpqZ+cEAAPzBAICqws3M/MEAADLCAICqwpqZ+cEAADLCAICqwpqZ+cEAAPzBAICqwpqZ+cEAADLCAICrws3M/MEAAPzBAICrwpqZ+cEAAPzBAICrws3M/MEAADLCAICrwpqZ+cEAADLCAICrwpqZ+cEAAPzBAICrwpqZ+cEAADLCAICrwpqZ+cEAAPzBAICuwpqZ+cEAAPzBAICrwpqZ+cEAADLCAICuwpqZ+cEAADLCAICuws3M/MEAAPzBAICuwpqZ+cEAAPzBAICuws3M/MEAADLCAICuwpqZ+cEAADLCAICuwpqZ+cEAAPzBAICuwpqZ+cEAADLCAICvws3M/MEAAPzBAICvwpqZ+cEAAPzBAICvws3M/MEAADLCAICvwpqZ+cEAADLCAICvwpqZ+cEAAPzBAICvwpqZ+cEAADLCAICvwpqZ+cEAAPzBAICywpqZ+cEAAPzBAICvwpqZ+cEAADLCAICywpqZ+cEAADLCAICyws3M/MEAAPzBAICywpqZ+cEAAPzBAICyws3M/MEAADLCAICywpqZ+cEAADLCAICywpqZ+cEAAPzBAICywpqZ+cEAADLCAICzws3M/MEAAPzBAICzwpqZ+cEAAPzBAICzws3M/MEAADLCAICzwpqZ+cEAADLCAICzwpqZ+cEAAPzBAICzwpqZ+cEAADLCAICzwpqZ+cEAAPzBAIC2wpqZ+cEAAPzBAICzwpqZ+cEAADLCAIC2wpqZ+cEAADLCAIC2ws3M/MEAAPzBAIC2wpqZ+cEAAPzBAIC2ws3M/MEAADLCAIC2wpqZ+cEAADLCAIC2wpqZ+cEAAPzBAIC2wpqZ+cEAADLCAIC3ws3M/MEAAPzBAIC3wpqZ+cEAAPzBAIC3ws3M/MEAADLCAIC3wpqZ+cEAADLCAIC3wpqZ+cEAAPzBAIC3wpqZ+cEAADLCAIC3wpqZ+cEAAPzBAIC6wpqZ+cEAAPzBAIC3wpqZ+cEAADLCAIC6wpqZ+cEAADLCAIC6ws3M/MEAAPzBAIC6wpqZ+cEAAPzBAIC6ws3M/MEAADLCAIC6wpqZ+cEAADLCAIC6wpqZ+cEAAPzBAIC6wpqZ+cEAADLC\"}],\"images\":[{\"uri\":\"\"}],\"materials\":[{\"doubleSided\":false,\"pbrMetallicRoughness\":{\"baseColorFactor\":[1,1,1,1],\"baseColorTexture\":{\"index\":0,\"texCoord\":0},\"metallicFactor\":0.4,\"roughnessFactor\":0.5}},{\"doubleSided\":true,\"pbrMetallicRoughness\":{\"baseColorFactor\":[0,0,0,1],\"metallicFactor\":1,\"roughnessFactor\":1}},{\"doubleSided\":true,\"pbrMetallicRoughness\":{\"baseColorFactor\":[0,0,0,1],\"metallicFactor\":1,\"roughnessFactor\":1}},{\"doubleSided\":true,\"pbrMetallicRoughness\":{\"baseColorFactor\":[1,0,0,1],\"metallicFactor\":1,\"roughnessFactor\":1}},{\"doubleSided\":true,\"pbrMetallicRoughness\":{\"baseColorFactor\":[0,0,1,1],\"metallicFactor\":1,\"roughnessFactor\":1}}],\"meshes\":[{\"primitives\":[{\"attributes\":{\"POSITION\":0,\"TEXCOORD_0\":1},\"material\":0,\"mode\":4}]},{\"primitives\":[{\"attributes\":{\"POSITION\":0,\"TEXCOORD_0\":2},\"material\":0,\"mode\":4}]},{\"primitives\":[{\"attributes\":{\"POSITION\":0,\"TEXCOORD_0\":3},\"material\":0,\"mode\":4}]},{\"primitives\":[{\"attributes\":{\"POSITION\":0,\"TEXCOORD_0\":4},\"material\":0,\"mode\":4}]},{\"primitives\":[{\"attributes\":{\"POSITION\":5},\"material\":1,\"mode\":6}]},{\"primitives\":[{\"attributes\":{\"POSITION\":0,\"TEXCOORD_0\":6},\"material\":0,\"mode\":4}]},{\"primitives\":[{\"attributes\":{\"POSITION\":0,\"TEXCOORD_0\":7},\"material\":0,\"mode\":4}]},{\"primitives\":[{\"attributes\":{\"POSITION\":8},\"material\":2,\"mode\":1}]},{\"primitives\":[{\"attributes\":{\"POSITION\":9},\"material\":3,\"mode\":1}]},{\"primitives\":[{\"attributes\":{\"POSITION\":10},\"material\":4,\"mode\":1}]}],\"nodes\":[{\"mesh\":0,\"translation\":[-0,-34,-32]},{\"mesh\":0,\"translation\":[-0,-34,-36]},{\"mesh\":0,\"translation\":[-0,-38,-34]},{\"mesh\":0,\"translation\":[-0,-38,-38]},{\"mesh\":0,\"translation\":[-0,-38,-42]},{\"mesh\":0,\"translation\":[-0,-42,-32]},{\"mesh\":0,\"translation\":[-0,-42,-36]},{\"mesh\":0,\"translation\":[-0,-42,-40]},{\"mesh\":0,\"translation\":[-0,-46,-34]},{\"mesh\":0,\"translation\":[-0,-32,-32]},{\"mesh\":0,\"translation\":[-0,-34,-34]},{\"mesh\":0,\"translation\":[-0,-36,-34]},{\"mesh\":0,\"translation\":[-0,-36,-38]},{\"mesh\":0,\"translation\":[-0,-38,-32]},{\"mesh\":0,\"translation\":[-0,-38,-36]},{\"mesh\":0,\"translation\":[-0,-38,-40]},{\"mesh\":0,\"translation\":[-0,-40,-32]},{\"mesh\":0,\"translation\":[-0,-40,-36]},{\"mesh\":0,\"translation\":[-0,-40,-40]},{\"mesh\":0,\"translation\":[-0,-40,-44]},{\"mesh\":0,\"translation\":[-0,-42,-34]},{\"mesh\":0,\"translation\":[-0,-42,-38]},{\"mesh\":0,\"translation\":[-0,-42,-42]},{\"mesh\":0,\"translation\":[-0,-44,-34]},{\"mesh\":0,\"translation\":[-0,-44,-38]},{\"mesh\":0,\"translation\":[-0,-46,-32]},{\"mesh\":0,\"translation\":[-0,-46,-36]},{\"mesh\":0,\"translation\":[-0,-48,-32]},{\"mesh\":0,\"translation\":[-0,-36,-32]},{\"mesh\":0,\"translation\":[-0,-36,-36]},{\"mesh\":0,\"translation\":[-0,-40,-34]},{\"mesh\":0,\"translation\":[-0,-40,-38]},{\"mesh\":0,\"translation\":[-0,-40,-42]},{\"mesh\":0,\"translation\":[-0,-44,-32]},{\"mesh\":0,\"translation\":[-0,-44,-36]},{\"mesh\":0,\"translation\":[-0,-44,-40]},{\"mesh\":0,\"translation\":[-0,-48,-34]},{\"mesh\":1,\"translation\":[-1,-34,-32]},{\"mesh\":1,\"translation\":[-1,-34,-36]},{\"mesh\":1,\"translation\":[-1,-38,-34]},{\"mesh\":1,\"translation\":[-1,-38,-38]},{\"mesh\":1,\"translation\":[-1,-38,-42]},{\"mesh\":1,\"translation\":[-1,-42,-32]},{\"mesh\":1,\"translation\":[-1,-42,-36]},{\"mesh\":1,\"translation\":[-1,-42,-40]},{\"mesh\":1,\"translation\":[-1,-46,-34]},{\"mesh\":1,\"translation\":[-1,-32,-32]},{\"mesh\":1,\"translation\":[-1,-34,-34]},{\"mesh\":1,\"translation\":[-1,-36,-34]},{\"mesh\":1,\"translation\":[-1,-36,-38]},{\"mesh\":1,\"translation\":[-1,-38,-32]},{\"mesh\":1,\"translation\":[-1,-38,-36]},{\"mesh\":1,\"translation\":[-1,-38,-40]},{\"mesh\":1,\"translation\":[-1,-40,-32]},{\"mesh\":1,\"translation\":[-1,-40,-36]},{\"mesh\":1,\"translation\":[-1,-40,-40]},{\"mesh\":1,\"translation\":[-1,-40,-44]},{\"mesh\":1,\"translation\":[-1,-42,-34]},{\"mesh\":1,\"translation\":[-1,-42,-38]},{\"mesh\":1,\"translation\":[-1,-42,-42]},{\"mesh\":1,\"translation\":[-1,-44,-34]},{\"mesh\":1,\"translation\":[-1,-44,-38]},{\"mesh\":1,\"translation\":[-1,-46,-32]},{\"mesh\":1,\"translation\":[-1,-46,-36]},{\"mesh\":1,\"translation\":[-1,-48,-32]},{\"mesh\":1,\"translation\":[-1,-36,-32]},{\"mesh\":1,\"translation\":[-1,-36,-36]},{\"mesh\":1,\"translation\":[-1,-40,-34]},{\"mesh\":1,\"translation\":[-1,-40,-38]},{\"mesh\":1,\"translation\":[-1,-40,-42]},{\"mesh\":1,\"translation\":[-1,-44,-32]},{\"mesh\":1,\"translation\":[-1,-44,-36]},{\"mesh\":1,\"translation\":[-1,-44,-40]},{\"mesh\":1,\"translation\":[-1,-48,-34]},{\"mesh\":2,\"translation\":[-2,-34,-32]},{\"mesh\":2,\"translation\":[-2,-34,-36]},{\"mesh\":2,\"translation\":[-2,-36,-32]},{\"mesh\":2,\"translation\":[-2,-36,-36]},{\"mesh\":2,\"translation\":[-2,-38,-34]},{\"mesh\":2,\"translation\":[-2,-38,-38]},{\"mesh\":2,\"translation\":[-2,-38,-42]},{\"mesh\":2,\"translation\":[-2,-40,-34]},{\"mesh\":2,\"translation\":[-2,-40,-38]},{\"mesh\":2,\"translation\":[-2,-40,-42]},{\"mesh\":2,\"translation\":[-2,-42,-32]},{\"mesh\":2,\"translation\":[-2,-42,-36]},{\"mesh\":2,\"translation\":[-2,-42,-40]},{\"mesh\":2,\"translation\":[-2,-44,-32]},{\"mesh\":2,\"translation\":[-2,-44,-36]},{\"mesh\":2,\"translation\":[-2,-44,-40]},{\"mesh\":2,\"translation\":[-2,-46,-34]},{\"mesh\":2,\"translation\":[-2,-48,-34]},{\"mesh\":3,\"translation\":[-3,-34,-32]},{\"mesh\":3,\"translation\":[-3,-34,-36]},{\"mesh\":3,\"translation\":[-3,-36,-32]},{\"mesh\":3,\"translation\":[-3,-36,-36]},{\"mesh\":3,\"translation\":[-3,-38,-34]},{\"mesh\":3,\"translation\":[-3,-38,-38]},{\"mesh\":3,\"translation\":[-3,-38,-42]},{\"mesh\":3,\"translation\":[-3,-40,-34]},{\"mesh\":3,\"translation\":[-3,-40,-38]},{\"mesh\":3,\"translation\":[-3,-40,-42]},{\"mesh\":3,\"translation\":[-3,-42,-32]},{\"mesh\":3,\"translation\":[-3,-42,-36]},{\"mesh\":3,\"translation\":[-3,-42,-40]},{\"mesh\":3,\"translation\":[-3,-44,-32]},{\"mesh\":3,\"translation\":[-3,-44,-36]},{\"mesh\":3,\"translation\":[-3,-44,-40]},{\"mesh\":3,\"translation\":[-3,-46,-34]},{\"mesh\":3,\"translation\":[-3,-48,-34]},{\"mesh\":3,\"translation\":[-3,-32,-32]},{\"mesh\":3,\"translation\":[-3,-34,-34]},{\"mesh\":3,\"translation\":[-3,-36,-34]},{\"mesh\":3,\"translation\":[-3,-36,-38]},{\"mesh\":3,\"translation\":[-3,-38,-32]},{\"mesh\":3,\"translation\":[-3,-38,-36]},{\"mesh\":3,\"translation\":[-3,-38,-40]},{\"mesh\":3,\"translation\":[-3,-40,-32]},{\"mesh\":3,\"translation\":[-3,-40,-36]},{\"mesh\":3,\"translation\":[-3,-40,-40]},{\"mesh\":3,\"translation\":[-3,-40,-44]},{\"mesh\":3,\"translation\":[-3,-42,-34]},{\"mesh\":3,\"translation\":[-3,-42,-38]},{\"mesh\":3,\"translation\":[-3,-42,-42]},{\"mesh\":3,\"translation\":[-3,-44,-34]},{\"mesh\":3,\"translation\":[-3,-44,-38]},{\"mesh\":3,\"translation\":[-3,-46,-32]},{\"mesh\":3,\"translation\":[-3,-46,-36]},{\"mesh\":3,\"translation\":[-3,-48,-32]},{\"mesh\":4,\"translation\":[-4,-34,-32]},{\"mesh\":4,\"translation\":[-4,-36,-32]},{\"mesh\":4,\"translation\":[-4,-34,-36]},{\"mesh\":4,\"translation\":[-4,-36,-36]},{\"mesh\":4,\"translation\":[-4,-38,-34]},{\"mesh\":4,\"translation\":[-4,-40,-34]},{\"mesh\":4,\"translation\":[-4,-38,-38]},{\"mesh\":4,\"translation\":[-4,-40,-38]},{\"mesh\":4,\"translation\":[-4,-38,-42]},{\"mesh\":4,\"translation\":[-4,-40,-42]},{\"mesh\":4,\"translation\":[-4,-42,-32]},{\"mesh\":4,\"translation\":[-4,-44,-32]},{\"mesh\":4,\"translation\":[-4,-42,-36]},{\"mesh\":4,\"translation\":[-4,-44,-36]},{\"mesh\":4,\"translation\":[-4,-42,-40]},{\"mesh\":4,\"translation\":[-4,-44,-40]},{\"mesh\":4,\"translation\":[-4,-46,-34]},{\"mesh\":4,\"translation\":[-4,-48,-34]},{\"mesh\":5,\"translation\":[-5,-34,-32]},{\"mesh\":5,\"translation\":[-5,-36,-32]},{\"mesh\":5,\"translation\":[-5,-34,-36]},{\"mesh\":5,\"translation\":[-5,-36,-36]},{\"mesh\":5,\"translation\":[-5,-38,-34]},{\"mesh\":5,\"translation\":[-5,-40,-34]},{\"mesh\":5,\"translation\":[-5,-38,-38]},{\"mesh\":5,\"translation\":[-5,-40,-38]},{\"mesh\":5,\"translation\":[-5,-38,-42]},{\"mesh\":5,\"translation\":[-5,-40,-42]},{\"mesh\":5,\"translation\":[-5,-42,-32]},{\"mesh\":5,\"translation\":[-5,-44,-32]},{\"mesh\":5,\"translation\":[-5,-42,-36]},{\"mesh\":5,\"translation\":[-5,-44,-36]},{\"mesh\":5,\"translation\":[-5,-42,-40]},{\"mesh\":5,\"translation\":[-5,-44,-40]},{\"mesh\":5,\"translation\":[-5,-46,-34]},{\"mesh\":5,\"translation\":[-5,-48,-34]},{\"mesh\":3,\"translation\":[-5,-32,-32]},{\"mesh\":3,\"translation\":[-5,-34,-34]},{\"mesh\":3,\"translation\":[-5,-36,-34]},{\"mesh\":3,\"translation\":[-5,-36,-38]},{\"mesh\":3,\"translation\":[-5,-38,-32]},{\"mesh\":3,\"translation\":[-5,-38,-36]},{\"mesh\":3,\"translation\":[-5,-38,-40]},{\"mesh\":3,\"translation\":[-5,-40,-32]},{\"mesh\":3,\"translation\":[-5,-40,-36]},{\"mesh\":3,\"translation\":[-5,-40,-40]},{\"mesh\":3,\"translation\":[-5,-40,-44]},{\"mesh\":3,\"translation\":[-5,-42,-34]},{\"mesh\":3,\"translation\":[-5,-42,-38]},{\"mesh\":3,\"translation\":[-5,-42,-42]},{\"mesh\":3,\"translation\":[-5,-44,-34]},{\"mesh\":3,\"translation\":[-5,-44,-38]},{\"mesh\":3,\"translation\":[-5,-46,-32]},{\"mesh\":3,\"translation\":[-5,-46,-36]},{\"mesh\":3,\"translation\":[-5,-48,-32]},{\"mesh\":2,\"translation\":[-6,-34,-32]},{\"mesh\":2,\"translation\":[-6,-34,-36]},{\"mesh\":2,\"translation\":[-6,-38,-34]},{\"mesh\":2,\"translation\":[-6,-38,-38]},{\"mesh\":2,\"translation\":[-6,-38,-42]},{\"mesh\":2,\"translation\":[-6,-42,-32]},{\"mesh\":2,\"translation\":[-6,-42,-36]},{\"mesh\":2,\"translation\":[-6,-42,-40]},{\"mesh\":2,\"translation\":[-6,-46,-34]},{\"mesh\":3,\"translation\":[-7,-34,-32]},{\"mesh\":3,\"translation\":[-7,-34,-36]},{\"mesh\":3,\"translation\":[-7,-38,-34]},{\"mesh\":3,\"translation\":[-7,-38,-38]},{\"mesh\":3,\"translation\":[-7,-38,-42]},{\"mesh\":3,\"translation\":[-7,-42,-32]},{\"mesh\":3,\"translation\":[-7,-42,-36]},{\"mesh\":3,\"translation\":[-7,-42,-40]},{\"mesh\":3,\"translation\":[-7,-46,-34]},{\"mesh\":3,\"translation\":[-7,-32,-32]},{\"mesh\":3,\"translation\":[-7,-34,-34]},{\"mesh\":3,\"translation\":[-7,-36,-32]},{\"mesh\":3,\"translation\":[-7,-36,-34]},{\"mesh\":3,\"translation\":[-7,-36,-36]},{\"mesh\":3,\"translation\":[-7,-36,-38]},{\"mesh\":3,\"translation\":[-7,-38,-32]},{\"mesh\":3,\"translation\":[-7,-38,-36]},{\"mesh\":3,\"translation\":[-7,-38,-40]},{\"mesh\":3,\"translation\":[-7,-40,-32]},{\"mesh\":3,\"translation\":[-7,-40,-34]},{\"mesh\":3,\"translation\":[-7,-40,-36]},{\"mesh\":3,\"translation\":[-7,-40,-38]},{\"mesh\":3,\"translation\":[-7,-40,-40]},{\"mesh\":3,\"translation\":[-7,-40,-42]},{\"mesh\":3,\"translation\":[-7,-40,-44]},{\"mesh\":3,\"translation\":[-7,-42,-34]},{\"mesh\":3,\"translation\":[-7,-42,-38]},{\"mesh\":3,\"translation\":[-7,-42,-42]},{\"mesh\":3,\"translation\":[-7,-44,-32]},{\"mesh\":3,\"translation\":[-7,-44,-34]},{\"mesh\":3,\"translation\":[-7,-44,-36]},{\"mesh\":3,\"translation\":[-7,-44,-38]},{\"mesh\":3,\"translation\":[-7,-44,-40]},{\"mesh\":3,\"translation\":[-7,-46,-32]},{\"mesh\":3,\"translation\":[-7,-46,-36]},{\"mesh\":3,\"translation\":[-7,-48,-32]},{\"mesh\":3,\"translation\":[-7,-48,-34]},{\"mesh\":4,\"translation\":[-8,-34,-32]},{\"mesh\":4,\"translation\":[-8,-34,-34]},{\"mesh\":4,\"translation\":[-8,-36,-32]},{\"mesh\":4,\"translation\":[-8,-36,-34]},{\"mesh\":4,\"translation\":[-8,-36,-36]},{\"mesh\":4,\"translation\":[-8,-36,-38]},{\"mesh\":4,\"translation\":[-8,-38,-34]},{\"mesh\":4,\"translation\":[-8,-38,-36]},{\"mesh\":4,\"translation\":[-8,-38,-38]},{\"mesh\":4,\"translation\":[-8,-38,-40]},{\"mesh\":4,\"translation\":[-8,-40,-34]},{\"mesh\":4,\"translation\":[-8,-40,-36]},{\"mesh\":4,\"translation\":[-8,-40,-38]},{\"mesh\":4,\"translation\":[-8,-40,-40]},{\"mesh\":4,\"translation\":[-8,-40,-42]},{\"mesh\":4,\"translation\":[-8,-40,-44]},{\"mesh\":4,\"translation\":[-8,-42,-32]},{\"mesh\":4,\"translation\":[-8,-42,-34]},{\"mesh\":4,\"translation\":[-8,-42,-36]},{\"mesh\":4,\"translation\":[-8,-42,-38]},{\"mesh\":4,\"translation\":[-8,-42,-40]},{\"mesh\":4,\"translation\":[-8,-42,-42]},{\"mesh\":4,\"translation\":[-8,-44,-32]},{\"mesh\":4,\"translation\":[-8,-44,-34]},{\"mesh\":4,\"translation\":[-8,-44,-36]},{\"mesh\":4,\"translation\":[-8,-44,-38]},{\"mesh\":4,\"translation\":[-8,-46,-34]},{\"mesh\":4,\"translation\":[-8,-46,-36]},{\"mesh\":5,\"translation\":[-9,-34,-32]},{\"mesh\":5,\"translation\":[-9,-34,-34]},{\"mesh\":5,\"translation\":[-9,-36,-32]},{\"mesh\":5,\"translation\":[-9,-36,-34]},{\"mesh\":5,\"translation\":[-9,-36,-36]},{\"mesh\":5,\"translation\":[-9,-36,-38]},{\"mesh\":5,\"translation\":[-9,-38,-34]},{\"mesh\":5,\"translation\":[-9,-38,-36]},{\"mesh\":5,\"translation\":[-9,-38,-38]},{\"mesh\":5,\"translation\":[-9,-38,-40]},{\"mesh\":5,\"translation\":[-9,-40,-34]},{\"mesh\":5,\"translation\":[-9,-40,-36]},{\"mesh\":5,\"translation\":[-9,-40,-38]},{\"mesh\":5,\"translation\":[-9,-40,-40]},{\"mesh\":5,\"translation\":[-9,-40,-42]},{\"mesh\":5,\"translation\":[-9,-40,-44]},{\"mesh\":5,\"translation\":[-9,-42,-32]},{\"mesh\":5,\"translation\":[-9,-42,-34]},{\"mesh\":5,\"translation\":[-9,-42,-36]},{\"mesh\":5,\"translation\":[-9,-42,-38]},{\"mesh\":5,\"translation\":[-9,-42,-40]},{\"mesh\":5,\"translation\":[-9,-42,-42]},{\"mesh\":5,\"translation\":[-9,-44,-32]},{\"mesh\":5,\"translation\":[-9,-44,-34]},{\"mesh\":5,\"translation\":[-9,-44,-36]},{\"mesh\":5,\"translation\":[-9,-44,-38]},{\"mesh\":5,\"translation\":[-9,-46,-34]},{\"mesh\":5,\"translation\":[-9,-46,-36]},{\"mesh\":3,\"translation\":[-9,-32,-32]},{\"mesh\":3,\"translation\":[-9,-34,-36]},{\"mesh\":3,\"translation\":[-9,-38,-32]},{\"mesh\":3,\"translation\":[-9,-38,-42]},{\"mesh\":3,\"translation\":[-9,-40,-32]},{\"mesh\":3,\"translation\":[-9,-44,-40]},{\"mesh\":3,\"translation\":[-9,-46,-32]},{\"mesh\":3,\"translation\":[-9,-48,-32]},{\"mesh\":3,\"translation\":[-9,-48,-34]},{\"mesh\":4,\"translation\":[-10,-32,-32]},{\"mesh\":4,\"translation\":[-10,-34,-32]},{\"mesh\":4,\"translation\":[-10,-36,-32]},{\"mesh\":4,\"translation\":[-10,-38,-32]},{\"mesh\":4,\"translation\":[-10,-36,-34]},{\"mesh\":4,\"translation\":[-10,-38,-34]},{\"mesh\":4,\"translation\":[-10,-36,-36]},{\"mesh\":4,\"translation\":[-10,-38,-36]},{\"mesh\":4,\"translation\":[-10,-36,-38]},{\"mesh\":4,\"translation\":[-10,-38,-38]},{\"mesh\":4,\"translation\":[-10,-40,-32]},{\"mesh\":4,\"translation\":[-10,-42,-32]},{\"mesh\":4,\"translation\":[-10,-40,-34]},{\"mesh\":4,\"translation\":[-10,-42,-34]},{\"mesh\":4,\"translation\":[-10,-40,-36]},{\"mesh\":4,\"translation\":[-10,-42,-36]},{\"mesh\":4,\"translation\":[-10,-40,-38]},{\"mesh\":4,\"translation\":[-10,-42,-38]},{\"mesh\":4,\"translation\":[-10,-40,-40]},{\"mesh\":4,\"translation\":[-10,-42,-40]},{\"mesh\":4,\"translation\":[-10,-40,-42]},{\"mesh\":4,\"translation\":[-10,-42,-42]},{\"mesh\":4,\"translation\":[-10,-44,-32]},{\"mesh\":4,\"translation\":[-10,-46,-32]},{\"mesh\":4,\"translation\":[-10,-44,-34]},{\"mesh\":4,\"translation\":[-10,-46,-34]},{\"mesh\":4,\"translation\":[-10,-44,-36]},{\"mesh\":4,\"translation\":[-10,-46,-36]},{\"mesh\":5,\"translation\":[-11,-32,-32]},{\"mesh\":5,\"translation\":[-11,-34,-32]},{\"mesh\":5,\"translation\":[-11,-36,-32]},{\"mesh\":5,\"translation\":[-11,-38,-32]},{\"mesh\":5,\"translation\":[-11,-36,-34]},{\"mesh\":5,\"translation\":[-11,-38,-34]},{\"mesh\":5,\"translation\":[-11,-36,-36]},{\"mesh\":5,\"translation\":[-11,-38,-36]},{\"mesh\":5,\"translation\":[-11,-36,-38]},{\"mesh\":5,\"translation\":[-11,-38,-38]},{\"mesh\":5,\"translation\":[-11,-40,-32]},{\"mesh\":5,\"translation\":[-11,-42,-32]},{\"mesh\":5,\"translation\":[-11,-40,-34]},{\"mesh\":5,\"translation\":[-11,-42,-34]},{\"mesh\":5,\"translation\":[-11,-40,-36]},{\"mesh\":5,\"translation\":[-11,-42,-36]},{\"mesh\":5,\"translation\":[-11,-40,-38]},{\"mesh\":5,\"translation\":[-11,-42,-38]},{\"mesh\":5,\"translation\":[-11,-40,-40]},{\"mesh\":5,\"translation\":[-11,-42,-40]},{\"mesh\":5,\"translation\":[-11,-40,-42]},{\"mesh\":5,\"translation\":[-11,-42,-42]},{\"mesh\":5,\"translation\":[-11,-44,-32]},{\"mesh\":5,\"translation\":[-11,-46,-32]},{\"mesh\":5,\"translation\":[-11,-44,-34]},{\"mesh\":5,\"translation\":[-11,-46,-34]},{\"mesh\":5,\"translation\":[-11,-44,-36]},{\"mesh\":5,\"translation\":[-11,-46,-36]},{\"mesh\":3,\"translation\":[-11,-34,-34]},{\"mesh\":3,\"translation\":[-11,-34,-36]},{\"mesh\":3,\"translation\":[-11,-38,-40]},{\"mesh\":3,\"translation\":[-11,-38,-42]},{\"mesh\":3,\"translation\":[-11,-40,-44]},{\"mesh\":3,\"translation\":[-11,-44,-38]},{\"mesh\":3,\"translation\":[-11,-44,-40]},{\"mesh\":3,\"translation\":[-11,-48,-32]},{\"mesh\":3,\"translation\":[-11,-48,-34]},{\"mesh\":4,\"translation\":[-12,-34,-34]},{\"mesh\":4,\"translation\":[-12,-34,-36]},{\"mesh\":4,\"translation\":[-12,-36,-34]},{\"mesh\":4,\"translation\":[-12,-36,-36]},{\"mesh\":4,\"translation\":[-12,-38,-32]},{\"mesh\":4,\"translation\":[-12,-38,-34]},{\"mesh\":4,\"translation\":[-12,-38,-36]},{\"mesh\":4,\"translation\":[-12,-38,-38]},{\"mesh\":4,\"translation\":[-12,-38,-40]},{\"mesh\":4,\"translation\":[-12,-38,-42]},{\"mesh\":4,\"translation\":[-12,-40,-32]},{\"mesh\":4,\"translation\":[-12,-40,-34]},{\"mesh\":4,\"translation\":[-12,-40,-36]},{\"mesh\":4,\"translation\":[-12,-40,-38]},{\"mesh\":4,\"translation\":[-12,-40,-40]},{\"mesh\":4,\"translation\":[-12,-40,-42]},{\"mesh\":4,\"translation\":[-12,-42,-34]},{\"mesh\":4,\"translation\":[-12,-42,-36]},{\"mesh\":4,\"translation\":[-12,-42,-38]},{\"mesh\":4,\"translation\":[-12,-42,-40]},{\"mesh\":4,\"translation\":[-12,-44,-34]},{\"mesh\":4,\"translation\":[-12,-44,-36]},{\"mesh\":4,\"translation\":[-12,-44,-38]},{\"mesh\":4,\"translation\":[-12,-44,-40]},{\"mesh\":4,\"translation\":[-12,-46,-32]},{\"mesh\":4,\"translation\":[-12,-46,-34]},{\"mesh\":4,\"translation\":[-12,-48,-32]},{\"mesh\":4,\"translation\":[-12,-48,-34]},{\"mesh\":5,\"translation\":[-13,-34,-34]},{\"mesh\":5,\"translation\":[-13,-34,-36]},{\"mesh\":5,\"translation\":[-13,-36,-34]},{\"mesh\":5,\"translation\":[-13,-36,-36]},{\"mesh\":5,\"translation\":[-13,-38,-32]},{\"mesh\":5,\"translation\":[-13,-38,-34]},{\"mesh\":5,\"translation\":[-13,-38,-36]},{\"mesh\":5,\"translation\":[-13,-38,-38]},{\"mesh\":5,\"translation\":[-13,-38,-40]},{\"mesh\":5,\"translation\":[-13,-38,-42]},{\"mesh\":5,\"translation\":[-13,-40,-32]},{\"mesh\":5,\"translation\":[-13,-40,-34]},{\"mesh\":5,\"translation\":[-13,-40,-36]},{\"mesh\":5,\"translation\":[-13,-40,-38]},{\"mesh\":5,\"translation\":[-13,-40,-40]},{\"mesh\":5,\"translation\":[-13,-40,-42]},{\"mesh\":5,\"translation\":[-13,-42,-34]},{\"mesh\":5,\"translation\":[-13,-42,-36]},{\"mesh\":5,\"translation\":[-13,-42,-38]},{\"mesh\":5,\"translation\":[-13,-42,-40]},{\"mesh\":5,\"translation\":[-13,-44,-34]},{\"mesh\":5,\"translation\":[-13,-44,-36]},{\"mesh\":5,\"translation\":[-13,-44,-38]},{\"mesh\":5,\"translation\":[-13,-44,-40]},{\"mesh\":5,\"translation\":[-13,-46,-32]},{\"mesh\":5,\"translation\":[-13,-46,-34]},{\"mesh\":5,\"translation\":[-13,-48,-32]},{\"mesh\":5,\"translation\":[-13,-48,-34]},{\"mesh\":3,\"translation\":[-13,-32,-32]},{\"mesh\":3,\"translation\":[-13,-34,-32]},{\"mesh\":3,\"translation\":[-13,-36,-32]},{\"mesh\":3,\"translation\":[-13,-36,-38]},{\"mesh\":3,\"translation\":[-13,-40,-44]},{\"mesh\":3,\"translation\":[-13,-42,-32]},{\"mesh\":3,\"translation\":[-13,-42,-42]},{\"mesh\":3,\"translation\":[-13,-44,-32]},{\"mesh\":3,\"translation\":[-13,-46,-36]},{\"mesh\":2,\"translation\":[-14,-32,-32]},{\"mesh\":2,\"translation\":[-14,-34,-32]},{\"mesh\":2,\"translation\":[-14,-34,-34]},{\"mesh\":2,\"translation\":[-14,-34,-36]},{\"mesh\":2,\"translation\":[-14,-36,-32]},{\"mesh\":2,\"translation\":[-14,-36,-34]},{\"mesh\":2,\"translation\":[-14,-36,-36]},{\"mesh\":2,\"translation\":[-14,-36,-38]},{\"mesh\":2,\"translation\":[-14,-38,-32]},{\"mesh\":2,\"translation\":[-14,-38,-34]},{\"mesh\":2,\"translation\":[-14,-38,-36]},{\"mesh\":2,\"translation\":[-14,-38,-38]},{\"mesh\":2,\"translation\":[-14,-38,-40]},{\"mesh\":2,\"translation\":[-14,-38,-42]},{\"mesh\":2,\"translation\":[-14,-40,-32]},{\"mesh\":2,\"translation\":[-14,-40,-34]},{\"mesh\":2,\"translation\":[-14,-40,-36]},{\"mesh\":2,\"translation\":[-14,-40,-38]},{\"mesh\":2,\"translation\":[-14,-40,-40]},{\"mesh\":2,\"translation\":[-14,-40,-42]},{\"mesh\":2,\"translation\":[-14,-40,-44]},{\"mesh\":2,\"translation\":[-14,-42,-32]},{\"mesh\":2,\"translation\":[-14,-42,-34]},{\"mesh\":2,\"translation\":[-14,-42,-36]},{\"mesh\":2,\"translation\":[-14,-42,-38]},{\"mesh\":2,\"translation\":[-14,-42,-40]},{\"mesh\":2,\"translation\":[-14,-42,-42]},{\"mesh\":2,\"translation\":[-14,-44,-32]},{\"mesh\":2,\"translation\":[-14,-44,-34]},{\"mesh\":2,\"translation\":[-14,-44,-36]},{\"mesh\":2,\"translation\":[-14,-44,-38]},{\"mesh\":2,\"translation\":[-14,-44,-40]},{\"mesh\":2,\"translation\":[-14,-46,-32]},{\"mesh\":2,\"translation\":[-14,-46,-34]},{\"mesh\":2,\"translation\":[-14,-46,-36]},{\"mesh\":2,\"translation\":[-14,-48,-32]},{\"mesh\":2,\"translation\":[-14,-48,-34]},{\"mesh\":3,\"translation\":[-15,-32,-32]},{\"mesh\":3,\"translation\":[-15,-34,-32]},{\"mesh\":3,\"translation\":[-15,-34,-34]},{\"mesh\":3,\"translation\":[-15,-34,-36]},{\"mesh\":3,\"translation\":[-15,-36,-32]},{\"mesh\":3,\"translation\":[-15,-36,-34]},{\"mesh\":3,\"translation\":[-15,-36,-36]},{\"mesh\":3,\"translation\":[-15,-36,-38]},{\"mesh\":3,\"translation\":[-15,-38,-32]},{\"mesh\":3,\"translation\":[-15,-38,-34]},{\"mesh\":3,\"translation\":[-15,-38,-36]},{\"mesh\":3,\"translation\":[-15,-38,-38]},{\"mesh\":3,\"translation\":[-15,-38,-40]},{\"mesh\":3,\"translation\":[-15,-38,-42]},{\"mesh\":3,\"translation\":[-15,-40,-32]},{\"mesh\":3,\"translation\":[-15,-40,-34]},{\"mesh\":3,\"translation\":[-15,-40,-36]},{\"mesh\":3,\"translation\":[-15,-40,-38]},{\"mesh\":3,\"translation\":[-15,-40,-40]},{\"mesh\":3,\"translation\":[-15,-40,-42]},{\"mesh\":3,\"translation\":[-15,-40,-44]},{\"mesh\":3,\"translation\":[-15,-42,-32]},{\"mesh\":3,\"translation\":[-15,-42,-34]},{\"mesh\":3,\"translation\":[-15,-42,-36]},{\"mesh\":3,\"translation\":[-15,-42,-38]},{\"mesh\":3,\"translation\":[-15,-42,-40]},{\"mesh\":3,\"translation\":[-15,-42,-42]},{\"mesh\":3,\"translation\":[-15,-44,-32]},{\"mesh\":3,\"translation\":[-15,-44,-34]},{\"mesh\":3,\"translation\":[-15,-44,-36]},{\"mesh\":3,\"translation\":[-15,-44,-38]},{\"mesh\":3,\"translation\":[-15,-44,-40]},{\"mesh\":3,\"translation\":[-15,-46,-32]},{\"mesh\":3,\"translation\":[-15,-46,-34]},{\"mesh\":3,\"translation\":[-15,-46,-36]},{\"mesh\":3,\"translation\":[-15,-48,-32]},{\"mesh\":3,\"translation\":[-15,-48,-34]},{\"mesh\":4,\"translation\":[-16,-34,-32]},{\"mesh\":4,\"translation\":[-16,-34,-34]},{\"mesh\":4,\"translation\":[-16,-36,-32]},{\"mesh\":4,\"translation\":[-16,-36,-34]},{\"mesh\":4,\"translation\":[-16,-36,-36]},{\"mesh\":4,\"translation\":[-16,-36,-38]},{\"mesh\":4,\"translation\":[-16,-38,-34]},{\"mesh\":4,\"translation\":[-16,-38,-36]},{\"mesh\":4,\"translation\":[-16,-38,-38]},{\"mesh\":4,\"translation\":[-16,-38,-40]},{\"mesh\":4,\"translation\":[-16,-40,-34]},{\"mesh\":4,\"translation\":[-16,-40,-36]},{\"mesh\":4,\"translation\":[-16,-40,-38]},{\"mesh\":4,\"translation\":[-16,-40,-40]},{\"mesh\":4,\"translation\":[-16,-40,-42]},{\"mesh\":4,\"translation\":[-16,-40,-44]},{\"mesh\":4,\"translation\":[-16,-42,-32]},{\"mesh\":4,\"translation\":[-16,-42,-34]},{\"mesh\":4,\"translation\":[-16,-42,-36]},{\"mesh\":4,\"translation\":[-16,-42,-38]},{\"mesh\":4,\"translation\":[-16,-42,-40]},{\"mesh\":4,\"translation\":[-16,-42,-42]},{\"mesh\":4,\"translation\":[-16,-44,-32]},{\"mesh\":4,\"translation\":[-16,-44,-34]},{\"mesh\":4,\"translation\":[-16,-44,-36]},{\"mesh\":4,\"translation\":[-16,-44,-38]},{\"mesh\":4,\"translation\":[-16,-46,-34]},{\"mesh\":4,\"translation\":[-16,-46,-36]},{\"mesh\":5,\"translation\":[-17,-34,-32]},{\"mesh\":5,\"translation\":[-17,-34,-34]},{\"mesh\":5,\"translation\":[-17,-36,-32]},{\"mesh\":5,\"translation\":[-17,-36,-34]},{\"mesh\":5,\"translation\":[-17,-36,-36]},{\"mesh\":5,\"translation\":[-17,-36,-38]},{\"mesh\":5,\"translation\":[-17,-38,-34]},{\"mesh\":5,\"translation\":[-17,-38,-36]},{\"mesh\":5,\"translation\":[-17,-38,-38]},{\"mesh\":5,\"translation\":[-17,-38,-40]},{\"mesh\":5,\"translation\":[-17,-40,-34]},{\"mesh\":5,\"translation\":[-17,-40,-36]},{\"mesh\":5,\"translation\":[-17,-40,-38]},{\"mesh\":5,\"translation\":[-17,-40,-40]},{\"mesh\":5,\"translation\":[-17,-40,-42]},{\"mesh\":5,\"translation\":[-17,-40,-44]},{\"mesh\":5,\"translation\":[-17,-42,-32]},{\"mesh\":5,\"translation\":[-17,-42,-34]},{\"mesh\":5,\"translation\":[-17,-42,-36]},{\"mesh\":5,\"translation\":[-17,-42,-38]},{\"mesh\":5,\"translation\":[-17,-42,-40]},{\"mesh\":5,\"translation\":[-17,-42,-42]},{\"mesh\":5,\"translation\":[-17,-44,-32]},{\"mesh\":5,\"translation\":[-17,-44,-34]},{\"mesh\":5,\"translation\":[-17,-44,-36]},{\"mesh\":5,\"translation\":[-17,-44,-38]},{\"mesh\":5,\"translation\":[-17,-46,-34]},{\"mesh\":5,\"translation\":[-17,-46,-36]},{\"mesh\":3,\"translation\":[-17,-32,-32]},{\"mesh\":3,\"translation\":[-17,-34,-36]},{\"mesh\":3,\"translation\":[-17,-38,-32]},{\"mesh\":3,\"translation\":[-17,-38,-42]},{\"mesh\":3,\"translation\":[-17,-40,-32]},{\"mesh\":3,\"translation\":[-17,-44,-40]},{\"mesh\":3,\"translation\":[-17,-46,-32]},{\"mesh\":3,\"translation\":[-17,-48,-32]},{\"mesh\":3,\"translation\":[-17,-48,-34]},{\"mesh\":4,\"translation\":[-18,-32,-32]},{\"mesh\":4,\"translation\":[-18,-34,-32]},{\"mesh\":4,\"translation\":[-18,-36,-32]},{\"mesh\":4,\"translation\":[-18,-38,-32]},{\"mesh\":4,\"translation\":[-18,-36,-34]},{\"mesh\":4,\"translation\":[-18,-38,-34]},{\"mesh\":4,\"translation\":[-18,-36,-36]},{\"mesh\":4,\"translation\":[-18,-38,-36]},{\"mesh\":4,\"translation\":[-18,-36,-38]},{\"mesh\":4,\"translation\":[-18,-38,-38]},{\"mesh\":4,\"translation\":[-18,-40,-32]},{\"mesh\":4,\"translation\":[-18,-42,-32]},{\"mesh\":4,\"translation\":[-18,-40,-34]},{\"mesh\":4,\"translation\":[-18,-42,-34]},{\"mesh\":4,\"translation\":[-18,-40,-36]},{\"mesh\":4,\"translation\":[-18,-42,-36]},{\"mesh\":4,\"translation\":[-18,-40,-38]},{\"mesh\":4,\"translation\":[-18,-42,-38]},{\"mesh\":4,\"translation\":[-18,-40,-40]},{\"mesh\":4,\"translation\":[-18,-42,-40]},{\"mesh\":4,\"translation\":[-18,-40,-42]},{\"mesh\":4,\"translation\":[-18,-42,-42]},{\"mesh\":4,\"translation\":[-18,-44,-32]},{\"mesh\":4,\"translation\":[-18,-46,-32]},{\"mesh\":4,\"translation\":[-18,-44,-34]},{\"mesh\":4,\"translation\":[-18,-46,-34]},{\"mesh\":4,\"translation\":[-18,-44,-36]},{\"mesh\":4,\"translation\":[-18,-46,-36]},{\"mesh\":5,\"translation\":[-19,-32,-32]},{\"mesh\":5,\"translation\":[-19,-34,-32]},{\"mesh\":5,\"translation\":[-19,-36,-32]},{\"mesh\":5,\"translation\":[-19,-38,-32]},{\"mesh\":5,\"translation\":[-19,-36,-34]},{\"mesh\":5,\"translation\":[-19,-38,-34]},{\"mesh\":5,\"translation\":[-19,-36,-36]},{\"mesh\":5,\"translation\":[-19,-38,-36]},{\"mesh\":5,\"translation\":[-19,-36,-38]},{\"mesh\":5,\"translation\":[-19,-38,-38]},{\"mesh\":5,\"translation\":[-19,-40,-32]},{\"mesh\":5,\"translation\":[-19,-42,-32]},{\"mesh\":5,\"translation\":[-19,-40,-34]},{\"mesh\":5,\"translation\":[-19,-42,-34]},{\"mesh\":5,\"translation\":[-19,-40,-36]},{\"mesh\":5,\"translation\":[-19,-42,-36]},{\"mesh\":5,\"translation\":[-19,-40,-38]},{\"mesh\":5,\"translation\":[-19,-42,-38]},{\"mesh\":5,\"translation\":[-19,-40,-40]},{\"mesh\":5,\"translation\":[-19,-42,-40]},{\"mesh\":5,\"translation\":[-19,-40,-42]},{\"mesh\":5,\"translation\":[-19,-42,-42]},{\"mesh\":5,\"translation\":[-19,-44,-32]},{\"mesh\":5,\"translation\":[-19,-46,-32]},{\"mesh