Skip to content

qulizhen/fgan_info_geometric

master
Switch branches/tags

Name already in use

A tag already exists with the provided branch name. Many Git commands accept both tag and branch names, so creating this branch may cause unexpected behavior. Are you sure you want to create this branch?
Code

Latest commit

 

Git stats

Files

Permalink
Failed to load latest commit information.
Type
Name
Latest commit message
Commit time
 
 
 
 
 
 
 
 
 
 
 
 

f-GANs in an Information Geometric Nutshell

Pytorch implementation of f-GANs in an Information Geometric Nutshell

Prerequisites

Usage

Put both mnist and lsun in a folder called DATA_ROOT. Download lsun with https://github.com/fyu/lsun. MNIST will be downloaded automatically in the first run.

$ python download.py -o <DATA_ROOT> -c tower

Assume all experimental results are put in EXPERIMENTAL_RESULTS.

Evaluate a feedforward network with wasserstein GAN loss and mu-ReLU as the activation of hidden layers of the generator:

$ python main.py --dataset mnist --dataroot <DATA_ROOT> --cuda -D wgan -A mlp -H murelu --experiment <EXPERIMENTAL_RESULTS> --task mu

Evaluate DCGAN with GAN as the loss, and mu-ReLU as the activation of hidden layers of the generator:

$ python main.py --dataset lsun --subset tower --dataroot <DATA_ROOT> --cuda -D gan -A dcgan -H murelu --experiment <EXPERIMENTAL_RESULTS> --task mu

Author

Lizhen Qu / @qulizhen

About

f-GANs in an Information Geometric Nutshell

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages