
Knowledge-Based Systems 164 (2019) 163–173

Contents lists available at ScienceDirect

Knowledge-Based Systems

journal homepage: www.elsevier.com/locate/knosys

Deep learning-based feature engineering for stock price movement
prediction
Wen Long, Zhichen Lu ∗, Lingxiao Cui
School of Economics & Management, University of Chinese Academy of Sciences, Beijing 100190, PR China
Research Center on Fictitious Economy & Data Science, Chinese Academy of Sciences, Beijing, 100190, PR China
Key Laboratory of Big Data Mining & Knowledge Management, Chinese Academy of Sciences, Beijing, 100190, PR China

a r t i c l e i n f o

Article history:
Received 9 April 2018
Received in revised form 21 October 2018
Accepted 24 October 2018
Available online 22 November 2018

MSC:
00-01
99-00

Keywords:
Stock price prediction
Feature engineering
Deep learning

a b s t r a c t

Stock price modeling and prediction have been challenging objectives for researchers and speculators
because of noisy and non-stationary characteristics of samples.With the growth in deep learning, the task
of feature learning can be performed more effectively by purposely designed network. In this paper, we
propose a novel end-to-end model named multi-filters neural network (MFNN) specifically for feature
extraction on financial time series samples and price movement prediction task. Both convolutional
and recurrent neurons are integrated to build the multi-filters structure, so that the information from
different feature spaces and market views can be obtained. We apply our MFNN for extreme market
prediction and signal-based trading simulation tasks on Chinese stockmarket index CSI 300. Experimental
results show that our network outperforms traditional machine learning models, statistical models, and
single-structure(convolutional, recurrent, and LSTM) networks in terms of the accuracy, profitability, and
stability.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

Financial time series forecasting, particularly stock price fore-
casting, has been one of themost difficult problems for researchers
and speculators. It plays a key role in trading strategies to iden-
tify opportunities to buy and sell a stock. Difficulties are mainly
caused by the uncertainty and noises of samples. The generation
of samples is not only a consequence of historical market be-
haviors, but also affected by information such as macroeconomy
and investor sentiments. Several categories of methods and data
sources were used in stock market prediction [1–4]; commonly
usedmethodsweremodeling the relationship between the histori-
cal behavior and futuremovement of the price, and using historical
market samples to predict the future trend or value of the price [1].
Traditional statistical methods such as linear regression, auto-
regression and moving average (ARMA), and GARCH were much
favorable for financial time series forecasting, because of their
interpretability. The key of the prediction process was the feature
engineering part; technical analysis [5] was mostly performed
to extract features from the original market data. Features were
subjectively designed assuming that futuremovements of the price
were results of historical behaviors. Models built on features of

∗ Corresponding author at: School of Economics & Management, University of
Chinese Academy of Sciences, Beijing 100190, PR China.

E-mail addresses: longwen@ucas.ac.cn (W. Long),
luzhcihen16@mails.ucas.ac.cn (Z. Lu), clxyx@itp.ac.cn (L. Cui).

technical analysis were based on some assumptions on patterns
of the market, and the success of models mostly depended on the
correctness of these assumptions. Apart from the traditional sta-
tistical models, machine learning algorithms such as naive Bayes
(NB), logistic regression (LR), random forest (RF), and k-nearest
neighbors (KNN) were also used to learn the relationship between
the features from technical analysis and future price [6,7], because
of their stronger capability of learning, ease of interpretation, and
absence of presumptions. Support vector machine (SVM) and ar-
tificial neural networks (ANNs) [8–10] were leading algorithms
in the application of traditional machine learning methods on
financial studies owing to their remarkable capability of nonlinear
mapping and fitting. However, because of the ‘‘black-box’’ prop-
erty, mapping relationship learned by models are lacking of inter-
pretation and their performance is directly related to quality of the
features. Moreover, owing to their capability of nonlinearmapping
and fitting, over-fitting presents one of the biggest obstacles in
practical applications.

Among deep learningmethodologies, neural networks play key
roles in the feature extraction process, and feature engineering can
be performed by purposely designing an integrated network struc-
ture using a series of available neural network feature extractors
for specific samples. In each layer of a network, nonlinear mapping
is implemented, and with the depth of the network growing, fea-
tures are transformed by a high-layer nonlinear mapping, so that
deeper featuremaps canbemore suitable for the final task. Existing
works have exploited most types of neural networks for financial

https://doi.org/10.1016/j.knosys.2018.10.034
0950-7051/© 2018 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.knosys.2018.10.034
http://www.elsevier.com/locate/knosys
http://www.elsevier.com/locate/knosys
http://crossmark.crossref.org/dialog/?doi=10.1016/j.knosys.2018.10.034&domain=pdf
mailto:longwen@ucas.ac.cn
mailto:luzhcihen16@mails.ucas.ac.cn
mailto:clxyx@itp.ac.cn
https://doi.org/10.1016/j.knosys.2018.10.034


164 W. Long, Z. Lu and L. Cui / Knowledge-Based Systems 164 (2019) 163–173

time series modeling [11–13]. Most of these work performed two-
stage predictions, which means defining and extracting features
first and inputing them into models for prediction. However, the
highlighted difference between deep learning methodologies and
traditional neural networks is that deep learning provides a group
of units (convolutional, recurrent, LSTM, etc.) for designing net-
work structures according to specific data formation and objective
tasks. And the feature engineering part can be integrated into
classification model to build an end-to-end model. Although some
networks have been designed to learn the trading rule [14] and fit
the distribution of the limit order book [15], in the task of feature
extraction for price trend prediction, deep learning methodologies
are barely utilized to design a specialized network that adequately
considers characteristics of samples and objective tasks.

In this study, we propose a novel end-to-end model named
multi-filters neural network (MFNN) specifically for feature ex-
traction on financial time series samples and price movement pre-
diction task. By performing feature transformation on sequential
market data with MFNN, samples are mapped into feature space
where different patterns are more discriminable for eventually
classification-based prediction. In our proposed network structure,
the convolutional and recurrent units are combined as an integral
network, by which features transformed from different filters are
merged and information from different views can be obtained.
We use our MFNN to extract features from high-frequency market
samples of the Chinese market index (CSI 300), and then recognize
extrememarkets by extracted features to exploit the suitable trad-
ing signal. Six types of extrememarkets in five different prediction
windows are defined in our experiments to obtain a suitable defini-
tion of trading signals. A simple prediction-based trading strategy
is tested based on signals from our prediction model to evaluate
profitability and stability of our network.

Contributions of our work can be summarized as follow: First,
a novel end-to-end network designed with deep learning method-
ologies is proposed specifically for feature extraction from multi-
variate financial time series data and classification-based predic-
tion. Features containing different types of information are ex-
tracted by recurrent and convolutional units, and are integrated
for further task of classification. Unlike most two-stage feature
extraction and prediction works, the whole feature extraction and
prediction processes are integrated in our end-to-end model. The
second contribution of our work is that we apply our network to
an extrememarket prediction-based trading strategy, and tune the
prediction windows and definition of the extreme market to find
themost suitable trading signals in thehigh-frequencymarket data
of CSI 300 index. To present the superiority of our proposed model
in terms of the prediction, profitability, and stability, traditional
machine learning, statistical models, and neural networks are also
involved in our experiments as baseline, and our model shows
better performance for both market prediction and simulation.

