diff --git a/build.gradle b/build.gradle
index be9a153..f27459d 100644
--- a/build.gradle
+++ b/build.gradle
@@ -4,22 +4,20 @@ plugins {
}
group 'lv.id.jc'
-version '1.0'
+version '1.1'
repositories {
mavenCentral()
}
dependencies {
- implementation 'org.codehaus.groovy:groovy-all:3.0.9'
-
// Spock Framework
testImplementation 'org.spockframework:spock-core:2.0-groovy-3.0'
testImplementation 'org.codehaus.groovy:groovy-all:3.0.9'
// Spock Reports
testRuntimeClasspath( "com.athaydes:spock-reports:2.1.1-groovy-3.0" ) {
-// transitive = false // this avoids affecting your version of Groovy/Spock
+ transitive = false // this avoids affecting your version of Groovy/Spock
}
// Required for spock-reports
testImplementation 'org.slf4j:slf4j-api:1.7.32'
diff --git a/docs/assets/uml/graph.png b/docs/assets/uml/graph.png
new file mode 100644
index 0000000..cea38d7
Binary files /dev/null and b/docs/assets/uml/graph.png differ
diff --git a/docs/assets/uml/graph.uml b/docs/assets/uml/graph.uml
new file mode 100644
index 0000000..127a3da
--- /dev/null
+++ b/docs/assets/uml/graph.uml
@@ -0,0 +1,39 @@
+
+
+ JAVA
+ lv.id.jc.algorithm.graph
+
+ lv.id.jc.algorithm.graph.SearchAlgorithm
+ lv.id.jc.algorithm.graph.DijkstrasAlgorithm
+ lv.id.jc.algorithm.graph.BreadthFirstSearch
+ lv.id.jc.algorithm.graph.Graph
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+ lv.id.jc.algorithm.graph.Graph
+
+
+ Fields
+ Inner Classes
+ Methods
+ Properties
+
+ All
+ private
+
+
diff --git a/docs/spock-reports/aggregated_report.json b/docs/spock-reports/aggregated_report.json
index 1419c96..5fe1e2c 100644
--- a/docs/spock-reports/aggregated_report.json
+++ b/docs/spock-reports/aggregated_report.json
@@ -1 +1 @@
-{"graph.BreadthFirstSearchSpec":{"executedFeatures":["should find a route for complex graph","should find a route for simple graph"],"ignoredFeatures":[],"stats":{"failures":0,"errors":0,"skipped":0,"totalRuns":2,"totalFeatures":2,"passed":2,"successRate":1.0,"time":162},"title":"","narrative":""},"graph.SearchAlgorithmSpec":{"executedFeatures":["should find a route for a complex graph"],"ignoredFeatures":[],"stats":{"failures":0,"errors":0,"skipped":0,"totalRuns":1,"totalFeatures":1,"passed":1,"successRate":1.0,"time":46},"title":"Comparison of two algorithms","narrative":""},"graph.DijkstrasAlgorithmSpec":{"executedFeatures":["should find a route for a complex graph","should find a route for a medium graph","should find a route for a simple graph"],"ignoredFeatures":[],"stats":{"failures":0,"errors":0,"skipped":0,"totalRuns":3,"totalFeatures":3,"passed":3,"successRate":1.0,"time":66},"title":"","narrative":""},"graph.GraphSpec":{"executedFeatures":["should calculate distance"],"ignoredFeatures":[],"stats":{"failures":0,"errors":0,"skipped":0,"totalRuns":1,"totalFeatures":1,"passed":1,"successRate":1.0,"time":19},"title":"","narrative":""},"graph.BreadthFirstSearchSpec":{"executedFeatures":["should find a route for complex graph","should find a route for simple graph"],"ignoredFeatures":[],"stats":{"failures":0,"errors":0,"skipped":0,"totalRuns":2,"totalFeatures":2,"passed":2,"successRate":1.0,"time":133},"title":"Breadth First Search Algorithm","narrative":"Breadth First Search algorithm for finding the shortest paths between nodes in a graph"},"graph.SearchAlgorithmSpec":{"executedFeatures":["should find a route for a complex graph"],"ignoredFeatures":[],"stats":{"failures":0,"errors":0,"skipped":0,"totalRuns":1,"totalFeatures":1,"passed":1,"successRate":1.0,"time":40},"title":"Comparison of two algorithms","narrative":""},"graph.DijkstrasAlgorithmSpec":{"executedFeatures":["should find a route for a complex graph","should find a route for a medium graph","should