diff --git a/QEfficient/cloud/infer.py b/QEfficient/cloud/infer.py index 814122b9d..fbff5b18b 100644 --- a/QEfficient/cloud/infer.py +++ b/QEfficient/cloud/infer.py @@ -340,6 +340,18 @@ def main( "--prompt-len", "--prompt_len", default=32, type=int, help="Sequence length for text generation." ) parser.add_argument("--ctx-len", "--ctx_len", default=128, type=int, help="Context length for text generation.") + parser.add_argument( + "--comp-ctx-lengths-prefill", + type=lambda comp_ctx_lengths_prefill: [int(x) for x in comp_ctx_lengths_prefill.split(",")], + default=[512], + help="Define ccl list in csv format (e.g.,--comp-ctx-lengths 512,1024,2048).", + ) + parser.add_argument( + "--comp-ctx-lengths-decode", + type=lambda comp_ctx_lengths_decode: [int(x) for x in comp_ctx_lengths_decode.split(",")], + default=[2048], + help="Define ccl list in csv format (e.g.,--comp-ctx-lengths 512,1024,2048).", + ) parser.add_argument( "--mxfp6", "--mxfp6_matmul", diff --git a/QEfficient/customop/ctx_scatter_gather.py b/QEfficient/customop/ctx_scatter_gather.py index c4f5a7bbd..269ccb0be 100644 --- a/QEfficient/customop/ctx_scatter_gather.py +++ b/QEfficient/customop/ctx_scatter_gather.py @@ -115,8 +115,14 @@ def symbolic(g: torch.Graph, data: torch.Value, ctx_indices: torch.Value) -> tor @onnxscript.script(onnxscript.values.Opset("com.qualcomm.cloud", 1)) -def CtxGather(data: onnxscript.FLOAT, ctx_indices: onnxscript.INT32) -> onnxscript.FLOAT: - ctx_indices = ops.Expand(ctx_indices, ops.Slice(ops.Shape(data), starts=[0], ends=[3], axes=[0])) +def CtxGather( + data: onnxscript.FLOAT, ctx_indices: onnxscript.INT32, comp_ctx_len: onnxscript.INT32 +) -> onnxscript.FLOAT: + # Create a shape tensor based on comp_ctx_len + shape_tensor = ops.Concat(ops.Shape(data)[:2], ops.Reshape(comp_ctx_len, [1]), axis=0) + + # Directly use the shape tensor without validation + ctx_indices = ops.Expand(ctx_indices, shape_tensor) ctx_indices = ops.Unsqueeze(ctx_indices, [-1]) return ops.GatherND(data, ctx_indices, batch_dims=2) @@ -127,7 +133,7 @@ class CtxGatherFunc(torch.autograd.Function): """ @staticmethod - def forward(data: torch.Tensor, ctx_indices: torch.Tensor): + def forward(data: torch.Tensor, ctx_indices: torch.Tensor, comp_ctx_len: int): batch_indices = torch.arange(data.shape[0]).view(-1, 1, 1) head_indices = torch.arange(data.shape[1]).view(1, -1, 1) return data[batch_indices, head_indices, ctx_indices] @@ -137,5 +143,5 @@ def setup_context(ctx, inputs, outputs): pass @staticmethod - def symbolic(g: torch.Graph, data: torch.Value, ctx_indices: torch.Value) -> torch.Value: - return g.onnxscript_op(CtxGather, data, ctx_indices).setTypeAs(data) + def symbolic(g: torch.Graph, data: torch.Value, ctx_indices: torch.Value, comp_ctx_len: int) -> torch.Value: + return g.onnxscript_op(CtxGather, data, ctx_indices, comp_ctx_len).setTypeAs(data) diff --git a/QEfficient/customop/ctx_scatter_gather_cb.py b/QEfficient/customop/ctx_scatter_gather_cb.py index 75d9a12ef..cc9693716 100644 --- a/QEfficient/customop/ctx_scatter_gather_cb.py +++ b/QEfficient/customop/ctx_scatter_gather_cb.py @@ -97,16 +97,20 @@ def symbolic( @onnxscript.script(onnxscript.values.Opset("com.qualcomm.cloud", 1)) def CtxGatherCB( - data: onnxscript.FLOAT, batch_index: onnxscript.INT32, ctx_indices: onnxscript.INT32 + data: onnxscript.FLOAT, batch_index: onnxscript.INT32, ctx_indices: onnxscript.INT32, comp_ctx_len: onnxscript.INT32 ) -> onnxscript.FLOAT: batch_size = ops.Gather(ops.Shape(batch_index), [0]) num_heads = ops.Gather(ops.Shape(data), [1]) - ctx_len = ops.Gather(ops.Shape(data), [2]) + # using compute-context-length (CCL) instead of context-length to do gather process based on CCL and later do attention computations based on CCL as well. + ctx_len = ops.Reshape(comp_ctx_len, [1]) # Expanded shape to create indices zero = ops.Constant(value_ints=[0]) one = ops.Constant(value_ints=[1]) - exp_shape = ops.Concat(batch_size, num_heads, ctx_len, one, axis=0) + # exp_shape = ops.Concat(batch_size, num_heads, ctx_len, one, axis=0) + exp_shape = ops.Concat( + ops.Reshape(batch_size, [1]), ops.Reshape(num_heads, [1]), ops.Reshape(ctx_len, [1]), one, axis=0 + ) # Create indices batch_idx = ops.Expand(ops.Unsqueeze(batch_index, [2, 3]), exp_shape) @@ -119,7 +123,7 @@ def CtxGatherCB( class CtxGatherFuncCB(torch.autograd.Function): @staticmethod - def forward(data: torch.Tensor, batch_index: torch.Tensor, ctx_indices: torch.Tensor): + def forward(data: torch.Tensor, batch_index: torch.Tensor, ctx_indices: torch.Tensor, comp_ctx_len: int): batch_indices = batch_index.view(-1, 1, 1) head_indices = torch.arange(data.shape[1]).view(1, -1, 1) return data[batch_indices, head_indices, ctx_indices] @@ -129,8 +133,10 @@ def setup_context(ctx, inputs, outputs): pass @staticmethod - def symbolic(g: torch.Graph, data: torch.Value, batch_index: torch.Value, ctx_indices: torch.Value) -> torch.Value: - return g.onnxscript_op(CtxGatherCB, data, batch_index, ctx_indices).setTypeAs(data) + def symbolic( + g: torch.Graph, data: torch.Value, batch_index: torch.Value, ctx_indices: torch.Value, comp_ctx_len: int + ) -> torch.Value: + return g.onnxscript_op(CtxGatherCB, data, batch_index, ctx_indices, comp_ctx_len).setTypeAs(data) @onnxscript.script(onnxscript.values.Opset("com.qualcomm.cloud", 1)) diff --git a/QEfficient/generation/text_generation_inference.py b/QEfficient/generation/text_generation_inference.py index 6d04cf573..cf4b6aa27 100755 --- a/QEfficient/generation/text_generation_inference.py +++ b/QEfficient/generation/text_generation_inference.py @@ -318,6 +318,8 @@ def cloud_ai_100_exec_kv( prompts_txt_file_path: Optional[str] = None, device_id: Optional[List[int]] = None, generation_len: Optional[int] = None, + comp_ctx_lengths_prefill: Optional[List[int]] = None, + comp_ctx_lengths_decode: Optional[List[int]] = None, enable_debug_logs: bool = False, stream: bool = True, write_io_dir: Optional[str] = None, @@ -384,6 +386,8 @@ def cloud_ai_100_exec_kv( qpc_path=qpc_path, device_id=device_id, ctx_len=ctx_len, + comp_ctx_lengths_prefill=comp_ctx_lengths_prefill, + comp_ctx_lengths_decode=comp_ctx_lengths_decode, enable_debug_logs=enable_debug_logs, write_io_dir=write_io_dir, full_batch_size=full_batch_size, @@ -430,6 +434,8 @@ def __init__( qpc_path: str, full_batch_size: Optional[int] = None, ctx_len: Optional[int] = None, + comp_ctx_lengths_prefill: Optional[List[int]] = None, + comp_ctx_lengths_decode: Optional[List[int]] = None, device_id: Optional[List[int]] = None, enable_debug_logs: bool = False, write_io_dir: Optional[str] = None, @@ -439,6 +445,8 @@ def __init__( sampling_params: Optional[Dict[str, Any]] = None, ) -> None: self._ctx_len = ctx_len + self.comp_ctx_lengths_prefill = comp_ctx_lengths_prefill + self.comp_ctx_lengths_decode = comp_ctx_lengths_decode self._write_io_dir = write_io_dir self.is_tlm = is_tlm self.return_pdfs = return_pdfs @@ -797,7 +805,17 @@ def run_prefill(self, prompt, generation_len, prefill_logit_bs=1, decode_batch_i batch_lora_ids = [self._prompt_to_lora_id_mapping_prefill.popleft() for i in range(self.batch_size)] inputs["lora_ids"] = np.array(batch_lora_ids, dtype=np.int64).reshape(self.batch_size, 1) + if self.comp_ctx_lengths_prefill is not None: + self.list_of_comp_ctx_lengths_prefill = [np.zeros(length) for length in self.comp_ctx_lengths_prefill] + prefill_ccl_id = 0 + inputs["comp_ctx_lengths"] = self.list_of_comp_ctx_lengths_prefill[prefill_ccl_id] + for i in range(num_chunks): + if self.comp_ctx_lengths_prefill is not None: + if (i + 1) * self._prefill_seq_len > self.comp_ctx_lengths_prefill[prefill_ccl_id]: + prefill_ccl_id = min(prefill_ccl_id + 1, len(self.comp_ctx_lengths_prefill) - 1) + inputs["comp_ctx_lengths"] = self.list_of_comp_ctx_lengths_prefill[prefill_ccl_id] + chunk_inputs = inputs.copy() chunk_inputs["input_ids"] = inputs["input_ids"][ :, i * self._prefill_seq_len : (i + 1) * self._prefill_seq_len @@ -816,6 +834,19 @@ def run_prefill(self, prompt, generation_len, prefill_logit_bs=1, decode_batch_i generation_len, ) + def initialize_ccl(self, decode_inputs): + self.list_of_comp_ctx_lengths_decode = [np.zeros(length) for length in self.comp_ctx_lengths_decode] + max_ccl_id = len(self.comp_ctx_lengths_decode) - 1 + max_position_id = np.max(decode_inputs["position_ids"]) + ccl_id_initial = 0 + ccl_id = ccl_id_initial + for i in range(ccl_id_initial, len(self.comp_ctx_lengths_decode)): + if max_position_id < self.comp_ctx_lengths_decode[i]: + ccl_id = i + break + + return ccl_id, max_ccl_id + def run_continuous_batching_decode(self, prompt_queue, generation_len): """ Runs continuous batching decode for the given prompt queue and generation length. @@ -847,6 +878,10 @@ def run_continuous_batching_decode(self, prompt_queue, generation_len): # Prepare decode inputs inputs. decode_inputs = self.prepare_decode_inputs() + if self.comp_ctx_lengths_decode is not None: + ccl_id, max_ccl_id = self.initialize_ccl(decode_inputs) + decode_inputs["comp_ctx_lengths"] = self.list_of_comp_ctx_lengths_decode[ccl_id] + while prompt_queue or current_decode_ongoing.any(): outputs = self._session.run(decode_inputs) @@ -884,6 +919,20 @@ def run_continuous_batching_decode(self, prompt_queue, generation_len): batch_id_map[decode_batch_id] ] + if self.comp_ctx_lengths_decode is not None: + ###Recalculate ccl_id based on position ids### + # Determine the maximum value of position_ids across all batch elements + max_position_id = np.max(decode_inputs["position_ids"]) + + # Update ccl_id and comp_ctx_lengths_decode based on the maximum position id + ccl_id_initial = 0 + ccl_id = ccl_id_initial + for i in range(ccl_id_initial, len(self.comp_ctx_lengths_decode)): + if max_position_id < self.comp_ctx_lengths_decode[i]: + ccl_id = i + break + decode_inputs["comp_ctx_lengths"] = self.list_of_comp_ctx_lengths_decode[ccl_id] + else: current_decode_ongoing[decode_batch_id] = False else: @@ -896,6 +945,15 @@ def run_continuous_batching_decode(self, prompt_queue, generation_len): if self.include_sampler: decode_inputs["last_accepted_output_tokens"] = decode_inputs["input_ids"] + if self.comp_ctx_lengths_decode is not None: + # Update ccl_id and comp_ctx_lengths_decode based on the maximum position id + if ( + decode_inputs["position_ids"][decode_batch_id, -1] + >= self.comp_ctx_lengths_decode[ccl_id] - 1 + ): + ccl_id = min(ccl_id + 1, max_ccl_id) + decode_inputs["comp_ctx_lengths"] = self.list_of_comp_ctx_lengths_decode[ccl_id] + generated_id_current_index[decode_batch_id] += 1 return decode_pause_time @@ -922,7 +980,18 @@ def run_decode( self._session.set_buffers({"logits": logits_out_placeholder}) finished_sequences = decode_inputs["input_ids"] == self.tokenizer.eos_token_id num_token = 0 + + if self.comp_ctx_lengths_decode is not None: + ccl_id, max_ccl_id = self.initialize_ccl(decode_inputs) + decode_inputs["comp_ctx_lengths"] = self.list_of_comp_ctx_lengths_decode[ccl_id] + + cache_index = np.max(decode_inputs["position_ids"]) for num_token in range(1, generation_len): + if self.comp_ctx_lengths_decode is not None: + if cache_index >= self.comp_ctx_lengths_decode[ccl_id] - 1: + ccl_id = min(ccl_id + 1, max_ccl_id) + decode_inputs["comp_ctx_lengths"] = self.list_of_comp_ctx_lengths_decode[ccl_id] + if streamer: streamer.put(decode_inputs["input_ids"][0]) outputs = self._session.run(decode_inputs) @@ -934,6 +1003,7 @@ def run_decode( # Prepare inputs for next iteration decode_inputs["input_ids"] = self._fetch_next_token_id(outputs) decode_inputs["position_ids"][:, -1] += 1 + cache_index += 1 self.generated_ids[:, num_token] = decode_inputs["input_ids"][:, -1] finished_sequences |= decode_inputs["input_ids"] == self.tokenizer.eos_token_id if self.include_sampler: @@ -983,6 +1053,8 @@ def __init__( qpc_path: str, full_batch_size: Optional[int] = None, ctx_len: Optional[int] = None, + comp_ctx_lengths_prefill: Optional[List[int]] = None, + comp_ctx_lengths_decode: Optional[List[int]] = None, device_id: Optional[List[int]] = None, enable_debug_logs: bool = False, write_io_dir: Optional[str] = None, @@ -996,6 +1068,8 @@ def __init__( qpc_path=qpc_path, full_batch_size=full_batch_size, ctx_len=ctx_len, + comp_ctx_lengths_prefill=comp_ctx_lengths_prefill, + comp_ctx_lengths_decode=comp_ctx_lengths_decode, device_id=device_id, enable_debug_logs=enable_debug_logs, write_io_dir=write_io_dir, @@ -1007,6 +1081,8 @@ def __init__( self._full_batch_size = self._qaic_model.full_batch_size self._tokenizer = self._qaic_model.tokenizer self._ctx_len = ctx_len + self.comp_ctx_lengths_prefill = comp_ctx_lengths_prefill + self.comp_ctx_lengths_decode = comp_ctx_lengths_decode self._perf_metrics = None self._prompt_queue = None self._text_streamer = None diff --git a/QEfficient/peft/lora/layers.py b/QEfficient/peft/lora/layers.py index 6b75e696f..79abeba77 100644 --- a/QEfficient/peft/lora/layers.py +++ b/QEfficient/peft/lora/layers.py @@ -42,15 +42,15 @@ def forward(self, x: torch.Tensor, lora_ids: torch.Tensor): # multilora implementation: lora_ids other_indices_a = torch.arange(self.lora_a_weights.shape[2]).view(1, 1, -1) selected_lora_a_weights = CtxGatherFuncCB.apply( - self.lora_a_weights, lora_ids, other_indices_a + self.lora_a_weights, lora_ids, other_indices_a, self.lora_a_weights.shape[2] ) # other_indices_b = torch.arange(self.lora_b_weights.shape[2]).view(1, 1, -1) selected_lora_b_weights = CtxGatherFuncCB.apply( - self.lora_b_weights, lora_ids, other_indices_b + self.lora_b_weights, lora_ids, other_indices_b, self.lora_b_weights.shape[2] ) # other_indices_s = torch.arange(self.lora_scalings.shape[2]).view(1, 1, -1) selected_lora_scalings = CtxGatherFuncCB.apply( - self.lora_scalings, lora_ids, other_indices_s + self.lora_scalings, lora_ids, other_indices_s, self.lora_scalings.shape[2] ) # selected_lora_a_weights = selected_lora_a_weights.squeeze(1) diff --git a/QEfficient/transformers/cache_utils.py b/QEfficient/transformers/cache_utils.py index bbd937d52..0d123d25f 100644 --- a/QEfficient/transformers/cache_utils.py +++ b/QEfficient/transformers/cache_utils.py @@ -40,8 +40,9 @@ def read_only(self, cache_kwargs): k_out, v_out = self.keys, self.values position_ids = cache_kwargs.get("position_ids") batch_index = cache_kwargs.get("batch_index", None) - ctx_len = k_out.shape[2] - ctx_indices = torch.arange(ctx_len)[None, None, ...] + comp_ctx_len = cache_kwargs.get("CCL") + + ctx_indices = torch.arange(comp_ctx_len)[None, None, ...] gather_limit = position_ids.max(1, keepdim=True).values.unsqueeze(1) invalid_mask = ctx_indices > gather_limit @@ -53,12 +54,11 @@ def read_only(self, cache_kwargs): ctx_indices = torch.where(invalid_mask, invalid_idx_value, ctx_indices) if batch_index is not None: - k_out = CtxGatherFuncCB.apply(k_out, batch_index, ctx_indices) - v_out = CtxGatherFuncCB.apply(v_out, batch_index, ctx_indices) + k_out = CtxGatherFuncCB.apply(k_out, batch_index, ctx_indices, comp_ctx_len) + v_out = CtxGatherFuncCB.apply(v_out, batch_index, ctx_indices, comp_ctx_len) else: - k_out = CtxGatherFunc.apply(k_out, ctx_indices) - v_out = CtxGatherFunc.apply(v_out, ctx_indices) - + k_out = CtxGatherFunc.apply(k_out, ctx_indices, comp_ctx_len) + v_out = CtxGatherFunc.apply(v_out, ctx_indices, comp_ctx_len) v_out = torch.where(invalid_mask.unsqueeze(-1), torch.tensor(0.0, dtype=torch.float32), v_out) return k_out, v_out @@ -121,6 +121,7 @@ def update( else: position_ids = cache_kwargs.get("position_ids") batch_index = cache_kwargs.get("batch_index", None) # Check and fetch batch index value form the kwargs + comp_ctx_len = cache_kwargs.get("CCL") # Scatter if batch_index is not None: @@ -137,8 +138,7 @@ def update( k_out, v_out = self.keys, self.values # Gather - ctx_len = k_out.shape[2] - ctx_indices = torch.arange(ctx_len)[None, None, ...] + ctx_indices = torch.arange(comp_ctx_len)[None, None, ...] gather_limit = position_ids.max(1, keepdim=True).values.unsqueeze(1) invalid_mask = ctx_indices > gather_limit @@ -149,11 +149,11 @@ def update( ctx_indices = torch.where(invalid_mask, invalid_idx_value, ctx_indices) if batch_index is not None: - k_out = CtxGatherFuncCB.apply(k_out, batch_index, ctx_indices) - v_out = CtxGatherFuncCB.apply(v_out, batch_index, ctx_indices) + k_out = CtxGatherFuncCB.apply(k_out, batch_index, ctx_indices, comp_ctx_len) + v_out = CtxGatherFuncCB.apply(v_out, batch_index, ctx_indices, comp_ctx_len) else: - k_out = CtxGatherFunc.apply(k_out, ctx_indices) - v_out = CtxGatherFunc.apply(v_out, ctx_indices) + k_out = CtxGatherFunc.apply(k_out, ctx_indices, comp_ctx_len) + v_out = CtxGatherFunc.apply(v_out, ctx_indices, comp_ctx_len) v_out = torch.where(invalid_mask.unsqueeze(-1), torch.tensor(0.0, dtype=torch.float32), v_out) return k_out, v_out @@ -392,6 +392,8 @@ def update( else: position_ids = cache_kwargs.get("position_ids") sliding_window_pattern = cache_kwargs.get("sliding_window_pattern") + comp_ctx_len = cache_kwargs.get("CCL") + is_sliding_layer = torch.tensor(bool((layer_idx + 1) % sliding_window_pattern)) layer_ctx_len = self.key_cache[layer_idx].shape[2] kv_position_ids = torch.where( @@ -417,20 +419,24 @@ def update( ctx_len = self.key_cache[layer_idx].shape[2] ctx_indices = torch.arange(ctx_len)[None, None, ...] gather_limit = kv_position_ids.max(1, keepdim=True).values.unsqueeze(1) - invalid_mask = ctx_indices > gather_limit if torch.onnx.is_in_onnx_export(): invalid_idx_value = torch.iinfo(torch.int32).max else: invalid_idx_value = 0 + + ctx_indices = ctx_indices[:, :, :comp_ctx_len] + invalid_mask = ctx_indices > gather_limit + ctx_indices = torch.where(invalid_mask, invalid_idx_value, ctx_indices) all_indices = torch.arange(layer_ctx_len) + kv_position_ids.max() + 1 rolling_indices = torch.where(all_indices > layer_ctx_len - 1, all_indices % layer_ctx_len, all_indices) + rolling_indices = rolling_indices[:comp_ctx_len] final_indices = torch.where( (is_sliding_layer & (position_ids.max() >= (layer_ctx_len - 1))), rolling_indices, ctx_indices ) - k_out = CtxGatherFunc.apply(k_out, final_indices) - v_out = CtxGatherFunc.apply(v_out, final_indices) + k_out = CtxGatherFunc.apply(k_out, final_indices, comp_ctx_len) + v_out = CtxGatherFunc.apply(v_out, final_indices, comp_ctx_len) ctx_v_out = torch.where(invalid_mask.unsqueeze(-1), torch.tensor(0.0, dtype=torch.float32), v_out) v_out = torch.where((is_sliding_layer & (position_ids.max() >= (layer_ctx_len - 1))), v_out, ctx_v_out) return k_out, v_out @@ -492,6 +498,8 @@ def update( else: position_ids = cache_kwargs.get("position_ids") + comp_ctx_len = cache_kwargs.get("CCL") + is_sliding_layer = torch.tensor(bool(self.is_sliding[layer_idx])) # Update the position_ids to handle the sliding window @@ -519,21 +527,25 @@ def update( ctx_len = min(layer_ctx_len, k_out.shape[2]) ctx_indices = torch.arange(ctx_len)[None, None, ...] gather_limit = kv_position_ids.max(1, keepdim=True).values.unsqueeze(1) - invalid_mask = ctx_indices > gather_limit if torch.onnx.is_in_onnx_export(): invalid_idx_value = torch.iinfo(torch.int32).max else: invalid_idx_value = 0 + + ctx_indices = ctx_indices[:, :, :comp_ctx_len] + invalid_mask = ctx_indices > gather_limit + ctx_indices = torch.where(invalid_mask, invalid_idx_value, ctx_indices) # Rolling indices for sliding window all_indices = torch.arange(layer_ctx_len) + kv_position_ids.max() + 1 rolling_indices = torch.where(all_indices > layer_ctx_len - 1, all_indices % layer_ctx_len, all_indices) + rolling_indices = rolling_indices[:comp_ctx_len] final_indices = torch.where( (is_sliding_layer & (position_ids.max() >= (layer_ctx_len - 1))), rolling_indices, ctx_indices ) - k_out = CtxGatherFunc.apply(k_out, final_indices) - v_out = CtxGatherFunc.apply(v_out, final_indices) + k_out = CtxGatherFunc.apply(k_out, final_indices, comp_ctx_len) + v_out = CtxGatherFunc.apply(v_out, final_indices, comp_ctx_len) ctx_v_out = torch.where(invalid_mask.unsqueeze(-1), torch.tensor(0.0, dtype=torch.float32), v_out) v_out = torch.where((is_sliding_layer & (position_ids.max() >= (layer_ctx_len - 1))), v_out, ctx_v_out) return k_out, v_out diff --git a/QEfficient/transformers/models/codegen/modeling_codegen.py b/QEfficient/transformers/models/codegen/modeling_codegen.py index 776bfce43..15efa2ce5 100644 --- a/QEfficient/transformers/models/codegen/modeling_codegen.py +++ b/QEfficient/transformers/models/codegen/modeling_codegen.py @@ -72,6 +72,7 @@ def forward( self, hidden_states: Optional[torch.FloatTensor], layer_past: Optional[Tuple[torch.Tensor]] = None, + comp_ctx_lengths: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, @@ -123,7 +124,9 @@ def forward( query = query.permute(0, 2, 1, 3) if layer_past is not None: - cache_kwargs = {"position_ids": position_ids, "batch_index": batch_index} + if comp_ctx_lengths is not None: + attention_mask = attention_mask[:, :, :, : comp_ctx_lengths.shape[-1]] + cache_kwargs = {"position_ids": position_ids, "batch_index": batch_index, "CCL": attention_mask.shape[-1]} key, value = layer_past.update(key.to(hidden_states.dtype), value, self.layer_idx, cache_kwargs) # compute self-attention: V x Softmax(QK^T) @@ -147,6 +150,7 @@ def forward( self, input_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Union[Cache, tuple[tuple[torch.Tensor]]]] = None, + comp_ctx_lengths: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, batch_index: Optional[torch.LongTensor] = None, @@ -245,6 +249,7 @@ def forward( outputs = block( hidden_states, layer_past=past_key_values, + comp_ctx_lengths=comp_ctx_lengths, batch_index=batch_index, attention_mask=attention_mask, position_ids=position_ids, @@ -294,6 +299,7 @@ def forward( self, input_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, + comp_ctx_lengths: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, @@ -312,6 +318,7 @@ def forward( transformer_outputs = self.transformer( input_ids, past_key_values=past_key_values, + comp_ctx_lengths=comp_ctx_lengths, attention_mask=attention_mask, token_type_ids=token_type_ids, batch_index=batch_index, @@ -348,6 +355,7 @@ def forward( self, hidden_states: Optional[torch.FloatTensor], layer_past: Optional[Cache] = None, + comp_ctx_lengths: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, position_ids: Optional[torch.LongTensor] = None, batch_index: Optional[torch.LongTensor] = None, @@ -361,6 +369,7 @@ def forward( attn_outputs, attn_weights = self.attn( hidden_states=hidden_states, layer_past=layer_past, + comp_ctx_lengths=comp_ctx_lengths, attention_mask=attention_mask, position_ids=position_ids, batch_index=batch_index, diff --git a/QEfficient/transformers/models/falcon/modeling_falcon.py b/QEfficient/transformers/models/falcon/modeling_falcon.py index 8f2c3730d..218852b15 100644 --- a/QEfficient/transformers/models/falcon/modeling_falcon.py +++ b/QEfficient/transformers/models/falcon/modeling_falcon.py @@ -117,6 +117,7 @@ def forward( attention_mask: torch.Tensor, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Cache] = None, + comp_ctx_lengths: Optional[torch.LongTensor] = None, batch_index: Optional[torch.LongTensor] = None, layer_past: Optional[Cache] = None, head_mask: Optional[torch.Tensor] = None, @@ -140,7 +141,9 @@ def forward( query_layer, key_layer = qeff_apply_rotary_pos_emb(query_layer, key_layer, cos, sin, position_ids) if layer_past is not None: - cache_kwargs = {"batch_index": batch_index, "position_ids": position_ids} + if comp_ctx_lengths is not None: + attention_mask = attention_mask[:, :, :, : comp_ctx_lengths.shape[-1]] + cache_kwargs = {"batch_index": batch_index, "position_ids": position_ids, "CCL": attention_mask.shape[-1]} key_layer, value_layer = layer_past.update(key_layer, value_layer, self.layer_idx, cache_kwargs) if attention_mask is not None: @@ -172,6 +175,7 @@ def forward( attention_mask: torch.Tensor, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Cache] = None, + comp_ctx_lengths: Optional[torch.LongTensor] = None, batch_index: Optional[torch.LongTensor] = None, layer_past: Optional[Union[Cache, Tuple[torch.Tensor, torch.Tensor]]] = None, head_mask: Optional[torch.Tensor] = None, @@ -195,6 +199,7 @@ def forward( attention_mask=attention_mask, position_ids=position_ids, past_key_value=past_key_value, + comp_ctx_lengths=comp_ctx_lengths, batch_index=batch_index, alibi=alibi, head_mask=head_mask, @@ -245,6 +250,7 @@ def forward( position_ids: Optional[torch.LongTensor] = None, batch_index: Optional[torch.LongTensor] = None, past_key_values: Optional[Union[Cache, Tuple[Tuple[torch.Tensor, torch.Tensor], ...]]] = None, + comp_ctx_lengths: Optional[torch.LongTensor] = None, head_mask: Optional[torch.LongTensor] = None, inputs_embeds: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, @@ -307,6 +313,7 @@ def forward( attention_mask=causal_mask, position_ids=position_ids, past_key_value=past_key_values, + comp_ctx_lengths=comp_ctx_lengths, batch_index=batch_index, head_mask=head_mask[i], use_cache=use_cache, @@ -352,6 +359,7 @@ def forward( position_ids: Optional[torch.LongTensor] = None, batch_index: Optional[torch.LongTensor] = None, past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None, + comp_ctx_lengths: Optional[torch.LongTensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, use_cache: Optional[bool] = None, @@ -368,6 +376,7 @@ def forward( attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, + comp_ctx_lengths=comp_ctx_lengths, batch_index=batch_index, head_mask=head_mask, inputs_embeds=inputs_embeds, diff --git a/QEfficient/transformers/models/gemma/modeling_gemma.py b/QEfficient/transformers/models/gemma/modeling_gemma.py index eea1e3898..4c64109d8 100644 --- a/QEfficient/transformers/models/gemma/modeling_gemma.py +++ b/QEfficient/transformers/models/gemma/modeling_gemma.py @@ -137,6 +137,7 @@ def forward( attention_mask: Optional[torch.Tensor], position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Cache] = None, + comp_ctx_lengths: Optional[torch.LongTensor] = None, batch_index: Optional[torch.LongTensor] = None, cache_position: Optional[torch.LongTensor] = None, **kwargs, @@ -153,7 +154,9 @@ def forward( query_states, key_states = qeff_apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids) if past_key_value is not None: - cache_kwargs = {"batch_index": batch_index, "position_ids": position_ids} + if comp_ctx_lengths is not None: + attention_mask = attention_mask[:, :, :, : comp_ctx_lengths.shape[-1]] + cache_kwargs = {"batch_index": batch_index, "position_ids": position_ids, "CCL": attention_mask.shape[-1]} key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) attention_interface = eager_attention_forward @@ -186,6 +189,7 @@ def forward( attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Cache] = None, + comp_ctx_lengths: Optional[torch.LongTensor] = None, batch_index: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = False, cache_position: Optional[torch.LongTensor] = None, @@ -214,6 +218,7 @@ def forward( attention_mask=attention_mask, position_ids=position_ids, past_key_value=past_key_value, + comp_ctx_lengths=comp_ctx_lengths, batch_index=batch_index, use_cache=use_cache, cache_position=cache_position, @@ -243,6 +248,7 @@ def forward( attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Cache] = None, + comp_ctx_lengths: Optional[torch.LongTensor] = None, batch_index: Optional[torch.LongTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, @@ -299,6 +305,7 @@ def forward( attention_mask=causal_mask, position_ids=position_ids, past_key_value=past_key_values, + comp_ctx_lengths=comp_ctx_lengths, batch_index=batch_index, use_cache=use_cache, cache_position=cache_position, @@ -334,6 +341,7 @@ def forward( attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None, + comp_ctx_lengths: Optional[torch.LongTensor] = None, batch_index: Optional[torch.LongTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, @@ -350,6 +358,7 @@ def forward( attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, + comp_ctx_lengths=comp_ctx_lengths, batch_index=batch_index, inputs_embeds=inputs_embeds, use_cache=use_cache, diff --git a/QEfficient/transformers/models/gemma2/modeling_gemma2.py b/QEfficient/transformers/models/gemma2/modeling_gemma2.py index be3ba942d..85bba2989 100644 --- a/QEfficient/transformers/models/gemma2/modeling_gemma2.py +++ b/QEfficient/transformers/models/gemma2/modeling_gemma2.py @@ -144,6 +144,7 @@ def forward( attention_mask: Optional[torch.Tensor], position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Cache] = None, + comp_ctx_lengths: Optional[torch.LongTensor] = None, batch_index: Optional[torch.LongTensor] = None, cache_position: Optional[torch.LongTensor] = None, **kwargs, @@ -160,8 +161,16 @@ def forward( query_states, key_states = qeff_apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids) if past_key_value is not None: + if comp_ctx_lengths is not None: + attention_mask = attention_mask[:, :, :, : comp_ctx_lengths.shape[-1]] # sin and cos are specific to RoPE models; cache_position needed for the static cache - cache_kwargs = {"sin": sin, "cos": cos, "batch_index": batch_index, "position_ids": position_ids} + cache_kwargs = { + "sin": sin, + "cos": cos, + "batch_index": batch_index, + "position_ids": position_ids, + "CCL": attention_mask.shape[-1], + } key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) attention_interface: Callable = eager_attention_forward @@ -194,6 +203,7 @@ def forward( attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Cache] = None, + comp_ctx_lengths: Optional[torch.LongTensor] = None, batch_index: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = False, use_cache: Optional[bool] = False, @@ -226,6 +236,7 @@ def forward( attention_mask=attention_mask, position_ids=position_ids, past_key_value=past_key_value, + comp_ctx_lengths=comp_ctx_lengths, batch_index=batch_index, output_attentions=output_attentions, use_cache=use_cache, @@ -266,6 +277,7 @@ def forward( attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Cache] = None, + comp_ctx_lengths: Optional[torch.LongTensor] = None, batch_index: Optional[torch.LongTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, @@ -338,6 +350,7 @@ def forward( attention_mask=causal_mask, position_ids=position_ids, past_key_value=past_key_values, + comp_ctx_lengths=comp_ctx_lengths, batch_index=batch_index, output_attentions=output_attentions, use_cache=use_cache, @@ -381,6 +394,7 @@ def forward( attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None, + comp_ctx_lengths: Optional[torch.LongTensor] = None, batch_index: Optional[torch.LongTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, @@ -404,6 +418,7 @@ def forward( attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, + comp_ctx_lengths=comp_ctx_lengths, batch_index=batch_index, inputs_embeds=inputs_embeds, use_cache=use_cache, diff --git a/QEfficient/transformers/models/gemma3/modeling_gemma3.py b/QEfficient/transformers/models/gemma3/modeling_gemma3.py index 20b7036fd..95ee662b4 100644 --- a/QEfficient/transformers/models/gemma3/modeling_gemma3.py +++ b/QEfficient/transformers/models/gemma3/modeling_gemma3.py @@ -6,7 +6,7 @@ # ----------------------------------------------------------------------------- import copy -from typing import Optional, Tuple, Union +from typing import List, Optional, Tuple, Union import torch from torch import nn @@ -215,6 +215,7 @@ def forward( attention_mask: Optional[torch.Tensor], position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Cache] = None, + comp_ctx_lengths: Optional[torch.LongTensor] = None, batch_index: Optional[torch.LongTensor] = None, cache_position: Optional[torch.LongTensor] = None, **kwargs, @@ -245,6 +246,8 @@ def forward( query_states, key_states = qeff_apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids) if past_key_value is not None: + if comp_ctx_lengths is not None: + attention_mask = attention_mask[:, :, :, : comp_ctx_lengths.shape[-1]] # sin and cos are specific to RoPE models; cache_position needed for the static cache cache_kwargs = { "sin": sin, @@ -253,6 +256,7 @@ def forward( "position_ids": position_ids, "is_sliding": self.is_sliding, "sliding_window_pattern": self.config.sliding_window_pattern, + "CCL": attention_mask.shape[-1], } key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) @@ -297,6 +301,7 @@ def forward( attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Cache] = None, + comp_ctx_lengths: Optional[torch.LongTensor] = None, batch_index: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = False, use_cache: Optional[bool] = False, @@ -323,6 +328,7 @@ def forward( attention_mask=attention_mask, position_ids=position_ids, past_key_value=past_key_value, + comp_ctx_lengths=comp_ctx_lengths, batch_index=batch_index, output_attentions=output_attentions, use_cache=use_cache, @@ -363,6 +369,7 @@ def forward( attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Cache] = None, + comp_ctx_lengths: Optional[torch.LongTensor] = None, batch_index: Optional[torch.LongTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, @@ -429,6 +436,7 @@ def forward( attention_mask=causal_mask, position_ids=position_ids, past_key_value=past_key_values, + comp_ctx_lengths=comp_ctx_lengths, batch_index=batch_index, output_attentions=output_attentions, use_cache=use_cache, @@ -466,6 +474,7 @@ def forward( attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Cache] = None, + comp_ctx_lengths: Optional[torch.LongTensor] = None, batch_index: Optional[torch.LongTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, @@ -525,6 +534,7 @@ def forward( attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, + comp_ctx_lengths=comp_ctx_lengths, batch_index=batch_index, inputs_embeds=inputs_embeds, use_cache=use_cache, @@ -592,7 +602,15 @@ def __init__(self, model): self.config = self.model.config self.lm_head = self.model.lm_head - def forward(self, input_ids, vision_embeds, position_ids, image_idx, past_key_values): + def forward( + self, + input_ids, + vision_embeds, + position_ids, + image_idx, + past_key_values, + comp_ctx_lengths: Optional[List[int]] = None, + ): inputs_embeds = self.model.get_input_embeddings()(input_ids) B, N, C = inputs_embeds.shape selected = input_ids == self.model.config.image_token_index @@ -603,7 +621,11 @@ def forward(self, input_ids, vision_embeds, position_ids, image_idx, past_key_va image_input_embeds = torch.where(selected.unsqueeze(-1), image_features_expanded, inputs_embeds) inputs_embeds = torch.where(input_ids.shape[1] == torch.tensor(1), inputs_embeds, image_input_embeds) outputs = self.language_model( - inputs_embeds=inputs_embeds, position_ids=position_ids, past_key_values=past_key_values, use_cache=True + inputs_embeds=inputs_embeds, + position_ids=position_ids, + past_key_values=past_key_values, + comp_ctx_lengths=comp_ctx_lengths, + use_cache=True, ) image_idx = (indices1.max() + 1).unsqueeze(0).unsqueeze(0) logit_index = position_ids.to(torch.int32).argmax(1, keepdim=True) @@ -620,7 +642,15 @@ def get_qeff_vision_encoder(self): def get_qeff_language_decoder(self): return QEffGemma3DecoderWrapper(self) - def forward(self, input_ids, position_ids, pixel_values, image_idx, past_key_values): + def forward( + self, + input_ids, + position_ids, + pixel_values, + image_idx, + past_key_values, + comp_ctx_lengths: Optional[List[int]] = None, + ): image_features = self.get_image_features(pixel_values=pixel_values) inputs_embeds = self.get_input_embeddings()(input_ids) B, N, C = inputs_embeds.shape @@ -632,7 +662,11 @@ def forward(self, input_ids, position_ids, pixel_values, image_idx, past_key_val image_input_embeds = torch.where(selected.unsqueeze(-1), image_features_expanded, inputs_embeds) inputs_embeds = torch.where(input_ids.shape[1] == torch.tensor(1), inputs_embeds, image_input_embeds) outputs = self.language_model( - inputs_embeds=inputs_embeds, position_ids=position_ids, past_key_values=past_key_values, use_cache=True + inputs_embeds=inputs_embeds, + position_ids=position_ids, + past_key_values=past_key_values, + comp_ctx_lengths=comp_ctx_lengths, + use_cache=True, ) image_idx = (indices1.max() + 1).unsqueeze(0).unsqueeze(0) logit_index = position_ids.to(torch.int32).argmax(1, keepdim=True) @@ -647,6 +681,8 @@ def get_specializations( prefill_seq_len: int, ctx_len: int, img_size: int, + comp_ctx_lengths_prefill: Optional[List[int]] = None, + comp_ctx_lengths_decode: Optional[List[int]] = None, kv_offload: bool = False, **compiler_options, ): @@ -667,24 +703,55 @@ def get_specializations( "ctx_len": ctx_len, } ] - lang = [ - { - "batch_size": batch_size, - "seq_len": prefill_seq_len, - "ctx_len": ctx_len, - "sliding_window": self.language_model.config.sliding_window, - "img_size": img_size, - "mm_tokens_per_image": mm_tokens_per_image, - }, - { - "batch_size": batch_size, - "seq_len": "1", - "ctx_len": ctx_len, - "sliding_window": self.language_model.config.sliding_window, - "img_size": img_size, - "mm_tokens_per_image": mm_tokens_per_image, - }, - ] + if comp_ctx_lengths_prefill and comp_ctx_lengths_decode: + lang = [] + + for i in range(0, len(comp_ctx_lengths_prefill)): + lang.append( + { + "batch_size": batch_size, + "seq_len": prefill_seq_len, + "ctx_len": ctx_len, + "comp_ctx_lengths": comp_ctx_lengths_prefill[i], + "sliding_window": self.language_model.config.sliding_window, + "img_size": img_size, + "mm_tokens_per_image": mm_tokens_per_image, + } + ) + + for i in range(0, len(comp_ctx_lengths_decode)): + lang.append( + { + "batch_size": batch_size, + "seq_len": "1", + "ctx_len": ctx_len, + "comp_ctx_lengths": comp_ctx_lengths_decode[i], + "sliding_window": self.language_model.config.sliding_window, + "img_size": img_size, + "mm_tokens_per_image": mm_tokens_per_image, + } + ) + + else: + lang = [ + { + "batch_size": batch_size, + "seq_len": prefill_seq_len, + "ctx_len": ctx_len, + "sliding_window": self.language_model.config.sliding_window, + "img_size": img_size, + "mm_tokens_per_image": mm_tokens_per_image, + }, + { + "batch_size": batch_size, + "seq_len": "1", + "ctx_len": ctx_len, + "sliding_window": self.language_model.config.sliding_window, + "img_size": img_size, + "mm_tokens_per_image": mm_tokens_per_image, + }, + ] + specializations = {} if kv_offload: @@ -694,7 +761,7 @@ def get_specializations( else: return lang, compiler_options - def get_onnx_dynamic_axes(self, kv_offload: bool = False): + def get_onnx_dynamic_axes(self, comp_ctx_lengths: Optional[List[int]] = None, kv_offload: bool = False): # Define dynamic axes vision_dynamic_axes = {} lang_dynamic_axes = {} @@ -719,6 +786,9 @@ def get_onnx_dynamic_axes(self, kv_offload: bool = False): ) lang_dynamic_axes[f"past_{kv}.{i}"] = apply_dynamic_axes + if comp_ctx_lengths is not None: + lang_dynamic_axes["comp_ctx_lengths"] = {0: "comp_ctx_lengths"} + dynamic_axes = {} if kv_offload: dynamic_axes["vision"] = vision_dynamic_axes @@ -767,7 +837,7 @@ def get_dummy_pkv_cache(self, config, batch_size, seq_len): past_key_values.append(pkv) return past_key_values - def get_dummy_inputs(self, kv_offload: bool = False): + def get_dummy_inputs(self, comp_ctx_lengths: Optional[List[int]] = None, kv_offload: bool = False): if vis_cfg := getattr(self.config, "vision_config", None): img_size = getattr(vis_cfg, "image_size", 896) else: @@ -813,6 +883,9 @@ def get_dummy_inputs(self, kv_offload: bool = False): seq_len=constants.ONNX_EXPORT_EXAMPLE_SEQ_LEN, ) + if comp_ctx_lengths is not None: + lang_inputs["comp_ctx_lengths"] = torch.randint(0, 100, (40,), dtype=torch.long) + inputs = {} if kv_offload: inputs["vision"] = vision_inputs diff --git a/QEfficient/transformers/models/gpt2/modeling_gpt2.py b/QEfficient/transformers/models/gpt2/modeling_gpt2.py index d68a65430..59d864907 100644 --- a/QEfficient/transformers/models/gpt2/modeling_gpt2.py +++ b/QEfficient/transformers/models/gpt2/modeling_gpt2.py @@ -65,6 +65,7 @@ def forward( self, hidden_states: Optional[Tuple[torch.FloatTensor]], past_key_value: Optional[Cache] = None, + comp_ctx_lengths: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, position_ids: Optional[torch.LongTensor] = None, batch_index: Optional[torch.LongTensor] = None, @@ -118,9 +119,11 @@ def forward( if (past_key_value is not None and not is_cross_attention) or ( past_key_value is not None and is_cross_attention and not is_updated ): + if comp_ctx_lengths is not None: + attention_mask = attention_mask[:, :, :, : comp_ctx_lengths.shape[-1]] # save all key/value_layer to cache to be re-used for fast auto-regressive generation # Update the cache_kwargs with position_ids for Cloud AI 100 - cache_kwargs = {"position_ids": position_ids, "batch_index": batch_index} + cache_kwargs = {"position_ids": position_ids, "batch_index": batch_index, "CCL": attention_mask.shape[-1]} key_states, value_states = curr_past_key_value.update( key_states, value_states, self.layer_idx, cache_kwargs ) @@ -156,6 +159,7 @@ def forward( self, hidden_states: Optional[Tuple[torch.FloatTensor]], past_key_value: Optional[Cache] = None, + comp_ctx_lengths: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, position_ids: Optional[torch.LongTensor] = None, batch_index: Optional[torch.LongTensor] = None, @@ -174,6 +178,7 @@ def forward( hidden_states, past_key_value=past_key_value, attention_mask=attention_mask, + comp_ctx_lengths=comp_ctx_lengths, position_ids=position_ids, batch_index=batch_index, head_mask=head_mask, @@ -232,6 +237,7 @@ def forward( self, input_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, + comp_ctx_lengths: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, @@ -341,6 +347,7 @@ def forward( outputs = block( hidden_states, past_key_value=past_key_values, + comp_ctx_lengths=comp_ctx_lengths, attention_mask=attention_mask, position_ids=position_ids, batch_index=batch_index, @@ -392,6 +399,7 @@ def forward( self, input_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, + comp_ctx_lengths: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, @@ -418,6 +426,7 @@ def forward( transformer_outputs = self.transformer( input_ids, past_key_values=past_key_values, + comp_ctx_lengths=comp_ctx_lengths, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, diff --git a/QEfficient/transformers/models/gpt_bigcode/modeling_gpt_bigcode.py b/QEfficient/transformers/models/gpt_bigcode/modeling_gpt_bigcode.py index af233870b..cb6a0f0d0 100644 --- a/QEfficient/transformers/models/gpt_bigcode/modeling_gpt_bigcode.py +++ b/QEfficient/transformers/models/gpt_bigcode/modeling_gpt_bigcode.py @@ -98,6 +98,7 @@ def forward( self, hidden_states: torch.Tensor, layer_past: Optional[Cache] = None, + comp_ctx_lengths: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, batch_index: Optional[torch.LongTensor] = None, @@ -151,8 +152,10 @@ def forward( ) if layer_past is not None: + if comp_ctx_lengths is not None: + attention_mask = attention_mask[:, :, :, : comp_ctx_lengths.shape[-1]] # save all key/value_states to cache to be re-used for fast auto-regressive generation - cache_kwargs = {"position_ids": position_ids, "batch_index": batch_index} + cache_kwargs = {"position_ids": position_ids, "batch_index": batch_index, "CCL": attention_mask.shape[-1]} key, value = curr_past_key_value.update(key, value, self.layer_idx, cache_kwargs) # set flag that curr layer for cross-attn is already updated so we can re-use in subsequent calls if self.is_cross_attention: @@ -180,6 +183,7 @@ def forward( self, hidden_states: Optional[Tuple[torch.Tensor]], layer_past: Optional[Cache] = None, + comp_ctx_lengths: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, batch_index: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, @@ -194,6 +198,7 @@ def forward( attn_outputs = self.attn( hidden_states, layer_past=layer_past, + comp_ctx_lengths=comp_ctx_lengths, attention_mask=attention_mask, position_ids=position_ids, batch_index=batch_index, @@ -242,6 +247,7 @@ def forward( self, input_ids: Optional[torch.Tensor] = None, past_key_values: Optional[list[torch.Tensor]] = None, + comp_ctx_lengths: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, @@ -333,6 +339,7 @@ def forward( outputs = block( hidden_states, layer_past=past_key_values, + comp_ctx_lengths=comp_ctx_lengths, position_ids=position_ids, batch_index=batch_index, attention_mask=attention_mask, @@ -374,6 +381,7 @@ def forward( self, input_ids: Optional[torch.Tensor] = None, past_key_values: Optional[tuple[tuple[torch.Tensor]]] = None, + comp_ctx_lengths: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, token_type_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, @@ -399,6 +407,7 @@ def forward( transformer_outputs = self.transformer( input_ids, past_key_values=past_key_values, + comp_ctx_lengths=comp_ctx_lengths, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, diff --git a/QEfficient/transformers/models/gptj/modeling_gptj.py b/QEfficient/transformers/models/gptj/modeling_gptj.py index dc3e5e6d2..da5bd881c 100644 --- a/QEfficient/transformers/models/gptj/modeling_gptj.py +++ b/QEfficient/transformers/models/gptj/modeling_gptj.py @@ -83,6 +83,7 @@ def forward( self, hidden_states: torch.FloatTensor, layer_past: Optional[Tuple[torch.Tensor]] = None, + comp_ctx_lengths: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, position_ids: Optional[torch.LongTensor] = None, batch_index: Optional[torch.LongTensor] = None, @@ -134,7 +135,9 @@ def forward( query = query.permute(0, 2, 1, 3) if layer_past is not None: - cache_kwargs = {"position_ids": position_ids, "batch_index": batch_index} + if comp_ctx_lengths is not None: + attention_mask = attention_mask[:, :, :, : comp_ctx_lengths.shape[-1]] + cache_kwargs = {"position_ids": position_ids, "batch_index": batch_index, "CCL": attention_mask.shape[-1]} key, value = layer_past.update(key, value, self.layer_idx, cache_kwargs) # compute self-attention: V x Softmax(QK^T) @@ -151,6 +154,7 @@ def forward( self, hidden_states: Optional[torch.FloatTensor], layer_past: Optional[Cache] = None, + comp_ctx_lengths: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, position_ids: Optional[torch.LongTensor] = None, batch_index: Optional[torch.LongTensor] = None, @@ -164,6 +168,7 @@ def forward( attn_outputs, attn_weights = self.attn( hidden_states=hidden_states, layer_past=layer_past, + comp_ctx_lengths=comp_ctx_lengths, attention_mask=attention_mask, position_ids=position_ids, batch_index=batch_index, @@ -191,6 +196,7 @@ def forward( self, input_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, + comp_ctx_lengths: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, @@ -270,6 +276,7 @@ def forward( outputs = block( hidden_states=hidden_states, layer_past=past_key_values, + comp_ctx_lengths=comp_ctx_lengths, attention_mask=causal_mask, position_ids=position_ids, batch_index=batch_index, @@ -314,6 +321,7 @@ def forward( self, input_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Tuple[Tuple[torch.Tensor]]] = None, + comp_ctx_lengths: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, @@ -339,6 +347,7 @@ def forward( transformer_outputs = self.transformer( input_ids, past_key_values=past_key_values, + comp_ctx_lengths=comp_ctx_lengths, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, diff --git a/QEfficient/transformers/models/granite/modeling_granite.py b/QEfficient/transformers/models/granite/modeling_granite.py index 2a2d47d6d..dd3d6c7f3 100644 --- a/QEfficient/transformers/models/granite/modeling_granite.py +++ b/QEfficient/transformers/models/granite/modeling_granite.py @@ -129,6 +129,7 @@ def forward( position_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, past_key_value: Optional[Cache] = None, + comp_ctx_lengths: Optional[torch.LongTensor] = None, batch_index: Optional[torch.LongTensor] = None, cache_position: Optional[torch.LongTensor] = None, **kwargs, @@ -145,8 +146,16 @@ def forward( query_states, key_states = qeff_apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids) if past_key_value is not None: + if comp_ctx_lengths is not None: + attention_mask = attention_mask[:, :, :, : comp_ctx_lengths.shape[-1]] # sin and cos are specific to RoPE models; cache_position needed for the static cache - cache_kwargs = {"sin": sin, "cos": cos, "batch_index": batch_index, "position_ids": position_ids} + cache_kwargs = { + "sin": sin, + "cos": cos, + "batch_index": batch_index, + "position_ids": position_ids, + "CCL": attention_mask.shape[-1], + } key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) attention_interface: Callable = eager_attention_forward @@ -171,6 +180,7 @@ def forward( attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Cache] = None, + comp_ctx_lengths: Optional[torch.LongTensor] = None, batch_index: Optional[torch.LongTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, @@ -226,6 +236,7 @@ def forward( attention_mask=causal_mask, position_ids=position_ids, past_key_value=past_key_values, + comp_ctx_lengths=comp_ctx_lengths, batch_index=batch_index, output_attentions=output_attentions, use_cache=use_cache, @@ -267,6 +278,7 @@ def forward( attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None, + comp_ctx_lengths: Optional[torch.LongTensor] = None, batch_index: Optional[torch.LongTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, @@ -319,6 +331,7 @@ def forward( attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, + comp_ctx_lengths=comp_ctx_lengths, batch_index=batch_index, inputs_embeds=inputs_embeds, use_cache=use_cache, diff --git a/QEfficient/transformers/models/granitemoe/modeling_granitemoe.py b/QEfficient/transformers/models/granitemoe/modeling_granitemoe.py index c085f6a5e..07031d7fc 100644 --- a/QEfficient/transformers/models/granitemoe/modeling_granitemoe.py +++ b/QEfficient/transformers/models/granitemoe/modeling_granitemoe.py @@ -123,6 +123,7 @@ def forward( position_embeddings: Tuple[torch.Tensor, torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, past_key_value: Optional[Cache] = None, + comp_ctx_lengths: Optional[torch.LongTensor] = None, batch_index: Optional[torch.LongTensor] = None, output_attentions: bool = False, use_cache: bool = False, @@ -142,6 +143,8 @@ def forward( cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) query_states, key_states = qeff_apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids) if past_key_value is not None: + if comp_ctx_lengths is not None: + attention_mask = attention_mask[:, :, :, : comp_ctx_lengths.shape[-1]] # sin and cos are specific to RoPE models; cache_position needed for the static cache cache_kwargs = { "sin": sin, @@ -149,6 +152,7 @@ def forward( "cache_position": cache_position, "batch_index": batch_index, "position_ids": position_ids, + "CCL": attention_mask.shape[-1], } key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) @@ -209,6 +213,7 @@ def forward( attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Cache] = None, + comp_ctx_lengths: Optional[torch.LongTensor] = None, batch_index: Optional[torch.LongTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, @@ -286,6 +291,7 @@ def forward( attention_mask=causal_mask, position_ids=position_ids, past_key_value=past_key_values, + comp_ctx_lengths=comp_ctx_lengths, batch_index=batch_index, output_attentions=output_attentions, use_cache=use_cache, @@ -297,6 +303,7 @@ def forward( attention_mask=causal_mask, position_ids=position_ids, past_key_value=past_key_values, + comp_ctx_lengths=comp_ctx_lengths, output_attentions=output_attentions, use_cache=use_cache, cache_position=cache_position, @@ -492,6 +499,7 @@ def forward( attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None, + comp_ctx_lengths: Optional[torch.LongTensor] = None, batch_index: Optional[torch.LongTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, @@ -546,6 +554,7 @@ def forward( attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, + comp_ctx_lengths=comp_ctx_lengths, batch_index=batch_index, inputs_embeds=inputs_embeds, use_cache=use_cache, diff --git a/QEfficient/transformers/models/grok_1/modeling_grok1.py b/QEfficient/transformers/models/grok_1/modeling_grok1.py index 567a8e070..a0f9cd915 100644 --- a/QEfficient/transformers/models/grok_1/modeling_grok1.py +++ b/QEfficient/transformers/models/grok_1/modeling_grok1.py @@ -55,6 +55,7 @@ def forward( attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, + comp_ctx_lengths: Optional[torch.LongTensor] = None, batch_index: Optional[torch.LongTensor] = None, output_attentions: bool = False, use_cache: bool = False, @@ -93,7 +94,9 @@ def forward( query_states, key_states = qeff_apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids) if past_key_value is not None: - cache_kwargs = {"batch_index": batch_index, "position_ids": position_ids} + if comp_ctx_lengths is not None: + attention_mask = attention_mask[:, :, :, : comp_ctx_lengths.shape[-1]] + cache_kwargs = {"batch_index": batch_index, "position_ids": position_ids, "CCL": attention_mask.shape[-1]} key_states, value_states = past_key_value.update(key_states, value_states, layer_idx, cache_kwargs) # repeat k/v heads if n_kv_heads < n_heads @@ -205,6 +208,7 @@ def forward( attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, + comp_ctx_lengths: Optional[torch.LongTensor] = None, batch_index: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = False, output_router_logits: Optional[bool] = False, @@ -235,6 +239,7 @@ def forward( attention_mask=attention_mask, position_ids=position_ids, past_key_value=past_key_value, + comp_ctx_lengths=comp_ctx_lengths, batch_index=batch_index, output_attentions=output_attentions, use_cache=use_cache, @@ -277,6 +282,7 @@ def forward( attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, + comp_ctx_lengths: Optional[torch.LongTensor] = None, batch_index: Optional[torch.LongTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, @@ -351,6 +357,7 @@ def forward( attention_mask=attention_mask, position_ids=position_ids, past_key_value=past_key_values, + comp_ctx_lengths=comp_ctx_lengths, batch_index=batch_index, output_attentions=output_attentions, use_cache=use_cache, @@ -395,6 +402,7 @@ def forward( attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, + comp_ctx_lengths: Optional[torch.LongTensor] = None, batch_index: Optional[torch.LongTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, @@ -441,6 +449,7 @@ def forward( attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, + comp_ctx_lengths=comp_ctx_lengths, batch_index=batch_index, inputs_embeds=inputs_embeds, use_cache=use_cache, diff --git a/QEfficient/transformers/models/internvl/modeling_internvl.py b/QEfficient/transformers/models/internvl/modeling_internvl.py index 38d0fe167..96c59325f 100644 --- a/QEfficient/transformers/models/internvl/modeling_internvl.py +++ b/QEfficient/transformers/models/internvl/modeling_internvl.py @@ -5,6 +5,8 @@ # # ----------------------------------------------------------------------------- +from typing import List, Optional + import torch import torch.nn as nn import torch.nn.functional as F @@ -34,7 +36,15 @@ def __init__(self, model): self.config = self.model.language_model.config self.language_model = self.model.language_model - def forward(self, input_ids, vision_embeds, position_ids, image_idx, past_key_values): + def forward( + self, + input_ids, + vision_embeds, + position_ids, + image_idx, + past_key_values, + comp_ctx_lengths: Optional[List[int]] = None, + ): input_embeds = self.model.language_model.get_input_embeddings()(input_ids) B, N, C = input_embeds.shape image_input_embeds = input_embeds.reshape(B * N, C) @@ -55,7 +65,11 @@ def forward(self, input_ids, vision_embeds, position_ids, image_idx, past_key_va inputs_embeds = torch.where(input_ids.shape[1] == torch.tensor(1), input_embeds, image_input_embeds) inputs_embeds = inputs_embeds.reshape(B, N, C) outputs = self.model.language_model( - inputs_embeds=inputs_embeds, position_ids=position_ids, past_key_values=past_key_values, use_cache=True + inputs_embeds=inputs_embeds, + position_ids=position_ids, + past_key_values=past_key_values, + comp_ctx_lengths=comp_ctx_lengths, + use_cache=True, ) image_idx = (indices1.max() + 1).unsqueeze(0).unsqueeze(0) return outputs.logits, vision_embeds, image_idx, outputs.past_key_values @@ -74,6 +88,8 @@ def get_specializations( prefill_seq_len: int, ctx_len: int, img_size: int, + comp_ctx_lengths_prefill: Optional[List[int]] = None, + comp_ctx_lengths_decode: Optional[List[int]] = None, kv_offload: bool = False, **compiler_options, ): @@ -104,24 +120,54 @@ def get_specializations( "batched_num_patches": batch_size * num_patches, } ] - lang = [ - { - "batch_size": batch_size, - "seq_len": prefill_seq_len, - "ctx_len": ctx_len, - "num_patches": num_patches, - "img_size": img_size, - "vision_size": vision_size, - }, - { - "batch_size": batch_size, - "seq_len": "1", - "ctx_len": ctx_len, - "num_patches": num_patches, - "img_size": img_size, - "vision_size": vision_size, - }, - ] + if comp_ctx_lengths_prefill and comp_ctx_lengths_decode: + lang = [] + + for i in range(0, len(comp_ctx_lengths_prefill)): + lang.append( + { + "batch_size": batch_size, + "seq_len": prefill_seq_len, + "ctx_len": ctx_len, + "comp_ctx_lengths": comp_ctx_lengths_prefill[i], + "num_patches": num_patches, + "img_size": img_size, + "vision_size": vision_size, + } + ) + + for i in range(0, len(comp_ctx_lengths_decode)): + lang.append( + { + "batch_size": batch_size, + "seq_len": "1", + "ctx_len": ctx_len, + "comp_ctx_lengths": comp_ctx_lengths_decode[i], + "num_patches": num_patches, + "img_size": img_size, + "vision_size": vision_size, + } + ) + + else: + lang = [ + { + "batch_size": batch_size, + "seq_len": prefill_seq_len, + "ctx_len": ctx_len, + "num_patches": num_patches, + "img_size": img_size, + "vision_size": vision_size, + }, + { + "batch_size": batch_size, + "seq_len": "1", + "ctx_len": ctx_len, + "num_patches": num_patches, + "img_size": img_size, + "vision_size": vision_size, + }, + ] specializations = {} @@ -132,7 +178,7 @@ def get_specializations( else: return lang, compiler_options - def get_onnx_dynamic_axes(self, kv_offload: bool = False): + def get_onnx_dynamic_axes(self, comp_ctx_lengths: Optional[List[int]] = None, kv_offload: bool = False): # Define dynamic axes vision_dynamic_axes = {} lang_dynamic_axes = {} @@ -146,6 +192,9 @@ def get_onnx_dynamic_axes(self, kv_offload: bool = False): for kv in ["key", "value"]: lang_dynamic_axes[f"past_{kv}.