The remainder of this paper are organized as follows. Sec-
tion 2 summarizes relatedworks ofmethodologies and application
of machine learning and deep learning. It also presents existing
works on stock market prediction. Section 3 specifies details of
our proposed MFNN and data preprocessing methodology. Sec-
tion 4 describes the trainingmethodology, tricks of prediction, and
experimental results of the classification and market simulation.
Finally, Section 5 concludes this work and presents some brief
comments.

2. Related work

2.1. Feature engineering of financial time series

Unlike picture, text and speech samples, whose raw inputs
already containmost information needed for final objectives, stock

price movements are results of multiple factors such as macroe-
conomy, financial situation of a company, investors’ sentiments,
etc. And financial time series contain high noise. To predict stock
price movement, features containing useful information are
needed, so feature extraction and selection play significant roles
in stock price movement prediction. Existing studies have applied
traditional statistical and machine learning methods for financial
time series modeling and prediction. These models are built on
features extracted by some specific methodologies.

Commonly used feature engineering methodologies contain
technical analysis and statisticalmethodologies. Technical analysis
presumes that future behaviors are correlated to some histori-
cal patterns [16], and a few technical indicators are defined to
describe these patterns such as the moving average (MA) [17],
momentum [18], Bollinger band [19], etc. Most of these indica-
tors are mathematical expressions of historical price series de-
fined to describe specific characteristics of presumed patterns.
Nevertheless, because features extracted by designed indicators
are based on presumed patterns, some information may be lost
in this approach. Statistical methodologies focus on information
compression and dimension reduction, and features extracted by
them are mostly used in the machine learning methods. The uni-
versally used methods include the principal component analysis
(PCA) [12], independent component analysis (ICA) [20], and locally
linear embedding (LLE) [21], etc. They focus on the distribution of
the samples, and the extraction operation is performed on data
sets. Some transformation or kernel-based operation is needed to
ensure an identically distributed condition of samples, and the
whole process may be sensitive to hyper parameters. In recent
years, a tensor-based method called the signature of path [22,23]
was proposed to calculate a unique vectorized representation of a
multi-variate stream, and its attempt at depicting a financial time
series [24] yielded considerable results.

2.2. Models for financial time series modeling

Both statistical and machine learning methods are universally
used in financial time series modeling and prediction, most of
which are implemented on features extracted by technical analysis
and statistical methodologies. Because of their good capability of
interpretation, statistical models are used to verify assumptions of
market behind features, and predictions are based on verified as-
sumptions. Commonly used statistical models include ARMA [25],
ARCH [26], GARCH [27] and VAR [28], etc. Machine learning meth-
ods provide considerable capability of learning potential relation-
ships between patterns in features and labels. They learn param-
eters of models by fitting training samples and presume that the
distribution of the training set and test set in the feature space are
identical [10,29–31].

However, performance of either statistical models or machine
learning models mostly depends on quality of features, which
makes inappropriate features possibly lead to underperformance
of models. Technical analysis based feature extraction are based
on assumptions and subjective insights on market, but some of
assumptions may not be rigorously proved, and some may be
efficient only in specific market situation and lack of generaliza-
tion. Statistical methodologies based feature engineering, on the
other hand, simply perform feature transformation based on the
distribution of original features, but does not consider the rela-
tionship between features and objective. Also, both of these two
kinds of feature engineering methods may be sensitive to hyper
parameters.

Recently, decision tree C4.5 and C5.0 combined with an im-
proved filter feature selection method were proposed to predict
the listing statuses of Chinese-listed companies [32]. The exper-
iment on 23,497 company-year observations demonstrated that



W. Long, Z. Lu and L. Cui / Knowledge-Based Systems 164 (2019) 163–173 165

the proposed method showed better performance than genetic
algorithm based wrapper method. Inspired by their works, we
got an idea of further integrating the feature engineering process
into models, so that features can be learnt with consideration
of objectives. That leads us to deep learning methodologies, by
which network structure can be tailored for feature engineering
on specific data formation with consideration of objective task.

2.3. Deep learning for feature learning

In recent years, deep learning methodologies have achieved re-
markable results in computer vision [33], speech recognition [34],
and some path recognition such as handwritten character recog-
nition [35]. The main difference between traditional methods and
deep learning is that the network structure can be tailored for
specific data formation and objective task. Deep learning provides
a series of units such as convolutional unit [36], recurrent unit [37],
gate recurrent unit [38], and long–short memory term unit [39]
for feature extraction on samples with different characteristics.
The feature extraction process can be integrated into networks,
and structures of networks can be purposely designed according
to characteristics of samples. GoogLeNet [40] and AlexNet [33]
were designed to enhance abilities of learning information from
the pixel data. Attention-over-attention neural network [41] was
designed for extracting features from text data for a reading com-
prehension task, CNN-bLSTM [42] was designed for speech recog-
nition, and R-CNN [43] was proposed for scalable objection detec-
tion.

Learning ability of networks can be enhanced with the depth
of the networks growing. However, problems such as exploding
and vanishing gradient [44–46] may be incurred. Tricks such as
dropout [47], batch normalization [48], and residual [49] were
proposed to deal with these problems and enhance the efficiency
of training.

Some of deep learning methodologies have been used in stock
price prediction. The classical deep brief network was updated to
model continuous data by using the restricted Boltzmannmachine
and its good performancewas verified by application on exchange-
rate forecasting [11]. DNNwith the (2D)2PCA feature extractor [12]
was proposed to predict stock price and yield a better profitability
and accuracy of the hit rate than radial basis function neural net-
works and recurrent neural networks. Recurrent neural network
was applied to the classification task on limit order book sam-
ples [50] for a trading signal, and it exhibited its ability to capture
the nonlinear relationship between the near-term price-flips and
spatio-temporal representation of the limit order book.

However, most of these works are concentrated on using sin-
gle type networks to make two-stages predictions of stock price.
Although some of them performed feature engineering before
feeding samples to networks, the feature learning ability of tailored
and integrated network structure has been barely explored on
financial time series. The motivation of our work is to bridge this
gap and explore the performance of deep learning based feature
engineering on financial time series.

3. Deep feature engineering on financial time series

3.1. Data sets

In the task of stock price prediction, we define x1, x2, x3...xt , . . .
as indicators sequences, in ourworks, six indicators xt = (ot , ct , ht ,

lt , vt , at ) are obtained at each time step in 1-minute frequency,
including open price (stock price at the start of each time step),
close price (stock price at the end of each time step), highest
price (the highest price among each time step), lowest price (the
lowest price among each time step), volume (the number of shares

traded in a security during each time step), amount (the amount
of money traded in a security during each time step). At each
time step, features of each sample is composed of the six indicator
sequences over past 120 min, which can be denoted as Xt =

(xTt−119, x
T
t−118, . . . , x

T
t )

T
= (Ot , Ct ,Ht , Lt , Vt , At ). Features of each

sample are then scaled as follow:

Z̃t =
Zt − mean(Zt )

std(Zt )
(1)

where Zt ∈ {Ot , Ct ,Ht , Lt , Vt , At} denotes each univariate time
series of each segmented sequence. Each univariate series of each
sample is composed of 120 historical indicators, mean(Zt ) and
std(Zt ) denote the mean value and standard deviation of the 120
historical indicators, respectively.

