8/14/2020 Data Generation

In [1]:

import numpy as np
import matplotlib.pyplot as plt
import os

from ema_workbench import (Model, RealParameter, CategoricalParameter, BooleanParameter
, IntegerParameter, Constant, TimeSeriesOutcome, perform_experiments, ema_logging)

from ema_workbench.connectors.netlogo import NetLogoModel

from ema_workbench.em_framework.evaluators import LHS, FF

from ema_workbench.util.utilities import save_results, load_results
from ema_workbench.analysis.plotting import lines

import datetime

import os

C:\Users\stein@42\.conda\envs\coasting\lib\site-packages\ema_workbench\em_
framework\optimization.py:48: ImportWarning: platypus based optimization n
ot available

warnings.warn("platypus based optimization not available", ImportWarnin
g)
C:\Users\stein@42\.conda\envs\coasting\lib\site-packages\ema_workbench\con
nectors__init___.py:17: ImportWarning: vensim connector not available

warnings.warn("vensim connector not available", ImportWarning)
C:\Users\stein@42\.conda\envs\coasting\lib\site-packages\sklearn\externals
\six.py:31: DeprecationWarning: The module is deprecated in version 0.21 a
nd will be removed in version 0.23 since we've dropped support for Python
2.7. Please rely on the official version of six (https://pypi.org/project/
six/).

"(https://pypi.org/project/six/).", DeprecationWarning)

localhost:8889/lab

13

8/14/2020

In [2]:

ema_logging.log to_stderr(ema_logging.INFO)

Data Generation

#We can define common uncertainties and outcomes for each model:
uncertainties = [RealParameter('density’', 10, 100),
RealParameter('wind-speed', 0, 25),
RealParameter('probability-of-spread', 10, 100),

CategoricalParameter("big-jumps?", ("true", "false")) ,
CategoricalParameter("wind-direction"”, (" "WEST"', ""WEST-SOUTH-WEST"",

""SOUTH-WEST"", ' "SOUTH-SOUTH-WEST" ", ' "SOUTH" "))

]

outcomes = [TimeSeriesOutcome('ticks"),
TimeSeriesOutcome('percent-burned"),

TimeSeriesOutcome('lone-trees")

]

#Define the NetLogo model

wd = os.getcwd()

model = NetLogoModel('firemixedparams’,

model.run_length =
model.replications

model.uncertainties

wd=wd,

model file="fire-mixedparams.nlogo")

200
=5
= uncertainties

model.outcomes = outcomes

In [3]:

start_time = datetime.datetime.now().isoformat()[:-10].replace(

nr_experiments = 900
#Using Latin Hypercube sampling

results = perform_experiments(model, nr_experiments, uncertainty_sampling=LHS)

[MainProcess/INFO]
0@ experiments

[MainProcess/INFO]
[MainProcess/INFO]
[MainProcess/INFO]
[MainProcess/INFO]
[MainProcess/INFO]
[MainProcess/INFO]
[MainProcess/INFO]
[MainProcess/INFO]
[MainProcess/INFO]
[MainProcess/INFO]
[MainProcess/INFO]
[MainProcess/INFO]

In [4]:

#rename time output per EMA Wb expectations

performing 900 scenarios * 1 policies * 1 model(s) = 90

performing experiments sequentially

90 cases completed
180 cases completed
270 cases completed
360 cases completed
450 cases completed
540 cases completed
630 cases completed
720 cases completed
810 cases completed
900 cases completed
experiments finished

experiments, outcomes = results

outcomes['TIME'] =

outcomes.pop("ticks")

results = (experiments.copy(), outcomes.copy())

localhost:8889/lab

wm,uw un_on
R]

)

2/3

8/14/2020 Data Generation

In [6]:

save_results(results, './' + start time + '-experiments' + str(nr_experiments) + 'x' +
str(len(model.replications)) + '.tar.gz')

[MainProcess/INFO] results saved successfully to C:\Local\NetLogo-OutputCo
nversion-Local\2020-08-11T11-43-experiments900x5.tar.gz

In [7]:
results2 = load_results("2020-08-11T11-43-experiments900x5.tar.gz")

[MainProcess/INFO] results loaded succesfully from C:\Local\NetLogo-Output
Conversion-Local\2020-08-11T11-43-experiments900x5.tar.gz

Experiments

« Pandas dataframe, shape (nr_experiments) x (nr_inputs + 3)
e columns:
= [input1, input2, ...] <- line 6 of CSV
= scenario (experiment number) <- sequential numbering from 0
= policy <- None
= model_name <-line 1 of CSV
» data from rows of CSV, starting line 7

Outcomes

« dict of numpy arrays, shape:
= (outcomes) <- line 6 of CSV, last elements
= X (nr_experiments) <- from rows of CSV, highest unique value in first row divided by replications
= X (nr_replications) <- from rows of CSV, based on repeated parameter combinations
= X (timesteps + 1) <- variable, find longest run and fill others by repeating last value

localhost:8889/lab 3/3