find a route for a simple graph"],"ignoredFeatures":[],"stats":{"failures":0,"errors":0,"skipped":0,"totalRuns":3,"totalFeatures":3,"passed":3,"successRate":1.0,"time":67},"title":"Dijkstra's Algorithm","narrative":"Dijkstra's algorithm is an algorithm for finding the fastest paths between nodes in a graph"},"graph.GraphSpec":{"executedFeatures":["should be zero distance for an empty path","should be zero distance for any one node path","should calculate distance for a path","should return edges for a given node","should throw NPE for incorrect path"],"ignoredFeatures":[],"stats":{"failures":0,"errors":0,"skipped":0,"totalRuns":5,"totalFeatures":5,"passed":5,"successRate":1.0,"time":125},"title":"Generic Graph","narrative":"A generic implementation of Graph structure"},"graph.BreadthFirstSearchSpec":{"executedFeatures":["should find a route for complex graph","should find a route for simple graph"],"ignoredFeatures":[],"stats":{"failures":0,"errors":0,"skipped":0,"totalRuns":2,"totalFeatures":2,"passed":2,"successRate":1.0,"time":115},"title":"Breadth First Search Algorithm","narrative":"Breadth First Search algorithm for finding the shortest paths between nodes in a graph"},"graph.SearchAlgorithmSpec":{"executedFeatures":["should find a route for a complex graph"],"ignoredFeatures":[],"stats":{"failures":0,"errors":0,"skipped":0,"totalRuns":1,"totalFeatures":1,"passed":1,"successRate":1.0,"time":43},"title":"Comparison of two algorithms","narrative":""},"graph.DijkstrasAlgorithmSpec":{"executedFeatures":["should find a route for a complex graph","should find a route for a medium graph","should find a route for a simple graph"],"ignoredFeatures":[],"stats":{"failures":0,"errors":0,"skipped":0,"totalRuns":3,"totalFeatures":3,"passed":3,"successRate":1.0,"time":69},"title":"Dijkstra's Algorithm","narrative":"Dijkstra's algorithm is an algorithm for finding the fastest paths between nodes in a graph"},"graph.GraphSpec":{"executedFeatures":["should be zero distance for an empty path","should be zero distance for any one node path","should calculate distance for a path","should return edges for a given node","should throw NPE for incorrect path"],"ignoredFeatures":[],"stats":{"failures":0,"errors":0,"skipped":0,"totalRuns":5,"totalFeatures":5,"passed":5,"successRate":1.0,"time":127},"title":"Generic Graph","narrative":"A generic implementation of Graph structure"},"graph.BreadthFirstSearchSpec":{"executedFeatures":["should find a route for complex graph","should find a route for simple graph"],"ignoredFeatures":[],"stats":{"failures":0,"errors":0,"skipped":0,"totalRuns":2,"totalFeatures":2,"passed":2,"successRate":1.0,"time":136},"title":"Breadth First Search Algorithm","narrative":"Breadth First Search algorithm for finding the shortest paths between nodes in a graph"},"graph.SearchAlgorithmSpec":{"executedFeatures":["should find a route for a complex graph"],"ignoredFeatures":[],"stats":{"failures":0,"errors":0,"skipped":0,"totalRuns":1,"totalFeatures":1,"passed":1,"successRate":1.0,"time":44},"title":"Comparison of two algorithms","narrative":""},"graph.DijkstrasAlgorithmSpec":{"executedFeatures":["should find a route for a complex graph","should find a route for a medium graph","should find a route for a simple graph"],"ignoredFeatures":[],"stats":{"failures":0,"errors":0,"skipped":0,"totalRuns":3,"totalFeatures":3,"passed":3,"successRate":1.0,"time":80},"title":"Dijkstra's Algorithm","narrative":"Dijkstra's algorithm is an algorithm for finding the fastest paths between nodes in a graph"},"graph.GraphSpec":{"executedFeatures":["should be zero distance for an empty path","should be zero distance for any one node path","should calculate distance