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MPIEvaluator: Run on multi-node HPC systems using mpi4py 
Ewout ter Hoeven | 2023-11-07 

Introduc�on 
In exploratory modelling and simula�on, dealing with uncertainty o�en demands large-scale 
computa�onal experiments. While High Performance Compu�ng (HPC) facili�es offer the 
computa�onal resources for these tasks, they can be complex to operate. The Exploratory Modeling 
Workbench, TU Del�'s open-source Python library, facilitates this computa�onal experimenta�on on 
standalone computers. However, its inability to na�vely run on mul�-node systems, like HPCs, 
narrows its u�lity to models that are rela�vely simpler and faster. 

This report discusses an enhancement to the EMAworkbench – the integra�on of the MPIEvaluator. 
With this addi�on, the workbench not only becomes compa�ble with mul�-node systems, such as 
TU Del�'s supercomputer Del�Blue, but it also ensures seamless transi�oning between sequen�al 
and parallel experiments irrespec�ve of the computa�onal setup. The underlying mo�ve is to 
empower researchers to employ larger models and to facilitate a higher number of itera�ons, which 
can, in turn, allows for scaling up both models and experiments to sizes not possible before. 

This project was executed in from April 2023 to November 2023 under the supervision of Prof.dr.ir. 
J.H. Kwakkel. It was a 7 EC Capita Selecta as part as the EPA master at the TPM faculty of the TU Del�.  

The development was done transparently in the open domain, and can be viewed back in these four 
items: 

• Discussion #266: Mul�-node (HPC) evaluator discussion 
Includes most of the requirements and design discussions 

• Dra� PR #292: Prototype of MPIEvaluator for mul�-node workloads 
Includes the prototyping and iteration of the first draft implementation 

• PR #299: Introducing MPIEvaluator: Run on mul�-node HPC systems using mpi4py 
Includes the final implementation delivered, including extensive documentation 

• PR #308: Docs: Add MPIEvaluator tutorial for mul�-node HPC systems, including Del�Blue 
Includes a tutorial for using the MPIEvaluator, including an example for running on the 
DelftBlue SLURM-based system. 

This report includes a technical summary of the new MPIEvaluator and the integra�on into the 
EMAworkbench. 

  

https://github.com/quaquel/EMAworkbench/discussions/266
https://github.com/quaquel/EMAworkbench/pull/292
https://github.com/quaquel/EMAworkbench/pull/299
https://github.com/quaquel/EMAworkbench/pull/308
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Technical summary 
In this technical summary the requirements of the solu�on will first be noted, a�er which the design 
choices are extensively discussed. A conceptual model will show the final implementa�on, a�er 
which the performance is presented. Finally, the current limita�ons are discussed. 

Requirements 
The main requirements to integrate mul�-node system support into the EMAworkbench are: 

1. Compa�bility: The solu�on must integrate seamlessly with the exis�ng framework of the 
EMAworkbench, requiring minimal changes to the current user workflows. 

2. Scalability: The enhancement should enable the EMAworkbench to efficiently distribute and 
execute tasks across mul�ple nodes in an HPC environment, with the ability to scale as 
needed for large models and data sets. 

3. Portability: The solu�on should not be overly specialized to any single HPC configura�on, 
ensuring broad applicability across various HPC environments, including those not managed 
by SLURM. 

4. Transparency and debuggability: The system must maintain a level of transparency in 
opera�ons, providing sufficient logging and debugging capabili�es to trace and correct errors 
effec�vely. 

Some nice to have features are: 

5. FileModel support: Support models other than Pytho-based ones, such as NetLogo or 
Vensim models. 

6. SLURM support: For SLURM systems, the solu�on should provide mechanisms for user 
authen�ca�on, file transfer, job submission, and environment setup to facilitate the use of 
remote SLURM HPC clusters. 

7. Efficient data transfer: The system must facilitate the efficient transfer of models and data 
between nodes to minimize latency and maximize performance. 

Design 
Abstrac�on level 

The main big design decision was at which abstraction level this problem should be solved. From 
discussion with the supervisor1, two distinct approaches where considered: 

A. Solving at the SLURM level 
• The proposed SLURMEvaluator class focuses on addressing the problem at the level of 

SLURM, the job scheduler used on HPC clusters. 
• It involves crea�ng a new evaluator class that can connect to remote SLURM HPC 

clusters, transfer files, submit batch jobs, and manage the environment. 
• The design allows for user authen�ca�on, environment setup, and job submission, 

making it possible to run experiments on remote SLURM clusters. 

 
1 Discussion #266: Multi-node (HPC) evaluator discussion 

https://github.com/quaquel/EMAworkbench/discussions/266
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• This approach shi�s the responsibility of handling SLURM-specific opera�ons to the 
evaluator class, poten�ally simplifying the user experience. 

This approach would have been the most user-friendly for a specific group of poten�al users. Since 
login, file transfer and submi�ng batch numbers would have been handled, it could poten�ally make 
running on a HPC system a one-liner from any exis�ng Python script or notebook. 

However, this approach would have had many disadvantages. Likely, we would make a working 
implementa�on for Del�Blue, the TU Del� supercomputer, but not for users of other SLURM 
systems, let alone users that have HPC clusters or servers which are not managed with SLURM at all. 

Addi�onally, it would also lack transparency about what’s happening in the process, and make 
debugging therefor very complex. It would also lack modularity, it would be build for a specific 
system and not be easily scalable to. 