In our works, market data of CSI 300 in 1-min frequency from
December 9th, 2013 to December 7th, 2016 are used for training
and testing. Sequences Xt are sampled from the raw data at each
minute and scaled, so the t of Xt ranges from 11:00 am (120 min
after the market opening) December 9th, 2013 to 15:00 pm (time
when the market closes), December 7th 2016. Samples before and
after December 31th, 2015 are used for training set and test set,
which in proportion of 7:3. After sampling, the labeling methodol-
ogy described in Eq. (2) is performed on the data set.

Lt =

{
+1 rt > rθ
0 Others
−1 rt < r1−θ

(2)

Lt denotes the label of sample Xt , rt = ln
closet+tforward

closet
denotes the

logarithm return of the stock index in tforward minutes after t , rθ
and r1−θ denotes thresholds bywhich samples are labeled different
categories (θ ≤ 0.3). Samples in training set are first ranked
in descending order of their future return rt , rθ and r1−θ denote
future returns of samples at the (100 ∗ θ )th percentile and the
100 ∗ (1 − θ )th percentile, respectively. Samples above the (100 ∗

θ )th percentile are labeled +1, samples below the 100 ∗ (1 − θ )th
percentile are labeled -1, and samples between the (100 ∗ θ )th
percentile and the 100∗ (1−θ )th percentile are labeled 0. Samples
in test set are labeled according to the thresholds rθ and r1−θ

calculated among training set. For example, when θ = 0.1 and
tforward = 10, samples of training set are ranked in descending
order of their future-10-minutes-return, and samples above the
10th percentile are labeled +1, samples below the 90th percentile
are labeled -1, others are labeled 0; test set are labeled +1, 0, -1
according to the thresholds r0.1 and r0.9 of training set. Training set
and test set are then rebalanced by randomly drop samples with
label 0 to insure that percentages of each categories are about to
equal.

The smaller θ is, the higher rθ is (also the lower r1−θ is), and sam-
ples labeled +1 will have higher future returns (lower returns for
samples labeled -1).With five kinds of θ = 0.1, 0.15, 0.2, 0.25, 0.3
and six kinds of tforward = 5, 10, 15, 20, 25, 30, we generate 30
data sets, aiming to explore the relationship betweenpredictability
of samples and θ , as well as tforward. Table 1 presents statistics
of data sets. Table 1(a) presents numbers of samples labeled +1,
0, -1 in each of the five data sets, when tforward = 5 and θ =

0.1, 0.15, 0.2, 0.25, 0.3. Table 1(b) presents values of rθ and r1−θ of
30 data sets. For example, when tforward = 5 and θ = 0.1, samples
whose prices rise for more than 0.26% in future 5 min are labeled
+1, and whose prices fall for more than −0.25% in future 5 min are
labeled -1, and the other samples are labeled 0. Samples labeled 0
are randomly dropped to insure numbers of samples labeled +1, 0,
-1 are about to equal, which are 12239, 12277, 12194 in training
set, and 2454, 2412, 2370 in test set.



166 W. Long, Z. Lu and L. Cui / Knowledge-Based Systems 164 (2019) 163–173

Table 1
Statistic of data sets.
(a) Numbers of samples in each category with different θ and tforward = 5

θ Training sets Testing sets

+1 0 −1 +1 0 −1

0.1 12239 12277 12194 2454 2412 2370
0.15 18355 18397 18315 4511 4386 4261
0.2 24470 24504 24433 6880 6761 6642
0.25 30588 30622 30551 9667 9521 9375
0.3 36699 36738 36665 12982 12652 12322

(b) Tuples (rθ , r1−θ ) in different θ and tforward

θ tforward = 5 tforward = 10 tforward = 15 tforward = 20 tforward = 25 tforward = 30

0.1 (0.0026, −0.0025) (0.0036, −0.0035) (0.0044, −0.0042) (0.0051, −0.0049) (0.0057, −0.0054) (0.0063, −0.0059)
0.15 (0.0019, −0.0018) (0.0027, −0.0026) (0.0033, −0.0031) (0.0039, −0.0036) (0.0044, −0.0039) (0.0048, −0.0043)
0.2 (0.0014, −0.0013) (0.0022, −0.002) (0.0026, −0.0024) (0.003, −0.0027) (0.0034, −0.003) (0.0038, −0.0033)
0.25 (0.0011, −0.001) (0.0017, −0.0015) (0.0021, −0.0019) (0.0024, −0.0021) (0.0027, −0.0023) (0.003, −0.0025)
0.3 (0.0008, −0.0007) (0.0013, −0.0011) (0.0016, −0.0014) (0.0019, −0.0016) (0.0021, −0.0017) (0.0023, −0.0019)

Fig. 1. Multi-Filters module for feature engineering on sequential samples.

3.2. Multi-Filters for feature engineering on financial time series

To extract features from samples, a networkmodule is designed
by integrating both convolutional neurons and recurrent neurons.
Fig. 1(a) demonstrates how these two kinds of neurons are inte-
grated in our module. The left part and middle part of the multi-
filters module perform convolution operation on raw inputs. The
width of convolution filters is set to the number of indicators
at each time step, which is 6 for our samples. By performing
convolution operation through time axis, discrete information are
involved into feature maps. The way that convolutional filters
extract features from sequential samples is shown in Fig. 1(b),
which can be formulated as

Ht = σ (
∑

W ∗ X̃t + b) (3)

where X̃t = (Õt , C̃t , H̃t , L̃t , Ṽt , Ãt ) denotes the input of the convolu-
tional filters, which is scaled sequential sample in our work, Ht de-
notes the feature maps after the convolution operation, ∗ denotes
the convolution operation,W denotesweights of the convolutional
filter, b is a slack term, and a sigmoid σ (·) function is used for
non-linear activation. By stacking convolutional filters, dimensions
of features can be reduced and key information can be filtered
and condensed into a lower-dimensional feature space. The multi-
filters module integrates both single layer and multi-layers con-
volutional filters to obtain discrete information extracted through
time axis.

Market data at each time stepwithin a sample partly result from
historical behaviors and contain different amounts of information
in different sub-periods. So to capture these information contained

in different sub-periods, the right part of multi-filters module
extracts features by recurrent neurons on raw inputs, which can
be formulated as:

ht = Fh(x̃t , ht−1) = σ (Wh × x̃t + Uh × ht−1 + bh) (4)

where x̃t denotes the 6-D indicators vector at time step t . Wh
denotes weights of connections between input and hidden states,
Uh denotes weights of connections between hidden states ht and
ht−1, and bh denotes bias. Eq. (4) is performed on scaled sam-
ples X̃t = {̃xt−119, x̃t−118, . . . , x̃t} so that feature maps Ht =

{ht−119, ht−18, . . . , ht} can be obtained from recurrent filters. By
recurrently feeding hidden states from each time step to neurons
of their next time step, feature maps composed of outputs from
hidden states will contain information with memory of previous
steps.

Features extracted by convolutional filters and recurrent filters
are sub-sampled and padded to insure the length of feature maps
are equal. Numbers of hidden nodes in recurrent layers are equal
to numbers of convolutional filters of the left part, as well as that of
the second layer of the middle part. Then feature maps with same
size from multi-filters are concatenated as multi-channels feature
maps and fed to the next layer.

3.3. Architecture of multi-filters neural networks

We further extend the multi-filters module to a deeper ar-
chitecture, and name this network Multi-Filters Neural Networks
(MFNN) since it integrates multiple kinds of filters (convolutional
and recurrent filters) for feature learning. Fig. 2 demonstrates
details ofMFNN. TwoMulti-Filtersmodules are stacked to a deeper



W. Long, Z. Lu and L. Cui / Knowledge-Based Systems 164 (2019) 163–173 167

Fig. 2. Structure of the Multi-Filters Neural Network.

architecture for better feature learning ability. At the tail of the last
stacked module, feature maps are flattened to a single vector, and
concatenated with a fully-connected layer. And a softmax output
layer [51] is used for eventually classification-based prediction. At
the output layer we choose cross entropy as loss function, which is
calculated by:

Loss = −
1
n

∑
i

[yilnzi + (1 − yi)ln(1 − zi)] (5)

where zi denotes the output and yi denotes the actual label.
When depth of a network increases, gradient issues of vanish-

ing and explosion [44–46] may be incurred, which may interrupt
the training process. To prevent our network from these issues,
we introduce batch normalization after each filter, which can be
performed as:

Ĥt =
Ht − E[Ht ]
√
Var[Ht ]

(6)

y = γ Ĥt + β (7)

where Ht denotes activation of filters (convolutional and recur-
rent), y denotes features after batch normalization, γ and β are
parameters of batch normalization to be learnt. Mean values E[·]

and standard deviation
√
Var[·] are calculated among each batch.

Also, the powerful nonlinear mapping ability of deep structures
may lead to over-fitting on the training samples. To alleviate this
issue, we implement dropout [47] on the final fully-connected
layer and recurrent filters, whose weights tend to be dense. It is
performed by randomly omitting a certain percentage of neurons
while updating weights by back propagating [52] gradient.

4. Experiment

To evaluate effectiveness of the proposed MFNN, we design
experiment process shown in Fig. 3. Models are trained and eval-
uated by accuracy on test sets among 30 data sets, and the best

performing one is used for market simulation by using prediction
results as trading signals.

4.1. Experimental setting & training methodology

We evaluate performance of our MFNN on 30 data sets, tradi-
tional machine learning models and statistical models are used as
baselines. Specifically, we build single-type-filter networks using
recurrent unit, convolutional unit and Long–Short Term Memory
(LSTM) unit as comparisons to test the effectiveness of MFNN.

Back propagation with the stochastic gradient descent (SGD)
optimizer is used to learn parameters of the network. Details of
training methodology are presented in Algorithm 1. The learning
rate ρ of SGD is initialized to 0.5 because we make a trade-off
between training time andmodel performance. As shown in Fig. 4,
higher learning rate results in less epochs for convergence, but
performance of model is restricted. Lower learning rate on the
opposite, leads to more epochs for training but a better optimum.
Batch size (Nbatch) is set to 400 to correspond to the learning
rate. We use learning rate decay and early stopping to adapt the
training process, because it is proved that learning rate decay can
prevent catastrophic events (sudden rocketing of training loss and
gradient norm) [53]. The learning rate of SGD will be halved if
the accuracy on the validation set has not been improved for 20
epochs. Training will stop if the accuracy on validation set has not
been improved for 150 epochs (after 7 times learning rate decay)
to prevent network from over-fitting. Other initialized parameters
TLastPeak = 0, Accval = 0, Epoch = 0 are temporary variable to
record information such as for how many epochs accuracy on the
validation set has not been improved. Table 2 gives training times
(minutes) for MFNN on 30 data sets.

Algorithm 1 Training Process For MFNN

Input: Preprocessed training sample Z0,...,ZN
Initialization: Initialize the parameters for the networks, ρ = 0.5,

λ = 0.5, TLastPeak = 0, Accval = 0, Nbatch = 400, Epoch=0
1: repeat
2: if TLastPeak > 150 then Break
3: else if TLastPeak > 20 then

Update the learning rate ρt = λ ∗ ρt−1
4: end if
5: for i=0,1,...,N%Nbatch do

Set batch Bi = {}

6: for j=0,...,Nbatch do
Append Zj to Bi

7: end for
Caculate ∇(Ut )θ by averaging its gradient values among Bi

Θt = Θt−1 − ρ ∗
∇(Ut )θ

∥∇(Ut )θ ∥

8: end for
9: Calculate the accuracy on validation test Accval by Θt

10: if Accval > AccPeak then
TLastPeak = 0
AccPeak = Accval

11: else
TLastPeak = TLastPeak + 1

12: end if
13: until Convergence

4.2. Result discussion

Results of the accuracy on test sets of eachmodel are presented
in Fig. 5. It can be concluded that the accuracy on the test set
decreases whereas θ increases, which implies that samples with
larger margins of a future rise or fall show stronger dependency



168 W. Long, Z. Lu and L. Cui / Knowledge-Based Systems 164 (2019) 163–173

Fig. 3. Experimental procedure for stock price movement prediction and prediction-based trading simulation.

Fig. 4. Training process with different initialized learning rate (tforward = 5, θ =

0.1).

between features and labels. However, changes on prediction win-
dows tforward do not show obvious effects on model performance.
For an in depth analysis of results of model performance, Table 3
presents the best five results of each model, average accuracy of
the best 10 and 20 results of each model, from which it can be
concluded that (1)models using deep learningmethodologies have
better capabilities of prediction since results of CNN, RNN, LTSM,
and MFNN are all superior to those of other traditional methods.
(2) Integration of multiple filters can enhance the efficiency of
feature extraction since MFNN exhibits a better performance than
both RNN and CNN, and it outperforms CNN (which shows a better
performance than RNN and LSTM) by 6.28%.