{i}"] = pkv_dynamic_axes + if comp_ctx_lengths is not None: + lang_dynamic_axes["comp_ctx_lengths"] = {0: "comp_ctx_lengths"} + dynamic_axes = {} if kv_offload: dynamic_axes["vision"] = vision_dynamic_axes @@ -173,7 +222,7 @@ def get_output_names(self, kv_offload: bool = False): return lang_output_names return output_names - def get_dummy_inputs(self, kv_offload: bool = False): + def get_dummy_inputs(self, comp_ctx_lengths: Optional[List[int]] = None, kv_offload: bool = False): if vis_cfg := getattr(self.config, "vision_config", None): img_size = getattr(vis_cfg, "image_size", constants.INTERN_IMG_SIZE) else: @@ -234,6 +283,9 @@ def get_dummy_inputs(self, kv_offload: bool = False): for kv in ["key", "value"]: lang_inputs["past_key_values"][i].append(torch.zeros(kv_cache_shape, dtype=torch.float32)) + if comp_ctx_lengths is not None: + lang_inputs["comp_ctx_lengths"] = torch.randint(0, 100, (40,), dtype=torch.long) + inputs = {} if kv_offload: inputs["vision"] = vision_inputs @@ -244,7 +296,15 @@ def get_dummy_inputs(self, kv_offload: bool = False): return inputs - def forward(self, input_ids, pixel_values, position_ids, image_idx, past_key_values): + def forward( + self, + input_ids, + pixel_values, + position_ids, + image_idx, + past_key_values, + comp_ctx_lengths: Optional[List[int]] = None, + ): input_embeds = self.language_model.get_input_embeddings()(input_ids) vision_embeds = self.extract_feature(pixel_values) B, N, C = input_embeds.shape @@ -266,7 +326,11 @@ def forward(self, input_ids, pixel_values, position_ids, image_idx, past_key_val inputs_embeds = torch.where(input_ids.shape[1] == torch.tensor(1), input_embeds, image_input_embeds) inputs_embeds = inputs_embeds.reshape(B, N, C) outputs = self.language_model( - inputs_embeds=inputs_embeds, position_ids=position_ids, past_key_values=past_key_values, use_cache=True + inputs_embeds=inputs_embeds, + position_ids=position_ids, + past_key_values=past_key_values, + comp_ctx_lengths=comp_ctx_lengths, + use_cache=True, ) next_image_idx = (indices1.max() + 1).unsqueeze(0).unsqueeze(0) image_idx = torch.where(image_idx < next_image_idx, next_image_idx, image_idx) diff --git a/QEfficient/transformers/models/llama/modeling_llama.py b/QEfficient/transformers/models/llama/modeling_llama.py index f2a68f80e..58d174270 100644 --- a/QEfficient/transformers/models/llama/modeling_llama.py +++ b/QEfficient/transformers/models/llama/modeling_llama.py @@ -132,6 +132,7 @@ def forward( attention_mask: Optional[torch.Tensor], position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Cache] = None, + comp_ctx_lengths: Optional[torch.LongTensor] = None, batch_index: Optional[torch.LongTensor] = None, use_cache: bool = False, cache_position: Optional[torch.LongTensor] = None, @@ -154,7 +155,9 @@ def forward( query_states, key_states = qeff_apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids) if past_key_value is not None: - cache_kwargs = {"batch_index": batch_index, "position_ids": position_ids} + if comp_ctx_lengths is not None: + attention_mask = attention_mask[:, :, :, : comp_ctx_lengths.shape[-1]] + cache_kwargs = {"batch_index": batch_index, "position_ids": position_ids, "CCL": attention_mask.shape[-1]} key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) attention_interface = eager_attention_forward @@ -187,6 +190,7 @@ def forward( attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Cache] = None, + comp_ctx_lengths: Optional[torch.LongTensor] = None, batch_index: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = False, cache_position: Optional[torch.LongTensor] = None, @@ -202,6 +206,7 @@ def forward( attention_mask=attention_mask, position_ids=position_ids, past_key_value=past_key_value, + comp_ctx_lengths=comp_ctx_lengths, batch_index=batch_index, use_cache=use_cache, cache_position=cache_position, @@ -229,6 +234,7 @@ def forward( attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Cache] = None, + comp_ctx_lengths: Optional[torch.LongTensor] = None, batch_index: Optional[torch.LongTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, @@ -277,6 +283,7 @@ def forward( attention_mask=causal_mask, position_ids=position_ids, past_key_value=past_key_values, + comp_ctx_lengths=comp_ctx_lengths, batch_index=batch_index, use_cache=use_cache, cache_position=cache_position, @@ -310,6 +317,7 @@ def forward( attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None, + comp_ctx_lengths: Optional[torch.LongTensor] = None, batch_index: Optional[torch.LongTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, @@ -326,6 +334,7 @@ def forward( attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, + comp_ctx_lengths=comp_ctx_lengths, batch_index=batch_index, inputs_embeds=inputs_embeds, use_cache=use_cache, diff --git a/QEfficient/transformers/models/llama4/modeling_llama4.py b/QEfficient/transformers/models/llama4/modeling_llama4.py index 212fe16ae..0fbdbea5f 100644 --- a/QEfficient/transformers/models/llama4/modeling_llama4.py +++ b/QEfficient/transformers/models/llama4/modeling_llama4.py @@ -470,6 +470,7 @@ def forward( position_embeddings: Tuple[torch.Tensor, torch.Tensor], position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Cache] = None, + comp_ctx_lengths: Optional[torch.LongTensor] = None, batch_index: Optional[torch.LongTensor] = None, cache_position: Optional[torch.LongTensor] = None, **kwargs, @@ -503,6 +504,8 @@ def forward( if past_key_value is not None: chunk_position_ids = position_ids + if comp_ctx_lengths is not None: + attention_mask = attention_mask[:, :, :, : comp_ctx_lengths.shape[-1]] if self.use_rope: chunk_position_ids = torch.where( @@ -510,7 +513,11 @@ def forward( ) # sin and cos are specific to RoPE models; cache_position needed for the static cache - cache_kwargs = {"batch_index": batch_index, "position_ids": chunk_position_ids} + cache_kwargs = { + "batch_index": batch_index, + "position_ids": chunk_position_ids, + "CCL": attention_mask.shape[-1], + } key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) attention_interface: Callable = eager_attention_forward @@ -543,6 +550,7 @@ def forward( attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Cache] = None, + comp_ctx_lengths: Optional[torch.LongTensor] = None, batch_index: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = False, output_router_logits: Optional[bool] = False, @@ -562,6 +570,7 @@ def forward( position_embeddings=position_embeddings, position_ids=position_ids, past_key_value=past_key_value, + comp_ctx_lengths=comp_ctx_lengths, batch_index=batch_index, output_attentions=output_attentions, use_cache=use_cache, @@ -615,6 +624,7 @@ def forward( attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Cache] = None, + comp_ctx_lengths: Optional[torch.LongTensor] = None, batch_index: Optional[torch.LongTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, @@ -682,6 +692,7 @@ def forward( attention_mask=causal_mask_mapping[decoder_layer.attention_type], position_ids=position_ids, past_key_value=past_key_values, + comp_ctx_lengths=comp_ctx_lengths, batch_index=batch_index, output_attentions=output_attentions, use_cache=use_cache, @@ -731,6 +742,7 @@ def forward( attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None, + comp_ctx_lengths: Optional[torch.LongTensor] = None, batch_index: Optional[torch.LongTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, @@ -754,6 +766,7 @@ def forward( attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, + comp_ctx_lengths=comp_ctx_lengths, batch_index=batch_index, inputs_embeds=inputs_embeds, use_cache=use_cache, @@ -836,7 +849,15 @@ def __init__(self, model): self.language_model = self.model.language_model self.config = self.model.config - def forward(self, input_ids, vision_embeds, position_ids, image_idx, past_key_values): + def forward( + self, + input_ids, + vision_embeds, + position_ids, + image_idx, + past_key_values, + comp_ctx_lengths: Optional[List[int]] = None, + ): inputs_embeds = self.model.language_model.get_input_embeddings()(input_ids) selected = input_ids == self.model.config.image_token_index indices1 = selected.to(torch.int64).cumsum(1) - 1 @@ -846,7 +867,11 @@ def forward(self, input_ids, vision_embeds, position_ids, image_idx, past_key_va image_embeds = torch.where(selected.unsqueeze(-1), image_features_expanded, inputs_embeds) inputs_embeds = torch.where(input_ids.shape[1] == torch.tensor(1), inputs_embeds, image_embeds) outputs = self.model.language_model( - inputs_embeds=inputs_embeds, position_ids=position_ids, past_key_values=past_key_values, use_cache=True + inputs_embeds=inputs_embeds, + position_ids=position_ids, + past_key_values=past_key_values, + comp_ctx_lengths=comp_ctx_lengths, + use_cache=True, ) next_idx = (indices1.max() + 1).unsqueeze(0).unsqueeze(0) image_idx = torch.where(image_idx < next_idx, next_idx, image_idx) @@ -860,7 +885,15 @@ def get_qeff_vision_encoder(self): def get_qeff_language_decoder(self): return QEffLlama4DecoderWrapper(self) - def forward(self, input_ids, position_ids, pixel_values, image_idx, past_key_values): + def forward( + self, + input_ids, + position_ids, + pixel_values, + image_idx, + past_key_values, + comp_ctx_lengths: Optional[List[int]] = None, + ): inputs_embeds = self.language_model.get_input_embeddings()(input_ids) vision_feature_layer = self.config.vision_config.vision_feature_layer vision_feature_select_strategy = self.config.vision_config.vision_feature_select_strategy @@ -880,7 +913,11 @@ def forward(self, input_ids, position_ids, pixel_values, image_idx, past_key_val image_embeds = torch.where(selected.unsqueeze(-1), image_features_expanded, inputs_embeds) inputs_embeds = torch.where(input_ids.shape[1] == torch.tensor(1), inputs_embeds, image_embeds) outputs = self.language_model( - inputs_embeds=inputs_embeds, position_ids=position_ids, past_key_values=past_key_values, use_cache=True + inputs_embeds=inputs_embeds, + position_ids=position_ids, + past_key_values=past_key_values, + comp_ctx_lengths=comp_ctx_lengths, + use_cache=True, ) next_idx = (indices1.max() + 1).unsqueeze(0).unsqueeze(0) image_idx = torch.where(image_idx < next_idx, next_idx, image_idx) @@ -892,6 +929,8 @@ def get_specializations( prefill_seq_len: int, ctx_len: int, img_size: int, + comp_ctx_lengths_prefill: Optional[List[int]] = None, + comp_ctx_lengths_decode: Optional[List[int]] = None, kv_offload: bool = False, **compiler_options, ): @@ -941,28 +980,62 @@ def get_specializations( "img_size": img_size, } ] - lang = [ - { - "batch_size": batch_size, - "seq_len": prefill_seq_len, - "ctx_len": ctx_len, - "max_num_tiles": max_num_tiles, - "img_size": img_size, - "vision_size": vision_size, - "chunk_length": prefill_seq_len, - "chunk_ctx_len": chunk_ctx_len, - }, - { - "batch_size": batch_size, - "seq_len": "1", - "ctx_len": ctx_len, - "max_num_tiles": max_num_tiles, - "img_size": img_size, - "vision_size": vision_size, - "chunk_length": prefill_seq_len, - "chunk_ctx_len": chunk_ctx_len, - }, - ] + if comp_ctx_lengths_prefill is not None: + lang = [] + + for i in range(0, len(comp_ctx_lengths_prefill)): + lang.append( + { + "batch_size": batch_size, + "seq_len": prefill_seq_len, + "ctx_len": ctx_len, + "comp_ctx_lengths": comp_ctx_lengths_prefill[i], + "max_num_tiles": max_num_tiles, + "img_size": img_size, + "vision_size": vision_size, + "chunk_length": prefill_seq_len, + "chunk_ctx_len": chunk_ctx_len, + } + ) + + for i in range(0, len(comp_ctx_lengths_decode)): + lang.append( + { + "batch_size": batch_size, + "seq_len": "1", + "ctx_len": ctx_len, + "comp_ctx_lengths": comp_ctx_lengths_decode[i], + "max_num_tiles": max_num_tiles, + "img_size": img_size, + "vision_size": vision_size, + "chunk_length": prefill_seq_len, + "chunk_ctx_len": chunk_ctx_len, + } + ) + + else: + lang = [ + { + "batch_size": batch_size, + "seq_len": prefill_seq_len, + "ctx_len": ctx_len, + "max_num_tiles": max_num_tiles, + "img_size": img_size, + "vision_size": vision_size, + "chunk_length": prefill_seq_len, + "chunk_ctx_len": chunk_ctx_len, + }, + { + "batch_size": batch_size, + "seq_len": "1", + "ctx_len": ctx_len, + "max_num_tiles": max_num_tiles, + "img_size": img_size, + "vision_size": vision_size, + "chunk_length": prefill_seq_len, + "chunk_ctx_len": chunk_ctx_len, + }, + ] specializations = {} @@ -973,7 +1046,7 @@ def get_specializations( else: return lang, compiler_options - def get_onnx_dynamic_axes(self, kv_offload: bool = False): + def get_onnx_dynamic_axes(self, comp_ctx_lengths: Optional[List[int]] = None, kv_offload: bool = False): # Define dynamic axes vision_dynamic_axes = {} lang_dynamic_axes = {} @@ -993,6 +1066,9 @@ def get_onnx_dynamic_axes(self, kv_offload: bool = False): for kv in ["key", "value"]: lang_dynamic_axes[f"past_{kv}.{i}"] = pkv_dynamic_axes + if comp_ctx_lengths is not None: + lang_dynamic_axes["comp_ctx_lengths"] = {0: "comp_ctx_lengths"} + dynamic_axes = {} if kv_offload: dynamic_axes["vision"] = vision_dynamic_axes @@ -1045,7 +1121,7 @@ def get_dummy_pkv_cache(self, config, batch_size, seq_len): past_key_values.append(pkv) return past_key_values - def get_dummy_inputs(self, kv_offload: bool = False): + def get_dummy_inputs(self, comp_ctx_lengths: Optional[List[int]] = None, kv_offload: bool = False): if vis_cfg := getattr(self.config, "vision_config", None): img_size = getattr(vis_cfg, "image_size", 336) else: @@ -1102,6 +1178,9 @@ def get_dummy_inputs(self, kv_offload: bool = False): for kv in ["key", "value"]: lang_inputs["past_key_values"][i].append(torch.zeros(past_key_values[0][0].shape, dtype=torch.float32)) + if comp_ctx_lengths is not None: + lang_inputs["comp_ctx_lengths"] = torch.randint(0, 100, (40,), dtype=torch.long) + inputs = {} if kv_offload: inputs["vision"] = vision_inputs diff --git a/QEfficient/transformers/models/llama_swiftkv/modeling_llama_swiftkv.py b/QEfficient/transformers/models/llama_swiftkv/modeling_llama_swiftkv.py index 9fd1ed782..5b36b1019 100644 --- a/QEfficient/transformers/models/llama_swiftkv/modeling_llama_swiftkv.py +++ b/QEfficient/transformers/models/llama_swiftkv/modeling_llama_swiftkv.py @@ -89,6 +89,7 @@ def forward( hidden_states: torch.Tensor, position_ids: torch.LongTensor, past_key_value: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, + comp_ctx_lengths: Optional[torch.LongTensor] = None, attention_mask: torch.Tensor = None, batch_index: Optional[torch.LongTensor] = None, ) -> torch.Tensor: @@ -105,8 +106,10 @@ def forward( "for auto-regressive decoding with k/v caching, please make sure to initialize the attention class " "with a layer index." ) + if comp_ctx_lengths is not None: + attention_mask = attention_mask[:, :, :, : comp_ctx_lengths.shape[-1]] kv_seq_len = past_key_value.get_seq_length(self.layer_idx) - cache_kwargs = {"position_ids": position_ids, "batch_index": batch_index} + cache_kwargs = {"position_ids": position_ids, "batch_index": batch_index, "CCL": attention_mask.shape[-1]} key_states, value_states = past_key_value.read_only(self.layer_idx, cache_kwargs=cache_kwargs) cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len) @@ -155,6 +158,7 @@ def forward( hidden_states: torch.Tensor, position_ids: torch.Tensor, past_key_values, + comp_ctx_lengths, causal_mask, batch_index: Optional[torch.LongTensor] = None, ) -> Tuple[torch.Tensor, torch.Tensor]: @@ -166,6 +170,7 @@ def forward( hidden_states=hidden_states, position_ids=position_ids, past_key_value=past_key_values, + comp_ctx_lengths=comp_ctx_lengths, attention_mask=causal_mask, batch_index=batch_index, ) @@ -201,11 +206,19 @@ def __init__(self, config: QEffLlamaSwiftKVConfig): self.norm_swiftkv = LlamaRMSNorm(config.hidden_size, eps=config.rms_norm_eps) def _run_swiftkv_layers( - self, hidden_states: torch.Tensor, position_ids: torch.Tensor, past_key_values, causal_mask, batch_index + self, + hidden_states: torch.Tensor, + position_ids: torch.Tensor, + past_key_values, + comp_ctx_lengths, + causal_mask, + batch_index, ) -> torch.Tensor: for layer_idx in range(self.config.num_key_value_layers, self.config.num_hidden_layers): layer = self.layers[layer_idx] - hidden_states = layer(hidden_states, position_ids, past_key_values, causal_mask, batch_index) + hidden_states = layer( + hidden_states, position_ids, past_key_values, comp_ctx_lengths, causal_mask, batch_index + ) hidden_states = self.norm(hidden_states) return hidden_states, past_key_values @@ -289,6 +302,7 @@ def forward( input_ids: Optional[torch.Tensor], position_ids: torch.Tensor, past_key_values: List[torch.Tensor], + comp_ctx_lengths: Optional[torch.LongTensor], batch_index: Optional[torch.LongTensor] = None, ): inputs_embeds = self.embed_tokens(input_ids) @@ -328,6 +342,7 @@ def forward( attention_mask=causal_mask, position_ids=position_ids, past_key_value=past_key_values, + comp_ctx_lengths=comp_ctx_lengths, batch_index=batch_index, output_attentions=False, use_cache=True, @@ -373,7 +388,7 @@ def forward( causal_mask = causal_mask[torch.arange(bsz).reshape(-1, 1), :, last_pos_id, :] hidden_states, next_decoder_cache = self._run_swiftkv_layers( - hidden_states, position_ids, past_key_values, causal_mask, batch_index + hidden_states, position_ids, past_key_values, comp_ctx_lengths, causal_mask, batch_index ) # We can fill the orig_hidden_states with the processed hidden_states here but it's not needed as for next token prediction # we only need the last valid pos_indices hidden_states. @@ -405,9 +420,12 @@ def forward( input_ids: torch.Tensor, position_ids: torch.Tensor, past_key_values: Optional[Union[List[torch.FloatTensor]]] = None, + comp_ctx_lengths: Optional[torch.LongTensor] = None, batch_index: Optional[torch.LongTensor] = None, ): - hidden_states, output_past_key_values = self.model(input_ids, position_ids, past_key_values, batch_index) + hidden_states, output_past_key_values = self.model( + input_ids, position_ids, past_key_values, comp_ctx_lengths, batch_index + ) logits = self.lm_head(hidden_states) return CausalLMOutputWithPast( loss=None, diff --git a/QEfficient/transformers/models/llava/modeling_llava.py b/QEfficient/transformers/models/llava/modeling_llava.py index e260beb05..dc6653db0 100644 --- a/QEfficient/transformers/models/llava/modeling_llava.py +++ b/QEfficient/transformers/models/llava/modeling_llava.py @@ -5,6 +5,8 @@ # # ----------------------------------------------------------------------------- +from typing import List, Optional + import torch import torch.nn as nn import torch.utils.checkpoint @@ -51,7 +53,15 @@ def __init__(self, model): self.language_model = self.model.language_model self.lm_head = self.model.lm_head - def forward(self, input_ids, vision_embeds, position_ids, image_idx, past_key_values): + def forward( + self, + input_ids, + vision_embeds, + position_ids, + image_idx, + past_key_values, + comp_ctx_lengths: Optional[List[int]] = None, + ): inputs_embeds = self.model.get_input_embeddings()(input_ids) vision_embeds = vision_embeds.to(inputs_embeds.device, inputs_embeds.dtype) mask = input_ids == self.model.config.image_token_index @@ -65,6 +75,7 @@ def forward(self, input_ids, vision_embeds, position_ids, image_idx, past_key_va inputs_embeds=inputs_embeds, position_ids=position_ids, past_key_values=past_key_values, + comp_ctx_lengths=comp_ctx_lengths, return_dict=True, ) @@ -83,7 +94,15 @@ def get_qeff_vision_encoder(self): def get_qeff_language_decoder(self): return QEFFLlavaDecoderWrapper(self) - def forward(self, input_ids, position_ids, pixel_values, image_idx, past_key_values): + def forward( + self, + input_ids, + position_ids, + pixel_values, + image_idx, + past_key_values, + comp_ctx_lengths: Optional[List[int]] = None, + ): inputs_embeds = self.get_input_embeddings()(input_ids) # Image features image_outputs = self.vision_tower(pixel_values, output_hidden_states=True) @@ -109,6 +128,7 @@ def forward(self, input_ids, position_ids, pixel_values, image_idx, past_key_val inputs_embeds=inputs_embeds, position_ids=position_ids, past_key_values=past_key_values, + comp_ctx_lengths=comp_ctx_lengths, ) logit_index = position_ids.to(torch.int32).argmax(1, keepdim=True) @@ -120,7 +140,7 @@ def forward(self, input_ids, position_ids, pixel_values, image_idx, past_key_val image_idx = torch.where(image_idx < next_image_idx, next_image_idx, image_idx) return logits, pixel_values, image_idx, outputs.past_key_values - def get_dummy_inputs(self, kv_offload: bool = False, **kwargs): + def get_dummy_inputs(self, comp_ctx_lengths: Optional[List[int]] = None, kv_offload: bool = False, **kwargs): num_layers = self.config.text_config.num_hidden_layers num_key_value_heads = self.config.text_config.num_key_value_heads head_dim = self.config.text_config.hidden_size // self.config.text_config.num_attention_heads @@ -150,6 +170,10 @@ def get_dummy_inputs(self, kv_offload: bool = False, **kwargs): ) ) lang_inputs["position_ids"] = torch.full(lang_inputs["position_ids"].shape, CTX_LEN - 1) + + if comp_ctx_lengths is not None: + lang_inputs["comp_ctx_lengths"] = torch.randint(0, 100, (40,), dtype=torch.long) + inputs = {} if kv_offload: @@ -166,6 +190,8 @@ def get_specializations( prefill_seq_len: int, ctx_len: int, img_size: int, + comp_ctx_lengths_prefill: Optional[List[int]] = None, + comp_ctx_lengths_decode: Optional[List[int]] = None, kv_offload: bool = False, **compiler_options, ): @@ -187,24 +213,55 @@ def get_specializations( "img_size": img_size, } ] - lang = [ - { - "batch_size": batch_size, - "seq_len": prefill_seq_len, - "ctx_len": ctx_len, - "max_num_images": max_num_images, - "img_size": img_size, - "vision_size": vision_size, - }, - { - "batch_size": batch_size, - "seq_len": "1", - "ctx_len": ctx_len, - "max_num_images": max_num_images, - "img_size": img_size, - "vision_size": vision_size, - }, - ] + + if comp_ctx_lengths_prefill and comp_ctx_lengths_decode: + lang = [] + + for i in range(0, len(comp_ctx_lengths_prefill)): + lang.append( + { + "batch_size": batch_size, + "seq_len": prefill_seq_len, + "ctx_len": ctx_len, + "comp_ctx_lengths": comp_ctx_lengths_prefill[i], + "max_num_images": max_num_images, + "img_size": img_size, + "vision_size": vision_size, + } + ) + + for i in range(0, len(comp_ctx_lengths_decode)): + lang.append( + { + "batch_size": batch_size, + "seq_len": "1", + "ctx_len": ctx_len, + "comp_ctx_lengths": comp_ctx_lengths_decode[i], + "max_num_images": max_num_images, + "img_size": img_size, + "vision_size": vision_size, + } + ) + else: + lang = [ + { + "batch_size": batch_size, + "seq_len": prefill_seq_len, + "ctx_len": ctx_len, + "max_num_images": max_num_images, + "img_size": img_size, + "vision_size": vision_size, + }, + { + "batch_size": batch_size, + "seq_len": "1", + "ctx_len": ctx_len, + "max_num_images": max_num_images, + "img_size": img_size, + "vision_size": vision_size, + }, + ] + specializations = {} if kv_offload: @@ -214,7 +271,7 @@ def get_specializations( else: return lang, compiler_options - def get_onnx_dynamic_axes(self, kv_offload: bool = False): + def get_onnx_dynamic_axes(self, comp_ctx_lengths: Optional[List[int]] = None, kv_offload: bool = False): # Define dynamic axes num_layers = self.config.text_config.num_hidden_layers @@ -230,6 +287,9 @@ def get_onnx_dynamic_axes(self, kv_offload: bool = False): lang_dynamic_axes[f"past_key.{i}"] = {0: "batch_size", 2: "ctx_len"} lang_dynamic_axes[f"past_value.{i}"] = {0: "batch_size", 2: "ctx_len"} + if comp_ctx_lengths is not None: + lang_dynamic_axes["comp_ctx_lengths"] = {0: "comp_ctx_lengths"} + dynamic_axes = {} if kv_offload: dynamic_axes["vision"] = vision_dynamic_axes diff --git a/QEfficient/transformers/models/llava_next/modeling_llava_next.py b/QEfficient/transformers/models/llava_next/modeling_llava_next.py index 2fa1d9234..2e4848b6b 100755 --- a/QEfficient/transformers/models/llava_next/modeling_llava_next.py +++ b/QEfficient/transformers/models/llava_next/modeling_llava_next.py @@ -6,6 +6,8 @@ # ----------------------------------------------------------------------------- +from typing import List, Optional + import numpy as np import torch import torch.nn as nn @@ -123,7 +125,15 @@ def __init__(self, model): self.language_model = self.model.language_model self.lm_head = self.model.lm_head - def forward(self, input_ids, vision_embeds, position_ids, image_idx, past_key_values): + def forward( + self, + input_ids, + vision_embeds, + position_ids, + image_idx, + past_key_values, + comp_ctx_lengths: Optional[List[int]] = None, + ): inputs_embeds = self.model.get_input_embeddings()(input_ids) image_features = vision_embeds.to(inputs_embeds.device, inputs_embeds.dtype) mask = input_ids == self.config.image_token_index @@ -138,6 +148,7 @@ def forward(self, input_ids, vision_embeds, position_ids, image_idx, past_key_va inputs_embeds=inputs_embeds, position_ids=position_ids, past_key_values=past_key_values, + comp_ctx_lengths=comp_ctx_lengths, ) image_idx = (indices1.max() + 1).unsqueeze(0).unsqueeze(0) logit_index = position_ids.to(torch.int32).argmax(1, keepdim=True) @@ -154,7 +165,7 @@ def get_qeff_vision_encoder(self): def get_qeff_language_decoder(self): return QEffLlavaNextDecoderWrapper(self) - def get_dummy_inputs(self, kv_offload: bool = False, **kwargs): + def get_dummy_inputs(self, comp_ctx_lengths: Optional[List[int]] = None, kv_offload: bool = False, **kwargs): num_layers = self.config.text_config.num_hidden_layers num_key_value_heads = self.config.text_config.num_key_value_heads head_dim = self.config.text_config.hidden_size // self.config.text_config.num_attention_heads @@ -217,6 +228,10 @@ def get_dummy_inputs(self, kv_offload: bool = False, **kwargs): ) ) lang_inputs["position_ids"] = torch.full(lang_inputs["position_ids"].shape, constants.GRANITEVISION_CTX_LEN - 1) + + if comp_ctx_lengths is not None: + lang_inputs["comp_ctx_lengths"] = torch.randint(0, 100, (40,), dtype=torch.long) + inputs = {} if kv_offload: inputs["vision"] = vision_inputs @@ -232,6 +247,8 @@ def get_specializations( prefill_seq_len: int, ctx_len: int, img_size: int, + comp_ctx_lengths_prefill: Optional[List[int]] = None, + comp_ctx_lengths_decode: Optional[List[int]] = None, kv_offload: bool = False, **compiler_options, ): @@ -285,30 +302,67 @@ def get_specializations( "img_size": img_size, } ] - lang = [ - { - "batch_size": batch_size, - "seq_len": prefill_seq_len, - "ctx_len": ctx_len, - "image_size_height": image_size_height, - "image_size_width": image_size_width, - "num_patches": num_patches, - "max_num_images": max_num_images, - "img_size": img_size, - "vision_size": vision_size, - }, - { - "batch_size": batch_size, - "seq_len": "1", - "ctx_len": ctx_len, - "image_size_height": image_size_height, - "image_size_width": image_size_width, - "num_patches": num_patches, - "max_num_images": max_num_images, - "img_size": img_size, - "vision_size": vision_size, - }, - ] + if comp_ctx_lengths_prefill is not None: + lang = [] + + for i in range(0, len(comp_ctx_lengths_prefill)): + lang.append( + { + "batch_size": batch_size, + "seq_len": prefill_seq_len, + "ctx_len": ctx_len, + "comp_ctx_lengths": comp_ctx_lengths_prefill[i], + "image_size_height": image_size_height, + "image_size_width": image_size_width, + "num_patches": num_patches, + "max_num_images": max_num_images, + "img_size": img_size, + "vision_size": vision_size, + } + ) + + # Remaining elements use comp_ctx_lengths[1:] in a loop + for i in range(0, len(comp_ctx_lengths_decode)): + lang.append( + { + "batch_size": batch_size, + "seq_len": "1", + "ctx_len": ctx_len, + "comp_ctx_lengths": comp_ctx_lengths_decode[i], + "image_size_height": image_size_height, + "image_size_width": image_size_width, + "num_patches": num_patches, + "max_num_images": max_num_images, + "img_size": img_size, + "vision_size": vision_size, + } + ) + else: + lang = [ + { + "batch_size": batch_size, + "seq_len": prefill_seq_len, + "ctx_len": ctx_len, + "image_size_height": image_size_height, + "image_size_width": image_size_width, + "num_patches": num_patches, + "max_num_images": max_num_images, + "img_size": img_size, + "vision_size": vision_size, + }, + { + "batch_size": batch_size, + "seq_len": "1", + "ctx_len": ctx_len, + "image_size_height": image_size_height, + "image_size_width": image_size_width, + "num_patches": num_patches, + "max_num_images": max_num_images, + "img_size": img_size, + "vision_size": vision_size, + }, + ] + specializations = {} if kv_offload: specializations["vision"] = vision @@ -317,7 +371,7 @@ def get_specializations( else: return lang, compiler_options - def get_onnx_dynamic_axes(self, kv_offload: bool = False): + def get_onnx_dynamic_axes(self, comp_ctx_lengths: Optional[List[int]] = None, kv_offload: bool = False): # Define dynamic axes num_layers = self.config.text_config.num_hidden_layers vision_dynamic_axes = { @@ -332,6 +386,10 @@ def get_onnx_dynamic_axes(self, kv_offload: bool = False): for i in range(num_layers): lang_dynamic_axes[f"past_key.{i}"] = {0: "batch_size", 2: "ctx_len"} lang_dynamic_axes[f"past_value.