for a path","should return edges for a given node","should throw NPE for incorrect path"],"ignoredFeatures":[],"stats":{"failures":0,"errors":0,"skipped":0,"totalRuns":5,"totalFeatures":5,"passed":5,"successRate":1.0,"time":112},"title":"Generic Graph","narrative":"A generic implementation of Graph structure"},"graph.BreadthFirstSearchSpec":{"executedFeatures":["should find a route for complex graph","should find a route for simple graph"],"ignoredFeatures":[],"stats":{"failures":0,"errors":0,"skipped":0,"totalRuns":2,"totalFeatures":2,"passed":2,"successRate":1.0,"time":204},"title":"Breadth First Search Algorithm","narrative":"Breadth First Search algorithm for finding the shortest paths between nodes in a graph"},"graph.SearchAlgorithmSpec":{"executedFeatures":["should find a route for a complex graph"],"ignoredFeatures":[],"stats":{"failures":0,"errors":0,"skipped":0,"totalRuns":1,"totalFeatures":1,"passed":1,"successRate":1.0,"time":61},"title":"Comparison of two algorithms","narrative":""},"graph.DijkstrasAlgorithmSpec":{"executedFeatures":["should find a route for a complex graph","should find a route for a medium graph","should find a route for a simple graph"],"ignoredFeatures":[],"stats":{"failures":0,"errors":0,"skipped":0,"totalRuns":3,"totalFeatures":3,"passed":3,"successRate":1.0,"time":74},"title":"Dijkstra's Algorithm","narrative":"Dijkstra's algorithm is an algorithm for finding the fastest paths between nodes in a graph"},"graph.GraphSpec":{"executedFeatures":["should be zero distance for an empty path","should be zero distance for any one node path","should calculate distance for a path","should return edges for a given node","should throw NPE for incorrect path"],"ignoredFeatures":[],"stats":{"failures":0,"errors":0,"skipped":0,"totalRuns":5,"totalFeatures":5,"passed":5,"successRate":1.0,"time":154},"title":"Generic Graph","narrative":"A generic implementation of Graph structure"},"graph.DijkstrasAlgorithmSpec":{"executedFeatures":["should find a route for a complex graph","should find a route for a medium graph","should find a route for a simple graph","should returns an empty path for an empty graph"],"ignoredFeatures":[],"stats":{"failures":0,"errors":1,"skipped":0,"totalRuns":1,"totalFeatures":4,"passed":0,"successRate":0.0,"time":32},"title":"Dijkstra's Algorithm","narrative":"Dijkstra's algorithm is an algorithm for finding the fastest paths between nodes in a graph"},"graph.DijkstrasAlgorithmSpec":{"executedFeatures":["should find a route for a complex graph","should find a route for a medium graph","should find a route for a simple graph","should throw NPE for an empty graph"],"ignoredFeatures":[],"stats":{"failures":0,"errors":0,"skipped":0,"totalRuns":1,"totalFeatures":4,"passed":1,"successRate":1.0,"time":32},"title":"Dijkstra's Algorithm","narrative":"Dijkstra's algorithm is an algorithm for finding the fastest paths between nodes in a graph"},"graph.DijkstrasAlgorithmSpec":{"executedFeatures":["should find a route for a complex graph","should find a route for a medium graph","should find a route for a simple graph","should return an empty path if can't find a route","should throw NPE for an empty graph"],"ignoredFeatures":[],"stats":{"failures":1,"errors":0,"skipped":0,"totalRuns":1,"totalFeatures":5,"passed":0,"successRate":0.0,"time":54},"title":"Dijkstra's Algorithm","narrative":"Dijkstra's algorithm is an algorithm for finding the fastest paths between nodes in a graph"},"graph.BreadthFirstSearchSpec":{"executedFeatures":["should find a route for complex graph","should find a route for simple graph","should return an empty path if can't find a