8/23/2021 GSoC Notebook - Deliverable

Quantum Gate Decomposition for QuTiP

smatplotlib inline

from IPython.display import Image

import cmath

import scipy

import pprint

from numpy import pi

import itertools

import numpy as np

import matplotlib.pyplot as plt

from qutip import Qobj, average gate fidelity, rand unitary, tensor, identity, ¢
from qutip qgip.operations import *

from qutip qgip.circuit import QubitCircuit, Gate

from qutip qip.decompose.decompose single qubit gate import decompose one qubit
from qutip qip.decompose.decompose general qubit gate import lastq target ancil
from qutip qip.decompose. utility import check gate, binary sequence, gray coc

Decomposing one qubit gates

num qubits =1

input gate rand_unitary(2**num qubits, dims=[[2] * num qubits] * 2)

gcl = QubitCircuit(num qubits, reverse states=False)

gate listl = decompose general qubit gate(input gate, num qubits)

the output of general function is a tuple of a list of gates and number of qul
ancilla qubits for higher number of qubits

gcl.add gates(gate listl[0])

gcl.png
R,(—0.32 x) }—{ R.(—0.96 x 7) ——{Ph{0.13 x 7) |——

qcl.compute unitary()

Quantum object: dims = [[2], [2]], shape = (2, 2), type = oper, isherm = False

((0.587 + 0.6557) (—0.470 + 0.0815))
(0.268 + 0.3947) (0.879 — 0.0337)

input gate

Quantum object: dims = [[2], [2]], shape = (2, 2), type = oper, isherm = False

((0.587 + 0.6555) (—0.470 + 0.0815) >
(0.268 + 0.3945) (0.879 — 0.0335)

#NOTE:**

localhost:8888/nbconvert/html/Desktop/GSoC Notebook - Deliverable.ipynb?download=false 1/7

8/23/2021 GSoC Notebook - Deliverable

It is currently not possible to verify the full output of the general method after evaluating the gates in
a quantum circuit. This is because the final output is a mix of nested dictionaries and lists which
makes it difficult to iterate over the entire output in order to add them to a quantum circuit.

Decomposing two qubit gates without ancilla qubits

As discussed in the blogpost, the full output of general decomposition fucntion is incorrect. We
describe some of the special cases below and don't compare the input of first code block below to
the input gate.

num _qubits = 2
input gate = rand unitary(2**num qubits, dims=[[2] * num_qubits] * 2)
gate list2 = decompose general qubit gate(input gate, num qubits)

Decomposition to all single-qubit gates and CNOT

When the array is described with last qubit as target

Because the default output of two-level array decomposition is to output the matrices in reverse, we
know the first object in this output describes a two-level array matrix with last qubit as target.

two level arrays non expand = decompose to two level arrays(input gate, num_qut
print(two level arrays non expand[0])

[[2, 3], Quantum object: dims = [[2], [2]], shape = (2, 2), type = oper, isherm
= False
Qobj data =
[[-0.42156275-0.27005623j -0.83521174+0.227543037]
[0.27601149-0.82047068] 0.24493324+0.43663856j]111]

gc2 1 = QubitCircuit(num qubits, reverse states=False)

gate list2 1 = two qubit last target(two level arrays non expand[O][1].full(),
gc2 l.add gates(gate list2 1)

gc2 1l.png

PIIASE(—024 % 7)

R.(0.84 x)

—M,—l}?_ﬁ(—0.67 % 7) Ry (0.67 x)

gc2 1l.compute unitary()

Quantum object: dims = [[2, 2], [2, 2]], shape = (4, 4), type = oper, isherm = False

1.0 0.0 0.0 0.0

0.0 1.0 0.0 0.0

0.0 0.0 (—0.422—0.2705) (—0.835 + 0.2285)
0.0 0.0 (0.276 —0.8205) (0.245 + 0.4375)

localhost:8888/nbconvert/html/Desktop/GSoC Notebook - Deliverable.ipynb?download=false 2/7

8/23/2021 GSoC Notebook - Deliverable
_decompose _to two level arrays(input gate, num qubits, expand = True)[0]

Quantum object: dims =[[2, 2], [2, 2]], shape = (4, 4), type = oper, isherm = False

1.000 —5.551x 107" 5.551 x 1077 —1.665 x 10716
0.0 1.0 —1.110 x 10716 1.110 x 10716
0.0 5464 x 107 (-0.422 —0.2705) (—0.835 + 0.228;)
0.0 0.0 (0.276 — 0.8205) (0.245 + 0.4375)

When the array is described with last qubit as target

As shown in this blogpost, the next object in above two-level output describes a two-level gate with
control and target qubits flipped.

two level arrays non expand[1]

({1, 31,

Quantum object: dims = [[2], [2]], shape = (2, 2), type = oper, isherm = True
Qobj data =

[[©.79051013-1.38777878e-17]) -0.29139905+5.38683883e-017]
[-0.29139905-5.38683883e-01j -0.79051013-1.38777878e-17j]111

qc2 2 = QubitCircuit(num qubits, reverse states=False)

gate list2 2 = two qubit last target(two level arrays non expand[1][1].full(),
gqc2 2.add gates(gate list2 2)

gc2 2.png

—{R. 134 x7) |—|R{,(—0.42 x 7) R, (042 x7) |—{ R_(0.50 x) R.(0.84 x)

[PHASE(—0.50 % 7)

gc2 2.compute unitary()

Quantum object: dims = [[2, 2], [2, 2]], shape = (4, 4), type = oper, isherm = True

1.000 0.0 0.0 0.0
0.0 0.791 0.0 (—0.291 4 0.5397)
0.0 0.0 1.000 0.0
0.0 (—0.291-0.5395) 0.0 —0.791

_decompose _to two level arrays(input gate, num qubits, expand = True)[1]

Quantum object: dims = [[2, 2], [2, 2]], shape = (4, 4), type = oper, isherm = True

1.0 0.0 0.0 0.0

0.0 0.791 0.0 (—0.291 + 0.5395)
0.0 0.0 1.0 0.0

0.0 (—0.291 —0.5395) 0.0 —0.791

localhost:8888/nbconvert/html/Desktop/GSoC Notebook - Deliverable.ipynb?download=false 3/7

8/23/2021

GSoC Notebook - Deliverable

Decomposing three qubit gates without ancilla qubits

Suppose we want to decompose an arbitrary 3 qubit quantum gate into a decomposition described
by single-qubit gates, two-qubit CNOT and 3-qubit Toffoli. The first step is to decompose the input
into a composition of two-level gates (function returns the output in reversed order). We describe
below how to decompose a couple of these two-level unitary gates.

Last qubit is target with other two as controls

Again similar to 2-qubit case, we know the first object in two-level array output describes a two-level
gate with last qubit as target and first two as controls.

num_qubits = 3
input gate rand unitary(2**num_qubits, dims=[[2] * num qubits] * 2)
#gate list3 = decompose general qubit gate(input gate, num qubits)

two level arrays non expand = decompose to two level arrays(input gate, num_qut
print(two level arrays non expand[0])

[[6, 7], Quantum object: dims = [[2], [2]], shape = (2, 2), type = oper, isherm
= False
Qobj data =
[[0.08921209+0.70272741j -0.43828278+0.553284377]
[-0.65764808-0.25634816] 0.27774734+0.65164487j111

gc3 1 = QubitCircuit(num qubits, reverse states=False)

gate list3 1 = threeq last target(two level arrays non expand[O][1].full())
gc3 1l.add gates(gate list3 1)

gc3 1.png

gqc3 1.compute unitary()

Quantum object: dims =[[2, 2, 2], [2, 2, 2]], shape = (8, 8), type = oper, isherm = False

(1.000 0.0 0.0 0.0 0.0 0.0 0.0 0.0 \
0.0 1.000 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 1.000 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 1.000 0.0 0.0 0.0
0.0 0.0 0.0 00 0.0 1.000 0.0 0.0
0.0 0.0 0.0 0.0 0.0 0.0 (0.089 + 0.7035) (—0.438 + 0.5537)

\ 00 00 00 00 00 00 (—0.658—0.2565) (0.278 + 0.6525)

Comparison of output circuit to input array

localhost:8888/nbconvert/html/Desktop/GSoC Notebook - Deliverable.ipynb?download=false a4/7

8/23/2021 GSoC Notebook - Deliverable
_decompose _to two level arrays(input gate, num qubits, expand = True)[0]

Quantum object: dims = [[2, 2, 2], [2, 2, 2]], shape = (8, 8), type = oper, isherm = False

(1.0 —1.023x 1071 6.245 x 1071 —7.633x 107" 6.939 x 10718
—2.444 x 10717 1.000 —8.674 x 10717 —4.510 x 10717 —2.567 x 107*
—3.074 x107* —2.614 x 1077 1.0 5.551 x 10717 —9.021 x 10!
9593 x 1071 —1.724 x 10717 3.772 x 1078 1.0 9.714 x 1077
2.051 x 10717 —4.039 x 10717 —1.488 x 107" —2.603 x 10~%" 1.0

~1.123x 107 1353 x 107 —2870x107Y 3.852x10°'® 6.045 x 1078
~5278 x 107® 2307 x 107 4662x 1077 —1.208 x 107" 1.473 x 1077
\ 2512x 107" —3.690 x 10® —8.974x 107® —4.743x107® —1.217 x 10"

First qubit is target and other two are controls

Using above output of two-level gate arrays, we need to figure out which of the arrays describes a
guantum gate with first qubit as target and other two as control. This is done by iterating over the
entire output and checking the targets in gray-code ordering output.