In previous part, training period and test period are split by
the point December 31th, 2015, which makes the proportion of
training period 70%, and 30% for testing period. To evaluate the
robustness of ourmodel,weuse different timewindows to split the
training period and test period. Training periods with proportion
of 30%, 40%, 50%, 60%, 70%(test periods with proportion of 70%,
60%, 50%, 40%, 30% correspondingly) are used for sampling and
generating data sets by the same process described in Section 3.1.
Results are shown in Table 4, from which we can see that our



W. Long, Z. Lu and L. Cui / Knowledge-Based Systems 164 (2019) 163–173 169

Table 2
Training times (minutes) for MFNN on 30 data sets.
θ tforward = 5 tforward = 10 tforward = 15 tforward = 20 tforward = 25 tforward = 30

0.1 72.40 64.20 120.00 84.20 106.40 114.40
0.15 149.45 135.80 28.00 210.00 158.20 210.00
0.2 182.92 165.42 250.00 233.33 220.83 170.00
0.25 184.97 268.67 310.00 276.93 310.00 310.00
0.3 247.00 390.00 85.80 390.00 334.75 390.00

Fig. 5. Performance of each model on 30 data sets.

MFNN still outperform each of other models with each proportion
of training period.

Additionally, we utilize the Wilcoxon signed rank test [54] to
further verify the statistical significance of MFNN and benchmark

methods. The Wilcoxon signed rank test is a pairwise test that
aims to detect significant differences between two algorithms.
Table 5 presents the statistical significance of differences among
models. It reports Wilcoxon signed rank test statistics for pairwise



170 W. Long, Z. Lu and L. Cui / Knowledge-Based Systems 164 (2019) 163–173

Table 3
Best 5 results, average accuracy of the best 10 and the best 20 results of each model on 30 data sets.

1 2 3 4 5 Avg_Top10 Avg_Top20

MFNN tforward = 5 θ = 0.1 tforward = 10 θ = 0.1 tforward = 5 θ = 0.15 tforward = 30 θ = 0.1 tforward = 5 θ = 0.2
55.50% 52.76% 52.21% 49.22% 48.43% 49.53% 47.27%

RNN tforward = 10 θ = 0.1 tforward = 5 θ = 0.1 tforward = 10 θ = 0.15 tforward = 5 θ = 0.15 tforward = 15 θ = 0.1
48.31% 47.40% 46.45% 46.40% 45.67% 46.06% 44.85%

CNN tforward = 10 θ = 0.1 tforward = 30 θ = 0.1 tforward = 25 θ = 0.1 tforward = 20 θ = 0.1 tforward = 15 θ = 0.1
49.22% 48.79% 47.97% 47.70% 47.34% 48.80% 46.93%

LSTM tforward = 10 θ = 0.1 tforward = 5 θ = 0.1 tforward = 10 θ = 0.15 tforward = 5 θ = 0.15 tforward = 20 θ = 0.1
48.283% 46.84% 45.84% 45.83% 45.71% 45.89% 44.45%

SVM tforward = 20 θ = 0.1 tforward = 10 θ = 0.1 tforward = 25 θ = 0.1 tforward = 30 θ = 0.1 tforward = 15 θ = 0.1
44.03% 43.89% 43.13% 43.12% 42.44% 42.37% 41.38%

Logistic regression tforward = 10 θ = 0.1 tforward = 5 θ = 0.1 tforward = 5 θ = 0.15 tforward = 5 θ = 0.3 tforward = 5 θ = 0.2
43.41% 42.97% 42.67% 42.33% 42.13% 42.01% 41.04%

Random forest tforward = 20 θ = 0.1 tforward = 5 θ = 0.1 tforward = 10 θ = 0.1 tforward = 25 θ = 0.1 tforward = 15 θ = 0.1
43.83% 43.52% 42.88% 41.71% 41.50% 41.88% 40.83%

Linear regression tforward = 5 θ = 0.3 tforward = 5 θ = 0.25 tforward = 5 θ = 0.2 tforward = 5 θ = 0.1 tforward = 5 θ = 0.15
35.75% 35.03% 34.81% 34.55% 34.29% 34.33% 33.94%

Table 4
Performance of each model with different time windows for training period.

30% 40% 50% 60% 70%

MFNN 38.51% 39.63% 43.95% 44.65% 55.50%
RNN 36.13% 35.83% 36.55% 38.03% 48.31%
CNN 35.76% 37.17% 39.58% 42.29% 49.22%
LSTM 34.83% 35.97% 37.63% 41.15% 48.83%
SVM 35.62% 38.27% 38.32% 42.03% 44.03%
Logistic regression 37.26% 38.25% 39.31% 41.97% 43.41%
Random forest 35.34% 36.37% 38.03% 41.90% 43.83%
Linear regression 33.34% 36.11% 33.57% 33.79% 35.75%

comparisons of a row model versus a column model. Our sign
convention is that a positive statistic indicates the rowmodel out-
performs the column model. Results still verify that performance
of networks can be improved by integrating multi-filters and our
MFNN outperforms all other baseline models.

4.3. Market simulation

To further evaluate the performance of MFNN on extrememar-
ket prediction, we simulate a prediction-based trading to test
whether predictions made by MFNN can make profit. In the fol-
lowing simulation, a strategy is developed to mimic behaviors of a
trader who makes trading decisions according to predictions of a
model based on a very simple rule: if the model predicts that stock
price is expected to have a rising trend, the system will buy the
stock; if themodel predicts that the stock price is expected to have
a falling trend, the system will have a short position of the stock.
To simulate this very simple strategy,we usemodels trained on the
training sets to predict future trends of the CSI 300 in each minute
from April 18 2016 to January 30 2017 and send trading signals
according to predictions of models. As new market samples are
updated every minute, predictions are made by models fed with
new data, and subsequently, trading signals are sent.

If the model predicts a new sample to be positive category, our
system will purchase 100,000 CNY worth of the stock in the next
minutes with the opening price. We assume that 1,000,000 CNY
are available at the start moment, and trading signals will not be
executed when the cash balance is less than 100,000 CNY. Another
assumption is zero transaction cost, which is common in similar
evaluations. After a purchase, the system will hold the stock for
tforward minutes corresponding to the prediction window of the
model. If during that period the stock can be sold to make a profit
of rθ (threshold profit rate of labeling) or more, the system will
sell immediately, otherwise, at the end of tforward minutes period,
our system will sell the stock at the close price and takes a loss if
necessary.

If the model predicts a new sample to be negative category, our
system will have a short position of 100,000 CNY worth of stock,
which implies selling the stock we do not yet have in hopes of
buying it later at a lower price. Similarly, the system will keep the
position for tforward minutes. If during the period the system can
buy the stock at r1−θ lower than shorted, the system will close the
short position by buying the stock to cover it. Otherwise, at the end
of the period, the systemwill close the position similarly at the end
of the period at the close price.

Accuracy of models can only measure the ability of the
classification-based prediction, which correspond to ranges of
future return, while what actually matters in market practice is
the profitability, which is correlated to the amount of rise or fall.
For example, profit made by two correctly predicted samples may
be absorbed by loss caused by one incorrectly predicted sample, if
the actual amount of the rise or fall in the future of the incorrectly
predicted sample is sufficiently large. To evaluate performance
of the MFNN in the market simulation, the total return (R) is
measured by

R = (
PortfolioT
Portfoliot0

− 1) × 100% (8)

Table 5
Comparison of each two models using Wilcoxon signed rank test.

