
1

MPIEvaluator: Run on multi-node HPC systems using mpi4py
Ewout ter Hoeven | 2023-11-07

Introduc�on
In exploratory modelling and simula�on, dealing with uncertainty o�en demands large-scale
computa�onal experiments. While High Performance Compu�ng (HPC) facili�es offer the
computa�onal resources for these tasks, they can be complex to operate. The Exploratory Modeling
Workbench, TU Del�'s open-source Python library, facilitates this computa�onal experimenta�on on
standalone computers. However, its inability to na�vely run on mul�-node systems, like HPCs,
narrows its u�lity to models that are rela�vely simpler and faster.

This report discusses an enhancement to the EMAworkbench – the integra�on of the MPIEvaluator.
With this addi�on, the workbench not only becomes compa�ble with mul�-node systems, such as
TU Del�'s supercomputer Del�Blue, but it also ensures seamless transi�oning between sequen�al
and parallel experiments irrespec�ve of the computa�onal setup. The underlying mo�ve is to
empower researchers to employ larger models and to facilitate a higher number of itera�ons, which
can, in turn, allows for scaling up both models and experiments to sizes not possible before.

This project was executed in from April 2023 to November 2023 under the supervision of Prof.dr.ir.
J.H. Kwakkel. It was a 7 EC Capita Selecta as part as the EPA master at the TPM faculty of the TU Del�.

The development was done transparently in the open domain, and can be viewed back in these four
items:

• Discussion #266: Mul�-node (HPC) evaluator discussion
Includes most of the requirements and design discussions

• Dra� PR #292: Prototype of MPIEvaluator for mul�-node workloads
Includes the prototyping and iteration of the first draft implementation

• PR #299: Introducing MPIEvaluator: Run on mul�-node HPC systems using mpi4py
Includes the final implementation delivered, including extensive documentation

• PR #308: Docs: Add MPIEvaluator tutorial for mul�-node HPC systems, including Del�Blue
Includes a tutorial for using the MPIEvaluator, including an example for running on the
DelftBlue SLURM-based system.

This report includes a technical summary of the new MPIEvaluator and the integra�on into the
EMAworkbench.

https://github.com/quaquel/EMAworkbench/discussions/266
https://github.com/quaquel/EMAworkbench/pull/292
https://github.com/quaquel/EMAworkbench/pull/299
https://github.com/quaquel/EMAworkbench/pull/308

2

Contents
Introduc�on .. 1

Technical summary .. 3

Requirements .. 3

Design .. 3

Abstrac�on level ... 3

Distribu�ng tasks across HPC systems .. 4

SLURM scheduling ... 5

Logging and debuggability .. 6

Implementa�on .. 7

MPIEvaluator Class .. 7

run_experiment_mpi Func�on ... 7

Logging Enhancements ... 8

Performance .. 8

Overhead ... 8

Scaling ... 9

Limita�ons & future enhancements ... 10

Appendixes .. 12

Appendix A: Code diff ... 12

Appendix B: Tutorial .. 17

3

Technical summary
In this technical summary the requirements of the solu�on will first be noted, a�er which the design
choices are extensively discussed. A conceptual model will show the final implementa�on, a�er
which the performance is presented. Finally, the current limita�ons are discussed.

Requirements
The main requirements to integrate mul�-node system support into the EMAworkbench are:

1. Compa�bility: The solu�on must integrate seamlessly with the exis�ng framework of the
EMAworkbench, requiring minimal changes to the current user workflows.

2. Scalability: The enhancement should enable the EMAworkbench to efficiently distribute and
execute tasks across mul�ple nodes in an HPC environment, with the ability to scale as
needed for large models and data sets.

3. Portability: The solu�on should not be overly specialized to any single HPC configura�on,
ensuring broad applicability across various HPC environments, including those not managed
by SLURM.

4. Transparency and debuggability: The system must maintain a level of transparency in
opera�ons, providing sufficient logging and debugging capabili�es to trace and correct errors
effec�vely.

Some nice to have features are:

5. FileModel support: Support models other than Pytho-based ones, such as NetLogo or
Vensim models.

6. SLURM support: For SLURM systems, the solu�on should provide mechanisms for user
authen�ca�on, file transfer, job submission, and environment setup to facilitate the use of
remote SLURM HPC clusters.

7. Efficient data transfer: The system must facilitate the efficient transfer of models and data
between nodes to minimize latency and maximize performance.

Design
Abstrac�on level

The main big design decision was at which abstraction level this problem should be solved. From
discussion with the supervisor1, two distinct approaches where considered:

A. Solving at the SLURM level
• The proposed SLURMEvaluator class focuses on addressing the problem at the level of

SLURM, the job scheduler used on HPC clusters.
• It involves crea�ng a new evaluator class that can connect to remote SLURM HPC

clusters, transfer files, submit batch jobs, and manage the environment.
• The design allows for user authen�ca�on, environment setup, and job submission,

making it possible to run experiments on remote SLURM clusters.

1 Discussion #266: Multi-node (HPC) evaluator discussion

https://github.com/quaquel/EMAworkbench/discussions/266

4

• This approach shi�s the responsibility of handling SLURM-specific opera�ons to the
evaluator class, poten�ally simplifying the user experience.

This approach would have been the most user-friendly for a specific group of poten�al users. Since
login, file transfer and submi�ng batch numbers would have been handled, it could poten�ally make
running on a HPC system a one-liner from any exis�ng Python script or notebook.