route"],"ignoredFeatures":[],"stats":{"failures":0,"errors":0,"skipped":0,"totalRuns":1,"totalFeatures":3,"passed":1,"successRate":1.0,"time":31},"title":"Breadth First Search Algorithm","narrative":"Breadth First Search algorithm for finding the shortest paths between nodes in a graph"},"graph.BreadthFirstSearchSpec":{"executedFeatures":["should find a route for complex graph","should find a route for simple graph","should return an empty path if can't find a route"],"ignoredFeatures":[],"stats":{"failures":0,"errors":0,"skipped":0,"totalRuns":3,"totalFeatures":3,"passed":3,"successRate":1.0,"time":62},"title":"Breadth First Search Algorithm","narrative":"Breadth First Search algorithm for finding the shortest paths between nodes in a graph"},"graph.DijkstrasAlgorithmSpec":{"executedFeatures":["should find a route for a complex graph","should find a route for a medium graph","should find a route for a simple graph","should return an empty path if can't find a route","should throw NPE for an empty graph"],"ignoredFeatures":[],"stats":{"failures":3,"errors":0,"skipped":0,"totalRuns":5,"totalFeatures":5,"passed":2,"successRate":0.4,"time":47},"title":"Dijkstra's Algorithm","narrative":"Dijkstra's algorithm is an algorithm for finding the fastest paths between nodes in a graph"},"graph.GraphSpec":{"executedFeatures":["should be zero distance for an empty path","should be zero distance for any one node path","should calculate distance for a path","should return edges for a given node","should throw NPE for incorrect path"],"ignoredFeatures":[],"stats":{"failures":0,"errors":0,"skipped":0,"totalRuns":5,"totalFeatures":5,"passed":5,"successRate":1.0,"time":48},"title":"Generic Graph","narrative":"A generic implementation of Graph structure"},"graph.SearchAlgorithmSpec":{"executedFeatures":["should find a route for a complex graph"],"ignoredFeatures":[],"stats":{"failures":1,"errors":0,"skipped":0,"totalRuns":1,"totalFeatures":1,"passed":0,"successRate":0.0,"time":10},"title":"Comparison of two algorithms","narrative":""},"graph.DijkstrasAlgorithmSpec":{"executedFeatures":["should find a route for a complex graph","should find a route for a medium graph","should find a route for a simple graph","should return an empty path if can't find a route","should throw NPE for an empty graph"],"ignoredFeatures":[],"stats":{"failures":3,"errors":0,"skipped":0,"totalRuns":5,"totalFeatures":5,"passed":2,"successRate":0.4,"time":96},"title":"Dijkstra's Algorithm","narrative":"Dijkstra's algorithm is an algorithm for finding the fastest paths between nodes in a graph"},"graph.DijkstrasAlgorithmSpec":{"executedFeatures":["should find a route for a complex graph","should find a route for a medium graph","should find a route for a simple graph","should return an empty path if can't find a route","should throw NPE for an empty graph"],"ignoredFeatures":[],"stats":{"failures":0,"errors":0,"skipped":0,"totalRuns":5,"totalFeatures":5,"passed":5,"successRate":1.0,"time":69},"title":"Dijkstra's Algorithm","narrative":"Dijkstra's algorithm is an algorithm for finding the fastest paths between nodes in a graph"},"graph.BreadthFirstSearchSpec":{"executedFeatures":["should find a route for complex graph","should find a route for simple graph","should return an empty path if can't find a route"],"ignoredFeatures":[],"stats":{"failures":0,"errors":0,"skipped":0,"totalRuns":3,"totalFeatures":3,"passed":3,"successRate":1.0,"time":69},"title":"Breadth First Search Algorithm","narrative":"Breadth First Search algorithm for finding the shortest paths between nodes in a graph"},"graph.DijkstrasAlgorithmSpec":{"executedFeatures":["should find a route for a complex graph","should find a route for a medium graph","should find a route for a simple