MFNN RNN CNN LSTM SVM Logistic regression Random forest Linear regression

MFNN 1.78 1.15 1.36 1.57 1.57 1.78 2.61
RNN −0.73 −0.10 −0.73 −1.36 −0.10 2.40
CNN 0.52 0.31 −0.10 0.52 2.40
LSTM −0.52 −0.73 −0.31 1.98
SVM 0.10 0.73 2.19
Logistic regression 0.73 2.61
Random forest 2.19
Linear regression



W. Long, Z. Lu and L. Cui / Knowledge-Based Systems 164 (2019) 163–173 171

where PortfolioT denotes the value of all the assets in the account at
the end of simulation period T and Portfoliot0 denotes the same at
the start of simulation period t0, which is initialized to 1,000,000
CNY as mentioned before. A higher return implies a better prof-
itability performance of the model. Generally, the annual return
rate (AR) is also measured by converting the total profit rate as

AR = (1 + R)
244
Ts − 1 (9)

where Ts is the time span (days) over which themodel is simulated
and 244 is the average number of trading days for a year. Similarly,
the daily winning rate (DWR) is also calculated to evaluate the
stability of the model on prediction-based trading. In modern
portfolio theory [55], the risk-adjusted profit is also widely used
to evaluate stability of a trading system, so the Sharpe ratio (SR),
which has been widely used in many trading related works [56],
is also measured. The SR is defined as the ratio of average excess
returns to the volatility of excess returns that is considered as risk,
and SR is calculated as

SR =
√
244 ×

re
σe

(10)

where

re =
1
n

n∑
i=1

[rp(i) − rf (i)] (11)

σe =

√ 1
n − 1

n∑
i=1

[rp(i) − rf (i) − re]2 (12)

where re andσe denote the average daily excess returns and volatil-
ity of the daily excess returns during the simulation period, respec-
tively, rp(i) and rf (i) denote the returns from the trading strategy
and risk-free rate of interest on the ith trading day, and n denotes
the number of trading days during the simulation. A large SR cor-
responds to a high profit under a unit risk and higher stability. To
evaluate the risk of the trading system, the maximum drawdown
(MDD) is also introduced, which is defined as the maximum loss
from a peak to a trough in the portfolio before a new peak is
attained. The annual volatility (V) is also used to evaluate the risk,
and is measured as

V =

√ 244
n − 1

n∑
i=1

[rp(i) − rp]2. (13)

where rp denotes the average return from the trading strategy.
Details of the portfolios’ net value curves during simulations are

shown in Fig. 6. Results of each model in market simulations are
presented in Table 6, where all the indicatorsmentioned before are
compared.

First, we can see from Table 6 that all prediction-based sim-
ulations are significantly more profitable than the randomly buy
and sell strategy. It implies that prediction models involved can
capture suitable trading points to make profits. Among these pre-
dictionmodels, all simulations based on predictions frommachine
learning and deep learning models result in better returns and
annual returns than linear regression. It indicates that non-linear
models show better profitability than the traditional statistical
one. Specifically, most deep learning methodologies-based (ex-
cept LSTM) simulations significantly outperform those of machine
learning and statistical methods at profitability, and simulations
based on theMFNN outperform the best result ofmachine learning
(logistic Regression) by 15.41% and linear regression by 22.41% at
returns.

Second, the traditional statistical model still shows a better
performance in terms of the risk control, and the annual volatility

Fig. 6. Prediction-based market simulations.

of the linear regression-based simulation (1.86%) is only one-third
of that of the random forest,which shows the least volatility among
the machine learning models (5.89%). Similarly, the maximum
drawdown of the simulation based on linear regression is also
much less than any machine learning model. This implies that
trading based on linear regressionwill be less risky than that based
on machine learning models, but as demonstrated before, it is also
a conservative strategy that may lead to less returns.

In the view of the stability, the most stable result from RNN
reaches 6.42 Sharpe ratio and 67.43% dailywinning rate, andMFNN
yields the second best result. We can conclude from these results
that models using deep learning methodologies have better capa-
bilities of capturing profitable and stable signals than traditional
methods. But when using integrated network structures, the qual-
ity of captured signals can be affected by the way that units are
integrated.

5. Conclusion

In this paper, we proposed an end-to-end model named multi-
filters neural network using deep learning methodologies for fea-
ture engineering on multivariate financial time series, and
classification-based prediction. Feature maps extracted by multi-
filters were used for classification-based extreme market predic-
tion, and models using deep learning methodologies were verified
to be superior to the traditional machine learning and statistical
methods on the prediction task. The best prediction result from
the MFNN outperformed the best machine learning method and
statistical method for 11.47% and 19.75%. The integration of filters
and purposely designing of the network enhanced the accuracy for
7.19% and 6.28% compared with RNN and CNN, respectively. In the
market simulation, models with deep learningmethodologies pre-
sented a better profitability than any other baseline. Our proposed
MFNNwas15.41%better than the best result of traditionalmachine
learning methods and 22.41% better than the statistical method at
returns.

Although the effectiveness of deep learning methodologies
on extreme-market prediction was verified, there are still some
promising future directions. The proposed method is superior
in terms of the profitability when simulated in prediction-based
trading, but risk and stability are to be improved. The RNNachieved
the best result of the Sharpe ratio,which implied that deep learning
methodologies has the capability to capture stable signals, but the
quality and characteristics of signals are potentially affected by the
way filters are integrated. Therefore, in our future works, we hope
to explore how the way of integration affects the quality of trading
signals in terms of the risk, profitability, and stability. Second,



172 W. Long, Z. Lu and L. Cui / Knowledge-Based Systems 164 (2019) 163–173

Table 6
Market simulation results.

Hyper-parameter R AR SR V MDD DWR

MFNN θ = 0.1 28.78% 42.28% 4.49 7.41% −2.56% 65.14%tforward = 5

RNN θ = 0.1 24.50% 35.74% 6.42 4.42% −1.09% 67.43%tforward = 10

CNN θ = 0.1 20.50% 29.70% 3.3595 7.14% −2.01% 65.14%tforward = 10

LSTM θ = 0.1 11.53% 16.17% 1.40 9.42% −4.44% 58.29%tforward = 10

Linear regression θ = 0.3 6.37% 8.99% 3.4056 1.86% −0.34% 64.57%tforward = 5

Logistic regression θ = 0.1 13.37% 19.12% 1.9792 7.84% −3.11% 62.29%tforward = 10

Random forest θ = 0.1 9.65% 13.71% 1.8221 5.89% −1.80% 58.86%tforward = 20

SVM θ = 0.1 12.93% 18.47% 1.7140 8.79% −5.94% 53.71%tforward = 20

Random buy and sell – 1.03% 1.44% −0.0870 7.08% −3.65% 48.57%tforward = 10

we only use historical market data of stocks to predict future
trends. Considering the extensibility of neural networks and deep
learning methodologies, we can further try to design a specific
network to extract information from multi-sources information
(macroeconomic indicators, news, andmarket sentiment) to make
prediction.

Acknowledgments

This research was partly supported by the grants from the Na-
tional Natural Science Foundation of China (No. 71771204,
71331005, 91546201).