{i}"] = {0: "batch_size", 2: "ctx_len"} + + if comp_ctx_lengths is not None: + lang_dynamic_axes["comp_ctx_lengths"] = {0: "comp_ctx_lengths"} + dynamic_axes = {} if kv_offload: dynamic_axes["vision"] = vision_dynamic_axes diff --git a/QEfficient/transformers/models/mistral/modeling_mistral.py b/QEfficient/transformers/models/mistral/modeling_mistral.py index ca23cc144..30c73ae8b 100644 --- a/QEfficient/transformers/models/mistral/modeling_mistral.py +++ b/QEfficient/transformers/models/mistral/modeling_mistral.py @@ -140,6 +140,7 @@ def forward( attention_mask: Optional[torch.Tensor], position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Cache] = None, + comp_ctx_lengths: Optional[torch.LongTensor] = None, batch_index: Optional[torch.LongTensor] = None, output_attentions: bool = False, use_cache: bool = False, @@ -163,7 +164,9 @@ def forward( query_states, key_states = qeff_apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids) if past_key_value is not None: - cache_kwargs = {"batch_index": batch_index, "position_ids": position_ids} + if comp_ctx_lengths is not None: + attention_mask = attention_mask[:, :, :, : comp_ctx_lengths.shape[-1]] + cache_kwargs = {"batch_index": batch_index, "position_ids": position_ids, "CCL": attention_mask.shape[-1]} key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) attention_interface: Callable = eager_attention_forward @@ -196,6 +199,7 @@ def forward( attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Cache] = None, + comp_ctx_lengths: Optional[torch.LongTensor] = None, batch_index: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = False, use_cache: Optional[bool] = False, @@ -226,6 +230,7 @@ def forward( attention_mask=attention_mask, position_ids=position_ids, past_key_value=past_key_value, + comp_ctx_lengths=comp_ctx_lengths, batch_index=batch_index, output_attentions=output_attentions, use_cache=use_cache, @@ -256,6 +261,7 @@ def forward( attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, + comp_ctx_lengths: Optional[torch.LongTensor] = None, batch_index: Optional[torch.LongTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, @@ -316,6 +322,7 @@ def forward( attention_mask=causal_mask, position_ids=position_ids, past_key_value=past_key_values, + comp_ctx_lengths=comp_ctx_lengths, batch_index=batch_index, output_attentions=output_attentions, use_cache=use_cache, @@ -354,6 +361,7 @@ def forward( attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, + comp_ctx_lengths: Optional[torch.LongTensor] = None, batch_index: Optional[torch.LongTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, @@ -377,6 +385,7 @@ def forward( attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, + comp_ctx_lengths=comp_ctx_lengths, batch_index=batch_index, inputs_embeds=inputs_embeds, use_cache=use_cache, diff --git a/QEfficient/transformers/models/mistral3/modeling_mistral3.py b/QEfficient/transformers/models/mistral3/modeling_mistral3.py index 735eec9e5..694ed4cde 100644 --- a/QEfficient/transformers/models/mistral3/modeling_mistral3.py +++ b/QEfficient/transformers/models/mistral3/modeling_mistral3.py @@ -5,7 +5,7 @@ # # ----------------------------------------------------------------------------- -from typing import Optional, Tuple, Union +from typing import List, Optional, Tuple, Union import torch import torch.nn as nn @@ -106,6 +106,7 @@ def forward( attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Cache] = None, + comp_ctx_lengths: Optional[torch.LongTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, vision_feature_layer: Optional[Union[int, list[int]]] = None, use_cache: Optional[bool] = None, @@ -126,6 +127,7 @@ def forward( attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, + comp_ctx_lengths=comp_ctx_lengths, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, @@ -166,7 +168,15 @@ def __init__(self, model): self.config = self.model.config self.language_model = self.model.language_model - def forward(self, input_ids, vision_embeds, position_ids, image_idx, past_key_values): + def forward( + self, + input_ids, + vision_embeds, + position_ids, + image_idx, + past_key_values, + comp_ctx_lengths: Optional[List[int]] = None, + ): inputs_embeds = self.model.get_input_embeddings()(input_ids) vision_embeds = vision_embeds.to(inputs_embeds.device, inputs_embeds.dtype) mask = input_ids == self.model.config.image_token_index @@ -179,6 +189,7 @@ def forward(self, input_ids, vision_embeds, position_ids, image_idx, past_key_va inputs_embeds=inputs_embeds_1, position_ids=position_ids, past_key_values=past_key_values, + comp_ctx_lengths=comp_ctx_lengths, ) # Cast to int32 to avoid ONNXRT issue @@ -198,7 +209,15 @@ def get_qeff_vision_encoder(self): def get_qeff_language_decoder(self): return QEFFMistral3DecoderWrapper(self) - def forward(self, input_ids, position_ids, pixel_values, image_idx, past_key_values): + def forward( + self, + input_ids, + position_ids, + pixel_values, + image_idx, + past_key_values, + comp_ctx_lengths: Optional[List[int]] = None, + ): inputs_embeds = self.get_input_embeddings()(input_ids) image_sizes = torch.tensor([[pixel_values.shape[2], pixel_values.shape[3]]]).repeat(pixel_values.shape[0], 1) image_features = self.get_image_features( @@ -219,6 +238,7 @@ def forward(self, input_ids, position_ids, pixel_values, image_idx, past_key_val inputs_embeds=inputs_embeds, position_ids=position_ids, past_key_values=past_key_values, + comp_ctx_lengths=comp_ctx_lengths, ) # Cast to int32 to avoid ONNXRT issue logit_idx = position_ids.to(torch.int32).argmax(1, keepdim=True) @@ -230,7 +250,7 @@ def forward(self, input_ids, position_ids, pixel_values, image_idx, past_key_val return logits, pixel_values, image_idx, outputs.past_key_values - def get_dummy_inputs(self, kv_offload: bool = False, **kwargs): + def get_dummy_inputs(self, comp_ctx_lengths: Optional[List[int]] = None, kv_offload: bool = False, **kwargs): inputs_shapes = {} inputs_shapes["input_ids"] = (constants.ONNX_EXPORT_EXAMPLE_BATCH_SIZE, constants.ONNX_EXPORT_EXAMPLE_SEQ_LEN) height = self.config.vision_config.image_size @@ -282,6 +302,9 @@ def get_dummy_inputs(self, kv_offload: bool = False, **kwargs): for kv in ["key", "value"]: lang_inputs["past_key_values"][i].append(torch.zeros(kv_cache_shape, dtype=torch.float32)) + if comp_ctx_lengths is not None: + lang_inputs["comp_ctx_lengths"] = torch.randint(0, 100, (40,), dtype=torch.long) + inputs = {} if kv_offload: inputs["vision"] = vision_inputs @@ -298,6 +321,8 @@ def get_specializations( prefill_seq_len: int, ctx_len: int, img_size: int, + comp_ctx_lengths_prefill: Optional[List[int]] = None, + comp_ctx_lengths_decode: Optional[List[int]] = None, kv_offload: bool = False, **compiler_options, ): @@ -323,22 +348,50 @@ def get_specializations( "vision_size": vision_size, } ] - lang = [ - { - "batch_size": batch_size, - "seq_len": prefill_seq_len, - "ctx_len": ctx_len, - "image_size": img_size, - "vision_size": vision_size, - }, - { - "batch_size": batch_size, - "seq_len": "1", - "ctx_len": ctx_len, - "image_size": img_size, - "vision_size": vision_size, - }, - ] + if comp_ctx_lengths_prefill is not None: + lang = [] + + for i in range(0, len(comp_ctx_lengths_prefill)): + lang.append( + { + "batch_size": batch_size, + "seq_len": prefill_seq_len, + "ctx_len": ctx_len, + "comp_ctx_lengths": comp_ctx_lengths_prefill[i], + "image_size": img_size, + "vision_size": vision_size, + } + ) + + # Remaining elements use comp_ctx_lengths[1:] in a loop + for i in range(0, len(comp_ctx_lengths_decode)): + lang.append( + { + "batch_size": batch_size, + "seq_len": "1", + "ctx_len": ctx_len, + "comp_ctx_lengths": comp_ctx_lengths_decode[i], + "image_size": img_size, + "vision_size": vision_size, + } + ) + else: + lang = [ + { + "batch_size": batch_size, + "seq_len": prefill_seq_len, + "ctx_len": ctx_len, + "image_size": img_size, + "vision_size": vision_size, + }, + { + "batch_size": batch_size, + "seq_len": "1", + "ctx_len": ctx_len, + "image_size": img_size, + "vision_size": vision_size, + }, + ] specializations = {} @@ -351,7 +404,7 @@ def get_specializations( lang[1].pop("vision_size") return lang, compiler_options - def get_onnx_dynamic_axes(self, kv_offload: bool = False): + def get_onnx_dynamic_axes(self, comp_ctx_lengths: Optional[List[int]] = None, kv_offload: bool = False): # Define dynamic axes num_layers = self.config.text_config.num_hidden_layers @@ -368,6 +421,9 @@ def get_onnx_dynamic_axes(self, kv_offload: bool = False): lang_dynamic_axes[f"past_key.{i}"] = {0: "batch_size", 2: "ctx_len"} lang_dynamic_axes[f"past_value.{i}"] = {0: "batch_size", 2: "ctx_len"} + if comp_ctx_lengths is not None: + lang_dynamic_axes["comp_ctx_lengths"] = {0: "comp_ctx_lengths"} + dynamic_axes = {} if kv_offload: dynamic_axes["vision"] = vision_dynamic_axes diff --git a/QEfficient/transformers/models/mixtral_moe/modeling_mixtral.py b/QEfficient/transformers/models/mixtral_moe/modeling_mixtral.py index 9b9e3448a..6e61568ac 100644 --- a/QEfficient/transformers/models/mixtral_moe/modeling_mixtral.py +++ b/QEfficient/transformers/models/mixtral_moe/modeling_mixtral.py @@ -137,6 +137,7 @@ def forward( attention_mask: Optional[torch.Tensor], position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Cache] = None, + comp_ctx_lengths: Optional[torch.LongTensor] = None, batch_index: Optional[torch.LongTensor] = None, **kwargs, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: @@ -159,7 +160,9 @@ def forward( query_states, key_states = qeff_apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids) if past_key_value is not None: - cache_kwargs = {"batch_index": batch_index, "position_ids": position_ids} + if comp_ctx_lengths is not None: + attention_mask = attention_mask[:, :, :, : comp_ctx_lengths.shape[-1]] + cache_kwargs = {"batch_index": batch_index, "position_ids": position_ids, "CCL": attention_mask.shape[-1]} key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) attention_interface = eager_attention_forward @@ -245,6 +248,7 @@ def forward( attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, + comp_ctx_lengths: Optional[torch.LongTensor] = None, batch_index: Optional[torch.LongTensor] = None, output_router_logits: Optional[bool] = False, use_cache: Optional[bool] = False, @@ -282,6 +286,7 @@ def forward( attention_mask=attention_mask, position_ids=position_ids, past_key_value=past_key_value, + comp_ctx_lengths=comp_ctx_lengths, batch_index=batch_index, use_cache=use_cache, cache_position=cache_position, @@ -314,6 +319,7 @@ def forward( attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, + comp_ctx_lengths: Optional[torch.LongTensor] = None, batch_index: Optional[torch.LongTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, @@ -375,6 +381,7 @@ def forward( position_ids=position_ids, batch_index=batch_index, past_key_value=past_key_values, + comp_ctx_lengths=comp_ctx_lengths, output_router_logits=output_router_logits, use_cache=use_cache, cache_position=cache_position, @@ -412,6 +419,7 @@ def forward( attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, + comp_ctx_lengths: Optional[torch.LongTensor] = None, batch_index: Optional[torch.LongTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, @@ -435,6 +443,7 @@ def forward( attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, + comp_ctx_lengths=comp_ctx_lengths, batch_index=batch_index, inputs_embeds=inputs_embeds, use_cache=use_cache, diff --git a/QEfficient/transformers/models/mllama/modeling_mllama.py b/QEfficient/transformers/models/mllama/modeling_mllama.py index cb24f1de4..d6fb1dcd2 100644 --- a/QEfficient/transformers/models/mllama/modeling_mllama.py +++ b/QEfficient/transformers/models/mllama/modeling_mllama.py @@ -177,6 +177,7 @@ def forward( hidden_states: torch.Tensor, cross_attention_states: Optional[torch.Tensor] = None, past_key_value: Optional[Cache] = None, + comp_ctx_lengths: Optional[torch.LongTensor] = None, batch_index: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, use_cache: bool = None, @@ -249,6 +250,7 @@ def forward( attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Cache] = None, + comp_ctx_lengths: Optional[torch.LongTensor] = None, batch_index: Optional[torch.LongTensor] = None, position_embeddings: torch.Tensor = None, use_cache: bool = False, @@ -278,9 +280,12 @@ def forward( query_states, key_states = qeff_apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids) if past_key_value is not None: + if comp_ctx_lengths is not None: + attention_mask = attention_mask[:, :, :, : comp_ctx_lengths.shape[-1]] cache_kwargs = { "batch_index": batch_index, "position_ids": position_ids, + "CCL": attention_mask.shape[-1], } key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) @@ -316,6 +321,7 @@ def forward( full_text_row_masked_out_mask: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Cache] = None, + comp_ctx_lengths: Optional[torch.LongTensor] = None, batch_index: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = False, cache_position: Optional[torch.LongTensor] = None, @@ -350,6 +356,7 @@ def forward( attention_mask=attention_mask, position_ids=position_ids, past_key_value=past_key_value, + comp_ctx_lengths=comp_ctx_lengths, batch_index=batch_index, use_cache=use_cache, cache_position=cache_position, @@ -379,6 +386,7 @@ def forward( cross_attention_states: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Cache] = None, + comp_ctx_lengths: Optional[torch.LongTensor] = None, batch_index: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, use_cache: bool = None, @@ -396,13 +404,15 @@ def forward( key_states = key_states.view(bsz, -1, self.num_key_value_heads, self.head_dim).transpose(1, 2) value_states = value_states.view(bsz, -1, self.num_key_value_heads, self.head_dim).transpose(1, 2) if past_key_value is not None: + if comp_ctx_lengths is not None: + attention_mask = attention_mask[:, :, :, : comp_ctx_lengths.shape[-1]] # if we have a new image + new tokens, we only computed key_states on that new image # we still update the cross key states, past_image, new_image. And use it! key_states, value_states = past_key_value.update( key_states, value_states, self.layer_idx, - {"batch_index": batch_index, "position_ids": position_ids}, + {"batch_index": batch_index, "position_ids": position_ids, "CCL": attention_mask.shape[-1]}, ) elif past_key_value is not None: key_states, value_states = ( @@ -448,6 +458,7 @@ def forward( full_text_row_masked_out_mask: Tuple[torch.Tensor, torch.Tensor], position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Cache] = None, + comp_ctx_lengths: Optional[torch.LongTensor] = None, batch_index: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = False, cache_position: Optional[torch.LongTensor] = None, @@ -461,6 +472,7 @@ def forward( attention_mask=cross_attention_mask, cross_attention_states=cross_attention_states, past_key_value=past_key_value, + comp_ctx_lengths=comp_ctx_lengths, batch_index=batch_index, cache_position=cache_position, ) @@ -594,6 +606,7 @@ def forward( attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Cache] = None, + comp_ctx_lengths: Optional[torch.LongTensor] = None, batch_index: Optional[torch.LongTensor] = None, cross_attention_states: Optional[torch.FloatTensor] = None, cross_attention_mask: Optional[torch.Tensor] = None, @@ -658,6 +671,7 @@ def forward( full_text_row_masked_out_mask=full_text_row_masked_out_mask, position_ids=position_ids, past_key_value=past_key_values, + comp_ctx_lengths=comp_ctx_lengths, use_cache=use_cache, cache_position=cache_position, ) @@ -688,6 +702,7 @@ def forward( attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None, + comp_ctx_lengths: Optional[torch.LongTensor] = None, batch_index: Optional[torch.LongTensor] = None, cross_attention_states: Optional[torch.LongTensor] = None, cross_attention_mask: Optional[torch.LongTensor] = None, @@ -707,6 +722,7 @@ def forward( cross_attention_mask=cross_attention_mask, full_text_row_masked_out_mask=full_text_row_masked_out_mask, past_key_values=past_key_values, + comp_ctx_lengths=comp_ctx_lengths, inputs_embeds=inputs_embeds, use_cache=use_cache, cache_position=cache_position, @@ -774,6 +790,7 @@ def forward( cross_attention_states: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, + comp_ctx_lengths: Optional[torch.LongTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, cache_position: Optional[torch.LongTensor] = None, @@ -820,6 +837,7 @@ def forward( cross_attention_mask=cross_attention_mask, full_text_row_masked_out_mask=full_text_row_masked_out_mask, past_key_values=past_key_values, + comp_ctx_lengths=comp_ctx_lengths, use_cache=use_cache, inputs_embeds=inputs_embeds, cache_position=cache_position, @@ -853,6 +871,7 @@ def forward( cross_attention_states: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, + comp_ctx_lengths: Optional[torch.LongTensor] = None, batch_index: Optional[torch.LongTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, @@ -869,6 +888,7 @@ def forward( attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, + comp_ctx_lengths=comp_ctx_lengths, inputs_embeds=inputs_embeds, use_cache=use_cache, cache_position=cache_position, @@ -879,7 +899,7 @@ def forward( logits = self.lm_head(hidden_states).float() return logits, image_idx, outputs.past_key_values, pixel_values - def get_dummy_inputs(self, kv_offload: bool = False): + def get_dummy_inputs(self, comp_ctx_lengths: Optional[List[int]] = None, kv_offload: bool = False): BS = constants.ONNX_EXPORT_EXAMPLE_BATCH_SIZE SEQ_LEN = constants.ONNX_EXPORT_EXAMPLE_SEQ_LEN CTX_LEN = constants.ONNX_EXPORT_CTX_LEN @@ -943,6 +963,10 @@ def get_dummy_inputs(self, kv_offload: bool = False): lang_inputs["past_key_values"] = lang_inputs["past_key_values"].to_legacy_cache() lang_inputs["position_ids"] = torch.full(lang_inputs["position_ids"].shape, CTX_LEN - 1) + + if comp_ctx_lengths is not None: + lang_inputs["comp_ctx_lengths"] = torch.randint(0, 100, (40,), dtype=torch.long) + inputs = {} if kv_offload: @@ -959,6 +983,8 @@ def get_specializations( prefill_seq_len: int, ctx_len: int, img_size: int, + comp_ctx_lengths_prefill: Optional[List[int]] = None, + comp_ctx_lengths_decode: Optional[List[int]] = None, kv_offload: bool = False, **compiler_options, ): @@ -973,22 +999,53 @@ def get_specializations( logger.warning("Setting `img_size=448` as it was neither passed nor found in vision_config") vision = [{"batch_size": batch_size, "max_num_images": max_num_images, "img_size": img_size}] - lang = [ - { - "batch_size": batch_size, - "seq_len": prefill_seq_len, - "ctx_len": ctx_len, - "max_num_images": max_num_images, - "img_size": img_size, - }, - { - "batch_size": batch_size, - "seq_len": "1", - "ctx_len": ctx_len, - "max_num_images": max_num_images, - "img_size": img_size, - }, - ] + + if comp_ctx_lengths_prefill is not None: + lang = [] + + for i in range(0, len(comp_ctx_lengths_prefill)): + lang.append( + { + "batch_size": batch_size, + "seq_len": prefill_seq_len, + "ctx_len": ctx_len, + "comp_ctx_lengths": comp_ctx_lengths_prefill[i], + "max_num_images": max_num_images, + "img_size": img_size, + } + ) + + # Remaining elements use comp_ctx_lengths[1:] in a loop + for i in range(0, len(comp_ctx_lengths_decode)): + lang.append( + { + "batch_size": batch_size, + "seq_len": "1", + "ctx_len": ctx_len, + "comp_ctx_lengths": comp_ctx_lengths_decode[i], + "max_num_images": max_num_images, + "img_size": img_size, + } + ) + + else: + lang = [ + { + "batch_size": batch_size, + "seq_len": prefill_seq_len, + "ctx_len": ctx_len, + "max_num_images": max_num_images, + "img_size": img_size, + }, + { + "batch_size": batch_size, + "seq_len": "1", + "ctx_len": ctx_len, + "max_num_images": max_num_images, + "img_size": img_size, + }, + ] + specializations = {} if kv_offload: @@ -998,7 +1055,7 @@ def get_specializations( else: return lang, compiler_options - def get_onnx_dynamic_axes(self, kv_offload: bool = False): + def get_onnx_dynamic_axes(self, comp_ctx_lengths: Optional[List[int]] = None, kv_offload: bool = False): txt_cfg = self.config.get_text_config() num_hidden_layers = txt_cfg.num_hidden_layers cross_attention_layers = txt_cfg.cross_attention_layers @@ -1023,6 +1080,9 @@ def get_onnx_dynamic_axes(self, kv_offload: bool = False): lang_dynamic_axes[f"past_key.{i}"] = {0: "batch_size", 2: "ctx_len"} lang_dynamic_axes[f"past_value.{i}"] = {0: "batch_size", 2: "ctx_len"} + if comp_ctx_lengths is not None: + lang_dynamic_axes["comp_ctx_lengths"] = {0: "comp_ctx_lengths"} + dynamic_axes = {} if kv_offload: dynamic_axes["vision"] = vision_dynamic_axes diff --git a/QEfficient/transformers/models/modeling_auto.py b/QEfficient/transformers/models/modeling_auto.py index 633a0b29d..12234df04 100644 --- a/QEfficient/transformers/models/modeling_auto.py +++ b/QEfficient/transformers/models/modeling_auto.py @@ -56,6 +56,7 @@ constants, get_padding_shape_from_config, ) +from QEfficient.utils.check_ccl_specializations import process_ccl_specializations from QEfficient.utils.logging_utils import logger @@ -877,6 +878,9 @@ def __init__( raise NotImplementedError("Continuous batching is not supported for image-text-to-text models yet.") self.model = model self.config = model.config + + self.comp_ctx_lengths_prefill, self.comp_ctx_lengths_decode, _, _ = process_ccl_specializations(kwargs) + self.vision_model = QEffVisionEncoderForTextImageToTextModel(model, **kwargs) self.lang_model = QEffCausalLMForTextImageToTextModel(model, **kwargs) self.input_shapes, self.output_names = None, None @@ -922,8 +926,20 @@ def from_pretrained(cls, pretrained_model_name_or_path: str, **kwargs): logger.warning("Updating low_cpu_mem_usage=False") kwargs.update({"attn_implementation": "eager", "low_cpu_mem_usage": False}) + + comp_ctx_lengths_prefill, comp_ctx_lengths_decode, ctx_len, prefill_seq_len = process_ccl_specializations( + kwargs + ) + model = cls._hf_auto_class.from_pretrained(pretrained_model_name_or_path, **kwargs) - return cls(model, pretrained_model_name_or_path=pretrained_model_name_or_path, **kwargs) + return cls( + model, + pretrained_model_name_or_path=pretrained_model_name_or_path, + comp_ctx_lengths_prefill=comp_ctx_lengths_prefill, + comp_ctx_lengths_decode=comp_ctx_lengths_decode, + ctx_len=ctx_len, + **kwargs, + ) @property def onnx_path(self): @@ -978,8 +994,8 @@ def export( List[str] A list containing the paths to the generated ONNX graph files for both components. """ - inputs = self.model.get_dummy_inputs(kv_offload=True) - dynamic_axes = self.model.get_onnx_dynamic_axes(kv_offload=True) + inputs = self.model.get_dummy_inputs(self.comp_ctx_lengths_decode, kv_offload=True) + dynamic_axes = self.model.get_onnx_dynamic_axes(self.comp_ctx_lengths_decode, kv_offload=True) output_names = self.model.get_output_names(kv_offload=True) self.vision_model.export( @@ -1083,6 +1099,8 @@ def compile( batch_size=batch_size, prefill_seq_len=prefill_seq_len, ctx_len=ctx_len, + comp_ctx_lengths_prefill=self.comp_ctx_lengths_prefill, + comp_ctx_lengths_decode=self.comp_ctx_lengths_decode, img_size=img_size, kv_offload=True, **compiler_options, @@ -1332,6 +1350,11 @@ def kv_offload_generate( lang_session.set_buffers(vision_outputs) + if self.comp_ctx_lengths_prefill is not None: + list_of_comp_ctx_lengths_prefill = [np.zeros(length) for length in self.comp_ctx_lengths_prefill] + prefill_ccl_id = 0 + lang_inputs["comp_ctx_lengths"] = list_of_comp_ctx_lengths_prefill[prefill_ccl_id] + # Prepare inputs for prefill chunk_inputs = lang_inputs.copy() prefill_start = perf_counter() @@ -1339,6 +1362,13 @@ def kv_offload_generate( # Run prefill chunk_inputs = lang_inputs.copy() for i in range(num_chunks): + if ( + self.comp_ctx_lengths_prefill is not None + and (i + 1) * prefill_seq_len > self.comp_ctx_lengths_prefill[prefill_ccl_id] + ): + prefill_ccl_id = min(prefill_ccl_id + 1, len(self.comp_ctx_lengths_prefill) - 1) + chunk_inputs["comp_ctx_lengths"] = list_of_comp_ctx_lengths_prefill[prefill_ccl_id] + chunk_inputs["input_ids"] = lang_inputs["input_ids"][:, i * prefill_seq_len : (i + 1) * prefill_seq_len] chunk_inputs["position_ids"] = lang_inputs["position_ids"][ ..., i * prefill_seq_len : (i + 1) * prefill_seq_len @@ -1368,8 +1398,25 @@ def kv_offload_generate( streamer.put(lang_inputs["input_ids"][0]) # Decode loop + if self.comp_ctx_lengths_decode is not None: + max_ccl_id = len(self.comp_ctx_lengths_decode) - 1 + list_of_comp_ctx_lengths_decode = [np.zeros(length) for length in self.comp_ctx_lengths_decode] + max_position_id = np.max(lang_inputs["position_ids"]) + ccl_id_initial = 0 + ccl_id = ccl_id_initial + for i in range(ccl_id_initial, len(self.comp_ctx_lengths_decode)): + if max_position_id < self.comp_ctx_lengths_decode[i]: + ccl_id = i + break + lang_inputs["comp_ctx_lengths"] = list_of_comp_ctx_lengths_decode[ccl_id] + decode_start = perf_counter() for num_token in range(1, generation_len): + if self.comp_ctx_lengths_decode is not None: + if max_position_id >= self.comp_ctx_lengths_decode[ccl_id] - 1: + ccl_id = min(ccl_id + 1, max_ccl_id) + lang_inputs["comp_ctx_lengths"] = list_of_comp_ctx_lengths_decode[ccl_id] + outputs = lang_session.run(lang_inputs) # Prepare inputs for next iteration @@ -1440,6 +1487,8 @@ def __init__( raise NotImplementedError("Continuous batching is not supported for image-text-to-text models yet.") super().__init__(model, **kwargs) + self.comp_ctx_lengths_prefill, self.comp_ctx_lengths_decode, _, _ = process_ccl_specializations(kwargs) + # to handle internvl models if hasattr(self.model.config, "llm_config") and hasattr(self.model.config, "vision_config"): self.model.config.llm_config.use_cache = True @@ -1486,6 +1535,11 @@ def from_pretrained( logger.warning("Updating low_cpu_mem_usage=False") kwargs.update({"attn_implementation": "eager", "low_cpu_mem_usage": False}) + + comp_ctx_lengths_prefill, comp_ctx_lengths_decode, ctx_len, prefill_seq_len = process_ccl_specializations( + kwargs + ) + from transformers import AutoConfig config = AutoConfig.from_pretrained(pretrained_model_name_or_path, trust_remote_code=True) @@ -1493,7 +1547,14 @@ def from_pretrained( config.vision_config.use_flash_attn = "false" model = cls._hf_auto_class.from_pretrained(pretrained_model_name_or_path, config, *args, **kwargs) - return cls(model, pretrained_model_name_or_path=pretrained_model_name_or_path, **kwargs) + return cls( + model, + pretrained_model_name_or_path=pretrained_model_name_or_path, + comp_ctx_lengths_prefill=comp_ctx_lengths_prefill, + comp_ctx_lengths_decode=comp_ctx_lengths_decode, + ctx_len=ctx_len, + **kwargs, + ) def export( self, @@ -1515,8 +1576,8 @@ def export( str Path to the generated ONNX graph file. """ - inputs = self.model.get_dummy_inputs() - dynamic_axes = self.model.get_onnx_dynamic_axes() + inputs = self.model.get_dummy_inputs(self.comp_ctx_lengths_decode) + dynamic_axes = self.model.get_onnx_dynamic_axes(self.comp_ctx_lengths_decode) output_names = self.model.get_output_names() return self._export(inputs, output_names, dynamic_axes, export_dir=export_dir) @@ -1598,6 +1659,8 @@ def compile( batch_size=batch_size, prefill_seq_len=prefill_seq_len, ctx_len=ctx_len, + comp_ctx_lengths_prefill=self.comp_ctx_lengths_prefill, + comp_ctx_lengths_decode=self.comp_ctx_lengths_decode, img_size=img_size, **compiler_options, ) @@ -1782,12 +1845,24 @@ def cloud_ai_100_generate( inputs["position_ids"] = np.where(inputs.pop("attention_mask"), np.arange(padded_len), -1) inputs["image_idx"] = np.array([[0]]) + if self.comp_ctx_lengths_prefill is not None: + list_of_comp_ctx_lengths_prefill = [np.zeros(length) for length in self.comp_ctx_lengths_prefill] + prefill_ccl_id = 0 + inputs["comp_ctx_lengths"] = list_of_comp_ctx_lengths_prefill[prefill_ccl_id] + qpc_session.activate() chunk_inputs = inputs.copy() prefill_start = perf_counter() # Run prefill for i in range(num_chunks): + if ( + self.comp_ctx_lengths_prefill is not None + and (i + 1) * prefill_seq_len > self.comp_ctx_lengths_prefill[prefill_ccl_id] + ): + prefill_ccl_id = min(prefill_ccl_id + 1, len(self.comp_ctx_lengths_prefill) - 1) + chunk_inputs["comp_ctx_lengths"] = list_of_comp_ctx_lengths_prefill[prefill_ccl_id] + chunk_inputs["input_ids"] = inputs["input_ids"][:, i * prefill_seq_len : (i + 1) * prefill_seq_len] chunk_inputs["position_ids"] = inputs["position_ids"][:, i * prefill_seq_len : (i + 1) * prefill_seq_len] outputs = qpc_session.run(chunk_inputs) @@ -1811,8 +1886,25 @@ def cloud_ai_100_generate( inputs.pop("pixel_values") # Decode loop + if self.comp_ctx_lengths_decode is not None: + list_of_comp_ctx_lengths_decode = [np.zeros(length) for length in self.comp_ctx_lengths_decode] + max_ccl_id = len(self.comp_ctx_lengths_decode) - 1 + max_position_id = np.max(inputs["position_ids"]) + ccl_id_initial = 0 + ccl_id = ccl_id_initial + for i in range(ccl_id_initial, len(self.comp_ctx_lengths_decode)): + if max_position_id < self.comp_ctx_lengths_decode[i]: + ccl_id = i + break + inputs["comp_ctx_lengths"] = list_of_comp_ctx_lengths_decode[ccl_id] + decode_start = perf_counter() for num_token in range(1, generation_len): + if self.comp_ctx_lengths_decode is not None: + if max_position_id >= self.comp_ctx_lengths_decode[ccl_id] - 1: + ccl_id = min(ccl_id + 1, max_ccl_id) + inputs["comp_ctx_lengths"] = list_of_comp_ctx_lengths_decode[ccl_id] + outputs = qpc_session.run(inputs) # Prepare inputs for next iteration inputs["input_ids"] = outputs["logits"].argmax(2) @@ -1950,6 +2042,9 @@ def __new__(self, model: nn.Module, kv_offload: Optional[bool] = True, **kwargs) Union[_QEffAutoModelForImageTextToTextDualQPC, _QEFFAutoModelForImageTextToTextSingleQPC] The wrapped model instance, configured for either dual or single QPC. """ + self.comp_ctx_lengths_prefill = kwargs.get("comp_ctx_lengths_prefill", None) + self.comp_ctx_lengths_decode = kwargs.get("comp_ctx_lengths_decode", None) + if kv_offload: return _QEffAutoModelForImageTextToTextDualQPC(model, **kwargs) else: @@ -1996,8 +2091,21 @@ def from_pretrained(cls, pretrained_model_name_or_path: str, kv_offload: Optiona NotImplementedError("Continuous batching is not supported for image-text-to-text models yet.") kwargs.update({"attn_implementation": "eager", "low_cpu_mem_usage": False}) + + comp_ctx_lengths_prefill, comp_ctx_lengths_decode, ctx_len, prefill_seq_len = process_ccl_specializations( + kwargs + ) + model = cls._hf_auto_class.from_pretrained(pretrained_model_name_or_path, **kwargs) - return cls(model, kv_offload=kv_offload, pretrained_model_name_or_path=pretrained_model_name_or_path, **kwargs) + return cls( + model, + kv_offload=kv_offload, + pretrained_model_name_or_path=pretrained_model_name_or_path, + comp_ctx_lengths_prefill=comp_ctx_lengths_prefill, + comp_ctx_lengths_decode=comp_ctx_lengths_decode, + ctx_len=ctx_len, + **kwargs, + ) MISCLASSIFIED_CAUSAL_LM_TO_QEFF_AUTO_CLASS_MAP = { @@ -2096,6 +2204,8 @@ def __init__( self.model, transformed = SpDTransform.apply(self.model, qaic_config, **kwargs) self.is_tlm = transformed + self.comp_ctx_lengths_prefill, self.comp_ctx_lengths_decode, _, _ = process_ccl_specializations(kwargs) + self.hash_params["qeff_auto_class"] = self.