graph","should return an empty path if can't find a route","should throw NPE for an empty graph"],"ignoredFeatures":[],"stats":{"failures":0,"errors":0,"skipped":0,"totalRuns":5,"totalFeatures":5,"passed":5,"successRate":1.0,"time":31},"title":"Dijkstra's Algorithm","narrative":"Dijkstra's algorithm is an algorithm for finding the fastest paths between nodes in a graph"},"graph.GraphSpec":{"executedFeatures":["should be zero distance for an empty path","should be zero distance for any one node path","should calculate distance for a path","should return edges for a given node","should throw NPE for incorrect path"],"ignoredFeatures":[],"stats":{"failures":0,"errors":0,"skipped":0,"totalRuns":5,"totalFeatures":5,"passed":5,"successRate":1.0,"time":47},"title":"Generic Graph","narrative":"A generic implementation of Graph structure"},"graph.SearchAlgorithmSpec":{"executedFeatures":["should find a route for a complex graph"],"ignoredFeatures":[],"stats":{"failures":0,"errors":0,"skipped":0,"totalRuns":1,"totalFeatures":1,"passed":1,"successRate":1.0,"time":16},"title":"Comparison of two algorithms","narrative":""},"graph.BreadthFirstSearchSpec":{"executedFeatures":["should find a route for complex graph","should find a route for simple graph","should return an empty path if can't find a route"],"ignoredFeatures":[],"stats":{"failures":0,"errors":0,"skipped":0,"totalRuns":3,"totalFeatures":3,"passed":3,"successRate":1.0,"time":69},"title":"Breadth First Search Algorithm","narrative":"Breadth First Search algorithm for finding the shortest paths between nodes in a graph"},"graph.DijkstrasAlgorithmSpec":{"executedFeatures":["should find a route for a complex graph","should find a route for a medium graph","should find a route for a simple graph","should return an empty path if can't find a route","should throw NPE for an empty graph"],"ignoredFeatures":[],"stats":{"failures":0,"errors":0,"skipped":0,"totalRuns":5,"totalFeatures":5,"passed":5,"successRate":1.0,"time":31},"title":"Dijkstra's Algorithm","narrative":"Dijkstra's algorithm is an algorithm for finding the fastest paths between nodes in a graph"},"graph.GraphSpec":{"executedFeatures":["should be zero distance for an empty path","should be zero distance for any one node path","should calculate distance for a path","should return edges for a given node","should throw NPE for incorrect path"],"ignoredFeatures":[],"stats":{"failures":0,"errors":0,"skipped":0,"totalRuns":5,"totalFeatures":5,"passed":5,"successRate":1.0,"time":69},"title":"Generic Graph","narrative":"A generic implementation of Graph structure"},"graph.SearchAlgorithmSpec":{"executedFeatures":["should find a route for a complex graph"],"ignoredFeatures":[],"stats":{"failures":0,"errors":0,"skipped":0,"totalRuns":1,"totalFeatures":1,"passed":1,"successRate":1.0,"time":16},"title":"Comparison of two algorithms","narrative":""},"graph.BreadthFirstSearchSpec":{"executedFeatures":["should find a route for complex graph","should find a route for simple graph","should return an empty path if can't find a route"],"ignoredFeatures":[],"stats":{"failures":0,"errors":3,"skipped":0,"totalRuns":3,"totalFeatures":3,"passed":0,"successRate":0.0,"time":62},"title":"Breadth First Search Algorithm","narrative":"Breadth First Search algorithm for finding the shortest paths between nodes in a graph"},"graph.DijkstrasAlgorithmSpec":{"executedFeatures":["should find a route for a complex graph","should find a route for a medium graph","should find a route for a simple graph","should return an empty path if can't find a route","should throw NPE for an empty graph"],"ignoredFeatures":[],"stats":{"failures":1,"errors":4,"skipped":0,"totalRuns":5,"totalFeatures":5,"passed":0,"successRate":0.0,"time":46},"title":"Dijkstra's