However, this approach would have had many disadvantages. Likely, we would make a working
implementa�on for Del�Blue, the TU Del� supercomputer, but not for users of other SLURM
systems, let alone users that have HPC clusters or servers which are not managed with SLURM at all.

Addi�onally, it would also lack transparency about what’s happening in the process, and make
debugging therefor very complex. It would also lack modularity, it would be build for a specific
system and not be easily scalable to.

So this high abstract-level approach was abandoned in favor of a lower level solu�on.

B. Solving at the MPI level
• The proposed MPIEvaluator class tackles the problem at the level of MPI (Message

Passing Interface), which operates on systems with already allocated nodes.
• This approach involves defining worker func�ons for execu�ng individual experiments

and ini�alizing worker processes with the necessary environment and se�ngs.
• It aims to distribute tasks over available nodes, allowing for efficient u�liza�on of HPC

resources without specifying the exact number of nodes in advance.
• This approach emphasizes a separa�on of data genera�on on the HPC and subsequent

analysis locally.

By solving this at the MPI level, any system that can handle MPI can use the new mul�-node
evaluator, making it a very scalable and portable solu�on. Users of SLURM systems have to handle
file transfers, login and scheduling jobs themselves on SLURM clusters. To aid those users, an
extensive tutorial has been writen2.

Distribu�ng tasks across HPC systems
With the EMAworkbench crea�ng a large set of experiments, these should be executed distributed
across mul�ple nodes within a High-Performance Compu�ng (HPC) environment using Python. This
requires a method that can robustly manage task alloca�on while minimizing the overhead
associated with data and model transfer between nodes.

High-level Python run�mes o�en lack na�ve support for efficient parallel execu�on across mul�ple
HPC nodes. The essence of the problem lies in two core areas: the robust distribu�on of tasks
(without excessive overhead) and the transfer of models and data between nodes. HPC systems, due
to their distributed nature, present a challenge in synchronizing the computa�onal workload without
incurring significant communica�on costs that can offset the advantages of parallelism.

This is not a new problem, a solu�on used by many HPC systems is the Message Passing Interface.
MPI provides a standard for efficient communica�on between processes in a distributed compu�ng
environment. Python's integra�on with MPI, through the mpi4py library, extends this capability to
Python programs, allowing them to u�lize mul�ple nodes in an HPC system. Despite the integra�on,

2 PR #308: Docs: Add MPIEvaluator tutorial for multi-node HPC systems, including DelftBlue

https://github.com/quaquel/EMAworkbench/pull/308

5

a direct applica�on of MPI in Python can be complex due to its low-level nature, which does not align
with Python's high-level syntax and dynamic features.

The MPIPoolExecutor from the mpi4py.futures3 module presents a solu�on by offering a high-level
interface for asynchronous execu�on over a pool of MPI processes. It follows the design of
concurrent.futures4 from Python's standard library, and fullfilles the requirements for distribu�ng
experiments generated by the EMAworkbench.

• Task distribu�on: MPIPoolExecutor manages a pool of worker processes, enabling the
delega�on of tasks to different nodes. This pool abstracts the complexity of MPI's inter-
process communica�on, thus facilita�ng ease of use for Python run�me tasks.

• Data transfer efficiency: The executor efficiently handles the transmission of tasks and
associated data between nodes. Its design minimizes overhead by reducing the frequency
and volume of inter-node communica�on required to dispatch and execute tasks.

• SLURM integra�on: The design of MPIPoolExecutor complements SLURM's scheduling
capabili�es. It does not necessitate pre-determina�on of the number of nodes or processors,
allowing SLURM to manage resource alloca�on dynamically based on availability and
workload demand. The ability to integrate with SLURM scheduling simplifies the execu�on of
distributed tasks, conforming to established HPC job management prac�ces.

Initializer
A cri�cal component in the design of MPIEvaluator is the ini�alizer, which is responsible for se�ng
up the environment for each worker process. In earlier itera�ons, the use of a global ini�alizer
func�on was intended to streamline the process of configuring each MPI worker with necessary
se�ngs. However, this design encountered issues with re-ini�aliza�on, par�cularly evident when the
MPIEvaluator pool was invoked consecu�vely.

To resolve this, the decision was made to eliminate the common ini�alizer func�on, thereby
addressing the 'BrokenExecutor' error and enhancing the robustness of the system. This refinement
in design meant that each MPI worker would independently configure its environment, increasing
the reliability of consecu�ve invoca�ons.

The removal of a centralized ini�alizer aligns with the principles of MPI, which favours autonomy and
decentraliza�on of process management. By allowing each worker to handle its ini�aliza�on, the
design mi�gates poten�al points of failure that can arise from a shared ini�al setup. This approach
also simplifies the overall structure of the MPIEvaluator, adhering to the Pythonic principle of "simple
is beter than complex."

Limitations
The current implementa�on packages the model within each task packet sent to worker nodes.
While this simplifies the distribu�on process, there is a poten�al for performance enhancement by
segrega�ng the model transfer to a singular opera�on, reducing data duplica�on. Addi�onally,
memory-intensive models could challenge the single callback design, sugges�ng the need for a disk-
based streaming callback to handle large data sets effec�vely.