So this high abstract-level approach was abandoned in favor of a lower level solu�on. 

B. Solving at the MPI level 
• The proposed MPIEvaluator class tackles the problem at the level of MPI (Message 

Passing Interface), which operates on systems with already allocated nodes. 
• This approach involves defining worker func�ons for execu�ng individual experiments 

and ini�alizing worker processes with the necessary environment and se�ngs. 
• It aims to distribute tasks over available nodes, allowing for efficient u�liza�on of HPC 

resources without specifying the exact number of nodes in advance. 
• This approach emphasizes a separa�on of data genera�on on the HPC and subsequent 

analysis locally. 

By solving this at the MPI level, any system that can handle MPI can use the new mul�-node 
evaluator, making it a very scalable and portable solu�on. Users of SLURM systems have to handle 
file transfers, login and scheduling jobs themselves on SLURM clusters. To aid those users, an 
extensive tutorial has been writen2. 

Distribu�ng tasks across HPC systems 
With the EMAworkbench crea�ng a large set of experiments, these should be executed distributed 
across mul�ple nodes within a High-Performance Compu�ng (HPC) environment using Python. This 
requires a method that can robustly manage task alloca�on while minimizing the overhead 
associated with data and model transfer between nodes.  

High-level Python run�mes o�en lack na�ve support for efficient parallel execu�on across mul�ple 
HPC nodes. The essence of the problem lies in two core areas: the robust distribu�on of tasks 
(without excessive overhead) and the transfer of models and data between nodes. HPC systems, due 
to their distributed nature, present a challenge in synchronizing the computa�onal workload without 
incurring significant communica�on costs that can offset the advantages of parallelism. 

This is not a new problem, a solu�on used by many HPC systems is the Message Passing Interface.  
MPI provides a standard for efficient communica�on between processes in a distributed compu�ng 
environment. Python's integra�on with MPI, through the mpi4py library, extends this capability to 
Python programs, allowing them to u�lize mul�ple nodes in an HPC system. Despite the integra�on, 

 
2 PR #308: Docs: Add MPIEvaluator tutorial for multi-node HPC systems, including DelftBlue 

https://github.com/quaquel/EMAworkbench/pull/308
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a direct applica�on of MPI in Python can be complex due to its low-level nature, which does not align 
with Python's high-level syntax and dynamic features. 

The MPIPoolExecutor from the mpi4py.futures3 module presents a solu�on by offering a high-level 
interface for asynchronous execu�on over a pool of MPI processes. It follows the design of 
concurrent.futures4 from Python's standard library, and fullfilles the requirements for distribu�ng 
experiments generated by the EMAworkbench. 

• Task distribu�on: MPIPoolExecutor manages a pool of worker processes, enabling the 
delega�on of tasks to different nodes. This pool abstracts the complexity of MPI's inter-
process communica�on, thus facilita�ng ease of use for Python run�me tasks. 

• Data transfer efficiency: The executor efficiently handles the transmission of tasks and 
associated data between nodes. Its design minimizes overhead by reducing the frequency 
and volume of inter-node communica�on required to dispatch and execute tasks. 

• SLURM integra�on: The design of MPIPoolExecutor complements SLURM's scheduling 
capabili�es. It does not necessitate pre-determina�on of the number of nodes or processors, 
allowing SLURM to manage resource alloca�on dynamically based on availability and 
workload demand. The ability to integrate with SLURM scheduling simplifies the execu�on of 
distributed tasks, conforming to established HPC job management prac�ces. 

Initializer 
A cri�cal component in the design of MPIEvaluator is the ini�alizer, which is responsible for se�ng 
up the environment for each worker process. In earlier itera�ons, the use of a global ini�alizer 
func�on was intended to streamline the process of configuring each MPI worker with necessary 
se�ngs. However, this design encountered issues with re-ini�aliza�on, par�cularly evident when the 
MPIEvaluator pool was invoked consecu�vely. 

To resolve this, the decision was made to eliminate the common ini�alizer func�on, thereby 
addressing the 'BrokenExecutor' error and enhancing the robustness of the system. This refinement 
in design meant that each MPI worker would independently configure its environment, increasing 
the reliability of consecu�ve invoca�ons. 

The removal of a centralized ini�alizer aligns with the principles of MPI, which favours autonomy and 
decentraliza�on of process management. By allowing each worker to handle its ini�aliza�on, the 
design mi�gates poten�al points of failure that can arise from a shared ini�al setup. This approach 
also simplifies the overall structure of the MPIEvaluator, adhering to the Pythonic principle of "simple 
is beter than complex." 

Limitations 
The current implementa�on packages the model within each task packet sent to worker nodes. 
While this simplifies the distribu�on process, there is a poten�al for performance enhancement by 
segrega�ng the model transfer to a singular opera�on, reducing data duplica�on. Addi�onally, 
memory-intensive models could challenge the single callback design, sugges�ng the need for a disk-
based streaming callback to handle large data sets effec�vely. 

SLURM scheduling 
The main objec�ve of this project was to allow the EMAworkbench to run on mul�-node systems. 
However, a significant por�on of HPC systems use the SLURM scheduler, including the TU Del�’s 

 
3 htps://mpi4py.readthedocs.io/en/stable/mpi4py.futures.html 
4 htps://docs.python.org/3/library/concurrent.futures.html 

https://mpi4py.readthedocs.io/en/stable/mpi4py.futures.html
https://docs.python.org/3/library/concurrent.futures.html
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supercomputer Del�Blue. Since the main problem would be solved at the MPI level (as discussed in 
the Abstrac�on level sec�on), a tutorial was writen to support users running on SLURM systems. It 
includes efficient job scheduling, manages file transfers, and maintains dependency management 
within the constraints of an HPC environment. 