Algorithm","narrative":"Dijkstra's algorithm is an algorithm for finding the fastest paths between nodes in a graph"},"graph.GraphSpec":{"executedFeatures":["should be zero distance for an empty path","should be zero distance for any one node path","should calculate distance for a path","should return edges for a given node","should throw NPE for incorrect path"],"ignoredFeatures":[],"stats":{"failures":0,"errors":0,"skipped":0,"totalRuns":5,"totalFeatures":5,"passed":5,"successRate":1.0,"time":54},"title":"Generic Graph","narrative":"A generic implementation of Graph structure"},"graph.SearchAlgorithmSpec":{"executedFeatures":["should find a route for a complex graph"],"ignoredFeatures":[],"stats":{"failures":0,"errors":1,"skipped":0,"totalRuns":1,"totalFeatures":1,"passed":0,"successRate":0.0,"time":0},"title":"Comparison of two algorithms","narrative":""},"graph.BreadthFirstSearchSpec":{"executedFeatures":["should find a route for complex graph","should find a route for simple graph","should return an empty path if can't find a route"],"ignoredFeatures":[],"stats":{"failures":0,"errors":0,"skipped":0,"totalRuns":3,"totalFeatures":3,"passed":3,"successRate":1.0,"time":78},"title":"Breadth First Search Algorithm","narrative":"Breadth First Search algorithm for finding the shortest paths between nodes in a graph"},"graph.DijkstrasAlgorithmSpec":{"executedFeatures":["should find a route for a complex graph","should find a route for a medium graph","should find a route for a simple graph","should return an empty path if can't find a route","should throw NPE for an empty graph"],"ignoredFeatures":[],"stats":{"failures":0,"errors":0,"skipped":0,"totalRuns":5,"totalFeatures":5,"passed":5,"successRate":1.0,"time":84},"title":"Dijkstra's Algorithm","narrative":"Dijkstra's algorithm is an algorithm for finding the fastest paths between nodes in a graph"},"graph.SearchAlgorithmSpec":{"executedFeatures":["should find a route for a complex graph"],"ignoredFeatures":[],"stats":{"failures":0,"errors":0,"skipped":0,"totalRuns":1,"totalFeatures":1,"passed":1,"successRate":1.0,"time":85},"title":"Comparison of two algorithms","narrative":""},"graph.GraphSpec":{"executedFeatures":["should be zero distance for an empty path","should be zero distance for any one node path","should calculate distance for a path","should return edges for a given node","should throw NPE for incorrect path"],"ignoredFeatures":[],"stats":{"failures":0,"errors":0,"skipped":0,"totalRuns":5,"totalFeatures":5,"passed":5,"successRate":1.0,"time":116},"title":"Generic Graph","narrative":"A generic implementation of Graph structure"},"graph.BreadthFirstSearchSpec":{"executedFeatures":["should find a route for complex graph","should find a route for simple graph","should return an empty path if can't find a route"],"ignoredFeatures":[],"stats":{"failures":0,"errors":0,"skipped":0,"totalRuns":3,"totalFeatures":3,"passed":3,"successRate":1.0,"time":68},"title":"Breadth First Search Algorithm","narrative":"Breadth First Search algorithm for finding the shortest paths between nodes in a graph"},"graph.DijkstrasAlgorithmSpec":{"executedFeatures":["should find a route for a complex graph","should find a route for a medium graph","should find a route for a simple graph","should return an empty path if can't find a route","should throw NPE for an empty graph"],"ignoredFeatures":[],"stats":{"failures":0,"errors":0,"skipped":0,"totalRuns":5,"totalFeatures":5,"passed":5,"successRate":1.0,"time":17},"title":"Dijkstra's Algorithm","narrative":"Dijkstra's algorithm is an algorithm for finding the fastest paths between nodes in a