SLURM scheduling
The main objec�ve of this project was to allow the EMAworkbench to run on mul�-node systems.
However, a significant por�on of HPC systems use the SLURM scheduler, including the TU Del�’s

3 htps://mpi4py.readthedocs.io/en/stable/mpi4py.futures.html
4 htps://docs.python.org/3/library/concurrent.futures.html

https://mpi4py.readthedocs.io/en/stable/mpi4py.futures.html
https://docs.python.org/3/library/concurrent.futures.html

6

supercomputer Del�Blue. Since the main problem would be solved at the MPI level (as discussed in
the Abstrac�on level sec�on), a tutorial was writen to support users running on SLURM systems. It
includes efficient job scheduling, manages file transfers, and maintains dependency management
within the constraints of an HPC environment.

Instead of configuring a one-size-fits-all script, a template and tutorial approach was adopted. Users
are guided to tailor the SLURM script to their specific needs, ensuring a balance between resource
alloca�on and availability.

The tutorial includes environment configura�on and dependency management through the use of
modules and user-level package installa�ons. This ensures that users can set up their computa�onal
environment independently, without the need for root access, which is in line with the security
policies of shared HPC resources.

By crea�ng a tutorial, the aim was to inform users on the end-to-end process, from job script
crea�on to file transfer, and job submission to output retrieval. This allows users to adapt their
workflows to the SLURM system and troubleshoot common issues.

Logging and debuggability
In high-performance compu�ng, having a way to trace and correct errors across mul�ple computers
is a challenge. This sec�on details the ra�onale behind the design choices for implemen�ng
debugging and logging capabili�es in the MPIEvaluator component of the Exploratory Modeling
Workbench.

Effec�ve debugging and logging in a distributed system like a high-performance compu�ng cluster
requires a solu�on that captures and organizes the ac�ons of each node. The goal is to maintain
performance while also ensuring that logs are comprehensive and coherent.

Three approaches were considered:5

1. Individual log files: Each compu�ng node would record its own log. While complete, this
could leave a scatered set of data if the process is interrupted.

2. Centralized log file: All log data would be sent to and recorded by a single node. This keeps
logs in one place but could slow down the system if logging interferes with computa�on.

3. Asynchronous logging: Logs are sent to a separate logging process that handles them
without interrup�ng the compu�ng nodes. This aims to keep the system running smoothly
while s�ll capturing log data, with the risk that some logs might be lost in case of a crash.

The third approach, asynchronous logging, was selected. It’s the most user-friendly solu�on which
didn’t reduced performance too much.

This method incorporates a dedicated logging process for each MPI process with includes displaying
the rank of the process, which helps in tracing logs back to their origin. A key aspect of this design is
maintaining a uniform level of logging verbosity across all nodes. To achieve this, a specific flag,
pass_root_logger_level, was introduced. This ensures that the logging level is consistent across the
various components of the applica�on, thereby preven�ng discrepancies in the level of detail
reported in the logs.

5 htps://github.com/quaquel/EMAworkbench/discussions/266#discussioncomment-7132496

https://github.com/quaquel/EMAworkbench/discussions/266#discussioncomment-7132496

7

In this asynchronous model, log messages are sent to a separate process designated for logging
tasks, which handles these messages without disrup�ng the main computa�onal processes. This
design choice is intended to prevent the poten�al for input/output blocking that could occur if the
main processes were wai�ng for logging opera�ons to complete. By sidestepping such blocks, the
design aims to keep performance degrada�on to a minimum.

Implementa�on
This sec�on will show a brief overview of the implemented code, based on the design choices
discussed in the previous sec�on.

MPIEvaluator Class
The MPIEvaluator class is at the main component of this implementa�on. Its primary role is to
ini�ate a pool of workers across mul�ple nodes, evaluate experiments in parallel, and finalize
resources when done.

Initialization:

• It imports mpi4py only when instantiated, preventing unnecessary dependencies for users
who do not use the MPIEvaluator.

• The number of processes (nodes) is optionally accepted during initialization.
• The MPI pool of workers is started, with a warning given if the number of workers is low

(indicating that the evaluator might be slower than its sequential or multiprocessing
counterparts).

Evaluation:

• Experiments are first packed with the necessary information for processing across nodes,
including the model name and the experiment details.

– Note that currently the model is included in this package. This simplifies the
implementation substantially, but with larger models there might be potential for
performance gains if the model isn't send with each experiment, but just once to
each worker.

• Experiments are then dispatched to worker nodes for parallel processing using
MPIPoolExecutor.map().

• Once all experiments are done, outcomes are passed to a callback for post-processing.
– Note: Models using a lot of memory could run out of memory before the (single)

Callback. A new streaming-to-disk Callback class could help allow for models that
gather data that exceeds the memory size.

Finalization:

• The MPI pool of workers is shut down.

run_experiment_mpi Func�on
This helper func�on is designed to unpack experiment data, set up the necessary logging
configura�ons, run the experiment on the designated MPI rank (node), and return the results. This is
the worker func�on that runs on each of the MPI ranks.

Logging:

• Logging configurations are set up based on the level passed during experiment packing. This
ensures uniformity in logging verbosity across nodes.

8

• Messages include MPI rank details for easier debugging.

Logging Enhancements
A dedicated logger for the MPIEvaluator was introduced to provide clarity during debugging and
performance tracking. Several measures were taken to ensure uniform logging verbosity across
nodes and improve log readability:

• The MPI process name and rank is displayed alongside the log level.
• An optional flag to adjust root logger levels was introduced, ensuring uniformity across

different modules.
– pass_root_logger_level argument has be added to ema_logging.log_to_stderr. This

ensures that the root logger level is passed to all modules, so that they will log
identical levels. Example:

 ema_logging.log_to_stderr(level=20, pass_root_logger_level=True)

Performance
A�er implementa�on, the performance of the MPIEvaluator was measured. Two aspects were
focussed on: The overhead of the MPIEvaluator compared to other evaluators, and the performance
scaling on large systems.

Overhead
The overhead was measured by comparing the three evaluators (Sequen�al, Mul�processing and
MPI) on 3 different models for a fixed number of experiments. The faster these experiments would
be completed, the higher the performance and the lower the overhead. The results are shown in the
graph below.

Notable is that for a very small model like the simple python model, the Sequen�alEvaluator is the
fastest, even as the other evaluators have access to 10 cores. For larger models like the lake and flu
models, a significant speedup can be seem by using the Mul�processing or MPIEvaluator. On the lake
model the MPIEvaluator is a litle slower than the Mul�processing evaluator, but on the flu model
they perform iden�cal. This indicates that the MPIEvaluator has insignificant overhead on larger
models.

Since the Mul�processing and MPI evaluator had access to 10 cores, it’s useful to look at the
performance per core, to determine the overhead.

9

Model Sequen�alEvaluator Mul�processingEvaluator MPIEvaluator

python 1 0.0135 0.0101

lake 1 0.4296 0.3037

flu 1 0.4041 0.3976

For the small python model, the performance per core of the MPIEvaluator was only 0.01x the
performance of the Sequen�al evaluator, indica�ng around 100x overhead. For the larger models
that decreases significantly, to only around 2.5x overhead on the flu model.

Scaling
Looking at performance scaling to mul�ple nodes, three experiments were executed to measure how
much the performance increases when scaling up to many nodes.

The first experiment run 25.000 itera�ons of the lake model on 0.25 to 16 nodes, each with 10
replica�ons. The nodes were granted with non-exclusive access, meaning that basically there was a
number of cores reserved that was 48 �mes the number of cores. However, these workers could be
spread out over more nodes that listed in the graph.

Notable is the almost linear performance scaling from 0.25 to 1 node, but the inconsistent scaling
a�er that, without any system being faster than the 1 node one.

Therefore, two experiments with exclusive node access where performed. From a HPC perspec�ve
this isn’t ideal, since it requires full nodes to free up with takes longer and is more difficult to
schedule. The number of itera�ons was also increased to get more consistent results

The first experiment runs the lake model 100.000 �mes and the second one runs the flu model
25.000 �mes, both from 1 to 16 nodes exclusive nodes.

10

The lake model shows an performance improvement when running on two nodes, but nowhere near
linear scaling. The flue model shows near-linear performance scaling from 0.25 to 2 nodes, but no
significant scaling a�er that.

Both models are rela�vely simple with large communica�on overhead. Tes�ng the performance on a
more compute intensive model would be interes�ng for future research.

Limita�ons & future enhancements

There are two main limitations currently:

• The MPIEvaluator is not tested with file-based models, such as NetLogo and Vensim.
It might still work, but it's not tested. Originally this was in scope for this project, but
due to difficulties in creating the proper environment, this was cut out of the scope
of this effort.

• The model object is currently passed to the worker for each experiment. For large
models with a relatively short runtime, this introduces significant performance
overhead. Therefore, and optimization could be made to send the model only once
to a worker on initialization.

– Building on this, submitting experiment parameter sets in batches could also
help increate performance, instead of sending them to the workers one-by-
one.

Some other future improvements could be:

• The decision was made to solve the problem on the MPI level. However, since that’s
a lower abstraction level than SLURM, both wrappers for generals SLURM systems or
the DelftBlue system specifically could still be added. Those would use the
MPIEvaluator under the hood, but could create the SBATCH scripts for scheduling,
authentication and file transfers.

– This would allow a one-line solution, running from Python scripts or Jupyter
notebooks.

• A new Callback class could be implemented that streams to the disk instead of
keeping all results in memory. This would allow for handling very large model that

11

gather lots of data, probably at the costs of some performance. See issue #304 for
more details.

• Further performance profiling could be done on the current design, to see any
components can be sped up, like the distribution of experiments and models to
workers, the logging or the.

– It would be interesting to see how larger models perform on many-node
systems, and if the scaling is better than with the small lake and flu models.

12

Appendixes
Two appendixes are included, with the final code diff to the EMAworkbench and the tutorial.