__class__.__name__ # ---Sampling--- @@ -2190,6 +2300,10 @@ def from_pretrained( kv_offload = kwargs.pop("kv_offload", None) + comp_ctx_lengths_prefill, comp_ctx_lengths_decode, ctx_len, prefill_seq_len = process_ccl_specializations( + kwargs + ) + kwargs.update({"attn_implementation": "eager", "low_cpu_mem_usage": False}) model = cls._hf_auto_class.from_pretrained(pretrained_model_name_or_path, *args, **kwargs) if qaic_config is not None: @@ -2199,13 +2313,24 @@ def from_pretrained( if model.__class__.__name__ in MISCLASSIFIED_CAUSAL_LM_TO_QEFF_AUTO_CLASS_MAP: return MISCLASSIFIED_CAUSAL_LM_TO_QEFF_AUTO_CLASS_MAP[model.__class__.__name__]( - model, kv_offload=kv_offload, pretrained_model_name_or_path=pretrained_model_name_or_path, **kwargs + model, + comp_ctx_lengths_prefill=comp_ctx_lengths_prefill, + comp_ctx_lengths_decode=comp_ctx_lengths_decode, + ctx_len=ctx_len, + prefill_seq_len=prefill_seq_len, + kv_offload=kv_offload, + pretrained_model_name_or_path=pretrained_model_name_or_path, + **kwargs, ) return cls( model, continuous_batching=continuous_batching, qaic_config=qaic_config, pretrained_model_name_or_path=pretrained_model_name_or_path, + comp_ctx_lengths_prefill=comp_ctx_lengths_prefill, + comp_ctx_lengths_decode=comp_ctx_lengths_decode, + ctx_len=ctx_len, + prefill_seq_len=prefill_seq_len, **kwargs, ) @@ -2255,6 +2380,10 @@ def export(self, export_dir: Optional[str] = None) -> str: "input_ids": {0: "batch_size", 1: "seq_len"}, "position_ids": {0: "batch_size", 1: "seq_len"}, } + if self.comp_ctx_lengths_prefill is not None: + example_inputs["comp_ctx_lengths"] = torch.randint(0, 100, (40,), dtype=torch.long) + dynamic_axes["comp_ctx_lengths"] = {0: "comp_ctx_lengths"} + if len(kv_cache_shape) == 3: # For GPTBigCode arch the pkv is 3d pkv_dynamic_axes = { 0: "full_batch_size" if self.continuous_batching else "batch_size", @@ -2400,6 +2529,7 @@ def build_prefill_specialization( self, prefill_seq_len: int = 32, ctx_len: int = 128, + comp_ctx_lengths: Optional[int] = None, batch_size: int = 1, kv_cache_batch_size: Optional[int] = None, full_batch_size: Optional[int] = None, @@ -2431,6 +2561,9 @@ def build_prefill_specialization( "ctx_len": ctx_len, "num_logits_to_keep": 1 if self.is_tlm else None, } + if comp_ctx_lengths is not None: + spec["comp_ctx_lengths"] = comp_ctx_lengths + if self.continuous_batching: spec["full_batch_size"] = kv_cache_batch_size else: @@ -2443,6 +2576,7 @@ def build_decode_specialization( self, prefill_seq_len: int = 32, ctx_len: int = 128, + comp_ctx_lengths: Optional[int] = None, batch_size: int = 1, kv_cache_batch_size: Optional[int] = None, full_batch_size: Optional[int] = None, @@ -2472,14 +2606,18 @@ def build_decode_specialization( A dictionary defining the decode specialization, or None if it would be a duplicate of the prefill specialization (e.g., if prefill_seq_len is 1 and not continuous batching). """ - if prefill_seq_len == 1 and not self.continuous_batching: - return None # Avoid duplication with prefill + if prefill_seq_len == 1: + if not self.continuous_batching: # or batch_size == 1 + return None # Avoid duplication with prefill + spec = { "batch_size": full_batch_size if self.continuous_batching else batch_size, "seq_len": (num_speculative_tokens + 1) if self.is_tlm else 1, "ctx_len": ctx_len, "num_logits_to_keep": (num_speculative_tokens + 1) if self.is_tlm else None, } + if comp_ctx_lengths is not None: + spec["comp_ctx_lengths"] = comp_ctx_lengths if self.continuous_batching: spec["full_batch_size"] = kv_cache_batch_size @@ -2494,6 +2632,8 @@ def compile( *, prefill_seq_len: int = 32, ctx_len: int = 128, + comp_ctx_lengths_prefill: Optional[List[int]] = None, + comp_ctx_lengths_decode: Optional[List[int]] = None, batch_size: int = 1, full_batch_size: Optional[int] = None, kv_cache_batch_size: Optional[int] = None, @@ -2581,6 +2721,23 @@ def compile( If `prefill_seq_len` is less than `num_speculative_tokens + 1` for TLM models. """ + # For comp_ctx_lengths Disaggregated applications + if self.comp_ctx_lengths_prefill is None: + if comp_ctx_lengths_prefill is not None: + import ast + + if isinstance(comp_ctx_lengths_prefill, str): + try: + # Safely evaluate the string to a Python list for disaggregated input + self.comp_ctx_lengths_prefill = ast.literal_eval(comp_ctx_lengths_prefill) + self.comp_ctx_lengths_decode = ast.literal_eval(comp_ctx_lengths_decode) + + except (ValueError, SyntaxError): + raise ValueError("Invalid format for comp_ctx_lengths. Expected a list-like string.") + else: + self.comp_ctx_lengths_prefill = comp_ctx_lengths_prefill + self.comp_ctx_lengths_decode = comp_ctx_lengths_decode + # --- Validation --- if prefill_only is not None and not isinstance(prefill_only, bool): raise TypeError("`prefill_only` must be a boolean.") @@ -2611,26 +2768,58 @@ def compile( # --- Specializations --- specializations = [] if prefill_only is None or prefill_only or prefill_seq_len == 1: - specializations.append( - self.build_prefill_specialization( + if self.comp_ctx_lengths_prefill is not None: + # Adding elements from self.comp_ctx_lengths_prefill to prefill_specialization + for i in range(0, len(self.comp_ctx_lengths_prefill)): + specializations.append( + self.build_prefill_specialization( + prefill_seq_len=prefill_seq_len, + ctx_len=ctx_len, + comp_ctx_lengths=self.comp_ctx_lengths_prefill[i], + batch_size=batch_size, + kv_cache_batch_size=kv_cache_batch_size, + full_batch_size=full_batch_size, + ) + ) + + else: + specializations.append( + self.build_prefill_specialization( + prefill_seq_len=prefill_seq_len, + ctx_len=ctx_len, + batch_size=batch_size, + kv_cache_batch_size=kv_cache_batch_size, + full_batch_size=full_batch_size, + ) + ) + + if prefill_only is None or not prefill_only: + if self.comp_ctx_lengths_decode is not None: + # Adding elements from self.comp_ctx_lengths_decode to decode_specialization + for i in range(0, len(self.comp_ctx_lengths_decode)): + decode_spec = self.build_decode_specialization( + prefill_seq_len=prefill_seq_len, + ctx_len=ctx_len, + comp_ctx_lengths=self.comp_ctx_lengths_decode[i], + batch_size=batch_size, + kv_cache_batch_size=kv_cache_batch_size, + full_batch_size=full_batch_size, + num_speculative_tokens=num_speculative_tokens, + ) + if decode_spec: + specializations.append(decode_spec) + + else: + decode_spec = self.build_decode_specialization( prefill_seq_len=prefill_seq_len, ctx_len=ctx_len, batch_size=batch_size, kv_cache_batch_size=kv_cache_batch_size, full_batch_size=full_batch_size, + num_speculative_tokens=num_speculative_tokens, ) - ) - if prefill_only is None or not prefill_only: - decode_spec = self.build_decode_specialization( - prefill_seq_len=prefill_seq_len, - ctx_len=ctx_len, - batch_size=batch_size, - kv_cache_batch_size=kv_cache_batch_size, - full_batch_size=full_batch_size, - num_speculative_tokens=num_speculative_tokens, - ) - if decode_spec: - specializations.append(decode_spec) + if decode_spec: + specializations.append(decode_spec) # --- Compilation --- kv_cache_dtype = "mxint8" if mxint8_kv_cache else "float16" @@ -2708,6 +2897,8 @@ def generate( tokenizer, self.qpc_path, prompt=prompts, + comp_ctx_lengths_prefill=self.comp_ctx_lengths_prefill, + comp_ctx_lengths_decode=self.comp_ctx_lengths_decode, device_id=device_id, generation_len=generation_len, automation=kwargs.pop("automation", False), diff --git a/QEfficient/transformers/models/molmo/modeling_molmo.py b/QEfficient/transformers/models/molmo/modeling_molmo.py index 4f92316ca..a0b20fe28 100644 --- a/QEfficient/transformers/models/molmo/modeling_molmo.py +++ b/QEfficient/transformers/models/molmo/modeling_molmo.py @@ -243,6 +243,7 @@ def attention( attention_bias: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, layer_past: Optional[Cache] = None, + comp_ctx_lengths: Optional[torch.LongTensor] = None, batch_index: Optional[torch.LongTensor] = None, use_cache: bool = False, **kwargs, @@ -278,8 +279,17 @@ def attention( q, k = qeff_apply_rotary_pos_emb(q, k, cos, sin, position_ids, self.config) if layer_past is not None: + if comp_ctx_lengths is not None: + attention_bias = attention_bias[:, :, :, : comp_ctx_lengths.shape[-1]] + print(f"attention_bias: {attention_bias.shape}") # sin and cos are specific to RoPE models; cache_position needed for the static cache - cache_kwargs = {"sin": sin, "cos": cos, "batch_index": batch_index, "position_ids": position_ids} + cache_kwargs = { + "sin": sin, + "cos": cos, + "batch_index": batch_index, + "position_ids": position_ids, + "CCL": attention_bias.shape[-1], + } k, v = layer_past.update(k, v, self.layer_id, cache_kwargs) attention_interface: Callable = eager_attention_forward @@ -311,6 +321,7 @@ def forward( attention_bias: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, layer_past: Optional[Cache] = None, + comp_ctx_lengths: Optional[torch.LongTensor] = None, batch_index: Optional[torch.LongTensor] = None, use_cache: bool = False, **kwargs, @@ -334,6 +345,7 @@ def forward( attention_bias, position_ids=position_ids, layer_past=layer_past, + comp_ctx_lengths=comp_ctx_lengths, batch_index=batch_index, use_cache=use_cache, ) @@ -380,6 +392,7 @@ def forward( subsegment_ids: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None, + comp_ctx_lengths: Optional[torch.LongTensor] = None, batch_index: Optional[torch.LongTensor] = None, use_cache: bool = False, last_logits_only: bool = False, @@ -496,6 +509,7 @@ def forward( attention_bias=causal_mask, position_ids=position_ids, layer_past=layer_past, + comp_ctx_lengths=comp_ctx_lengths, batch_index=batch_index, use_cache=use_cache, ) @@ -518,6 +532,7 @@ def forward( attention_bias=causal_mask, position_ids=position_ids, layers_past=layers_past, + comp_ctx_lengths=comp_ctx_lengths, use_cache=use_cache, ) @@ -574,7 +589,15 @@ def __init__(self, model): # self.language_model = self.model.language_model self.config = self.model.config - def forward(self, input_ids, vision_embeds, position_ids, image_idx, past_key_values): + def forward( + self, + input_ids, + vision_embeds, + position_ids, + image_idx, + past_key_values, + comp_ctx_lengths: Optional[List[int]] = None, + ): if input_ids is not None: input_ids = input_ids * (input_ids != -1).to(input_ids.dtype) inputs_embeds = self.model.model.transformer.wte(input_ids) @@ -587,7 +610,11 @@ def forward(self, input_ids, vision_embeds, position_ids, image_idx, past_key_va # inputs_embeds = torch.where(input_ids.shape[1] == torch.tensor(1), inputs_embeds, image_embeds) outputs = self.model.model.forward( - input_embeddings=inputs_embeds, position_ids=position_ids, past_key_values=past_key_values, use_cache=True + input_embeddings=inputs_embeds, + position_ids=position_ids, + past_key_values=past_key_values, + comp_ctx_lengths=comp_ctx_lengths, + use_cache=True, ) next_idx = (indices1.max() + 1).unsqueeze(0).unsqueeze(0) image_idx = torch.where(image_idx < next_idx, next_idx, image_idx) @@ -608,7 +635,16 @@ def get_qeff_language_decoder(self): """ def forward( - self, pixel_values, image_masks, image_input_idx, valid_idx, input_ids, position_ids, image_idx, past_key_values + self, + pixel_values, + image_masks, + image_input_idx, + valid_idx, + input_ids, + position_ids, + image_idx, + past_key_values, + comp_ctx_lengths: Optional[List[int]] = None, ): image_features, _ = self.model.vision_backbone(pixel_values, image_masks) num_image, num_patch = image_features.shape[1:3] @@ -637,7 +673,11 @@ def forward( inputs_embeds = torch.where(input_ids.shape[1] == torch.tensor(1), inputs_embeds, image_embeds) outputs = self.model.forward( - input_embeddings=inputs_embeds, position_ids=position_ids, past_key_values=past_key_values, use_cache=True + input_embeddings=inputs_embeds, + position_ids=position_ids, + past_key_values=past_key_values, + comp_ctx_lengths=comp_ctx_lengths, + use_cache=True, ) next_idx = (indices1.max() + 1).unsqueeze(0).unsqueeze(0) image_idx = torch.where(image_idx < next_idx, next_idx, image_idx) @@ -651,6 +691,8 @@ def get_specializations( ctx_len: int, num_images: int = None, img_size: int = None, + comp_ctx_lengths_prefill: Optional[List[int]] = None, + comp_ctx_lengths_decode: Optional[List[int]] = None, valid_size: int = None, kv_offload: bool = False, **compiler_options, @@ -679,30 +721,77 @@ def get_specializations( } ] - lang_prefill = { - "batch_size": batch_size, - "seq_len": prefill_seq_len, - "ctx_len": ctx_len, - "valid_size": valid_size, - } - - lang_decode = {"batch_size": batch_size, "seq_len": "1", "ctx_len": ctx_len, "valid_size": valid_size} + if comp_ctx_lengths_prefill is not None and comp_ctx_lengths_decode is not None: + lang = [] + + for i in range(0, len(comp_ctx_lengths_prefill)): + lang_prefill = { + "batch_size": batch_size, + "seq_len": prefill_seq_len, + "ctx_len": ctx_len, + "comp_ctx_lengths": comp_ctx_lengths_prefill[i], + "valid_size": valid_size, + } + if kv_offload: + values = { + "img_size": img_size, + "img_tile": img_tile, + "num_images": num_images, + "num_patch": num_patch, + } + + for key, value in values.items(): + lang_prefill[key] = value + + lang.append(lang_prefill) + + for i in range(0, len(comp_ctx_lengths_decode)): + lang_decode = { + "batch_size": batch_size, + "seq_len": "1", + "ctx_len": ctx_len, + "comp_ctx_lengths": comp_ctx_lengths_decode[i], + "valid_size": valid_size, + } + if kv_offload: + values = { + "img_size": img_size, + "img_tile": img_tile, + "num_images": num_images, + "num_patch": num_patch, + } + + for key, value in values.items(): + lang_decode[key] = value + + lang.append(lang_decode) - if kv_offload: - values = { - "img_size": img_size, - "img_tile": img_tile, - "num_images": num_images, - "num_patch": num_patch, + else: + lang_prefill = { + "batch_size": batch_size, + "seq_len": prefill_seq_len, + "ctx_len": ctx_len, + "valid_size": valid_size, } - for key, value in values.items(): - lang_prefill[key] = value - lang_decode[key] = value + lang_decode = {"batch_size": batch_size, "seq_len": "1", "ctx_len": ctx_len, "valid_size": valid_size} + + if kv_offload: + values = { + "img_size": img_size, + "img_tile": img_tile, + "num_images": num_images, + "num_patch": num_patch, + } + + for key, value in values.items(): + lang_prefill[key] = value + lang_decode[key] = value + + lang = [] + lang.append(lang_prefill) + lang.append(lang_decode) - lang = [] - lang.append(lang_prefill) - lang.append(lang_decode) specializations = {} if kv_offload: @@ -712,7 +801,7 @@ def get_specializations( else: return lang, compiler_options - def get_onnx_dynamic_axes(self, kv_offload: bool = False): + def get_onnx_dynamic_axes(self, comp_ctx_lengths: Optional[List[int]] = None, kv_offload: bool = False): # Define dynamic axes vision_dynamic_axes = {} lang_dynamic_axes = {} @@ -731,6 +820,9 @@ def get_onnx_dynamic_axes(self, kv_offload: bool = False): lang_dynamic_axes[f"past_key.{i}"] = {0: "batch_size", 2: "ctx_len"} lang_dynamic_axes[f"past_value.{i}"] = {0: "batch_size", 2: "ctx_len"} + if comp_ctx_lengths is not None: + lang_dynamic_axes["comp_ctx_lengths"] = {0: "comp_ctx_lengths"} + dynamic_axes = {} if kv_offload: dynamic_axes["vision"] = vision_dynamic_axes @@ -760,7 +852,7 @@ def get_output_names(self, kv_offload: bool = False): return lang_output_names return output_names - def get_dummy_inputs(self, kv_offload: bool = False, **kwargs): + def get_dummy_inputs(self, comp_ctx_lengths: Optional[List[int]] = None, kv_offload: bool = False, **kwargs): inputs_shapes = {} inputs_shapes_lang = {} inputs_shapes["input_ids"] = (constants.ONNX_EXPORT_EXAMPLE_BATCH_SIZE, constants.ONNX_EXPORT_EXAMPLE_SEQ_LEN) @@ -823,6 +915,9 @@ def get_dummy_inputs(self, kv_offload: bool = False, **kwargs): for kv in ["key", "value"]: lang_inputs["past_key_values"][i].append(torch.zeros(kv_cache_shape, dtype=torch.float32)) + if comp_ctx_lengths is not None: + lang_inputs["comp_ctx_lengths"] = torch.randint(0, 100, (40,), dtype=torch.long) + inputs = {} if kv_offload: inputs["vision"] = vision_inputs diff --git a/QEfficient/transformers/models/mpt/modeling_mpt.py b/QEfficient/transformers/models/mpt/modeling_mpt.py index 9bf6a4422..16ca54051 100644 --- a/QEfficient/transformers/models/mpt/modeling_mpt.py +++ b/QEfficient/transformers/models/mpt/modeling_mpt.py @@ -39,6 +39,7 @@ def forward( position_ids: Optional[torch.LongTensor] = None, batch_index: Optional[torch.LongTensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, + comp_ctx_lengths: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, use_cache: Optional[bool] = None, ): @@ -51,7 +52,9 @@ def forward( value_states = value_states.reshape(batch_size, seq_length, self.n_heads, self.head_dim).transpose(1, 2) if past_key_value is not None: - cache_kwargs = {"position_ids": position_ids, "batch_index": batch_index} + if comp_ctx_lengths is not None: + attention_mask = attention_mask[:, :, :, : comp_ctx_lengths.shape[-1]] + cache_kwargs = {"position_ids": position_ids, "batch_index": batch_index, "CCL": attention_mask.shape[-1]} key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) attention_scores = torch.matmul(query_states, key_states.transpose(-1, -2)) * self.softmax_scale @@ -101,6 +104,7 @@ def forward( position_ids: Optional[torch.LongTensor] = None, batch_index: Optional[torch.LongTensor] = None, layer_past: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, + comp_ctx_lengths: Optional[torch.LongTensor] = None, use_cache: bool = False, output_attentions: bool = False, ): @@ -118,6 +122,7 @@ def forward( batch_index=batch_index, attention_mask=attention_mask, past_key_value=layer_past, + comp_ctx_lengths=comp_ctx_lengths, use_cache=use_cache, ) @@ -144,6 +149,7 @@ def forward( self, input_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None, + comp_ctx_lengths: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, batch_index: Optional[torch.LongTensor] = None, @@ -205,6 +211,7 @@ def forward( outputs = block( hidden_states, layer_past=past_key_values, + comp_ctx_lengths=comp_ctx_lengths, attention_mask=causal_mask, position_ids=position_ids, batch_index=batch_index, @@ -250,6 +257,7 @@ def forward( self, input_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Tuple[Tuple[torch.Tensor, torch.Tensor], ...]] = None, + comp_ctx_lengths: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, batch_index: Optional[torch.LongTensor] = None, @@ -271,6 +279,7 @@ def forward( transformer_outputs = self.transformer( input_ids, past_key_values=past_key_values, + comp_ctx_lengths=comp_ctx_lengths, attention_mask=attention_mask, position_ids=position_ids, batch_index=batch_index, diff --git a/QEfficient/transformers/models/olmo2/modeling_olmo2.py b/QEfficient/transformers/models/olmo2/modeling_olmo2.py index 0d23729c1..bf946da39 100644 --- a/QEfficient/transformers/models/olmo2/modeling_olmo2.py +++ b/QEfficient/transformers/models/olmo2/modeling_olmo2.py @@ -132,6 +132,7 @@ def forward( attention_mask: Optional[torch.Tensor], position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Cache] = None, + comp_ctx_lengths: Optional[torch.LongTensor] = None, batch_index: Optional[torch.LongTensor] = None, cache_position: Optional[torch.LongTensor] = None, **kwargs, @@ -154,8 +155,10 @@ def forward( query_states, key_states = qeff_apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids) if past_key_value is not None: + if comp_ctx_lengths is not None: + attention_mask = attention_mask[:, :, :, : comp_ctx_lengths.shape[-1]] # sin and cos are specific to RoPE models; cache_position needed for the static cache - cache_kwargs = {"batch_index": batch_index, "position_ids": position_ids} + cache_kwargs = {"batch_index": batch_index, "position_ids": position_ids, "CCL": attention_mask.shape[-1]} key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) attention_interface: Callable = eager_attention_forward @@ -188,6 +191,7 @@ def forward( attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Cache] = None, + comp_ctx_lengths: Optional[torch.LongTensor] = None, batch_index: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = False, use_cache: Optional[bool] = False, @@ -203,6 +207,7 @@ def forward( attention_mask=attention_mask, position_ids=position_ids, past_key_value=past_key_value, + comp_ctx_lengths=comp_ctx_lengths, batch_index=batch_index, use_cache=use_cache, cache_position=cache_position, @@ -233,6 +238,7 @@ def forward( attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Cache] = None, + comp_ctx_lengths: Optional[torch.LongTensor] = None, batch_index: Optional[torch.LongTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, @@ -286,6 +292,7 @@ def forward( attention_mask=causal_mask, position_ids=position_ids, past_key_value=past_key_values, + comp_ctx_lengths=comp_ctx_lengths, batch_index=batch_index, use_cache=use_cache, cache_position=cache_position, @@ -322,6 +329,7 @@ def forward( attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None, + comp_ctx_lengths: Optional[torch.LongTensor] = None, batch_index: Optional[torch.LongTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, @@ -343,6 +351,7 @@ def forward( attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, + comp_ctx_lengths=comp_ctx_lengths, batch_index=batch_index, inputs_embeds=inputs_embeds, use_cache=use_cache, diff --git a/QEfficient/transformers/models/phi/modeling_phi.py b/QEfficient/transformers/models/phi/modeling_phi.py index 18557f1ca..a5e53216a 100644 --- a/QEfficient/transformers/models/phi/modeling_phi.py +++ b/QEfficient/transformers/models/phi/modeling_phi.py @@ -67,6 +67,7 @@ def forward( attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Cache] = None, + comp_ctx_lengths: Optional[torch.LongTensor] = None, batch_index: Optional[torch.LongTensor] = None, output_attentions: bool = False, use_cache: bool = False, @@ -104,8 +105,16 @@ def forward( key_states = torch.cat((key_rot, key_pass), dim=-1) if past_key_value is not None: + if comp_ctx_lengths is not None: + attention_mask = attention_mask[:, :, :, : comp_ctx_lengths.shape[-1]] # Update the cache_kwargs with position_ids for Cloud AI 100 - cache_kwargs = {"sin": sin, "cos": cos, "batch_index": batch_index, "position_ids": position_ids} + cache_kwargs = { + "sin": sin, + "cos": cos, + "batch_index": batch_index, + "position_ids": position_ids, + "CCL": attention_mask.shape[-1], + } key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) attention_interface: Callable = eager_attention_forward @@ -140,6 +149,7 @@ def forward( output_attentions: Optional[bool] = False, use_cache: Optional[bool] = False, past_key_value: Optional[Tuple[torch.Tensor]] = None, + comp_ctx_lengths: Optional[torch.LongTensor] = None, cache_position: Optional[torch.LongTensor] = None, position_embeddings: Optional[Tuple[torch.Tensor, torch.Tensor]] = None, # will become mandatory in v4.46 **kwargs, @@ -181,6 +191,7 @@ def forward( position_ids=position_ids, batch_index=batch_index, past_key_value=past_key_value, + comp_ctx_lengths=comp_ctx_lengths, output_attentions=output_attentions, use_cache=use_cache, cache_position=cache_position, @@ -213,6 +224,7 @@ def forward( attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, + comp_ctx_lengths: Optional[torch.LongTensor] = None, batch_index: Optional[torch.LongTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, @@ -274,6 +286,7 @@ def forward( attention_mask=causal_mask, position_ids=position_ids, past_key_value=past_key_values, + comp_ctx_lengths=comp_ctx_lengths, batch_index=batch_index, output_attentions=output_attentions, use_cache=use_cache, @@ -316,6 +329,7 @@ def forward( attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, + comp_ctx_lengths: Optional[torch.LongTensor] = None, batch_index: Optional[torch.LongTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, @@ -370,6 +384,7 @@ def forward( position_ids=position_ids, batch_index=batch_index, past_key_values=past_key_values, + comp_ctx_lengths=comp_ctx_lengths, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, diff --git a/QEfficient/transformers/models/phi3/modeling_phi3.py b/QEfficient/transformers/models/phi3/modeling_phi3.py index 4b5234a5a..851395f08 100644 --- a/QEfficient/transformers/models/phi3/modeling_phi3.py +++ b/QEfficient/transformers/models/phi3/modeling_phi3.py @@ -140,6 +140,7 @@ def forward( batch_index: Optional[torch.LongTensor] = None, position_ids=Optional[torch.Tensor], past_key_value: Optional[Cache] = None, + comp_ctx_lengths: Optional[torch.LongTensor] = None, cache_position: Optional[torch.LongTensor] = None, **kwargs, ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]: @@ -162,9 +163,12 @@ def forward( query_states, key_states = qeff_apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids) if past_key_value is not None: + if comp_ctx_lengths is not None: + attention_mask = attention_mask[:, :, :, : comp_ctx_lengths.shape[-1]] cache_kwargs = { "batch_index": batch_index, "position_ids": position_ids, + "CCL": attention_mask.shape[-1], } key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) @@ -198,6 +202,7 @@ def forward( attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Cache] = None, + comp_ctx_lengths: Optional[torch.LongTensor] = None, batch_index: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = False, cache_position: Optional[torch.LongTensor] = None, @@ -235,6 +240,7 @@ def forward( position_ids=position_ids, batch_index=batch_index, past_key_value=past_key_value, + comp_ctx_lengths=comp_ctx_lengths, use_cache=use_cache, cache_position=cache_position, position_embeddings=position_embeddings, @@ -265,6 +271,7 @@ def forward( attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Cache] = None, + comp_ctx_lengths: Optional[torch.LongTensor] = None, batch_index: Optional[torch.LongTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, @@ -314,6 +321,7 @@ def forward( position_ids=position_ids, batch_index=batch_index, past_key_value=past_key_values, + comp_ctx_lengths=comp_ctx_lengths, use_cache=use_cache, cache_position=cache_position, **kwargs, @@ -350,6 +358,7 @@ def forward( position_ids: Optional[torch.LongTensor] = None, batch_index: Optional[torch.LongTensor] = None, past_key_values: Optional[Cache] = None, + comp_ctx_lengths: Optional[torch.LongTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, output_hidden_states: Optional[bool] = None, @@ -366,6 +375,7 @@ def forward( batch_index=batch_index, position_ids=position_ids, past_key_values=past_key_values, + comp_ctx_lengths=comp_ctx_lengths, inputs_embeds=inputs_embeds, use_cache=use_cache, output_hidden_states=output_hidden_states, diff --git a/QEfficient/transformers/models/qwen2/modeling_qwen2.py b/QEfficient/transformers/models/qwen2/modeling_qwen2.py index 24e8df46c..1aca7039d 100644 --- a/QEfficient/transformers/models/qwen2/modeling_qwen2.py +++ b/QEfficient/transformers/models/qwen2/modeling_qwen2.py @@ -150,6 +150,7 @@ def forward( attention_mask: Optional[torch.Tensor], position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Cache] = None, + comp_ctx_lengths: Optional[torch.LongTensor] = None, batch_index: Optional[torch.LongTensor] = None, cache_position: Optional[torch.LongTensor] = None, **kwargs, @@ -166,7 +167,9 @@ def forward( query_states, key_states = qeff_apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids) if past_key_value is not None: - cache_kwargs = {"batch_index": batch_index, "position_ids": position_ids} + if comp_ctx_lengths is not None: + attention_mask = attention_mask[:, :, :, : comp_ctx_lengths.shape[-1]] + cache_kwargs = {"batch_index": batch_index, "position_ids": position_ids, "CCL": attention_mask.shape[-1]} key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) attention_interface = eager_attention_forward @@ -200,6 +203,7 @@ def forward( attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Cache] = None, + comp_ctx_lengths: Optional[torch.LongTensor] = None, batch_index: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = False, cache_position: Optional[torch.LongTensor] = None, @@ -231,6 +235,7 @@ def forward( attention_mask=attention_mask, position_ids=position_ids, past_key_value=past_key_value, + comp_ctx_lengths=comp_ctx_lengths, batch_index=batch_index, use_cache=use_cache, cache_position=cache_position, @@ -261,6 +266,7 @@ def forward( attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Cache] = None, + comp_ctx_lengths: Optional[torch.LongTensor] = None, batch_index: Optional[torch.LongTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, @@ -313,6 +319,7 @@ def forward( attention_mask=causal_mask, position_ids=position_ids, past_key_value=past_key_values, + comp_ctx_lengths=comp_ctx_lengths, batch_index=batch_index, use_cache=use_cache, cache_position=cache_position, @@ -348,6 +355,7 @@ def forward( attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None, + comp_ctx_lengths: Optional[torch.LongTensor] = None, batch_index: Optional[torch.LongTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, @@ -364,6 +372,7 @@ def forward( attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, + comp_ctx_lengths=comp_ctx_lengths, batch_index=batch_index, inputs_embeds=inputs_embeds, use_cache=use_cache, diff --git a/QEfficient/transformers/models/qwen2_5_vl/modeling_qwen2_5_vl.py b/QEfficient/transformers/models/qwen2_5_vl/modeling_qwen2_5_vl.py index 030dd7a56..ac91d5477 100644 --- a/QEfficient/transformers/models/qwen2_5_vl/modeling_qwen2_5_vl.py +++ b/QEfficient/transformers/models/qwen2_5_vl/modeling_qwen2_5_vl.py @@ -399,6 +399,7 @@ def forward( attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Cache] = None, + comp_ctx_lengths: Optional[torch.LongTensor] = None, batch_index: Optional[torch.LongTensor] = None, output_attentions: bool = False, use_cache: bool = False, @@ -425,8 +426,16 @@ def forward( ) if past_key_value is not None: + if comp_ctx_lengths is not None: + attention_mask = attention_mask[:, :, :, : comp_ctx_lengths.shape[-1]] # sin and cos are specific to RoPE models; cache_position needed for the static cache - cache_kwargs = {"sin": sin, "cos": cos, "batch_index": batch_index, "position_ids": position_ids[0]} + cache_kwargs = { + "sin": sin, + "cos": cos, + "batch_index": batch_index, + "position_ids": position_ids[0], + "CCL": attention_mask.shape[-1], + } key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) attention_interface: Callable = eager_attention_forward @@ -457,6 +466,7 @@ def forward( attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, + comp_ctx_lengths: Optional[torch.LongTensor] = None, batch_index: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = False, use_cache: Optional[bool] = False, @@ -496,6 +506,7 @@ def forward( attention_mask=attention_mask, position_ids=position_ids, past_key_value=past_key_value, + comp_ctx_lengths=comp_ctx_lengths, batch_index=batch_index, output_attentions=output_attentions, use_cache=use_cache, @@ -528,6 +539,7 @@ def forward( attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, + comp_ctx_lengths: Optional[torch.LongTensor] = None, batch_index: Optional[torch.LongTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, @@ -578,6 +590,7 @@ def forward( attention_mask=causal_mask, position_ids=position_ids, past_key_value=past_key_values, + comp_ctx_lengths=comp_ctx_lengths, batch_index=batch_index, output_attentions=output_attentions, use_cache=use_cache, @@ -616,6 +629,7 @@ def forward( attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, + comp_ctx_lengths: Optional[torch.LongTensor] = None, batch_index: Optional[torch.LongTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, @@ -639,6 +653,7 @@ def forward( position_ids=position_ids, attention_mask=attention_mask, past_key_values=past_key_values, + comp_ctx_lengths=comp_ctx_lengths, batch_index=batch_index, inputs_embeds=inputs_embeds, use_cache=use_cache, @@ -680,7 +695,15 @@ def __init__(self, model): self.model = model self.language_model = self.model.model.language_model - def forward(self, input_ids, vision_embeds, position_ids, image_idx, past_key_values): + def forward( + self, + input_ids, + vision_embeds, + position_ids, + image_idx, + past_key_values, + comp_ctx_lengths: Optional[List[int]] = None, + ): inputs_embeds = self.model.get_input_embeddings()(input_ids) B, N, C = inputs_embeds.shape selected = input_ids == self.model.config.image_token_id @@ -691,7 +714,11 @@ def forward(self, input_ids, vision_embeds, position_ids, image_idx, past_key_va image_input_embeds = torch.where(selected.unsqueeze(-1), image_features_expanded, inputs_embeds) inputs_embeds = torch.where(input_ids.shape[1] == torch.tensor(1), inputs_embeds, image_input_embeds) outputs = self.model.model( - inputs_embeds=inputs_embeds, position_ids=position_ids, past_key_values=past_key_values, use_cache=True + inputs_embeds=inputs_embeds, + position_ids=position_ids, + past_key_values=past_key_values, + comp_ctx_lengths=comp_ctx_lengths, + use_cache=True, ) logit_index = position_ids[0].to(torch.int32).argmax(1, keepdim=True) @@ -709,7 +736,7 @@ def get_qeff_vision_encoder(self): def get_qeff_language_decoder(self): return QEffQwen_2_5_vl_DecoderWrapper(self) - def get_dummy_inputs(self, kv_offload: bool = False, **kwargs): + def get_dummy_inputs(self, comp_ctx_lengths: Optional[List[int]] = None, kv_offload: bool = False, **kwargs): inputs_shapes = {} inputs_shapes["input_ids"] = (constants.ONNX_EXPORT_EXAMPLE_BATCH_SIZE, constants.ONNX_EXPORT_EXAMPLE_SEQ_LEN) @@ -757,6 +784,9 @@ def get_dummy_inputs(self, kv_offload: bool = False, **kwargs): for kv in ["key", "value"]: lang_inputs["past_key_values"][i].append(torch.zeros(kv_cache_shape, dtype=torch.float32)) + if comp_ctx_lengths is not None: + lang_inputs["comp_ctx_lengths"] = torch.randint(0, 100, (40,), dtype=torch.long) + inputs = {} if kv_offload: inputs["vision"] = vision_inputs @@ -775,6 +805,8 @@ def get_specializations( img_size: None, height: int = None, width: int = None, + comp_ctx_lengths_prefill: Optional[List[int]] = None, + comp_ctx_lengths_decode: Optional[List[int]] = None, kv_offload: bool = False, **compiler_options, ): @@ -856,20 +888,46 @@ def smart_resize( "grid_w": grid_w, } ] - lang = [ - { - "batch_size": batch_size, - "seq_len": prefill_seq_len, - "ctx_len": ctx_len, - "vision_size": vision_size, - }, - { - "batch_size": batch_size, - "seq_len": "1", - "ctx_len": ctx_len, - "vision_size": vision_size, - }, - ] + if comp_ctx_lengths_prefill is not None: + lang = [] + + for i in range(0, len(comp_ctx_lengths_prefill)): + lang.append( + { + "batch_size": batch_size, + "seq_len": prefill_seq_len, + "ctx_len": ctx_len, + "vision_size": vision_size, + "comp_ctx_lengths": comp_ctx_lengths_prefill[i], + } + ) + + for i in range(0, len(comp_ctx_lengths_decode)): + lang.append( + { + "batch_size": batch_size, + "seq_len": "1", + "ctx_len": ctx_len, + "vision_size": vision_size, + "comp_ctx_lengths": comp_ctx_lengths_decode[i], + } + ) + + else: + lang = [ + { + "batch_size": batch_size, + "seq_len": prefill_seq_len, + "ctx_len": ctx_len, + "vision_size": vision_size, + }, + { + "batch_size": batch_size, + "seq_len": "1", + "ctx_len": ctx_len, + "vision_size": vision_size, + }, + ] specializations = {} @@ -880,7 +938,7 @@ def smart_resize( else: return lang, compiler_options - def get_onnx_dynamic_axes(self, kv_offload: bool = False): + def get_onnx_dynamic_axes(self, comp_ctx_lengths: Optional[List[int]] = None, kv_offload: bool = False): # Define dynamic axes num_layers = self.config.num_hidden_layers @@ -899,6 +957,9 @@ def get_onnx_dynamic_axes(self, kv_offload: bool = False): lang_dynamic_axes[f"past_key.{i}"] = {0: "batch_size", 2: "ctx_len"} lang_dynamic_axes[f"past_value.{i}"] = {0: "batch_size", 2: "ctx_len"} + if comp_ctx_lengths is not None: + lang_dynamic_axes["comp_ctx_lengths"] = {0: "comp_ctx_lengths"} + dynamic_axes = {} if kv_offload: dynamic_axes["vision"] = vision_dynamic_axes diff --git a/QEfficient/transformers/models/qwen3/modeling_qwen3.py b/QEfficient/transformers/models/qwen3/modeling_qwen3.py index ecdb36019..ccf918c2c 100644 --- a/QEfficient/transformers/models/qwen3/modeling_qwen3.py +++ b/QEfficient/transformers/models/qwen3/modeling_qwen3.py @@ -151,6 +151,7 @@ def forward( attention_mask: Optional[torch.Tensor], position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Cache] = None, + comp_ctx_lengths: Optional[torch.LongTensor] = None, batch_index: Optional[torch.LongTensor] = None, cache_position: Optional[torch.LongTensor] = None, **kwargs, @@ -167,7 +168,9 @@ def forward( query_states, key_states = qeff_apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids) if past_key_value is not None: - cache_kwargs = {"batch_index": batch_index, "position_ids": position_ids} + if comp_ctx_lengths is not None: + attention_mask = attention_mask[:, :, :, : comp_ctx_lengths.shape[-1]] + cache_kwargs = {"batch_index": batch_index, "position_ids": position_ids, "CCL": attention_mask.shape[-1]} key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) attention_interface = eager_attention_forward @@ -201,6 +204,7 @@ def forward( attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Cache] = None, + comp_ctx_lengths: Optional[torch.LongTensor] = None, batch_index: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = False, cache_position: Optional[torch.LongTensor] = None, @@ -232,6 +236,7 @@ def forward( attention_mask=attention_mask, position_ids=position_ids, past_key_value=past_key_value, + comp_ctx_lengths=comp_ctx_lengths, batch_index=batch_index, use_cache=use_cache, cache_position=cache_position, @@ -262,6 +267,7 @@ def forward( attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Cache] = None, + comp_ctx_lengths: Optional[torch.LongTensor] = None, batch_index: Optional[torch.LongTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, @@ -314,6 +320,7 @@ def forward( attention_mask=causal_mask, position_ids=position_ids, past_key_value=past_key_values, + comp_ctx_lengths=comp_ctx_lengths, batch_index=batch_index, use_cache=use_cache, cache_position=cache_position, @@ -349,6 +356,7 @@ def forward( attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None, + comp_ctx_lengths: Optional[torch.LongTensor] = None, batch_index: Optional[torch.LongTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, @@ -367,6 +375,7 @@ def forward( attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, + comp_ctx_lengths=comp_ctx_lengths, batch_index=batch_index, inputs_embeds=inputs_embeds, use_cache=use_cache, diff --git a/QEfficient/transformers/models/qwen3_moe/modeling_qwen3_moe.py b/QEfficient/transformers/models/qwen3_moe/modeling_qwen3_moe.py index 591f7c1b0..c8a5ae2fd 100644 --- a/QEfficient/transformers/models/qwen3_moe/modeling_qwen3_moe.py +++ b/QEfficient/transformers/models/qwen3_moe/modeling_qwen3_moe.py @@ -201,6 +201,7 @@ def forward( attention_mask: Optional[torch.Tensor], position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, + comp_ctx_lengths: Optional[torch.LongTensor] = None, batch_index: Optional[torch.LongTensor] = None, cache_position: Optional[torch.LongTensor] = None, **kwargs, @@ -217,7 +218,9 @@ def forward( query_states, key_states = qeff_apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids) if past_key_value is not None: - cache_kwargs = {"batch_index": batch_index, "position_ids": position_ids} + if comp_ctx_lengths is not None: + attention_mask = attention_mask[:, :, :, : comp_ctx_lengths.shape[-1]] + cache_kwargs = {"batch_index": batch_index, "position_ids": position_ids, "CCL": attention_mask.shape[-1]} key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) attention_interface = eager_attention_forward @@ -243,6 +246,7 @@ def forward( attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, + comp_ctx_lengths: Optional[torch.LongTensor] = None, batch_index: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = False, cache_position: Optional[torch.LongTensor] = None, @@ -274,6 +278,7 @@ def forward( attention_mask=attention_mask, position_ids=position_ids, past_key_value=past_key_value, + comp_ctx_lengths=comp_ctx_lengths, batch_index=batch_index, use_cache=use_cache, cache_position=cache_position, @@ -300,6 +305,7 @@ def forward( attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, + comp_ctx_lengths: Optional[torch.LongTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, batch_index: Optional[torch.LongTensor] = None, @@ -342,6 +348,7 @@ def forward( attention_mask=causal_mask, position_ids=position_ids, past_key_value=past_key_values, + comp_ctx_lengths=comp_ctx_lengths, batch_index=batch_index, use_cache=use_cache, cache_position=cache_position, @@ -369,6 +376,7 @@ def forward( attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[List[torch.FloatTensor]] = None, + comp_ctx_lengths: Optional[torch.LongTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, batch_index: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, @@ -385,6 +393,7 @@ def forward( attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, + comp_ctx_lengths=comp_ctx_lengths, inputs_embeds=inputs_embeds, batch_index=batch_index, use_cache=use_cache, diff --git a/QEfficient/transformers/models/starcoder2/modeling_starcoder2.py b/QEfficient/transformers/models/starcoder2/modeling_starcoder2.py index 9a327761d..075b8aedb 100644 --- a/QEfficient/transformers/models/starcoder2/modeling_starcoder2.py +++ b/QEfficient/transformers/models/starcoder2/modeling_starcoder2.py @@ -69,6 +69,7 @@ def forward( attention_mask: Optional[torch.Tensor], position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Cache] = None, + comp_ctx_lengths: Optional[torch.LongTensor] = None, batch_index: Optional[torch.LongTensor] = None, cache_position: Optional[torch.LongTensor] = None, **kwargs, @@ -84,7 +85,9 @@ def forward( query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids) if past_key_value is not None: - cache_kwargs = {"batch_index": batch_index, "position_ids": position_ids} + if comp_ctx_lengths is not None: + attention_mask = attention_mask[:, :, :, : comp_ctx_lengths.shape[-1]] + cache_kwargs = {"batch_index": batch_index, "position_ids": position_ids, "CCL": attention_mask.shape[-1]} key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) attention_interface = eager_attention_forward @@ -118,6 +121,7 @@ def forward( attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Tuple[torch.Tensor]] = None, + comp_ctx_lengths: Optional[torch.LongTensor] = None, batch_index: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = False, cache_position: Optional[torch.LongTensor] = None, @@ -153,6 +157,7 @@ def forward( attention_mask=attention_mask, position_ids=position_ids, past_key_value=past_key_value, + comp_ctx_lengths=comp_ctx_lengths, batch_index=batch_index, use_cache=use_cache, cache_position=cache_position, @@ -184,6 +189,7 @@ def forward( attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Cache] = None, + comp_ctx_lengths: Optional[torch.LongTensor] = None, batch_index: Optional[torch.LongTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, @@ -237,6 +243,7 @@ def forward( attention_mask=causal_mask, position_ids=position_ids, past_key_value=past_key_values, + comp_ctx_lengths=comp_ctx_lengths, batch_index=batch_index, use_cache=use_cache, cache_position=cache_position, @@ -273,6 +280,7 @@ def forward( attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Union[Cache, List[torch.FloatTensor]]] = None, + comp_ctx_lengths: Optional[torch.LongTensor] = None, batch_index: Optional[torch.LongTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, @@ -289,6 +297,7 @@ def forward( attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, + comp_ctx_lengths=comp_ctx_lengths, batch_index=batch_index, inputs_embeds=inputs_embeds, use_cache=use_cache, diff --git a/QEfficient/transformers/models/whisper/modeling_whisper.py b/QEfficient/transformers/models/whisper/modeling_whisper.py index e078493a7..79907818d 100644 --- a/QEfficient/transformers/models/whisper/modeling_whisper.py +++ b/QEfficient/transformers/models/whisper/modeling_whisper.py @@ -55,6 +55,7 @@ def forward( position_ids_layer: torch.Tensor = None, key_value_states: Optional[torch.Tensor] = None, past_key_value: Optional[Cache] = None, + comp_ctx_lengths: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, layer_head_mask: Optional[torch.Tensor] = None, output_attentions: bool = False, @@ -99,7 +100,9 @@ def forward( key_states = key_states.transpose(1, 2).contiguous() value_states = value_states.transpose(1, 2).contiguous() if past_key_value is not None: - cache_kwargs = {"position_ids": position_ids_layer} + if comp_ctx_lengths is not None: + attention_mask = attention_mask[:, :, :, : comp_ctx_lengths.shape[-1]] + cache_kwargs = {"position_ids": position_ids_layer, "CCL": attention_mask.shape[-1]} key_states, value_states = past_key_value.update( key_states, value_states, self.layer_idx, cache_kwargs ) @@ -181,6 +184,7 @@ def forward( layer_head_mask: Optional[torch.Tensor] = None, cross_attn_layer_head_mask: Optional[torch.Tensor] = None, past_key_value: Optional[Cache] = None, + comp_ctx_lengths: Optional[torch.LongTensor] = None, output_attentions: Optional[bool] = False, use_cache: Optional[bool] = True, cache_position: Optional[torch.LongTensor] = None, @@ -215,6 +219,7 @@ def forward( hidden_states, self_attn_weights = self.self_attn( hidden_states=hidden_states, past_key_value=self_attn_past_key_value, + comp_ctx_lengths=comp_ctx_lengths, attention_mask=attention_mask, layer_head_mask=layer_head_mask, output_attentions=output_attentions, @@ -388,6 +393,7 @@ def forward( cross_attn_head_mask=None, position_ids=None, past_key_values=None, + comp_ctx_lengths: Optional[torch.LongTensor] = None, inputs_embeds=None, use_cache=None, output_attentions=None, @@ -532,6 +538,7 @@ def forward( layer_head_mask=(head_mask[idx] if head_mask is not None else None), cross_attn_layer_head_mask=(cross_attn_head_mask[idx] if cross_attn_head_mask is not None else None), past_key_value=past_key_values, + comp_ctx_lengths=comp_ctx_lengths, output_attentions=output_attentions, use_cache=use_cache, position_ids_layer=position_ids, @@ -643,6 +650,7 @@ def forward( cross_attn_head_mask=None, encoder_outputs=None, past_key_values=None, + comp_ctx_lengths: Optional[torch.LongTensor] = None, decoder_inputs_embeds=None, use_cache=None, output_attentions=None, @@ -674,6 +682,7 @@ def forward( head_mask=decoder_head_mask, cross_attn_head_mask=cross_attn_head_mask, past_key_values=past_key_values, + comp_ctx_lengths=comp_ctx_lengths, inputs_embeds=decoder_inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, @@ -719,6 +728,7 @@ def forward( cross_attn_head_mask: Optional[torch.Tensor] = None, encoder_outputs: Optional[Tuple[Tuple[torch.FloatTensor]]] = None, past_key_values: Optional[Union[EncoderDecoderCache, Tuple[torch.FloatTensor]]] = None, + comp_ctx_lengths: Optional[torch.LongTensor] = None, decoder_inputs_embeds: Optional[Tuple[torch.FloatTensor]] = None, position_ids: Optional[Tuple[torch.LongTensor]] = None, labels: Optional[torch.LongTensor] = None, @@ -740,6 +750,7 @@ def forward( decoder_head_mask=decoder_head_mask, cross_attn_head_mask=cross_attn_head_mask, past_key_values=past_key_values, + comp_ctx_lengths=comp_ctx_lengths, decoder_inputs_embeds=decoder_inputs_embeds, decoder_position_ids=position_ids, use_cache=use_cache, diff --git a/QEfficient/utils/check_ccl_specializations.py b/QEfficient/utils/check_ccl_specializations.py new file mode 100644 index 000000000..6cb54a6c5 --- /dev/null +++ b/QEfficient/utils/check_ccl_specializations.py @@ -0,0 +1,49 @@ +# ----------------------------------------------------------------------------- +# +# Copyright (c) Qualcomm Technologies, Inc. and/or its subsidiaries. +# SPDX-License-Identifier: BSD-3-Clause +# +# ----------------------------------------------------------------------------- + + +def process_ccl_specializations(kwargs): + ccl_prefill = kwargs.pop("comp_ctx_lengths_prefill", None) + ccl_decode = kwargs.pop("comp_ctx_lengths_decode", None) + ctx_len = kwargs.pop("ctx_len", None) + prefill_seq_len = kwargs.pop("prefill_seq_len", 128) + + if ccl_prefill is None or ccl_decode is None: + return None, None, ctx_len, prefill_seq_len + + if ctx_len is None: + raise TypeError("`ctx_len` is required when loading the model with CCL.") + + if prefill_seq_len == 1: + # both prefill and decode ccl can share the same specializations since prefill_seq_len=1. So, a sorted union of both lists can be used for both of them. + ccl_union_all = sorted(set(ccl_prefill + ccl_decode)) + ccl_union_all = [min(x, ctx_len) for x in ccl_union_all] + return ccl_union_all, ccl_union_all, ctx_len, prefill_seq_len + + # Step 1: Cap values to ctx_len + ccl_prefill = [min(x, ctx_len) for x in ccl_prefill] + ccl_decode = [min(x, ctx_len) for x in ccl_decode] + + # Step 2: Remove duplicates within each list + ccl_prefill = list(set(ccl_prefill)) + ccl_decode = list(set(ccl_decode)) + + # Step 3: Ensure no overlap between ccl_prefill and ccl_decode + updated_prefill = [] + for val in ccl_prefill: + while val in ccl_decode or val in updated_prefill: + val -= 1 + if val < 0: + break # Prevent negative values + if val >= 0: + updated_prefill.append(val) + + # Step 4: Sort both lists + updated_prefill.sort() + ccl_decode.sort() + + return updated_prefill, ccl_decode, ctx_len, prefill_seq_len diff --git a/examples/ccl_image_text_to_text_inference.py b/examples/ccl_image_text_to_text_inference.py new file mode 100644 index 000000000..932a407b9 --- /dev/null +++ b/examples/ccl_image_text_to_text_inference.py @@ -0,0 +1,135 @@ +# ----------------------------------------------------------------------------- +# +# Copyright (c) Qualcomm Technologies, Inc. and/or its subsidiaries. +# SPDX-License-Identifier: BSD-3-Clause +# +# ----------------------------------------------------------------------------- + +import requests +from PIL import Image +from transformers import AutoProcessor, TextStreamer + +from QEfficient import QEFFAutoModelForImageTextToText + +# Add HuggingFace Token to access the model +HF_TOKEN = "" + + +def run_model( + model_name, + token, + query, + image_url, + kv_offload=False, + prefill_seq_len=32, + ctx_len=512, + comp_ctx_lengths_prefill=None, + comp_ctx_lengths_decode=None, + generation_len=128, + img_size=560, + num_cores=16, + num_devices=1, +): + ## STEP - 1 Load the Processor and Model + + processor = AutoProcessor.from_pretrained(model_name, token=token) + + # `kv_offload` is used to compile the model in a Single QPC or 2 QPCs. + # The Dual QPC approach splits the model to perform Image Encoding and Output generation in 2 different QPCs. + # The outputs of the Vision Encoder are then passed to the Language model via host in this case. + + model = QEFFAutoModelForImageTextToText.from_pretrained( + model_name, + token=token, + attn_implementation="eager", + kv_offload=kv_offload, + comp_ctx_lengths_prefill=comp_ctx_lengths_prefill, + comp_ctx_lengths_decode=comp_ctx_lengths_decode, + ctx_len=ctx_len, + ) + + ## STEP - 2 Export & Compile the Model + + model.compile( + prefill_seq_len=prefill_seq_len, + ctx_len=ctx_len, + img_size=img_size, + num_cores=num_cores, + num_devices=num_devices, + mxfp6_matmul=False, + ) + + ## STEP - 3 Load and process the inputs for Inference + + image = Image.open(requests.get(image_url, stream=True).raw) + messages = [ + { + "role": "user", + "content": [ + {"type": "image"}, + {"type": "text", "text": query}, + ], + } + ] + input_text = [processor.apply_chat_template(messages, add_generation_prompt=True)] + + inputs = processor( + text=input_text, + images=image, + return_tensors="pt", + add_special_tokens=False, + padding="max_length", + max_length=prefill_seq_len, + ) + + ## STEP - 4 Run Inference on the compiled model + + streamer = TextStreamer(processor.tokenizer) + output_statistics = model.generate(inputs=inputs, streamer=streamer, generation_len=generation_len) + print(output_statistics) + + +if __name__ == "__main__": + # Model name and Input parameters + model_name = "llava-hf/llava-1.5-7b-hf" + # model_name = "meta-llama/Llama-3.2-11B-Vision-Instruct" + query = "Describe this image." + image_url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/0052a70beed5bf71b92610a43a52df6d286cd5f3/diffusers/rabbit.jpg" + + # Compilation parameters for the model + kv_offload = True + prefill_seq_len = 32 + ctx_len = 8192 + generation_len = 128 + img_size = 336 + # img_size = 560 + num_cores = 16 + num_devices = 4 + comp_ctx_lengths_prefill = [4096] + comp_ctx_lengths_decode = [6144, ctx_len] + + run_model( + model_name=model_name, + token=HF_TOKEN, + query=query, + kv_offload=kv_offload, + image_url=image_url, + prefill_seq_len=prefill_seq_len, + ctx_len=ctx_len, + comp_ctx_lengths_prefill=comp_ctx_lengths_prefill, + comp_ctx_lengths_decode=comp_ctx_lengths_decode, + generation_len=generation_len, + img_size=img_size, + num_cores=num_cores, + num_devices=num_devices, + ) + + +""" +Expected Response: + +This image depicts a charming anthropomorphic rabbit standing on a dirt path in front of a picturesque stone cottage, surrounded by a serene landscape. + +The rabbit, with its light brown fur and distinctive long ears, is attired in a stylish blue coat, brown vest, and tan pants, exuding a sense of sophistication. The dirt path, flanked by vibrant flowers and lush greenery, leads to the cottage, which features a thatched roof and a chimney, adding to the rustic charm of the scene. In the background, rolling hills and trees create a breathtaking panorama, while the sky above is a brilliant blue with white clouds, completing the + +""" diff --git a/examples/ccl_llama4_example.py b/examples/ccl_llama4_example.py new file mode 100644 index 000000000..5fc715589 --- /dev/null +++ b/examples/ccl_llama4_example.py @@ -0,0 +1,126 @@ +# ----------------------------------------------------------------------------- +# +# Copyright (c) Qualcomm Technologies, Inc. and/or its subsidiaries. +# SPDX-License-Identifier: BSD-3-Clause +# +# ----------------------------------------------------------------------------- + +import torch +import transformers +from transformers import AutoConfig, AutoModelForImageTextToText, AutoProcessor, TextStreamer + +from QEfficient import QEFFAutoModelForImageTextToText + +model_id = "meta-llama/Llama-4-Scout-17B-16E-Instruct" +config = AutoConfig.from_pretrained(model_id) +# For Testing Purpose Only +config.text_config.num_hidden_layers = 4 +config.vision_config.num_hidden_layers = 2 + +model = AutoModelForImageTextToText.from_pretrained(model_id, attn_implementation="eager", config=config) +model.eval() +tokenizer = transformers.AutoTokenizer.from_pretrained(model_id, trust_remote_code=True) +processor = AutoProcessor.from_pretrained(model_id) + +### For running the model in single QPC approach use kv_offload=False. For Dual QPC approach use kv_offload=True ### +ctx_len = 8192 +comp_ctx_lengths_prefill = [3072] +comp_ctx_lengths_decode = [4096, ctx_len] + +qeff_model = QEFFAutoModelForImageTextToText( + model, + kv_offload=True, + comp_ctx_lengths_prefill=comp_ctx_lengths_prefill, + comp_ctx_lengths_decode=comp_ctx_lengths_decode, + ctx_len=ctx_len, +) + +### use skip_vision=Ture, if want to run only text, ow false ### +skip_vision = False + +if skip_vision: + ## Only Text ## + qeff_model.compile( + prefill_seq_len=128, + ctx_len=ctx_len, + img_size=336, + num_cores=16, + num_devices=4, + max_num_tiles=17, + mxfp6_matmul=True, + mxint8_kv_cache=True, + aic_enable_depth_first=True, + skip_vision=True, + mos=1, + ) + + messages = [ + { + "role": "user", + "content": [ + { + "type": "text", + "text": "Can you describe the image in detail.", + }, + ], + }, + ] + + inputs = processor.apply_chat_template( + messages, + add_generation_prompt=True, + tokenize=True, + return_dict=True, + return_tensors="pt", + ) + + streamer = TextStreamer(tokenizer) + output = qeff_model.generate(inputs=inputs, generation_len=700) + print(output.generated_ids) + print(tokenizer.batch_decode(output.generated_ids)) + print(output) + +else: + ## Vision + Text ## + qeff_model.compile( + prefill_seq_len=128, + ctx_len=ctx_len, + img_size=336, + num_cores=16, + num_devices=4, + max_num_tiles=17, + mxfp6_matmul=True, + mxint8_kv_cache=True, + aic_enable_depth_first=True, + mos=1, + ) + + ### IMAGE + TEXT ### + image_url = ( + "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/datasets/cat_style_layout.png" + ) + + messages = [ + { + "role": "user", + "content": [ + {"type": "image", "url": image_url}, + {"type": "text", "text": "Can you describe the image in detail."