References

[1] K.J. Kim, I. Han, Genetic algorithms approach to feature discretization in
artificial neural networks for the prediction of stock price index, Expert Syst.
Appl. 19 (2) (2000) 125–132.

[2] H. Gunduz, Y. Yaslan, Z. Cataltepe, Intraday prediction of borsa istanbul using
convolutional neural networks and feature correlations, Knowl.-Based Syst.
137 (2017) 138–148.

[3] M. Hagenau,M. Liebmann, D. Neumann, Automated news reading: stock price
prediction based on financial news using context-capturing features, Decis.
Support Syst. 55 (3) (2013) 685–697.

[4] X. Ding, Y. Zhang, T. Liu, J. Duan, Deep learning for event-driven stock pre-
diction, in: Proceedings of the 24th International Conference on Artificial
Intelligence, AAAI Press, 2015, pp. 2327–2333.

[5] Y. Shynkevich, T. McGinnity, S. Coleman, A. Belatreche, Y. Li, Forecasting price
movements using technical indicators: investigating the impact of varying
input window length, Neurocomputing (2017).

[6] J. Patel, S. Shah, P. Thakkar, K. Kotecha, Predicting stock and stock price index
movement using trend deterministic data preparation and machine learning
techniques, Expert Syst. Appl. 42 (1) (2015) 259–268.

[7] J. Sen, T.D. Chaudhuri, A robust predictive model for stock price forecasting,
in: International Conference on Business Analytics and Intelligence, 2017.

[8] G.S. Atsalakis, K.P. Valavanis, Surveying stock market forecasting techniques
part ii: soft computing methods, Expert Syst. Appl. 36 (3) (2009) 5932–5941.

[9] Y. Pan, Z. Xiao, X.Wang, D. Yang, Amultiple support vectormachine approach
to stock index forecasting with mixed frequency sampling, Knowl.-Based
Syst. 122 (2017) 90–102.

[10] T. Xiong, C. Li, Y. Bao, Z. Hu, L. Zhang, A combination method for interval
forecasting of agricultural commodity futures prices, Knowl.-Based Syst. 77
(C) (2015) 92–102.

[11] F. Shen, J. Chao, J. Zhao, Forecasting exchange rate using deep belief networks
and conjugate gradient method, Neurocomputing 167 (2015) 243–253.

[12] R. Singh, S. Srivastava, Stock prediction using deep learning,Multimedia Tools
Appl. 76 (18) (2017) 18569–18584.

[13] K. Chen, Y. Zhou, F. Dai, A lstm-based method for stock returns prediction: a
case study of china stock market, in: Big Data (Big Data), 2015 IEEE Interna-
tional Conference on, IEEE, 2015, pp. 2823–2824.

[14] Y. Deng, F. Bao, Y. Kong, Z. Ren, Q. Dai, Deep direct reinforcement learning for
financial signal representation and trading, IEEE Trans. Neural Netw. Learn.
Syst. 28 (3) (2017) 653.

[15] J. Sirignano, Deep learning for limit order books, 2016, arXiv preprint arXiv:
1601.01987.

[16] M.P. Taylor, H. Allen, The use of technical analysis in the foreign exchange
market, J. Int. Money Finance 11 (3) (1992) 304–314.

[17] A. Gunasekarage, D.M. Power, The profitability of moving average trading
rules in south asian stock markets, Emerg. Mark. Rev. 2 (1) (2001) 17–33.

[18] C. Lee, B. Swaminathan, Price momentum and trading volume, J. Finance 55
(5) (2000) 2017–2069.

[19] C. Lento, N. Gradojevic, C. Wright, Investment information content in
bollinger bands? Appl. Financ. Econ. Lett. 3 (4) (2007) 263–267.

[20] A.D. Back, A.S. Weigend, A first application of independent component analy-
sis to extracting structure from stock returns, Int. J. Neural Syst. 8 (04) (1997)
473–484.

[21] S.T. Roweis, L.K. Saul, Nonlinear dimensionality reduction by locally linear
embedding, Science 290 (5500) (2000) 2323–2326.

[22] B. Hambly, T. Lyons, Uniqueness for the signature of a path of bounded
variation and the reduced path group, Ann. of Math. (2010) 109–167.

[23] H. Boedihardjo, X. Geng, T. Lyons, D. Yang, The signature of a rough path:
uniqueness, Adv. Math. 293 (2016) 720–737.

[24] T. Lyons, Rough paths, signatures and the modelling of functions on streams,
2014, arXiv preprint arXiv:1405.4537.

[25] C. Kocak, Arma( p,q ) type high order fuzzy time series forecast method based
on fuzzy logic relations, Appl. Soft Comput. (2017).

[26] G. Zumbach, L. Fernndez, Option pricing with realistic arch processes, Quant.
Finance 14 (1) (2014) 143–170.

[27] Z. Lin, Modelling and forecasting the stock market volatility of sse composite
index using garch models, Future Gener. Comput. Syst. (2017).

[28] N. lk, D. Kuruppuarachchi, O. Kuzmicheva, Stock market’s response to real
output shocks in eastern european frontier markets: A varwal model, Emerg.
Mark. Rev. (2017).

[29] L.G. Valiant, A theory of the learnable, Commun. ACM 27 (11) (1984) 1134–
1142.

[30] R.L. Rivest, Learning decision lists, Mach. Learn. 2 (3) (1987) 229–246.
[31] T. Zhou, S. Gao, J. Wang, C. Chu, Y. Todo, Z. Tang, Financial time series

prediction using a dendritic neuronmodel, Knowl.-Based Syst. 105 (C) (2016)
214–224.

[32] L. Zhou, Y.W. Si, H. Fujita, Predicting the listing statuses of chinese-listed
companies using decision trees combined with an improved filter feature
selection method, Knowl.-Based Syst. 128 (2017).

[33] A. Krizhevsky, I. Sutskever, G.E. Hinton, Imagenet classificationwith deep con-
volutional neural networks, in: Advances in Neural Information Processing
Systems, 2012, pp. 1097–1105.

[34] A. Graves, A.-r. Mohamed, G. Hinton, Speech recognition with deep recurrent
neural networks, in: Acoustics, Speech and Signal Processing (icassp), 2013
IEEE International Conference on, IEEE, 2013, pp. 6645–6649.

[35] W. Yang, L. Jin, H. Ni, T. Lyons, Rotation-free online handwritten character
recognition using dyadic path signature features, hanging normalization, and
deep neural network, in: Pattern Recognition (ICPR), 2016 23rd International
Conference on, IEEE, 2016, pp. 4083–4088.

[36] Y. Lcun, L. Bottou, Y. Bengio, P. Haffner, Gradient-based learning applied to
document recognition, Proc. IEEE 86 (11) (1998) 2278–2324.

[37] R.J. Williams, D. Zipser, A Learning Algorithm for Continually Running Fully
Recurrent Neural Networks, MIT Press, 1989, pp. 270–280.