graph"},"graph.GraphSpec":{"executedFeatures":["should be zero distance for an empty path","should be zero distance for any one node path","should calculate distance for a path","should return edges for a given node","should throw NPE for incorrect path"],"ignoredFeatures":[],"stats":{"failures":0,"errors":0,"skipped":0,"totalRuns":5,"totalFeatures":5,"passed":5,"successRate":1.0,"time":54},"title":"Generic Graph","narrative":"A generic implementation of Graph structure"},"graph.SearchAlgorithmSpec":{"executedFeatures":["should find a route for a complex graph"],"ignoredFeatures":[],"stats":{"failures":0,"errors":0,"skipped":0,"totalRuns":1,"totalFeatures":1,"passed":1,"successRate":1.0,"time":15},"title":"Comparison of two algorithms","narrative":""},"graph.BreadthFirstSearchSpec":{"executedFeatures":["should find a route for complex graph","should find a route for simple graph","should return an empty path if can't find a route"],"ignoredFeatures":[],"stats":{"failures":0,"errors":0,"skipped":0,"totalRuns":3,"totalFeatures":3,"passed":3,"successRate":1.0,"time":69},"title":"Breadth First Search Algorithm","narrative":"Breadth First Search algorithm for finding the shortest paths between nodes in a graph"},"graph.DijkstrasAlgorithmSpec":{"executedFeatures":["should find a route for a complex graph","should find a route for a medium graph","should find a route for a simple graph","should return an empty path if can't find a route","should throw NPE for an empty graph"],"ignoredFeatures":[],"stats":{"failures":1,"errors":0,"skipped":0,"totalRuns":5,"totalFeatures":5,"passed":4,"successRate":0.8,"time":32},"title":"Dijkstra's Algorithm","narrative":"Dijkstra's algorithm is an algorithm for finding the fastest paths between nodes in a graph"},"graph.GraphSpec":{"executedFeatures":["should be zero distance for an empty path","should be zero distance for any one node path","should calculate distance for a path","should return edges for a given node","should throw NPE for incorrect path"],"ignoredFeatures":[],"stats":{"failures":0,"errors":0,"skipped":0,"totalRuns":5,"totalFeatures":5,"passed":5,"successRate":1.0,"time":53},"title":"Generic Graph","narrative":"A generic implementation of Graph structure"},"graph.SearchAlgorithmSpec":{"executedFeatures":["should find a route for a complex graph"],"ignoredFeatures":[],"stats":{"failures":0,"errors":0,"skipped":0,"totalRuns":1,"totalFeatures":1,"passed":1,"successRate":1.0,"time":16},"title":"Comparison of two algorithms","narrative":""},"graph.DijkstrasAlgorithmSpec":{"executedFeatures":["should find a route for a complex graph","should find a route for a medium graph","should find a route for a simple graph","should return an empty path for an empty graph","should return an empty path if can't find a route"],"ignoredFeatures":[],"stats":{"failures":1,"errors":0,"skipped":0,"totalRuns":1,"totalFeatures":5,"passed":0,"successRate":0.0,"time":47},"title":"Dijkstra's Algorithm","narrative":"Dijkstra's algorithm is an algorithm for finding the fastest paths between nodes in a graph"},"graph.DijkstrasAlgorithmSpec":{"executedFeatures":["should find a route for a complex graph","should find a route for a medium graph","should find a route for a simple graph","should return an empty path for an empty graph","should return an empty path if can't find a route"],"ignoredFeatures":[],"stats":{"failures":0,"errors":0,"skipped":0,"totalRuns":1,"totalFeatures":5,"passed":1,"successRate":1.0,"time":32},"title":"Dijkstra's Algorithm","narrative":"Dijkstra's algorithm is an algorithm for finding the fastest paths between nodes in a graph"},"graph.BreadthFirstSearchSpec":{"executedFeatures":["should find a route for