Appendix A: Code diff
This appendix provides the final code diff applied to the EMAworkbench through pull request #299.

diff --git a/.github/workflows/ci.yml b/.github/workflows/ci.yml
index 6c0972ae8..cc3747c4f 100644
--- a/.github/workflows/ci.yml
+++ b/.github/workflows/ci.yml
@@ -23,6 +23,7 @@ jobs:
 include:
 - os: ubuntu-latest
 python-version: "3.10"
+ test-mpi: true
 - os: ubuntu-latest
 python-version: "3.9"
 - os: ubuntu-latest
@@ -42,6 +43,12 @@ jobs:
 run: |
 pip install --upgrade pip
 pip install .[dev,cov] ${{ matrix.pip-pre }}
+ - name: Install MPI and mpi4py
+ if: matrix.test-mpi == true
+ run: |
+ sudo apt-get update
+ sudo apt-get install -y libopenmpi-dev
+ pip install mpi4py
 - name: Test with Pytest
 timeout-minutes: 15
 run:
diff --git a/ema_workbench/__init__.py b/ema_workbench/__init__.py
index bce53c12c..ba928e9ef 100644
--- a/ema_workbench/__init__.py
+++ b/ema_workbench/__init__.py
@@ -15,6 +15,7 @@
 Constant,
 Scenario,
 Policy,
+ MPIEvaluator,
 MultiprocessingEvaluator,
 IpyparallelEvaluator,
 SequentialEvaluator,
diff --git a/ema_workbench/em_framework/__init__.py
b/ema_workbench/em_framework/__init__.py
index e3b6f3394..357565b65 100644
--- a/ema_workbench/em_framework/__init__.py
+++ b/ema_workbench/em_framework/__init__.py
@@ -30,6 +30,7 @@
 "perform_experiments",
 "optimize",
 "IpyparallelEvaluator",
+ "MPIEvaluator",
 "MultiprocessingEvaluator",
 "SequentialEvaluator",
 "ReplicatorModel",
@@ -76,6 +77,7 @@
 from .evaluators import (
 perform_experiments,
 optimize,

https://github.com/quaquel/EMAworkbench/pull/299

13

+ MPIEvaluator,
 MultiprocessingEvaluator,
 SequentialEvaluator,
 Samplers,
diff --git a/ema_workbench/em_framework/evaluators.py
b/ema_workbench/em_framework/evaluators.py
index d5f316cd5..bcfa1f91b 100644
--- a/ema_workbench/em_framework/evaluators.py
+++ b/ema_workbench/em_framework/evaluators.py
@@ -13,6 +13,7 @@
 import sys
 import threading
 import warnings
+import logging

 from ema_workbench.em_framework.samplers import AbstractSampler
 from .callbacks import DefaultCallback
@@ -415,6 +416,71 @@ def evaluate_experiments(self, scenarios, policies,
callback, combine="factorial
 add_tasks(self.n_processes, self._pool, ex_gen, callback)

+class MPIEvaluator(BaseEvaluator):
+ """Evaluator for experiments using MPI Pool Executor from mpi4py"""
+
+ def __init__(self, msis, n_processes=None, **kwargs):
+ super().__init__(msis, **kwargs)
+ self._pool = None
+ self.n_processes = n_processes
+
+ def initialize(self):
+ # Only import mpi4py if the MPIEvaluator is used, to avoid
unnecessary dependencies.
+ from mpi4py.futures import MPIPoolExecutor
+
+ self._pool = MPIPoolExecutor(max_workers=self.n_processes) #
Removed initializer arguments
+ _logger.info(f"MPI pool started with {self._pool._max_workers}
workers")
+ if self._pool._max_workers <= 10:
+ _logger.warning(
+ f"With only a few workers ({self._pool._max_workers}), the
MPIEvaluator may be slower than the Sequential- or
MultiprocessingEvaluator"
+)
+ return self
+
+ def finalize(self):
+ self._pool.shutdown()
+ _logger.info("MPI pool has been shut down")
+
+ def evaluate_experiments(self, scenarios, policies, callback,
combine="factorial"):
+ ex_gen = experiment_generator(scenarios, self._msis, policies,
combine=combine)
+ experiments = list(ex_gen)
+ log_level = _logger.getEffectiveLevel()
+
+ packed = [
+ (experiment, experiment.model_name, self._msis, log_level) for
experiment in experiments

14

+]
+
+ _logger.info(
+ f"MPIEvaluator: Starting {len(packed)} experiments using MPI
pool with {self._pool._max_workers} workers"
+)
+ results = self._pool.map(run_experiment_mpi, packed)
+
+ _logger.info(f"MPIEvaluator: Completed all {len(packed)}
experiments")
+ for experiment, outcomes in results:
+ callback(experiment, outcomes)
+ _logger.info(f"MPIEvaluator: Callback completed for all
{len(packed)} experiments")
+
+
+def run_experiment_mpi(packed_data):
+ from mpi4py.MPI import COMM_WORLD
+
+ rank = COMM_WORLD.Get_rank()
+
+ experiment, model_name, msis, level = packed_data
+
+ logging.basicConfig(level=level,
format="[%(processName)s/%(levelname)s] %(message)s")
+ _logger.debug(f"MPI Rank {rank}: starting {repr(experiment)}")
+
+ models = NamedObjectMap(AbstractModel)
+ models.extend(msis)
+ experiment_runner = ExperimentRunner(models)
+
+ outcomes = experiment_runner.run_experiment(experiment)
+
+ _logger.debug(f"MPI Rank {rank}: completed {experiment}")
+
+ return experiment, outcomes
+
+
 class IpyparallelEvaluator(BaseEvaluator):
 """evaluator for using an ipypparallel pool"""

diff --git a/ema_workbench/util/ema_logging.py
b/ema_workbench/util/ema_logging.py
index 47538eb9e..ca2f484c7 100644
--- a/ema_workbench/util/ema_logging.py
+++ b/ema_workbench/util/ema_logging.py
@@ -178,7 +178,7 @@ def get_rootlogger():
 return _rootlogger

-def log_to_stderr(level=None):
+def log_to_stderr(level=None, pass_root_logger_level=False):
 """
 Turn on logging and add a handler which prints to stderr

@@ -186,6 +186,10 @@ def log_to_stderr(level=None):

 level : int
 minimum level of the messages that will be logged
+ pas_root_logger_level: bool, optional. Default False
+ if true, all module loggers will be set to the

15

+ same logging level as the root logger.
+ Recommended True when using the MPIEvaluator.