\":5,\"translation\":[-19,-44,-34]},{\"mesh\":5,\"translation\":[-19,-46,-34]},{\"mesh\":5,\"translation\":[-19,-44,-36]},{\"mesh\":5,\"translation\":[-19,-46,-36]},{\"mesh\":3,\"translation\":[-19,-34,-34]},{\"mesh\":3,\"translation\":[-19,-34,-36]},{\"mesh\":3,\"translation\":[-19,-38,-40]},{\"mesh\":3,\"translation\":[-19,-38,-42]},{\"mesh\":3,\"translation\":[-19,-40,-44]},{\"mesh\":3,\"translation\":[-19,-44,-38]},{\"mesh\":3,\"translation\":[-19,-44,-40]},{\"mesh\":3,\"translation\":[-19,-48,-32]},{\"mesh\":3,\"translation\":[-19,-48,-34]},{\"mesh\":4,\"translation\":[-20,-34,-34]},{\"mesh\":4,\"translation\":[-20,-34,-36]},{\"mesh\":4,\"translation\":[-20,-36,-34]},{\"mesh\":4,\"translation\":[-20,-36,-36]},{\"mesh\":4,\"translation\":[-20,-38,-32]},{\"mesh\":4,\"translation\":[-20,-38,-34]},{\"mesh\":4,\"translation\":[-20,-38,-36]},{\"mesh\":4,\"translation\":[-20,-38,-38]},{\"mesh\":4,\"translation\":[-20,-38,-40]},{\"mesh\":4,\"translation\":[-20,-38,-42]},{\"mesh\":4,\"translation\":[-20,-40,-32]},{\"mesh\":4,\"translation\":[-20,-40,-34]},{\"mesh\":4,\"translation\":[-20,-40,-36]},{\"mesh\":4,\"translation\":[-20,-40,-38]},{\"mesh\":4,\"translation\":[-20,-40,-40]},{\"mesh\":4,\"translation\":[-20,-40,-42]},{\"mesh\":4,\"translation\":[-20,-42,-34]},{\"mesh\":4,\"translation\":[-20,-42,-36]},{\"mesh\":4,\"translation\":[-20,-42,-38]},{\"mesh\":4,\"translation\":[-20,-42,-40]},{\"mesh\":4,\"translation\":[-20,-44,-34]},{\"mesh\":4,\"translation\":[-20,-44,-36]},{\"mesh\":4,\"translation\":[-20,-44,-38]},{\"mesh\":4,\"translation\":[-20,-44,-40]},{\"mesh\":4,\"translation\":[-20,-46,-32]},{\"mesh\":4,\"translation\":[-20,-46,-34]},{\"mesh\":4,\"translation\":[-20,-48,-32]},{\"mesh\":4,\"translation\":[-20,-48,-34]},{\"mesh\":5,\"translation\":[-21,-34,-34]},{\"mesh\":5,\"translation\":[-21,-34,-36]},{\"mesh\":5,\"translation\":[-21,-36,-34]},{\"mesh\":5,\"translation\":[-21,-36,-36]},{\"mesh\":5,\"translation\":[-21,-38,-32]},{\"mesh\":5,\"translation\":[-21,-38,-34]},{\"mesh\":5,\"translation\":[-21,-38,-36]},{\"mesh\":5,\"translation\":[-21,-38,-38]},{\"mesh\":5,\"translation\":[-21,-38,-40]},{\"mesh\":5,\"translation\":[-21,-38,-42]},{\"mesh\":5,\"translation\":[-21,-40,-32]},{\"mesh\":5,\"translation\":[-21,-40,-34]},{\"mesh\":5,\"translation\":[-21,-40,-36]},{\"mesh\":5,\"translation\":[-21,-40,-38]},{\"mesh\":5,\"translation\":[-21,-40,-40]},{\"mesh\":5,\"translation\":[-21,-40,-42]},{\"mesh\":5,\"translation\":[-21,-42,-34]},{\"mesh\":5,\"translation\":[-21,-42,-36]},{\"mesh\":5,\"translation\":[-21,-42,-38]},{\"mesh\":5,\"translation\":[-21,-42,-40]},{\"mesh\":5,\"translation\":[-21,-44,-34]},{\"mesh\":5,\"translation\":[-21,-44,-36]},{\"mesh\":5,\"translation\":[-21,-44,-38]},{\"mesh\":5,\"translation\":[-21,-44,-40]},{\"mesh\":5,\"translation\":[-21,-46,-32]},{\"mesh\":5,\"translation\":[-21,-46,-34]},{\"mesh\":5,\"translation\":[-21,-48,-32]},{\"mesh\":5,\"translation\":[-21,-48,-34]},{\"mesh\":3,\"translation\":[-21,-32,-32]},{\"mesh\":3,\"translation\":[-21,-34,-32]},{\"mesh\":3,\"translation\":[-21,-36,-32]},{\"mesh\":3,\"translation\":[-21,-36,-38]},{\"mesh\":3,\"translation\":[-21,-40,-44]},{\"mesh\":3,\"translation\":[-21,-42,-32]},{\"mesh\":3,\"translation\":[-21,-42,-42]},{\"mesh\":3,\"translation\":[-21,-44,-32]},{\"mesh\":3,\"translation\":[-21,-46,-36]},{\"mesh\":2,\"translation\":[-22,-32,-32]},{\"mesh\":2,\"translation\":[-22,-34,-34]},{\"mesh\":2,\"translation\":[-22,-36,-32]},{\"mesh\":2,\"translation\":[-22,-36,-34]},{\"mesh\":2,\"translation\":[-22,-36,-36]},{\"mesh\":2,\"translation\":[-22,-36,-38]},{\"mesh\":2,\"translation\":[-22,-38,-32]},{\"mesh\":2,\"translation\":[-22,-38,-36]},{\"mesh\":2,\"translation\":[-22,-38,-40]},{\"mesh\":2,\"translation\":[-22,-40,-32]},{\"mesh\":2,\"translation\":[-22,-40,-34]},{\"mesh\":2,\"translation\":[-22,-40,-36]},{\"mesh\":2,\"translation\":[-22,-40,-38]},{\"mesh\":2,\"translation\":[-22,-40,-40]},{\"mesh\":2,\"translation\":[-22,-40,-42]},{\"mesh\":2,\"translation\":[-22,-40,-44]},{\"mesh\":2,\"translation\":[-22,-42,-34]},{\"mesh\":2,\"translation\":[-22,-42,-38]},{\"mesh\":2,\"translation\":[-22,-42,-42]},{\"mesh\":2,\"translation\":[-22,-44,-32]},{\"mesh\":2,\"translation\":[-22,-44,-34]},{\"mesh\":2,\"translation\":[-22,-44,-36]},{\"mesh\":2,\"translation\":[-22,-44,-38]},{\"mesh\":2,\"translation\":[-22,-44,-40]},{\"mesh\":2,\"translation\":[-22,-46,-32]},{\"mesh\":2,\"translation\":[-22,-46,-36]},{\"mesh\":2,\"translation\":[-22,-48,-32]},{\"mesh\":2,\"translation\":[-22,-48,-34]},{\"mesh\":3,\"translation\":[-23,-32,-32]},{\"mesh\":3,\"translation\":[-23,-34,-34]},{\"mesh\":3,\"translation\":[-23,-36,-32]},{\"mesh\":3,\"translation\":[-23,-36,-34]},{\"mesh\":3,\"translation\":[-23,-36,-36]},{\"mesh\":3,\"translation\":[-23,-36,-38]},{\"mesh\":3,\"translation\":[-23,-38,-32]},{\"mesh\":3,\"translation\":[-23,-38,-36]},{\"mesh\":3,\"translation\":[-23,-38,-40]},{\"mesh\":3,\"translation\":[-23,-40,-32]},{\"mesh\":3,\"translation\":[-23,-40,-34]},{\"mesh\":3,\"translation\":[-23,-40,-36]},{\"mesh\":3,\"translation\":[-23,-40,-38]},{\"mesh\":3,\"translation\":[-23,-40,-40]},{\"mesh\":3,\"translation\":[-23,-40,-42]},{\"mesh\":3,\"translation\":[-23,-40,-44]},{\"mesh\":3,\"translation\":[-23,-42,-34]},{\"mesh\":3,\"translation\":[-23,-42,-38]},{\"mesh\":3,\"translation\":[-23,-42,-42]},{\"mesh\":3,\"translation\":[-23,-44,-32]},{\"mesh\":3,\"translation\":[-23,-44,-34]},{\"mesh\":3,\"translation\":[-23,-44,-36]},{\"mesh\":3,\"translation\":[-23,-44,-38]},{\"mesh\":3,\"translation\":[-23,-44,-40]},{\"mesh\":3,\"translation\":[-23,-46,-32]},{\"mesh\":3,\"translation\":[-23,-46,-36]},{\"mesh\":3,\"translation\":[-23,-48,-32]},{\"mesh\":3,\"translation\":[-23,-48,-34]},{\"mesh\":3,\"translation\":[-23,-34,-32]},{\"mesh\":3,\"translation\":[-23,-34,-36]},{\"mesh\":3,\"translation\":[-23,-38,-34]},{\"mesh\":3,\"translation\":[-23,-38,-38]},{\"mesh\":3,\"translation\":[-23,-38,-42]},{\"mesh\":3,\"translation\":[-23,-42,-32]},{\"mesh\":3,\"translation\":[-23,-42,-36]},{\"mesh\":3,\"translation\":[-23,-42,-40]},{\"mesh\":3,\"translation\":[-23,-46,-34]},{\"mesh\":4,\"translation\":[-24,-34,-32]},{\"mesh\":4,\"translation\":[-24,-36,-32]},{\"mesh\":4,\"translation\":[-24,-34,-36]},{\"mesh\":4,\"translation\":[-24,-36,-36]},{\"mesh\":4,\"translation\":[-24,-38,-34]},{\"mesh\":4,\"translation\":[-24,-40,-34]},{\"mesh\":4,\"translation\":[-24,-38,-38]},{\"mesh\":4,\"translation\":[-24,-40,-38]},{\"mesh\":4,\"translation\":[-24,-38,-42]},{\"mesh\":4,\"translation\":[-24,-40,-42]},{\"mesh\":4,\"translation\":[-24,-42,-32]},{\"mesh\":4,\"translation\":[-24,-44,-32]},{\"mesh\":4,\"translation\":[-24,-42,-36]},{\"mesh\":4,\"translation\":[-24,-44,-36]},{\"mesh\":4,\"translation\":[-24,-42,-40]},{\"mesh\":4,\"translation\":[-24,-44,-40]},{\"mesh\":4,\"translation\":[-24,-46,-34]},{\"mesh\":4,\"translation\":[-24,-48,-34]},{\"mesh\":5,\"translation\":[-25,-34,-32]},{\"mesh\":5,\"translation\":[-25,-36,-32]},{\"mesh\":5,\"translation\":[-25,-34,-36]},{\"mesh\":5,\"translation\":[-25,-36,-36]},{\"mesh\":5,\"translation\":[-25,-38,-34]},{\"mesh\":5,\"translation\":[-25,-40,-34]},{\"mesh\":5,\"translation\":[-25,-38,-38]},{\"mesh\":5,\"translation\":[-25,-40,-38]},{\"mesh\":5,\"translation\":[-25,-38,-42]},{\"mesh\":5,\"translation\":[-25,-40,-42]},{\"mesh\":5,\"translation\":[-25,-42,-32]},{\"mesh\":5,\"translation\":[-25,-44,-32]},{\"mesh\":5,\"translation\":[-25,-42,-36]},{\"mesh\":5,\"translation\":[-25,-44,-36]},{\"mesh\":5,\"translation\":[-25,-42,-40]},{\"mesh\":5,\"translation\":[-25,-44,-40]},{\"mesh\":5,\"translation\":[-25,-46,-34]},{\"mesh\":5,\"translation\":[-25,-48,-34]},{\"mesh\":3,\"translation\":[-25,-32,-32]},{\"mesh\":3,\"translation\":[-25,-34,-34]},{\"mesh\":3,\"translation\":[-25,-36,-34]},{\"mesh\":3,\"translation\":[-25,-36,-38]},{\"mesh\":3,\"translation\":[-25,-38,-32]},{\"mesh\":3,\"translation\":[-25,-38,-36]},{\"mesh\":3,\"translation\":[-25,-38,-40]},{\"mesh\":3,\"translation\":[-25,-40,-32]},{\"mesh\":3,\"translation\":[-25,-40,-36]},{\"mesh\":3,\"translation\":[-25,-40,-40]},{\"mesh\":3,\"translation\":[-25,-40,-44]},{\"mesh\":3,\"translation\":[-25,-42,-34]},{\"mesh\":3,\"translation\":[-25,-42,-38]},{\"mesh\":3,\"translation\":[-25,-42,-42]},{\"mesh\":3,\"translation\":[-25,-44,-34]},{\"mesh\":3,\"translation\":[-25,-44,-38]},{\"mesh\":3,\"translation\":[-25,-46,-32]},{\"mesh\":3,\"translation\":[-25,-46,-36]},{\"mesh\":3,\"translation\":[-25,-48,-32]},{\"mesh\":2,\"translation\":[-26,-34,-32]},{\"mesh\":2,\"translation\":[-26,-34,-36]},{\"mesh\":2,\"translation\":[-26,-36,-32]},{\"mesh\":2,\"translation\":[-26,-36,-36]},{\"mesh\":2,\"translation\":[-26,-38,-34]},{\"mesh\":2,\"translation\":[-26,-38,-38]},{\"mesh\":2,\"translation\":[-26,-38,-42]},{\"mesh\":2,\"translation\":[-26,-40,-34]},{\"mesh\":2,\"translation\":[-26,-40,-38]},{\"mesh\":2,\"translation\":[-26,-40,-42]},{\"mesh\":2,\"translation\":[-26,-42,-32]},{\"mesh\":2,\"translation\":[-26,-42,-36]},{\"mesh\":2,\"translation\":[-26,-42,-40]},{\"mesh\":2,\"translation\":[-26,-44,-32]},{\"mesh\":2,\"translation\":[-26,-44,-36]},{\"mesh\":2,\"translation\":[-26,-44,-40]},{\"mesh\":2,\"translation\":[-26,-46,-34]},{\"mesh\":2,\"translation\":[-26,-48,-34]},{\"mesh\":3,\"translation\":[-27,-34,-32]},{\"mesh\":3,\"translation\":[-27,-34,-36]},{\"mesh\":3,\"translation\":[-27,-36,-32]},{\"mesh\":3,\"translation\":[-27,-36,-36]},{\"mesh\":3,\"translation\":[-27,-38,-34]},{\"mesh\":3,\"translation\":[-27,-38,-38]},{\"mesh\":3,\"translation\":[-27,-38,-42]},{\"mesh\":3,\"translation\":[-27,-40,-34]},{\"mesh\":3,\"translation\":[-27,-40,-38]},{\"mesh\":3,\"translation\":[-27,-40,-42]},{\"mesh\":3,\"translation\":[-27,-42,-32]},{\"mesh\":3,\"translation\":[-27,-42,-36]},{\"mesh\":3,\"translation\":[-27,-42,-40]},{\"mesh\":3,\"translation\":[-27,-44,-32]},{\"mesh\":3,\"translation\":[-27,-44,-36]},{\"mesh\":3,\"translation\":[-27,-44,-40]},{\"mesh\":3,\"translation\":[-27,-46,-34]},{\"mesh\":3,\"translation\":[-27,-48,-34]},{\"mesh\":3,\"translation\":[-27,-32,-32]},{\"mesh\":3,\"translation\":[-27,-34,-34]},{\"mesh\":3,\"translation\":[-27,-36,-34]},{\"mesh\":3,\"translation\":[-27,-36,-38]},{\"mesh\":3,\"translation\":[-27,-38,-32]},{\"mesh\":3,\"translation\":[-27,-38,-36]},{\"mesh\":3,\"translation\":[-27,-38,-40]},{\"mesh\":3,\"translation\":[-27,-40,-32]},{\"mesh\":3,\"translation\":[-27,-40,-36]},{\"mesh\":3,\"translation\":[-27,-40,-40]},{\"mesh\":3,\"translation\":[-27,-40,-44]},{\"mesh\":3,\"translation\":[-27,-42,-34]},{\"mesh\":3,\"translation\":[-27,-42,-38]},{\"mesh\":3,\"translation\":[-27,-42,-42]},{\"mesh\":3,\"translation\":[-27,-44,-34]},{\"mesh\":3,\"translation\":[-27,-44,-38]},{\"mesh\":3,\"translation\":[-27,-46,-32]},{\"mesh\":3,\"translation\":[-27,-46,-36]},{\"mesh\":3,\"translation\":[-27,-48,-32]},{\"mesh\":6,\"translation\":[-28,-34,-32]},{\"mesh\":6,\"translation\":[-28,-34,-36]},{\"mesh\":6,\"translation\":[-28,-38,-34]},{\"mesh\":6,\"translation\":[-28,-38,-38]},{\"mesh\":6,\"translation\":[-28,-38,-42]},{\"mesh\":6,\"translation\":[-28,-42,-32]},{\"mesh\":6,\"translation\":[-28,-42,-36]},{\"mesh\":6,\"translation\":[-28,-42,-40]},{\"mesh\":6,\"translation\":[-28,-46,-34]},{\"mesh\":6,\"translation\":[-28,-36,-32]},{\"mesh\":6,\"translation\":[-28,-36,-36]},{\"mesh\":6,\"translation\":[-28,-40,-34]},{\"mesh\":6,\"translation\":[-28,-40,-38]},{\"mesh\":6,\"translation\":[-28,-40,-42]},{\"mesh\":6,\"translation\":[-28,-44,-32]},{\"mesh\":6,\"translation\":[-28,-44,-36]},{\"mesh\":6,\"translation\":[-28,-44,-40]},{\"mesh\":6,\"translation\":[-28,-48,-34]},{\"mesh\":3,\"translation\":[-29,-34,-32]},{\"mesh\":3,\"translation\":[-29,-34,-36]},{\"mesh\":3,\"translation\":[-29,-38,-34]},{\"mesh\":3,\"translation\":[-29,-38,-38]},{\"mesh\":3,\"translation\":[-29,-38,-42]},{\"mesh\":3,\"translation\":[-29,-42,-32]},{\"mesh\":3,\"translation\":[-29,-42,-36]},{\"mesh\":3,\"translation\":[-29,-42,-40]},{\"mesh\":3,\"translation\":[-29,-46,-34]},{\"mesh\":3,\"translation\":[-29,-36,-32]},{\"mesh\":3,\"translation\":[-29,-36,-36]},{\"mesh\":3,\"translation\":[-29,-40,-34]},{\"mesh\":3,\"translation\":[-29,-40,-38]},{\"mesh\":3,\"translation\":[-29,-40,-42]},{\"mesh\":3,\"translation\":[-29,-44,-32]},{\"mesh\":3,\"translation\":[-29,-44,-36]},{\"mesh\":3,\"translation\":[-29,-44,-40]},{\"mesh\":3,\"translation\":[-29,-48,-34]},{\"mesh\":3,\"translation\":[-29,-32,-32]},{\"mesh\":3,\"translation\":[-29,-34,-34]},{\"mesh\":3,\"translation\":[-29,-36,-34]},{\"mesh\":3,\"translation\":[-29,-36,-38]},{\"mesh\":3,\"translation\":[-29,-38,-32]},{\"mesh\":3,\"translation\":[-29,-38,-36]},{\"mesh\":3,\"translation\":[-29,-38,-40]},{\"mesh\":3,\"translation\":[-29,-40,-32]},{\"mesh\":3,\"translation\":[-29,-40,-36]},{\"mesh\":3,\"translation\":[-29,-40,-40]},{\"mesh\":3,\"translation\":[-29,-40,-44]},{\"mesh\":3,\"translation\":[-29,-42,-34]},{\"mesh\":3,\"translation\":[-29,-42,-38]},{\"mesh\":3,\"translation\":[-29,-42,-42]},{\"mesh\":3,\"translation\":[-29,-44,-34]},{\"mesh\":3,\"translation\":[-29,-44,-38]},{\"mesh\":3,\"translation\":[-29,-46,-32]},{\"mesh\":3,\"translation\":[-29,-46,-36]},{\"mesh\":3,\"translation\":[-29,-48,-32]},{\"mesh\":3,\"translation\":[-30,-32,-32]},{\"mesh\":3,\"translation\":[-30,-34,-34]},{\"mesh\":3,\"translation\":[-30,-36,-34]},{\"mesh\":3,\"translation\":[-30,-36,-38]},{\"mesh\":3,\"translation\":[-30,-38,-32]},{\"mesh\":3,\"translation\":[-30,-38,-36]},{\"mesh\":3,\"translation\":[-30,-38,-40]},{\"mesh\":3,\"translation\":[-30,-40,-32]},{\"mesh\":3,\"translation\":[-30,-40,-36]},{\"mesh\":3,\"translation\":[-30,-40,-40]},{\"mesh\":3,\"translation\":[-30,-40,-44]},{\"mesh\":3,\"translation\":[-30,-42,-34]},{\"mesh\":3,\"translation\":[-30,-42,-38]},{\"mesh\":3,\"translation\":[-30,-42,-42]},{\"mesh\":3,\"translation\":[-30,-44,-34]},{\"mesh\":3,\"translation\":[-30,-44,-38]},{\"mesh\":3,\"translation\":[-30,-46,-32]},{\"mesh\":3,\"translation\":[-30,-46,-36]},{\"mesh\":3,\"translation\":[-30,-48,-32]},{\"mesh\":0,\"translation\":[-32,-34,-32]},{\"mesh\":0,\"translation\":[-32,-34,-36]},{\"mesh\":0,\"translation\":[-32,-38,-34]},{\"mesh\":0,\"translation\":[-32,-38,-38]},{\"mesh\":0,\"translation\":[-32,-38,-42]},{\"mesh\":0,\"translation\":[-32,-42,-32]},{\"mesh\":0,\"translation\":[-32,-42,-36]},{\"mesh\":0,\"translation\":[-32,-42,-40]},{\"mesh\":0,\"translation\":[-32,-46,-34]},{\"mesh\":0,\"translation\":[-32,-36,-32]},{\"mesh\":0,\"translation\":[-32,-36,-36]},{\"mesh\":0,\"translation\":[-32,-40,-34]},{\"mesh\":0,\"translation\":[-32,-40,-38]},{\"mesh\":0,\"translation\":[-32,-40,-42]},{\"mesh\":0,\"translation\":[-32,-44,-32]},{\"mesh\":0,\"translation\":[-32,-44,-36]},{\"mesh\":0,\"translation\":[-32,-44,-40]},{\"mesh\":0,\"translation\":[-32,-48,-34]},{\"mesh\":1,\"translation\":[-33,-34,-32]},{\"mesh\":1,\"translation\":[-33,-34,-36]},{\"mesh\":1,\"translation\":[-33,-38,-34]},{\"mesh\":1,\"translation\":[-33,-38,-38]},{\"mesh\":1,\"translation\":[-33,-38,-42]},{\"mesh\":1,\"translation\":[-33,-42,-32]},{\"mesh\":1,\"translation\":[-33,-42,-36]},{\"mesh\":1,\"translation\":[-33,-42,-40]},{\"mesh\":1,\"translation\":[-33,-46,-34]},{\"mesh\":1,\"translation\":[-33,-36,-32]},{\"mesh\":1,\"translation\":[-33,-36,-36]},{\"mesh\":1,\"translation\":[-33,-40,-34]},{\"mesh\":1,\"translation\":[-33,-40,-38]},{\"mesh\":1,\"translation\":[-33,-40,-42]},{\"mesh\":1,\"translation\":[-33,-44,-32]},{\"mesh\":1,\"translation\":[-33,-44,-36]},{\"mesh\":1,\"translation\":[-33,-44,-40]},{\"mesh\":1,\"translation\":[-33,-48,-34]},{\"mesh\":3,\"translation\":[-33,-32,-32]},{\"mesh\":3,\"translation\":[-33,-34,-34]},{\"mesh\":3,\"translation\":[-33,-36,-34]},{\"mesh\":3,\"translation\":[-33,-36,-38]},{\"mesh\":3,\"translation\":[-33,-38,-32]},{\"mesh\":3,\"translation\":[-33,-38,-36]},{\"mesh\":3,\"translation\":[-33,-38,-40]},{\"mesh\":3,\"translation\":[-33,-40,-32]},{\"mesh\":3,\"translation\":[-33,-40,-36]},{\"mesh\":3,\"translation\":[-33,-40,-40]},{\"mesh\":3,\"translation\":[-33,-40,-44]},{\"mesh\":3,\"translation\":[-33,-42,-34]},{\"mesh\":3,\"translation\":[-33,-42,-38]},{\"mesh\":3,\"translation\":[-33,-42,-42]},{\"mesh\":3,\"translation\":[-33,-44,-34]},{\"mesh\":3,\"translation\":[-33,-44,-38]},{\"mesh\":3,\"translation\":[-33,-46,-32]},{\"mesh\":3,\"translation\":[-33,-46,-36]},{\"mesh\":3,\"translation\":[-33,-48,-32]},{\"mesh\":3,\"translation\":[-34,-32,-32]},{\"mesh\":3,\"translation\":[-34,-34,-34]},{\"mesh\":3,\"translation\":[-34,-36,-34]},{\"mesh\":3,\"translation\":[-34,-36,-38]},{\"mesh\":3,\"translation\":[-34,-38,-32]},{\"mesh\":3,\"translation\":[-34,-38,-36]},{\"mesh\":3,\"translation\":[-34,-38,-40]},{\"mesh\":3,\"translation\":[-34,-40,-32]},{\"mesh\":3,\"translation\":[-34,-40,-36]},{\"mesh\":3,\"translation\":[-34,-40,-40]},{\"mesh\":3,\"translation\":[-34,-40,-44]},{\"mesh\":3,\"translation\":[-34,-42,-34]},{\"mesh\":3,\"translation\":[-34,-42,-38]},{\"mesh\":3,\"translation\":[-34,-42,-42]},{\"mesh\":3,\"translation\":[-34,-44,-34]},{\"mesh\":3,\"translation\":[-34,-44,-38]},{\"mesh\":3,\"translation\":[-34,-46,-32]},{\"mesh\":3,\"translation\":[-34,-46,-36]},{\"mesh\":3,\"translation\":[-34,-48,-32]},{\"mesh\":2,\"translation\":[-35,-34,-32]},{\"mesh\":2,\"translation\":[-35,-34,-36]},{\"mesh\":2,\"translation\":[-35,-36,-32]},{\"mesh\":2,\"translation\":[-35,-36,-36]},{\"mesh\":2,\"translation\":[-35,-38,-34]},{\"mesh\":2,\"translation\":[-35,-38,-38]},{\"mesh\":2,\"translation\":[-35,-38,-42]},{\"mesh\":2,\"translation\":[-35,-40,-34]},{\"mesh\":2,\"translation\":[-35,-40,-38]},{\"mesh\":2,\"translation\":[-35,-40,-42]},{\"mesh\":2,\"translation\":[-35,-42,-32]},{\"mesh\":2,\"translation\":[-35,-42,-36]},{\"mesh\":2,\"translation\":[-35,-42,-40]},{\"mesh\":2,\"translation\":[-35,-44,-32]},{\"mesh\":2,\"translation\":[-35,-44,-36]},{\"mesh\":2,\"translation\":[-35,-44,-40]},{\"mesh\":2,\"translation\":[-35,-46,-34]},{\"mesh\":2,\"translation\":[-35,-48,-34]},{\"mesh\":3,\"translation\":[-36,-34,-32]},{\"mesh\":3,\"translation\":[-36,-34,-36]},{\"mesh\":3,\"translation\":[-36,-36,-32]},{\"mesh\":3,\"translation\":[-36,-36,-36]},{\"mesh\":3,\"translation\":[-36,-38,-34]},{\"mesh\":3,\"translation\":[-36,-38,-38]},{\"mesh\":3,\"translation\":[-36,-38,-42]},{\"mesh\":3,\"translation\":[-36,-40,-34]},{\"mesh\":3,\"translation\":[-36,-40,-38]},{\"mesh\":3,\"translation\":[-36,-40,-42]},{\"mesh\":3,\"translation\":[-36,-42,-32]},{\"mesh\":3,\"translation\":[-36,-42,-36]},{\"mesh\":3,\"translation\":[-36,-42,-40]},{\"mesh\":3,\"translation\":[-36,-44,-32]},{\"mesh\":3,\"translation\":[-36,-44,-36]},{\"mesh\":3,\"translation\":[-36,-44,-40]},{\"mesh\":3,\"translation\":[-36,-46,-34]},{\"mesh\":3,\"translation\":[-36,-48,-34]},{\"mesh\":3,\"translation\":[-36,-32,-32]},{\"mesh\":3,\"translation\":[-36,-34,-34]},{\"mesh\":3,\"translation\":[-36,-36,-34]},{\"mesh\":3,\"translation\":[-36,-36,-38]},{\"mesh\":3,\"translation\":[-36,-38,-32]},{\"mesh\":3,\"translation\":[-36,-38,-36]},{\"mesh\":3,\"translation\":[-36,-38,-40]},{\"mesh\":3,\"translation\":[-36,-40,-32]},{\"mesh\":3,\"translation\":[-36,-40,-36]},{\"mesh\":3,\"translation\":[-36,-40,-40]},{\"mesh\":3,\"translation\":[-36,-40,-44]},{\"mesh\":3,\"translation\":[-36,-42,-34]},{\"mesh\":3,\"translation\":[-36,-42,-38]},{\"mesh\":3,\"translation\":[-36,-42,-42]},{\"mesh\":3,\"translation\":[-36,-44,-34]},{\"mesh\":3,\"translation\":[-36,-44,-38]},{\"mesh\":3,\"translation\":[-36,-46,-32]},{\"mesh\":3,\"translation\":[-36,-46,-36]},{\"mesh\":3,\"translation\":[-36,-48,-32]},{\"mesh\":4,\"translation\":[-37,-34,-32]},{\"mesh\":4,\"translation\":[-37,-36,-32]},{\"mesh\":4,\"translation\":[-37,-34,-36]},{\"mesh\":4,\"translation\":[-37,-36,-36]},{\"mesh\":4,\"translation\":[-37,-38,-34]},{\"mesh\":4,\"translation\":[-37,-40,-34]},{\"mesh\":4,\"translation\":[-37,-38,-38]},{\"mesh\":4,\"translation\":[-37,-40,-38]},{\"mesh\":4,\"translation\":[-37,-38,-42]},{\"mesh\":4,\"translation\":[-37,-40,-42]},{\"mesh\":4,\"translation\":[-37,-42,-32]},{\"mesh\":4,\"translation\":[-37,-44,-32]},{\"mesh\":4,\"translation\":[-37,-42,-36]},{\"mesh\":4,\"translation\":[-37,-44,-36]},{\"mesh\":4,\"translation\":[-37,-42,-40]},{\"mesh\":4,\"translation\":[-37,-44,-40]},{\"mesh\":4,\"translation\":[-37,-46,-34]},{\"mesh\":4,\"translation\":[-37,-48,-34]},{\"mesh\":5,\"translation\":[-38,-34,-32]},{\"mesh\":5,\"translation\":[-38,-36,-32]},{\"mesh\":5,\"translation\":[-38,-34,-36]},{\"mesh\":5,\"translation\":[-38,-36,-36]},{\"mesh\":5,\"translation\":[-38,-38,-34]},{\"mesh\":5,\"translation\":[-38,-40,-34]},{\"mesh\":5,\"translation\":[-38,-38,-38]},{\"mesh\":5,\"translation\":[-38,-40,-38]},{\"mesh\":5,\"translation\":[-38,-38,-42]},{\"mesh\":5,\"translation\":[-38,-40,-42]},{\"mesh\":5,\"translation\":[-38,-42,-32]},{\"mesh\":5,\"translation\":[-38,-44,-32]},{\"mesh\":5,\"translation\":[-38,-42,-36]},{\"mesh\":5,\"translation\":[-38,-44,-36]},{\"mesh\":5,\"translation\":[-38,-42,-40]},{\"mesh\":5,\"translation\":[-38,-44,-40]},{\"mesh\":5,\"translation\":[-38,-46,-34]},{\"mesh\":5,\"translation\":[-38,-48,-34]},{\"mesh\":3,\"translation\":[-38,-32,-32]},{\"mesh\":3,\"translation\":[-38,-34,-34]},{\"mesh\":3,\"translation\":[-38,-36,-34]},{\"mesh\":3,\"translation\":[-38,-36,-38]},{\"mesh\":3,\"translation\":[-38,-38,-32]},{\"mesh\":3,\"translation\":[-38,-38,-36]},{\"mesh\":3,\"translation\":[-38,-38,-40]},{\"mesh\":3,\"translation\":[-38,-40,-32]},{\"mesh\":3,\"translation\":[-38,-40,-36]},{\"mesh\":3,\"translation\":[-38,-40,-40]},{\"mesh\":3,\"translation\":[-38,-40,-44]},{\"mesh\":3,\"translation\":[-38,-42,-34]},{\"mesh\":3,\"translation\":[-38,-42,-38]},{\"mesh\":3,\"translation\":[-38,-42,-42]},{\"mesh\":3,\"translation\":[-38,-44,-34]},{\"mesh\":3,\"translation\":[-38,-44,-38]},{\"mesh\":3,\"translation\":[-38,-46,-32]},{\"mesh\":3,\"translation\":[-38,-46,-36]},{\"mesh\":3,\"translation\":[-38,-48,-32]},{\"mesh\":2,\"translation\":[-39,-34,-32]},{\"mesh\":2,\"translation\":[-39,-34,-36]},{\"mesh\":2,\"translation\":[-39,-38,-34]},{\"mesh\":2,\"translation\":[-39,-38,-38]},{\"mesh\":2,\"translation\":[-39,-38,-42]},{\"mesh\":2,\"translation\":[-39,-42,-32]},{\"mesh\":2,\"translation\":[-39,-42,-36]},{\"mesh\":2,\"translation\":[-39,-42,-40]},{\"mesh\":2,\"translation\":[-39,-46,-34]},{\"mesh\":3,\"translation\":[-40,-34,-32]},{\"mesh\":3,\"translation\":[-40,-34,-36]},{\"mesh\":3,\"translation\":[-40,-38,-34]},{\"mesh\":3,\"translation\":[-40,-38,-38]},{\"mesh\":3,\"translation\":[-40,-38,-42]},{\"mesh\":3,\"translation\":[-40,-42,-32]},{\"mesh\":3,\"translation\":[-40,-42,-36]},{\"mesh\":3,\"translation\":[-40,-42,-40]},{\"mesh\":3,\"translation\":[-40,-46,-34]},{\"mesh\":3,\"translation\":[-40,-32,-32]},{\"mesh\":3,\"translation\":[-40,-34,-34]},{\"mesh\":3,\"translation\":[-40,-36,-32]},{\"mesh\":3,\"translation\":[-40,-36,-34]},{\"mesh\":3,\"translation\":[-40,-36,-36]},{\"mesh\":3,\"translation\":[-40,-36,-38]},{\"mesh\":3,\"translation\":[-40,-38,-32]},{\"mesh\":3,\"translation\":[-40,-38,-36]},{\"mesh\":3,\"translation\":[-40,-38,-40]},{\"mesh\":3,\"translation\":[-40,-40,-32]},{\"mesh\":3,\"translation\":[-40,-40,-34]},{\"mesh\":3,\"translation\":[-40,-40,-36]},{\"mesh\":3,\"translation\":[-40,-40,-38]},{\"mesh\":3,\"translation\":[-40,-40,-40]},{\"mesh\":3,\"translation\":[-40,-40,-42]},{\"mesh\":3,\"translation\":[-40,-40,-44]},{\"mesh\":3,\"translation\":[-40,-42,-34]},{\"mesh\":3,\"translation\":[-40,-42,-38]},{\"mesh\":3,\"translation\":[-40,-42,-42]},{\"mesh\":3,\"translation\":[-40,-44,-32]},{\"mesh\":3,\"translation\":[-40,-44,-34]},{\"mesh\":3,\"translation\":[-40,-44,-36]},{\"mesh\":3,\"translation\":[-40,-44,-38]},{\"mesh\":3,\"translation\":[-40,-44,-40]},{\"mesh\":3,\"translation\":[-40,-46,-32]},{\"mesh\":3,\"translation\":[-40,-46,-36]},{\"mesh\":3,\"translation\":[-40,-48,-32]},{\"mesh\":3,\"translation\":[-40,-48,-34]},{\"mesh\":4,\"translation\":[-41,-34,-32]},{\"mesh\":4,\"translation\":[-41,-34,-34]},{\"mesh\":4,\"translation\":[-41,-36,-32]},{\"mesh\":4,\"translation\":[-41,-36,-34]},{\"mesh\":4,\"translation\":[-41,-36,-36]},{\"mesh\":4,\"translation\":[-41,-36,-38]},{\"mesh\":4,\"translation\":[-41,-38,-34]},{\"mesh\":4,\"translation\":[-41,-38,-36]},{\"mesh\":4,\"translation\":[-41,-38,-38]},{\"mesh\":4,\"translation\":[-41,-38,-40]},{\"mesh\":4,\"translation\":[-41,-40,-34]},{\"mesh\":4,\"translation\":[-41,-40,-36]},{\"mesh\":4,\"translation\":[-41,-40,-38]},{\"mesh\":4,\"translation\":[-41,-40,-40]},{\"mesh\":4,\"translation\":[-41,-40,-42]},{\"mesh\":4,\"translation\":[-41,-40,-44]},{\"mesh\":4,\"translation\":[-41,-42,-32]},{\"mesh\":4,\"translation\":[-41,-42,-34]},{\"mesh\":4,\"translation\":[-41,-42,-36]},{\"mesh\":4,\"translation\":[-41,-42,-38]},{\"mesh\":4,\"translation\":[-41,-42,-40]},{\"mesh\":4,\"translation\":[-41,-42,-42]},{\"mesh\":4,\"translation\":[-41,-44,-32]},{\"mesh\":4,\"translation\":[-41,-44,-34]},{\"mesh\":4,\"translation\":[-41,-44,-36]},{\"mesh\":4,\"translation\":[-41,-44,-38]},{\"mesh\":4,\"translation\":[-41,-46,-34]},{\"mesh\":4,\"translation\":[-41,-46,-36]},{\"mesh\":5,\"translation\":[-42,-34,-32]},{\"mesh\":5,\"translation\":[-42,-34,-34]},{\"mesh\":5,\"translation\":[-42,-36,-32]},{\"mesh\":5,\"translation\":[-42,-36,-34]},{\"mesh\":5,\"translation\":[-42,-36,-36]},{\"mesh\":5,\"translation\":[-42,-36,-38]},{\"mesh\":5,\"translation\":[-42,-38,-34]},{\"mesh\":5,\"translation\":[-42,-38,-36]},{\"mesh\":5,\"translation\":[-42,-38,-38]},{\"mesh\":5,\"translation\":[-42,-38,-40]},{\"mesh\":5,\"translation\":[-42,-40,-34]},{\"mesh\":5,\"translation\":[-42,-40,-36]},{\"mesh\":5,\"translation\":[-42,-40,-38]},{\"mesh\":5,\"translation\":[-42,-40,-40]},{\"mesh\":5,\"translation\":[-42,-40,-42]},{\"mesh\":5,\"translation\":[-42,-40,-44]},{\"mesh\":5,\"translation\":[-42,-42,-32]},{\"mesh\":5,\"translation\":[-42,-42,-34]},{\"mesh\":5,\"translation\":[-42,-42,-36]},{\"mesh\":5,\"translation\":[-42,-42,-38]},{\"mesh\":5,\"translation\":[-42,-42,-40]},{\"mesh\":5,\"translation\":[-42,-42,-42]},{\"mesh\":5,\"translation\":[-42,-44,-32]},{\"mesh\":5,\"translation\":[-42,-44,-34]},{\"mesh\":5,\"translation\":[-42,-44,-36]},{\"mesh\":5,\"translation\":[-42,-44,-38]},{\"mesh\":5,\"translation\":[-42,-46,-34]},{\"mesh\":5,\"translation\":[-42,-46,-36]},{\"mesh\":3,\"translation\":[-42,-32,-32]},{\"mesh\":3,\"translation\":[-42,-34,-36]},{\"mesh\":3,\"translation\":[-42,-38,-32]},{\"mesh\":3,\"translation\":[-42,-38,-42]},{\"mesh\":3,\"translation\":[-42,-40,-32]},{\"mesh\":3,\"translation\":[-42,-44,-40]},{\"mesh\":3,\"translation\":[-42,-46,-32]},{\"mesh\":3,\"translation\":[-42,-48,-32]},{\"mesh\":3,\"translation\":[-42,-48,-34]},{\"mesh\":4,\"translation\":[-43,-32,-32]},{\"mesh\":4,\"translation\":[-43,-34,-32]},{\"mesh\":4,\"translation\":[-43,-36,-32]},{\"mesh\":4,\"translation\":[-43,-38,-32]},{\"mesh\":4,\"translation\":[-43,-36,-34]},{\"mesh\":4,\"translation\":[-43,-38,-34]},{\"mesh\":4,\"translation\":[-43,-36,-36]},{\"mesh\":4,\"translation\":[-43,-38,-36]},{\"mesh\":4,\"translation\":[-43,-36,-38]},{\"mesh\":4,\"translation\":[-43,-38,-38]},{\"mesh\":4,\"translation\":[-43,-40,-32]},{\"mesh\":4,\"translation\":[-43,-42,-32]},{\"mesh\":4,\"translation\":[-43,-40,-34]},{\"mesh\":4,\"translation\":[-43,-42,-34]},{\"mesh\":4,\"translation\":[-43,-40,-36]},{\"mesh\":4,\"translation\":[-43,-42,-36]},{\"mesh\":4,\"translation\":[-43,-40,-38]},{\"mesh\":4,\"translation\":[-43,-42,-38]},{\"mesh\":4,\"translation\":[-43,-40,-40]},{\"mesh\":4,\"translation\":[-43,-42,-40]},{\"mesh\":4,\"translation\":[-43,-40,-42]},{\"mesh\":4,\"translation\":[-43,-42,-42]},{\"mesh\":4,\"translation\":[-43,-44,-32]},{\"mesh\":4,\"translation\":[-43,-46,-32]},{\"mesh\":4,\"translation\":[-43,-44,-34]},{\"mesh\":4,\"translation\":[-43,-46,-34]},{\"mesh\":4,\"translation\":[-43,-44,-36]},{\"mesh\":4,\"translation\":[-43,-46,-36]},{\"mesh\":5,\"translation\":[-44,-32,-32]},{\"mesh\":5,\"translation\":[-44,-34,-32]},{\"mesh\":5,\"translation\":[-44,-36,-32]},{\"mesh\":5,\"translation\":[-44,-38,-32]},{\"mesh\":5,\"translation\":[-44,-36,-34]},{\"mesh\":5,\"translation\":[-44,-38,-34]},{\"mesh\":5,\"translation\":[-44,-36,-36]},{\"mesh\":5,\"translation\":[-44,-38,-36]},{\"mesh\":5,\"translation\":[-44,-36,-38]},{\"mesh\":5,\"translation\":[-44,-38,-38]},{\"mesh\":5,\"translation\":[-44,-40,-32]},{\"mesh\":5,\"translation\":[-44,-42,-32]},{\"mesh\":5,\"translation\":[-44,-40,-34]},{\"mesh\":5,\"translation\":[-44,-42,-34]},{\"mesh\":5,\"translation\":[-44,-40,-36]},{\"mesh\":5,\"translation\":[-44,-42,-36]},{\"mesh\":5,\"translation\":[-44,-40,-38]},{\"mesh\":5,\"translation\":[-44,-42,-38]},{\"mesh\":5,\"translation\":[-44,-40,-40]},{\"mesh\":5,\"translation\":[-44,-42,-40]},{\"mesh\":5,\"translation\":[-44,-40,-42]},{\"mesh\":5,\"translation\":[-44,-42,-42]},{\"mesh\":5,\"translation\":[-44,-44,-32]},{\"