Instead of configuring a one-size-fits-all script, a template and tutorial approach was adopted. Users 
are guided to tailor the SLURM script to their specific needs, ensuring a balance between resource 
alloca�on and availability. 

The tutorial includes environment configura�on and dependency management through the use of 
modules and user-level package installa�ons. This ensures that users can set up their computa�onal 
environment independently, without the need for root access, which is in line with the security 
policies of shared HPC resources. 

By crea�ng a tutorial, the aim was to inform users on the end-to-end process, from job script 
crea�on to file transfer, and job submission to output retrieval. This allows users to adapt their 
workflows to the SLURM system and troubleshoot common issues. 

Logging and debuggability 
In high-performance compu�ng, having a way to trace and correct errors across mul�ple computers 
is a challenge. This sec�on details the ra�onale behind the design choices for implemen�ng 
debugging and logging capabili�es in the MPIEvaluator component of the Exploratory Modeling 
Workbench. 

Effec�ve debugging and logging in a distributed system like a high-performance compu�ng cluster 
requires a solu�on that captures and organizes the ac�ons of each node. The goal is to maintain 
performance while also ensuring that logs are comprehensive and coherent. 

Three approaches were considered:5 

1. Individual log files: Each compu�ng node would record its own log. While complete, this 
could leave a scatered set of data if the process is interrupted. 

2. Centralized log file: All log data would be sent to and recorded by a single node. This keeps 
logs in one place but could slow down the system if logging interferes with computa�on. 

3. Asynchronous logging: Logs are sent to a separate logging process that handles them 
without interrup�ng the compu�ng nodes. This aims to keep the system running smoothly 
while s�ll capturing log data, with the risk that some logs might be lost in case of a crash. 

The third approach, asynchronous logging, was selected. It’s the most user-friendly solu�on which 
didn’t reduced performance too much. 

This method incorporates a dedicated logging process for each MPI process with includes displaying 
the rank of the process, which helps in tracing logs back to their origin. A key aspect of this design is 
maintaining a uniform level of logging verbosity across all nodes. To achieve this, a specific flag, 
pass_root_logger_level, was introduced. This ensures that the logging level is consistent across the 
various components of the applica�on, thereby preven�ng discrepancies in the level of detail 
reported in the logs. 

 
5 htps://github.com/quaquel/EMAworkbench/discussions/266#discussioncomment-7132496 

https://github.com/quaquel/EMAworkbench/discussions/266#discussioncomment-7132496
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In this asynchronous model, log messages are sent to a separate process designated for logging 
tasks, which handles these messages without disrup�ng the main computa�onal processes. This 
design choice is intended to prevent the poten�al for input/output blocking that could occur if the 
main processes were wai�ng for logging opera�ons to complete. By sidestepping such blocks, the 
design aims to keep performance degrada�on to a minimum. 

Implementa�on 
This sec�on will show a brief overview of the implemented code, based on the design choices 
discussed in the previous sec�on. 

MPIEvaluator Class 
The MPIEvaluator class is at the main component of this implementa�on. Its primary role is to 
ini�ate a pool of workers across mul�ple nodes, evaluate experiments in parallel, and finalize 
resources when done. 

Initialization: 

• It imports mpi4py only when instantiated, preventing unnecessary dependencies for users 
who do not use the MPIEvaluator. 

• The number of processes (nodes) is optionally accepted during initialization. 
• The MPI pool of workers is started, with a warning given if the number of workers is low 

(indicating that the evaluator might be slower than its sequential or multiprocessing 
counterparts). 

Evaluation: 

• Experiments are first packed with the necessary information for processing across nodes, 
including the model name and the experiment details. 

– Note that currently the model is included in this package. This simplifies the 
implementation substantially, but with larger models there might be potential for 
performance gains if the model isn't send with each experiment, but just once to 
each worker. 

• Experiments are then dispatched to worker nodes for parallel processing using 
MPIPoolExecutor.map(). 

• Once all experiments are done, outcomes are passed to a callback for post-processing. 
– Note: Models using a lot of memory could run out of memory before the (single) 

Callback. A new streaming-to-disk Callback class could help allow for models that 
gather data that exceeds the memory size. 

Finalization: 

• The MPI pool of workers is shut down. 
 
run_experiment_mpi Func�on 
This helper func�on is designed to unpack experiment data, set up the necessary logging 
configura�ons, run the experiment on the designated MPI rank (node), and return the results. This is 
the worker func�on that runs on each of the MPI ranks. 

Logging: 

• Logging configurations are set up based on the level passed during experiment packing. This 
ensures uniformity in logging verbosity across nodes. 
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• Messages include MPI rank details for easier debugging. 
 
Logging Enhancements 
A dedicated logger for the MPIEvaluator was introduced to provide clarity during debugging and 
performance tracking. Several measures were taken to ensure uniform logging verbosity across 
nodes and improve log readability: 

• The MPI process name and rank is displayed alongside the log level. 
• An optional flag to adjust root logger levels was introduced, ensuring uniformity across 

different modules. 
– pass_root_logger_level argument has be added to ema_logging.log_to_stderr. This 

ensures that the root logger level is passed to all modules, so that they will log 
identical levels. Example: 

  ema_logging.log_to_stderr(level=20, pass_root_logger_level=True) 

 

Performance 
A�er implementa�on, the performance of the MPIEvaluator was measured. Two aspects were 
focussed on: The overhead of the MPIEvaluator compared to other evaluators, and the performance 
scaling on large systems.   