ind for 0 target = find index for firstq target(two level arrays non expand, 3]
print("Two-level output index for object controlled on first qubit is", ind for

Two-level output index for object controlled on first qubit is 11
two level arrays non expand[ind for 0 target]

[[2, 6],

Quantum object: dims = [[2], [2]], shape = (2, 2), type = oper, isherm = True
Qobj data =

[[0.74509472-1.49393079e-17] -0.59427063-3.02780912e-01j]
[-0.59427063+3.02780912e-01j -0.74509472-1.49393079%e-17j1]]

first target qubit array = two level arrays non expand[ind for 0 target]
first target qubit array gives position of the array of interest in two-level
first target qubit array index = first target qubit array[0]

Check if the gray code will add Pauli X gates to make control values = 1
_paulix for control O(gray code gate info(first target qubit array index[0], f:

[Gate(X, targets=[2], controls=None, classical controls=None, control value=Non

e),
{'controls =': [1, 2], 'control value =': ['1l', '1'], 'targets =': [0]},
Gate(X, targets=[2], controls=None, classical controls=None, control value=Non

e)]
This shows in addition to switching control and target qubits in _threeq last target an
additional gate has to be added to make the gate controlled on 0 of qubit 2 to controlled on 1. This
increases the total number of gates compared to the case when last qubit is target.

localhost:8888/nbconvert/html/Desktop/GSoC Notebook - Deliverable.ipynb?download=false 5/7

8/23/2021

GSoC Notebook - Deliverable

gc3 2 = QubitCircuit(num qubits, reverse states=False)

gate list3 2 = threeq first target(two level arrays non expand[ind for 0 targef
gc3 2.add gates(gate list3 2)
gqc3 2.png

The output below has 2 extra gates compared to the case when two-level array |

s Al

Comparison of output circuit to input array

gc3 2.compute unitary()

Quantum object: dims = [[2, 2, 2], [2, 2, 2]], shape = (8, 8), type = oper, isherm = True

1.000 0.0 0.0 0.0 00 00 0.0 0.0\
0.0 1.0 0.0 0.0 00 00 0.0 0.0
0.0 0.0 0.745 0.0 00 00 (—0.594—0.303j) 0.0
0.0 0.0 0.0 1.000 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 1.000 0.0 0.0 0.0
0.0 0.0 0.0 0.0 00 1.0 0.0 0.0
0.0 0.0 (—0.594+0.303j) 0.0 0.0 0.0 —0.745 0.0

\ 0.0 0.0 0.0 0.0 00 0.0 0.0 1.0/

_decompose _to two level arrays(input gate, num qubits, expand = True)[ind for O

Quantum object: dims = [[2, 2, 2], [2, 2, 2]], shape = (8, 8), type = oper, isherm = True

(1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.745 0.0 0.0 0.0 (—0.594—0.3035) 0.0
0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0
0.0 0.0 (—0.594+0.3035) 0.0 0.0 0.0 —0.745 0.0

\0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.0)

Decomposing four qubit gates with ancilla qubits

Note : The output is not correctly figured out because the gate deocmposing toffoli gates/targets
has an incorrect condition. Instead of total number of qubits, the condition should be number of
control qubits > 3.

num qubits = 4

localhost:8888/nbconvert/html/Desktop/GSoC Notebook - Deliverable.ipynb?download=false

6/7

8/23/2021

GSoC Notebook - Deliverable

input gate = rand unitary(2**num qubits, dims=[[2] * num qubits] * 2)
two level arrays non expand = decompose to two level arrays(input gate, num_qut

gate num qubits = lastq target ancilla(two level arrays non expand, num qubits;
total num = gate num qubits[1]
gate list = gate num qubits[O]

gcl = QubitCircuit(total num, reverse states=False)
gcl.add gates(gate list)

gcl.png

gcl.compute unitary()

Quantum object: dims = [[2, 2, 2, 2, 2], [2, 2, 2, 2, 2]], shape = (32, 32), type = oper, isherm = False

1.0 00 0.0 0.0 0.0 o 0.0 0.0 0.0
(00 10 00 0.0 0.0 o 0.0 0.0 0.0
0.0 0.0 1.0 0.0 0.0 o 0.0 0.0 0.0
0.0 0.0 0.0 1.0 0.0 o 0.0 0.0 0.0
0.0 0.0 0.0 0.0 (—0.359—0.7815) --- 0.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 o 1.0 0.0 0.0
0.0 0.0 0.0 0.0 0.0 .. 0.0 (—0.359—0.7815) (—0.361+0.
0.0 0.0 0.0 0.0 0.0 ..+ 0.0 (—0.462+0.2205) (—0.617 — 0.
0.0 0.0 0.0 0.0 0.0 o 0.0 0.0 0.0
\0.0 0.0 0.0 0.0 0.0 o 0.0 0.0 0.0

localhost:8888/nbconvert/html/Desktop/GSoC Notebook - Deliverable.ipynb?download=false 717