[38] K. Cho, B. Van Merrienboer, D. Bahdanau, Y. Bengio, On the properties of neu-
ral machine translation: encoder-decoder approaches, Comput. Sci. (2014).

[39] S. Hochreiter, J. Schmidhuber, Long short-termmemory, Neural Comput. 9 (8)
(1997) 1735–1780.

http://refhub.elsevier.com/S0950-7051(18)30526-4/sb1
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb1
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb1
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb1
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb1
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb2
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb2
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb2
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb2
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb2
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb3
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb3
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb3
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb3
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb3
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb4
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb4
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb4
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb4
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb4
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb5
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb5
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb5
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb5
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb5
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb6
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb6
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb6
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb6
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb6
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb7
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb7
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb7
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb8
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb8
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb8
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb9
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb9
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb9
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb9
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb9
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb10
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb10
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb10
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb10
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb10
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb11
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb11
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb11
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb12
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb12
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb12
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb13
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb13
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb13
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb13
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb13
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb14
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb14
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb14
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb14
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb14
http://arxiv.org/abs/1601.01987
http://arxiv.org/abs/1601.01987
http://arxiv.org/abs/1601.01987
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb16
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb16
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb16
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb17
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb17
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb17
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb18
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb18
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb18
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb19
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb19
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb19
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb20
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb20
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb20
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb20
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb20
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb21
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb21
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb21
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb22
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb22
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb22
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb23
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb23
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb23
http://arxiv.org/abs/1405.4537
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb25
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb25
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb25
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb26
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb26
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb26
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb27
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb27
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb27
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb28
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb28
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb28
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb28
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb28
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb29
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb29
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb29
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb30
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb31
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb31
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb31
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb31
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb31
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb32
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb32
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb32
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb32
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb32
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb33
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb33
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb33
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb33
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb33
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb34
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb34
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb34
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb34
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb34
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb35
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb35
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb35
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb35
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb35
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb35
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb35
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb36
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb36
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb36
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb37
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb37
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb37
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb38
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb38
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb38
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb39
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb39
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb39


W. Long, Z. Lu and L. Cui / Knowledge-Based Systems 164 (2019) 163–173 173

[40] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V.
Vanhoucke, A. Rabinovich, Going deeper with convolutions, in: Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, 2015, pp.
1–9.

[41] Y. Cui, Z. Chen, S. Wei, S. Wang, T. Liu, G. Hu, Attention-over-attention neural
networks for reading comprehension, 2016, arXiv preprint arXiv:1607.04423.

[42] K.J. Han, S. Hahm, B.H. Kim, J. Kim, I. Lane, Deep learning-based telephony
speech recognition in the wild, in: Proc. Interspeech, 2017, pp. 1323–1327.

[43] R. Girshick, J. Donahue, T. Darrell, J.Malik, Rich feature hierarchies for accurate
object detection and semantic segmentation, in: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, 2014, pp. 580–587.

[44] S. Hochreiter, The vanishing gradient problem during learning recurrent neu-
ral nets and problem solutions, Internat. J. Uncertain. Fuzziness Knowledge-
Based Systems 6 (02) (1998) 107–116.

[45] Y. Bengio, P. Simard, P. Frasconi, Learning long-term dependencies with
gradient descent is difficult, IEEE Trans. Neural Netw. 5 (2) (2002) 157–166.

[46] R. Pascanu, T. Mikolov, Y. Bengio, On the difficulty of training recurrent neural
networks, in: International Conference onMachine Learning, 2013, pp. 1310–
1318.

[47] N. Srivastava, G.E. Hinton, A. Krizhevsky, I. Sutskever, R. Salakhutdinov,
Dropout: a simple way to prevent neural networks from overfitting, J. Mach.
Learn. Res. 15 (1) (2014) 1929–1958.

[48] S. Ioffe, C. Szegedy, Batch normalization: accelerating deep network training
by reducing internal covariate shift, in: International Conference on Machine
Learning, 2015, pp. 448–456.

[49] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition,
in: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2016, pp. 770–778.

[50] M. Dixon, Sequence classification of the limit order book using recurrent
neural networks, J. Comput. Sci. (2017) http://dx.doi.org/10.1016/j.
jocs.2017.08.018, URL http://www.sciencedirect.com/science/article/pii/
S1877750317309675.

[51] M. Rimer, T. Martinez, Softprop: softmax neural network backpropagation
learning, in: Neural Networks, 2004. Proceedings. 2004 IEEE International
Joint Conference on, Vol. 2, IEEE, 2004, pp. 979–983.

[52] HechtNielsen, Theory of the backpropagation neural network, Neural Netw.
1 (1) (1988) 445–445.

[53] M. Andrychowicz, M. Denil, S. Gomez, M.W. Hoffman, D. Pfau, T. Schaul, B.
Shillingford, N. De Freitas, Learning to learn by gradient descent by gradient
descent, in: Advances in Neural Information Processing Systems, 2016, pp.
3981–3989.

[54] J. Demšar, Statistical comparisons of classifiers over multiple data sets, J.
Mach. Learn. Res. 7 (Jan) (2006) 1–30.

[55] H. Markowitz, Portfolio selection, J. Finance 7 (1) (1952) 77–91.
[56] O. Ledoit, M. Wolf, Robust performance hypothesis testing with the sharpe

ratio, J. Empir. Finance 15 (5) (2008) 850–859.

http://refhub.elsevier.com/S0950-7051(18)30526-4/sb40
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb40
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb40
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb40
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb40
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb40
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb40
http://arxiv.org/abs/1607.04423
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb42
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb42
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb42
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb43
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb43
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb43
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb43
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb43
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb44
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb44
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb44
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb44
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb44
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb45
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb45
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb45
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb46
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb46
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb46
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb46
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb46
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb47
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb47
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb47
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb47
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb47
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb48
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb48
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb48
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb48
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb48
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb49
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb49
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb49
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb49
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb49
http://dx.doi.org/10.1016/j.jocs.2017.08.018
http://dx.doi.org/10.1016/j.jocs.2017.08.018
http://dx.doi.org/10.1016/j.jocs.2017.08.018
http://www.sciencedirect.com/science/article/pii/S1877750317309675
http://www.sciencedirect.com/science/article/pii/S1877750317309675
http://www.sciencedirect.com/science/article/pii/S1877750317309675
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb51
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb51
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb51
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb51
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb51
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb52
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb52
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb52
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb53
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb53
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb53
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb53
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb53
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb53
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb53
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb54
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb54
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb54
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb55
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb56
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb56
http://refhub.elsevier.com/S0950-7051(18)30526-4/sb56

	Deep learning-based feature engineering for stock price movement prediction
	Introduction
	Related Work
	Feature Engineering of Financial Time Series
	Models for Financial Time Series Modeling
	Deep Learning for feature learning

	Deep Feature Engineering on Financial Time Series
	Data sets
	Multi-Filters for Feature Engineering on Financial Time Series
	Architecture of Multi-Filters Neural Networks

	Experiment
	Experimental Setting & Training Methodology
	Result Discussion
	Market Simulation

	Conclusion
	Acknowledgments
	References