 """

@@ -206,4 +210,8 @@ def log_to_stderr(level=None):
 logger.addHandler(handler)
 logger.propagate = False

+ if pass_root_logger_level:
+ for _, mod_logger in _module_loggers.items():
+ mod_logger.setLevel(level)
+
 return logger
diff --git a/test/test_em_framework/test_evaluators.py
b/test/test_em_framework/test_evaluators.py
index bf0b0bfc1..fcf4753bb 100644
--- a/test/test_em_framework/test_evaluators.py
+++ b/test/test_em_framework/test_evaluators.py
@@ -4,6 +4,7 @@
 """
 import unittest.mock as mock
 import unittest
+import platform

 import ema_workbench
 from ema_workbench.em_framework import evaluators
@@ -74,6 +75,51 @@ def test_ipyparallel_evaluator(
 evaluator.evaluate_experiments(10, 10, mocked_callback)
 lb_view.map.called_once()

+ # Check if mpi4py is installed and if we're on a Linux environment
+ try:
+ import mpi4py
+
+ MPI_AVAILABLE = True
+ except ImportError:
+ MPI_AVAILABLE = False
+ IS_LINUX = platform.system() == "Linux"
+
+ @unittest.skipUnless(
+ MPI_AVAILABLE and IS_LINUX, "Test requires mpi4py installed and a
Linux environment"
+)
+ @mock.patch("mpi4py.futures.MPIPoolExecutor")
+ @mock.patch("ema_workbench.em_framework.evaluators.DefaultCallback")
+
@mock.patch("ema_workbench.em_framework.evaluators.experiment_generator")
+ def test_mpi_evaluator(self, mocked_generator, mocked_callback,
mocked_MPIPoolExecutor):
+ try:
+ import mpi4py
+ except ImportError:
+ self.fail(
+ "mpi4py is not installed. It's required for this test.
Install with: pip install mpi4py"
+)
+
+ model = mock.Mock(spec=ema_workbench.Model)
+ model.name = "test"
+

16

+ # Create a mock experiment with the required attribute
+ mock_experiment = mock.Mock()
+ mock_experiment.model_name = "test"
+ mocked_generator.return_value = [mock_experiment]
+
+ pool_mock = mock.Mock()
+ pool_mock.map.return_value = [(1, ({}, {}))]
+ pool_mock._max_workers = 5 # Arbitrary number
+ mocked_MPIPoolExecutor.return_value = pool_mock
+
+ with evaluators.MPIEvaluator(model) as evaluator:
+ evaluator.evaluate_experiments(10, 10, mocked_callback)
+
+ mocked_MPIPoolExecutor.assert_called_once()
+ pool_mock.map.assert_called_once()
+
+ # Check that pool shutdown was called
+ pool_mock.shutdown.assert_called_once()
+
 def test_perform_experiments(self):
 pass

17

Appendix B: Tutorial
Appendix B provides the full tutorial for using the MPIEvaluator on HPC systems from PR #308.

MPIEvaluator: Run on multi-node HPC systems
The MPIEvaluator is a new addition to the EMAworkbench that allows experiment execution on
multi-node systems, including high-performance computers (HPCs). This capability is particularly
useful if you want to conduct large-scale experiments that require distributed processing. Under the
hood, the evaluator leverages the MPIPoolExecutor from mpi4py.futures.

Limiations

• Currently, the MPIEvaluator is only tested on Linux, while it might work on other operating
systems.

• Currently, the MPIEvaluator is only tested with Python-based models, while it might work
with other �ile-based model types (like NetLogo or Vensim).

• The MPIEvaluator is most useful for large-scale experiments, where the time spent on
distributing the experiments over the cluster is negligible compared to the time spent on
running the experiments. For smaller experiments, the overhead of distributing the
experiments over the cluster might be signi�icant, and it might be more ef�icient to run the
experiments locally.

This tutorial will first show how to set up the environment, and then how to use the MPIEvaluator to
run a model on a cluster. Finally, we'll use the DelftBlue supercomputer as an example, to show how
to run on a system which uses a SLURM scheduler.

1. Setting up the environment
To use the MPIEvaluator, MPI and mpi4py must be installed.

Installing MPI on Linux typically involves the installation of a popular MPI implementation such as
OpenMPI or MPICH. Below are the instructions for installing OpenMPI:

1a. Installing OpenMPI
You can install OpenMPI using you package manager. First, update your package repositories, and
then install OpenMPI:

For Debian/Ubuntu:

sudo apt update
sudo apt install openmpi-bin libopenmpi-dev
For Fedora:

sudo dnf check-update
sudo dnf install openmpi openmpi-devel
For CentOS/RHEL:

sudo yum update
sudo yum install openmpi openmpi-devel
Many times, the necessary environment variables are automatically set up. You can check if this is
the case by running the following command:

mpiexec --version
If not, add OpenMPI's bin directory to your PATH:

export PATH=$PATH:/usr/lib/openmpi/bin

https://github.com/quaquel/EMAworkbench/pull/308
https://mpi4py.readthedocs.io/en/stable/mpi4py.futures.html
https://doc.dhpc.tudelft.nl/delftblue/

18

1b. Installing mpi4py
The python package mpi4py needs to installed as well. This is most easily done from PyPI, by
running the following command:

pip install -U mpi4py

2. Creating a model
First, let's set up a minimal model to test with. This can be any Python-based model, we're using
the example_python.py model from the EMA Workbench documentation as example.