Overhead 
The overhead was measured by comparing the three evaluators (Sequen�al, Mul�processing and 
MPI) on 3 different models for a fixed number of experiments. The faster these experiments would 
be completed, the higher the performance and the lower the overhead. The results are shown in the 
graph below. 

 

Notable is that for a very small model like the simple python model, the Sequen�alEvaluator is the 
fastest, even as the other evaluators have access to 10 cores. For larger models like the lake and flu 
models, a significant speedup can be seem by using the Mul�processing or MPIEvaluator. On the lake 
model the MPIEvaluator is a litle slower than the Mul�processing evaluator, but on the flu model 
they perform iden�cal. This indicates that the MPIEvaluator has insignificant overhead on larger 
models. 

Since the Mul�processing and MPI evaluator had access to 10 cores, it’s useful to look at the 
performance per core, to determine the overhead. 
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Model Sequen�alEvaluator Mul�processingEvaluator MPIEvaluator 

python 1 0.0135 0.0101 

lake 1 0.4296 0.3037 

flu 1 0.4041 0.3976 

 

For the small python model, the performance per core of the MPIEvaluator was only 0.01x the 
performance of the Sequen�al evaluator, indica�ng around 100x overhead. For the larger models 
that decreases significantly, to only around 2.5x overhead on the flu model. 

Scaling 
Looking at performance scaling to mul�ple nodes, three experiments were executed to measure how 
much the performance increases when scaling up to many nodes. 

The first experiment run 25.000 itera�ons of the lake model on 0.25 to 16 nodes, each with 10 
replica�ons. The nodes were granted with non-exclusive access, meaning that basically there was a 
number of cores reserved that was 48 �mes the number of cores. However, these workers could be 
spread out over more nodes that listed in the graph. 

 

Notable is the almost linear performance scaling from 0.25 to 1 node, but the inconsistent scaling 
a�er that, without any system being faster than the 1 node one. 

Therefore, two experiments with exclusive node access where performed. From a HPC perspec�ve 
this isn’t ideal, since it requires full nodes to free up with takes longer and is more difficult to 
schedule. The number of itera�ons was also increased to get more consistent results 

The first experiment runs the lake model 100.000 �mes and the second one runs the flu model 
25.000 �mes, both from 1 to 16 nodes exclusive nodes.  
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The lake model shows an performance improvement when running on two nodes, but nowhere near 
linear scaling. The flue model shows near-linear performance scaling from 0.25 to 2 nodes, but no 
significant scaling a�er that. 

Both models are rela�vely simple with large communica�on overhead. Tes�ng the performance on a 
more compute intensive model would be interes�ng for future research. 

Limita�ons & future enhancements 

There are two main limitations currently: 

• The MPIEvaluator is not tested with file-based models, such as NetLogo and Vensim. 
It might still work, but it's not tested. Originally this was in scope for this project, but 
due to difficulties in creating the proper environment, this was cut out of the scope 
of this effort. 

• The model object is currently passed to the worker for each experiment. For large 
models with a relatively short runtime, this introduces significant performance 
overhead. Therefore, and optimization could be made to send the model only once 
to a worker on initialization. 

– Building on this, submitting experiment parameter sets in batches could also 
help increate performance, instead of sending them to the workers one-by-
one. 

Some other future improvements could be: 

• The decision was made to solve the problem on the MPI level. However, since that’s 
a lower abstraction level than SLURM, both wrappers for generals SLURM systems or 
the DelftBlue system specifically could still be added. Those would use the 
MPIEvaluator under the hood, but could create the SBATCH scripts for scheduling, 
authentication and file transfers. 

– This would allow a one-line solution, running from Python scripts or Jupyter 
notebooks. 

• A new Callback class could be implemented that streams to the disk instead of 
keeping all results in memory. This would allow for handling very large model that 
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gather lots of data, probably at the costs of some performance. See issue #304 for 
more details. 

• Further performance profiling could be done on the current design, to see any 
components can be sped up, like the distribution of experiments and models to 
workers, the logging or the. 

– It would be interesting to see how larger models perform on many-node 
systems, and if the scaling is better than with the small lake and flu models. 
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Appendixes 
Two appendixes are included, with the final code diff to the EMAworkbench and the tutorial. 

Appendix A: Code diff 
This appendix provides the final code diff applied to the EMAworkbench through pull request #299.  