mesh\":5,\"translation\":[-44,-46,-32]},{\"mesh\":5,\"translation\":[-44,-44,-34]},{\"mesh\":5,\"translation\":[-44,-46,-34]},{\"mesh\":5,\"translation\":[-44,-44,-36]},{\"mesh\":5,\"translation\":[-44,-46,-36]},{\"mesh\":3,\"translation\":[-44,-34,-34]},{\"mesh\":3,\"translation\":[-44,-34,-36]},{\"mesh\":3,\"translation\":[-44,-38,-40]},{\"mesh\":3,\"translation\":[-44,-38,-42]},{\"mesh\":3,\"translation\":[-44,-40,-44]},{\"mesh\":3,\"translation\":[-44,-44,-38]},{\"mesh\":3,\"translation\":[-44,-44,-40]},{\"mesh\":3,\"translation\":[-44,-48,-32]},{\"mesh\":3,\"translation\":[-44,-48,-34]},{\"mesh\":4,\"translation\":[-45,-34,-34]},{\"mesh\":4,\"translation\":[-45,-34,-36]},{\"mesh\":4,\"translation\":[-45,-36,-34]},{\"mesh\":4,\"translation\":[-45,-36,-36]},{\"mesh\":4,\"translation\":[-45,-38,-32]},{\"mesh\":4,\"translation\":[-45,-38,-34]},{\"mesh\":4,\"translation\":[-45,-38,-36]},{\"mesh\":4,\"translation\":[-45,-38,-38]},{\"mesh\":4,\"translation\":[-45,-38,-40]},{\"mesh\":4,\"translation\":[-45,-38,-42]},{\"mesh\":4,\"translation\":[-45,-40,-32]},{\"mesh\":4,\"translation\":[-45,-40,-34]},{\"mesh\":4,\"translation\":[-45,-40,-36]},{\"mesh\":4,\"translation\":[-45,-40,-38]},{\"mesh\":4,\"translation\":[-45,-40,-40]},{\"mesh\":4,\"translation\":[-45,-40,-42]},{\"mesh\":4,\"translation\":[-45,-42,-34]},{\"mesh\":4,\"translation\":[-45,-42,-36]},{\"mesh\":4,\"translation\":[-45,-42,-38]},{\"mesh\":4,\"translation\":[-45,-42,-40]},{\"mesh\":4,\"translation\":[-45,-44,-34]},{\"mesh\":4,\"translation\":[-45,-44,-36]},{\"mesh\":4,\"translation\":[-45,-44,-38]},{\"mesh\":4,\"translation\":[-45,-44,-40]},{\"mesh\":4,\"translation\":[-45,-46,-32]},{\"mesh\":4,\"translation\":[-45,-46,-34]},{\"mesh\":4,\"translation\":[-45,-48,-32]},{\"mesh\":4,\"translation\":[-45,-48,-34]},{\"mesh\":5,\"translation\":[-46,-34,-34]},{\"mesh\":5,\"translation\":[-46,-34,-36]},{\"mesh\":5,\"translation\":[-46,-36,-34]},{\"mesh\":5,\"translation\":[-46,-36,-36]},{\"mesh\":5,\"translation\":[-46,-38,-32]},{\"mesh\":5,\"translation\":[-46,-38,-34]},{\"mesh\":5,\"translation\":[-46,-38,-36]},{\"mesh\":5,\"translation\":[-46,-38,-38]},{\"mesh\":5,\"translation\":[-46,-38,-40]},{\"mesh\":5,\"translation\":[-46,-38,-42]},{\"mesh\":5,\"translation\":[-46,-40,-32]},{\"mesh\":5,\"translation\":[-46,-40,-34]},{\"mesh\":5,\"translation\":[-46,-40,-36]},{\"mesh\":5,\"translation\":[-46,-40,-38]},{\"mesh\":5,\"translation\":[-46,-40,-40]},{\"mesh\":5,\"translation\":[-46,-40,-42]},{\"mesh\":5,\"translation\":[-46,-42,-34]},{\"mesh\":5,\"translation\":[-46,-42,-36]},{\"mesh\":5,\"translation\":[-46,-42,-38]},{\"mesh\":5,\"translation\":[-46,-42,-40]},{\"mesh\":5,\"translation\":[-46,-44,-34]},{\"mesh\":5,\"translation\":[-46,-44,-36]},{\"mesh\":5,\"translation\":[-46,-44,-38]},{\"mesh\":5,\"translation\":[-46,-44,-40]},{\"mesh\":5,\"translation\":[-46,-46,-32]},{\"mesh\":5,\"translation\":[-46,-46,-34]},{\"mesh\":5,\"translation\":[-46,-48,-32]},{\"mesh\":5,\"translation\":[-46,-48,-34]},{\"mesh\":3,\"translation\":[-46,-32,-32]},{\"mesh\":3,\"translation\":[-46,-34,-32]},{\"mesh\":3,\"translation\":[-46,-36,-32]},{\"mesh\":3,\"translation\":[-46,-36,-38]},{\"mesh\":3,\"translation\":[-46,-40,-44]},{\"mesh\":3,\"translation\":[-46,-42,-32]},{\"mesh\":3,\"translation\":[-46,-42,-42]},{\"mesh\":3,\"translation\":[-46,-44,-32]},{\"mesh\":3,\"translation\":[-46,-46,-36]},{\"mesh\":2,\"translation\":[-47,-32,-32]},{\"mesh\":2,\"translation\":[-47,-34,-32]},{\"mesh\":2,\"translation\":[-47,-34,-34]},{\"mesh\":2,\"translation\":[-47,-34,-36]},{\"mesh\":2,\"translation\":[-47,-36,-32]},{\"mesh\":2,\"translation\":[-47,-36,-34]},{\"mesh\":2,\"translation\":[-47,-36,-36]},{\"mesh\":2,\"translation\":[-47,-36,-38]},{\"mesh\":2,\"translation\":[-47,-38,-32]},{\"mesh\":2,\"translation\":[-47,-38,-34]},{\"mesh\":2,\"translation\":[-47,-38,-36]},{\"mesh\":2,\"translation\":[-47,-38,-38]},{\"mesh\":2,\"translation\":[-47,-38,-40]},{\"mesh\":2,\"translation\":[-47,-38,-42]},{\"mesh\":2,\"translation\":[-47,-40,-32]},{\"mesh\":2,\"translation\":[-47,-40,-34]},{\"mesh\":2,\"translation\":[-47,-40,-36]},{\"mesh\":2,\"translation\":[-47,-40,-38]},{\"mesh\":2,\"translation\":[-47,-40,-40]},{\"mesh\":2,\"translation\":[-47,-40,-42]},{\"mesh\":2,\"translation\":[-47,-40,-44]},{\"mesh\":2,\"translation\":[-47,-42,-32]},{\"mesh\":2,\"translation\":[-47,-42,-34]},{\"mesh\":2,\"translation\":[-47,-42,-36]},{\"mesh\":2,\"translation\":[-47,-42,-38]},{\"mesh\":2,\"translation\":[-47,-42,-40]},{\"mesh\":2,\"translation\":[-47,-42,-42]},{\"mesh\":2,\"translation\":[-47,-44,-32]},{\"mesh\":2,\"translation\":[-47,-44,-34]},{\"mesh\":2,\"translation\":[-47,-44,-36]},{\"mesh\":2,\"translation\":[-47,-44,-38]},{\"mesh\":2,\"translation\":[-47,-44,-40]},{\"mesh\":2,\"translation\":[-47,-46,-32]},{\"mesh\":2,\"translation\":[-47,-46,-34]},{\"mesh\":2,\"translation\":[-47,-46,-36]},{\"mesh\":2,\"translation\":[-47,-48,-32]},{\"mesh\":2,\"translation\":[-47,-48,-34]},{\"mesh\":3,\"translation\":[-48,-32,-32]},{\"mesh\":3,\"translation\":[-48,-34,-32]},{\"mesh\":3,\"translation\":[-48,-34,-34]},{\"mesh\":3,\"translation\":[-48,-34,-36]},{\"mesh\":3,\"translation\":[-48,-36,-32]},{\"mesh\":3,\"translation\":[-48,-36,-34]},{\"mesh\":3,\"translation\":[-48,-36,-36]},{\"mesh\":3,\"translation\":[-48,-36,-38]},{\"mesh\":3,\"translation\":[-48,-38,-32]},{\"mesh\":3,\"translation\":[-48,-38,-34]},{\"mesh\":3,\"translation\":[-48,-38,-36]},{\"mesh\":3,\"translation\":[-48,-38,-38]},{\"mesh\":3,\"translation\":[-48,-38,-40]},{\"mesh\":3,\"translation\":[-48,-38,-42]},{\"mesh\":3,\"translation\":[-48,-40,-32]},{\"mesh\":3,\"translation\":[-48,-40,-34]},{\"mesh\":3,\"translation\":[-48,-40,-36]},{\"mesh\":3,\"translation\":[-48,-40,-38]},{\"mesh\":3,\"translation\":[-48,-40,-40]},{\"mesh\":3,\"translation\":[-48,-40,-42]},{\"mesh\":3,\"translation\":[-48,-40,-44]},{\"mesh\":3,\"translation\":[-48,-42,-32]},{\"mesh\":3,\"translation\":[-48,-42,-34]},{\"mesh\":3,\"translation\":[-48,-42,-36]},{\"mesh\":3,\"translation\":[-48,-42,-38]},{\"mesh\":3,\"translation\":[-48,-42,-40]},{\"mesh\":3,\"translation\":[-48,-42,-42]},{\"mesh\":3,\"translation\":[-48,-44,-32]},{\"mesh\":3,\"translation\":[-48,-44,-34]},{\"mesh\":3,\"translation\":[-48,-44,-36]},{\"mesh\":3,\"translation\":[-48,-44,-38]},{\"mesh\":3,\"translation\":[-48,-44,-40]},{\"mesh\":3,\"translation\":[-48,-46,-32]},{\"mesh\":3,\"translation\":[-48,-46,-34]},{\"mesh\":3,\"translation\":[-48,-46,-36]},{\"mesh\":3,\"translation\":[-48,-48,-32]},{\"mesh\":3,\"translation\":[-48,-48,-34]},{\"mesh\":4,\"translation\":[-49,-34,-32]},{\"mesh\":4,\"translation\":[-49,-34,-34]},{\"mesh\":4,\"translation\":[-49,-36,-32]},{\"mesh\":4,\"translation\":[-49,-36,-34]},{\"mesh\":4,\"translation\":[-49,-36,-36]},{\"mesh\":4,\"translation\":[-49,-36,-38]},{\"mesh\":4,\"translation\":[-49,-38,-34]},{\"mesh\":4,\"translation\":[-49,-38,-36]},{\"mesh\":4,\"translation\":[-49,-38,-38]},{\"mesh\":4,\"translation\":[-49,-38,-40]},{\"mesh\":4,\"translation\":[-49,-40,-34]},{\"mesh\":4,\"translation\":[-49,-40,-36]},{\"mesh\":4,\"translation\":[-49,-40,-38]},{\"mesh\":4,\"translation\":[-49,-40,-40]},{\"mesh\":4,\"translation\":[-49,-40,-42]},{\"mesh\":4,\"translation\":[-49,-40,-44]},{\"mesh\":4,\"translation\":[-49,-42,-32]},{\"mesh\":4,\"translation\":[-49,-42,-34]},{\"mesh\":4,\"translation\":[-49,-42,-36]},{\"mesh\":4,\"translation\":[-49,-42,-38]},{\"mesh\":4,\"translation\":[-49,-42,-40]},{\"mesh\":4,\"translation\":[-49,-42,-42]},{\"mesh\":4,\"translation\":[-49,-44,-32]},{\"mesh\":4,\"translation\":[-49,-44,-34]},{\"mesh\":4,\"translation\":[-49,-44,-36]},{\"mesh\":4,\"translation\":[-49,-44,-38]},{\"mesh\":4,\"translation\":[-49,-46,-34]},{\"mesh\":4,\"translation\":[-49,-46,-36]},{\"mesh\":5,\"translation\":[-50,-34,-32]},{\"mesh\":5,\"translation\":[-50,-34,-34]},{\"mesh\":5,\"translation\":[-50,-36,-32]},{\"mesh\":5,\"translation\":[-50,-36,-34]},{\"mesh\":5,\"translation\":[-50,-36,-36]},{\"mesh\":5,\"translation\":[-50,-36,-38]},{\"mesh\":5,\"translation\":[-50,-38,-34]},{\"mesh\":5,\"translation\":[-50,-38,-36]},{\"mesh\":5,\"translation\":[-50,-38,-38]},{\"mesh\":5,\"translation\":[-50,-38,-40]},{\"mesh\":5,\"translation\":[-50,-40,-34]},{\"mesh\":5,\"translation\":[-50,-40,-36]},{\"mesh\":5,\"translation\":[-50,-40,-38]},{\"mesh\":5,\"translation\":[-50,-40,-40]},{\"mesh\":5,\"translation\":[-50,-40,-42]},{\"mesh\":5,\"translation\":[-50,-40,-44]},{\"mesh\":5,\"translation\":[-50,-42,-32]},{\"mesh\":5,\"translation\":[-50,-42,-34]},{\"mesh\":5,\"translation\":[-50,-42,-36]},{\"mesh\":5,\"translation\":[-50,-42,-38]},{\"mesh\":5,\"translation\":[-50,-42,-40]},{\"mesh\":5,\"translation\":[-50,-42,-42]},{\"mesh\":5,\"translation\":[-50,-44,-32]},{\"mesh\":5,\"translation\":[-50,-44,-34]},{\"mesh\":5,\"translation\":[-50,-44,-36]},{\"mesh\":5,\"translation\":[-50,-44,-38]},{\"mesh\":5,\"translation\":[-50,-46,-34]},{\"mesh\":5,\"translation\":[-50,-46,-36]},{\"mesh\":3,\"translation\":[-50,-32,-32]},{\"mesh\":3,\"translation\":[-50,-34,-36]},{\"mesh\":3,\"translation\":[-50,-38,-32]},{\"mesh\":3,\"translation\":[-50,-38,-42]},{\"mesh\":3,\"translation\":[-50,-40,-32]},{\"mesh\":3,\"translation\":[-50,-44,-40]},{\"mesh\":3,\"translation\":[-50,-46,-32]},{\"mesh\":3,\"translation\":[-50,-48,-32]},{\"mesh\":3,\"translation\":[-50,-48,-34]},{\"mesh\":4,\"translation\":[-51,-32,-32]},{\"mesh\":4,\"translation\":[-51,-34,-32]},{\"mesh\":4,\"translation\":[-51,-36,-32]},{\"mesh\":4,\"translation\":[-51,-38,-32]},{\"mesh\":4,\"translation\":[-51,-36,-34]},{\"mesh\":4,\"translation\":[-51,-38,-34]},{\"mesh\":4,\"translation\":[-51,-36,-36]},{\"mesh\":4,\"translation\":[-51,-38,-36]},{\"mesh\":4,\"translation\":[-51,-36,-38]},{\"mesh\":4,\"translation\":[-51,-38,-38]},{\"mesh\":4,\"translation\":[-51,-40,-32]},{\"mesh\":4,\"translation\":[-51,-42,-32]},{\"mesh\":4,\"translation\":[-51,-40,-34]},{\"mesh\":4,\"translation\":[-51,-42,-34]},{\"mesh\":4,\"translation\":[-51,-40,-36]},{\"mesh\":4,\"translation\":[-51,-42,-36]},{\"mesh\":4,\"translation\":[-51,-40,-38]},{\"mesh\":4,\"translation\":[-51,-42,-38]},{\"mesh\":4,\"translation\":[-51,-40,-40]},{\"mesh\":4,\"translation\":[-51,-42,-40]},{\"mesh\":4,\"translation\":[-51,-40,-42]},{\"mesh\":4,\"translation\":[-51,-42,-42]},{\"mesh\":4,\"translation\":[-51,-44,-32]},{\"mesh\":4,\"translation\":[-51,-46,-32]},{\"mesh\":4,\"translation\":[-51,-44,-34]},{\"mesh\":4,\"translation\":[-51,-46,-34]},{\"mesh\":4,\"translation\":[-51,-44,-36]},{\"mesh\":4,\"translation\":[-51,-46,-36]},{\"mesh\":5,\"translation\":[-52,-32,-32]},{\"mesh\":5,\"translation\":[-52,-34,-32]},{\"mesh\":5,\"translation\":[-52,-36,-32]},{\"mesh\":5,\"translation\":[-52,-38,-32]},{\"mesh\":5,\"translation\":[-52,-36,-34]},{\"mesh\":5,\"translation\":[-52,-38,-34]},{\"mesh\":5,\"translation\":[-52,-36,-36]},{\"mesh\":5,\"translation\":[-52,-38,-36]},{\"mesh\":5,\"translation\":[-52,-36,-38]},{\"mesh\":5,\"translation\":[-52,-38,-38]},{\"mesh\":5,\"translation\":[-52,-40,-32]},{\"mesh\":5,\"translation\":[-52,-42,-32]},{\"mesh\":5,\"translation\":[-52,-40,-34]},{\"mesh\":5,\"translation\":[-52,-42,-34]},{\"mesh\":5,\"translation\":[-52,-40,-36]},{\"mesh\":5,\"translation\":[-52,-42,-36]},{\"mesh\":5,\"translation\":[-52,-40,-38]},{\"mesh\":5,\"translation\":[-52,-42,-38]},{\"mesh\":5,\"translation\":[-52,-40,-40]},{\"mesh\":5,\"translation\":[-52,-42,-40]},{\"mesh\":5,\"translation\":[-52,-40,-42]},{\"mesh\":5,\"translation\":[-52,-42,-42]},{\"mesh\":5,\"translation\":[-52,-44,-32]},{\"mesh\":5,\"translation\":[-52,-46,-32]},{\"mesh\":5,\"translation\":[-52,-44,-34]},{\"mesh\":5,\"translation\":[-52,-46,-34]},{\"mesh\":5,\"translation\":[-52,-44,-36]},{\"mesh\":5,\"translation\":[-52,-46,-36]},{\"mesh\":3,\"translation\":[-52,-34,-34]},{\"mesh\":3,\"translation\":[-52,-34,-36]},{\"mesh\":3,\"translation\":[-52,-38,-40]},{\"mesh\":3,\"translation\":[-52,-38,-42]},{\"mesh\":3,\"translation\":[-52,-40,-44]},{\"mesh\":3,\"translation\":[-52,-44,-38]},{\"mesh\":3,\"translation\":[-52,-44,-40]},{\"mesh\":3,\"translation\":[-52,-48,-32]},{\"mesh\":3,\"translation\":[-52,-48,-34]},{\"mesh\":4,\"translation\":[-53,-34,-34]},{\"mesh\":4,\"translation\":[-53,-34,-36]},{\"mesh\":4,\"translation\":[-53,-36,-34]},{\"mesh\":4,\"translation\":[-53,-36,-36]},{\"mesh\":4,\"translation\":[-53,-38,-32]},{\"mesh\":4,\"translation\":[-53,-38,-34]},{\"mesh\":4,\"translation\":[-53,-38,-36]},{\"mesh\":4,\"translation\":[-53,-38,-38]},{\"mesh\":4,\"translation\":[-53,-38,-40]},{\"mesh\":4,\"translation\":[-53,-38,-42]},{\"mesh\":4,\"translation\":[-53,-40,-32]},{\"mesh\":4,\"translation\":[-53,-40,-34]},{\"mesh\":4,\"translation\":[-53,-40,-36]},{\"mesh\":4,\"translation\":[-53,-40,-38]},{\"mesh\":4,\"translation\":[-53,-40,-40]},{\"mesh\":4,\"translation\":[-53,-40,-42]},{\"mesh\":4,\"translation\":[-53,-42,-34]},{\"mesh\":4,\"translation\":[-53,-42,-36]},{\"mesh\":4,\"translation\":[-53,-42,-38]},{\"mesh\":4,\"translation\":[-53,-42,-40]},{\"mesh\":4,\"translation\":[-53,-44,-34]},{\"mesh\":4,\"translation\":[-53,-44,-36]},{\"mesh\":4,\"translation\":[-53,-44,-38]},{\"mesh\":4,\"translation\":[-53,-44,-40]},{\"mesh\":4,\"translation\":[-53,-46,-32]},{\"mesh\":4,\"translation\":[-53,-46,-34]},{\"mesh\":4,\"translation\":[-53,-48,-32]},{\"mesh\":4,\"translation\":[-53,-48,-34]},{\"mesh\":5,\"translation\":[-54,-34,-34]},{\"mesh\":5,\"translation\":[-54,-34,-36]},{\"mesh\":5,\"translation\":[-54,-36,-34]},{\"mesh\":5,\"translation\":[-54,-36,-36]},{\"mesh\":5,\"translation\":[-54,-38,-32]},{\"mesh\":5,\"translation\":[-54,-38,-34]},{\"mesh\":5,\"translation\":[-54,-38,-36]},{\"mesh\":5,\"translation\":[-54,-38,-38]},{\"mesh\":5,\"translation\":[-54,-38,-40]},{\"mesh\":5,\"translation\":[-54,-38,-42]},{\"mesh\":5,\"translation\":[-54,-40,-32]},{\"mesh\":5,\"translation\":[-54,-40,-34]},{\"mesh\":5,\"translation\":[-54,-40,-36]},{\"mesh\":5,\"translation\":[-54,-40,-38]},{\"mesh\":5,\"translation\":[-54,-40,-40]},{\"mesh\":5,\"translation\":[-54,-40,-42]},{\"mesh\":5,\"translation\":[-54,-42,-34]},{\"mesh\":5,\"translation\":[-54,-42,-36]},{\"mesh\":5,\"translation\":[-54,-42,-38]},{\"mesh\":5,\"translation\":[-54,-42,-40]},{\"mesh\":5,\"translation\":[-54,-44,-34]},{\"mesh\":5,\"translation\":[-54,-44,-36]},{\"mesh\":5,\"translation\":[-54,-44,-38]},{\"mesh\":5,\"translation\":[-54,-44,-40]},{\"mesh\":5,\"translation\":[-54,-46,-32]},{\"mesh\":5,\"translation\":[-54,-46,-34]},{\"mesh\":5,\"translation\":[-54,-48,-32]},{\"mesh\":5,\"translation\":[-54,-48,-34]},{\"mesh\":3,\"translation\":[-54,-32,-32]},{\"mesh\":3,\"translation\":[-54,-34,-32]},{\"mesh\":3,\"translation\":[-54,-36,-32]},{\"mesh\":3,\"translation\":[-54,-36,-38]},{\"mesh\":3,\"translation\":[-54,-40,-44]},{\"mesh\":3,\"translation\":[-54,-42,-32]},{\"mesh\":3,\"translation\":[-54,-42,-42]},{\"mesh\":3,\"translation\":[-54,-44,-32]},{\"mesh\":3,\"translation\":[-54,-46,-36]},{\"mesh\":2,\"translation\":[-55,-32,-32]},{\"mesh\":2,\"translation\":[-55,-34,-34]},{\"mesh\":2,\"translation\":[-55,-36,-32]},{\"mesh\":2,\"translation\":[-55,-36,-34]},{\"mesh\":2,\"translation\":[-55,-36,-36]},{\"mesh\":2,\"translation\":[-55,-36,-38]},{\"mesh\":2,\"translation\":[-55,-38,-32]},{\"mesh\":2,\"translation\":[-55,-38,-36]},{\"mesh\":2,\"translation\":[-55,-38,-40]},{\"mesh\":2,\"translation\":[-55,-40,-32]},{\"mesh\":2,\"translation\":[-55,-40,-34]},{\"mesh\":2,\"translation\":[-55,-40,-36]},{\"mesh\":2,\"translation\":[-55,-40,-38]},{\"mesh\":2,\"translation\":[-55,-40,-40]},{\"mesh\":2,\"translation\":[-55,-40,-42]},{\"mesh\":2,\"translation\":[-55,-40,-44]},{\"mesh\":2,\"translation\":[-55,-42,-34]},{\"mesh\":2,\"translation\":[-55,-42,-38]},{\"mesh\":2,\"translation\":[-55,-42,-42]},{\"mesh\":2,\"translation\":[-55,-44,-32]},{\"mesh\":2,\"translation\":[-55,-44,-34]},{\"mesh\":2,\"translation\":[-55,-44,-36]},{\"mesh\":2,\"translation\":[-55,-44,-38]},{\"mesh\":2,\"translation\":[-55,-44,-40]},{\"mesh\":2,\"translation\":[-55,-46,-32]},{\"mesh\":2,\"translation\":[-55,-46,-36]},{\"mesh\":2,\"translation\":[-55,-48,-32]},{\"mesh\":2,\"translation\":[-55,-48,-34]},{\"mesh\":3,\"translation\":[-56,-32,-32]},{\"mesh\":3,\"translation\":[-56,-34,-34]},{\"mesh\":3,\"translation\":[-56,-36,-32]},{\"mesh\":3,\"translation\":[-56,-36,-34]},{\"mesh\":3,\"translation\":[-56,-36,-36]},{\"mesh\":3,\"translation\":[-56,-36,-38]},{\"mesh\":3,\"translation\":[-56,-38,-32]},{\"mesh\":3,\"translation\":[-56,-38,-36]},{\"mesh\":3,\"translation\":[-56,-38,-40]},{\"mesh\":3,\"translation\":[-56,-40,-32]},{\"mesh\":3,\"translation\":[-56,-40,-34]},{\"mesh\":3,\"translation\":[-56,-40,-36]},{\"mesh\":3,\"translation\":[-56,-40,-38]},{\"mesh\":3,\"translation\":[-56,-40,-40]},{\"mesh\":3,\"translation\":[-56,-40,-42]},{\"mesh\":3,\"translation\":[-56,-40,-44]},{\"mesh\":3,\"translation\":[-56,-42,-34]},{\"mesh\":3,\"translation\":[-56,-42,-38]},{\"mesh\":3,\"translation\":[-56,-42,-42]},{\"mesh\":3,\"translation\":[-56,-44,-32]},{\"mesh\":3,\"translation\":[-56,-44,-34]},{\"mesh\":3,\"translation\":[-56,-44,-36]},{\"mesh\":3,\"translation\":[-56,-44,-38]},{\"mesh\":3,\"translation\":[-56,-44,-40]},{\"mesh\":3,\"translation\":[-56,-46,-32]},{\"mesh\":3,\"translation\":[-56,-46,-36]},{\"mesh\":3,\"translation\":[-56,-48,-32]},{\"mesh\":3,\"translation\":[-56,-48,-34]},{\"mesh\":3,\"translation\":[-56,-34,-32]},{\"mesh\":3,\"translation\":[-56,-34,-36]},{\"mesh\":3,\"translation\":[-56,-38,-34]},{\"mesh\":3,\"translation\":[-56,-38,-38]},{\"mesh\":3,\"translation\":[-56,-38,-42]},{\"mesh\":3,\"translation\":[-56,-42,-32]},{\"mesh\":3,\"translation\":[-56,-42,-36]},{\"mesh\":3,\"translation\":[-56,-42,-40]},{\"mesh\":3,\"translation\":[-56,-46,-34]},{\"mesh\":4,\"translation\":[-57,-34,-32]},{\"mesh\":4,\"translation\":[-57,-36,-32]},{\"mesh\":4,\"translation\":[-57,-34,-36]},{\"mesh\":4,\"translation\":[-57,-36,-36]},{\"mesh\":4,\"translation\":[-57,-38,-34]},{\"mesh\":4,\"translation\":[-57,-40,-34]},{\"mesh\":4,\"translation\":[-57,-38,-38]},{\"mesh\":4,\"translation\":[-57,-40,-38]},{\"mesh\":4,\"translation\":[-57,-38,-42]},{\"mesh\":4,\"translation\":[-57,-40,-42]},{\"mesh\":4,\"translation\":[-57,-42,-32]},{\"mesh\":4,\"translation\":[-57,-44,-32]},{\"mesh\":4,\"translation\":[-57,-42,-36]},{\"mesh\":4,\"translation\":[-57,-44,-36]},{\"mesh\":4,\"translation\":[-57,-42,-40]},{\"mesh\":4,\"translation\":[-57,-44,-40]},{\"mesh\":4,\"translation\":[-57,-46,-34]},{\"mesh\":4,\"translation\":[-57,-48,-34]},{\"mesh\":5,\"translation\":[-58,-34,-32]},{\"mesh\":5,\"translation\":[-58,-36,-32]},{\"mesh\":5,\"translation\":[-58,-34,-36]},{\"mesh\":5,\"translation\":[-58,-36,-36]},{\"mesh\":5,\"translation\":[-58,-38,-34]},{\"mesh\":5,\"translation\":[-58,-40,-34]},{\"mesh\":5,\"translation\":[-58,-38,-38]},{\"mesh\":5,\"translation\":[-58,-40,-38]},{\"mesh\":5,\"translation\":[-58,-38,-42]},{\"mesh\":5,\"translation\":[-58,-40,-42]},{\"mesh\":5,\"translation\":[-58,-42,-32]},{\"mesh\":5,\"translation\":[-58,-44,-32]},{\"mesh\":5,\"translation\":[-58,-42,-36]},{\"mesh\":5,\"translation\":[-58,-44,-36]},{\"mesh\":5,\"translation\":[-58,-42,-40]},{\"mesh\":5,\"translation\":[-58,-44,-40]},{\"mesh\":5,\"translation\":[-58,-46,-34]},{\"mesh\":5,\"translation\":[-58,-48,-34]},{\"mesh\":3,\"translation\":[-58,-32,-32]},{\"mesh\":3,\"translation\":[-58,-34,-34]},{\"mesh\":3,\"translation\":[-58,-36,-34]},{\"mesh\":3,\"translation\":[-58,-36,-38]},{\"mesh\":3,\"translation\":[-58,-38,-32]},{\"mesh\":3,\"translation\":[-58,-38,-36]},{\"mesh\":3,\"translation\":[-58,-38,-40]},{\"mesh\":3,\"translation\":[-58,-40,-32]},{\"mesh\":3,\"translation\":[-58,-40,-36]},{\"mesh\":3,\"translation\":[-58,-40,-40]},{\"mesh\":3,\"translation\":[-58,-40,-44]},{\"mesh\":3,\"translation\":[-58,-42,-34]},{\"mesh\":3,\"translation\":[-58,-42,-38]},{\"mesh\":3,\"translation\":[-58,-42,-42]},{\"mesh\":3,\"translation\":[-58,-44,-34]},{\"mesh\":3,\"translation\":[-58,-44,-38]},{\"mesh\":3,\"translation\":[-58,-46,-32]},{\"mesh\":3,\"translation\":[-58,-46,-36]},{\"mesh\":3,\"translation\":[-58,-48,-32]},{\"mesh\":2,\"translation\":[-59,-34,-32]},{\"mesh\":2,\"translation\":[-59,-34,-36]},{\"mesh\":2,\"translation\":[-59,-36,-32]},{\"mesh\":2,\"translation\":[-59,-36,-36]},{\"mesh\":2,\"translation\":[-59,-38,-34]},{\"mesh\":2,\"translation\":[-59,-38,-38]},{\"mesh\":2,\"translation\":[-59,-38,-42]},{\"mesh\":2,\"translation\":[-59,-40,-34]},{\"mesh\":2,\"translation\":[-59,-40,-38]},{\"mesh\":2,\"translation\":[-59,-40,-42]},{\"mesh\":2,\"translation\":[-59,-42,-32]},{\"mesh\":2,\"translation\":[-59,-42,-36]},{\"mesh\":2,\"translation\":[-59,-42,-40]},{\"mesh\":2,\"translation\":[-59,-44,-32]},{\"mesh\":2,\"translation\":[-59,-44,-36]},{\"mesh\":2,\"translation\":[-59,-44,-40]},{\"mesh\":2,\"translation\":[-59,-46,-34]},{\"mesh\":2,\"translation\":[-59,-48,-34]},{\"mesh\":3,\"translation\":[-60,-34,-32]},{\"mesh\":3,\"translation\":[-60,-34,-36]},{\"mesh\":3,\"translation\":[-60,-36,-32]},{\"mesh\":3,\"translation\":[-60,-36,-36]},{\"mesh\":3,\"translation\":[-60,-38,-34]},{\"mesh\":3,\"translation\":[-60,-38,-38]},{\"mesh\":3,\"translation\":[-60,-38,-42]},{\"mesh\":3,\"translation\":[-60,-40,-34]},{\"mesh\":3,\"translation\":[-60,-40,-38]},{\"mesh\":3,\"translation\":[-60,-40,-42]},{\"mesh\":3,\"translation\":[-60,-42,-32]},{\"mesh\":3,\"translation\":[-60,-42,-36]},{\"mesh\":3,\"translation\":[-60,-42,-40]},{\"mesh\":3,\"translation\":[-60,-44,-32]},{\"mesh\":3,\"translation\":[-60,-44,-36]},{\"mesh\":3,\"translation\":[-60,-44,-40]},{\"mesh\":3,\"translation\":[-60,-46,-34]},{\"mesh\":3,\"translation\":[-60,-48,-34]},{\"mesh\":3,\"translation\":[-60,-32,-32]},{\"mesh\":3,\"translation\":[-60,-34,-34]},{\"mesh\":3,\"translation\":[-60,-36,-34]},{\"mesh\":3,\"translation\":[-60,-36,-38]},{\"mesh\":3,\"translation\":[-60,-38,-32]},{\"mesh\":3,\"translation\":[-60,-38,-36]},{\"mesh\":3,\"translation\":[-60,-38,-40]},{\"mesh\":3,\"translation\":[-60,-40,-32]},{\"mesh\":3,\"translation\":[-60,-40,-36]},{\"mesh\":3,\"translation\":[-60,-40,-40]},{\"mesh\":3,\"translation\":[-60,-40,-44]},{\"mesh\":3,\"translation\":[-60,-42,-34]},{\"mesh\":3,\"translation\":[-60,-42,-38]},{\"mesh\":3,\"translation\":[-60,-42,-42]},{\"mesh\":3,\"translation\":[-60,-44,-34]},{\"mesh\":3,\"translation\":[-60,-44,-38]},{\"mesh\":3,\"translation\":[-60,-46,-32]},{\"mesh\":3,\"translation\":[-60,-46,-36]},{\"mesh\":3,\"translation\":[-60,-48,-32]},{\"mesh\":6,\"translation\":[-61,-34,-32]},{\"mesh\":6,\"translation\":[-61,-34,-36]},{\"mesh\":6,\"translation\":[-61,-38,-34]},{\"mesh\":6,\"translation\":[-61,-38,-38]},{\"mesh\":6,\"translation\":[-61,-38,-42]},{\"mesh\":6,\"translation\":[-61,-42,-32]},{\"mesh\":6,\"translation\":[-61,-42,-36]},{\"mesh\":6,\"translation\":[-61,-42,-40]},{\"mesh\":6,\"translation\":[-61,-46,-34]},{\"mesh\":6,\"translation\":[-61,-36,-32]},{\"mesh\":6,\"translation\":[-61,-36,-36]},{\"mesh\":6,\"translation\":[-61,-40,-34]},{\"mesh\":6,\"translation\":[-61,-40,-38]},{\"mesh\":6,\"translation\":[-61,-40,-42]},{\"mesh\":6,\"translation\":[-61,-44,-32]},{\"mesh\":6,\"translation\":[-61,-44,-36]},{\"mesh\":6,\"translation\":[-61,-44,-40]},{\"mesh\":6,\"translation\":[-61,-48,-34]},{\"mesh\":3,\"translation\":[-62,-34,-32]},{\"mesh\":3,\"translation\":[-62,-34,-36]},{\"mesh\":3,\"translation\":[-62,-38,-34]},{\"mesh\":3,\"translation\":[-62,-38,-38]},{\"mesh\":3,\"translation\":[-62,-38,-42]},{\"mesh\":3,\"translation\":[-62,-42,-32]},{\"mesh\":3,\"translation\":[-62,-42,-36]},{\"mesh\":3,\"translation\":[-62,-42,-40]},{\"mesh\":3,\"translation\":[-62,-46,-34]},{\"mesh\":3,\"translation\":[-62,-36,-32]},{\"mesh\":3,\"translation\":[-62,-36,-36]},{\"mesh\":3,\"translation\":[-62,-40,-34]},{\"mesh\":3,\"translation\":[-62,-40,-38]},{\"mesh\":3,\"translation\":[-62,-40,-42]},{\"mesh\":3,\"translation\":[-62,-44,-32]},{\"mesh\":3,\"translation\":[-62,-44,-36]},{\"mesh\":3,\"translation\":[-62,-44,-40]},{\"mesh\":3,\"translation\":[-62,-48,-34]},{\"mesh\":3,\"translation\":[-62,-32,-32]},{\"mesh\":3,\"translation\":[-62,-34,-34]},{\"mesh\":3,\"translation\":[-62,-36,-34]},{\"mesh\":3,\"translation\":[-62,-36,-38]},{\"mesh\":3,\"translation\":[-62,-38,-32]},{\"mesh\":3,\"translation\":[-62,-38,-36]},{\"mesh\":3,\"translation\":[-62,-38,-40]},{\"mesh\":3,\"translation\":[-62,-40,-32]},{\"mesh\":3,\"translation\":[-62,-40,-36]},{\"mesh\":3,\"translation\":[-62,-40,-40]},{\"mesh\":3,\"translation\":[-62,-40,-44]},{\"mesh\":3,\"translation\":[-62,-42,-34]},{\"mesh\":3,\"translation\":[-62,-42,-38]},{\"mesh\":3,\"translation\":[-62,-42,-42]},{\"mesh\":3,\"translation\":[-62,-44,-34]},{\"mesh\":3,\"translation\":[-62,-44,-38]},{\"mesh\":3,\"translation\":[-62,-46,-32]},{\"mesh\":3,\"translation\":[-62,-46,-36]},{\"mesh\":3,\"translation\":[-62,-48,-32]},{\"mesh\":3,\"translation\":[-63,-32,-32]},{\"mesh\":3,\"translation\":[-63,-34,-34]},{\"mesh\":3,\"translation\":[-63,-36,-34]},{\"mesh\":3,\"translation\":[-63,-36,-38]},{\"mesh\":3,\"translation\":[-63,-38,-32]},{\"mesh\":3,\"translation\":[-63,-38,-36]},{\"mesh\":3,\"translation\":[-63,-38,-40]},{\"mesh\":3,\"translation\":[-63,-40,-32]},{\"mesh\":3,\"translation\":[-63,-40,-36]},{\"mesh\":3,\"translation\":[-63,-40,-40]},{\"mesh\":3,\"translation\":[-63,-40,-44]},{\"mesh\":3,\"translation\":[-63,-42,-34]},{\"mesh\":3,\"translation\":[-63,-42,-38]},{\"mesh\":3,\"translation\":[-63,-42,-42]},{\"mesh\":3,\"translation\":[-63,-44,-34]},{\"mesh\":3,\"translation\":[-63,-44,-38]},{\"mesh\":3,\"translation\":[-63,-46,-32]},{\"mesh\":3,\"translation\":[-63,-46,-36]},{\"mesh\":3,\"translation\":[-63,-48,-32]},{\"mesh\":0,\"translation\":[-65,-48,-34]},{\"mesh\":0,\"translation\":[-65,-44,-40]},{\"mesh\":0,\"translation\":[-65,-44,-36]},{\"mesh\":0,\"translation\":[-65,-44,-32]},{\"mesh\":0,\"translation\":[-65,-40,-42]},{\"mesh\":0,\"translation\":[-65,-40,-38]},{\"mesh\":0,\"translation\":[-65,-40,-34]},{\"mesh\":0,\"translation\":[-65,-36,-36]},{\"mesh\":0,\"translation\":[-65,-36,-32]},{\"mesh\":0,\"translation\":[-65,-46,-34]},{\"mesh\":0,\"translation\":[-65,-42,-40]},{\"mesh\":0,\"translation\":[-65,-42,-36]},{\"mesh\":0,\"translation\":[-65,-42,-32]},{\"mesh\":0,\"translation\":[-65,-38,-42]},{\"mesh\":0,\"translation\":[-65,-38,-38]},{\"mesh\":0,\"translation\":[-65,-38,-34]},{\"mesh\":0,\"translation\":[-65,-34,-36]},{\"mesh\":0,\"translation\":[-65,-34,-32]},{\"mesh\":1,\"translation\":[-66,-48,-34]},{\"mesh\":1,\"translation\":[-66,-44,-40]},{\"mesh\":1,\"translation\":[-66,-44,-36]},{\"mesh\":1,\"translation\":[-66,-44,-32]},{\"mesh\":1,\"translation\":[-66,-40,-42]},{\"mesh\":1,\"translation\":[-66,-40,-38]},{\"mesh\":1,\"translation\":[-66,-40,-34]},{\"mesh\":1,\"translation\":[-66,-36,-36]},{\"mesh\":1,\"translation\":[-66,-36,-32]},{\"mesh\":1,\"translation\":[-66,-46,-34]},{\"mesh\":1,\"translation\":[-66,-42,-40]},{\"mesh\":1,\"translation\":[-66,-42,-36]},{\"mesh\":1,\"translation\":[-66,-42,-32]},{\"mesh\":1,\"translation\":[-66,-38,-42]},{\"mesh\":1,\"translation\":[-66,-38,-38]},{\"mesh\":1,\"translation\":[-66,-38,-34]},{\"mesh\":1,\"translation\":[-66,-34,-36]},{\"mesh\":1,\"translation\":[-66,-34,-32]},{\"mesh\":3,\"translation\":[-66,-32,-32]},{\"mesh\":3,\"translation\":[-66,-34,-34]},{\"mesh\":3,\"translation\":[-66,-36,-34]},{\"mesh\":3,\"translation\":[-66,-36,-38]},{\"mesh\":3,\"translation\":[-66,-38,-32]},{\"mesh\":3,\"translation\":[-66,-38,-36]},{\"mesh\":3,\"translation\":[-66,-38,-40]},{\"mesh\":3,\"translation\":[-66,-40,-32]},{\"mesh\":3,\"translation\":[-66,-40,-36]},{\"mesh\":3,\"translation\":[-66,-40,-40]},{\"mesh\":3,\"translation\":[-66,-40,-44]},{\"mesh\":3,\"translation\":[-66,-42,-34]},{\"mesh\":3,\"translation\":[-66,-42,-38]},{\"mesh\":3,\"translation\":[-66,-42,-42]},{\"mesh\":3,\"translation\":[-66,-44,-34]},{\"mesh\":3,\"translation\":[-66,-44,-38]},{\"mesh\":3,\"translation\":[-66,-46,-32]},{\"mesh\":3,\"translation\":[-66,-46,-36]},{\"mesh\":3,\"translation\":[-66,-48,-32]},{\"mesh\":3,\"translation\":[-67,-32,-32]},{\"mesh\":3,\"translation\":[-67,-34,-34]},{\"mesh\":3,\"translation\":[-67,-36,-34]},{\"mesh\":3,\"translation\":[-67,-36,-38]},{\"mesh\":3,\"translation\":[-67,-38,-32]},{\"mesh\":3,\"translation\":[-67,-38,-36]},{\"mesh\":3,\"translation\":[-67,-38,-40]},{\"mesh\":3,\"translation\":[-67,-40,-32]},{\"mesh\":3,\"translation\":[-67,-40,-36]},{\"mesh\":3,\"translation\":[-67,-40,-40]},{\"mesh\":3,\"translation\":[-67,-40,-44]},{\"mesh\":3,\"translation\":[-67,-42,-34]},{\"mesh\":3,\"translation\":[-67,-42,-38]},{\"mesh\":3,\"translation\":[-67,-42,-42]},{\"mesh\":3,\"translation\":[-67,-44,-34]},{\"mesh\":3,\"translation\":[-67,-44,-38]},{\"mesh\":3,\"translation\":[-67,-46,-32]},{\"mesh\":3,\"translation\":[-67,-46,-36]},{\"mesh\":3,\"translation\":[-67,-48,-32]},{\"mesh\":2,\"translation\":[-68,-34,-32]},{\"mesh\":2,\"translation\":[-68,-34,-36]},