We recommend crafting and testing your model in a separate Python file, and then importing it into
your main script. This way, you can test your model without having to run it through the
MPIEvaluator, and you can easily switch between running it locally and on a cluster.

2a. De�ine the model
First, we define a Python model function.

In []:

def some_model(x1=None, x2=None, x3=None):
 return {"y": x1 * x2 + x3}
Now, create the EMAworkbench model object, and specify the uncertainties and outcomes:

In []:

from ema_workbench import Model, RealParameter, ScalarOutcome, ema_logging,
perform_experiments

if __name__ == "__main__":
 # We recommend setting pass_root_logger_level=True when running on a
cluster, to ensure consistent log levels.
 ema_logging.log_to_stderr(level=ema_logging.INFO,
pass_root_logger_level=True)

 ema_model = Model("simpleModel", function=some_model) # instantiate
the model

 # specify uncertainties
 ema_model.uncertainties = [
 RealParameter("x1", 0.1, 10),
 RealParameter("x2", -0.01, 0.01),
 RealParameter("x3", -0.01, 0.01),
]
 # specify outcomes
 ema_model.outcomes = [ScalarOutcome("y")]

2b. Test the model
Now, we can run the model locally to test it:

In []:

from ema_workbench import SequentialEvaluator

with SequentialEvaluator(ema_model) as evaluator:
 results = perform_experiments(ema_model, 100, evaluator=evaluator)
In this stage, you can test your model and make sure it works as expected. You can also check if
everything is included in the results and do initial validation on the model, before scaling up to a
cluster.

https://pypi.org/project/mpi4py/
https://emaworkbench.readthedocs.io/en/latest/examples/example_python.html

19

3. Run the model on a MPI cluster
Now that we have a working model, we can run it on a cluster. To do this, we need to import
the MPIEvaluator class from the ema_workbench package, and instantiate it with our model. Then, we
can use the perform_experiments function as usual, and the MPIEvaluator will take care of
distributing the experiments over the cluster. Finally, we can save the results to a pickle file, as usual.

In []:

ema_example_model.py
from ema_workbench import (
 Model,
 RealParameter,
 ScalarOutcome,
 ema_logging,
 perform_experiments,
 MPIEvaluator,
)
import pickle

def some_model(x1=None, x2=None, x3=None):
 return {"y": x1 * x2 + x3}

if __name__ == "__main__":
 ema_logging.log_to_stderr(level=ema_logging.INFO,
pass_root_logger_level=True)

 ema_model = Model("simpleModel", function=some_model)

 ema_model.uncertainties = [
 RealParameter("x1", 0.1, 10),
 RealParameter("x2", -0.01, 0.01),
 RealParameter("x3", -0.01, 0.01),
]
 ema_model.outcomes = [ScalarOutcome("y")]

 # Note that we switch to the MPIEvaluator here
 with MPIEvaluator(ema_model) as evaluator:
 results = evaluator.perform_experiments(scenarios=10000)

 # Save the results to a pickle file
 with open("ema_mpi_test.pickle", "wb") as handle:
 pickle.dump(results, handle, protocol=pickle.HIGHEST_PROTOCOL)
To run this script on a cluster, we need to use the mpiexec command:

mpiexec python3 -m mpi4py.futures ema_example_model.py
This command will execute the ema_example_model.py Python script using MPI, leveraging
the mpi4py.futures module for parallel processing. The number of processes and other MPI-specific
configurations would be inferred from default settings or any configurations provided elsewhere,
such as in an MPI configuration file or additional flags to mpiexec (not shown in the provided
command).

The output of the script will be saved to the ema_mpi_test.pickle file, which can be loaded and
analyzed as usual.

20

Example: Running on the DelftBlue supercomputer (with SLURM)
As an example, we'll show how to run the model on the DelftBlue supercomputer, which uses the
SLURM scheduler. The DelftBlue supercomputer is a cluster of 218 nodes, each with 2 Intel Xeon
Gold E5-6248R CPUs (48 cores total), 192 GB of RAM, and 480 GB of local SSD storage. The nodes are
connected with a 100 Gbit/s Infiniband network.

These steps roughly follow the DelftBlue Crash-course for absolute beginners. If you get stuck, you can
refer to that guide for more information.