}, + ], + }, + ] + + inputs = processor.apply_chat_template( + messages, + add_generation_prompt=True, + tokenize=True, + return_dict=True, + return_tensors="pt", + ) + inputs["pixel_values"] = inputs["pixel_values"].to(torch.float32) + streamer = TextStreamer(tokenizer) + output = qeff_model.generate(inputs=inputs, generation_len=1024) + print(output.generated_ids) + print(tokenizer.batch_decode(output.generated_ids)) + print(output) + print() diff --git a/examples/ccl_mistral3_example.py b/examples/ccl_mistral3_example.py new file mode 100644 index 000000000..b76227a22 --- /dev/null +++ b/examples/ccl_mistral3_example.py @@ -0,0 +1,121 @@ +# ----------------------------------------------------------------------------- +# +# Copyright (c) Qualcomm Technologies, Inc. and/or its subsidiaries. +# SPDX-License-Identifier: BSD-3-Clause +# +# ----------------------------------------------------------------------------- + +import requests +from PIL import Image +from transformers import AutoConfig, AutoProcessor, TextStreamer + +from QEfficient import QEFFAutoModelForImageTextToText + + +def run_model( + model_name, + query, + image_url, + kv_offload=False, + prefill_seq_len=128, + ctx_len=4096, + comp_ctx_lengths_prefill=None, + comp_ctx_lengths_decode=None, + generation_len=128, + img_size=1540, + num_cores=16, + num_devices=4, +): + ## STEP - 1 Load the Processor and Model + + processor = AutoProcessor.from_pretrained(model_name) + + # `kv_offload` is used to compile the model in a 2 QPCs.Currently we are not supporting 1 qpc so the flag false is not allowed. + # The `kv_offload` flag should always be set to True. + # The Dual QPC approach splits the model to perform Image Encoding and Output generation in 2 different QPCs. + # The outputs of the Vision Encoder are then passed to the Language model via host in this case. + + config = AutoConfig.from_pretrained(model_name) + config.vision_config._attn_implementation = "eager" + + model = QEFFAutoModelForImageTextToText.from_pretrained( + model_name, + kv_offload=kv_offload, + config=config, + ctx_len=ctx_len, + comp_ctx_lengths_prefill=comp_ctx_lengths_prefill, + comp_ctx_lengths_decode=comp_ctx_lengths_decode, + ) + + ## STEP - 2 Export & Compile the Model + + model.compile( + prefill_seq_len=prefill_seq_len, + ctx_len=ctx_len, + img_size=img_size, + num_cores=num_cores, + num_devices=num_devices, + mxfp6_matmul=False, + ) + + ## STEP - 3 Load and process the inputs for Inference + + # We are resizing the image to (w x h) (1540 x 1540) so that any image can work on the model irrespective of image dimensssions + # we have a fixed size of height 1540 and width 1540 as defined in the config + + image = Image.open(requests.get(image_url, stream=True).raw) + image = image.resize((1540, 1540)) + + messages = [{"role": "user", "content": [{"type": "image"}, {"type": "text", "text": query}]}] + input_text = processor.apply_chat_template(messages, add_generation_prompt=True) + inputs = processor(image, input_text, add_special_tokens=False, return_tensors="pt") + + ## STEP - 4 Run Inference on the compiled model + + streamer = TextStreamer(processor.tokenizer) + output = model.generate(inputs=inputs, streamer=streamer, generation_len=generation_len) + print(output) + + +if __name__ == "__main__": + # Model name and Input parameters + model_name = "mistralai/Mistral-Small-3.1-24B-Instruct-2503" + + # Please add prompt here + query = "Describe the image" + + # Please pass image url or image path .The format of the image should be jpg. + image_url = "https://www.ilankelman.org/stopsigns/australia.jpg" + + # Compilation parameters for the model + kv_offload = True + prefill_seq_len = 128 + ctx_len = 8192 + generation_len = 128 + num_cores = 16 + num_devices = 4 + comp_ctx_lengths_prefill = [4096] + comp_ctx_lengths_decode = [6144, ctx_len] + + run_model( + model_name=model_name, + query=query, + kv_offload=kv_offload, + image_url=image_url, + prefill_seq_len=prefill_seq_len, + ctx_len=ctx_len, + comp_ctx_lengths_prefill=comp_ctx_lengths_prefill, + comp_ctx_lengths_decode=comp_ctx_lengths_decode, + generation_len=generation_len, + num_cores=num_cores, + num_devices=num_devices, + ) + + +""" +Expected Response: +The image depicts a street scene in what appears to be a Chinatown district. The focal point is a traditional Chinese archway, known as a paifang, which is intricately designed with red columns and ornate details. The archway features Chinese characters at the top, which translate to "Chinatown Gate." +In the foreground, there is a red stop sign mounted on a pole. The street is relatively quiet, with a single dark-colored SUV driving through the archway. On either side of the archway, there are stone lion statues, which are common decorative elements in Chinese architecture and symbolize protection. + + +""" diff --git a/examples/ccl_molmo_example.py b/examples/ccl_molmo_example.py new file mode 100644 index 000000000..c52d9172b --- /dev/null +++ b/examples/ccl_molmo_example.py @@ -0,0 +1,98 @@ +# ----------------------------------------------------------------------------- +# +# Copyright (c) Qualcomm Technologies, Inc. and/or its subsidiaries. +# SPDX-License-Identifier: BSD-3-Clause +# +# ----------------------------------------------------------------------------- + +import requests +import torch +import transformers +from PIL import Image +from transformers import AutoConfig, AutoProcessor, TextStreamer + +from QEfficient import QEFFAutoModelForCausalLM + +model_id = "allenai/Molmo-7B-D-0924" +config = AutoConfig.from_pretrained(model_id, trust_remote_code=True) + +# config.num_hidden_layers = 2 + +# load the model +ctx_len = 32768 +comp_ctx_lengths_prefill = [3072] +comp_ctx_lengths_decode = [4096, 8192, ctx_len] + +qeff_model = QEFFAutoModelForCausalLM.from_pretrained( + model_id, + kv_offload=True, + comp_ctx_lengths_prefill=comp_ctx_lengths_prefill, + comp_ctx_lengths_decode=comp_ctx_lengths_decode, + ctx_len=ctx_len, + trust_remote_code=True, + config=config, +) +tokenizer = transformers.AutoTokenizer.from_pretrained(model_id, trust_remote_code=True) +processor = AutoProcessor.from_pretrained(model_id, trust_remote_code=True) + +### use skip_vision=Ture, if want to run only text, ow false ### +skip_vision = False + +if skip_vision: + ## Only Text ## + qeff_model.compile( + prefill_seq_len=128, + ctx_len=ctx_len, + num_cores=16, + num_devices=4, + mxint8_kv_cache=True, + aic_enable_depth_first=True, + skip_vision=True, + mos=1, + ) + + inputs = processor.process(text="Tell me about yourself") + inputs = {k: v.unsqueeze(0) for k, v in inputs.items()} + inputs["input_ids"] = inputs["input_ids"].to(torch.int64) + inputs["attention_mask"] = torch.ones((inputs["input_ids"].shape), dtype=torch.int64) + + streamer = TextStreamer(tokenizer) + output = qeff_model.generate(inputs=inputs, device_ids=[0, 1, 2, 3], generation_len=100) + print(output.generated_ids) + print(tokenizer.batch_decode(output.generated_ids)) + print(output) + +else: + ## Vision + Text ## + qeff_model.compile( + prefill_seq_len=128, + ctx_len=ctx_len, + num_cores=16, + num_devices=4, + mxint8_kv_cache=True, + aic_enable_depth_first=True, + mos=1, + ) + + ### IMAGE + TEXT ### + image_url = "https://picsum.photos/id/237/536/354" + + image = Image.open(requests.get(image_url, stream=True).raw) + image = image.resize((536, 354)) + + inputs = processor.process(images=[image], text="Can you describe the image in detail.") + + inputs = {k: v.unsqueeze(0) for k, v in inputs.items()} + inputs["pixel_values"] = inputs.pop("images") + inputs["attention_mask"] = torch.ones((inputs["input_ids"].shape), dtype=torch.int64) + + valid = inputs["image_input_idx"] > 0 + valid = valid.reshape(1, -1) + inputs["valid_idx"] = torch.nonzero(valid)[:, 1].unsqueeze(0) + + streamer = TextStreamer(tokenizer) + output = qeff_model.generate(inputs=inputs, device_ids=[8, 9, 10, 11], generation_len=100) + print(output.generated_ids) + print(tokenizer.batch_decode(output.generated_ids)) + print(output) + print() diff --git a/examples/ccl_qwen2_5_vl_example.py b/examples/ccl_qwen2_5_vl_example.py new file mode 100644 index 000000000..b813462e3 --- /dev/null +++ b/examples/ccl_qwen2_5_vl_example.py @@ -0,0 +1,188 @@ +# ----------------------------------------------------------------------------- +# +# Copyright (c) Qualcomm Technologies, Inc. and/or its subsidiaries. +# SPDX-License-Identifier: BSD-3-Clause +# +# ----------------------------------------------------------------------------- + +import requests +import torch +import torch.nn.functional as F +import transformers +from PIL import Image +from qwen_vl_utils import process_vision_info +from transformers import AutoConfig, AutoProcessor, TextStreamer + +from QEfficient import QEFFAutoModelForImageTextToText + +## For AWQ model update pytorch version to 2.8.* +model_id = "Qwen/Qwen2.5-VL-32B-Instruct" +config = AutoConfig.from_pretrained(model_id) + +## Use complete model without changing num_hidden_layers as it will not work for TF version 4.55.0 for Qwen2.5VL model + +ctx_len = 8192 +comp_ctx_lengths_prefill = [4096] +comp_ctx_lengths_decode = [6144, ctx_len] + +qeff_model = QEFFAutoModelForImageTextToText.from_pretrained( + model_id, + comp_ctx_lengths_prefill=comp_ctx_lengths_prefill, + comp_ctx_lengths_decode=comp_ctx_lengths_decode, + ctx_len=ctx_len, + attn_implementation="eager", + kv_offload=True, + config=config, +) +tokenizer = transformers.AutoTokenizer.from_pretrained(model_id) +processor = AutoProcessor.from_pretrained(model_id) + +### use skip_vision=Ture, if want to run only text, ow false ### +skip_vision = False + +if skip_vision: + ## Only Text ## + + ## Set Batch_Size ## + batch_size = 2 + qeff_model.compile( + batch_size=batch_size, + prefill_seq_len=128, + ctx_len=ctx_len, + num_cores=16, + num_devices=4, + height=354, + width=536, + mxfp6_matmul=False, + aic_enable_depth_first=True, + skip_vision=True, + mos=1, + ) + + messages = [ + { + "role": "user", + "content": [ + {"type": "text", "text": "Tell me about yourself."}, + ], + }, + ] + + messages = [messages] * batch_size + + inputs = processor.apply_chat_template( + messages, + add_generation_prompt=True, + tokenize=True, + return_dict=True, + return_tensors="pt", + ) + + pos_ids, rope_deltas = qeff_model.model.get_rope_index( + inputs["input_ids"], + image_grid_thw=None, + video_grid_thw=None, + second_per_grid_ts=None, + attention_mask=inputs["attention_mask"], + ) + + input_ids_length = inputs["input_ids"].shape[1] + + inputs["position_ids"] = torch.cat([pos_ids, pos_ids[0].unsqueeze(0)], dim=0) + + prefill_seq_len = 128 + num_chunks = -(input_ids_length // -prefill_seq_len) # ceil divide without float + padded_len = num_chunks * prefill_seq_len # Convert to a multiple of prompt_len + + inputs["position_ids"] = F.pad( + inputs["position_ids"], pad=(0, padded_len - input_ids_length), mode="constant", value=-1 + ) + + streamer = TextStreamer(tokenizer) + output = qeff_model.generate(inputs=inputs, generation_len=100) + print(output.generated_ids) + print(tokenizer.batch_decode(output.generated_ids)) + print(output) + +else: + batch_size = 1 + ## Vision + Text ## + qeff_model.compile( + batch_size=batch_size, + prefill_seq_len=128, + ctx_len=ctx_len, + num_cores=16, + num_devices=4, + height=354, + width=536, + mxfp6_matmul=True, + mxint8_kv_cache=True, + aic_enable_depth_first=True, + mos=1, + ) + + ### IMAGE + TEXT ### + image_url = "https://picsum.photos/id/237/536/354" + + image = Image.open(requests.get(image_url, stream=True).raw) + + messages_1 = [ + { + "role": "user", + "content": [ + {"type": "image", "image": image}, + {"type": "text", "text": "Describe this image."}, + ], + }, + ] + + messages_2 = [ + { + "role": "user", + "content": [ + {"type": "image", "image": image}, + {"type": "text", "text": "Describe about the color of the dog."}, + ], + }, + ] + + messages = [messages_2] * batch_size + + texts = [processor.apply_chat_template(msg, tokenize=False, add_generation_prompt=True) for msg in messages] + + image_inputs, video_inputs = process_vision_info(messages) + inputs = processor( + text=texts, + images=image_inputs, + videos=video_inputs, + padding=True, + return_tensors="pt", + ) + input_ids_length = inputs["input_ids"].shape[1] + + inputs["position_ids"] = torch.arange(input_ids_length).view(1, 1, input_ids_length).expand(-1, batch_size, -1) + + pos_ids, rope_deltas = qeff_model.model.model.get_rope_index( + inputs["input_ids"], + inputs["image_grid_thw"], + video_grid_thw=None, + second_per_grid_ts=None, + attention_mask=inputs["attention_mask"], + ) + + inputs["position_ids"] = torch.cat((inputs["position_ids"], pos_ids), dim=0) + + prefill_seq_len = 128 + num_chunks = -(input_ids_length // -prefill_seq_len) # ceil divide without float + padded_len = num_chunks * prefill_seq_len # Convert to a multiple of prompt_len + + inputs["position_ids"] = F.pad( + inputs["position_ids"], pad=(0, padded_len - input_ids_length), mode="constant", value=-1 + ) + + inputs.pop("image_grid_thw") + streamer = TextStreamer(tokenizer) + output = qeff_model.generate(inputs=inputs, generation_len=100) + print(output.generated_ids) + print(tokenizer.batch_decode(output.generated_ids)) + print(output) diff --git a/examples/compute_context_length.py b/examples/compute_context_length.py new file mode 100644 index 000000000..dc6991b16 --- /dev/null +++ b/examples/compute_context_length.py @@ -0,0 +1,65 @@ +# ----------------------------------------------------------------------------- +# +# Copyright (c) 2025 Qualcomm Innovation Center, Inc. All rights reserved. +# SPDX-License-Identifier: BSD-3-Clause +# +# ----------------------------------------------------------------------------- + +## In this example, you can run a model for static and continuous batching with different Compute-Context-Length (CCL) inputs. ## + +from transformers import AutoTokenizer + +from QEfficient import QEFFAutoModelForCausalLM + +## Using optional variable comp_ctx_lengths variable you can pass a list of context lengths. It will run the model with default context length if comp_ctx_lengths=None. ## +## - The first comp_ctx_lengths_prefill list shows the compute-ctx-length list for prefilling process. ## +## - The second comp_ctx_lengths_decode list will be used for decoding. During the decoding process, based on the position_id or cache index it will work with the specific compute-context-length in the list. It will start from a proper compute-context-length in the list based on input prompt length and will gradually increase the compute-context-length if the cache index passes the current compute-context-length. ## + +ctx_len = 1024 +comp_ctx_lengths_prefill = [256] +comp_ctx_lengths_decode = [512, ctx_len] + +# model_name = "google/gemma-7b" +# model_name = "google/gemma-2-2b" +# model_name = "ibm-granite/granite-3.1-8b-instruct" +# model_name = "Snowflake/Llama-3.1-SwiftKV-8B-Instruct" +# model_name = "mistralai/Mistral-7B-v0.1" +# model_name = "microsoft/phi-1_5" +# model_name = "microsoft/Phi-3-mini-4k-instruct" +# model_name = "Qwen/Qwen2.5-7B-Instruct" +model_name = "meta-llama/Llama-3.2-1B" +# model_name = "Qwen/Qwen3-1.7B" +# model_name = "allenai/OLMo-2-0425-1B" +# model_name = "ibm-granite/granite-3.3-2b-base" +# model_name = "meta-llama/Llama-3.3-70B-Instruct" +# model_name = "Salesforce/codegen-350M-mono" +# model_name = "tiiuae/falcon-7b-instruct" +# model_name = "openai-community/gpt2" +# model_name = "EleutherAI/gpt-j-6b" +# model_name = "EleutherAI/gpt-j-6b" + +model = QEFFAutoModelForCausalLM.from_pretrained( + model_name, + continuous_batching=True, +) + +# model compilation for either continuous or static batching. For continuous batching full_batch_size is needed. +model.compile( + prefill_seq_len=128, + ctx_len=ctx_len, + num_cores=16, + num_devices=1, + full_batch_size=1, + mxint8_kv_cache=True, + mxfp6_matmul=True, +) + +# Create tokenizer and run model.generate and passes the input prompts to it. +tokenizer = AutoTokenizer.from_pretrained(model_name) +model.generate( + prompts=[ + "My name is ", + ], + tokenizer=tokenizer, + generation_len=128, +) diff --git a/examples/gemma3_example/ccl_gemma3_mm.py b/examples/gemma3_example/ccl_gemma3_mm.py new file mode 100644 index 000000000..484c0f8ce --- /dev/null +++ b/examples/gemma3_example/ccl_gemma3_mm.py @@ -0,0 +1,119 @@ +# ----------------------------------------------------------------------------- +# +# Copyright (c) Qualcomm Technologies, Inc. and/or its subsidiaries. +# SPDX-License-Identifier: BSD-3-Clause +# +# ----------------------------------------------------------------------------- + +import torch +import transformers +from transformers import AutoConfig, AutoProcessor + +from QEfficient import QEFFAutoModelForImageTextToText + +# Change model_id to "google/gemma-3-27b-it" for 27B model +model_id = "google/gemma-3-4b-it" +config = AutoConfig.from_pretrained(model_id) +# For Testing Purpose Only +# config.text_config.num_hidden_layers = 1 +# config.vision_config.num_hidden_layers = 2 +tokenizer = transformers.AutoTokenizer.from_pretrained(model_id, trust_remote_code=True) +processor = AutoProcessor.from_pretrained(model_id) + +# pass HF_TOKEN if gated model +# For running the model in single QPC approach use kv_offload=False. For Dual QPC approach use kv_offload=True ### +ctx_len = 8192 +comp_ctx_lengths_prefill = [3072] +comp_ctx_lengths_decode = [4096, ctx_len] + +qeff_model = QEFFAutoModelForImageTextToText.from_pretrained( + model_id, + config=config, + attn_implementation="eager", + kv_offload=True, + comp_ctx_lengths_prefill=comp_ctx_lengths_prefill, + comp_ctx_lengths_decode=comp_ctx_lengths_decode, + ctx_len=ctx_len, +) + +### use skip_vision=Ture, if want to run only text, or false ### +skip_vision = False + +if skip_vision: + ## Only Text ## + qeff_model.compile( + prefill_seq_len=128, + ctx_len=ctx_len, + img_size=896, + num_cores=16, + num_devices=4, + mxfp6_matmul=False, + mxint8_kv_cache=False, + aic_enable_depth_first=True, + skip_vision=True, + mos=1, + node_precision_info="examples/gemma3_example/fp32_nodes_gemma3_27b.yaml", + ) + + messages = [ + { + "role": "user", + "content": [ + {"type": "text", "text": "Describe the transformers architecture in LLMs."}, + ], + }, + ] + + inputs = processor.apply_chat_template( + messages, + add_generation_prompt=True, + tokenize=True, + return_dict=True, + return_tensors="pt", + ) + + output = qeff_model.generate(inputs=inputs, generation_len=100) + print(tokenizer.batch_decode(output.generated_ids)) + print(output) + +else: + ## Vision + Text ## + qeff_model.compile( + prefill_seq_len=128, + ctx_len=ctx_len, + img_size=896, + num_cores=16, + num_devices=4, + mxfp6_matmul=False, + mxint8_kv_cache=False, + aic_enable_depth_first=True, + mos=1, + node_precision_info="examples/gemma3_example/fp32_nodes_gemma3_27b.yaml", + ) + + ### IMAGE + TEXT ### + image_url = ( + "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/datasets/cat_style_layout.png" + ) + + messages = [ + { + "role": "user", + "content": [ + {"type": "image", "url": image_url}, + {"type": "text", "text": "Can you describe the image in detail."}, + ], + }, + ] + + inputs = processor.apply_chat_template( + messages, + add_generation_prompt=True, + tokenize=True, + return_dict=True, + return_tensors="pt", + ) + inputs["pixel_values"] = inputs["pixel_values"].to(torch.float32) + output = qeff_model.generate(inputs=inputs, generation_len=100) + print(tokenizer.batch_decode(output.generated_ids)) + print(output) diff --git a/examples/granite_example/ccl_granite_vision_inference.py b/examples/granite_example/ccl_granite_vision_inference.py new file mode 100644 index 000000000..e03b94a5e --- /dev/null +++ b/examples/granite_example/ccl_granite_vision_inference.py @@ -0,0 +1,127 @@ +# ----------------------------------------------------------------------------- +# +# Copyright (c) Qualcomm Technologies, Inc. and/or its subsidiaries. +# SPDX-License-Identifier: BSD-3-Clause +# +# ----------------------------------------------------------------------------- + +import requests +from PIL import Image +from transformers import AutoProcessor, TextStreamer + +from QEfficient import QEFFAutoModelForImageTextToText + +# Add HuggingFace Token to access the model +HF_TOKEN = "" + + +def run_model( + model_name, + token, + query, + image_url, + kv_offload=False, + prefill_seq_len=5500, + ctx_len=6000, + comp_ctx_lengths_prefill=None, + comp_ctx_lengths_decode=None, + generation_len=128, + img_size=384, + num_cores=16, + num_devices=1, +): + ## STEP - 1 Load the Processor and Model + + processor = AutoProcessor.from_pretrained(model_name, token=token) + + # `kv_offload` is used to compile the model in a 2 QPCs.Currently we are not supporting 1 qpc so the flag false is not allowed. + # The `kv_offload` flag should always be set to True. + # The Dual QPC approach splits the model to perform Image Encoding and Output generation in 2 different QPCs. + # The outputs of the Vision Encoder are then passed to the Language model via host in this case. + + model = QEFFAutoModelForImageTextToText.from_pretrained( + model_name, + token=token, + kv_offload=kv_offload, + comp_ctx_lengths_prefill=comp_ctx_lengths_prefill, + comp_ctx_lengths_decode=comp_ctx_lengths_decode, + ctx_len=ctx_len, + ) + + ## STEP - 2 Export & Compile the Model + + model.compile( + prefill_seq_len=prefill_seq_len, + ctx_len=ctx_len, + img_size=img_size, + num_cores=num_cores, + num_devices=num_devices, + mxfp6_matmul=False, + ) + + ## STEP - 3 Load and process the inputs for Inference + + # We are resizing the image to (w x h) (1610 x 1109) so that any image can work on the model irrespective of image dimensssions + # we have a fixed size of height 1109 and width 1610 + + image = Image.open(requests.get(image_url, stream=True).raw) + image = image.resize((1610, 1109)) + + messages = [{"role": "user", "content": [{"type": "image"}, {"type": "text", "text": query}]}] + input_text = processor.apply_chat_template(messages, add_generation_prompt=True) + inputs = processor(image, input_text, add_special_tokens=False, return_tensors="pt") + + ## STEP - 4 Run Inference on the compiled model + + streamer = TextStreamer(processor.tokenizer) + output = model.generate(inputs=inputs, streamer=streamer, generation_len=generation_len) + print(output) + + +if __name__ == "__main__": + # Model name and Input parameters + model_name = "ibm-granite/granite-vision-3.2-2b" + + # Please add prompt here + query = "Describe the image" + + # Please pass image url or image path .The format of the image should be jpg. + image_url = "http://images.cocodataset.org/val2017/000000039769.jpg" + + # Compilation parameters for the model + kv_offload = True + prefill_seq_len = 5500 + ctx_len = 8192 + generation_len = 128 + img_size = 384 + num_cores = 16 + num_devices = 4 + ctx_len = 8192 + comp_ctx_lengths_prefill = [5500] + comp_ctx_lengths_decode = [6144, ctx_len] + + run_model( + model_name=model_name, + token=HF_TOKEN, + query=query, + kv_offload=kv_offload, + image_url=image_url, + prefill_seq_len=prefill_seq_len, + ctx_len=ctx_len, + comp_ctx_lengths_prefill=comp_ctx_lengths_prefill, + comp_ctx_lengths_decode=comp_ctx_lengths_decode, + generation_len=generation_len, + img_size=img_size, + num_cores=num_cores, + num_devices=num_devices, + ) + + +""" +Expected Response: + +The image depicts two cats lying on a pink blanket that is spread out on a red couch. The cats are positioned in a relaxed manner, with their bodies stretched out and their heads resting on the blanket. +The cat on the left is a smaller, tabby cat with a mix of black, gray, and white fur. It has a long, slender body and a distinctive tail that is curled up near its tail end. The cat on the right is a larger, +tabby cat with a mix of gray, black, and brown fur. It has + +""" diff --git a/examples/intern_example/ccl_internvl_inference.py b/examples/intern_example/ccl_internvl_inference.py new file mode 100644 index 000000000..0828b1d41 --- /dev/null +++ b/examples/intern_example/ccl_internvl_inference.py @@ -0,0 +1,286 @@ +# ----------------------------------------------------------------------------- +# +# Copyright (c) Qualcomm Technologies, Inc. and/or its subsidiaries. +# SPDX-License-Identifier: BSD-3-Clause +# +# ----------------------------------------------------------------------------- + +from io import BytesIO +from typing import List + +import requests +import torch +import torch.nn as nn +import torchvision.transforms as T +from PIL import Image +from torchvision.transforms.functional import InterpolationMode +from transformers import AutoTokenizer, TextStreamer + +from QEfficient import QEFFAutoModelForCausalLM +from QEfficient.utils.logging_utils import logger + +IMAGENET_MEAN = (0.485, 0.456, 0.406) +IMAGENET_STD = (0.229, 0.224, 0.225) + + +# Process the input messages to generate prompt for the model. +def get_prompt(messages) -> str: + """Get the prompt for generation.""" + ## Chat template used for InternVL + system_prompt = "<|im_start|>system\n你是书生·万象,英文名是InternVL,是由上海人工智能实验室、清华大学及多家合作单位联合开发的多模态大语言模型。" + sep = "<|im_end|>\n" + + ret = system_prompt + sep + for role, message in messages: + if message: + if type(message) is tuple: + message, _, _ = message + ret += role + message + sep + else: + ret += role + return ret + + +# Processor class for InternVL models +class InternProcessor: + """ + InternVL model only has an AutoTokenizer so this class performs the processing tasks similar to an AutoProcessor. + The methods used here are borrowed from the original InternVL modelling files. + "https://huggingface.co/OpenGVLab/InternVL2_5-1B/" + """ + + def __init__(self, model: nn.Module, tokenizer): + self.model = model + image_size = self.model.config.force_image_size or self.model.config.vision_config.image_size + patch_size = self.model.config.vision_config.patch_size + self.template = model.config.template + self.num_image_token = int((image_size // patch_size) ** 2 * (self.model.config.downsample_ratio**2)) + self.tokenizer = tokenizer + + def build_transform(self, input_size): + MEAN, STD = IMAGENET_MEAN, IMAGENET_STD + transform = T.Compose( + [ + T.Lambda(lambda img: img.convert("RGB") if img.mode != "RGB" else img), + T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC), + T.ToTensor(), + T.Normalize(mean=MEAN, std=STD), + ] + ) + return transform + + def find_closest_aspect_ratio(self, aspect_ratio, target_ratios, width, height, image_size): + best_ratio_diff = float("inf") + best_ratio = (1, 1) + area = width * height + for ratio in target_ratios: + target_aspect_ratio = ratio[0] / ratio[1] + ratio_diff = abs(aspect_ratio - target_aspect_ratio) + if ratio_diff < best_ratio_diff: + best_ratio_diff = ratio_diff + best_ratio = ratio + elif ratio_diff == best_ratio_diff: + if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]: + best_ratio = ratio + return best_ratio + + def dynamic_preprocess(self, image, min_num=1, max_num=12, image_size=448, use_thumbnail=False): + orig_width, orig_height = image.size + aspect_ratio = orig_width / orig_height + # calculate the existing image aspect ratio + target_ratios = set( + (i, j) + for n in range(min_num, max_num + 1) + for i in range(1, n + 1) + for j in range(1, n + 1) + if i * j <= max_num and i * j >= min_num + ) + target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1]) + # find the closest aspect ratio to the target + target_aspect_ratio = self.find_closest_aspect_ratio( + aspect_ratio, target_ratios, orig_width, orig_height, image_size + ) + # calculate the target width and height + target_width = image_size * target_aspect_ratio[0] + target_height = image_size * target_aspect_ratio[1] + blocks = target_aspect_ratio[0] * target_aspect_ratio[1] + # resize the image + resized_img = image.resize((target_width, target_height)) + processed_images = [] + for i in range(blocks): + box = ( + (i % (target_width // image_size)) * image_size, + (i // (target_width // image_size)) * image_size, + ((i % (target_width // image_size)) + 1) * image_size, + ((i // (target_width // image_size)) + 1) * image_size, + ) + # split the image + split_img = resized_img.crop(box) + processed_images.append(split_img) + assert len(processed_images) == blocks + if use_thumbnail and len(processed_images) != 1: + thumbnail_img = image.resize((image_size, image_size)) + processed_images.append(thumbnail_img) + return processed_images + + def load_image(self, image, input_size=448, max_num=12): + transform = self.build_transform(input_size=input_size) + images = self.dynamic_preprocess(image, image_size=input_size, use_thumbnail=True, max_num=max_num) + pixel_values = [transform(image) for image in images] + pixel_values = torch.stack(pixel_values) + return pixel_values + + def __call__( + self, + pixel_values, + question, + messages, + roles, + history=None, + num_patches_list=None, + IMG_START_TOKEN="", + IMG_END_TOKEN="", + IMG_CONTEXT_TOKEN="", + verbose=False, + ) -> str: + if history is None and pixel_values is not None and "" not in question: + question = "\n" + question + if num_patches_list is None: + num_patches_list = [pixel_values.shape[0]] if pixel_values is not None else [] + assert pixel_values is None or len(pixel_values) == sum(num_patches_list) + img_context_token_id = self.tokenizer.convert_tokens_to_ids(IMG_CONTEXT_TOKEN) + self.model.img_context_token_id = img_context_token_id + + messages.append([roles[0], question]) + messages.append([roles[1], None]) + query = get_prompt(messages) + if verbose and pixel_values is not None: + image_bs = pixel_values.shape[0] + logger.info(f"dynamic ViT batch size: {image_bs}") + + for num_patches in num_patches_list: + image_tokens = IMG_START_TOKEN + IMG_CONTEXT_TOKEN * self.num_image_token * num_patches + IMG_END_TOKEN + query = query.replace("", image_tokens, 1) + return query + + +def run_intern_on_aic( + model_name, + prompt, + image_url, + messages, + roles, + kv_offload=False, + prefill_seq_len=3840, + num_devices=1, + num_cores=16, +): + ## STEP 1 -- LOAD THE MODEL + + # The original Intern-VL model, despite being multimodal, is loaded using `AutoModelForCausalLM` in Huggingface. + # To maintain compatibility, we load this model using `QEFFAutoModelForCausalLM`. + + ctx_len = 8192 + comp_ctx_lengths_prefill = [4096] + comp_ctx_lengths_decode = [6144, ctx_len] + + # model = QEFFAutoModelForCausalLM.from_pretrained(model_name, kv_offload=kv_offload, trust_remote_code=True) + + model = QEFFAutoModelForCausalLM.from_pretrained( + model_name, + kv_offload=kv_offload, + comp_ctx_lengths_prefill=comp_ctx_lengths_prefill, + comp_ctx_lengths_decode=comp_ctx_lengths_decode, + ctx_len=ctx_len, + trust_remote_code=True, + ) + + ## STEP 2 -- EXPORT & COMPILE THE MODEL + + model.compile( + num_cores=num_cores, + num_devices=num_devices, + ctx_len=ctx_len, + prefill_seq_len=prefill_seq_len, + mxfp6_matmul=False, + ) + + ## STEP 3 -- SETUP THE PROCESSOR + + # InternVL doesn't have an AutoProcessor yet, so we will use our own processor class "InternProcessor" + tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True, use_fast=False) + internProcessor = InternProcessor(model.model, tokenizer) + + ## STEP 4 -- PREPROCESS THE INPUTS + + img = requests.get(image_url, stream=True) + image = Image.open(BytesIO(img.content)).convert("RGB") + + # Images are resized to (1000, 747) for inference + image = image.resize((1000, 747)) + + # preprocess the resized image + pixel_values = internProcessor.load_image(image, max_num=12) + question = "\n" + prompt + query = internProcessor(pixel_values, question, messages, roles) + inputs = tokenizer( + query, return_tensors="pt", padding="max_length", max_length=prefill_seq_len, padding_side="right" + ) + + inputs["pixel_values"] = pixel_values + + ## STEP 5 -- RUN INFERENCE VIA GENERATE FUNCTION + streamer = TextStreamer(tokenizer) + model.generate(inputs=inputs, streamer=streamer, generation_len=128) + + +if __name__ == "__main__": + model_name = "OpenGVLab/InternVL2_5-1B" + + # Chat Template information for prompt preprocessing + messages: List[List[str]] = [] + roles = ("<|im_start|>user\n", "<|im_start|>assistant\n") + + # Inputs for the model + prompt = "Please describe the image in detail." + image_url = "https://image.slidesharecdn.com/azureintroduction-191206101932/75/Introduction-to-Microsoft-Azure-Cloud-1-2048.jpg" + + ## Compilation parameters + + # `kv_offload` is used to compile the model in a Single QPC or 2 QPCs. + # The Dual QPC approach splits the model to perform Image Encoding and Output generation in 2 different QPCs. + # The outputs of the Vision Encoder are then passed to the Language model via host in this case. + + kv_offload = True + + # InternVL is an Early-Fusion model that uses placeholder tokens within the input_ids to interleave text_embeddings with + # Image embeddings and generate final input_embeds for outout generation. Hence we need very large prefill_seq_len (3840 in this case) to + # incorporate the memory for the merged embeddings. + + prefill_seq_len = 3840 + num_devices = 4 + num_cores = 16 + + run_intern_on_aic( + model_name=model_name, + prompt=prompt, + image_url=image_url, + messages=messages, + roles=roles, + kv_offload=kv_offload, + prefill_seq_len=prefill_seq_len, + num_devices=num_devices, + num_cores=num_cores, + ) + + +""" +Expected Response: + +The image is a promotional graphic for Microsoft Azure. It features a blue background with a hexagonal pattern on the left side. The hexagons are white and are arranged in a way that suggests a network or connectivity theme. + +On the right side of the image, the Microsoft Azure logo is prominently displayed. The logo consists of the Azure name in white, with the Microsoft logo above it, which includes four colored squares (blue, green, yellow, and red). Below the logo, the word "Azure" is written in large white letters. + +Below the logo, there is text that reads: +- "By Dinesh Kumar Wick +""" diff --git a/examples/qwen3moe_example/ccl_qwen3moe_inference.py b/examples/qwen3moe_example/ccl_qwen3moe_inference.py new file mode 100644 index 000000000..f200c6fa6 --- /dev/null +++ b/examples/qwen3moe_example/ccl_qwen3moe_inference.py @@ -0,0 +1,46 @@ +# ----------------------------------------------------------------------------- +# +# Copyright (c) Qualcomm Technologies, Inc. and/or its subsidiaries. +# SPDX-License-Identifier: BSD-3-Clause +# +# ----------------------------------------------------------------------------- + +from transformers import AutoTokenizer + +from QEfficient import QEFFAutoModelForCausalLM +from QEfficient.utils.constants import Constants + +model_name = "Qwen/Qwen3-30B-A3B-Instruct-2507" +""" +# For CB inference, set continuous_batching to True and add full_batch_size,mxfp6,mint8 argument in compile function +# We will use prompt_len=1 for compilation for both cb and non-cb inference +""" + +ctx_len = 1024 +prefill_seq_len = 1 +# In moe models when compiling with prefill_seq_len=1 and non-continuous-batching mode, prefill and decode will share the same specializations. +comp_ctx_lengths_prefill = [256, 512, ctx_len] +comp_ctx_lengths_decode = [256, 512, ctx_len] + +model = QEFFAutoModelForCausalLM.from_pretrained( + model_name, + comp_ctx_lengths_prefill=comp_ctx_lengths_prefill, + comp_ctx_lengths_decode=comp_ctx_lengths_decode, + ctx_len=ctx_len, + continuous_batching=False, + prefill_seq_len=prefill_seq_len, +) + +model.compile( + prefill_seq_len=prefill_seq_len, + ctx_len=ctx_len, + batch_size=1, + num_cores=16, + num_devices=4, + mxfp6_matmul=True, + mxint8_kv_cache=True, + mos=1, +) +# mos=1, +tokenizer = AutoTokenizer.from_pretrained(model_name) +exec_info = model.generate(prompts=Constants.INPUT_STR, tokenizer=tokenizer) diff --git a/tests/transformers/ccl/test_ccl_causal_lm_models.py b/tests/transformers/ccl/test_ccl_causal_lm_models.py new file mode 100644 index 000000000..239378a1c --- /dev/null +++ b/tests/transformers/ccl/test_ccl_causal_lm_models.py @@ -0,0 +1,325 @@ +# ----------------------------------------------------------------------------- +# +# Copyright (c) Qualcomm Technologies, Inc. and/or its subsidiaries. +# SPDX-License-Identifier: BSD-3-Clause +# +# ----------------------------------------------------------------------------- + +import copy +import os +from typing import Optional + +import pytest +import torch +from transformers import AutoConfig, AutoModelForCausalLM + +from QEfficient.transformers.models.modeling_auto import QEFFAutoModelForCausalLM +from QEfficient.transformers.quantizers.auto import replace_transformers_quantizers +from QEfficient.utils import hf_download +from QEfficient.utils._utils import load_hf_tokenizer +from QEfficient.utils.constants import Constants +from QEfficient.utils.device_utils import get_available_device_id +from QEfficient.utils.run_utils import ApiRunner +from QEfficient.utils.test_utils import ModelConfig + +# Test models for CCL feature +test_models_ccl = [ + "TinyLlama/TinyLlama-1.1B-Chat-v1.0", + "gpt2", + "Qwen/Qwen2-0.5B", +] + + +def get_custom_n_layers(model_name): + """ + Function to set number of layers for various types of models. + + Args: + model_name: str - Model name + + Returns: + n_layer: int or None - Number of layers to use + """ + if model_name in {"microsoft/Phi-3-mini-4k-instruct"}: + return 2 + return 16 + + +def load_causal_lm_model(model_name, n_layer=1, config=None): + """ + Function to load model from HuggingFace and transform to KV model. + + Args: + model_name: str - HuggingFace model name + n_layer: int - Number of layers + config: AutoConfig - Custom config (optional) + + Returns: + model_hf: Loaded model + params: Number of parameters + """ + torch.manual_seed(42) + model_path = hf_download( + repo_id=model_name, + ignore_patterns=["*.onnx", "*.ot", "*.md", "*.tflite", "*.pdf", "*.h5", "*.msgpack"], + ) + if config is None: + if n_layer is not None: + model_hf = AutoModelForCausalLM.from_pretrained( + model_path, + use_cache=True, + num_hidden_layers=n_layer, + attn_implementation="eager", + low_cpu_mem_usage=False, + trust_remote_code=model_name in ModelConfig.EXTERNAL_MODELS, + ) + else: + model_hf = AutoModelForCausalLM.from_pretrained( + model_path, + use_cache=True, + attn_implementation="eager", + low_cpu_mem_usage=False, + trust_remote_code=model_name in ModelConfig.EXTERNAL_MODELS, + ) + else: + model_hf = AutoModelForCausalLM.from_config( + config, + attn_implementation="eager", + trust_remote_code=model_name in ModelConfig.EXTERNAL_MODELS, + ) + + # Convert to FP32 if model is in BF16 or FP16 + torch_dtype = getattr(model_hf.config, "torch_dtype", None) + if torch_dtype == torch.bfloat16 or torch_dtype == torch.float16: + model_hf = model_hf.to(torch.float32) + + params = sum(p.numel() for p in model_hf.parameters()) + model_hf.eval() + return model_hf, params + + +def check_ccl_causal_lm_pytorch_vs_kv_vs_ort_vs_ai100( + model_name: str, + prompt_len: int = Constants.PROMPT_LEN, + ctx_len: int = 128, + comp_ctx_lengths_prefill: Optional[list] = None, + comp_ctx_lengths_decode: Optional[list] = None, + n_layer: int = 1, + config: Optional[AutoConfig] = None, + pytorch_hf_tokens: Optional[list] = None, +): + """ + Validate the PyTorch model, the PyTorch model after KV changes, the ONNX model, + and the Cloud AI 100 model with CCL (Compute Context Length) feature, both with + and without continuous batching. + + Args: + model_name (str): Hugging Face Model Card name, Example: ``gpt2`` + prompt_len (int): Prompt length for the model to compile. + ctx_len (int): Maximum context length to compile the model. + comp_ctx_lengths_prefill (list): List of compute context lengths for prefill. + comp_ctx_lengths_decode (list): List of compute context lengths for decode. + n_layer (int): Number of layers for the Model. + config (AutoConfig): Custom model config. + pytorch_hf_tokens (list): Pre-computed PyTorch tokens for external models. + """ + replace_transformers_quantizers() + + # Set default CCL values if not provided + if comp_ctx_lengths_prefill is None: + comp_ctx_lengths_prefill = [64] + if comp_ctx_lengths_decode is None: + comp_ctx_lengths_decode = [96, ctx_len] + + if config is None: + model_hf, _ = load_causal_lm_model(model_name, n_layer=n_layer) + else: + model_hf, _ = load_causal_lm_model(model_name, config=config) + + tokenizer = load_hf_tokenizer(pretrained_model_name_or_path=model_name) + config = model_hf.config + batch_size = len(Constants.INPUT_STR) + + api_runner = ApiRunner( + batch_size, + tokenizer, + config, + Constants.INPUT_STR, + Constants.PROMPT_LEN, + Constants.CTX_LEN, + ) + + # Run PyTorch HF model if not external model + if model_name not in ModelConfig.SWIFTKV_MODELS and model_name not in ModelConfig.EXTERNAL_MODELS: + pytorch_hf_tokens = api_runner.run_hf_model_on_pytorch(model_hf) + + # Create QEFF model with CCL parameters + qeff_model = QEFFAutoModelForCausalLM( + copy.deepcopy(model_hf), + pretrained_model_name_or_path=model_name, + comp_ctx_lengths_prefill=comp_ctx_lengths_prefill, + comp_ctx_lengths_decode=comp_ctx_lengths_decode, + ctx_len=ctx_len, + ) + + pytorch_kv_tokens = api_runner.run_kv_model_on_pytorch(qeff_model.model) + + if model_name not in ModelConfig.SWIFTKV_MODELS: + assert (pytorch_hf_tokens == pytorch_kv_tokens).all(), ( + "Tokens don't match for HF PyTorch model output and KV PyTorch model output with CCL" + ) + + # Export to ONNX + _ = qeff_model.export() + + # Note: Skipping ORT validation for CCL models as ApiRunner doesn't support comp_ctx_lengths input + # The CCL feature is validated through PyTorch and Cloud AI 100 execution + gen_len = pytorch_kv_tokens.shape[-1] + + if not get_available_device_id(): + pytest.skip("No available devices to run model on Cloud AI 100") + + # Compile for Cloud AI 100 with CCL + qpc_path = qeff_model.compile( + prefill_seq_len=prompt_len, + ctx_len=ctx_len, + num_cores=14, + mxfp6=False, + aic_enable_depth_first=False, + ) + + exec_info = qeff_model.generate(tokenizer, prompts=Constants.INPUT_STR) + cloud_ai_100_tokens = exec_info.generated_ids[0][:, :gen_len] + + # Validate Cloud AI 100 output matches PyTorch KV output + assert (pytorch_kv_tokens == cloud_ai_100_tokens).all(), ( + "Tokens don't match for PyTorch KV output and Cloud AI 100 output with CCL." + ) + assert os.path.isfile(os.path.join(os.path.dirname(qpc_path), "qconfig.json")) + + # Note: Continuous batching tests for CCL are skipped as they require additional runtime support + # The CCL feature validation is complete with the single-batch tests above + + +@pytest.mark.on_qaic +@pytest.mark.regular +@pytest.mark.ccl +@pytest.mark.parametrize("model_name", test_models_ccl) +def test_custom_ccl_causal_lm_pytorch_vs_kv_vs_ort_vs_ai100(model_name, custom_causal_model_config_dict): + """ + Test function to validate the dummy PyTorch model with CCL, the PyTorch model after KV changes, + the ONNX model, and the Cloud AI 100 model, both with and without continuous batching. + + Args: + model_name (str): Hugging Face Model Card name, Example: ``gpt2`` + custom_causal_model_config_dict: Fixture providing custom model configs + """ + config = custom_causal_model_config_dict.get(model_name) + + # Using fixed reference tokens for external models + pytorch_hf_tokens = None + if model_name in ModelConfig.EXTERNAL_MODELS: + pytorch_hf_tokens = ModelConfig.EXTERNAL_MODELS[model_name]["pytorch_hf_tokens_custom_case"] + + if model_name in ModelConfig.QUANTIZED_MODELS: + check_ccl_causal_lm_pytorch_vs_kv_vs_ort_vs_ai100(model_name, n_layer=2, pytorch_hf_tokens=pytorch_hf_tokens) + else: + check_ccl_causal_lm_pytorch_vs_kv_vs_ort_vs_ai100( + model_name, config=config, pytorch_hf_tokens=pytorch_hf_tokens + ) + + +@pytest.mark.nightly +@pytest.mark.on_qaic +@pytest.mark.ccl +@pytest.mark.parametrize("model_name", test_models_ccl) +def test_ccl_causal_lm_pytorch_vs_kv_vs_ort_vs_ai100(model_name): + """ + Test function to validate the PyTorch model with CCL, the PyTorch model after KV changes, + the ONNX model, and the Cloud AI 100 model, both with and without continuous batching. + + Args: + model_name (str): Hugging Face Model Card name, Example: ``gpt2`` + """ + # Using fixed reference tokens for external models + pytorch_hf_tokens = None + if model_name in ModelConfig.EXTERNAL_MODELS: + pytorch_hf_tokens = ModelConfig.EXTERNAL_MODELS[model_name]["pytorch_hf_tokens_normal_case"] + + check_ccl_causal_lm_pytorch_vs_kv_vs_ort_vs_ai100( + model_name=model_name, n_layer=2, pytorch_hf_tokens=pytorch_hf_tokens + ) + + +@pytest.mark.on_qaic +@pytest.mark.ccl +def test_ccl_causal_lm_pytorch_vs_kv_vs_ort_vs_ai100_pl1(): + """ + Test function to validate the PyTorch model with CCL, the PyTorch model after KV changes, + the ONNX model, and the Cloud AI 100 model for a prompt length of 1, both with and + without continuous batching. + """ + model_name = "gpt2" + prompt_len = 1 + ctx_len = 128 + comp_ctx_lengths_prefill = [64] + comp_ctx_lengths_decode = [96, ctx_len] + + check_ccl_causal_lm_pytorch_vs_kv_vs_ort_vs_ai100( + model_name=model_name, + prompt_len=prompt_len, + ctx_len=ctx_len, + comp_ctx_lengths_prefill=comp_ctx_lengths_prefill, + comp_ctx_lengths_decode=comp_ctx_lengths_decode, + ) + + +@pytest.mark.on_qaic +@pytest.mark.ccl +def test_ccl_causal_lm_with_different_ctx_lengths(): + """ + Test CCL feature with different context length configurations. + """ + model_name = "gpt2" + n_layer = 1 + + # Test case 1: Small context lengths + check_ccl_causal_lm_pytorch_vs_kv_vs_ort_vs_ai100( + model_name, + n_layer=n_layer, + ctx_len=64, + comp_ctx_lengths_prefill=[32], + comp_ctx_lengths_decode=[48, 64], + ) + + # Test case 2: Larger context lengths + check_ccl_causal_lm_pytorch_vs_kv_vs_ort_vs_ai100( + model_name, + n_layer=n_layer, + ctx_len=256, + comp_ctx_lengths_prefill=[128], + comp_ctx_lengths_decode=[192, 256], + ) + + +@pytest.mark.on_qaic +@pytest.mark.ccl +def test_ccl_causal_lm_with_multiple_prefill_decode_lengths(): + """ + Test CCL feature with multiple compute context lengths for both prefill and decode. + """ + model_name = "gpt2" + n_layer = 1 + ctx_len = 256 + + # Multiple CCL values for prefill and decode + comp_ctx_lengths_prefill = [64, 128] + comp_ctx_lengths_decode = [160, 192, 224, 256] + + check_ccl_causal_lm_pytorch_vs_kv_vs_ort_vs_ai100( + model_name, + n_layer=n_layer, + ctx_len=ctx_len, + comp_ctx_lengths_prefill=comp_ctx_lengths_prefill, + comp_ctx_lengths_decode=comp_ctx_lengths_decode, + ) diff --git a/tests/transformers/ccl/test_ccl_export_compile.py b/tests/transformers/ccl/test_ccl_export_compile.py new file mode 100644 index 000000000..4e8271fcb --- /dev/null +++ b/tests/transformers/ccl/test_ccl_export_compile.py @@ -0,0 +1,320 @@ +# ----------------------------------------------------------------------------- +# +# Copyright (c) Qualcomm Technologies, Inc. and/or its subsidiaries. +# SPDX-License-Identifier: BSD-3-Clause +# +# ---------------------------------------------------------------------------- + +import copy +import os +from time import perf_counter + +import onnx +import pytest +from transformers import AutoConfig, AutoModel, AutoModelForCausalLM + +from QEfficient.transformers.models.modeling_auto import QEFFAutoModelForCausalLM +from QEfficient.utils import constants, get_padding_shape_from_config +from QEfficient.utils.hash_utils import hash_dict_params + +configs = [ + # name, max_position_embeddings, num_hidden_layers, num_attention_heads, hidden_size, intermediate_size, vocab_size, additional_params + ("gpt2", 256, 2, 4, 128, 512, 127, {}), + # ("codegen", 256, 2, 4, 128, 512, 127, {"rotary_dim": 16}), + # ("falcon", 256, 2, 4, 128, 512, 127, {}), + # ("gptj", 256, 2, 4, 128, 512, 127, {"rotary_dim": 16}), + # ("llama", 256, 2, 4, 128, 512, 127, {"num_key_value_heads": 2}), + # ("mistral", 256, 2, 4, 128, 512, 127, {"num_key_value_heads": 2}), + # ("mixtral", 256, 2, 4, 128, 512, 127, {"num_key_value_heads": 2}), + # ("mpt", 256, 2, 4, 128, 512, 127, {}), + # ("phi", 256, 2, 4, 128, 512, 127, {}), + # ("phi3", 256, 2, 4, 128, 512, 127, {"pad_token_id": 0}), + # ("qwen2", 256, 2, 4, 128, 512, 127, {"num_key_value_heads": 2}), + # ("starcoder2", 256, 2, 4, 128, 512, 127, {}), + # ("granite", 256, 2, 4, 128, 512, 127, {"num_key_value_heads": 2}), + # ("olmo2", 256, 2, 4, 128, 512, 127, {"num_key_value_heads": 2}), +] + +configs = [ + AutoConfig.for_model( + model_name, + max_position_embeddings=max_position_embeddings, + num_hidden_layers=num_hidden_layers, + num_attention_heads=num_attention_heads, + hidden_size=hidden_size, + intermediate_size=intermediate_size, + vocab_size=vocab_size, + **additional_params, + ) + for ( + model_name, + max_position_embeddings, + num_hidden_layers, + num_attention_heads, + hidden_size, + intermediate_size, + vocab_size, + additional_params, + ) in configs +] +config_ids = [x.model_type for x in configs] + +model_kwargs = {"attn_implementation": "eager"} + + +@pytest.mark.parametrize("cb", [False, True], ids=["nocb", "cb"]) +def test_causal_lm_unsupported(cb): + model = AutoModelForCausalLM.from_config(AutoConfig.for_model("opt")) + ctx_len = 32 + comp_ctx_lengths_prefill = [16] + comp_ctx_lengths_decode = [24, ctx_len] + with pytest.warns(): + QEFFAutoModelForCausalLM( + model, + cb, + comp_ctx_lengths_prefill=comp_ctx_lengths_prefill, + comp_ctx_lengths_decode=comp_ctx_lengths_decode, + ctx_len=ctx_len, + ) + + +@pytest.mark.parametrize("cb", [False, True], ids=["nocb", "cb"]) +@pytest.mark.parametrize("config", configs, ids=config_ids) +def test_causal_lm_init(config, cb): + model = AutoModelForCausalLM.from_config(config, **model_kwargs) + ctx_len = 32 + comp_ctx_lengths_prefill = [16] + comp_ctx_lengths_decode = [24, ctx_len] + qeff_model = QEFFAutoModelForCausalLM( + model, + cb, + comp_ctx_lengths_prefill=comp_ctx_lengths_prefill, + comp_ctx_lengths_decode=comp_ctx_lengths_decode, + ctx_len=ctx_len, + ) + with pytest.raises(TypeError): + QEFFAutoModelForCausalLM( + AutoModel.from_config(config, **model_kwargs), + cb, + comp_ctx_lengths_prefill=comp_ctx_lengths_prefill, + comp_ctx_lengths_decode=comp_ctx_lengths_decode, + ctx_len=ctx_len, + ) + assert qeff_model.model.__class__.__name__.startswith("QEff") + + +@pytest.mark.parametrize("cb", [False, True], ids=["nocb", "cb"]) +@pytest.mark.parametrize("config", configs, ids=config_ids) +def test_causal_lm_pretrained(config, cb, tmp_path): + model = AutoModelForCausalLM.from_config(config, **model_kwargs) + model.save_pretrained(tmp_path) + + ctx_len = 32 + comp_ctx_lengths_prefill = [16] + comp_ctx_lengths_decode = [24, ctx_len] + qeff_model = QEFFAutoModelForCausalLM.from_pretrained( + tmp_path, + cb, + comp_ctx_lengths_prefill=comp_ctx_lengths_prefill, + comp_ctx_lengths_decode=comp_ctx_lengths_decode, + ctx_len=ctx_len, + ) + assert qeff_model.model.__class__.__name__.startswith("QEff") + + +@pytest.mark.parametrize("cb", [False, True], ids=["nocb", "cb"]) +@pytest.mark.parametrize("config", configs, ids=config_ids) +def test_causal_lm_export_and_hash(config, cb, tmp_path): + ctx_len = 32 + comp_ctx_lengths_prefill = [16] + comp_ctx_lengths_decode = [24, ctx_len] + model_0_0 = QEFFAutoModelForCausalLM( + AutoModelForCausalLM.from_config(config, **model_kwargs), + cb, + comp_ctx_lengths_prefill=comp_ctx_lengths_prefill, + comp_ctx_lengths_decode=comp_ctx_lengths_decode, + ctx_len=ctx_len, + ) + model_0_0.export(tmp_path) + model_path = tmp_path.with_name(tmp_path.name + "-" + model_0_0.export_hash) + assert model_path.is_dir() + assert model_0_0.onnx_path.is_file() + assert model_0_0.onnx_path.relative_to(model_path).parts == (model_0_0.model_name + ".onnx",) + + # Check if the KV-cache inputs and outputs are created + onnx_model = onnx.load(model_0_0.onnx_path, load_external_data=False) + retained_output_names = { + x.name[: -len("_RetainedState")] for x in onnx_model.graph.output if x.name.endswith("_RetainedState") + } + retained_output_names.issubset({x.name for x in onnx_model.graph.input}) + + # Check if there is no re-export + start = perf_counter() + model_0_0.export(tmp_path) + end = perf_counter() + export_time = end - start + assert export_time < 2.0 + + # Check if hashing is happening properly + model_0_1 = QEFFAutoModelForCausalLM( + AutoModelForCausalLM.from_config(config, **model_kwargs), + cb, + comp_ctx_lengths_prefill=comp_ctx_lengths_prefill, + comp_ctx_lengths_decode=comp_ctx_lengths_decode, + ctx_len=ctx_len, + ) + model_0_1.export(tmp_path) + hash_0_0 = model_0_0.export_hash + hash_0_1 = model_0_1.export_hash + + assert hash_0_0 == hash_0_1 + + cfg1 = copy.deepcopy(config) + cfg1.num_hidden_layers -= 1 + model_1_0 = QEFFAutoModelForCausalLM( + AutoModelForCausalLM.from_config(cfg1, **model_kwargs), + cb, + comp_ctx_lengths_prefill=comp_ctx_lengths_prefill, + comp_ctx_lengths_decode=comp_ctx_lengths_decode, + ctx_len=ctx_len, + ) + model_1_0.export(tmp_path) + hash_1_0 = model_1_0.export_hash + cfg2 = copy.deepcopy(config) + cfg2.num_hidden_layers -= 1 + model_1_1 = QEFFAutoModelForCausalLM( + AutoModelForCausalLM.from_config(cfg2, **model_kwargs), + cb, + comp_ctx_lengths_prefill=comp_ctx_lengths_prefill, + comp_ctx_lengths_decode=comp_ctx_lengths_decode, + ctx_len=ctx_len, + ) + model_1_1.export(tmp_path) + hash_1_1 = model_1_1.export_hash + assert hash_1_0 == hash_1_1 + + assert hash_0_0 != hash_1_0 + + if cb: + model_0_no_cb = QEFFAutoModelForCausalLM( + AutoModelForCausalLM.from_config(config, **model_kwargs), + False, + comp_ctx_lengths_prefill=comp_ctx_lengths_prefill, + comp_ctx_lengths_decode=comp_ctx_lengths_decode, + ctx_len=ctx_len, + ) + model_0_no_cb.export(tmp_path) + hash_0_no_cb = model_0_no_cb.export_hash + assert hash_0_0 != hash_0_no_cb + + +@pytest.mark.parametrize("cb", [False, True], ids=["nocb", "cb"]) +@pytest.mark.parametrize("config", configs, ids=config_ids) +def test_causal_lm_hash_creation(config, cb, tmp_path): + model = AutoModelForCausalLM.from_config(config, **model_kwargs) + ctx_len = 32 + comp_ctx_lengths_prefill = [16] + comp_ctx_lengths_decode = [24, ctx_len] + qeff_model = QEFFAutoModelForCausalLM( + model, + cb, + comp_ctx_lengths_prefill=comp_ctx_lengths_prefill, + comp_ctx_lengths_decode=comp_ctx_lengths_decode, + ctx_len=ctx_len, + ) + qeff_model.export(tmp_path) + hash_params = {} + hash_params["config"] = qeff_model.model.config.to_diff_dict() + hash_params["peft_config"] = None + hash_params["applied_transform_names"] = qeff_model._transform_names() + hash_params["qeff_auto_class"] = qeff_model.__class__.__name__ + hash_params["qaic_config"] = None + + # Create parameters separately for hash creation + + bs: int = constants.ONNX_EXPORT_EXAMPLE_BATCH_SIZE + seq_len: int = constants.ONNX_EXPORT_EXAMPLE_SEQ_LEN + fbs: int = constants.ONNX_EXPORT_EXAMPLE_FBS + kv_cache_shape = get_padding_shape_from_config( + qeff_model.model.config, fbs if qeff_model.continuous_batching else bs, seq_len + ) + dynamic_axes = { + "input_ids": {0: "batch_size", 1: "seq_len"}, + "position_ids": {0: "batch_size", 1: "seq_len"}, + } + dynamic_axes["comp_ctx_lengths"] = {0: "comp_ctx_lengths"} + if len(kv_cache_shape) == 3: # For GPTBigCode arch the pkv is 3d + pkv_dynamic_axes = { + 0: "full_batch_size" if qeff_model.continuous_batching else "batch_size", + 1: "ctx_len", + } + else: # pkv is 4d + pkv_dynamic_axes = { + 0: "full_batch_size" if qeff_model.continuous_batching else "batch_size", + 2: "ctx_len", + } + output_names = [] + output_names.append("logits") + + for i in range(qeff_model.num_layers): + for kv in ["key", "value"]: + dynamic_axes[f"past_{kv}.{i}"] = pkv_dynamic_axes + output_names.append(f"past_{kv}.{i}_RetainedState") + + if qeff_model.continuous_batching: + dynamic_axes["batch_index"] = {0: "batch_size"} + + export_params = {} + export_params["output_names"] = output_names + export_params["dynamic_axes"] = dynamic_axes + hash_params["export_params"] = export_params + manual_hash = hash_dict_params(hash_params) + + assert manual_hash == qeff_model.export_hash + + +@pytest.fixture +def tmp_cache(tmp_path, monkeypatch): + monkeypatch.setattr("QEfficient.utils._utils.QEFF_HOME", tmp_path) + yield tmp_path + + +@pytest.mark.parametrize("cb", [False, True], ids=["nocb", "cb"]) +@pytest.mark.parametrize("config", configs, ids=config_ids) +def test_causal_lm_compile(config, cb, tmp_cache): + model = AutoModelForCausalLM.from_config(config, **model_kwargs) + + ctx_len = 32 + comp_ctx_lengths_prefill = [16] + comp_ctx_lengths_decode = [24, ctx_len] + qeff_model = QEFFAutoModelForCausalLM( + model, + cb, + comp_ctx_lengths_prefill=comp_ctx_lengths_prefill, + comp_ctx_lengths_decode=comp_ctx_lengths_decode, + ctx_len=ctx_len, + ) + compile_params = {"prefill_seq_len": 8, "ctx_len": ctx_len} + if cb: + compile_params["full_batch_size"] = 32 + compile_params["batch_size"] = 8 + qeff_model.compile(**compile_params) + model_path = tmp_cache / qeff_model.model_name / (qeff_model.model_name + "-" + qeff_model.export_hash) + + # Check if ONNX is exported properly + assert model_path.is_dir() + assert qeff_model.onnx_path.is_file() + assert qeff_model.onnx_path.relative_to(model_path).parts == (qeff_model.model_name + ".onnx",) + + # Check if QPC is compiled properly + assert qeff_model.qpc_path.is_dir() + assert (qeff_model.qpc_path / "programqpc.bin").is_file() + assert qeff_model.qpc_path.relative_to(tmp_cache).parts[1] == qeff_model.model_name + "-" + qeff_model.export_hash + + # Check if there is no re-compilation + start = perf_counter() + qeff_model.compile(**compile_params) + end = perf_counter() + compile_time = end - start + assert compile_time < 2.0 + assert os.path.isfile(os.path.join(os.path.dirname(qeff_model.qpc_path), "qconfig.json"))