{\"mesh\":2,\"translation\":[-68,-36,-32]},{\"mesh\":2,\"translation\":[-68,-36,-36]},{\"mesh\":2,\"translation\":[-68,-38,-34]},{\"mesh\":2,\"translation\":[-68,-38,-38]},{\"mesh\":2,\"translation\":[-68,-38,-42]},{\"mesh\":2,\"translation\":[-68,-40,-34]},{\"mesh\":2,\"translation\":[-68,-40,-38]},{\"mesh\":2,\"translation\":[-68,-40,-42]},{\"mesh\":2,\"translation\":[-68,-42,-32]},{\"mesh\":2,\"translation\":[-68,-42,-36]},{\"mesh\":2,\"translation\":[-68,-42,-40]},{\"mesh\":2,\"translation\":[-68,-44,-32]},{\"mesh\":2,\"translation\":[-68,-44,-36]},{\"mesh\":2,\"translation\":[-68,-44,-40]},{\"mesh\":2,\"translation\":[-68,-46,-34]},{\"mesh\":2,\"translation\":[-68,-48,-34]},{\"mesh\":3,\"translation\":[-69,-34,-32]},{\"mesh\":3,\"translation\":[-69,-34,-36]},{\"mesh\":3,\"translation\":[-69,-36,-32]},{\"mesh\":3,\"translation\":[-69,-36,-36]},{\"mesh\":3,\"translation\":[-69,-38,-34]},{\"mesh\":3,\"translation\":[-69,-38,-38]},{\"mesh\":3,\"translation\":[-69,-38,-42]},{\"mesh\":3,\"translation\":[-69,-40,-34]},{\"mesh\":3,\"translation\":[-69,-40,-38]},{\"mesh\":3,\"translation\":[-69,-40,-42]},{\"mesh\":3,\"translation\":[-69,-42,-32]},{\"mesh\":3,\"translation\":[-69,-42,-36]},{\"mesh\":3,\"translation\":[-69,-42,-40]},{\"mesh\":3,\"translation\":[-69,-44,-32]},{\"mesh\":3,\"translation\":[-69,-44,-36]},{\"mesh\":3,\"translation\":[-69,-44,-40]},{\"mesh\":3,\"translation\":[-69,-46,-34]},{\"mesh\":3,\"translation\":[-69,-48,-34]},{\"mesh\":3,\"translation\":[-69,-32,-32]},{\"mesh\":3,\"translation\":[-69,-34,-34]},{\"mesh\":3,\"translation\":[-69,-36,-34]},{\"mesh\":3,\"translation\":[-69,-36,-38]},{\"mesh\":3,\"translation\":[-69,-38,-32]},{\"mesh\":3,\"translation\":[-69,-38,-36]},{\"mesh\":3,\"translation\":[-69,-38,-40]},{\"mesh\":3,\"translation\":[-69,-40,-32]},{\"mesh\":3,\"translation\":[-69,-40,-36]},{\"mesh\":3,\"translation\":[-69,-40,-40]},{\"mesh\":3,\"translation\":[-69,-40,-44]},{\"mesh\":3,\"translation\":[-69,-42,-34]},{\"mesh\":3,\"translation\":[-69,-42,-38]},{\"mesh\":3,\"translation\":[-69,-42,-42]},{\"mesh\":3,\"translation\":[-69,-44,-34]},{\"mesh\":3,\"translation\":[-69,-44,-38]},{\"mesh\":3,\"translation\":[-69,-46,-32]},{\"mesh\":3,\"translation\":[-69,-46,-36]},{\"mesh\":3,\"translation\":[-69,-48,-32]},{\"mesh\":4,\"translation\":[-70,-34,-32]},{\"mesh\":4,\"translation\":[-70,-36,-32]},{\"mesh\":4,\"translation\":[-70,-34,-36]},{\"mesh\":4,\"translation\":[-70,-36,-36]},{\"mesh\":4,\"translation\":[-70,-38,-34]},{\"mesh\":4,\"translation\":[-70,-40,-34]},{\"mesh\":4,\"translation\":[-70,-38,-38]},{\"mesh\":4,\"translation\":[-70,-40,-38]},{\"mesh\":4,\"translation\":[-70,-38,-42]},{\"mesh\":4,\"translation\":[-70,-40,-42]},{\"mesh\":4,\"translation\":[-70,-42,-32]},{\"mesh\":4,\"translation\":[-70,-44,-32]},{\"mesh\":4,\"translation\":[-70,-42,-36]},{\"mesh\":4,\"translation\":[-70,-44,-36]},{\"mesh\":4,\"translation\":[-70,-42,-40]},{\"mesh\":4,\"translation\":[-70,-44,-40]},{\"mesh\":4,\"translation\":[-70,-46,-34]},{\"mesh\":4,\"translation\":[-70,-48,-34]},{\"mesh\":5,\"translation\":[-71,-34,-32]},{\"mesh\":5,\"translation\":[-71,-36,-32]},{\"mesh\":5,\"translation\":[-71,-34,-36]},{\"mesh\":5,\"translation\":[-71,-36,-36]},{\"mesh\":5,\"translation\":[-71,-38,-34]},{\"mesh\":5,\"translation\":[-71,-40,-34]},{\"mesh\":5,\"translation\":[-71,-38,-38]},{\"mesh\":5,\"translation\":[-71,-40,-38]},{\"mesh\":5,\"translation\":[-71,-38,-42]},{\"mesh\":5,\"translation\":[-71,-40,-42]},{\"mesh\":5,\"translation\":[-71,-42,-32]},{\"mesh\":5,\"translation\":[-71,-44,-32]},{\"mesh\":5,\"translation\":[-71,-42,-36]},{\"mesh\":5,\"translation\":[-71,-44,-36]},{\"mesh\":5,\"translation\":[-71,-42,-40]},{\"mesh\":5,\"translation\":[-71,-44,-40]},{\"mesh\":5,\"translation\":[-71,-46,-34]},{\"mesh\":5,\"translation\":[-71,-48,-34]},{\"mesh\":3,\"translation\":[-71,-32,-32]},{\"mesh\":3,\"translation\":[-71,-34,-34]},{\"mesh\":3,\"translation\":[-71,-36,-34]},{\"mesh\":3,\"translation\":[-71,-36,-38]},{\"mesh\":3,\"translation\":[-71,-38,-32]},{\"mesh\":3,\"translation\":[-71,-38,-36]},{\"mesh\":3,\"translation\":[-71,-38,-40]},{\"mesh\":3,\"translation\":[-71,-40,-32]},{\"mesh\":3,\"translation\":[-71,-40,-36]},{\"mesh\":3,\"translation\":[-71,-40,-40]},{\"mesh\":3,\"translation\":[-71,-40,-44]},{\"mesh\":3,\"translation\":[-71,-42,-34]},{\"mesh\":3,\"translation\":[-71,-42,-38]},{\"mesh\":3,\"translation\":[-71,-42,-42]},{\"mesh\":3,\"translation\":[-71,-44,-34]},{\"mesh\":3,\"translation\":[-71,-44,-38]},{\"mesh\":3,\"translation\":[-71,-46,-32]},{\"mesh\":3,\"translation\":[-71,-46,-36]},{\"mesh\":3,\"translation\":[-71,-48,-32]},{\"mesh\":2,\"translation\":[-72,-32,-32]},{\"mesh\":2,\"translation\":[-72,-34,-34]},{\"mesh\":2,\"translation\":[-72,-36,-32]},{\"mesh\":2,\"translation\":[-72,-36,-34]},{\"mesh\":2,\"translation\":[-72,-36,-36]},{\"mesh\":2,\"translation\":[-72,-36,-38]},{\"mesh\":2,\"translation\":[-72,-38,-32]},{\"mesh\":2,\"translation\":[-72,-38,-36]},{\"mesh\":2,\"translation\":[-72,-38,-40]},{\"mesh\":2,\"translation\":[-72,-40,-32]},{\"mesh\":2,\"translation\":[-72,-40,-34]},{\"mesh\":2,\"translation\":[-72,-40,-36]},{\"mesh\":2,\"translation\":[-72,-40,-38]},{\"mesh\":2,\"translation\":[-72,-40,-40]},{\"mesh\":2,\"translation\":[-72,-40,-42]},{\"mesh\":2,\"translation\":[-72,-40,-44]},{\"mesh\":2,\"translation\":[-72,-42,-34]},{\"mesh\":2,\"translation\":[-72,-42,-38]},{\"mesh\":2,\"translation\":[-72,-42,-42]},{\"mesh\":2,\"translation\":[-72,-44,-32]},{\"mesh\":2,\"translation\":[-72,-44,-34]},{\"mesh\":2,\"translation\":[-72,-44,-36]},{\"mesh\":2,\"translation\":[-72,-44,-38]},{\"mesh\":2,\"translation\":[-72,-44,-40]},{\"mesh\":2,\"translation\":[-72,-46,-32]},{\"mesh\":2,\"translation\":[-72,-46,-36]},{\"mesh\":2,\"translation\":[-72,-48,-32]},{\"mesh\":2,\"translation\":[-72,-48,-34]},{\"mesh\":3,\"translation\":[-73,-32,-32]},{\"mesh\":3,\"translation\":[-73,-34,-34]},{\"mesh\":3,\"translation\":[-73,-36,-32]},{\"mesh\":3,\"translation\":[-73,-36,-34]},{\"mesh\":3,\"translation\":[-73,-36,-36]},{\"mesh\":3,\"translation\":[-73,-36,-38]},{\"mesh\":3,\"translation\":[-73,-38,-32]},{\"mesh\":3,\"translation\":[-73,-38,-36]},{\"mesh\":3,\"translation\":[-73,-38,-40]},{\"mesh\":3,\"translation\":[-73,-40,-32]},{\"mesh\":3,\"translation\":[-73,-40,-34]},{\"mesh\":3,\"translation\":[-73,-40,-36]},{\"mesh\":3,\"translation\":[-73,-40,-38]},{\"mesh\":3,\"translation\":[-73,-40,-40]},{\"mesh\":3,\"translation\":[-73,-40,-42]},{\"mesh\":3,\"translation\":[-73,-40,-44]},{\"mesh\":3,\"translation\":[-73,-42,-34]},{\"mesh\":3,\"translation\":[-73,-42,-38]},{\"mesh\":3,\"translation\":[-73,-42,-42]},{\"mesh\":3,\"translation\":[-73,-44,-32]},{\"mesh\":3,\"translation\":[-73,-44,-34]},{\"mesh\":3,\"translation\":[-73,-44,-36]},{\"mesh\":3,\"translation\":[-73,-44,-38]},{\"mesh\":3,\"translation\":[-73,-44,-40]},{\"mesh\":3,\"translation\":[-73,-46,-32]},{\"mesh\":3,\"translation\":[-73,-46,-36]},{\"mesh\":3,\"translation\":[-73,-48,-32]},{\"mesh\":3,\"translation\":[-73,-48,-34]},{\"mesh\":3,\"translation\":[-73,-34,-32]},{\"mesh\":3,\"translation\":[-73,-34,-36]},{\"mesh\":3,\"translation\":[-73,-38,-34]},{\"mesh\":3,\"translation\":[-73,-38,-38]},{\"mesh\":3,\"translation\":[-73,-38,-42]},{\"mesh\":3,\"translation\":[-73,-42,-32]},{\"mesh\":3,\"translation\":[-73,-42,-36]},{\"mesh\":3,\"translation\":[-73,-42,-40]},{\"mesh\":3,\"translation\":[-73,-46,-34]},{\"mesh\":4,\"translation\":[-74,-34,-34]},{\"mesh\":4,\"translation\":[-74,-34,-36]},{\"mesh\":4,\"translation\":[-74,-36,-34]},{\"mesh\":4,\"translation\":[-74,-36,-36]},{\"mesh\":4,\"translation\":[-74,-38,-32]},{\"mesh\":4,\"translation\":[-74,-38,-34]},{\"mesh\":4,\"translation\":[-74,-38,-36]},{\"mesh\":4,\"translation\":[-74,-38,-38]},{\"mesh\":4,\"translation\":[-74,-38,-40]},{\"mesh\":4,\"translation\":[-74,-38,-42]},{\"mesh\":4,\"translation\":[-74,-40,-32]},{\"mesh\":4,\"translation\":[-74,-40,-34]},{\"mesh\":4,\"translation\":[-74,-40,-36]},{\"mesh\":4,\"translation\":[-74,-40,-38]},{\"mesh\":4,\"translation\":[-74,-40,-40]},{\"mesh\":4,\"translation\":[-74,-40,-42]},{\"mesh\":4,\"translation\":[-74,-42,-34]},{\"mesh\":4,\"translation\":[-74,-42,-36]},{\"mesh\":4,\"translation\":[-74,-42,-38]},{\"mesh\":4,\"translation\":[-74,-42,-40]},{\"mesh\":4,\"translation\":[-74,-44,-34]},{\"mesh\":4,\"translation\":[-74,-44,-36]},{\"mesh\":4,\"translation\":[-74,-44,-38]},{\"mesh\":4,\"translation\":[-74,-44,-40]},{\"mesh\":4,\"translation\":[-74,-46,-32]},{\"mesh\":4,\"translation\":[-74,-46,-34]},{\"mesh\":4,\"translation\":[-74,-48,-32]},{\"mesh\":4,\"translation\":[-74,-48,-34]},{\"mesh\":5,\"translation\":[-75,-34,-34]},{\"mesh\":5,\"translation\":[-75,-34,-36]},{\"mesh\":5,\"translation\":[-75,-36,-34]},{\"mesh\":5,\"translation\":[-75,-36,-36]},{\"mesh\":5,\"translation\":[-75,-38,-32]},{\"mesh\":5,\"translation\":[-75,-38,-34]},{\"mesh\":5,\"translation\":[-75,-38,-36]},{\"mesh\":5,\"translation\":[-75,-38,-38]},{\"mesh\":5,\"translation\":[-75,-38,-40]},{\"mesh\":5,\"translation\":[-75,-38,-42]},{\"mesh\":5,\"translation\":[-75,-40,-32]},{\"mesh\":5,\"translation\":[-75,-40,-34]},{\"mesh\":5,\"translation\":[-75,-40,-36]},{\"mesh\":5,\"translation\":[-75,-40,-38]},{\"mesh\":5,\"translation\":[-75,-40,-40]},{\"mesh\":5,\"translation\":[-75,-40,-42]},{\"mesh\":5,\"translation\":[-75,-42,-34]},{\"mesh\":5,\"translation\":[-75,-42,-36]},{\"mesh\":5,\"translation\":[-75,-42,-38]},{\"mesh\":5,\"translation\":[-75,-42,-40]},{\"mesh\":5,\"translation\":[-75,-44,-34]},{\"mesh\":5,\"translation\":[-75,-44,-36]},{\"mesh\":5,\"translation\":[-75,-44,-38]},{\"mesh\":5,\"translation\":[-75,-44,-40]},{\"mesh\":5,\"translation\":[-75,-46,-32]},{\"mesh\":5,\"translation\":[-75,-46,-34]},{\"mesh\":5,\"translation\":[-75,-48,-32]},{\"mesh\":5,\"translation\":[-75,-48,-34]},{\"mesh\":3,\"translation\":[-75,-32,-32]},{\"mesh\":3,\"translation\":[-75,-34,-32]},{\"mesh\":3,\"translation\":[-75,-36,-32]},{\"mesh\":3,\"translation\":[-75,-36,-38]},{\"mesh\":3,\"translation\":[-75,-40,-44]},{\"mesh\":3,\"translation\":[-75,-42,-32]},{\"mesh\":3,\"translation\":[-75,-42,-42]},{\"mesh\":3,\"translation\":[-75,-44,-32]},{\"mesh\":3,\"translation\":[-75,-46,-36]},{\"mesh\":4,\"translation\":[-76,-32,-32]},{\"mesh\":4,\"translation\":[-76,-34,-32]},{\"mesh\":4,\"translation\":[-76,-36,-32]},{\"mesh\":4,\"translation\":[-76,-38,-32]},{\"mesh\":4,\"translation\":[-76,-36,-34]},{\"mesh\":4,\"translation\":[-76,-38,-34]},{\"mesh\":4,\"translation\":[-76,-36,-36]},{\"mesh\":4,\"translation\":[-76,-38,-36]},{\"mesh\":4,\"translation\":[-76,-36,-38]},{\"mesh\":4,\"translation\":[-76,-38,-38]},{\"mesh\":4,\"translation\":[-76,-40,-32]},{\"mesh\":4,\"translation\":[-76,-42,-32]},{\"mesh\":4,\"translation\":[-76,-40,-34]},{\"mesh\":4,\"translation\":[-76,-42,-34]},{\"mesh\":4,\"translation\":[-76,-40,-36]},{\"mesh\":4,\"translation\":[-76,-42,-36]},{\"mesh\":4,\"translation\":[-76,-40,-38]},{\"mesh\":4,\"translation\":[-76,-42,-38]},{\"mesh\":4,\"translation\":[-76,-40,-40]},{\"mesh\":4,\"translation\":[-76,-42,-40]},{\"mesh\":4,\"translation\":[-76,-40,-42]},{\"mesh\":4,\"translation\":[-76,-42,-42]},{\"mesh\":4,\"translation\":[-76,-44,-32]},{\"mesh\":4,\"translation\":[-76,-46,-32]},{\"mesh\":4,\"translation\":[-76,-44,-34]},{\"mesh\":4,\"translation\":[-76,-46,-34]},{\"mesh\":4,\"translation\":[-76,-44,-36]},{\"mesh\":4,\"translation\":[-76,-46,-36]},{\"mesh\":5,\"translation\":[-77,-32,-32]},{\"mesh\":5,\"translation\":[-77,-34,-32]},{\"mesh\":5,\"translation\":[-77,-36,-32]},{\"mesh\":5,\"translation\":[-77,-38,-32]},{\"mesh\":5,\"translation\":[-77,-36,-34]},{\"mesh\":5,\"translation\":[-77,-38,-34]},{\"mesh\":5,\"translation\":[-77,-36,-36]},{\"mesh\":5,\"translation\":[-77,-38,-36]},{\"mesh\":5,\"translation\":[-77,-36,-38]},{\"mesh\":5,\"translation\":[-77,-38,-38]},{\"mesh\":5,\"translation\":[-77,-40,-32]},{\"mesh\":5,\"translation\":[-77,-42,-32]},{\"mesh\":5,\"translation\":[-77,-40,-34]},{\"mesh\":5,\"translation\":[-77,-42,-34]},{\"mesh\":5,\"translation\":[-77,-40,-36]},{\"mesh\":5,\"translation\":[-77,-42,-36]},{\"mesh\":5,\"translation\":[-77,-40,-38]},{\"mesh\":5,\"translation\":[-77,-42,-38]},{\"mesh\":5,\"translation\":[-77,-40,-40]},{\"mesh\":5,\"translation\":[-77,-42,-40]},{\"mesh\":5,\"translation\":[-77,-40,-42]},{\"mesh\":5,\"translation\":[-77,-42,-42]},{\"mesh\":5,\"translation\":[-77,-44,-32]},{\"mesh\":5,\"translation\":[-77,-46,-32]},{\"mesh\":5,\"translation\":[-77,-44,-34]},{\"mesh\":5,\"translation\":[-77,-46,-34]},{\"mesh\":5,\"translation\":[-77,-44,-36]},{\"mesh\":5,\"translation\":[-77,-46,-36]},{\"mesh\":3,\"translation\":[-77,-34,-34]},{\"mesh\":3,\"translation\":[-77,-34,-36]},{\"mesh\":3,\"translation\":[-77,-38,-40]},{\"mesh\":3,\"translation\":[-77,-38,-42]},{\"mesh\":3,\"translation\":[-77,-40,-44]},{\"mesh\":3,\"translation\":[-77,-44,-38]},{\"mesh\":3,\"translation\":[-77,-44,-40]},{\"mesh\":3,\"translation\":[-77,-48,-32]},{\"mesh\":3,\"translation\":[-77,-48,-34]},{\"mesh\":4,\"translation\":[-78,-34,-32]},{\"mesh\":4,\"translation\":[-78,-34,-34]},{\"mesh\":4,\"translation\":[-78,-36,-32]},{\"mesh\":4,\"translation\":[-78,-36,-34]},{\"mesh\":4,\"translation\":[-78,-36,-36]},{\"mesh\":4,\"translation\":[-78,-36,-38]},{\"mesh\":4,\"translation\":[-78,-38,-34]},{\"mesh\":4,\"translation\":[-78,-38,-36]},{\"mesh\":4,\"translation\":[-78,-38,-38]},{\"mesh\":4,\"translation\":[-78,-38,-40]},{\"mesh\":4,\"translation\":[-78,-40,-34]},{\"mesh\":4,\"translation\":[-78,-40,-36]},{\"mesh\":4,\"translation\":[-78,-40,-38]},{\"mesh\":4,\"translation\":[-78,-40,-40]},{\"mesh\":4,\"translation\":[-78,-40,-42]},{\"mesh\":4,\"translation\":[-78,-40,-44]},{\"mesh\":4,\"translation\":[-78,-42,-32]},{\"mesh\":4,\"translation\":[-78,-42,-34]},{\"mesh\":4,\"translation\":[-78,-42,-36]},{\"mesh\":4,\"translation\":[-78,-42,-38]},{\"mesh\":4,\"translation\":[-78,-42,-40]},{\"mesh\":4,\"translation\":[-78,-42,-42]},{\"mesh\":4,\"translation\":[-78,-44,-32]},{\"mesh\":4,\"translation\":[-78,-44,-34]},{\"mesh\":4,\"translation\":[-78,-44,-36]},{\"mesh\":4,\"translation\":[-78,-44,-38]},{\"mesh\":4,\"translation\":[-78,-46,-34]},{\"mesh\":4,\"translation\":[-78,-46,-36]},{\"mesh\":5,\"translation\":[-79,-34,-32]},{\"mesh\":5,\"translation\":[-79,-34,-34]},{\"mesh\":5,\"translation\":[-79,-36,-32]},{\"mesh\":5,\"translation\":[-79,-36,-34]},{\"mesh\":5,\"translation\":[-79,-36,-36]},{\"mesh\":5,\"translation\":[-79,-36,-38]},{\"mesh\":5,\"translation\":[-79,-38,-34]},{\"mesh\":5,\"translation\":[-79,-38,-36]},{\"mesh\":5,\"translation\":[-79,-38,-38]},{\"mesh\":5,\"translation\":[-79,-38,-40]},{\"mesh\":5,\"translation\":[-79,-40,-34]},{\"mesh\":5,\"translation\":[-79,-40,-36]},{\"mesh\":5,\"translation\":[-79,-40,-38]},{\"mesh\":5,\"translation\":[-79,-40,-40]},{\"mesh\":5,\"translation\":[-79,-40,-42]},{\"mesh\":5,\"translation\":[-79,-40,-44]},{\"mesh\":5,\"translation\":[-79,-42,-32]},{\"mesh\":5,\"translation\":[-79,-42,-34]},{\"mesh\":5,\"translation\":[-79,-42,-36]},{\"mesh\":5,\"translation\":[-79,-42,-38]},{\"mesh\":5,\"translation\":[-79,-42,-40]},{\"mesh\":5,\"translation\":[-79,-42,-42]},{\"mesh\":5,\"translation\":[-79,-44,-32]},{\"mesh\":5,\"translation\":[-79,-44,-34]},{\"mesh\":5,\"translation\":[-79,-44,-36]},{\"mesh\":5,\"translation\":[-79,-44,-38]},{\"mesh\":5,\"translation\":[-79,-46,-34]},{\"mesh\":5,\"translation\":[-79,-46,-36]},{\"mesh\":3,\"translation\":[-79,-32,-32]},{\"mesh\":3,\"translation\":[-79,-34,-36]},{\"mesh\":3,\"translation\":[-79,-38,-32]},{\"mesh\":3,\"translation\":[-79,-38,-42]},{\"mesh\":3,\"translation\":[-79,-40,-32]},{\"mesh\":3,\"translation\":[-79,-44,-40]},{\"mesh\":3,\"translation\":[-79,-46,-32]},{\"mesh\":3,\"translation\":[-79,-48,-32]},{\"mesh\":3,\"translation\":[-79,-48,-34]},{\"mesh\":2,\"translation\":[-80,-32,-32]},{\"mesh\":2,\"translation\":[-80,-34,-32]},{\"mesh\":2,\"translation\":[-80,-34,-34]},{\"mesh\":2,\"translation\":[-80,-34,-36]},{\"mesh\":2,\"translation\":[-80,-36,-32]},{\"mesh\":2,\"translation\":[-80,-36,-34]},{\"mesh\":2,\"translation\":[-80,-36,-36]},{\"mesh\":2,\"translation\":[-80,-36,-38]},{\"mesh\":2,\"translation\":[-80,-38,-32]},{\"mesh\":2,\"translation\":[-80,-38,-34]},{\"mesh\":2,\"translation\":[-80,-38,-36]},{\"mesh\":2,\"translation\":[-80,-38,-38]},{\"mesh\":2,\"translation\":[-80,-38,-40]},{\"mesh\":2,\"translation\":[-80,-38,-42]},{\"mesh\":2,\"translation\":[-80,-40,-32]},{\"mesh\":2,\"translation\":[-80,-40,-34]},{\"mesh\":2,\"translation\":[-80,-40,-36]},{\"mesh\":2,\"translation\":[-80,-40,-38]},{\"mesh\":2,\"translation\":[-80,-40,-40]},{\"mesh\":2,\"translation\":[-80,-40,-42]},{\"mesh\":2,\"translation\":[-80,-40,-44]},{\"mesh\":2,\"translation\":[-80,-42,-32]},{\"mesh\":2,\"translation\":[-80,-42,-34]},{\"mesh\":2,\"translation\":[-80,-42,-36]},{\"mesh\":2,\"translation\":[-80,-42,-38]},{\"mesh\":2,\"translation\":[-80,-42,-40]},{\"mesh\":2,\"translation\":[-80,-42,-42]},{\"mesh\":2,\"translation\":[-80,-44,-32]},{\"mesh\":2,\"translation\":[-80,-44,-34]},{\"mesh\":2,\"translation\":[-80,-44,-36]},{\"mesh\":2,\"translation\":[-80,-44,-38]},{\"mesh\":2,\"translation\":[-80,-44,-40]},{\"mesh\":2,\"translation\":[-80,-46,-32]},{\"mesh\":2,\"translation\":[-80,-46,-34]},{\"mesh\":2,\"translation\":[-80,-46,-36]},{\"mesh\":2,\"translation\":[-80,-48,-32]},{\"mesh\":2,\"translation\":[-80,-48,-34]},{\"mesh\":3,\"translation\":[-81,-32,-32]},{\"mesh\":3,\"translation\":[-81,-34,-32]},{\"mesh\":3,\"translation\":[-81,-34,-34]},{\"mesh\":3,\"translation\":[-81,-34,-36]},{\"mesh\":3,\"translation\":[-81,-36,-32]},{\"mesh\":3,\"translation\":[-81,-36,-34]},{\"mesh\":3,\"translation\":[-81,-36,-36]},{\"mesh\":3,\"translation\":[-81,-36,-38]},{\"mesh\":3,\"translation\":[-81,-38,-32]},{\"mesh\":3,\"translation\":[-81,-38,-34]},{\"mesh\":3,\"translation\":[-81,-38,-36]},{\"mesh\":3,\"translation\":[-81,-38,-38]},{\"mesh\":3,\"translation\":[-81,-38,-40]},{\"mesh\":3,\"translation\":[-81,-38,-42]},{\"mesh\":3,\"translation\":[-81,-40,-32]},{\"mesh\":3,\"translation\":[-81,-40,-34]},{\"mesh\":3,\"translation\":[-81,-40,-36]},{\"mesh\":3,\"translation\":[-81,-40,-38]},{\"mesh\":3,\"translation\":[-81,-40,-40]},{\"mesh\":3,\"translation\":[-81,-40,-42]},{\"mesh\":3,\"translation\":[-81,-40,-44]},{\"mesh\":3,\"translation\":[-81,-42,-32]},{\"mesh\":3,\"translation\":[-81,-42,-34]},{\"mesh\":3,\"translation\":[-81,-42,-36]},{\"mesh\":3,\"translation\":[-81,-42,-38]},{\"mesh\":3,\"translation\":[-81,-42,-40]},{\"mesh\":3,\"translation\":[-81,-42,-42]},{\"mesh\":3,\"translation\":[-81,-44,-32]},{\"mesh\":3,\"translation\":[-81,-44,-34]},{\"mesh\":3,\"translation\":[-81,-44,-36]},{\"mesh\":3,\"translation\":[-81,-44,-38]},{\"mesh\":3,\"translation\":[-81,-44,-40]},{\"mesh\":3,\"translation\":[-81,-46,-32]},{\"mesh\":3,\"translation\":[-81,-46,-34]},{\"mesh\":3,\"translation\":[-81,-46,-36]},{\"mesh\":3,\"translation\":[-81,-48,-32]},{\"mesh\":3,\"translation\":[-81,-48,-34]},{\"mesh\":4,\"translation\":[-82,-34,-34]},{\"mesh\":4,\"translation\":[-82,-34,-36]},{\"mesh\":4,\"translation\":[-82,-36,-34]},{\"mesh\":4,\"translation\":[-82,-36,-36]},{\"mesh\":4,\"translation\":[-82,-38,-32]},{\"mesh\":4,\"translation\":[-82,-38,-34]},{\"mesh\":4,\"translation\":[-82,-38,-36]},{\"mesh\":4,\"translation\":[-82,-38,-38]},{\"mesh\":4,\"translation\":[-82,-38,-40]},{\"mesh\":4,\"translation\":[-82,-38,-42]},{\"mesh\":4,\"translation\":[-82,-40,-32]},{\"mesh\":4,\"translation\":[-82,-40,-34]},{\"mesh\":4,\"translation\":[-82,-40,-36]},{\"mesh\":4,\"translation\":[-82,-40,-38]},{\"mesh\":4,\"translation\":[-82,-40,-40]},{\"mesh\":4,\"translation\":[-82,-40,-42]},{\"mesh\":4,\"translation\":[-82,-42,-34]},{\"mesh\":4,\"translation\":[-82,-42,-36]},{\"mesh\":4,\"translation\":[-82,-42,-38]},{\"mesh\":4,\"translation\":[-82,-42,-40]},{\"mesh\":4,\"translation\":[-82,-44,-34]},{\"mesh\":4,\"translation\":[-82,-44,-36]},{\"mesh\":4,\"translation\":[-82,-44,-38]},{\"mesh\":4,\"translation\":[-82,-44,-40]},{\"mesh\":4,\"translation\":[-82,-46,-32]},{\"mesh\":4,\"translation\":[-82,-46,-34]},{\"mesh\":4,\"translation\":[-82,-48,-32]},{\"mesh\":4,\"translation\":[-82,-48,-34]},{\"mesh\":5,\"translation\":[-83,-34,-34]},{\"mesh\":5,\"translation\":[-83,-34,-36]},{\"mesh\":5,\"translation\":[-83,-36,-34]},{\"mesh\":5,\"translation\":[-83,-36,-36]},{\"mesh\":5,\"translation\":[-83,-38,-32]},{\"mesh\":5,\"translation\":[-83,-38,-34]},{\"mesh\":5,\"translation\":[-83,-38,-36]},{\"mesh\":5,\"translation\":[-83,-38,-38]},{\"mesh\":5,\"translation\":[-83,-38,-40]},{\"mesh\":5,\"translation\":[-83,-38,-42]},{\"mesh\":5,\"translation\":[-83,-40,-32]},{\"mesh\":5,\"translation\":[-83,-40,-34]},{\"mesh\":5,\"translation\":[-83,-40,-36]},{\"mesh\":5,\"translation\":[-83,-40,-38]},{\"mesh\":5,\"translation\":[-83,-40,-40]},{\"mesh\":5,\"translation\":[-83,-40,-42]},{\"mesh\":5,\"translation\":[-83,-42,-34]},{\"mesh\":5,\"translation\":[-83,-42,-36]},{\"mesh\":5,\"translation\":[-83,-42,-38]},{\"mesh\":5,\"translation\":[-83,-42,-40]},{\"mesh\":5,\"translation\":[-83,-44,-34]},{\"mesh\":5,\"translation\":[-83,-44,-36]},{\"mesh\":5,\"translation\":[-83,-44,-38]},{\"mesh\":5,\"translation\":[-83,-44,-40]},{\"mesh\":5,\"translation\":[-83,-46,-32]},{\"mesh\":5,\"translation\":[-83,-46,-34]},{\"mesh\":5,\"translation\":[-83,-48,-32]},{\"mesh\":5,\"translation\":[-83,-48,-34]},{\"mesh\":3,\"translation\":[-83,-32,-32]},{\"mesh\":3,\"translation\":[-83,-34,-32]},{\"mesh\":3,\"translation\":[-83,-36,-32]},{\"mesh\":3,\"translation\":[-83,-36,-38]},{\"mesh\":3,\"translation\":[-83,-40,-44]},{\"mesh\":3,\"translation\":[-83,-42,-32]},{\"mesh\":3,\"translation\":[-83,-42,-42]},{\"mesh\":3,\"translation\":[-83,-44,-32]},{\"mesh\":3,\"translation\":[-83,-46,-36]},{\"mesh\":4,\"translation\":[-84,-32,-32]},{\"mesh\":4,\"translation\":[-84,-34,-32]},{\"mesh\":4,\"translation\":[-84,-36,-32]},{\"mesh\":4,\"translation\":[-84,-38,-32]},{\"mesh\":4,\"translation\":[-84,-36,-34]},{\"mesh\":4,\"translation\":[-84,-38,-34]},{\"mesh\":4,\"translation\":[-84,-36,-36]},{\"mesh\":4,\"translation\":[-84,-38,-36]},{\"mesh\":4,\"translation\":[-84,-36,-38]},{\"mesh\":4,\"translation\":[-84,-38,-38]},{\"mesh\":4,\"translation\":[-84,-40,-32]},{\"mesh\":4,\"translation\":[-84,-42,-32]},{\"mesh\":4,\"translation\":[-84,-40,-34]},{\"mesh\":4,\"translation\":[-84,-42,-34]},{\"mesh\":4,\"translation\":[-84,-40,-36]},{\"mesh\":4,\"translation\":[-84,-42,-36]},{\"mesh\":4,\"translation\":[-84,-40,-38]},{\"mesh\":4,\"translation\":[-84,-42,-38]},{\"mesh\":4,\"translation\":[-84,-40,-40]},{\"mesh\":4,\"translation\":[-84,-42,-40]},{\"mesh\":4,\"translation\":[-84,-40,-42]},{\"mesh\":4,\"translation\":[-84,-42,-42]},{\"mesh\":4,\"translation\":[-84,-44,-32]},{\"mesh\":4,\"translation\":[-84,-46,-32]},{\"mesh\":4,\"translation\":[-84,-44,-34]},{\"mesh\":4,\"translation\":[-84,-46,-34]},{\"mesh\":4,\"translation\":[-84,-44,-36]},{\"mesh\":4,\"translation\":[-84,-46,-36]},{\"mesh\":5,\"translation\":[-85,-32,-32]},{\"mesh\":5,\"translation\":[-85,-34,-32]},{\"mesh\":5,\"translation\":[-85,-36,-32]},{\"mesh\":5,\"translation\":[-85,-38,-32]},{\"mesh\":5,\"translation\":[-85,-36,-34]},{\"mesh\":5,\"translation\":[-85,-38,-34]},{\"mesh\":5,\"translation\":[-85,-36,-36]},{\"mesh\":5,\"translation\":[-85,-38,-36]},{\"mesh\":5,\"translation\":[-85,-36,-38]},{\"mesh\":5,\"translation\":[-85,-38,-38]},{\"mesh\":5,\"translation\":[-85,-40,-32]},{\"mesh\":5,\"translation\":[-85,-42,-32]},{\"mesh\":5,\"translation\":[-85,-40,-34]},{\"mesh\":5,\"translation\":[-85,-42,-34]},{\"mesh\":5,\"translation\":[-85,-40,-36]},{\"mesh\":5,\"translation\":[-85,-42,-36]},{\"mesh\":5,\"translation\":[-85,-40,-38]},{\"mesh\":5,\"translation\":[-85,-42,-38]},{\"mesh\":5,\"translation\":[-85,-40,-40]},{\"mesh\":5,\"translation\":[-85,-42,-40]},{\"mesh\":5,\"translation\":[-85,-40,-42]},{\"mesh\":5,\"translation\":[-85,-42,-42]},{\"mesh\":5,\"translation\":[-85,-44,-32]},{\"mesh\":5,\"translation\":[-85,-46,-32]},{\"mesh\":5,\"translation\":[-85,-44,-34]},{\"mesh\":5,\"translation\":[-85,-46,-34]},{\"mesh\":5,\"translation\":[-85,-44,-36]},{\"mesh\":5,\"translation\":[-85,-46,-36]},{\"mesh\":3,\"translation\":[-85,-34,-34]},{\"mesh\":3,\"translation\":[-85,-34,-36]},{\"mesh\":3,\"translation\":[-85,-38,-40]},{\"mesh\":3,\"translation\":[-85,-38,-42]},{\"mesh\":3,\"translation\":[-85,-40,-44]},{\"mesh\":3,\"translation\":[-85,-44,-38]},{\"mesh\":3,\"translation\":[-85,-44,-40]},{\"mesh\":3,\"translation\":[-85,-48,-32]},{\"mesh\":3,\"translation\":[-85,-48,-34]},{\"mesh\":4,\"translation\":[-86,-34,-32]},{\"mesh\":4,\"translation\":[-86,-34,-34]},{\"mesh\":4,\"translation\":[-86,-36,-32]},{\"mesh\":4,\"translation\":[-86,-36,-34]},{\"mesh\":4,\"translation\":[-86,-36,-36]},{\"mesh\":4,\"translation\":[-86,-36,-38]},{\"mesh\":4,\"translation\":[-86,-38,-34]},{\"mesh\":4,\"translation\":[-86,-38,-36]},{\"mesh\":4,\"translation\":[-86,-38,-38]},{\"mesh\":4,\"translation\":[-86,-38,-40]},{\"mesh\":4,\"translation\":[-86,-40,-34]},{\"mesh\":4,\"translation\":[-86,-40,-36]},{\"mesh\":4,\"translation\":[-86,-40,-38]},{\"mesh\":4,\"translation\":[-86,-40,-40]},{\"mesh\":4,\"translation\":[-86,-40,-42]},{\"mesh\":4,\"translation\":[-86,-40,-44]},{\"mesh\":4,\"translation\":[-86,-42,-32]},{\"mesh\":4,\"translation\":[-86,-42,-34]},{\"mesh\":4,\"translation\":[-86,-42,-36]},{\"mesh\":4,\"translation\":[-86,-42,-38]},{\"mesh\":4,\"translation\":[-86,-42,-40]},{\"mesh\":4,\"translation\":[-86,-42,-42]},{\"mesh\":4,\"translation\":[-86,-44,-32]},{\"mesh\":4,\"translation\":[-86,-44,-34]},{\"mesh\":4,\"translation\":[-86,-44,-36]},{\"mesh\":4,\"translation\":[-86,-44,-38]},{\"mesh\":4,\"translation\":[-86,-46,-34]},{\"mesh\":4,\"translation\":[-86,-46,-36]},{\"mesh\":5,\"translation\":[-87,-34,-32]},{\"mesh\":5,\"translation\":[-87,-34,-34]},{\"mesh\":5,\"translation\":[-87,-36,-32]},{\"mesh\":5,\"translation\":[-87,-36,-34]},{\"mesh\":5,\"translation\":[-87,-36,-36]},{\"mesh\":5,\"translation\":[-87,-36,-38]},{\"mesh\":5,\"translation\":[-87,-38,-34]},{\"mesh\":5,\"translation\":[-87,-38,-36]},{\"mesh\":5,\"translation\":[-87,-38,-38]},{\"mesh\":5,\"translation\":[-87,-38,-40]},{\"mesh\":5,\"translation\":[-87,-40,-34]},{\"mesh\":5,\"translation\":[-87,-40,-36]},{\"mesh\":5,\"translation\":[-87,-40,-38]},{\"mesh\":5,\"translation\":[-87,-40,-40]},{\"mesh\":5,\"translation\":[-87,-40,-42]},{\"mesh\":5,\"translation\":[-87,-40,-44]},{\"mesh\":5,\"translation\":[-87,-42,-32]},{\"mesh\":5,\"translation\":[-87,-42,-34]},{\"mesh\":5,\"translation\":[-87,-42,-36]},{\"mesh\":5,\"translation\":[-87,-42,-38]},{\"mesh\":5,\"translation\":[-87,-42,-40]},{\"mesh\":5,\"translation\":[-87,-42,-42]},{\"mesh\":5,\"translation\":[-87,-44,-32]},{\"mesh\":5,\"translation\":[-87,-44,-34]},{\"mesh\":5,\"translation\":[-87,-44,-36]},{\"mesh\":5,\"translation\":[-87,-44,-38]},{\"mesh\":5,\"translation\":[-87,-46,-34]},{\"mesh\":5,\"translation\":[-87,-46,-36]},{\"mesh\":3,\"translation\":[-87,-32,-32]},{\"mesh\":3,\"translation\":[-87,-34,-36]},{\"mesh\":3,\"translation\":[-87,-38,-32]},{\"mesh\":3,\"translation\":[-87,-38,-42]},{\"mesh\":3,\"translation\":[-87,-40,-32]},{\"mesh\":3,\"translation\":[-87,-44,-40]},{\"mesh\":3,\"translation\":[-87,-46,-32]},{\"mesh\":3,\"translation\":[-87,-48,-32]},{\"mesh\":3,\"translation\":[-87,-48,-34]},{\"mesh\":2,\"translation\":[-88,-34,-32]},{\"mesh\":2,\"translation\":[-88,-34,-36]},{\"mesh\":2,\"translation\":[-88,-38,-34]},{\"mesh\":2,\"translation\":[-88,-38,-38]},{\"mesh\":2,\"translation\":[-88,-38,-42]},{\"mesh\":2,\"translation\":[-88,-42,-32]},{\"mesh\":2,\"translation\":[-88,-42,-36]},{\"mesh\":2,\"translation\":[-88,-42,-40]},{\"mesh\":2,\"translation\":[-88,-46,-34]},{\"mesh\":3,\"translation\":[-89,-34,-32]},{\"mesh\":3,\"translation\":[-89,-34,-36]},{\"mesh\":3,\"translation\":[-89,-38,-34]},{\"mesh\":3,\"translation\":[-89,-38,-38]},{\"mesh\":3,\"translation\":[-89,-38,-42]},{\"mesh\":3,\"translation\":[-89,-42,-32]},{\"mesh\":3,\"translation\":[-89,-42,-36]},{\"mesh\":3,\"translation\":[-89,-42,-40]},{\"mesh\":3,\"translation\":[-89,-46,-34]},{\"mesh\":3,\"translation\":[-89,-32,-32]},{\"mesh\":3,\"translation\":[-89,-34,-34]},{\"mesh\":3,\"translation\":[-89,-36,-32]},{\"mesh\":3,\"translation\":[-89,-36,-34]},{\"mesh\":3,\"translation\":[-89,-36,-36]},{\"mesh\":3,\"translation\":[-89,-36,-38]},{\"mesh\":3,\"translation\":[-89,-38,-32]},{\"mesh\":3,\"translation\":[-89,-38,-36]},{\"mesh\":3,\"translation\":[-89,-38,-40]},{\"mesh\":3,\"translation\":[-89,-40,-32]},{\"mesh\":3,\"translation\":[-89,-40,-34]},{\"mesh\":3,\"translation\":[-89,-40,-36]},{\"mesh\":3,\"translation\":[-89,-40,-38]},{\"mesh\":3,\"translation\":[-89,-40,-40]},{\"mesh\":3,\"translation\":[-89,-40,-42]},{\"mesh\":3,\"translation\":[-89,-40,-44]},{\"mesh\":3,\"translation\":[-89,-42,-34]},{\"mesh\":3,\"translation\":[-89,-42,-