diff --git a/.github/workflows/ci.yml b/.github/workflows/ci.yml 
index 6c0972ae8..cc3747c4f 100644 
--- a/.github/workflows/ci.yml 
+++ b/.github/workflows/ci.yml 
@@ -23,6 +23,7 @@ jobs: 
         include: 
           - os: ubuntu-latest 
             python-version: "3.10" 
+            test-mpi: true 
           - os: ubuntu-latest 
             python-version: "3.9" 
           - os: ubuntu-latest 
@@ -42,6 +43,12 @@ jobs: 
       run: | 
         pip install --upgrade pip 
         pip install .[dev,cov] ${{ matrix.pip-pre }} 
+    - name: Install MPI and mpi4py 
+      if: matrix.test-mpi == true 
+      run: | 
+        sudo apt-get update 
+        sudo apt-get install -y libopenmpi-dev 
+        pip install mpi4py 
     - name: Test with Pytest 
       timeout-minutes: 15 
       run: 
diff --git a/ema_workbench/__init__.py b/ema_workbench/__init__.py 
index bce53c12c..ba928e9ef 100644 
--- a/ema_workbench/__init__.py 
+++ b/ema_workbench/__init__.py 
@@ -15,6 +15,7 @@ 
     Constant, 
     Scenario, 
     Policy, 
+    MPIEvaluator, 
     MultiprocessingEvaluator, 
     IpyparallelEvaluator, 
     SequentialEvaluator, 
diff --git a/ema_workbench/em_framework/__init__.py 
b/ema_workbench/em_framework/__init__.py 
index e3b6f3394..357565b65 100644 
--- a/ema_workbench/em_framework/__init__.py 
+++ b/ema_workbench/em_framework/__init__.py 
@@ -30,6 +30,7 @@ 
     "perform_experiments", 
     "optimize", 
     "IpyparallelEvaluator", 
+    "MPIEvaluator", 
     "MultiprocessingEvaluator", 
     "SequentialEvaluator", 
     "ReplicatorModel", 
@@ -76,6 +77,7 @@ 
 from .evaluators import ( 
     perform_experiments, 
     optimize, 

https://github.com/quaquel/EMAworkbench/pull/299
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+    MPIEvaluator, 
     MultiprocessingEvaluator, 
     SequentialEvaluator, 
     Samplers, 
diff --git a/ema_workbench/em_framework/evaluators.py 
b/ema_workbench/em_framework/evaluators.py 
index d5f316cd5..bcfa1f91b 100644 
--- a/ema_workbench/em_framework/evaluators.py 
+++ b/ema_workbench/em_framework/evaluators.py 
@@ -13,6 +13,7 @@ 
 import sys 
 import threading 
 import warnings 
+import logging 
  
 from ema_workbench.em_framework.samplers import AbstractSampler 
 from .callbacks import DefaultCallback 
@@ -415,6 +416,71 @@ def evaluate_experiments(self, scenarios, policies, 
callback, combine="factorial 
         add_tasks(self.n_processes, self._pool, ex_gen, callback) 
  
  
+class MPIEvaluator(BaseEvaluator): 
+    """Evaluator for experiments using MPI Pool Executor from mpi4py""" 
+ 
+    def __init__(self, msis, n_processes=None, **kwargs): 
+        super().__init__(msis, **kwargs) 
+        self._pool = None 
+        self.n_processes = n_processes 
+ 
+    def initialize(self): 
+        # Only import mpi4py if the MPIEvaluator is used, to avoid 
unnecessary dependencies. 
+        from mpi4py.futures import MPIPoolExecutor 
+ 
+        self._pool = MPIPoolExecutor(max_workers=self.n_processes)  # 
Removed initializer arguments 
+        _logger.info(f"MPI pool started with {self._pool._max_workers} 
workers") 
+        if self._pool._max_workers <= 10: 
+            _logger.warning( 
+                f"With only a few workers ({self._pool._max_workers}), the 
MPIEvaluator may be slower than the Sequential- or 
MultiprocessingEvaluator" 
+            ) 
+        return self 
+ 
+    def finalize(self): 
+        self._pool.shutdown() 
+        _logger.info("MPI pool has been shut down") 
+ 
+    def evaluate_experiments(self, scenarios, policies, callback, 
combine="factorial"): 
+        ex_gen = experiment_generator(scenarios, self._msis, policies, 
combine=combine) 
+        experiments = list(ex_gen) 
+        log_level = _logger.getEffectiveLevel() 
+ 
+        packed = [ 
+            (experiment, experiment.model_name, self._msis, log_level) for 
experiment in experiments 
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+        ] 
+ 
+        _logger.info( 
+            f"MPIEvaluator: Starting {len(packed)} experiments using MPI 
pool with {self._pool._max_workers} workers" 
+        ) 
+        results = self._pool.map(run_experiment_mpi, packed) 
+ 
+        _logger.info(f"MPIEvaluator: Completed all {len(packed)} 
experiments") 
+        for experiment, outcomes in results: 
+            callback(experiment, outcomes) 
+        _logger.info(f"MPIEvaluator: Callback completed for all 
{len(packed)} experiments") 
+ 
+ 
+def run_experiment_mpi(packed_data): 
+    from mpi4py.MPI import COMM_WORLD 
+ 
+    rank = COMM_WORLD.Get_rank() 
+ 
+    experiment, model_name, msis, level = packed_data 
+ 
+    logging.basicConfig(level=level, 
format="[%(processName)s/%(levelname)s] %(message)s") 
+    _logger.debug(f"MPI Rank {rank}: starting {repr(experiment)}") 
+ 
+    models = NamedObjectMap(AbstractModel) 
+    models.extend(msis) 
+    experiment_runner = ExperimentRunner(models) 
+ 
+    outcomes = experiment_runner.run_experiment(experiment) 
+ 
+    _logger.debug(f"MPI Rank {rank}: completed {experiment}") 
+ 
+    return experiment, outcomes 
+ 
+ 
 class IpyparallelEvaluator(BaseEvaluator): 
     """evaluator for using an ipypparallel pool""" 
  
diff --git a/ema_workbench/util/ema_logging.py 
b/ema_workbench/util/ema_logging.py 
index 47538eb9e..ca2f484c7 100644 
--- a/ema_workbench/util/ema_logging.py 
+++ b/ema_workbench/util/ema_logging.py 
@@ -178,7 +178,7 @@ def get_rootlogger(): 
     return _rootlogger 
  
  
-def log_to_stderr(level=None): 
+def log_to_stderr(level=None, pass_root_logger_level=False): 
     """ 
     Turn on logging and add a handler which prints to stderr 
  
@@ -186,6 +186,10 @@ def log_to_stderr(level=None): 
     ---------- 
     level : int 
             minimum level of the messages that will be logged 
+    pas_root_logger_level: bool, optional. Default False 
+            if true, all module loggers will be set to the 
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+            same logging level as the root logger. 
+            Recommended True when using the MPIEvaluator. 
  