1. Creating a SLURM script
First, you need to create a SLURM script. This is a bash script that will be executed on the cluster,
and it will contain all the necessary commands to run your model. You can create a new file, for
example slurm_script.sh, and add the following lines:

#!/bin/bash

 #SBATCH --job-name="Python_test"
 #SBATCH --time=00:02:00
 #SBATCH --ntasks=25
 #SBATCH --cpus-per-task=1
 #SBATCH --partition=compute
 #SBATCH --mem-per-cpu=1GB
 #SBATCH --account=research-tpm-mas

 module load 2023r1
 module load openmpi
 module load python
 module load py-numpy
 module load py-mpi4py
 module load py-pip

 pip install -U --user ema_workbench

 mpiexec python3 -m mpi4py.futures ema_example_model.py
Modify the script to suit your needs:

• Set the --job-name to something descriptive.
• Update the maximum --time to the expected runtime of your model. The job will be

terminated if it exceeds this time limit.
• Set the --ntasks to the number of cores you want to use. Each node has 48 cores, so for

example --ntasks=96 might use two nodes, but can also be distributed over more nodes.
• Update the memory --mem-per-cpu to the amount of memory you need per core. Each node

has 192 GB of memory, so you can use up to 4 GB per core.
• Add --exclusive if you want to claim a full node for your job. In that case, specify --

nodes instead of --ntasks. This will reduce overhead, but it will also delay you scheduling
time, because you need to wait for a full node to become available.

• Set the --account to your project account. You can �ind this on the Accounting and
Shares page of the DelftBlue docs.

See Submit Jobs at the DelftBlue docs for more information on the SLURM script configuration.

Then, you need to load the necessary modules. You can find the available modules on the DHPC
modules page of the DelftBlue docs. In this example, we're loading the 2023r1 toolchain, which
includes Python 3.9, and then we're loading the necessary Python packages.

https://doc.dhpc.tudelft.nl/delftblue/
https://doc.dhpc.tudelft.nl/delftblue/crash-course/
https://doc.dhpc.tudelft.nl/delftblue/Accounting-and-shares/
https://doc.dhpc.tudelft.nl/delftblue/Accounting-and-shares/
https://doc.dhpc.tudelft.nl/delftblue/Slurm-scheduler/
https://doc.dhpc.tudelft.nl/delftblue/DHPC-modules/
https://doc.dhpc.tudelft.nl/delftblue/DHPC-modules/

21

You might want to install additional Python packages. You can do this with pip install -U --user
<package>. Note that you need to use the --user flag, because you don't have root access on the
cluster. To install the EMA Workbench, you can use pip install -U --user ema_workbench. If you want
to install a development branch, you can use pip install -e -U --user
git+https://github.com/quaquel/EMAworkbench@<BRANCH>#egg=ema-workbench,
where <BRANCH> is the name of the branch you want to install.

Finally, the script uses mpiexec to run Python script in a way that allows the MPIEvaluator to
distribute the experiments over the cluster.

Note that the bash scripts (sh), including the slurm_script.sh we just created, need LF line endings. If
you are using Windows, line endings are CRLF by default, and you need to convert them to LF. You
can do this with most text editors, like Notepad++ or Atom for example.

1. Setting up the environment
First, you need to log in on DelftBlue. As an employee, you can login from the command line with:

ssh <netid>@login.delftblue.tudelft.nl
where <netid> is your TU Delft netid. You can also use an SSH client such as PuTTY.

As a student, you need to jump though an extra hoop:

ssh -J <netid>@student-linux.tudelft.nl <netid>@login.delftblue.tudelft.nl
Note: Below are the commands for students. If you are an employee, you need to remove the -J
<netid>@student-linux.tudelft.nl from all commands below.

Once you're logged in, you want to jump to your scratch directory (note it's not but is not backed
up).

cd ../../scratch/<netid>
Create a new directory for this tutorial, for example mkdir ema_mpi_test and then cd ema_mpi_test

Then, you want to send your Python file and SLURM script to DelftBlue. Open a new command line
terminal, and then you can do this with scp:

scp -J <netid>@student-linux.tudelft.nl ema_example_model.py slurm_script.sh
<netid>@login.delftblue.tudelft.nl:/scratch/<netid>/ema_mpi_test
Before scheduling the SLURM script, we first have to make it executable:

chmod +x slurm_script.sh
Then we can schedule it:

sbatch slurm_script.sh
Now it's scheduled!

You can check the status of your job with squeue:

squeue -u <netid>
You might want to inspect the log file, which is created by the SLURM script. You can do this with cat:

cat slurm-<jobid>.out
where <jobid> is the job ID of your job, which you can find with squeue.

When the job is finished, we can download the pickle file created. Open the command line again (can
be the same one as before), and you can copy the results back to your local machine with scp:

https://www.putty.org/

22

scp -J <netid>@student-linux.tudelft.nl
<netid>@login.delftblue.tudelft.nl:/scratch/<netid>/ema_mpi_test/ema_mpi_test.pickle .
Finally, we can clean up the files on DelftBlue, to avoid cluttering the scratch directory:

cd ..
 rm -rf "ema_mpi_test"

	Introduction
	Technical summary
	Requirements
	Design
	Abstraction level
	Distributing tasks across HPC systems
	Initializer
	Limitations

	SLURM scheduling
	Logging and debuggability

	Implementation
	MPIEvaluator Class
	run_experiment_mpi Function
	Logging Enhancements

	Performance
	Overhead
	Scaling

	Limitations & future enhancements

	Appendixes
	Appendix A: Code diff
	Appendix B: Tutorial

	MPIEvaluator: Run on multi-node HPC systems
	Limiations
	1. Setting up the environment
	1a. Installing OpenMPI
	1b. Installing mpi4py

	2. Creating a model
	2a. Define the model
	2b. Test the model

	3. Run the model on a MPI cluster
	Example: Running on the DelftBlue supercomputer (with SLURM)
	1. Creating a SLURM script
	1. Setting up the environment