38]},{\"mesh\":3,\"translation\":[-89,-42,-42]},{\"mesh\":3,\"translation\":[-89,-44,-32]},{\"mesh\":3,\"translation\":[-89,-44,-34]},{\"mesh\":3,\"translation\":[-89,-44,-36]},{\"mesh\":3,\"translation\":[-89,-44,-38]},{\"mesh\":3,\"translation\":[-89,-44,-40]},{\"mesh\":3,\"translation\":[-89,-46,-32]},{\"mesh\":3,\"translation\":[-89,-46,-36]},{\"mesh\":3,\"translation\":[-89,-48,-32]},{\"mesh\":3,\"translation\":[-89,-48,-34]},{\"mesh\":4,\"translation\":[-90,-34,-32]},{\"mesh\":4,\"translation\":[-90,-36,-32]},{\"mesh\":4,\"translation\":[-90,-34,-36]},{\"mesh\":4,\"translation\":[-90,-36,-36]},{\"mesh\":4,\"translation\":[-90,-38,-34]},{\"mesh\":4,\"translation\":[-90,-40,-34]},{\"mesh\":4,\"translation\":[-90,-38,-38]},{\"mesh\":4,\"translation\":[-90,-40,-38]},{\"mesh\":4,\"translation\":[-90,-38,-42]},{\"mesh\":4,\"translation\":[-90,-40,-42]},{\"mesh\":4,\"translation\":[-90,-42,-32]},{\"mesh\":4,\"translation\":[-90,-44,-32]},{\"mesh\":4,\"translation\":[-90,-42,-36]},{\"mesh\":4,\"translation\":[-90,-44,-36]},{\"mesh\":4,\"translation\":[-90,-42,-40]},{\"mesh\":4,\"translation\":[-90,-44,-40]},{\"mesh\":4,\"translation\":[-90,-46,-34]},{\"mesh\":4,\"translation\":[-90,-48,-34]},{\"mesh\":5,\"translation\":[-91,-34,-32]},{\"mesh\":5,\"translation\":[-91,-36,-32]},{\"mesh\":5,\"translation\":[-91,-34,-36]},{\"mesh\":5,\"translation\":[-91,-36,-36]},{\"mesh\":5,\"translation\":[-91,-38,-34]},{\"mesh\":5,\"translation\":[-91,-40,-34]},{\"mesh\":5,\"translation\":[-91,-38,-38]},{\"mesh\":5,\"translation\":[-91,-40,-38]},{\"mesh\":5,\"translation\":[-91,-38,-42]},{\"mesh\":5,\"translation\":[-91,-40,-42]},{\"mesh\":5,\"translation\":[-91,-42,-32]},{\"mesh\":5,\"translation\":[-91,-44,-32]},{\"mesh\":5,\"translation\":[-91,-42,-36]},{\"mesh\":5,\"translation\":[-91,-44,-36]},{\"mesh\":5,\"translation\":[-91,-42,-40]},{\"mesh\":5,\"translation\":[-91,-44,-40]},{\"mesh\":5,\"translation\":[-91,-46,-34]},{\"mesh\":5,\"translation\":[-91,-48,-34]},{\"mesh\":3,\"translation\":[-91,-32,-32]},{\"mesh\":3,\"translation\":[-91,-34,-34]},{\"mesh\":3,\"translation\":[-91,-36,-34]},{\"mesh\":3,\"translation\":[-91,-36,-38]},{\"mesh\":3,\"translation\":[-91,-38,-32]},{\"mesh\":3,\"translation\":[-91,-38,-36]},{\"mesh\":3,\"translation\":[-91,-38,-40]},{\"mesh\":3,\"translation\":[-91,-40,-32]},{\"mesh\":3,\"translation\":[-91,-40,-36]},{\"mesh\":3,\"translation\":[-91,-40,-40]},{\"mesh\":3,\"translation\":[-91,-40,-44]},{\"mesh\":3,\"translation\":[-91,-42,-34]},{\"mesh\":3,\"translation\":[-91,-42,-38]},{\"mesh\":3,\"translation\":[-91,-42,-42]},{\"mesh\":3,\"translation\":[-91,-44,-34]},{\"mesh\":3,\"translation\":[-91,-44,-38]},{\"mesh\":3,\"translation\":[-91,-46,-32]},{\"mesh\":3,\"translation\":[-91,-46,-36]},{\"mesh\":3,\"translation\":[-91,-48,-32]},{\"mesh\":2,\"translation\":[-92,-34,-32]},{\"mesh\":2,\"translation\":[-92,-34,-36]},{\"mesh\":2,\"translation\":[-92,-36,-32]},{\"mesh\":2,\"translation\":[-92,-36,-36]},{\"mesh\":2,\"translation\":[-92,-38,-34]},{\"mesh\":2,\"translation\":[-92,-38,-38]},{\"mesh\":2,\"translation\":[-92,-38,-42]},{\"mesh\":2,\"translation\":[-92,-40,-34]},{\"mesh\":2,\"translation\":[-92,-40,-38]},{\"mesh\":2,\"translation\":[-92,-40,-42]},{\"mesh\":2,\"translation\":[-92,-42,-32]},{\"mesh\":2,\"translation\":[-92,-42,-36]},{\"mesh\":2,\"translation\":[-92,-42,-40]},{\"mesh\":2,\"translation\":[-92,-44,-32]},{\"mesh\":2,\"translation\":[-92,-44,-36]},{\"mesh\":2,\"translation\":[-92,-44,-40]},{\"mesh\":2,\"translation\":[-92,-46,-34]},{\"mesh\":2,\"translation\":[-92,-48,-34]},{\"mesh\":3,\"translation\":[-93,-34,-32]},{\"mesh\":3,\"translation\":[-93,-34,-36]},{\"mesh\":3,\"translation\":[-93,-36,-32]},{\"mesh\":3,\"translation\":[-93,-36,-36]},{\"mesh\":3,\"translation\":[-93,-38,-34]},{\"mesh\":3,\"translation\":[-93,-38,-38]},{\"mesh\":3,\"translation\":[-93,-38,-42]},{\"mesh\":3,\"translation\":[-93,-40,-34]},{\"mesh\":3,\"translation\":[-93,-40,-38]},{\"mesh\":3,\"translation\":[-93,-40,-42]},{\"mesh\":3,\"translation\":[-93,-42,-32]},{\"mesh\":3,\"translation\":[-93,-42,-36]},{\"mesh\":3,\"translation\":[-93,-42,-40]},{\"mesh\":3,\"translation\":[-93,-44,-32]},{\"mesh\":3,\"translation\":[-93,-44,-36]},{\"mesh\":3,\"translation\":[-93,-44,-40]},{\"mesh\":3,\"translation\":[-93,-46,-34]},{\"mesh\":3,\"translation\":[-93,-48,-34]},{\"mesh\":3,\"translation\":[-93,-32,-32]},{\"mesh\":3,\"translation\":[-93,-34,-34]},{\"mesh\":3,\"translation\":[-93,-36,-34]},{\"mesh\":3,\"translation\":[-93,-36,-38]},{\"mesh\":3,\"translation\":[-93,-38,-32]},{\"mesh\":3,\"translation\":[-93,-38,-36]},{\"mesh\":3,\"translation\":[-93,-38,-40]},{\"mesh\":3,\"translation\":[-93,-40,-32]},{\"mesh\":3,\"translation\":[-93,-40,-36]},{\"mesh\":3,\"translation\":[-93,-40,-40]},{\"mesh\":3,\"translation\":[-93,-40,-44]},{\"mesh\":3,\"translation\":[-93,-42,-34]},{\"mesh\":3,\"translation\":[-93,-42,-38]},{\"mesh\":3,\"translation\":[-93,-42,-42]},{\"mesh\":3,\"translation\":[-93,-44,-34]},{\"mesh\":3,\"translation\":[-93,-44,-38]},{\"mesh\":3,\"translation\":[-93,-46,-32]},{\"mesh\":3,\"translation\":[-93,-46,-36]},{\"mesh\":3,\"translation\":[-93,-48,-32]},{\"mesh\":6,\"translation\":[-94,-48,-34]},{\"mesh\":6,\"translation\":[-94,-44,-40]},{\"mesh\":6,\"translation\":[-94,-44,-36]},{\"mesh\":6,\"translation\":[-94,-44,-32]},{\"mesh\":6,\"translation\":[-94,-40,-42]},{\"mesh\":6,\"translation\":[-94,-40,-38]},{\"mesh\":6,\"translation\":[-94,-40,-34]},{\"mesh\":6,\"translation\":[-94,-36,-36]},{\"mesh\":6,\"translation\":[-94,-36,-32]},{\"mesh\":6,\"translation\":[-94,-48,-32]},{\"mesh\":6,\"translation\":[-94,-46,-36]},{\"mesh\":6,\"translation\":[-94,-46,-32]},{\"mesh\":6,\"translation\":[-94,-44,-38]},{\"mesh\":6,\"translation\":[-94,-44,-34]},{\"mesh\":6,\"translation\":[-94,-42,-42]},{\"mesh\":6,\"translation\":[-94,-42,-38]},{\"mesh\":6,\"translation\":[-94,-42,-34]},{\"mesh\":6,\"translation\":[-94,-40,-44]},{\"mesh\":6,\"translation\":[-94,-40,-40]},{\"mesh\":6,\"translation\":[-94,-40,-36]},{\"mesh\":6,\"translation\":[-94,-40,-32]},{\"mesh\":6,\"translation\":[-94,-38,-40]},{\"mesh\":6,\"translation\":[-94,-38,-36]},{\"mesh\":6,\"translation\":[-94,-38,-32]},{\"mesh\":6,\"translation\":[-94,-36,-38]},{\"mesh\":6,\"translation\":[-94,-36,-34]},{\"mesh\":6,\"translation\":[-94,-34,-34]},{\"mesh\":6,\"translation\":[-94,-32,-32]},{\"mesh\":6,\"translation\":[-94,-46,-34]},{\"mesh\":6,\"translation\":[-94,-42,-40]},{\"mesh\":6,\"translation\":[-94,-42,-36]},{\"mesh\":6,\"translation\":[-94,-42,-32]},{\"mesh\":6,\"translation\":[-94,-38,-42]},{\"mesh\":6,\"translation\":[-94,-38,-38]},{\"mesh\":6,\"translation\":[-94,-38,-34]},{\"mesh\":6,\"translation\":[-94,-34,-36]},{\"mesh\":6,\"translation\":[-94,-34,-32]},{\"mesh\":3,\"translation\":[-95,-48,-34]},{\"mesh\":3,\"translation\":[-95,-44,-40]},{\"mesh\":3,\"translation\":[-95,-44,-36]},{\"mesh\":3,\"translation\":[-95,-44,-32]},{\"mesh\":3,\"translation\":[-95,-40,-42]},{\"mesh\":3,\"translation\":[-95,-40,-38]},{\"mesh\":3,\"translation\":[-95,-40,-34]},{\"mesh\":3,\"translation\":[-95,-36,-36]},{\"mesh\":3,\"translation\":[-95,-36,-32]},{\"mesh\":3,\"translation\":[-95,-48,-32]},{\"mesh\":3,\"translation\":[-95,-46,-36]},{\"mesh\":3,\"translation\":[-95,-46,-32]},{\"mesh\":3,\"translation\":[-95,-44,-38]},{\"mesh\":3,\"translation\":[-95,-44,-34]},{\"mesh\":3,\"translation\":[-95,-42,-42]},{\"mesh\":3,\"translation\":[-95,-42,-38]},{\"mesh\":3,\"translation\":[-95,-42,-34]},{\"mesh\":3,\"translation\":[-95,-40,-44]},{\"mesh\":3,\"translation\":[-95,-40,-40]},{\"mesh\":3,\"translation\":[-95,-40,-36]},{\"mesh\":3,\"translation\":[-95,-40,-32]},{\"mesh\":3,\"translation\":[-95,-38,-40]},{\"mesh\":3,\"translation\":[-95,-38,-36]},{\"mesh\":3,\"translation\":[-95,-38,-32]},{\"mesh\":3,\"translation\":[-95,-36,-38]},{\"mesh\":3,\"translation\":[-95,-36,-34]},{\"mesh\":3,\"translation\":[-95,-34,-34]},{\"mesh\":3,\"translation\":[-95,-32,-32]},{\"mesh\":3,\"translation\":[-95,-46,-34]},{\"mesh\":3,\"translation\":[-95,-42,-40]},{\"mesh\":3,\"translation\":[-95,-42,-36]},{\"mesh\":3,\"translation\":[-95,-42,-32]},{\"mesh\":3,\"translation\":[-95,-38,-42]},{\"mesh\":3,\"translation\":[-95,-38,-38]},{\"mesh\":3,\"translation\":[-95,-38,-34]},{\"mesh\":3,\"translation\":[-95,-34,-36]},{\"mesh\":3,\"translation\":[-95,-34,-32]},{\"mesh\":7,\"translation\":[0,0,0]},{\"mesh\":8,\"translation\":[0,0,0]},{\"mesh\":9,\"translation\":[0,0,0]}],\"samplers\":[{\"magFilter\":9728,\"minFilter\":9728,\"wrapS\":33071,\"wrapT\":33071}],\"scene\":0,\"scenes\":[{\"nodes\":[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222,223,224,225,226,227,228,229,230,231,232,233,234,235,236,237,238,239,240,241,242,243,244,245,246,247,248,249,250,251,252,253,254,255,256,257,258,259,260,261,262,263,264,265,266,267,268,269,270,271,272,273,274,275,276,277,278,279,280,281,282,283,284,285,286,287,288,289,290,291,292,293,294,295,296,297,298,299,300,301,302,303,304,305,306,307,308,309,310,311,312,313,314,315,316,317,318,319,320,321,322,323,324,325,326,327,328,329,330,331,332,333,334,335,336,337,338,339,340,341,342,343,344,345,346,347,348,349,350,351,352,353,354,355,356,357,358,359,360,361,362,363,364,365,366,367,368,369,370,371,372,373,374,375,376,377,378,379,380,381,382,383,384,385,386,387,388,389,390,391,392,393,394,395,396,397,398,399,400,401,402,403,404,405,406,407,408,409,410,411,412,413,414,415,416,417,418,419,420,421,422,423,424,425,426,427,428,429,430,431,432,433,434,435,436,437,438,439,440,441,442,443,444,445,446,447,448,449,450,451,452,453,454,455,456,457,458,459,460,461,462,463,464,465,466,467,468,469,470,471,472,473,474,475,476,477,478,479,480,481,482,483,484,485,486,487,488,489,490,491,492,493,494,495,496,497,498,499,500,501,502,503,504,505,506,507,508,509,510,511,512,513,514,515,516,517,518,519,520,521,522,523,524,525,526,527,528,529,530,531,532,533,534,535,536,537,538,539,540,541,542,543,544,545,546,547,548,549,550,551,552,553,554,555,556,557,558,559,560,561,562,563,564,565,566,567,568,569,570,571,572,573,574,575,576,577,578,579,580,581,582,583,584,585,586,587,588,589,590,591,592,593,594,595,596,597,598,599,600,601,602,603,604,605,606,607,608,609,610,611,612,613,614,615,616,617,618,619,620,621,622,623,624,625,626,627,628,629,630,631,632,633,634,635,636,637,638,639,640,641,642,643,644,645,646,647,648,649,650,651,652,653,654,655,656,657,658,659,660,661,662,663,664,665,666,667,668,669,670,671,672,673,674,675,676,677,678,679,680,681,682,683,684,685,686,687,688,689,690,691,692,693,694,695,696,697,698,699,700,701,702,703,704,705,706,707,708,709,710,711,712,713,714,715,716,717,718,719,720,721,722,723,724,725,726,727,728,729,730,731,732,733,734,735,736,737,738,739,740,741,742,743,744,745,746,747,748,749,750,751,752,753,754,755,756,757,758,759,760,761,762,763,764,765,766,767,768,769,770,771,772,773,774,775,776,777,778,779,780,781,782,783,784,785,786,787,788,789,790,791,792,793,794,795,796,797,798,799,800,801,802,803,804,805,806,807,808,809,810,811,812,813,814,815,816,817,818,819,820,821,822,823,824,825,826,827,828,829,830,831,832,833,834,835,836,837,838,839,840,841,842,843,844,845,846,847,848,849,850,851,852,853,854,855,856,857,858,859,860,861,862,863,864,865,866,867,868,869,870,871,872,873,874,875,876,877,878,879,880,881,882,883,884,885,886,887,888,889,890,891,892,893,894,895,896,897,898,899,900,901,902,903,904,905,906,907,908,909,910,911,912,913,914,915,916,917,918,919,920,921,922,923,924,925,926,927,928,929,930,931,932,933,934,935,936,937,938,939,940,941,942,943,944,945,946,947,948,949,950,951,952,953,954,955,956,957,958,959,960,961,962,963,964,965,966,967,968,969,970,971,972,973,974,975,976,977,978,979,980,981,982,983,984,985,986,987,988,989,990,991,992,993,994,995,996,997,998,999,1000,1001,1002,1003,1004,1005,1006,1007,1008,1009,1010,1011,1012,1013,1014,1015,1016,1017,1018,1019,1020,1021,1022,1023,1024,1025,1026,1027,1028,1029,1030,1031,1032,1033,1034,1035,1036,1037,1038,1039,1040,1041,1042,1043,1044,1045,1046,1047,1048,1049,1050,1051,1052,1053,1054,1055,1056,1057,1058,1059,1060,1061,1062,1063,1064,1065,1066,1067,1068,1069,1070,1071,1072,1073,1074,1075,1076,1077,1078,1079,1080,1081,1082,1083,1084,1085,1086,1087,1088,1089,1090,1091,1092,1093,1094,1095,1096,1097,1098,1099,1100,1101,1102,1103,1104,1105,1106,1107,1108,1109,1110,1111,1112,1113,1114,1115,1116,1117,1118,1119,1120,1121,1122,1123,1124,1125,1126,1127,1128,1129,1130,1131,1132,1133,1134,1135,1136,1137,1138,1139,1140,1141,1142,1143,1144,1145,1146,1147,1148,1149,1150,1151,1152,1153,1154,1155,1156,1157,1158,1159,1160,1161,1162,1163,1164,1165,1166,1167,1168,1169,1170,1171,1172,1173,1174,1175,1176,1177,1178,1179,1180,1181,1182,1183,1184,1185,1186,1187,1188,1189,1190,1191,1192,1193,1194,1195,1196,1197,1198,1199,1200,1201,1202,1203,1204,1205,1206,1207,1208,1209,1210,1211,1212,1213,1214,1215,1216,1217,1218,1219,1220,1221,1222,1223,1224,1225,1226,1227,1228,1229,1230,1231,1232,1233,1234,1235,1236,1237,1238,1239,1240,1241,1242,1243,1244,1245,1246,1247,1248,1249,1250,1251,1252,1253,1254,1255,1256,1257,1258,1259,1260,1261,1262,1263,1264,1265,1266,1267,1268,1269,1270,1271,1272,1273,1274,1275,1276,1277,1278,1279,1280,1281,1282,1283,1284,1285,1286,1287,1288,1289,1290,1291,1292,1293,1294,1295,1296,1297,1298,1299,1300,1301,1302,1303,1304,1305,1306,1307,1308,1309,1310,1311,1312,1313,1314,1315,1316,1317,1318,1319,1320,1321,1322,1323,1324,1325,1326,1327,1328,1329,1330,1331,1332,1333,1334,1335,1336,1337,1338,1339,1340,1341,1342,1343,1344,1345,1346,1347,1348,1349,1350,1351,1352,1353,1354,1355,1356,1357,1358,1359,1360,1361,1362,1363,1364,1365,1366,1367,1368,1369,1370,1371,1372,1373,1374,1375,1376,1377,1378,1379,1380,1381,1382,1383,1384,1385,1386,1387,1388,1389,1390,1391,1392,1393,1394,1395,1396,1397,1398,1399,1400,1401,1402,1403,1404,1405,1406,1407,1408,1409,1410,1411,1412,1413,1414,1415,1416,1417,1418,1419,1420,1421,1422,1423,1424,1425,1426,1427,1428,1429,1430,1431,1432,1433,1434,1435,1436,1437,1438,1439,1440,1441,1442,1443,1444,1445,1446,1447,1448,1449,1450,1451,1452,1453,1454,1455,1456,1457,1458,1459,1460,1461,1462,1463,1464,1465,1466,1467,1468,1469,1470,1471,1472,1473,1474,1475,1476,1477,1478,1479,1480,1481,1482,1483,1484,1485,1486,1487,1488,1489,1490,1491,1492,1493,1494,1495,1496,1497,1498,1499,1500,1501,1502,1503,1504,1505,1506,1507,1508,1509,1510,1511,1512,1513,1514,1515,1516,1517,1518,1519,1520,1521,1522,1523,1524,1525,1526,1527,1528,1529,1530,1531,1532,1533,1534,1535,1536,1537,1538,1539,1540,1541,1542,1543,1544,1545,1546,1547,1548,1549,1550,1551,1552,1553,1554,1555,1556,1557,1558,1559,1560,1561,1562,1563,1564,1565,1566,1567,1568,1569,1570,1571,1572,1573,1574,1575,1576,1577,1578,1579,1580,1581,1582,1583,1584,1585,1586,1587,1588,1589,1590,1591,1592,1593,1594,1595,1596,1597,1598,1599,1600,1601,1602,1603,1604,1605,1606,1607,1608,1609,1610,1611,1612,1613,1614,1615,1616,1617,1618,1619,1620,1621,1622,1623,1624,1625,1626,1627,1628,1629,1630,1631,1632,1633,1634,1635,1636,1637,1638,1639,1640,1641,1642,1643,1644,1645,1646,1647,1648,1649,1650,1651,1652,1653,1654,1655,1656,1657,1658,1659,1660,1661,1662,1663,1664,1665,1666,1667,1668,1669,1670,1671,1672,1673,1674,1675,1676,1677,1678,1679,1680,1681,1682,1683,1684,1685,1686,1687,1688,1689,1690,1691,1692,1693,1694,1695,1696,1697,1698,1699,1700,1701,1702,1703,1704,1705,1706,1707,1708,1709,1710,1711,1712,1713,1714,1715,1716,1717,1718,1719,1720,1721,1722,1723,1724,1725,1726,1727,1728,1729,1730,1731,1732,1733,1734,1735,1736,1737,1738,1739,1740,1741,1742,1743,1744,1745,1746,1747,1748,1749,1750,1751,1752,1753,1754,1755,1756,1757,1758,1759,1760,1761,1762,1763,1764,1765,1766,1767,1768,1769,1770,1771,1772,1773,1774,1775,1776,1777,1778,1779,1780,1781,1782,1783,1784,1785,1786,1787,1788,1789,1790,1791,1792,1793,1794,1795,1796,1797,1798,1799,1800,1801,1802,1803,1804,1805,1806,1807,1808,1809,1810,1811,1812,1813,1814,1815,1816,1817,1818,1819,1820,1821,1822,1823,1824,1825,1826,1827,1828,1829,1830,1831,1832,1833,1834,1835,1836,1837,1838,1839,1840,1841,1842,1843,1844,1845,1846,1847,1848,1849,1850,1851,1852,1853,1854,1855,1856,1857,1858,1859,1860,1861,1862,1863,1864,1865,1866,1867,1868,1869,1870,1871,1872,1873,1874,1875,1876,1877,1878,1879,1880,1881,1882,1883,1884,1885,1886,1887,1888,1889,1890,1891,1892,1893,1894,1895,1896,1897,1898,1899,1900,1901,1902,1903,1904,1905,1906,1907,1908,1909,1910,1911,1912,1913,1914,1915,1916,1917,1918,1919,1920,1921,1922,1923,1924,1925,1926,1927,1928,1929,1930,1931,1932,1933,1934,1935,1936,1937,1938,1939,1940,1941,1942,1943,1944,1945,1946,1947,1948,1949,1950,1951,1952,1953,1954,1955,1956,1957,1958,1959,1960,1961,1962,1963,1964,1965,1966,1967,1968,1969,1970,1971,1972,1973,1974,1975,1976,1977,1978,1979,1980,1981,1982,1983,1984,1985,1986,1987,1988,1989,1990,1991,1992,1993,1994,1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007,2008,2009,2010,2011,2012,2013,2014,2015,2016,2017,2018,2019,2020,2021,2022,2023,2024,2025,2026,2027,2028,2029,2030,2031,2032,2033,2034,2035,2036,2037,2038,2039,2040,2041,2042,2043,2044,2045,2046,2047,2048,2049,2050,2051,2052,2053,2054,2055,2056,2057,2058,2059,2060,2061,2062,2063,2064,2065,2066,2067,2068,2069,2070,2071,2072,2073,2074,2075,2076,2077,2078,2079,2080,2081,2082,2083,2084,2085,2086,2087,2088,2089,2090,2091,2092,2093,2094,2095,2096,2097,2098,2099,2100,2101,2102,2103,2104,2105,2106,2107,2108,2109,2110,2111,2112,2113,2114,2115,2116,2117,2118,2119,2120,2121,2122,2123,2124,2125,2126,2127,2128,2129,2130,2131,2132,2133,2134,2135,2136,2137,2138,2139,2140,2141,2142,2143,2144,2145,2146,2147,2148,2149,2150,2151,2152,2153,2154,2155,2156,2157,2158,2159,2160,2161,2162,2163,2164,2165,2166,2167,2168,2169,2170,2171,2172,2173,2174,2175,2176,2177,2178,2179,2180,2181,2182,2183,2184,2185,2186,2187,2188,2189,2190,2191,2192,2193,2194,2195,2196,2197,2198,2199,2200,2201,2202,2203,2204,2205,2206,2207,2208,2209,2210,2211,2212,2213,2214,2215,2216,2217,2218,2219,2220,2221,2222,2223,2224,2225,2226,2227,2228,2229,2230,2231,2232,2233,2234,2235,2236,2237,2238,2239,2240,2241,2242,2243,2244,2245,2246,2247,2248,2249,2250,2251,2252,2253,2254,2255,2256,2257,2258,2259,2260,2261,2262,2263,2264,2265,2266,2267,2268,2269,2270,2271,2272,2273,2274,2275,2276,2277,2278,2279,2280,2281,2282,2283,2284,2285,2286,2287,2288,2289,2290,2291,2292,2293,2294,2295,2296,2297,2298,2299,2300,2301,2302,2303,2304,2305,2306,2307,2308,2309,2310,2311,2312,2313,2314,2315,2316,2317,2318,2319,2320,2321,2322,2323,2324,2325,2326,2327,2328,2329,2330,2331,2332,2333,2334,2335,2336,2337,2338,2339,2340,2341,2342,2343,2344,2345,2346,2347,2348,2349,2350,2351,2352,2353,2354,2355,2356,2357,2358,2359,2360,2361,2362,2363,2364,2365,2366,2367,2368,2369,2370,2371,2372,2373,2374,2375,2376,2377,2378,2379,2380,2381,2382,2383,2384,2385,2386,2387,2388,2389,2390,2391,2392,2393,2394,2395,2396,2397,2398,2399,2400,2401,2402,2403,2404,2405,2406,2407,2408,2409,2410,2411,2412,2413,2414,2415,2416,2417,2418,2419,2420,2421,2422,2423,2424,2425,2426,2427,2428,2429,2430,2431,2432,2433,2434,2435,2436,2437,2438,2439,2440,2441,2442,2443,2444,2445,2446,2447,2448,2449,2450,2451,2452,2453,2454,2455,2456,2457,2458,2459,2460,2461,2462,2463,2464,2465,2466,2467,2468,2469,2470,2471,2472,2473,2474,2475,2476,2477,2478,2479,2480,2481,2482,2483,2484,2485,2486,2487,2488,2489,2490,2491,2492,2493,2494,2495,2496,2497,2498,2499,2500,2501,2502,2503,2504,2505,2506,2507,2508,2509,2510,2511,2512,2513,2514,2515,2516,2517,2518,2519,2520,2521,2522,2523,2524,2525,2526,2527,2528,2529,2530,2531,2532,2533,2534,2535,2536,2537,2538,2539,2540,2541,2542,2543,2544,2545,2546,2547,2548,2549,2550,2551,2552,2553,2554,2555,2556,2557,2558,2559,2560,2561,2562,2563,2564,2565,2566,2567,2568,2569,2570,2571,2572,2573,2574,2575,2576,2577,2578,2579,2580,2581,2582,2583,2584,2585,2586,2587,2588,2589,2590,2591,2592,2593,2594,2595,2596,2597,2598,2599,2600,2601,2602,2603,2604,2605,2606,2607,2608,2609,2610,2611,2612,2613,2614,2615,2616,2617,2618,2619,2620,2621,2622,2623,2624,2625,2626,2627,2628,2629,2630,2631,2632,2633,2634,2635,2636,2637,2638,2639,2640,2641,2642,2643,2644,2645,2646,2647,2648,2649,2650,2651,2652,2653,2654,2655,2656,2657,2658,2659,2660,2661,2662,2663,2664,2665,2666,2667,2668,2669,2670,2671,2672,2673,2674,2675,2676,2677,2678,2679,2680,2681,2682,2683,2684,2685,2686,2687,2688,2689,2690,2691,2692,2693,2694,2695,2696,2697,2698,2699,2700,2701,2702,2703,2704,2705,2706,2707,2708,2709,2710,2711,2712,2713,2714,2715,2716,2717,2718,2719,2720,2721,2722,2723,2724,2725,2726,2727,2728,2729,2730,2731,2732,2733,2734,2735,2736,2737,2738,2739,2740,2741,2742,2743,2744,2745,2746,2747,2748,2749,2750,2751,2752,2753,2754,2755,2756,2757,2758,2759,2760,2761,2762,2763,2764,2765,2766,2767,2768,2769,2770,2771,2772,2773,2774,2775,2776,2777,2778,2779,2780,2781,2782,2783,2784,2785,2786,2787,2788,2789,2790,2791,2792,2793,2794,2795,2796,2797,2798,2799,2800,2801,2802,2803,2804,2805,2806,2807,2808,2809,2810,2811,2812,2813,2814,2815,2816,2817,2818,2819,2820,2821,2822,2823,2824,2825,2826,2827,2828,2829,2830,2831]}],\"textures\":[{\"sampler\":0,\"source\":0}]}" + ], + "text/html": [ + "" + ] + }, + "metadata": {}, + "execution_count": 7 + } + ], + "source": [ + "import stim\n", + "\n", + "circuit = stim.Circuit.from_file('d5r5colorcode_p001.stim')\n", + "circuit.diagram('timeline-3d')" + ] }, - "id": "cyctTUyzQ-cQ", - "outputId": "0f3c5a8a-0d09-49e4-e3b1-e193152bf2bf" - }, - "outputs": [ { - "name": "stdout", - "output_type": "stream", - "text": [ - "Smaller det_beam\n", - "Tesseract Decoder Stats:\n", - " Number of Errors / num_shots: 2 / 1000\n", - " Time: 5.8029 s\n", - "\n", - "Larger det_beam\n", - "Tesseract Decoder Stats:\n", - " Number of Errors / num_shots: 2 / 1000\n", - " Time: 6.1866 s\n", - "\n" - ] - } - ], - "source": [ - "tesseract_config1 = tesseract.TesseractConfig(\n", - " dem=dem,\n", - " pqlimit=1000,\n", - " det_beam=3,\n", - " beam_climbing=True,\n", - " det_orders=tesseract_decoder.utils.build_det_orders(\n", - " dem, num_det_orders=5, det_order_bfs=True, seed=2384753),\n", - ")\n", - "\n", - "print (\"Smaller det_beam\")\n", - "results = run_tesseract_decoder(tesseract_config1.compile_decoder(), dets, obs)\n", - "print_results(results)\n", - "\n", - "\n", - "tesseract_config2 = tesseract.TesseractConfig(\n", - " dem=dem,\n", - " pqlimit=1000,\n", - " det_beam=5,\n", - " beam_climbing=True,\n", - " det_orders=tesseract_decoder.utils.build_det_orders(\n", - " dem, num_det_orders=5, det_order_bfs=True, seed=2384753),\n", - ")\n", - "print (\"Larger det_beam\")\n", - "results = run_tesseract_decoder(tesseract_config2.compile_decoder(), dets, obs)\n", - "print_results(results)" - ] - }, - - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" + "cell_type": "markdown", + "metadata": { + "id": "YDnwv2dacTbf" + }, + "source": [ + "# Estimating code distance with Stim" + ] }, - "id": "0VrW2z8sSXtN", - "outputId": "6f69c1ff-1c04-4dc6-d1a0-32aa0777d56b" - }, - "outputs": [ { - "name": "stdout", - "output_type": "stream", - "text": [ - "First version\n", - "Tesseract Decoder Stats:\n", - " Number of Errors / num_shots: 9 / 1000\n", - " Time: 1.1290 s\n", - "\n", - "Second version\n", - "Tesseract Decoder Stats:\n", - " Number of Errors / num_shots: 19 / 1000\n", - " Time: 0.9446 s\n", - "\n" - ] - } - ], - "source": [ - "tesseract_config1 = tesseract.TesseractConfig(\n", - " dem=dem,\n", - " pqlimit=1000,\n", - " # no_revisit_dets=True,\n", - " # at_most_two_errors_per_detector = True,\n", - " det_penalty = 10,\n", - " # det_orders=tesseract_decoder.utils.build_det_orders(\n", - " # dem, num_det_orders=2, det_order_bfs=True, seed=2384753),\n", - ")\n", - "\n", - "print (\"First version\")\n", - "results = run_tesseract_decoder(tesseract_config1.compile_decoder(), dets, obs)\n", - "print_results(results)\n", - "\n", - "\n", - "tesseract_config2 = tesseract.TesseractConfig(\n", - " dem=dem,\n", - " pqlimit=1000,\n", - " # no_revisit_dets=False,\n", - " # at_most_two_errors_per_detector = False,\n", - " det_penalty = 0,\n", - " # det_orders=tesseract_decoder.utils.build_det_orders(\n", - " # dem, num_det_orders=2, det_order_bfs=True, seed=2384753),\n", - ")\n", - "print (\"Second version\")\n", - "results = run_tesseract_decoder(tesseract_config2.compile_decoder(), dets, obs)\n", - "print_results(results)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "BoEALeo3OYGp" - }, - "source": [ - "# Decoding Wild Stabilizer Codes under Code Capacity Noise with Tesseract\n", - "\n", - "\n", - "\n", - "* checkout https://www.codetables.de/ for a qubit stabilizer code\n", - "* full table of qubit codes: [here](https://codetables.de/QECC/Tables_color.php?q=4&n0=1&n1=256&k0=0&k1=256)\n", - "* copy the stabilizer matrix for a code, such as: [this one used below](https://codetables.de/QECC/QECC.php?q=4&n=21&k=8)\n", - "\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "pJ1gEKAgPbHO" - }, - "outputs": [], - "source": [ - "import time\n", - "import tesseract_decoder\n", - "import stim\n", - "import numpy as np\n", - "import numpy.typing as npt\n", - "from galois import GF2\n", - "from typing import List, Tuple\n", - "\n", - "\n", - "def paulis_from_symplectic_matrix(check_matrix: npt.NDArray[np.uint8]) -> List[stim.PauliString]:\n", - " n = check_matrix.shape[1] // 2\n", - " paulis = []\n", - " for i in range(check_matrix.shape[0]):\n", - " paulis.append(\n", - " stim.PauliString.from_numpy(\n", - " xs=check_matrix[i, :n].astype(bool), zs=check_matrix[i, n:].astype(bool)\n", - " )\n", - " )\n", - " return paulis\n", - "\n", - "def rank(H):\n", - " return np.linalg.matrix_rank(GF2(H))\n", - "\n", - "def stabilizer_code_logical_operators(\n", - " check_matrix: npt.NDArray[np.uint8]) -> Tuple[npt.NDArray[np.uint8], npt.NDArray[np.uint8]]:\n", - " check_matrix = np.array(check_matrix, dtype=np.uint8)\n", - "\n", - " r = rank(check_matrix)\n", - " n = check_matrix.shape[1] // 2\n", - "\n", - " stabilisers = paulis_from_symplectic_matrix(check_matrix=check_matrix)\n", - "\n", - " tableau = stim.Tableau.from_stabilizers(\n", - " stabilizers=stabilisers, allow_underconstrained=True, allow_redundant=True\n", - " )\n", - "\n", - " x2x, x2z, z2x, z2z, x_signs, z_signs = tableau.to_numpy()\n", - "\n", - " num_logicals = n - r\n", - "\n", - " Lx = np.zeros((num_logicals, check_matrix.shape[1]), dtype=np.uint8)\n", - " Lz = np.zeros((num_logicals, check_matrix.shape[1]), dtype=np.uint8)\n", - "\n", - " Lx[:, :n] = x2x[r:]\n", - " Lx[:, n:] = x2z[r:]\n", - " Lz[:, :n] = z2x[r:]\n", - " Lz[:, n:] = z2z[r:]\n", - " return Lx.astype(np.uint8), Lz.astype(np.uint8)\n", - "\n", - "\n", - "def pauli_to_observable_include_target(pauli: stim.PauliString) -> List[stim.GateTarget]:\n", - " obs_pauli_targets = []\n", - " for i in range(len(pauli)):\n", - " if pauli[i] != 0:\n", - " obs_pauli_targets.append(stim.target_pauli(i, pauli[i]))\n", - " return obs_pauli_targets\n", - "\n", - "\n", - "def append_observable_includes_for_paulis(circuit: stim.Circuit, paulis: List[stim.PauliString]) -> None:\n", - " for i, obs in enumerate(paulis):\n", - " circuit.append(\n", - " \"OBSERVABLE_INCLUDE\",\n", - " targets=pauli_to_observable_include_target(pauli=obs),\n", - " arg=i\n", - " )\n", - "\n", - "\n", - "def code_capacity_circuit(\n", - " stabilizers: npt.NDArray[np.uint8],\n", - " x_logicals: npt.NDArray[np.uint8],\n", - " z_logicals: npt.NDArray[np.uint8],\n", - " p: float\n", - ") -> stim.Circuit:\n", - " \"\"\"Generate a code capacity stim circuit for a stabilizer code\n", - "\n", - " Parameters\n", - " ----------\n", - " stabilizers : npt.NDArray[np.uint8]\n", - " The stabilizer generators of the code, as a binary symplectic matrix.\n", - " The matrix has dimensions (r, 2 * n) where r is the number of stabilizer\n", - " generators and n is the number of physical qubits.\n", - " `stabilizers[i, j]` is 1 if stabilizer i is X or Y on qubit j and 0 otherwise.\n", - " `stabilizers[i, n + j]` is 1 if stabilizer i is Z or Y on qubit j and 0 otherwise.\n", - " x_logicals : npt.NDArray[np.uint8]\n", - " The X logical operators of the code, as a binary symplectic matrix.\n", - " The matrix has dimensions (k, 2 * n) where k is the number of logical qubits\n", - " and n is the number of physical qubits.\n", - " z_logicals : npt.NDArray[np.uint8]\n", - " The Z logical operators of the code, as a binary symplectic matrix.\n", - " The matrix has dimensions (k, 2 * n) where k is the number of logical qubits\n", - " and n is the number of physical qubits.