     """ 
  
@@ -206,4 +210,8 @@ def log_to_stderr(level=None): 
     logger.addHandler(handler) 
     logger.propagate = False 
  
+    if pass_root_logger_level: 
+        for _, mod_logger in _module_loggers.items(): 
+            mod_logger.setLevel(level) 
+ 
     return logger 
diff --git a/test/test_em_framework/test_evaluators.py 
b/test/test_em_framework/test_evaluators.py 
index bf0b0bfc1..fcf4753bb 100644 
--- a/test/test_em_framework/test_evaluators.py 
+++ b/test/test_em_framework/test_evaluators.py 
@@ -4,6 +4,7 @@ 
 """ 
 import unittest.mock as mock 
 import unittest 
+import platform 
  
 import ema_workbench 
 from ema_workbench.em_framework import evaluators 
@@ -74,6 +75,51 @@ def test_ipyparallel_evaluator( 
             evaluator.evaluate_experiments(10, 10, mocked_callback) 
             lb_view.map.called_once() 
  
+    # Check if mpi4py is installed and if we're on a Linux environment 
+    try: 
+        import mpi4py 
+ 
+        MPI_AVAILABLE = True 
+    except ImportError: 
+        MPI_AVAILABLE = False 
+    IS_LINUX = platform.system() == "Linux" 
+ 
+    @unittest.skipUnless( 
+        MPI_AVAILABLE and IS_LINUX, "Test requires mpi4py installed and a 
Linux environment" 
+    ) 
+    @mock.patch("mpi4py.futures.MPIPoolExecutor") 
+    @mock.patch("ema_workbench.em_framework.evaluators.DefaultCallback") 
+    
@mock.patch("ema_workbench.em_framework.evaluators.experiment_generator") 
+    def test_mpi_evaluator(self, mocked_generator, mocked_callback, 
mocked_MPIPoolExecutor): 
+        try: 
+            import mpi4py 
+        except ImportError: 
+            self.fail( 
+                "mpi4py is not installed. It's required for this test. 
Install with: pip install mpi4py" 
+            ) 
+ 
+        model = mock.Mock(spec=ema_workbench.Model) 
+        model.name = "test" 
+ 
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+        # Create a mock experiment with the required attribute 
+        mock_experiment = mock.Mock() 
+        mock_experiment.model_name = "test" 
+        mocked_generator.return_value = [mock_experiment] 
+ 
+        pool_mock = mock.Mock() 
+        pool_mock.map.return_value = [(1, ({}, {}))] 
+        pool_mock._max_workers = 5  # Arbitrary number 
+        mocked_MPIPoolExecutor.return_value = pool_mock 
+ 
+        with evaluators.MPIEvaluator(model) as evaluator: 
+            evaluator.evaluate_experiments(10, 10, mocked_callback) 
+ 
+            mocked_MPIPoolExecutor.assert_called_once() 
+            pool_mock.map.assert_called_once() 
+ 
+        # Check that pool shutdown was called 
+        pool_mock.shutdown.assert_called_once() 
+ 
     def test_perform_experiments(self): 
         pass 
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Appendix B: Tutorial 
Appendix B provides the full tutorial for using the MPIEvaluator on HPC systems from PR #308. 

MPIEvaluator: Run on multi-node HPC systems 
The MPIEvaluator is a new addition to the EMAworkbench that allows experiment execution on 
multi-node systems, including high-performance computers (HPCs). This capability is particularly 
useful if you want to conduct large-scale experiments that require distributed processing. Under the 
hood, the evaluator leverages the MPIPoolExecutor from mpi4py.futures. 

Limiations 

• Currently, the MPIEvaluator is only tested on Linux, while it might work on other operating 
systems. 

• Currently, the MPIEvaluator is only tested with Python-based models, while it might work 
with other �ile-based model types (like NetLogo or Vensim). 

• The MPIEvaluator is most useful for large-scale experiments, where the time spent on 
distributing the experiments over the cluster is negligible compared to the time spent on 
running the experiments. For smaller experiments, the overhead of distributing the 
experiments over the cluster might be signi�icant, and it might be more ef�icient to run the 
experiments locally. 

This tutorial will first show how to set up the environment, and then how to use the MPIEvaluator to 
run a model on a cluster. Finally, we'll use the DelftBlue supercomputer as an example, to show how 
to run on a system which uses a SLURM scheduler. 

1. Setting up the environment 
To use the MPIEvaluator, MPI and mpi4py must be installed. 

Installing MPI on Linux typically involves the installation of a popular MPI implementation such as 
OpenMPI or MPICH. Below are the instructions for installing OpenMPI: 

1a. Installing OpenMPI 
You can install OpenMPI using you package manager. First, update your package repositories, and 
then install OpenMPI: 

For Debian/Ubuntu: 

sudo apt update 
sudo apt install openmpi-bin libopenmpi-dev 
For Fedora: 

sudo dnf check-update 
sudo dnf install openmpi openmpi-devel 
For CentOS/RHEL: 

sudo yum update 
sudo yum install openmpi openmpi-devel 
Many times, the necessary environment variables are automatically set up. You can check if this is 
the case by running the following command: 

mpiexec --version 
If not, add OpenMPI's bin directory to your PATH: 

export PATH=$PATH:/usr/lib/openmpi/bin 

https://github.com/quaquel/EMAworkbench/pull/308
https://mpi4py.readthedocs.io/en/stable/mpi4py.futures.html
https://doc.dhpc.tudelft.nl/delftblue/
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1b. Installing mpi4py 
The python package mpi4py needs to installed as well. This is most easily done from PyPI, by 
running the following command: 

pip install -U mpi4py 

2. Creating a model 
First, let's set up a minimal model to test with. This can be any Python-based model, we're using 
the example_python.py model from the EMA Workbench documentation as example. 

We recommend crafting and testing your model in a separate Python file, and then importing it into 
your main script. This way, you can test your model without having to run it through the 
MPIEvaluator, and you can easily switch between running it locally and on a cluster. 

2a. De�ine the model 
First, we define a Python model function. 

In [ ]: 

def some_model(x1=None, x2=None, x3=None): 
    return {"y": x1 * x2 + x3} 
Now, create the EMAworkbench model object, and specify the uncertainties and outcomes: 

In [ ]: 

from ema_workbench import Model, RealParameter, ScalarOutcome, ema_logging, 
perform_experiments 
 
if __name__ == "__main__": 
    # We recommend setting pass_root_logger_level=True when running on a 
cluster, to ensure consistent log levels. 
    ema_logging.log_to_stderr(level=ema_logging.INFO, 
pass_root_logger_level=True) 
 
    ema_model = Model("simpleModel", function=some_model)  # instantiate 
the model 
 
    # specify uncertainties 
    ema_model.uncertainties = [ 
        RealParameter("x1", 0.1, 10), 
        RealParameter("x2", -0.01, 0.01), 
        RealParameter("x3", -0.01, 0.01), 
    ] 
    # specify outcomes 
    ema_model.outcomes = [ScalarOutcome("y")] 

2b. Test the model 
Now, we can run the model locally to test it: 

In [ ]: 

from ema_workbench import SequentialEvaluator 
 
with SequentialEvaluator(ema_model) as evaluator: 
    results = perform_experiments(ema_model, 100, evaluator=evaluator) 
In this stage, you can test your model and make sure it works as expected. You can also check if 
everything is included in the results and do initial validation on the model, before scaling up to a 
cluster. 

https://pypi.org/project/mpi4py/
https://emaworkbench.readthedocs.io/en/latest/examples/example_python.html
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3. Run the model on a MPI cluster 
Now that we have a working model, we can run it on a cluster. To do this, we need to import 
the MPIEvaluator class from the ema_workbench package, and instantiate it with our model. Then, we 
can use the perform_experiments function as usual, and the MPIEvaluator will take care of 
distributing the experiments over the cluster. Finally, we can save the results to a pickle file, as usual. 

In [ ]: 

# ema_example_model.py 
from ema_workbench import ( 
    Model, 
    RealParameter, 
    ScalarOutcome, 
    ema_logging, 
    perform_experiments, 
    MPIEvaluator, 
) 
import pickle 
 
 
def some_model(x1=None, x2=None, x3=None): 
    return {"y": x1 * x2 + x3} 
 
 
if __name__ == "__main__": 
    ema_logging.log_to_stderr(level=ema_logging.INFO, 
pass_root_logger_level=True) 
 
    ema_model = Model("simpleModel", function=some_model) 
 
    ema_model.uncertainties = [ 
        RealParameter("x1", 0.1, 10), 
        RealParameter("x2", -0.01, 0.01), 
        RealParameter("x3", -0.01, 0.01), 
    ] 
    ema_model.outcomes = [ScalarOutcome("y")] 
 
    # Note that we switch to the MPIEvaluator here 
    with MPIEvaluator(ema_model) as evaluator: 
        results = evaluator.perform_experiments(scenarios=10000) 
 
    # Save the results to a pickle file 
    with open("ema_mpi_test.pickle", "wb") as handle: 
        pickle.dump(results, handle, protocol=pickle.HIGHEST_PROTOCOL) 
To run this script on a cluster, we need to use the mpiexec command: 

mpiexec python3 -m mpi4py.futures ema_example_model.py 
This command will execute the ema_example_model.py Python script using MPI, leveraging 
the mpi4py.futures module for parallel processing. The number of processes and other MPI-specific 
configurations would be inferred from default settings or any configurations provided elsewhere, 
such as in an MPI configuration file or additional flags to mpiexec (not shown in the provided 
command). 

The output of the script will be saved to the ema_mpi_test.pickle file, which can be loaded and 
analyzed as usual. 
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Example: Running on the DelftBlue supercomputer (with SLURM) 
As an example, we'll show how to run the model on the DelftBlue supercomputer, which uses the 
SLURM scheduler. The DelftBlue supercomputer is a cluster of 218 nodes, each with 2 Intel Xeon 
Gold E5-6248R CPUs (48 cores total), 192 GB of RAM, and 480 GB of local SSD storage. The nodes are 
connected with a 100 Gbit/s Infiniband network. 