\n", - " p : float\n", - " The strength of single-qubit depolarizing noise to use\n", - "\n", - " Returns\n", - " -------\n", - " stim.Circuit\n", - " The stim circuit of the code capacity circuit\n", - " \"\"\"\n", - " num_qubits = stabilizers.shape[1] // 2\n", - " num_stabilizers = stabilizers.shape[0]\n", - " stabilizer_paulis = paulis_from_symplectic_matrix(stabilizers)\n", - " x_logicals_paulis = paulis_from_symplectic_matrix(x_logicals)\n", - " z_logicals_paulis = paulis_from_symplectic_matrix(z_logicals)\n", - " all_logicals_paulis = x_logicals_paulis + z_logicals_paulis\n", - "\n", - " circuit = stim.Circuit()\n", - "\n", - " append_observable_includes_for_paulis(\n", - " circuit=circuit, paulis=all_logicals_paulis)\n", - " circuit.append(\"MPP\", stabilizer_paulis)\n", - " circuit.append(\"DEPOLARIZE1\", targets=list(range(num_qubits)), arg=p)\n", - " circuit.append(\"MPP\", stabilizer_paulis)\n", - "\n", - " for i in range(num_stabilizers):\n", - " circuit.append(\n", - " \"DETECTOR\",\n", - " targets=[\n", - " stim.target_rec(i - 2 * num_stabilizers),\n", - " stim.target_rec(i - num_stabilizers)\n", - " ]\n", - " )\n", - "\n", - " append_observable_includes_for_paulis(\n", - " circuit=circuit, paulis=all_logicals_paulis)\n", - " return circuit\n", - "\n", - "\n", - "def parse_symplectic_matrix(text: str) -> npt.NDArray[np.uint8]:\n", - " rows = []\n", - " for line in text.strip().splitlines():\n", - " line = line.strip()\n", - " if not line or line[0] != '[' or line[-1] != ']':\n", - " continue # skip malformed lines\n", - " body = line[1:-1]\n", - " if \"|\" in body:\n", - " left, right = body.split(\"|\")\n", - " bits = left.strip().split() + right.strip().split()\n", - " else:\n", - " bits = body.strip().split()\n", - " row = [int(b) for b in bits]\n", - " rows.append(row)\n", - " return np.array(rows, dtype=np.uint8)\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 343 + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "r2MFDDBMvkq3", + "outputId": "cc6b8bfe-9adb-4b55-9c47-ed2580177b44" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "estimated distance: 5\n" + ] + } + ], + "source": [ + "distance_estimate = len(circuit.search_for_undetectable_logical_errors(\n", + " dont_explore_detection_event_sets_with_size_above=6,\n", + " dont_explore_edges_with_degree_above=3,\n", + " dont_explore_edges_increasing_symptom_degree=False))\n", + "print(f'estimated distance: {distance_estimate}')" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "UuYvEwq9cgYc" + }, + "source": [ + "# Create DEM, detection events and observables with Stim" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "6oCW5jRsXy8-" + }, + "source": [ + "### Can't decode with pymatching..." + ] }, - "id": "pH_b3u1rBogl", - "outputId": "846dd807-82ed-4139-e46d-a3cfe65a7681" - }, - "outputs": [ { - "data": { - "text/html": [ - "" + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "x6TQbGZ7b06k", + "outputId": "c4caa541-cef7-498d-a410-c00b64cf8a79" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stderr", + "text": [ + "Traceback (most recent call last):\n", + " File \"/tmp/ipython-input-2195602962.py\", line 5, in \n", + " circuit.detector_error_model(decompose_errors=True)\n", + "ValueError: Failed to decompose errors into graphlike components with at most two symptoms.\n", + "The error component that failed to decompose is 'D46, D49, D52, D63, D66, D73, D75'.\n", + "\n", + "In Python, you can ignore this error by passing `ignore_decomposition_failures=True` to `stim.Circuit.detector_error_model(...)`.\n", + "From the command line, you can ignore this error by passing the flag `--ignore_decomposition_failures` to `stim analyze_errors`.\n", + "\n", + "Circuit stack trace:\n", + " during TICK layer #46 of 75\n", + " at instruction #104 [which is a REPEAT 3 block]\n" + ] + } ], - "text/plain": [ - "{\"accessors\":[{\"bufferView\":0,\"byteOffset\":0,\"componentType\":5126,\"count\":12,\"max\":[0,0.5,0.5],\"min\":[0,-0.5,-0.5],\"name\":\"cube\",\"type\":\"VEC3\"},{\"bufferView\":1,\"byteOffset\":0,\"componentType\":5126,\"count\":12,\"max\":[0.6875,0.4375],\"min\":[0.625,0.375],\"name\":\"tex_coords_gate_MPP:X\",\"type\":\"VEC2\"},{\"bufferView\":2,\"byteOffset\":0,\"componentType\":5126,\"count\":12,\"max\":[0.6875,0.5],\"min\":[0.625,0.4375],\"name\":\"tex_coords_gate_MPP:Y\",\"type\":\"VEC2\"},{\"bufferView\":3,\"byteOffset\":0,\"componentType\":5126,\"count\":12,\"max\":[0.6875,0.5625],\"min\":[0.625,0.5],\"name\":\"tex_coords_gate_MPP:Z\",\"type\":\"VEC2\"},{\"bufferView\":4,\"byteOffset\":0,\"componentType\":5126,\"count\":12,\"max\":[0.25,0.625],\"min\":[0.1875,0.5625],\"name\":\"tex_coords_gate_DEPOLARIZE1\",\"type\":\"VEC2\"},{\"bufferView\":5,\"byteOffset\":0,\"componentType\":5126,\"count\":470,\"max\":[1,-0,-0],\"min\":[-19,-40,-0],\"name\":\"buf_scattered_lines\",\"type\":\"VEC3\"},{\"bufferView\":6,\"byteOffset\":0,\"componentType\":5126,\"count\":6,\"max\":[0,2.5,-0],\"min\":[-3,1.5,-0],\"name\":\"buf_red_scattered_lines\",\"type\":\"VEC3\"}],\"asset\":{\"version\":\"2.0\"},\"bufferViews\":[{\"buffer\":0,\"byteLength\":144,\"byteOffset\":0,\"name\":\"cube\",\"target\":34962},{\"buffer\":1,\"byteLength\":96,\"byteOffset\":0,\"name\":\"tex_coords_gate_MPP:X\",\"target\":34962},{\"buffer\":2,\"byteLength\":96,\"byteOffset\":0,\"name\":\"tex_coords_gate_MPP:Y\",\"target\":34962},{\"buffer\":3,\"byteLength\":96,\"byteOffset\":0,\"name\":\"tex_coords_gate_MPP:Z\",\"target\":34962},{\"buffer\":4,\"byteLength\":96,\"byteOffset\":0,\"name\":\"tex_coords_gate_DEPOLARIZE1\",\"target\":34962},{\"buffer\":5,\"byteLength\":5640,\"byteOffset\":0,\"name\":\"buf_scattered_lines\",\"target\":34962},{\"buffer\":6,\"byteLength\":72,\"byteOffset\":0,\"name\":\"buf_red_scattered_lines\",\"target\":34962}],\"buffers\":[{\"byteLength\":144,\"name\":\"cube\",\"uri\":\"data:application/octet-stream;base64,AAAAAAAAAD8AAAA/AAAAAAAAAD8AAAC/AAAAAAAAAL8AAAA/AAAAAAAAAD8AAAC/AAAAAAAAAL8AAAC/AAAAAAAAAL8AAAA/AAAAAAAAAL8AAAC/AAAAAAAAAD8AAAC/AAAAAAAAAL8AAAA/AAAAAAAAAL8AAAA/AAAAAAAAAD8AAAC/AAAAAAAAAD8AAAA/\"},{\"byteLength\":96,\"name\":\"tex_coords_gate_MPP:X\",\"uri\":\"data:application/octet-stream;base64,AAAwPwAAwD4AACA/AADAPgAAMD8AAOA+AAAgPwAAwD4AACA/AADgPgAAMD8AAOA+AAAwPwAA4D4AADA/AADAPgAAID8AAOA+AAAgPwAA4D4AADA/AADAPgAAID8AAMA+\"},{\"byteLength\":96,\"name\":\"tex_coords_gate_MPP:Y\",\"uri\":\"data:application/octet-stream;base64,AAAwPwAA4D4AACA/AADgPgAAMD8AAAA/AAAgPwAA4D4AACA/AAAAPwAAMD8AAAA/AAAwPwAAAD8AADA/AADgPgAAID8AAAA/AAAgPwAAAD8AADA/AADgPgAAID8AAOA+\"},{\"byteLength\":96,\"name\":\"tex_coords_gate_MPP:Z\",\"uri\":\"data:application/octet-stream;base64,AAAwPwAAAD8AACA/AAAAPwAAMD8AABA/AAAgPwAAAD8AACA/AAAQPwAAMD8AABA/AAAwPwAAED8AADA/AAAAPwAAID8AABA/AAAgPwAAED8AADA/AAAAPwAAID8AAAA/\"},{\"byteLength\":96,\"name\":\"tex_coords_gate_DEPOLARIZE1\",\"uri\":\"data:application/octet-stream;base64,AACAPgAAED8AAEA+AAAQPwAAgD4AACA/AABAPgAAED8AAEA+AAAgPwAAgD4AACA/AACAPgAAID8AAIA+AAAQPwAAQD4AACA/AABAPgAAID8AAIA+AAAQPwAAQD4AABA/\"},{\"byteLength\":5640,\"name\":\"buf_scattered_lines\",\"uri\":\"data:application/octet-stream;base64,AAAAgAAAIMEAAACAAACAvgAAoMAAAACAAACAvgAAoMAAAACAAAAAgAAAAIAAAACAAAAAgAAAQMEAAACAAAAAgAAAIMEAAACAAAAAgAAAYMEAAACAAAAAgAAAQMEAAACAAAAAgAAAgMEAAACAAAAAgAAAYMEAAACAAAAAgAAAoMEAAACAAACAvgAAkMEAAACAAACAvgAAkMEAAACAAAAAgAAAgMEAAACAAAAAgAAAsMEAAACAAAAAgAAAoMEAAACAAAAAgAAA4MEAAACAAACAvgAAyMEAAACAAACAvgAAyMEAAACAAAAAgAAAsMEAAACAAAAAgAAA8MEAAACAAAAAgAAA4MEAAACAAAAAgAAAAMIAAACAAAAAgAAA8MEAAACAAACAvwAAAMEAAACAAACgvwAAgMAAAACAAACgvwAAgMAAAACAAACAvwAAAIAAAACAAACAvwAAIMEAAACAAACAvwAAAMEAAACAAACAvwAAQMEAAACAAACAvwAAIMEAAACAAACAvwAAYMEAAACAAACAvwAAQMEAAACAAACAvwAAgMEAAACAAACAvwAAYMEAAACAAACAvwAAoMEAAACAAACgvwAAkMEAAACAAACgvwAAkMEAAACAAACAvwAAgMEAAACAAACAvwAAsMEAAACAAACAvwAAoMEAAACAAACAvwAA0MEAAACAAACgvwAAwMEAAACAAACgvwAAwMEAAACAAACAvwAAsMEAAACAAACAvwAA4MEAAACAAACAvwAA0MEAAACAAACAvwAA8MEAAACAAACAvwAA4MEAAACAAACAvwAAAMIAAACAAACAvwAA8MEAAACAAAAAwAAAAMEAAACAAAAQwAAAoMAAAACAAAAQwAAAoMAAAACAAAAAwAAAAMAAAACAAAAAwAAAIMEAAACAAAAAwAAAAMEAAACAAAAAwAAAQMEAAACAAAAAwAAAIMEAAACAAAAAwAAAYMEAAACAAAAAwAAAQMEAAACAAAAAwAAAgMEAAACAAAAAwAAAYMEAAACAAAAAwAAAkMEAAACAAAAAwAAAgMEAAACAAAAAwAAAoMEAAACAAAAAwAAAkMEAAACAAAAAwAAAsMEAAACAAAAAwAAAoMEAAACAAAAAwAAAwMEAAACAAAAAwAAAsMEAAACAAAAAwAAA0MEAAACAAAAAwAAAwMEAAACAAAAAwAAA4MEAAACAAAAAwAAA0MEAAACAAAAAwAAA8MEAAACAAAAAwAAA4MEAAACAAAAAwAAAAMIAAACAAAAAwAAA8MEAAACAAABAwAAAIMEAAACAAABQwAAAwMAAAACAAABQwAAAwMAAAACAAABAwAAAAMAAAACAAABAwAAAQMEAAACAAABAwAAAIMEAAACAAABAwAAAYMEAAACAAABAwAAAQMEAAACAAABAwAAAgMEAAACAAABAwAAAYMEAAACAAABAwAAAkMEAAACAAABAwAAAgMEAAACAAABAwAAAoMEAAACAAABAwAAAkMEAAACAAABAwAAAsMEAAACAAABAwAAAoMEAAACAAABAwAAAwMEAAACAAABAwAAAsMEAAACAAABAwAAA4MEAAACAAABQwAAA0MEAAACAAABQwAAA0MEAAACAAABAwAAAwMEAAACAAABAwAAA8MEAAACAAABAwAAA4MEAAACAAABAwAAAAMIAAACAAABAwAAA8MEAAACAAACAwAAAYMEAAACAAACIwAAAEMEAAACAAACIwAAAEMEAAACAAACAwAAAgMAAAACAAACAwAAAgMEAAACAAACAwAAAYMEAAACAAACAwAAAkMEAAACAAACAwAAAgMEAAACAAACAwAAAoMEAAACAAACAwAAAkMEAAACAAACAwAAAsMEAAACAAACAwAAAoMEAAACAAACAwAAAwMEAAACAAACAwAAAsMEAAACAAACAwAAA0MEAAACAAACAwAAAwMEAAACAAACAwAAA8MEAAACAAACIwAAA4MEAAACAAACIwAAA4MEAAACAAACAwAAA0MEAAACAAACAwAAAAMIAAACAAACAwAAA8MEAAACAAACgwAAAAMEAAACAAACowAAAwMAAAACAAACowAAAwMAAAACAAACgwAAAgMAAAACAAACgwAAAYMEAAACAAACowAAAMMEAAACAAACowAAAMMEAAACAAACgwAAAAMEAAACAAACgwAAAgMEAAACAAACgwAAAYMEAAACAAACgwAAAkMEAAACAAACgwAAAgMEAAACAAACgwAAAoMEAAACAAACgwAAAkMEAAACAAACgwAAAsMEAAACAAACgwAAAoMEAAACAAACgwAAAwMEAAACAAACgwAAAsMEAAACAAACgwAAA0MEAAACAAACgwAAAwMEAAACAAACgwAAA4MEAAACAAACgwAAA0MEAAACAAACgwAAA8MEAAACAAACgwAAA4MEAAACAAACgwAAAAMIAAACAAACgwAAA8MEAAACAAADAwAAAAMEAAACAAADAwAAAwMAAAACAAADAwAAAIMEAAACAAADAwAAAAMEAAACAAADAwAAAQMEAAACAAADAwAAAIMEAAACAAADAwAAAYMEAAACAAADAwAAAQMEAAACAAADAwAAAkMEAAACAAADIwAAAgMEAAACAAADIwAAAgMEAAACAAADAwAAAYMEAAACAAADAwAAAoMEAAACAAADAwAAAkMEAAACAAADAwAAAwMEAAACAAADIwAAAsMEAAACAAADIwAAAsMEAAACAAADAwAAAoMEAAACAAADAwAAA0MEAAACAAADAwAAAwMEAAACAAADAwAAA4MEAAACAAADAwAAA0MEAAACAAADAwAAA8MEAAACAAADAwAAA4MEAAACAAADAwAAAAMIAAACAAADAwAAA8MEAAACAAADgwAAAIMEAAACAAADowAAAAMEAAACAAADowAAAAMEAAACAAADgwAAAwMAAAACAAADgwAAAQMEAAACAAADgwAAAIMEAAACAAADgwAAAYMEAAACAAADgwAAAQMEAAACAAADgwAAAkMEAAACAAADowAAAgMEAAACAAADowAAAgMEAAACAAADgwAAAYMEAAACAAADgwAAAoMEAAACAAADgwAAAkMEAAACAAADgwAAAwMEAAACAAADowAAAsMEAAACAAADowAAAsMEAAACAAADgwAAAoMEAAACAAADgwAAA0MEAAACAAADgwAAAwMEAAACAAADgwAAA8MEAAACAAADowAAA4MEAAACAAADowAAA4MEAAACAAADgwAAA0MEAAACAAADgwAAAAMIAAACAAADgwAAA8MEAAACAAAAAwQAA0MEAAACAAAAEwQAAiMEAAACAAAAEwQAAiMEAAACAAAAAwQAAAMEAAACAAAAAwQAA4MEAAACAAAAAwQAA0MEAAACAAAAAwQAA8MEAAACAAAAAwQAA4MEAAACAAAAgwQAAIMEAAACAAAAkwQAAoMAAAACAAAAkwQAAoMAAAACAAAAgwQAAAIAAAACAAAAgwQAAQMEAAACAAAAgwQAAIMEAAACAAAAgwQAAYMEAAACAAAAgwQAAQMEAAACAAAAgwQAAgMEAAACAAAAgwQAAYMEAAACAAAAgwQAAoMEAAACAAAAkwQAAkMEAAACAAAAkwQAAkMEAAACAAAAgwQAAgMEAAACAAAAgwQAAsMEAAACAAAAgwQAAoMEAAACAAAAgwQAA4MEAAACAAAAkwQAAyMEAAACAAAAkwQAAyMEAAACAAAAgwQAAsMEAAACAAAAgwQAA8MEAAACAAAAgwQAA4MEAAACAAAAgwQAAAMIAAACAAAAgwQAA8MEAAACAAAAwwQAAAMEAAACAAAA0wQAAgMAAAACAAAA0wQAAgMAAAACAAAAwwQAAAIAAAACAAAAwwQAAIMEAAACAAAAwwQAAAMEAAACAAAAwwQAAQMEAAACAAAAwwQAAIMEAAACAAAAwwQAAYMEAAACAAAAwwQAAQMEAAACAAAAwwQAAgMEAAACAAAAwwQAAYMEAAACAAAAwwQAAoMEAAACAAAA0wQAAkMEAAACAAAA0wQAAkMEAAACAAAAwwQAAgMEAAACAAAAwwQAAsMEAAACAAAAwwQAAoMEAAACAAAAwwQAA0MEAAACAAAA0wQAAwMEAAACAAAA0wQAAwMEAAACAAAAwwQAAsMEAAACAAAAwwQAA4MEAAACAAAAwwQAA0MEAAACAAAAwwQAA8MEAAACAAAAwwQAA4MEAAACAAAAwwQAAAMIAAACAAAAwwQAA8MEAAACAAABAwQAAAMEAAACAAABEwQAAoMAAAACAAABEwQAAoMAAAACAAABAwQAAAMAAAACAAABAwQAAIMEAAACAAABAwQAAAMEAAACAAABAwQAAQMEAAACAAABAwQAAIMEAAACAAABAwQAAYMEAAACAAABAwQAAQMEAAACAAABAwQAAgMEAAACAAABAwQAAYMEAAACAAABAwQAAkMEAAACAAABAwQAAgMEAAACAAABAwQAAoMEAAACAAABAwQAAkMEAAACAAABAwQAAsMEAAACAAABAwQAAoMEAAACAAABAwQAAwMEAAACAAABAwQAAsMEAAACAAABAwQAA0MEAAACAAABAwQAAwMEAAACAAABAwQAA4MEAAACAAABAwQAA0MEAAACAAABAwQAA8MEAAACAAABAwQAA4MEAAACAAABAwQAAAMIAAACAAABAwQAA8MEAAACAAABQwQAAIMEAAACAAABUwQAAwMAAAACAAABUwQAAwMAAAACAAABQwQAAAMAAAACAAABQwQAAQMEAAACAAABQwQAAIMEAAACAAABQwQAAYMEAAACAAABQwQAAQMEAAACAAABQwQAAgMEAAACAAABQwQAAYMEAAACAAABQwQAAkMEAAACAAABQwQAAgMEAAACAAABQwQAAoMEAAACAAABQwQAAkMEAAACAAABQwQAAsMEAAACAAABQwQAAoMEAAACAAABQwQAAwMEAAACAAABQwQAAsMEAAACAAABQwQAA4MEAAACAAABUwQAA0MEAAACAAABUwQAA0MEAAACAAABQwQAAwMEAAACAAABQwQAA8MEAAACAAABQwQAA4MEAAACAAABQwQAAAMIAAACAAABQwQAA8MEAAACAAABgwQAAYMEAAACAAABkwQAAEMEAAACAAABkwQAAEMEAAACAAABgwQAAgMAAAACAAABgwQAAgMEAAACAAABgwQAAYMEAAACAAABgwQAAkMEAAACAAABgwQAAgMEAAACAAABgwQAAoMEAAACAAABgwQAAkMEAAACAAABgwQAAsMEAAACAAABgwQAAoMEAAACAAABgwQAAwMEAAACAAABgwQAAsMEAAACAAABgwQAA0MEAAACAAABgwQAAwMEAAACAAABgwQAA8MEAAACAAABkwQAA4MEAAACAAABkwQAA4MEAAACAAABgwQAA0MEAAACAAABgwQAAAMIAAACAAABgwQAA8MEAAACAAABwwQAAAMEAAACAAAB0wQAAwMAAAACAAAB0wQAAwMAAAACAAABwwQAAgMAAAACAAABwwQAAYMEAAACAAAB0wQAAMMEAAACAAAB0wQAAMMEAAACAAABwwQAAAMEAAACAAABwwQAAgMEAAACAAABwwQAAYMEAAACAAABwwQAAkMEAAACAAABwwQAAgMEAAACAAABwwQAAoMEAAACAAABwwQAAkMEAAACAAABwwQAAsMEAAACAAABwwQAAoMEAAACAAABwwQAAwMEAAACAAABwwQAAsMEAAACAAABwwQAA0MEAAACAAABwwQAAwMEAAACAAABwwQAA4MEAAACAAABwwQAA0MEAAACAAABwwQAA8MEAAACAAABwwQAA4MEAAACAAABwwQAAAMIAAACAAABwwQAA8MEAAACAAACAwQAAAMEAAACAAACAwQAAwMAAAACAAACAwQAAIMEAAACAAACAwQAAAMEAAACAAACAwQAAQMEAAACAAACAwQAAIMEAAACAAACAwQAAYMEAAACAAACAwQAAQMEAAACAAACAwQAAkMEAAACAAACCwQAAgMEAAACAAACCwQAAgMEAAACAAACAwQAAYMEAAACAAACAwQAAoMEAAACAAACAwQAAkMEAAACAAACAwQAAwMEAAACAAACCwQAAsMEAAACAAACCwQAAsMEAAACAAACAwQAAoMEAAACAAACAwQAA0MEAAACAAACAwQAAwMEAAACAAACAwQAA4MEAAACAAACAwQAA0MEAAACAAACAwQAA8MEAAACAAACAwQAA4MEAAACAAACAwQAAAMIAAACAAACAwQAA8MEAAACAAACIwQAAIMEAAACAAACKwQAAAMEAAACAAACKwQAAAMEAAACAAACIwQAAwMAAAACAAACIwQAAQMEAAACAAACIwQAAIMEAAACAAACIwQAAYMEAAACAAACIwQAAQMEAAACAAACIwQAAkMEAAACAAACKwQAAgMEAAACAAACKwQAAgMEAAACAAACIwQAAYMEAAACAAACIwQAAoMEAAACAAACIwQAAkMEAAACAAACIwQAAwMEAAACAAACKwQAAsMEAAACAAACKwQAAsMEAAACAAACIwQAAoMEAAACAAACIwQAA0MEAAACAAACIwQAAwMEAAACAAACIwQAA8MEAAACAAACKwQAA4MEAAACAAACKwQAA4MEAAACAAACIwQAA0MEAAACAAACIwQAAAMIAAACAAACIwQAA8MEAAACAAACQwQAA0MEAAACAAACSwQAAiMEAAACAAACSwQAAiMEAAACAAACQwQAAAMEAAACAAACQwQAA4MEAAACAAACQwQAA0MEAAACAAACQwQAA8MEAAACAAACQwQAA4MEAAACAAACAPwAAAIAAAACAAACYwQAAAIAAAACAAACAPwAAAMAAAACAAACYwQAAAMAAAACAAACAPwAAgMAAAACAAACYwQAAgMAAAACAAACAPwAAwMAAAACAAACYwQAAwMAAAACAAACAPwAAAMEAAACAAACYwQAAAMEAAACAAACAPwAAIMEAAACAAACYwQAAIMEAAACAAACAPwAAQMEAAACAAACYwQAAQMEAAACAAACAPwAAYMEAAACAAACYwQAAYMEAAACAAACAPwAAgMEAAACAAACYwQAAgMEAAACAAACAPwAAkMEAAACAAACYwQAAkMEAAACAAACAPwAAoMEAAACAAACYwQAAoMEAAACAAACAPwAAsMEAAACAAACYwQAAsMEAAACAAACAPwAAwMEAAACAAACYwQAAwMEAAACAAACAPwAA0MEAAACAAACYwQAA0MEAAACAAACAPwAA4MEAAACAAACYwQAA4MEAAACAAACAPwAA8MEAAACAAACYwQAA8MEAAACAAACAPwAAAMIAAACAAACYwQAAAMIAAACAAACAPwAACMIAAACAAACYwQAACMIAAACAAACAPwAAEMIAAACAAACYwQAAEMIAAACAAACAPwAAGMIAAACAAACYwQAAGMIAAACAAACAPwAAIMIAAACAAACYwQAAIMIAAACA\"},{\"byteLength\":72,\"name\":\"buf_red_scattered_lines\",\"uri\":\"data:application/octet-stream;base64,AAAAAAAAAEAAAACAAABAwAAAAEAAAACAAAAgwAAAwD8AAACAAABAwAAAAEAAAACAAAAgwAAAIEAAAACAAABAwAAAAEAAAACA\"}],\"images\":[{\"uri\":\"\"}],\"materials\":[{\"doubleSided\":false,\"pbrMetallicRoughness\":{\"baseColorFactor\":[1,1,1,1],\"baseColorTexture\":{\"index\":0,\"texCoord\":0},\"metallicFactor\":0.4,\"roughnessFactor\":0.5}},{\"doubleSided\":true,\"pbrMetallicRoughness\":{\"baseColorFactor\":[0,0,0,1],\"metallicFactor\":1,\"roughnessFactor\":1}},{\"doubleSided\":true,\"pbrMetallicRoughness\":{\"baseColorFactor\":[1,0,0,1],\"metallicFactor\":1,\"roughnessFactor\":1}}],\"meshes\":[{\"primitives\":[{\"attributes\":{\"POSITION\":0,\"TEXCOORD_0\":1},\"material\":0,\"mode\":4}]},{\"primitives\":[{\"attributes\":{\"POSITION\":0,\"TEXCOORD_0\":2},\"material\":0,\"mode\":4}]},{\"primitives\":[{\"attributes\":{\"POSITION\":0,\"TEXCOORD_0\":3},\"material\":0,\"mode\":4}]},{\"primitives\":[{\"attributes\":{\"POSITION\":0,\"TEXCOORD_0\":4},\"material\":0,\"mode\":4}]},{\"primitives\":[{\"attributes\":{\"POSITION\":5},\"material\":1,\"mode\":1}]},{\"primitives\":[{\"attributes\":{\"POSITION\":6},\"material\":2,\"mode\":1}]}],\"nodes\":[{\"mesh\":0,\"translation\":[-0,-0,-0]},{\"mesh\":1,\"translation\":[-0,-10,-0]},{\"mesh\":1,\"translation\":[-0,-12,-0]},{\"mesh\":2,\"translation\":[-0,-14,-0]},{\"mesh\":0,\"translation\":[-0,-16,-0]},{\"mesh\":1,\"translation\":[-0,-20,-0]},{\"mesh\":1,\"translation\":[-0,-22,-0]},{\"mesh\":1,\"translation\":[-0,-28,-0]},{\"mesh\":0,\"translation\":[-0,-30,-0]},{\"mesh\":1,\"translation\":[-0,-32,-0]},{\"mesh\":2,\"translation\":[-1,-0,-0]},{\"mesh\":2,\"translation\":[-1,-8,-0]},{\"mesh\":0,\"translation\":[-1,-10,-0]},{\"mesh\":0,\"translation\":[-1,-12,-0]},{\"mesh\":1,\"translation\":[-1,-14,-0]},{\"mesh\":2,\"translation\":[-1,-16,-0]},{\"mesh\":0,\"translation\":[-1,-20,-0]},{\"mesh\":0,\"translation\":[-1,-22,-0]},{\"mesh\":2,\"translation\":[-1,-26,-0]},{\"mesh\":1,\"translation\":[-1,-28,-0]},{\"mesh\":0,\"translation\":[-1,-30,-0]},{\"mesh\":0,\"translation\":[-1,-32,-0]},{\"mesh\":0,\"translation\":[-2,-2,-0]},{\"mesh\":2,\"translation\":[-2,-8,-0]},{\"mesh\":1,\"translation\":[-2,-10,-0]},{\"mesh\":0,\"translation\":[-2,-12,-0]},{\"mesh\":2,\"translation\":[-2,-14,-0]},{\"mesh\":0,\"translation\":[-2,-16,-0]},{\"mesh\":0,\"translation\":[-2,-18,-0]},{\"mesh\":2,\"translation\":[-2,-20,-0]},{\"mesh\":0,\"translation\":[-2,-22,-0]},{\"mesh\":1,\"translation\":[-2,-24,-0]},{\"mesh\":2,\"translation\":[-2,-26,-0]},{\"mesh\":0,\"translation\":[-2,-28,-0]},{\"mesh\":2,\"translation\":[-2,-30,-0]},{\"mesh\":0,\"translation\":[-2,-32,-0]},{\"mesh\":2,\"translation\":[-3,-2,-0]},{\"mesh\":0,\"translation\":[-3,-10,-0]},{\"mesh\":2,\"translation\":[-3,-12,-0]},{\"mesh\":1,\"translation\":[-3,-14,-0]},{\"mesh\":2,\"translation\":[-3,-16,-0]},{\"mesh\":2,\"translation\":[-3,-18,-0]},{\"mesh\":1,\"translation\":[-3,-20,-0]},{\"mesh\":2,\"translation\":[-3,-22,-0]},{\"mesh\":0,\"translation\":[-3,-24,-0]},{\"mesh\":0,\"translation\":[-3,-28,-0]},{\"mesh\":2,\"translation\":[-3,-30,-0]},{\"mesh\":2,\"translation\":[-3,-32,-0]},{\"mesh\":0,\"translation\":[-4,-4,-0]},{\"mesh\":1,\"translation\":[-4,-14,-0]},{\"mesh\":1,\"translation\":[-4,-16,-0]},{\"mesh\":0,\"translation\":[-4,-18,-0]},{\"mesh\":2,\"translation\":[-4,-20,-0]},{\"mesh\":0,\"translation\":[-4,-22,-0]},{\"mesh\":0,\"translation\":[-4,-24,-0]},{\"mesh\":1,\"translation\":[-4,-26,-0]},{\"mesh\":0,\"translation\":[-4,-30,-0]},{\"mesh\":1,\"translation\":[-4,-32,-0]},{\"mesh\":2,\"translation\":[-5,-4,-0]},{\"mesh\":2,\"translation\":[-5,-8,-0]},{\"mesh\":0,\"translation\":[-5,-14,-0]},{\"mesh\":0,\"translation\":[-5,-16,-0]},{\"mesh\":2,\"translation\":[-5,-18,-0]},{\"mesh\":1,\"translation\":[-5,-20,-0]},{\"mesh\":2,\"translation\":[-5,-22,-0]},{\"mesh\":2,\"translation\":[-5,-24,-0]},{\"mesh\":1,\"translation\":[-5,-26,-0]},{\"mesh\":2,\"translation\":[-5,-28,-0]},{\"mesh\":0,\"translation\":[-5,-30,-0]},{\"mesh\":0,\"translation\":[-5,-32,-0]},{\"mesh\":0,\"translation\":[-6,-6,-0]},{\"mesh\":2,\"translation\":[-6,-8,-0]},{\"mesh\":1,\"translation\":[-6,-10,-0]},{\"mesh\":2,\"translation\":[-6,-12,-0]},{\"mesh\":0,\"translation\":[-6,-14,-0]},{\"mesh\":1,\"translation\":[-6,-18,-0]},{\"mesh\":1,\"translation\":[-6,-20,-0]},{\"mesh\":0,\"translation\":[-6,-24,-0]},{\"mesh\":1,\"translation\":[-6,-26,-0]},{\"mesh\":2,\"translation\":[-6,-28,-0]},{\"mesh\":0,\"translation\":[-6,-30,-0]},{\"mesh\":0,\"translation\":[-6,-32,-0]},{\"mesh\":2,\"translation\":[-7,-6,-0]},{\"mesh\":0,\"translation\":[-7,-10,-0]},{\"mesh\":1,\"translation\":[-7,-12,-0]},{\"mesh\":2,\"translation\":[-7,-14,-0]},{\"mesh\":0,\"translation\":[-7,-18,-0]},{\"mesh\":0,\"translation\":[-7,-20,-0]},{\"mesh\":2,\"translation\":[-7,-24,-0]},{\"mesh\":2,\"translation\":[-7,-26,-0]},{\"mesh\":1,\"translation\":[-7,-30,-0]},{\"mesh\":2,\"translation\":[-7,-32,-0]},{\"mesh\":0,\"translation\":[-8,-8,-0]},{\"mesh\":0,\"translation\":[-8,-26,-0]},{\"mesh\":0,\"translation\":[-8,-28,-0]},{\"mesh\":2,\"translation\":[-8,-30,-0]},{\"mesh\":0,\"translation\":[-8,-34,-0]},{\"mesh\":0,\"translation\":[-8,-36,-0]},{\"mesh\":0,\"translation\":[-8,-38,-0]},{\"mesh\":0,\"translation\":[-8,-40,-0]},{\"mesh\":3,\"translation\":[-8,-0,-0]},{\"mesh\":3,\"translation\":[-8,-2,-0]},{\"mesh\":3,\"translation\":[-8,-4,-0]},{\"mesh\":3,\"translation\":[-8,-6,-0]},{\"mesh\":3,\"translation\":[-9,-8,-0]},{\"mesh\":3,\"translation\":[-9,-10,-0]},{\"mesh\":3,\"translation\":[-9,-12,-0]},{\"mesh\":3,\"translation\":[-9,-14,-0]},{\"mesh\":3,\"translation\":[-9,-16,-0]},{\"mesh\":3,\"translation\":[-9,-18,-0]},{\"mesh\":3,\"translation\":[-9,-20,-0]},{\"mesh\":3,\"translation\":[-9,-22,-0]},{\"mesh\":3,\"translation\":[-9,-24,-0]},{\"mesh\":3,\"translation\":[-9,-26,-0]},{\"mesh\":3,\"translation\":[-9,-28,-0]},{\"mesh\":3,\"translation\":[-9,-30,-0]},{\"mesh\":3,\"translation\":[-9,-32,-0]},{\"mesh\":3,\"translation\":[-9,-34,-0]},{\"mesh\":3,\"translation\":[-9,-36,-0]},{\"mesh\":3,\"translation\":[-9,-38,-0]},{\"mesh\":3,\"translation\":[-9,-40,-0]},{\"mesh\":0,\"translation\":[-10,-0,-0]},{\"mesh\":1,\"translation\":[-10,-10,-0]},{\"mesh\":1,\"translation\":[-10,-12,-0]},{\"mesh\":2,\"translation\":[-10,-14,-0]},{\"mesh\":0,\"translation\":[-10,-16,-0]},{\"mesh\":1,\"translation\":[-10,-20,-0]},{\"mesh\":1,\"translation\":[-10,-22,-0]},{\"mesh\":1,\"translation\":[-10,-28,-0]},{\"mesh\":0,\"translation\":[-10,-30,-0]},{\"mesh\":1,\"translation\":[-10,-32,-0]},{\"mesh\":2,\"translation\":[-11,-0,-0]},{\"mesh\":2,\"translation\":[-11,-8,-0]},{\"mesh\":0,\"translation\":[-11,-10,-0]},{\"mesh\":0,\"translation\":[-11,-12,-0]},{\"mesh\":1,\"translation\":[-11,-14,-0]},{\"mesh\":2,\"translation\":[-11,-16,-0]},{\"mesh\":0,\"translation\":[-11,-20,-0]},{\"mesh\":0,\"translation\":[-11,-22,-0]},{\"mesh\":2,\"translation\":[-11,-26,-0]},{\"mesh\":1,\"translation\":[-11,-28,-0]},{\"mesh\":0,\"translation\":[-11,-30,-0]},{\"mesh\":0,\"translation\":[-11,-32,-0]},{\"mesh\":0,\"translation\":[-12,-2,-0]},{\"mesh\":2,\"translation\":[-12,-8,-0]},{\"mesh\":1,\"translation\":[-12,-10,-0]},{\"mesh\":0,\"translation\":[-12,-12,-0]},{\"mesh\":2,\"translation\":[-12,-14,-0]},{\"mesh\":0,\"translation\":[-12,-16,-0]},{\"mesh\":0,\"translation\":[-12,-18,-0]},{\"mesh\":2,\"translation\":[-12,-20,-0]},{\"mesh\":0,\"translation\":[-12,-22,-0]},{\"mesh\":1,\"translation\":[-12,-24,-0]},{\"mesh\":2,\"translation\":[-12,-26,-0]},{\"mesh\":0,\"translation\":[-12,-28,-0]},{\"mesh\":2,\"translation\":[-12,-30,-0]},{\"mesh\":0,\"translation\":[-12,-32,-0]},{\"mesh\":2,\"translation\":[-13,-2,-0]},{\"mesh\":0,\"translation\":[-13,-10,-0]},{\"mesh\":2,\"translation\":[-13,-12,-0]},{\"mesh\":1,\"translation\":[-13,-14,-0]},{\"mesh\":2,\"translation\":[-13,-16,-0]},{\"mesh\":2,\"translation\":[-13,-18,-0]},{\"mesh\":1,\"translation\":[-13,-20,-0]},{\"mesh\":2,\"translation\":[-13,-22,-0]},{\"mesh\":0,\"translation\":[-13,-24,-0]},{\"mesh\":0,\"translation\":[-13,-28,-0]},{\"mesh\":2,\"translation\":[-13,-30,-0]},{\"mesh\":2,\"translation\":[-13,-32,-0]},{\"mesh\":0,\"translation\":[-14,-4,-0]},{\"mesh\":1,\"translation\":[-14,-14,-0]},{\"mesh\":1,\"translation\":[-14,-16,-0]},{\"mesh\":0,\"translation\":[-14,-18,-0]},{\"mesh\":2,\"translation\":[-14,-20,-0]},{\"mesh\":0,\"translation\":[-14,-22,-0]},{\"mesh\":0,\"translation\":[-14,-24,-0]},{\"mesh\":1,\"translation\":[-14,-26,-0]},{\"mesh\":0,\"translation\":[-14,-30,-0]},{\"mesh\":1,\"translation\":[-14,-32,-0]},{\"mesh\":2,\"translation\":[-15,-4,-0]},{\"mesh\":2,\"translation\":[-15,-8,-0]},{\"mesh\":0,\"translation\":[-15,-14,-0]},{\"mesh\":0,\"translation\":[-15,-16,-0]},{\"mesh\":2,\"translation\":[-15,-18,-0]},{\"mesh\":1,\"translation\":[-15,-20,-0]},{\"mesh\":2,\"translation\":[-15,-22,-0]},{\"mesh\":2,\"translation\":[-15,-24,-0]},{\"mesh\":1,\"translation\":[-15,-26,-0]},{\"mesh\":2,\"translation\":[-15,-28,-0]},{\"mesh\":0,\"translation\":[-15,-30,-0]},{\"mesh\":0,\"translation\":[-15,-32,-0]},{\"mesh\":0,\"translation\":[-16,-6,-0]},{\"mesh\":2,\"translation\":[-16,-8,-0]},{\"mesh\":1,\"translation\":[-16,-10,-0]},{\"mesh\":2,\"translation\":[-16,-12,-0]},{\"mesh\":0,\"translation\":[-16,-14,-0]},{\"mesh\":1,\"translation\":[-16,-18,-0]},{\"mesh\":1,\"translation\":[-16,-20,-0]},{\"mesh\":0,\"translation\":[-16,-24,-0]},{\"mesh\":1,\"translation\":[-16,-26,-0]},{\"mesh\":2,\"translation\":[-16,-28,-0]},{\"mesh\":0,\"translation\":[-16,-30,-0]},{\"mesh\":0,\"translation\":[-16,-32,-0]},{\"mesh\":2,\"translation\":[-17,-6,-0]},{\"mesh\":0,\"translation\":[-17,-10,-0]},{\"mesh\":1,\"translation\":[-17,-12,-0]},{\"mesh\":2,\"translation\":[-17,-14,-0]},{\"mesh\":0,\"translation\":[-17,-18,-0]},{\"mesh\":0,\"translation\":[-17,-20,-0]},{\"mesh\":2,\"translation\":[-17,-24,-0]},{\"mesh\":2,\"translation\":[-17,-26,-0]},{\"mesh\":1,\"translation\":[-17,-30,-0]},{\"mesh\":2,\"translation\":[-17,-32,-0]},{\"mesh\":0,\"translation\":[-18,-8,-0]},{\"mesh\":0,\"translation\":[-18,-26,-0]},{\"mesh\":0,\"translation\":[-18,-28,-0]},{\"mesh\":2,\"translation\":[-18,-30,-0]},{\"mesh\":0,\"translation\":[-18,-34,-0]},{\"mesh\":0,\"translation\":[-18,-36,-0]},{\"mesh\":0,\"translation\":[-18,-38,-0]},{\"mesh\":0,\"translation\":[-18,-40,-0]},{\"mesh\":4,\"translation\":[0,0,0]},{\"mesh\":5,\"translation\":[0,0,0]}],\"samplers\":[{\"magFilter\":9728,\"minFilter\":9728,\"wrapS\":33071,\"wrapT\":33071}],\"scene\":0,\"scenes\":[{\"nodes\":[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222]}],\"textures\":[{\"sampler\":0,\"source\":0}]}" + "source": [ + "import traceback\n", + "\n", + "try:\n", + " # decompose_errors=True needed for DEM to be matchable\n", + " circuit.detector_error_model(decompose_errors=True)\n", + "except:\n", + " traceback.print_exc()" ] - }, - "execution_count": 19, - "metadata": {}, - "output_type": "execute_result" - } - ], - "source": [ - "# Example QEC code:\n", - "text = '''[1 0 0 0 0 1 1 0 1 0 1 1 0 0 1 1 1 0 0 0 0|0 0 0 0 0 1 1 1 0 0 1 1 0 0 1 0 1 0 0 0 0]\n", - " [0 0 0 0 0 1 1 1 0 0 1 1 0 0 1 1 1 0 0 0 0|1 0 0 0 1 0 0 1 1 0 0 0 0 1 1 0 0 0 0 0 0]\n", - " [0 1 0 0 0 1 1 0 1 1 0 1 1 0 1 0 1 0 0 0 0|0 0 0 0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 0 0 0]\n", - " [0 0 0 0 0 1 0 1 0 0 1 0 1 0 1 0 0 0 0 0 0|0 1 0 0 0 0 1 1 1 1 1 1 0 0 0 1 1 0 0 0 0]\n", - " [0 0 1 0 0 0 0 1 1 1 0 1 1 1 0 1 1 0 0 0 0|0 0 0 0 0 0 0 1 1 0 1 0 0 1 0 0 1 0 0 0 0]\n", - " [0 0 0 0 0 0 0 1 1 0 1 0 0 1 0 1 1 0 0 0 0|0 0 1 0 1 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0]\n", - " [0 0 0 1 0 1 0 1 0 1 1 0 1 1 0 1 1 0 0 0 0|0 0 0 0 1 1 1 0 0 1 1 0 0 1 1 0 0 0 0 0 0]\n", - " [0 0 0 0 0 1 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0|0 0 0 1 0 0 1 1 0 0 0 0 1 1 0 1 1 0 0 0 0]\n", - " [0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0]\n", - " [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]\n", - " [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]\n", - " [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]\n", - " [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]'''\n", - "\n", - "H = parse_symplectic_matrix(text)\n", - "\n", - "LX, LZ = stabilizer_code_logical_operators(check_matrix=H)\n", - "\n", - "circuit = code_capacity_circuit(\n", - " stabilizers=H,\n", - " x_logicals=LX,\n", - " z_logicals=LZ,\n", - " p=0.025\n", - ")\n", - "\n", - "circuit.diagram('timeline-3d')" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "cK2Mf2fTCAWO" - }, - "source": [ - "## Computing minimum distance with Stim + SAT Solver" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" }, - "id": "ZdVK4Dq1Bp1B", - "outputId": "61d8eb3e-7274-41c0-bd6b-af3e3ac75d54" - }, - "outputs": [ { - "name": "stdout", - "output_type": "stream", - "text": [ - "Distance of code: 4\n" - ] - } - ], - "source": [ - "# Note: this maxSAT solver only works for very small codes.\n", - "# For larger codes, use the solvers at https://maxsat-evaluations.github.io/2024/\n", - "from pysat.examples.rc2 import RC2\n", - "from pysat.formula import WCNF\n", - "\n", - "wcnf = WCNF(from_string=circuit.shortest_error_sat_problem())\n", - "\n", - "with RC2(wcnf) as rc2:\n", - " rc2.compute()\n", - " print(f'Distance of code: {rc2.cost}')" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "GQjQkhD4C4rK" - }, - "source": [ - "## Sample new data for this stabilizer code" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "7iOIl7vjC3uG" - }, - "outputs": [], - "source": [ - "num_shots = 1000\n", - "dem = circuit.detector_error_model()\n", - "sampler = circuit.compile_detector_sampler(seed=23845386)\n", - "dets, obs = sampler.sample(num_shots, separate_observables=True)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "63xjagbBCj8x" - }, - "source": [ - "## Decode code capacity noise data with ILP and Tesseract" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" + "cell_type": "markdown", + "metadata": { + "id": "ye5W7BJHX8DJ" + }, + "source": [ + "No need to decompose errors using tesseract:" + ] }, - "id": "IM7W37cHaKfT", - "outputId": "3f2f7666-9586-4cb6-b422-1d295bf8747c" - }, - "outputs": [ { - "name": "stdout", - "output_type": "stream", - "text": [ - "Tesseract Decoder Stats:\n", - " Number of Errors / num_shots: 60 / 1000\n", - " Time: 0.2323 s\n", - "\n", - "ILP: num_errors / num_shots = 61 / 1000 time 11.911995649337769 s\n" - ] - } - ], - "source": [ - "tesseract_config = tesseract_decoder.tesseract.TesseractConfig(\n", - " dem=dem,\n", - " pqlimit=1000,\n", - " det_beam=10,\n", - " det_orders=tesseract_decoder.utils.build_det_orders(\n", - " dem, num_det_orders=10, det_order_bfs=True, seed=2384753),\n", - " # no_revisit_dets=True,\n", - ")\n", - "\n", - "results = run_tesseract_decoder(tesseract_config.compile_decoder(), dets, obs)\n", - "print_results(results)\n", - "\n", - "# Run and time ILP decoder\n", - "ilp_dec = tesseract_decoder.simplex.SimplexConfig(\n", - " dem=dem, parallelize=True).compile_decoder()\n", - "start_time = time.time()\n", - "obs_predicted = ilp_dec.decode_batch(dets)\n", - "num_errors_ilp = np.sum(np.any(obs_predicted != obs, axis=1))\n", - "end_time = time.time()\n", - "print(\n", - " f'ILP: num_errors / num_shots = {num_errors_ilp} / {len(dets)} time {end_time - start_time} s')" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "K0QvSpXQIwgf" - }, - "source": [ - "# Visualize the Tesseract's decoding\n", - "For visualizing tesseract we use the `verbose` flag to get the decoding information.