These steps roughly follow the DelftBlue Crash-course for absolute beginners. If you get stuck, you can 
refer to that guide for more information. 

1. Creating a SLURM script 
First, you need to create a SLURM script. This is a bash script that will be executed on the cluster, 
and it will contain all the necessary commands to run your model. You can create a new file, for 
example slurm_script.sh, and add the following lines: 

#!/bin/bash 
 
 #SBATCH --job-name="Python_test" 
 #SBATCH --time=00:02:00 
 #SBATCH --ntasks=25 
 #SBATCH --cpus-per-task=1 
 #SBATCH --partition=compute 
 #SBATCH --mem-per-cpu=1GB 
 #SBATCH --account=research-tpm-mas 
 
 module load 2023r1 
 module load openmpi 
 module load python 
 module load py-numpy 
 module load py-mpi4py 
 module load py-pip 
 
 pip install -U --user ema_workbench 
 
 mpiexec python3 -m mpi4py.futures ema_example_model.py 
Modify the script to suit your needs: 

• Set the --job-name to something descriptive. 
• Update the maximum --time to the expected runtime of your model. The job will be 

terminated if it exceeds this time limit. 
• Set the --ntasks to the number of cores you want to use. Each node has 48 cores, so for 

example --ntasks=96 might use two nodes, but can also be distributed over more nodes. 
• Update the memory --mem-per-cpu to the amount of memory you need per core. Each node 

has 192 GB of memory, so you can use up to 4 GB per core. 
• Add --exclusive if you want to claim a full node for your job. In that case, specify --

nodes instead of --ntasks. This will reduce overhead, but it will also delay you scheduling 
time, because you need to wait for a full node to become available. 

• Set the --account to your project account. You can �ind this on the Accounting and 
Shares page of the DelftBlue docs. 

See Submit Jobs at the DelftBlue docs for more information on the SLURM script configuration. 

Then, you need to load the necessary modules. You can find the available modules on the DHPC 
modules page of the DelftBlue docs. In this example, we're loading the 2023r1 toolchain, which 
includes Python 3.9, and then we're loading the necessary Python packages. 

https://doc.dhpc.tudelft.nl/delftblue/
https://doc.dhpc.tudelft.nl/delftblue/crash-course/
https://doc.dhpc.tudelft.nl/delftblue/Accounting-and-shares/
https://doc.dhpc.tudelft.nl/delftblue/Accounting-and-shares/
https://doc.dhpc.tudelft.nl/delftblue/Slurm-scheduler/
https://doc.dhpc.tudelft.nl/delftblue/DHPC-modules/
https://doc.dhpc.tudelft.nl/delftblue/DHPC-modules/
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You might want to install additional Python packages. You can do this with pip install -U --user 
<package>. Note that you need to use the --user flag, because you don't have root access on the 
cluster. To install the EMA Workbench, you can use pip install -U --user ema_workbench. If you want 
to install a development branch, you can use pip install -e -U --user 
git+https://github.com/quaquel/EMAworkbench@<BRANCH>#egg=ema-workbench, 
where <BRANCH> is the name of the branch you want to install. 

Finally, the script uses mpiexec to run Python script in a way that allows the MPIEvaluator to 
distribute the experiments over the cluster. 

Note that the bash scripts (sh), including the slurm_script.sh we just created, need LF line endings. If 
you are using Windows, line endings are CRLF by default, and you need to convert them to LF. You 
can do this with most text editors, like Notepad++ or Atom for example. 

1. Setting up the environment 
First, you need to log in on DelftBlue. As an employee, you can login from the command line with: 

ssh <netid>@login.delftblue.tudelft.nl 
where <netid> is your TU Delft netid. You can also use an SSH client such as PuTTY. 

As a student, you need to jump though an extra hoop: 

ssh -J <netid>@student-linux.tudelft.nl <netid>@login.delftblue.tudelft.nl 
Note: Below are the commands for students. If you are an employee, you need to remove the -J 
<netid>@student-linux.tudelft.nl from all commands below. 

Once you're logged in, you want to jump to your scratch directory (note it's not but is not backed 
up). 

cd ../../scratch/<netid> 
Create a new directory for this tutorial, for example mkdir ema_mpi_test and then cd ema_mpi_test 

Then, you want to send your Python file and SLURM script to DelftBlue. Open a new command line 
terminal, and then you can do this with scp: 

scp -J <netid>@student-linux.tudelft.nl ema_example_model.py slurm_script.sh 
<netid>@login.delftblue.tudelft.nl:/scratch/<netid>/ema_mpi_test 
Before scheduling the SLURM script, we first have to make it executable: 

chmod +x slurm_script.sh 
Then we can schedule it: 

sbatch slurm_script.sh 
Now it's scheduled! 

You can check the status of your job with squeue: 

squeue -u <netid> 
You might want to inspect the log file, which is created by the SLURM script. You can do this with cat: 

cat slurm-<jobid>.out 
where <jobid> is the job ID of your job, which you can find with squeue. 

When the job is finished, we can download the pickle file created. Open the command line again (can 
be the same one as before), and you can copy the results back to your local machine with scp: 

https://www.putty.org/
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scp -J <netid>@student-linux.tudelft.nl 
<netid>@login.delftblue.tudelft.nl:/scratch/<netid>/ema_mpi_test/ema_mpi_test.pickle . 
Finally, we can clean up the files on DelftBlue, to avoid cluttering the scratch directory: 

cd .. 
 rm -rf "ema_mpi_test" 
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