\n", - "## [Link to visualizer](https://quantumlib.github.io/tesseract-decoder/viz/)\n", - "* `verbose` - A boolean flag that, when `True`, enables verbose logging. This is useful for debugging and understanding the decoder's internal behavior, as it will print information about the search process." - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "AVu7idoTYAdM" + }, + "outputs": [], + "source": [ + "dem = circuit.detector_error_model()" + ] }, - "id": "DzWRL1cNjyix", - "outputId": "4a3df084-499f-43b2-97ba-1874b697f06a" - }, - "outputs": [ { - "name": "stdout", - "output_type": "stream", - "text": [ - "Cloning into 'tesseract-decoder'...\n", - "remote: Enumerating objects: 2086, done.\u001b[K\n", - "remote: Counting objects: 100% (606/606), done.\u001b[K\n", - "remote: Compressing objects: 100% (304/304), done.\u001b[K\n", - "remote: Total 2086 (delta 493), reused 317 (delta 302), pack-reused 1480 (from 3)\u001b[K\n", - "Receiving objects: 100% (2086/2086), 3.17 MiB | 8.58 MiB/s, done.\n", - "Resolving deltas: 100% (1667/1667), done.\n" - ] - } - ], - "source": [ - "# Remove the existing directory and its contents\n", - "!rm -rf tesseract-decoder\n", - "# Clone the repository\n", - "!git clone https://github.com/quantumlib/tesseract-decoder.git" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "vFDn06Xach0_" + }, + "outputs": [], + "source": [ + "num_shots = 1000\n", + "sampler = circuit.compile_detector_sampler()\n", + "dets, obs = sampler.sample(num_shots, separate_observables=True)" + ] }, - "id": "ZNKaqvN8dE-X", - "outputId": "8d80e5bc-c30b-469d-d9cd-452d89604c30" - }, - "outputs": [ { - "name": "stdout", - "output_type": "stream", - "text": [ - " % Total % Received % Xferd Average Speed Time Time Time Current\n", - " Dload Upload Total Spent Left Speed\n", - "\r", - " 0 0 0 0 0 0 0 0 --:--:-- --:--:-- --:--:-- 0\r", - "100 44154 100 44154 0 0 230k 0 --:--:-- --:--:-- --:--:-- 230k\n" - ] - } - ], - "source": [ - "!curl 'https://raw.githubusercontent.com/quantumlib/tesseract-decoder/refs/heads/main/testdata/colorcodes/r%3D9%2Cd%3D9%2Cp%3D0.002%2Cnoise%3Dsi1000%2Cc%3Dsuperdense_color_code_X%2Cq%3D121%2Cgates%3Dcz.stim' > d9r9colorcode_p002.stim\n" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "Cdo-oenEdF1-" - }, - "outputs": [], - "source": [ - "import stim\n", - "\n", - "circuit = stim.Circuit.from_file('d9r9colorcode_p002.stim')" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" + "cell_type": "markdown", + "metadata": { + "id": "JrX13vNQcrm3" + }, + "source": [ + "# Decoding with Tesseract and ILP decoder" + ] }, - "collapsed": true, - "id": "awJYxAOMTc3t", - "jupyter": { - "outputs_hidden": true + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "Uds8S04a-z-G" + }, + "outputs": [], + "source": [ + "import tesseract_decoder\n", + "import tesseract_decoder.tesseract as tesseract\n", + "import numpy as np\n", + "import time\n", + "\n", + "# Helper functions for benchmarking\n", + "\n", + "def print_results(result):\n", + " print(\"Tesseract Decoder Stats:\")\n", + " print(f\" Number of Errors / num_shots: {results['num_errors']} / {results['num_shots']}\")\n", + " print(f\" Time: {results['time_seconds']:.4f} s\")\n", + " print()\n", + "\n", + "def run_tesseract_decoder(decoder, dets, obs):\n", + " # Run and time the Tesseract decoder\n", + " num_errors = 0\n", + " start_time = time.time()\n", + " obs_predicted = decoder.decode_batch(dets)\n", + " num_errors = np.sum(np.any(obs_predicted != obs, axis=1))\n", + " end_time = time.time()\n", + "\n", + " return {\n", + " 'num_errors': num_errors,\n", + " 'num_shots': len(dets),\n", + " 'time_seconds': end_time - start_time,\n", + " }\n" + ] }, - "outputId": "2da93975-0ede-41cb-897b-23b7da9dca93" - }, - "outputs": [ { - "name": "stdout", - "output_type": "stream", - "text": [ - "Tesseract: num_errors / num_shots = 51 / 100 \n", - " time 16.068939685821533 s\n" - ] - } - ], - "source": [ - "import tesseract_decoder\n", - "import tesseract_decoder.tesseract as tesseract\n", - "import numpy as np\n", - "import time\n", - "import contextlib\n", - "import io\n", - "\n", - "num_shots = 100\n", - "dem = circuit.detector_error_model()\n", - "dets, obs = circuit.compile_detector_sampler().sample(num_shots, separate_observables=True)\n", - "\n", - "tesseract_config1 = tesseract.TesseractConfig(\n", - " dem=dem,\n", - " pqlimit=10000,\n", - " verbose=False,\n", - " create_visualization=True,\n", - " det_orders=tesseract_decoder.utils.build_det_orders(\n", - " dem, num_det_orders=2, det_order_bfs=True, seed=2384753),\n", - ")\n", - "\n", - "tesseract_dec = tesseract.TesseractDecoder(tesseract_config1)\n", - "\n", - "# Run and time the Tesseract decoder\n", - "num_errors = 0\n", - "start_time = time.time()\n", - "for shot in range(len(dets)):\n", - " obs_predicted = tesseract_dec.decode(dets[shot])\n", - " obs_actual = obs[shot]\n", - " if np.any(obs_predicted != obs_actual):\n", - " num_errors += 1\n", - "end_time = time.time()\n", - "print(f'Tesseract: num_errors / num_shots = {num_errors} / {len(dets)} \\n time {end_time - start_time} s')\n", - "\n", - "# Print with the visualizer\n", - "tesseract_dec.visualizer.write('/content/tmp.txt')" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "MuQb8XQlpvU6" - }, - "outputs": [], - "source": [ - "!cat tmp.txt | grep -E 'Error|Detector|activated_errors|activated_detectors' > logfile.txt" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/" + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "D0Tx2eY3ctFw", + "outputId": "64f388af-f1db-4869-873f-3ab714ee8e9c" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Tesseract decoder configurations --> TesseractConfig(dem=DetectorErrorModel_Object, det_beam=65535, no_revisit_dets=1, at_most_two_errors_per_detector=0, verbose=0, pqlimit=10000, det_orders=[[89, 86, 85, 83, 81, 88, 84, 82, 87, 74, 71, 78, 75, 69, 67, 63, 77, 66, 61, 72, 64, 65, 79, 68, 62, 73, 80, 70, 42, 76, 43, 46, 33, 32, 50, 44, 31, 57, 35, 36, 59, 51, 30, 58, 60, 48, 39, 45, 49, 34, 25, 7, 47, 5, 18, 26, 21, 2, 40, 24, 12, 29, 28, 55, 37, 56, 54, 53, 38, 15, 3, 16, 52, 20, 9, 19, 13, 8, 11, 10, 17, 41, 22, 6, 14, 23, 0, 1, 27, 4]], det_penalty=0, create_visualization=0)\n", + "\n", + "Tesseract Decoder Stats:\n", + " Number of Errors / num_shots: 3 / 1000\n", + " Time: 3.6089 s\n", + "\n" + ] + } + ], + "source": [ + "# setup the tesseract decoder configuration\n", + "tesseract_config = tesseract.TesseractConfig(\n", + " dem=dem,\n", + " pqlimit=10000,\n", + " no_revisit_dets=True,\n", + " # verbose=True,\n", + " det_orders=tesseract_decoder.utils.build_det_orders(\n", + " dem, num_det_orders=1, det_order_bfs=True, seed=2384753),\n", + ")\n", + "print(f'Tesseract decoder configurations --> {tesseract_config}\\n')\n", + "\n", + "tesseract_dec = tesseract_config.compile_decoder()\n", + "\n", + "results = run_tesseract_decoder(tesseract_dec, dets, obs)\n", + "print_results(results)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "INvMKs7zc5T_" + }, + "source": [ + "#Decoding with ILP decoder" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "9Npo7ibac4x5", + "outputId": "51af3bd2-5f53-43c8-a16d-f595a9596bde" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "ILP decoder configurations --> SimplexConfig(dem=DetectorErrorModel_Object, window_length=0, window_slide_length=0, verbose=0)\n", + "ILP stats:\n", + " Estimated time for full shots 1115.2181386947632 s\n", + " Number of Errors / num_shots: 0 / 10\n" + ] + } + ], + "source": [ + "simplex_config = tesseract_decoder.simplex.SimplexConfig(\n", + " dem=dem, parallelize=True\n", + ")\n", + "print(f'ILP decoder configurations --> {simplex_config}')\n", + "ilp_dec = simplex_config.compile_decoder()\n", + "\n", + "start_time = time.time()\n", + "\n", + "# Run and time ILP decoder -- so slow!\n", + "num_shots_to_decode = 10 # Only decoding 10 shots because it's soooo slow\n", + "obs_predicted = ilp_dec.decode_batch(dets[0:num_shots_to_decode])\n", + "num_errors = np.sum(np.any(obs_predicted != obs[0:num_shots_to_decode], axis=1))\n", + "\n", + "end_time = time.time()\n", + "print(f'ILP stats:\\n Estimated time for full shots {num_shots/num_shots_to_decode * (end_time - start_time)} s')\n", + "print(f\" Number of Errors / num_shots: {num_errors} / {num_shots_to_decode}\")" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "VQqlMqFRIZ2J" + }, + "source": [ + "# Tesseract Config and impact of heuristic\n", + "You can tune tesseract decoder through the Config that is passed to the decoder with this set of parameters:\n", + "Explanation of configuration arguments:\n", + "\n", + "* `pqlimit` - An integer that sets a limit on the number of nodes in the priority queue. This can be used to constrain the memory usage of the decoder. The default value is `sys.maxsize`, which means the size is effectively unbounded.\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "0pExdmuPQuGr", + "outputId": "45a20eca-fef6-425d-d6a2-9a619fe9e10c" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Smaller pqlimit\n", + "Tesseract Decoder Stats:\n", + " Number of Errors / num_shots: 183 / 1000\n", + " Time: 1.8420 s\n", + "\n", + "Larger pqlimit\n", + "Tesseract Decoder Stats:\n", + " Number of Errors / num_shots: 3 / 1000\n", + " Time: 8.4409 s\n", + "\n" + ] + } + ], + "source": [ + "tesseract_config1 = tesseract.TesseractConfig(\n", + " dem=dem,\n", + " pqlimit=100,\n", + " no_revisit_dets=True,\n", + " det_orders=tesseract_decoder.utils.build_det_orders(\n", + " dem, num_det_orders=5, det_order_bfs=True, seed=2384753),\n", + ")\n", + "\n", + "print (\"Smaller pqlimit\")\n", + "results = run_tesseract_decoder(tesseract_config1.compile_decoder(), dets, obs)\n", + "print_results(results)\n", + "\n", + "\n", + "tesseract_config2 = tesseract.TesseractConfig(\n", + " dem=dem,\n", + " pqlimit=20000,\n", + " no_revisit_dets=True,\n", + " det_orders=tesseract_decoder.utils.build_det_orders(\n", + " dem, num_det_orders=5, det_order_bfs=True, seed=2384753),\n", + ")\n", + "print (\"Larger pqlimit\")\n", + "results = run_tesseract_decoder(tesseract_config2.compile_decoder(), dets, obs)\n", + "print_results(results)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "ru-MRctAIq5-" + }, + "source": [ + "#More heurisitcs\n", + "* `det_beam` - This integer value represents the beam search cutoff. It specifies a threshold for the number of \"residual detection events\" a node can have before it is pruned from the search. A lower `det_beam` value makes the search more aggressive, potentially sacrificing accuracy for speed. The default value `INF_DET_BEAM` means no beam cutoff is applied.\n", + "* `beam_climbing` - A boolean flag that, when set to `True`, enables a heuristic called \"beam climbing.\" This optimization causes the decoder to try different `det_beam` values (up to a maximum) to find a good decoding path. This can improve the decoder's chance of finding the most likely error, even with an initial narrow beam search.\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "cyctTUyzQ-cQ", + "outputId": "0f3c5a8a-0d09-49e4-e3b1-e193152bf2bf" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Smaller det_beam\n", + "Tesseract Decoder Stats:\n", + " Number of Errors / num_shots: 2 / 1000\n", + " Time: 5.8029 s\n", + "\n", + "Larger det_beam\n", + "Tesseract Decoder Stats:\n", + " Number of Errors / num_shots: 2 / 1000\n", + " Time: 6.1866 s\n", + "\n" + ] + } + ], + "source": [ + "tesseract_config1 = tesseract.TesseractConfig(\n", + " dem=dem,\n", + " pqlimit=1000,\n", + " det_beam=3,\n", + " beam_climbing=True,\n", + " det_orders=tesseract_decoder.utils.build_det_orders(\n", + " dem, num_det_orders=5, det_order_bfs=True, seed=2384753),\n", + ")\n", + "\n", + "print (\"Smaller det_beam\")\n", + "results = run_tesseract_decoder(tesseract_config1.compile_decoder(), dets, obs)\n", + "print_results(results)\n", + "\n", + "\n", + "tesseract_config2 = tesseract.TesseractConfig(\n", + " dem=dem,\n", + " pqlimit=1000,\n", + " det_beam=5,\n", + " beam_climbing=True,\n", + " det_orders=tesseract_decoder.utils.build_det_orders(\n", + " dem, num_det_orders=5, det_order_bfs=True, seed=2384753),\n", + ")\n", + "print (\"Larger det_beam\")\n", + "results = run_tesseract_decoder(tesseract_config2.compile_decoder(), dets, obs)\n", + "print_results(results)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "VJiBCWpUQ9sf" + }, + "source": [ + "#Even More Heuristics\n", + "* `no_revisit_dets` - A boolean flag that, when `True`, activates a heuristic to prevent the decoder from revisiting nodes that have the same set of leftover detection events as a node it has already visited. This can help to reduce search redundancy and improve decoding speed.\n", + "* `at_most_two_errors_per_detector` - This boolean flag is a specific constraint that assumes at most two errors can affect a given detector. This can be a useful optimization for certain types of codes and noise models, as it prunes the search space by making a stronger assumption about the error distribution.\n", + "\n", + "* `det_orders` - A list of lists of integers, where each inner list represents an ordering of the detectors. This is used for \"ensemble reordering,\" an optimization that tries different detector orderings to improve the search's convergence. The default is an empty list, meaning a single, fixed ordering is used.\n", + "* `det_penalty` - A floating-point value that adds a cost for each residual detection event. This encourages the decoder to prioritize paths that resolve more detection events, steering the search towards more complete solutions. The default value is `0.0`, meaning no penalty is applied." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "0VrW2z8sSXtN", + "outputId": "6f69c1ff-1c04-4dc6-d1a0-32aa0777d56b" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "First version\n", + "Tesseract Decoder Stats:\n", + " Number of Errors / num_shots: 9 / 1000\n", + " Time: 1.1290 s\n", + "\n", + "Second version\n", + "Tesseract Decoder Stats:\n", + " Number of Errors / num_shots: 19 / 1000\n", + " Time: 0.9446 s\n", + "\n" + ] + } + ], + "source": [ + "tesseract_config1 = tesseract.TesseractConfig(\n", + " dem=dem,\n", + " pqlimit=1000,\n", + " # no_revisit_dets=True,\n", + " # at_most_two_errors_per_detector = True,\n", + " det_penalty = 10,\n", + " # det_orders=tesseract_decoder.utils.build_det_orders(\n", + " # dem, num_det_orders=2, det_order_bfs=True, seed=2384753),\n", + ")\n", + "\n", + "print (\"First version\")\n", + "results = run_tesseract_decoder(tesseract_config1.compile_decoder(), dets, obs)\n", + "print_results(results)\n", + "\n", + "\n", + "tesseract_config2 = tesseract.TesseractConfig(\n", + " dem=dem,\n", + " pqlimit=1000,\n", + " # no_revisit_dets=False,\n", + " # at_most_two_errors_per_detector = False,\n", + " det_penalty = 0,\n", + " # det_orders=tesseract_decoder.utils.build_det_orders(\n", + " # dem, num_det_orders=2, det_order_bfs=True, seed=2384753),\n", + ")\n", + "print (\"Second version\")\n", + "results = run_tesseract_decoder(tesseract_config2.compile_decoder(), dets, obs)\n", + "print_results(results)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "BoEALeo3OYGp" + }, + "source": [ + "# Decoding Wild Stabilizer Codes under Code Capacity Noise with Tesseract\n", + "\n", + "\n", + "\n", + "* checkout https://www.codetables.de/ for a qubit stabilizer code\n", + "* full table of qubit codes: [here](https://codetables.de/QECC/Tables_color.php?q=4&n0=1&n1=256&k0=0&k1=256)\n", + "* copy the stabilizer matrix for a code, such as: [this one used below](https://codetables.de/QECC/QECC.php?q=4&n=21&k=8)\n", + "\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "pJ1gEKAgPbHO" + }, + "outputs": [], + "source": [ + "import time\n", + "import tesseract_decoder\n", + "import stim\n", + "import numpy as np\n", + "import numpy.typing as npt\n", + "from galois import GF2\n", + "from typing import List, Tuple\n", + "\n", + "\n", + "def paulis_from_symplectic_matrix(check_matrix: npt.NDArray[np.uint8]) -> List[stim.PauliString]:\n", + " n = check_matrix.shape[1] // 2\n", + " paulis = []\n", + " for i in range(check_matrix.shape[0]):\n", + " paulis.append(\n", + " stim.PauliString.from_numpy(\n", + " xs=check_matrix[i, :n].astype(bool), zs=check_matrix[i, n:].astype(bool)\n", + " )\n", + " )\n", + " return paulis\n", + "\n", + "def rank(H):\n", + " return np.linalg.matrix_rank(GF2(H))\n", + "\n", + "def stabilizer_code_logical_operators(\n", + " check_matrix: npt.NDArray[np.uint8]) -> Tuple[npt.NDArray[np.uint8], npt.NDArray[np.uint8]]:\n", + " check_matrix = np.array(check_matrix, dtype=np.uint8)\n", + "\n", + " r = rank(check_matrix)\n", + " n = check_matrix.shape[1] // 2\n", + "\n", + " stabilisers = paulis_from_symplectic_matrix(check_matrix=check_matrix)\n", + "\n", + " tableau = stim.Tableau.from_stabilizers(\n", + " stabilizers=stabilisers, allow_underconstrained=True, allow_redundant=True\n", + " )\n", + "\n", + " x2x, x2z, z2x, z2z, x_signs, z_signs = tableau.to_numpy()\n", + "\n", + " num_logicals = n - r\n", + "\n", + " Lx = np.zeros((num_logicals, check_matrix.shape[1]), dtype=np.uint8)\n", + " Lz = np.zeros((num_logicals, check_matrix.shape[1]), dtype=np.uint8)\n", + "\n", + " Lx[:, :n] = x2x[r:]\n", + " Lx[:, n:] = x2z[r:]\n", + " Lz[:, :n] = z2x[r:]\n", + " Lz[:, n:] = z2z[r:]\n", + " return Lx.astype(np.uint8), Lz.astype(np.uint8)\n", + "\n", + "\n", + "def pauli_to_observable_include_target(pauli: stim.PauliString) -> List[stim.GateTarget]:\n", + " obs_pauli_targets = []\n", + " for i in range(len(pauli)):\n", + " if pauli[i] != 0:\n", + " obs_pauli_targets.append(stim.target_pauli(i, pauli[i]))\n", + " return obs_pauli_targets\n", + "\n", + "\n", + "def append_observable_includes_for_paulis(circuit: stim.Circuit, paulis: List[stim.PauliString]) -> None:\n", + " for i, obs in enumerate(paulis):\n", + " circuit.append(\n", + " \"OBSERVABLE_INCLUDE\",\n", + " targets=pauli_to_observable_include_target(pauli=obs),\n", + " arg=i\n", + " )\n", + "\n", + "\n", + "def code_capacity_circuit(\n", + " stabilizers: npt.NDArray[np.uint8],\n", + " x_logicals: npt.NDArray[np.uint8],\n", + " z_logicals: npt.NDArray[np.uint8],\n", + " p: float\n", + ") -> stim.Circuit:\n", + " \"\"\"Generate a code capacity stim circuit for a stabilizer code\n", + "\n", + " Parameters\n", + " ----------\n", + " stabilizers : npt.NDArray[np.uint8]\n", + " The stabilizer generators of the code, as a binary symplectic matrix.\n", + " The matrix has dimensions (r, 2 * n) where r is the number of stabilizer\n", + " generators and n is the number of physical qubits.\n", + " `stabilizers[i, j]` is 1 if stabilizer i is X or Y on qubit j and 0 otherwise.\n", + " `stabilizers[i, n + j]` is 1 if stabilizer i is Z or Y on qubit j and 0 otherwise.\n", + " x_logicals : npt.NDArray[np.uint8]\n", + " The X logical operators of the code, as a binary symplectic matrix.\n", + " The matrix has dimensions (k, 2 * n) where k is the number of logical qubits\n", + " and n is the number of physical qubits.\n", + " z_logicals : npt.NDArray[np.uint8]\n", + " The Z logical operators of the code, as a binary symplectic matrix.\n", + " The matrix has dimensions (k, 2 * n) where k is the number of logical qubits\n", + " and n is the number of physical qubits.\n", + " p : float\n", + " The strength of single-qubit depolarizing noise to use\n", + "\n", + " Returns\n", + " -------\n", + " stim.Circuit\n", + " The stim circuit of the code capacity circuit\n", + " \"\"\"\n", + " num_qubits = stabilizers.shape[1] // 2\n", + " num_stabilizers = stabilizers.shape[0]\n", + " stabilizer_paulis = paulis_from_symplectic_matrix(stabilizers)\n", + " x_logicals_paulis = paulis_from_symplectic_matrix(x_logicals)\n", + " z_logicals_paulis = paulis_from_symplectic_matrix(z_logicals)\n", + " all_logicals_paulis = x_logicals_paulis + z_logicals_paulis\n", + "\n", + " circuit = stim.Circuit()\n", + "\n", + " append_observable_includes_for_paulis(\n", + " circuit=circuit, paulis=all_logicals_paulis)\n", + " circuit.append(\"MPP\", stabilizer_paulis)\n", + " circuit.append(\"DEPOLARIZE1\", targets=list(range(num_qubits)), arg=p)\n", + " circuit.append(\"MPP\", stabilizer_paulis)\n", + "\n", + " for i in range(num_stabilizers):\n", + " circuit.append(\n", + " \"DETECTOR\",\n", + " targets=[\n", + " stim.target_rec(i - 2 * num_stabilizers),\n", + " stim.target_rec(i - num_stabilizers)\n", + " ]\n", + " )\n", + "\n", + " append_observable_includes_for_paulis(\n", + " circuit=circuit, paulis=all_logicals_paulis)\n", + " return circuit\n", + "\n", + "\n", + "def parse_symplectic_matrix(text: str) -> npt.NDArray[np.uint8]:\n", + " rows = []\n", + " for line in text.strip().splitlines():\n", + " line = line.strip()\n", + " if not line or line[0] != '[' or line[-1] != ']':\n", + " continue # skip malformed lines\n", + " body = line[1:-1]\n", + " if \"|\" in body:\n", + " left, right = body.split(\"|\")\n", + " bits = left.strip().split() + right.strip().split()\n", + " else:\n", + " bits = body.strip().split()\n", + " row = [int(b) for b in bits]\n", + " rows.append(row)\n", + " return np.array(rows, dtype=np.uint8)\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 343 + }, + "id": "pH_b3u1rBogl", + "outputId": "846dd807-82ed-4139-e46d-a3cfe65a7681" + }, + "outputs": [ + { + "output_type": "execute_result", + "data": { + "text/plain": [ + "{\"accessors\":[{\"bufferView\":0,\"byteOffset\":0,\"componentType\":5126,\"count\":12,\"max\":[0,0.5,0.5],\"min\":[0,-0.5,-0.5],\"name\":\"cube\",\"type\":\"VEC3\"},{\"bufferView\":1,\"byteOffset\":0,\"componentType\":5126,\"count\":12,\"max\":[0.6875,0.4375],\"min\":[0.625,0.375],\"name\":\"tex_coords_gate_MPP:X\",\"type\":\"VEC2\"},{\"bufferView\":2,\"byteOffset\":0,\"componentType\":5126,\"count\":12,\"max\":[0.6875,0.5],\"min\":[0.625,0.4375],\"name\":\"tex_coords_gate_MPP:Y\",\"type\":\"VEC2\"},{\"bufferView\":3,\"byteOffset\":0,\"componentType\":5126,\"count\":12,\"max\":[0.6875,0.5625],\"min\":[0.625,0.5],\"name\":\"tex_coords_gate_MPP:Z\",\"type\":\"VEC2\"},{\"bufferView\":4,\"byteOffset\":0,\"componentType\":5126,\"count\":12,\"max\":[0.25,0.625],\"min\":[0.1875,0.5625],\"name\":\"tex_coords_gate_DEPOLARIZE1\",\"type\":\"VEC2\"},{\"bufferView\":5,\"byteOffset\":0,\"componentType\":5126,\"count\":470,\"max\":[1,-0,-0],\"min\":[-19,-40,-0],\"name\":\"buf_scattered_lines\",\"type\":\"VEC3\"},{\"bufferView\":6,\"byteOffset\":0,\"componentType\":5126,\"count\":6,\"max\":[0,2.5,-0],\"min\":[-3,1.5,-0],\"name\":\"buf_red_scattered_lines\",\"type\":\"VEC3\"}],\"asset\":{\"version\":\"2.0\"},\"bufferViews\":[{\"buffer\":0,\"byteLength\":144,\"byteOffset\":0,\"name\":\"cube\",\"target\":34962},{\"buffer\":1,\"byteLength\":96,\"byteOffset\":0,\"name\":\"tex_coords_gate_MPP:X\",\"target\":34962},{\"buffer\":2,\"byteLength\":96,\"byteOffset\":0,\"name\":\"tex_coords_gate_MPP:Y\",\"target\":34962},{\"buffer\":3,\"byteLength\":96,\"byteOffset\":0,\"name\":\"tex_coords_gate_MPP:Z\",\"target\":34962},{\"buffer\":4,\"byteLength\":96,\"byteOffset\":0,\"name\":\"tex_coords_gate_DEPOLARIZE1\",\"target\":34962},{\"buffer\":5,\"byteLength\":5640,\"byteOffset\":0,\"name\":\"buf_scattered_lines\",\"target\":34962},{\"buffer\":6,\"byteLength\":72,\"byteOffset\":0,\"name\":\"buf_red_scattered_lines\",\"target\":34962}],\"buffers\":[{\"byteLength\":144,\"name\":\"cube\",\"uri\":\"data:application/octet-stream;base64,AAAAAAAAAD8AAAA/AAAAAAAAAD8AAAC/AAAAAAAAAL8AAAA/AAAAAAAAAD8AAAC/AAAAAAAAAL8AAAC/AAAAAAAAAL8AAAA/AAAAAAAAAL8AAAC/AAAAAAAAAD8AAAC/AAAAAAAAAL8AAAA/AAAAAAAAAL8AAAA/AAAAAAAAAD8AAAC/AAAAAAAAAD8AAAA/\"},{\"byteLength\":96,\"name\":\"tex_coords_gate_MPP:X\",\"uri\":\"data:application/octet-stream;base64,AAAwPwAAwD4AACA/AADAPgAAMD8AAOA+AAAgPwAAwD4AACA/AADgPgAAMD8AAOA+AAAwPwAA4D4AADA/AADAPgAAID8AAOA+AAAgPwAA4D4AADA/AADAPgAAID8AAMA+\"},{\"byteLength\":96,\"name\":\"tex_coords_gate_MPP:Y\",\"uri\":\"data:application/octet-stream;base64,AAAwPwAA4D4AACA/AADgPgAAMD8AAAA/AAAgPwAA4D4AACA/AAAAPwAAMD8AAAA/AAAwPwAAAD8AADA/AADgPgAAID8AAAA/AAAgPwAAAD8AADA/AADgPgAAID8AAOA+\"},{\"byteLength\":96,\"name\":\"tex_coords_gate_MPP:Z\",\"uri\":\"data:application/octet-stream;base64,AAAwPwAAAD8AACA/AAAAPwAAMD8AABA/AAAgPwAAAD8AACA/AAAQPwAAMD8AABA/AAAwPwAAED8AADA/AAAAPwAAID8AABA/AAAgPwAAED8AADA/AAAAPwAAID8AAAA/\"},{\"byteLength\":96,\"name\":\"tex_coords_gate_DEPOLARIZE1\",\"uri\":\"data:application/octet-stream;base64,AACAPgAAED8AAEA+AAAQPwAAgD4AACA/AABAPgAAED8AAEA+AAAgPwAAgD4AACA/AACAPgAAID8AAIA+AAAQPwAAQD4AACA/AABAPgAAID8AAIA+AAAQPwAAQD4AABA/\"},{\"byteLength\":5640,\"name\":\"buf_scattered_lines\",\"uri\":\"data:application/octet-stream;base64,AAAAgAAAIMEAAACAAACAvgAAoMAAAACAAACAvgAAoMAAAACAAAAAgAAAAIAAAACAAAAAgAAAQMEAAACAAAAAgAAAIMEAAACAAAAAgAAAYMEAAACAAAAAgAAAQMEAAACAAAAAgAAAgMEAAACAAAAAgAAAYMEAAACAAAAAgAAAoMEAAACAAACAvgAAkMEAAACAAACAvgAAkMEAAACAAAAAgAAAgMEAAACAAAAAgAAAsMEAAACAAAAAgAAAoMEAAACAAAAAgAAA4MEAAACAAACAvgAAyMEAAACAAACAvgAAyMEAAACAAAAAgAAAsMEAAACAAAAAgAAA8MEAAACAAAAAgAAA4MEAAACAAAAAgAAAAMIAAACAAAAAgAAA8MEAAACAAACAvwAAAMEAAACAAACgvwAAgMAAAACAAACgvwAAgMAAAACAAACAvwAAAIAAAACAAACAvwAAIMEAAACAAACAvwAAAMEAAACAAACAvwAAQMEAAACAAACAvwAAIMEAAACAAACAvwAAYMEAAACAAACAvwAAQMEAAACAAACAvwAAgMEAAACAAACAvwAAYMEAAACAAACAvwAAoMEAAACAAACgvwAAkMEAAACAAACgvwAAkMEAAACAAACAvwAAgMEAAACAAACAvwAAsMEAAACAAACAvwAAoMEAAACAAACAvwAA0MEAAACAAACgvwAAwMEAAACAAACgvwAAwMEAAACAAACAvwAAsMEAAACAAACAvwAA4MEAAACAAACAvwAA0MEAAACAAACAvwAA8MEAAACAAACAvwAA4MEAAACAAACAvwAAAMIAAACAAACAvwAA8MEAAACAAAAAwAAAAMEAAACAAAAQwAAAoMAAAACAAAAQwAAAoMAAAACAAAAAwAAAAMAAAACAAAAAwAAAIMEAAACAAAAAwAAAAMEAAACAAAAAwAAAQMEAAACAAAAAwAAAIMEAAACAAAAAwAAAYMEAAACAAAAAwAAAQMEAAACAAAAAwAAAgMEAAACAAAAAwAAAYMEAAACAAAAAwAAAkMEAAACAAAAAwAAAgMEAAACAAAAAwAAAoMEAAACAAAAAwAAAkMEAAACAAAAAwAAAsMEAAACAAAAAwAAAoMEAAACAAAAAwAAAwMEAAACAAAAAwAAAsMEAAACAAAAAwAAA0MEAAACAAAAAwAAAwMEAAACAAAAAwAAA4MEAAACAAAAAwAAA0MEAAACAAAAAwAAA8MEAAACAAAAAwAAA4MEAAACAAAAAwAAAAMIAAACAAAAAwAAA8MEAAACAAABAwAAAIMEAAACAAABQwAAAwMAAAACAAABQwAAAwMAAAACAAABAwAAAAMAAAACAAABAwAAAQMEAAACAAABAwAAAIMEAAACAAABAwAAAYMEAAACAAABAwAAAQMEAAACAAABAwAAAgMEAAACAAABAwAAAYMEAAACAAABAwAAAkMEAAACAAABAwAAAgMEAAACAAABAwAAAoMEAAACAAABAwAAAkMEAAACAAABAwAAAsMEAAACAAABAwAAAoMEAAACAAABAwAAAwMEAAACAAABAwAAAsMEAAACAAABAwAAA4MEAAACAAABQwAAA0MEAAACAAABQwAAA0MEAAACAAABAwAAAwMEAAACAAABAwAAA8MEAAACAAABAwAAA4MEAAACAAABAwAAAAMIAAACAAABAwAAA8MEAAACAAACAwAAAYMEAAACAAACIwAAAEMEAAACAAACIwAAAEMEAAACAAACAwAAAgMAAAACAAACAwAAAgMEAAACAAACAwAAAYMEAAACAAACAwAAAkMEAAACAAACAwAAAgMEAAACAAACAwAAAoMEAAACAAACAwAAAkMEAAACAAACAwAAAsMEAAACAAACAwAAAoMEAAACAAACAwAAAwMEAAACAAACAwAAAsMEAAACAAACAwAAA0MEAAACAAACAwAAAwMEAAACAAACAwAAA8MEAAACAAACIwAAA4MEAAACAAACIwAAA4MEAAACAAACAwAAA0MEAAACAAACAwAAAAMIAAACAAACAwAAA8MEAAACAAACgwAAAAMEAAACAAACowAAAwMAAAACAAACowAAAwMAAAACAAACgwAAAgMAAAACAAACgwAAAYMEAAACAAACowAAAMMEAAACAAACowAAAMMEAAACAAACgwAAAAMEAAACAAACgwAAAgMEAAACAAACgwAAAYMEAAACAAACgwAAAkMEAAACAAACgwAAAgMEAAACAAACgwAAAoMEAAACAAACgwAAAkMEAAACAAACgwAAAsMEAAACAAACgwAAAoMEAAACAAACgwAAAwMEAAACAAACgwAAAsMEAAACAAACgwAAA0MEAAACAAACgwAAAwMEAAACAAACgwAAA4MEAAACAAACgwAAA0MEAAACAAACgwAAA8MEAAACAAACgwAAA4MEAAACAAACgwAAAAMIAAACAAACgwAAA8MEAAACAAADAwAAAAMEAAACAAADAwAAAwMAAAACAAADAwAAAIMEAAACAAADAwAAAAMEAAACAAADAwAAAQMEAAACAAADAwAAAIMEAAACAAADAwAAAYMEAAACAAADAwAAAQMEAAACAAADAwAAAkMEAAACAAADIwAAAgMEAAACAAADIwAAAgMEAAACAAADAwAAAYMEAAACAAADAwAAAoMEAAACAAADAwAAAkMEAAACAAADAwAAAwMEAAACAAADIwAAAsMEAAACAAADIwAAAsMEAAACAAADAwAAAoMEAAACAAADAwAAA0MEAAACAAADAwAAAwMEAAACAAADAwAAA4MEAAACAAADAwAAA0MEAAACAAADAwAAA8MEAAACAAADAwAAA4MEAAACAAADAwAAAAMIAAACAAADAwAAA8MEAAACAAADgwAAAIMEAAACAAADowAAAAMEAAACAAADowAAAAMEAAACAAADgwAAAwMAAAACAAADgwAAAQMEAAACAAADgwAAAIMEAAACAAADgwAAAYMEAAACAAADgwAAAQMEAAACAAADgwAAAkMEAAACAAADowAAAgMEAAACAAADowAAAgMEAAACAAADgwAAAYMEAAACAAADgwAAAoMEAAACAAADgwAAAkMEAAACAAADgwAAAwMEAAACAAADowAAAsMEAAACAAADowAAAsMEAAACAAADgwAAAoMEAAACAAADgwAAA0MEAAACAAADgwAAAwMEAAACAAADgwAAA8MEAAACAAADowAAA4MEAAACAAADowAAA4MEAAACAAADgwAAA0MEAAACAAADgwAAAAMIAAACAAADgwAAA8MEAAACAAAAAwQAA0MEAAACAAAAEwQAAiMEAAACAAAAEwQAAiMEAAACAAAAAwQAAAMEAAACAAAAAwQAA4MEAAACAAAAAwQAA0MEAAACAAAAAwQAA8MEAAACAAAAAwQAA4MEAAACAAAAgwQAAIMEAAACAAAAkwQAAoMAAAACAAAAkwQAAoMAAAACAAAAgwQAAAIAAAACAAAAgwQAAQMEAAACAAAAgwQAAIMEAAACAAAAgwQAAYMEAAACAAAAgwQAAQMEAAACAAAAgwQAAgMEAAACAAAAgwQAAYMEAAACAAAAgwQAAoMEAAACAAAAkwQAAkMEAAACAAAAkwQAAkMEAAACAAAAgwQAAgMEAAACAAAAgwQAAsMEAAACAAAAgwQAAoMEAAACAAAAgwQAA4MEAAACAAAAkwQAAyMEAAACAAAAkwQAAyMEAAACAAAAgwQAAsMEAAACAAAAgwQAA8MEAAACAAAAgwQAA4MEAAACAAAAgwQAAAMIAAACAAAAgwQAA8MEAAACAAAAwwQAAAMEAAACAAAA0wQAAgMAAAACAAAA0wQAAgMAAAACAAAAwwQAAAIAAAACAAAAwwQAAIMEAAACAAAAwwQAAAMEAAACAAAAwwQAAQMEAAACAAAAwwQAAIMEAAACAAAAwwQAAYMEAAACAAAAwwQAAQMEAAACAAAAwwQAAgMEAAACAAAAwwQAAYMEAAACAAAAwwQAAoMEAAACAAAA0wQAAkMEAAACAAAA0wQAAkMEAAACAAAAwwQAAgMEAAACAAAAwwQAAsMEAAACAAAAwwQAAoMEAAACAAAAwwQAA0MEAAACAAAA0wQAAwMEAAACAAAA0wQAAwMEAAACAAAAwwQAAsMEAAACAAAAwwQAA4MEAAACAAAAwwQAA0MEAAACAAAAwwQAA8MEAAACAAAAwwQAA4MEAAACAAAAwwQAAAMIAAACAAAAwwQAA8MEAAACAAABAwQAAAMEAAACAAABEwQAAoMAAAACAAABEwQAAoMAAAACAAABAwQAAAMAAAACAAABAwQAAIMEAAACAAABAwQAAAMEAAACAAABAwQAAQMEAAACAAABAwQAAIMEAAACAAABAwQAAYMEAAACAAABAwQAAQMEAAACAAABAwQAAgMEAAACAAABAwQAAYMEAAACAAABAwQAAkMEAAACAAABAwQAAgMEAAACAAABAwQAAoMEAAACAAABAwQAAkMEAAACAAABAwQAAsMEAAACAAABAwQAAoMEAAACAAABAwQAAwMEAAACAAABAwQAAsMEAAACAAABAwQAA0MEAAACAAABAwQAAwMEAAACAAABAwQAA4MEAAACAAABAwQAA0MEAAACAAABAwQAA8MEAAACAAABAwQAA4MEAAACAAABAwQAAAMIAAACAAABAwQAA8MEAAACAAABQwQAAIMEAAACAAABUwQAAwMAAAACAAABUwQAAwMAAAACAAABQwQAAAMAAAACAAABQwQAAQMEAAACAAABQwQAAIMEAAACAAABQwQAAYMEAAACAAABQwQAAQMEAAACAAABQwQAAgMEAAACAAABQwQAAYMEAAACAAABQwQAAkMEAAACAAABQwQAAgMEAAACAAABQwQAAoMEAAACAAABQwQAAkMEAAACAAABQwQAAsMEAAACAAABQwQAAoMEAAACAAABQwQAAwMEAAACAAABQwQAAsMEAAACAAABQwQAA4MEAAACAAABUwQAA0MEAAACAAABUwQAA0MEAAACAAABQwQAAwMEAAACAAABQwQAA8MEAAACAAABQwQAA4MEAAACAAABQwQAAAMIAAACAAABQwQAA8MEAAACAAABgwQAAYMEAAACAAABkwQAAEMEAAACAAABkwQAAEMEAAACAAABgwQAAgMAAAACAAABgwQAAgMEAAACAAABgwQAAYMEAAACAAABgwQAAkMEAAACAAABgwQAAgMEAAACAAABgwQAAoMEAAACAAABgwQAAkMEAAACAAABgwQAAsMEAAACAAABgwQAAoMEAAACAAABgwQAAwMEAAACAAABgwQAAsMEAAACAAABgwQAA0MEAAACAAABgwQAAwMEAAACAAABgwQAA8MEAAACAAABkwQAA4MEAAACAAABkwQAA4MEAAACAAABgwQAA0MEAAACAAABgwQAAAMIAAACAAABgwQAA8MEAAACAAABwwQAAAMEAAACAAAB0wQAAwMAAAACAAAB0wQAAwMAAAACAAABwwQAAgMAAAACAAABwwQAAYMEAAACAAAB0wQAAMMEAAACAAAB0wQAAMMEAAACAAABwwQAAAMEAAACAAABwwQAAgMEAAACAAABwwQAAYMEAAACAAABwwQAAkMEAAACAAABwwQAAgMEAAACAAABwwQAAoMEAAACAAABwwQAAkMEAAACAAABwwQAAsMEAAACAAABwwQAAoMEAAACAAABwwQAAwMEAAACAAABwwQAAsMEAAACAAABwwQAA0MEAAACAAABwwQAAwMEAAACAAABwwQAA4MEAAACAAABwwQAA0MEAAACAAABwwQAA8MEAAACAAABwwQAA4MEAAACAAABwwQAAAMIAAACAAABwwQAA8MEAAACAAACAwQAAAMEAAACAAACAwQAAwMAAAACAAACAwQAAIMEAAACAAACAwQAAAMEAAACAAACAwQAAQMEAAACAAACAwQAAIMEAAACAAACAwQAAYMEAAACAAACAwQAAQMEAAACAAACAwQAAkMEAAACAAACCwQAAgMEAAACAAACCwQAAgMEAAACAAACAwQAAYMEAAACAAACAwQAAoMEAAACAAACAwQAAkMEAAACAAACAwQAAwMEAAACAAACCwQAAsMEAAACAAACCwQAAsMEAAACAAACAwQAAoMEAAACAAACAwQAA0MEAAACAAACAwQAAwMEAAACAAACAwQAA4MEAAACAAACAwQAA0MEAAACAAACAwQAA8MEAAACAAACAwQAA4MEAAACAAACAwQAAAMIAAACAAACAwQAA8MEAAACAAACIwQAAIMEAAACAAACKwQAAAMEAAACAAACKwQAAAMEAAACAAACIwQAAwMAAAACAAACIwQAAQMEAAACAAACIwQAAIMEAAACAAACIwQAAYMEAAACAAACIwQAAQMEAAACAAACIwQAAkMEAAACAAACKwQAAgMEAAACAAACKwQAAgMEAAACAAACIwQAAYMEAAACAAACIwQAAoMEAAACAAACIwQAAkMEAAACAAACIwQAAwMEAAACAAACKwQAAsMEAAACAAACKwQAAsMEAAACAAACIwQAAoMEAAACAAACIwQAA0MEAAACAAACIwQAAwMEAAACAAACIwQAA8MEAAACAAACKwQAA4MEAAACAAACKwQAA4MEAAACAAACIwQAA0MEAAACAAACIwQAAAMIAAACAAACIwQAA8MEAAACAAACQwQAA0MEAAACAAACSwQAAiMEAAACAAACSwQAAiMEAAACAAACQwQAAAMEAAACAAACQwQAA4MEAAACAAACQwQAA0MEAAACAAACQwQAA8MEAAACAAACQwQAA4MEAAACAAACAPwAAAIAAAACAAACYwQAAAIAAAACAAACAPwAAAMAAAACAAACYwQAAAMAAAACAAACAPwAAgMAAAACAAACYwQAAgMAAAACAAACAPwAAwMAAAACAAACYwQAAwMAAAACAAACAPwAAAMEAAACAAACYwQAAAMEAAACAAACAPwAAIMEAAACAAACYwQAAIMEAAACAAACAPwAAQMEAAACAAACYwQAAQMEAAACAAACAPwAAYMEAAACAAACYwQAAYMEAAACAAACAPwAAgMEAAACAAACYwQAAgMEAAACAAACAPwAAkMEAAACAAACYwQAAkMEAAACAAACAPwAAoMEAAACAAACYwQAAoMEAAACAAACAPwAAsMEAAACAAACYwQAAsMEAAACAAACAPwAAwMEAAACAAACYwQAAwMEAAACAAACAPwAA0MEAAACAAACYwQAA0MEAAACAAACAPwAA4MEAAACAAACYwQAA4MEAAACAAACAPwAA8MEAAACAAACYwQAA8MEAAACAAACAPwAAAMIAAACAAACYwQAAAMIAAACAAACAPwAACMIAAACAAACYwQAACMIAAACAAACAPwAAEMIAAACAAACYwQAAEMIAAACAAACAPwAAGMIAAACAAACYwQAAGMIAAACAAACAPwAAIMIAAACAAACYwQAAIMIAAACA\"},{\"byteLength\":72,\"name\":\"buf_red_scattered_lines\",\"uri\":\"data:application/octet-stream;base64,AAAAAAAAAEAAAACAAABAwAAAAEAAAACAAAAgwAAAwD8AAACAAABAwAAAAEAAAACAAAAgwAAAIEAAAACAAABAwAAAAEAAAACA\"}],\"images\":[{\"uri\":\"\"}],\"materials\":[{\"doubleSided\":false,\"pbrMetallicRoughness\":{\"baseColorFactor\":[1,1,1,1],\"baseColorTexture\":{\"index\":0,\"texCoord\":0},\"metallicFactor\":0.4,\"roughnessFactor\":0.5}},{\"doubleSided\":true,\"pbrMetallicRoughness\":{\"baseColorFactor\":[0,0,0,1],\"metallicFactor\":1,\"roughnessFactor\":1}},{\"doubleSided\":true,\"pbrMetallicRoughness\":{\"baseColorFactor\":[1,0,0,1],\"metallicFactor\":1,\"roughnessFactor\":1}}],\"meshes\":[{\"primitives\":[{\"attributes\":{\"POSITION\":0,\"TEXCOORD_0\":1},\"material\":0,\"mode\":4}]},{\"primitives\":[{\"attributes\":{\"POSITION\":0,\"TEXCOORD_0\":2},\"material\":0,\"mode\":4}]},{\"primitives\":[{\"attributes\":{\"POSITION\":0,\"TEXCOORD_0\":3},\"material\":0,\"mode\":4}]},{\"primitives\":[{\"attributes\":{\"POSITION\":0,\"TEXCOORD_0\":4},\"material\":0,\"mode\":4}]},{\"primitives\":[{\"attributes\":{\"POSITION\":5},\"material\":1,\"mode\":1}]},{\"primitives\":[{\"attributes\":{\"POSITION\":6},\"material\":2,\"mode\":1}]}],\"nodes\":[{\"mesh\":0,\"translation\":[-0,-0,-0]},{\"mesh\":1,\"translation\":[-0,-10,-0]},{\"mesh\":1,\"translation\":[-0,-12,-0]},{\"mesh\":2,\"translation\":[-0,-14,-0]},{\"mesh\":0,\"translation\":[-0,-16,-0]},{\"mesh\":1,\"translation\":[-0,-20,-0]},{\"mesh\":1,\"translation\":[-0,-22,-0]},{\"mesh\":1,\"translation\":[-0,-28,-0]},{\"mesh\":0,\"translation\":[-0,-30,-0]},{\"mesh\":1,\"translation\":[-0,-32,-0]},{\"mesh\":2,\"translation\":[-1,-0,-0]},{\"mesh\":2,\"translation\":[-1,-8,-0]},{\"mesh\":0,\"translation\":[-1,-10,-0]},{\"mesh\":0,\"translation\":[-1,-12,-0]},{\"mesh\":1,\"translation\":[-1,-14,-0]},{\"mesh\":2,\"translation\":[-1,-16,-0]},{\"mesh\":0,\"translation\":[-1,-20,-0]},{\"mesh\":0,\"translation\":[-1,-22,-0]},{\"mesh\":2,\"translation\":[-1,-26,-0]},{\"mesh\":1,\"translation\":[-1,-28,-0]},{\"mesh\":0,\"translation\":[-1,-30,-0]},{\"mesh\":0,\"translation\":[-1,-32,-0]},{\"mesh\":0,\"translation\":[-2,-2,-0]},{\"mesh\":2,\"translation\":[-2,-8,-0]},{\"mesh\":1,\"translation\":[-2,-10,-0]},{\"mesh\":0,\"translation\":[-2,-12,-0]},{\"mesh\":2,\"translation\":[-2,-14,-0]},{\"mesh\":0,\"translation\":[-2,-16,-0]},{\"mesh\":0,\"translation\":[-2,-18,-0]},{\"mesh\":2,\"translation\":[-2,-20,-0]},{\"mesh\":0,\"translation\":[-2,-22,-0]},{\"mesh\":1,\"translation\":[-2,-24,-0]},{\"mesh\":2,\"translation\":[-2,-26,-0]},{\"mesh\":0,\"translation\":[-2,-28,-0]},{\"mesh\":2,\"translation\":[-2,-30,-0]},{\"mesh\":0,\"translation\":[-2,-32,-0]},{\"mesh\":2,\"translation\":[-3,-2,-0]},{\"mesh\":0,\"translation\":[-3,-10,-0]},{\"mesh\":2,\"translation\":[-3,-12,-0]},{\"mesh\":1,\"translation\":[-3,-14,-0]},{\"mesh\":2,\"translation\":[-3,-16,-0]},{\"mesh\":2,\"translation\":[-3,-18,-0]},{\"mesh\":1,\"translation\":[-3,-20,-0]},{\"mesh\":2,\"translation\":[-3,-22,-0]},{\"mesh\":0,\"translation\":[-3,-24,-0]},{\"mesh\":0,\"translation\":[-3,-28,-0]},{\"mesh\":2,\"translation\":[-3,-30,-0]},{\"mesh\":2,\"translation\":[-3,-32,-0]},{\"mesh\":0,\"translation\":[-4,-4,-0]},{\"mesh\":1,\"translation\":[-4,-14,-0]},{\"mesh\":1,\"translation\":[-4,-16,-0]},{\"mesh\":0,\"translation\":[-4,-18,-0]},{\"mesh\":2,\"translation\":[-4,-20,-0]},{\"mesh\":0,\"translation\":[-4,-22,-0]},{\"mesh\":0,\"translation\":[-4,-24,-0]},{\"mesh\":1,\"translation\":[-4,-26,-0]},{\"mesh\":0,\"translation\":[-4,-30,-0]},{\"mesh\":1,\"translation\":[-4,-32,-0]},{\"mesh\":2,\"translation\":[-5,-4,-0]},{\"mesh\":2,\"translation\":[-5,-8,-0]},{\"mesh\":0,\"translation\":[-5,-14,-0]},{\"mesh\":0,\"translation\":[-5,-16,-0]},{\"mesh\":2,\"translation\":[-5,-18,-0]},{\"mesh\":1,\"translation\":[-5,-20,-0]},{\"mesh\":2,\"translation\":[-5,-22,-0]},{\"mesh\":2,\"translation\":[-5,-24,-0]},{\"mesh\":1,\"translation\":[-5,-26,-0]},{\"mesh\":2,\"translation\":[-5,-28,-0]},{\"mesh\":0,\"translation\":[-5,-30,-0]},{\"mesh\":0,\"translation\":[-5,-32,-0]},{\"mesh\":0,\"translation\":[-6,-6,-0]},{\"mesh\":2,\"translation\":[-6,-8,-0]},{\"mesh\":1,\"translation\":[-6,-10,-0]},{\"mesh\":2,\"translation\":[-6,-12,-0]},{\"mesh\":0,\"translation\":[-6,-14,-0]},{\"mesh\":1,\"translation\":[-6,-18,-0]},{\"mesh\":1,\"translation\":[-6,-20,-0]},{\"mesh\":0,\"translation\":[-6,-24,-0]},{\"mesh\":1,\"translation\":[-6,-26,-0]},{\"mesh\":2,\"translation\":[-6,-28,-0]},{\"mesh\":0,\"translation\":[-6,-30,-0]},{\"mesh\":0,\"translation\":[-6,-32,-0]},{\"mesh\":2,\"translation\":[-7,-6,-0]},{\"mesh\":0,\"translation\":[-7,-10,-0]},{\"mesh\":1,\"translation\":[-7,-12,-0]},{\"mesh\":2,\"translation\":[-7,-14,-0]},{\"mesh\":0,\"translation\":[-7,-18,-0]},{\"mesh\":0,\"translation\":[-7,-20,-0]},{\"mesh\":2,\"translation\":[-7,-24,-0]},{\"mesh\":2,\"translation\":[-7,-26,-0]},{\"mesh\":1,\"translation\":[-7,-30,-0]},{\"mesh\":2,\"translation\":[-7,-32,-0]},{\"mesh\":0,\"translation\":[-8,-8,-0]},{\"mesh\":0,\"translation\":[-8,-26,-0]},{\"mesh\":0,\"translation\":[-8,-28,-0]},{\"mesh\":2,\"translation\":[-8,-30,-0]},{\"mesh\":0,\"translation\":[-8,-34,-0]},{\"mesh\":0,\"translation\":[-8,-36,-0]},{\"mesh\":0,\"translation\":[-8,-38,-0]},{\"mesh\":0,\"translation\":[-8,-40,-0]},{\"mesh\":3,\"translation\":[-8,-0,-0]},{\"mesh\":3,\"translation\":[-8,-2,-0]},{\"mesh\":3,\"translation\":[-8,-4,-0]},{\"mesh\":3,\"translation\":[-8,-6,-0]},{\"mesh\":3,\"translation\":[-9,-8,-0]},{\"mesh\":3,\"translation\":[-9,-10,-0]},{\"mesh\":3,\"translation\":[-9,-12,-0]},{\"mesh\":3,\"translation\":[-9,-14,-0]},{\"mesh\":3,\"translation\":[-9,-16,-0]},{\"mesh\":3,\"translation\":[-9,-18,-0]},{\"mesh\":3,\"translation\":[-9,-20,-0]},{\"mesh\":3,\"translation\":[-9,-22,-0]},{\"mesh\":3,\"translation\":[-9,-24,-0]},{\"mesh\":3,\"translation\":[-9,-26,-0]},{\"mesh\":3,\"translation\":[-9,-28,-0]},{\"mesh\":3,\"translation\":[-9,-30,-0]},{\"mesh\":3,\"translation\":[-9,-32,-0]},{\"mesh\":3,\"translation\":[-9,-34,-0]},{\"mesh\":3,\"translation\":[-9,-36,-0]},{\"mesh\":3,\"translation\":[-9,-38,-0]},{\"mesh\":3,\"translation\":[-9,-40,-0]},{\"mesh\":0,\"translation\":[-10,-0,-0]},{\"mesh\":1,\"translation\":[-10,-10,-0]},{\"mesh\":1,\"translation\":[-10,-12,-0]},{\"mesh\":2,\"translation\":[-10,-14,-0]},{\"mesh\":0,\"translation\":[-10,-16,-0]},{\"mesh\":1,\"translation\":[-10,-20,-0]},{\"mesh\":1,\"translation\":[-10,-22,-0]},{\"mesh\":1,\"translation\":[-10,-28,-0]},{\"mesh\":0,\"translation\":[-10,-30,-0]},{\"mesh\":1,\"translation\":[-10,-32,-0]},{\"mesh\":2,\"translation\":[-11,-0,-0]},{\"mesh\":2,\"translation\":[-11,-8,-0]},{\"mesh\":0,\"translation\":[-11,-10,-0]},{\"mesh\":0,\"translation\":[-11,-12,-0]},{\"mesh\":1,\"translation\":[-11,-14,-0]},{\"mesh\":2,\"translation\":[-11,-16,-0]},{\"mesh\":0,\"translation\":[-11,-20,-0]},{\"mesh\":0,\"translation\":[-11,-22,-0]},{\"mesh\":2,\"translation\":[-11,-26,-0]},{\"mesh\":1,\"translation\":[-11,-28,-0]},{\"mesh\":0,\"translation\":[-11,-30,-0]},{\"mesh\":0,\"translation\":[-11,-32,-0]},{\"mesh\":0,\"translation\":[-12,-2,-0]},{\"mesh\":2,\"translation\":[-12,-8,-0]},{\"mesh\":1,\"translation\":[-12,-10,-0]},{\"mesh\":0,\"translation\":[-12,-12,-0]},{\"mesh\":2,\"translation\":[-12,-14,-0]},{\"mesh\":0,\"translation\":[-12,-16,-0]},{\"mesh\":0,\"translation\":[-12,-18,-0]},{\"mesh\":2,\"translation\":[-12,-20,-0]},{\"mesh\":0,\"translation\":[-12,-22,-0]},{\"mesh\":1,\"translation\":[-12,-24,-0]},{\"mesh\":2,\"translation\":[-12,-26,-0]},{\"mesh\":0,\"translation\":[-12,-28,-0]},{\"mesh\":2,\"translation\":[-12,-30,-0]},{\"mesh\":0,\"translation\":[-12,-32,-0]},{\"mesh\":2,\"translation\":[-13,-2,-0]},{\"mesh\":0,\"translation\":[-13,-10,-0]},{\"mesh\":2,\"translation\":[-13,-12,-0]},{\"mesh\":1,\"translation\":[-13,-14,-0]},{\"mesh\":2,\"translation\":[-13,-16,-0]},{\"mesh\":2,\"translation\":[-13,-18,-0]},{\"mesh\":1,\"translation\":[-13,-20,-0]},{\"mesh\":2,\"translation\":[-13,-22,-0]},{\"mesh\":0,\"translation\":[-13,-24,-0]},{\"mesh\":0,\"translation\":[-13,-28,-0]},{\"mesh\":2,\"translation\":[-13,-30,-0]},{\"mesh\":2,\"translation\":[-13,-32,-0]},{\"mesh\":0,\"translation\":[-14,-4,-0]},{\"mesh\":1,\"translation\":[-14,-14,-0]},{\"mesh\":1,\"translation\":[-14,-16,-0]},{\"mesh\":0,\"translation\":[-14,-18,-0]},{\"mesh\":2,\"translation\":[-14,-20,-0]},{\"mesh\":0,\"translation\":[-14,-22,-0]},{\"mesh\":0,\"translation\":[-14,-24,-0]},{\"mesh\":1,\"translation\":[-14,-26,-0]},{\"mesh\":0,\"translation\":[-14,-30,-0]},{\"mesh\":1,\"translation\":[-14,-32,-0]},{\"mesh\":2,\"translation\":[-15,-4,-0]},{\"mesh\":2,\"translation\":[-15,-8,-0]},{\"mesh\":0,\"translation\":[-15,-14,-0]},{\"mesh\":0,\"translation\":[-15,-16,-0]},{\"mesh\":2,\"translation\":[-15,-18,-0]},{\"mesh\":1,\"translation\":[-15,-20,-0]},{\"mesh\":2,\"translation\":[-15,-22,-0]},{\"mesh\":2,\"translation\":[-15,-24,-0]},{\"mesh\":1,\"translation\":[-15,-26,-0]},{\"mesh\":2,\"translation\":[-15,-28,-0]},{\"mesh\":0,\"translation\":[-15,-30,-0]},{\"mesh\":0,\"translation\":[-15,-32,-0]},{\"mesh\":0,\"translation\":[-16,-6,-0]},{\"mesh\":2,\"translation\":[-16,-8,-0]},{\"mesh\":1,\"translation\":[-16,-10,-0]},{\"mesh\":2,\"translation\":[-16,-12,-0]},{\"mesh\":0,\"translation\":[-16,-14,-0]},{\"mesh\":1,\"translation\":[-16,-18,-0]},{\"mesh\":1,\"translation\":[-16,-20,-0]},{\"mesh\":0,\"translation\":[-16,-24,-0]},{\"mesh\":1,\"translation\":[-16,-26,-0]},{\"mesh\":2,\"translation\":[-16,-28,-0]},{\"mesh\":0,\"translation\":[-16,-30,-0]},{\"mesh\":0,\"translation\":[-16,-32,-0]},{\"mesh\":2,\"translation\":[-17,-6,-0]},{\"mesh\":0,\"translation\":[-17,-10,-0]},{\"mesh\":1,\"translation\":[-17,-12,-0]},{\"mesh\":2,\"translation\":[-17,-14,-0]},{\"mesh\":0,\"translation\":[-17,-18,-0]},{\"mesh\":0,\"translation\":[-17,-20,-0]},{\"mesh\":2,\"translation\":[-17,-24,-0]},{\"mesh\":2,\"translation\":[-17,-26,-0]},{\"mesh\":1,\"translation\":[-17,-30,-0]},{\"mesh\":2,\"translation\":[-17,-32,-0]},{\"mesh\":0,\"translation\":[-18,-8,-0]},{\"mesh\":0,\"translation\":[-18,-26,-0]},{\"mesh\":0,\"translation\":[-18,-28,-0]},{\"mesh\":2,\"translation\":[-18,-30,-0]},{\"mesh\":0,\"translation\":[-18,-34,-0]},{\"mesh\":0,\"translation\":[-18,-36,-0]},{\"mesh\":0,\"translation\":[-18,-38,-0]},{\"mesh\":0,\"translation\":[-18,-40,-0]},{\"mesh\":4,\"translation\":[0,0,0]},{\"mesh\":5,\"translation\":[0,0,0]}],\"samplers\":[{\"magFilter\":9728,\"minFilter\":9728,\"wrapS\":33071,\"wrapT\":33071}],\"scene\":0,\"scenes\":[{\"nodes\":[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144,145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168,169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192,193,194,195,196,197,198,199,200,201,202,203,204,205,206,207,208,209,210,211,212,213,214,215,216,217,218,219,220,221,222]}],\"textures\":[{\"sampler\":0,\"source\":0}]}" + ], + "text/html": [ + "" + ] + }, + "metadata": {}, + "execution_count": 19 + } + ], + "source": [ + "# Example QEC code:\n", + "text = '''[1 0 0 0 0 1 1 0 1 0 1 1 0 0 1 1 1 0 0 0 0|0 0 0 0 0 1 1 1 0 0 1 1 0 0 1 0 1 0 0 0 0]\n", + " [0 0 0 0 0 1 1 1 0 0 1 1 0 0 1 1 1 0 0 0 0|1 0 0 0 1 0 0 1 1 0 0 0 0 1 1 0 0 0 0 0 0]\n", + " [0 1 0 0 0 1 1 0 1 1 0 1 1 0 1 0 1 0 0 0 0|0 0 0 0 1 1 0 1 0 0 1 0 1 1 0 1 0 0 0 0 0]\n", + " [0 0 0 0 0 1 0 1 0 0 1 0 1 0 1 0 0 0 0 0 0|0 1 0 0 0 0 1 1 1 1 1 1 0 0 0 1 1 0 0 0 0]\n", + " [0 0 1 0 0 0 0 1 1 1 0 1 1 1 0 1 1 0 0 0 0|0 0 0 0 0 0 0 1 1 0 1 0 0 1 0 0 1 0 0 0 0]\n", + " [0 0 0 0 0 0 0 1 1 0 1 0 0 1 0 1 1 0 0 0 0|0 0 1 0 1 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0]\n", + " [0 0 0 1 0 1 0 1 0 1 1 0 1 1 0 1 1 0 0 0 0|0 0 0 0 1 1 1 0 0 1 1 0 0 1 1 0 0 0 0 0 0]\n", + " [0 0 0 0 0 1 1 0 0 1 1 0 0 0 0 1 0 0 0 0 0|0 0 0 1 0 0 1 1 0 0 0 0 1 1 0 1 1 0 0 0 0]\n", + " [0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0]\n", + " [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]\n", + " [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]\n", + " [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]\n", + " [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1|0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]'''\n", + "\n", + "H = parse_symplectic_matrix(text)\n", + "\n", + "LX, LZ = stabilizer_code_logical_operators(check_matrix=H)\n", + "\n", + "circuit = code_capacity_circuit(\n", + " stabilizers=H,\n", + " x_logicals=LX,\n", + " z_logicals=LZ,\n", + " p=0.025\n", + ")\n", + "\n", + "circuit.diagram('timeline-3d')" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "cK2Mf2fTCAWO" + }, + "source": [ + "## Computing minimum distance with Stim + SAT Solver" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "ZdVK4Dq1Bp1B", + "outputId": "61d8eb3e-7274-41c0-bd6b-af3e3ac75d54" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Distance of code: 4\n" + ] + } + ], + "source": [ + "# Note: this maxSAT solver only works for very small codes.\n", + "# For larger codes, use the solvers at https://maxsat-evaluations.github.io/2024/\n", + "from pysat.examples.rc2 import RC2\n", + "from pysat.formula import WCNF\n", + "\n", + "wcnf = WCNF(from_string=circuit.shortest_error_sat_problem())\n", + "\n", + "with RC2(wcnf) as rc2:\n", + " rc2.compute()\n", + " print(f'Distance of code: {rc2.cost}')" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "GQjQkhD4C4rK" + }, + "source": [ + "## Sample new data for this stabilizer code" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "7iOIl7vjC3uG" + }, + "outputs": [], + "source": [ + "num_shots = 1000\n", + "dem = circuit.detector_error_model()\n", + "sampler = circuit.compile_detector_sampler(seed=23845386)\n", + "dets, obs = sampler.sample(num_shots, separate_observables=True)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "63xjagbBCj8x" + }, + "source": [ + "## Decode code capacity noise data with ILP and Tesseract" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "IM7W37cHaKfT", + "outputId": "3f2f7666-9586-4cb6-b422-1d295bf8747c" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Tesseract Decoder Stats:\n", + " Number of Errors / num_shots: 60 / 1000\n", + " Time: 0.2323 s\n", + "\n", + "ILP: num_errors / num_shots = 61 / 1000 time 11.911995649337769 s\n" + ] + } + ], + "source": [ + "tesseract_config = tesseract_decoder.tesseract.TesseractConfig(\n", + " dem=dem,\n", + " pqlimit=1000,\n", + " det_beam=10,\n", + " det_orders=tesseract_decoder.utils.build_det_orders(\n", + " dem, num_det_orders=10, det_order_bfs=True, seed=2384753),\n", + " # no_revisit_dets=True,\n", + ")\n", + "\n", + "results = run_tesseract_decoder(tesseract_config.compile_decoder(), dets, obs)\n", + "print_results(results)\n", + "\n", + "# Run and time ILP decoder\n", + "ilp_dec = tesseract_decoder.simplex.SimplexConfig(\n", + " dem=dem, parallelize=True).compile_decoder()\n", + "start_time = time.time()\n", + "obs_predicted = ilp_dec.decode_batch(dets)\n", + "num_errors_ilp = np.sum(np.any(obs_predicted != obs, axis=1))\n", + "end_time = time.time()\n", + "print(\n", + " f'ILP: num_errors / num_shots = {num_errors_ilp} / {len(dets)} time {end_time - start_time} s')" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "K0QvSpXQIwgf" + }, + "source": [ + "# Visualize the Tesseract's decoding\n", + "For visualizing tesseract we use the `verbose` flag to get the decoding information.\n", + "## [Link to visualizer](https://quantumlib.github.io/tesseract-decoder/viz/)\n", + "* `verbose` - A boolean flag that, when `True`, enables verbose logging. This is useful for debugging and understanding the decoder's internal behavior, as it will print information about the search process." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "DzWRL1cNjyix", + "outputId": "4a3df084-499f-43b2-97ba-1874b697f06a" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Cloning into 'tesseract-decoder'...\n", + "remote: Enumerating objects: 2086, done.\u001b[K\n", + "remote: Counting objects: 100% (606/606), done.\u001b[K\n", + "remote: Compressing objects: 100% (304/304), done.\u001b[K\n", + "remote: Total 2086 (delta 493), reused 317 (delta 302), pack-reused 1480 (from 3)\u001b[K\n", + "Receiving objects: 100% (2086/2086), 3.17 MiB | 8.58 MiB/s, done.\n", + "Resolving deltas: 100% (1667/1667), done.\n" + ] + } + ], + "source": [ + "# Remove the existing directory and its contents\n", + "!rm -rf tesseract-decoder\n", + "# Clone the repository\n", + "!git clone https://github.com/quantumlib/tesseract-decoder.git" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "ZNKaqvN8dE-X", + "outputId": "8d80e5bc-c30b-469d-d9cd-452d89604c30" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + " % Total % Received % Xferd Average Speed Time Time Time Current\n", + " Dload Upload Total Spent Left Speed\n", + "\r 0 0 0 0 0 0 0 0 --:--:-- --:--:-- --:--:-- 0\r100 44154 100 44154 0 0 230k 0 --:--:-- --:--:-- --:--:-- 230k\n" + ] + } + ], + "source": [ + "!curl 'https://raw.githubusercontent.com/quantumlib/tesseract-decoder/refs/heads/main/testdata/colorcodes/r%3D9%2Cd%3D9%2Cp%3D0.002%2Cnoise%3Dsi1000%2Cc%3Dsuperdense_color_code_X%2Cq%3D121%2Cgates%3Dcz.stim' > d9r9colorcode_p002.stim\n" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "Cdo-oenEdF1-" + }, + "outputs": [], + "source": [ + "import stim\n", + "\n", + "circuit = stim.Circuit.from_file('d9r9colorcode_p002.stim')" + ] }, - "id": "WExtQ3x4j_Md", - "outputId": "b8ad37c9-4d69-4abd-f176-71dc76042687" - }, - "outputs": [ { - "name": "stdout", - "output_type": "stream", - "text": [ - "✅ JSON written to logfile.json with 10215 frames and 23994 error coords.\n" - ] + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "collapsed": true, + "id": "awJYxAOMTc3t", + "outputId": "2da93975-0ede-41cb-897b-23b7da9dca93" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Tesseract: num_errors / num_shots = 51 / 100 \n", + " time 16.068939685821533 s\n" + ] + } + ], + "source": [ + "import tesseract_decoder\n", + "import tesseract_decoder.tesseract as tesseract\n", + "import numpy as np\n", + "import time\n", + "import contextlib\n", + "import io\n", + "\n", + "num_shots = 100\n", + "dem = circuit.detector_error_model()\n", + "dets, obs = circuit.compile_detector_sampler().sample(num_shots, separate_observables=True)\n", + "\n", + "tesseract_config1 = tesseract.TesseractConfig(\n", + " dem=dem,\n", + " pqlimit=10000,\n", + " verbose=False,\n", + " create_visualization=True,\n", + " det_orders=tesseract_decoder.utils.build_det_orders(\n", + " dem, num_det_orders=2, det_order_bfs=True, seed=2384753),\n", + ")\n", + "\n", + "tesseract_dec = tesseract.TesseractDecoder(tesseract_config1)\n", + "\n", + "# Run and time the Tesseract decoder\n", + "num_errors = 0\n", + "start_time = time.time()\n", + "for shot in range(len(dets)):\n", + " obs_predicted = tesseract_dec.decode(dets[shot])\n", + " obs_actual = obs[shot]\n", + " if np.any(obs_predicted != obs_actual):\n", + " num_errors += 1\n", + "end_time = time.time()\n", + "print(f'Tesseract: num_errors / num_shots = {num_errors} / {len(dets)} \\n time {end_time - start_time} s')\n", + "\n", + "# Print with the visualizer\n", + "tesseract_dec.visualizer.write('/content/tmp.txt')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "MuQb8XQlpvU6" + }, + "outputs": [], + "source": [ + "!cat tmp.txt | grep -E 'Error|Detector|activated_errors|activated_detectors' > logfile.txt" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "WExtQ3x4j_Md", + "outputId": "b8ad37c9-4d69-4abd-f176-71dc76042687" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "✅ JSON written to logfile.json with 10215 frames and 23994 error coords.\n" + ] + } + ], + "source": [ + "!python tesseract-decoder/viz/to_json.py logfile.txt -o logfile.json" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "HSdTwXBINjkH" + }, + "source": [ + "copy the json file and upload it [here to see the visualizaion](https://quantumlib.github.io/tesseract-decoder/viz/)" + ] + }, + { + "cell_type": "markdown", + "metadata": { + "id": "QehTGJcB7-Ca" + }, + "source": [ + "# Accuracy Comparison between Tesseract and ILP" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/" + }, + "id": "GOY0hHYx79HC", + "outputId": "c73ea4f6-ea5b-42c4-8271-fe6320c790ab" + }, + "outputs": [ + { + "output_type": "stream", + "name": "stdout", + "text": [ + "Tesseract: num_errors / num_shots = 2 / 1000\n", + "num_errors_tesseract_no_error_ilp = 0\n", + "time 25.137925148010254 s\n" + ] + } + ], + "source": [ + "circuit = stim.Circuit.from_file('d5r5colorcode_p001.stim')\n", + "dem = circuit.detector_error_model()\n", + "\n", + "tesseract_dec = tesseract_decoder.tesseract.TesseractConfig(\n", + " dem=dem,\n", + " pqlimit=10000,\n", + " det_beam=5,\n", + " det_orders=tesseract_decoder.utils.build_det_orders(\n", + " dem, num_det_orders=10, det_order_bfs=True, seed=2384753),\n", + " no_revisit_dets=True,\n", + ").compile_decoder()\n", + "\n", + "ilp_dec = tesseract_decoder.simplex.SimplexConfig(\n", + " dem=dem, parallelize=True).compile_decoder()\n", + "\n", + "num_shots = 1000\n", + "dets, obs = circuit.compile_detector_sampler(seed=237435).sample(num_shots, separate_observables=True)\n", + "\n", + "num_errors_tesseract = 0\n", + "num_errors_tesseract_no_error_ilp = 0\n", + "start_time = time.time()\n", + "for shot in range(len(dets)):\n", + " obs_predicted = tesseract_dec.decode(dets[shot])\n", + " obs_actual = obs[shot]\n", + " if np.any(obs_predicted != obs_actual):\n", + " num_errors_tesseract += 1\n", + " obs_predicted_ilp = ilp_dec.decode(dets[shot])\n", + " if not np.any(obs_predicted_ilp != obs_actual):\n", + " num_errors_tesseract_no_error_ilp += 1\n", + "\n", + "end_time = time.time()\n", + "print(f'Tesseract: num_errors / num_shots = {num_errors_tesseract} / {len(dets)}')\n", + "print(f'num_errors_tesseract_no_error_ilp = {num_errors_tesseract_no_error_ilp}')\n", + "print(f'time {end_time - start_time} s')" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": { + "id": "44xKnbKb2y_b" + }, + "outputs": [], + "source": [] } - ], - "source": [ - "!python tesseract-decoder/viz/to_json.py logfile.txt -o logfile.json" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "HSdTwXBINjkH" - }, - "source": [ - "copy the json file and upload it [here to see the visualizaion](https://quantumlib.github.io/tesseract-decoder/viz/)" - ] - }, - { - "cell_type": "markdown", - "metadata": { - "id": "QehTGJcB7-Ca" - }, - "source": [ - "# Accuracy Comparison between Tesseract and ILP" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { + ], + "metadata": { "colab": { - "base_uri": "https://localhost:8080/" + "provenance": [] }, - "id": "GOY0hHYx79HC", - "outputId": "c73ea4f6-ea5b-42c4-8271-fe6320c790ab" - }, - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - "Tesseract: num_errors / num_shots = 2 / 1000\n", - "num_errors_tesseract_no_error_ilp = 0\n", - "time 25.137925148010254 s\n" - ] + "kernelspec": { + "display_name": "Python 3", + "name": "python3" + }, + "language_info": { + "name": "python" } - ], - "source": [ - "circuit = stim.Circuit.from_file('d5r5colorcode_p001.stim')\n", - "dem = circuit.detector_error_model()\n", - "\n", - "tesseract_dec = tesseract_decoder.tesseract.TesseractConfig(\n", - " dem=dem,\n", - " pqlimit=10000,\n", - " det_beam=5,\n", - " det_orders=tesseract_decoder.utils.build_det_orders(\n", - " dem, num_det_orders=10, det_order_bfs=True, seed=2384753),\n", - " no_revisit_dets=True,\n", - ").compile_decoder()\n", - "\n", - "ilp_dec = tesseract_decoder.simplex.SimplexConfig(\n", - " dem=dem, parallelize=True).compile_decoder()\n", - "\n", - "num_shots = 1000\n", - "dets, obs = circuit.compile_detector_sampler(seed=237435).sample(num_shots, separate_observables=True)\n", - "\n", - "num_errors_tesseract = 0\n", - "num_errors_tesseract_no_error_ilp = 0\n", - "start_time = time.time()\n", - "for shot in range(len(dets)):\n", - " obs_predicted = tesseract_dec.decode(dets[shot])\n", - " obs_actual = obs[shot]\n", - " if np.any(obs_predicted != obs_actual):\n", - " num_errors_tesseract += 1\n", - " obs_predicted_ilp = ilp_dec.decode(dets[shot])\n", - " if not np.any(obs_predicted_ilp != obs_actual):\n", - " num_errors_tesseract_no_error_ilp += 1\n", - "\n", - "end_time = time.time()\n", - "print(f'Tesseract: num_errors / num_shots = {num_errors_tesseract} / {len(dets)}')\n", - "print(f'num_errors_tesseract_no_error_ilp = {num_errors_tesseract_no_error_ilp}')\n", - "print(f'time {end_time - start_time} s')" - ] - }, - { - "cell_type": "code", - "execution_count": null, - "metadata": { - "id": "44xKnbKb2y_b" - }, - "outputs": [], - "source": [] - } - ], - "metadata": { - "colab": { - "provenance": [] - }, - "kernelspec": { - "display_name": "Python 3 (ipykernel)", - "language": "python", - "name": "python3" }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 3 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython3", - "version": "3.13.3" - } - }, - "nbformat": 4, - "nbformat_minor": 4 + "nbformat": 4, + "nbformat_minor": 0 }