complex graph","should find a route for simple graph","should return an empty path if can't find a route"],"ignoredFeatures":[],"stats":{"failures":0,"errors":0,"skipped":0,"totalRuns":3,"totalFeatures":3,"passed":3,"successRate":1.0,"time":63},"title":"Breadth First Search Algorithm","narrative":"Breadth First Search algorithm for finding the shortest paths between nodes in a graph"},"graph.DijkstrasAlgorithmSpec":{"executedFeatures":["should find a route for a complex graph","should find a route for a medium graph","should find a route for a simple graph","should return an empty path for an empty graph","should return an empty path if can't find a route"],"ignoredFeatures":[],"stats":{"failures":0,"errors":0,"skipped":0,"totalRuns":5,"totalFeatures":5,"passed":5,"successRate":1.0,"time":31},"title":"Dijkstra's Algorithm","narrative":"Dijkstra's algorithm is an algorithm for finding the fastest paths between nodes in a graph"},"graph.GraphSpec":{"executedFeatures":["should be zero distance for an empty path","should be zero distance for any one node path","should calculate distance for a path","should return edges for a given node","should throw NPE for incorrect path"],"ignoredFeatures":[],"stats":{"failures":0,"errors":0,"skipped":0,"totalRuns":5,"totalFeatures":5,"passed":5,"successRate":1.0,"time":47},"title":"Generic Graph","narrative":"A generic implementation of Graph structure"},"graph.SearchAlgorithmSpec":{"executedFeatures":["should find a route for a complex graph"],"ignoredFeatures":[],"stats":{"failures":0,"errors":0,"skipped":0,"totalRuns":1,"totalFeatures":1,"passed":1,"successRate":1.0,"time":16},"title":"Comparison of two algorithms","narrative":""},"graph.BreadthFirstSearchSpec":{"executedFeatures":["should find a route for complex graph","should find a route for simple graph","should return an empty path for an empty graph","should return an empty path if can't find a route"],"ignoredFeatures":[],"stats":{"failures":0,"errors":0,"skipped":0,"totalRuns":4,"totalFeatures":4,"passed":4,"successRate":1.0,"time":69},"title":"Breadth First Search Algorithm","narrative":"Breadth First Search algorithm for finding the shortest paths between nodes in a graph"},"graph.DijkstrasAlgorithmSpec":{"executedFeatures":["should find a route for a complex graph","should find a route for a medium graph","should find a route for a simple graph","should return an empty path for an empty graph","should return an empty path if can't find a route"],"ignoredFeatures":[],"stats":{"failures":0,"errors":0,"skipped":0,"totalRuns":5,"totalFeatures":5,"passed":5,"successRate":1.0,"time":16},"title":"Dijkstra's Algorithm","narrative":"Dijkstra's algorithm is an algorithm for finding the fastest paths between nodes in a graph"},"graph.GraphSpec":{"executedFeatures":["should be zero distance for an empty path","should be zero distance for any one node path","should calculate distance for a path","should return edges for a given node","should throw NPE for incorrect path"],"ignoredFeatures":[],"stats":{"failures":0,"errors":0,"skipped":0,"totalRuns":5,"totalFeatures":5,"passed":5,"successRate":1.0,"time":47},"title":"Generic Graph","narrative":"A generic implementation of Graph structure"},"graph.SearchAlgorithmSpec":{"executedFeatures":["should find a route for a complex graph"],"ignoredFeatures":[],"stats":{"failures":0,"errors":0,"skipped":0,"totalRuns":1,"totalFeatures":1,"passed":1,"successRate":1.0,"time":16},"title":"Comparison of two algorithms","narrative":""},"graph.BreadthFirstSearchSpec":{"executedFeatures":["should find a route for complex graph","should find a route for simple graph","should return an empty path for an empty graph","should return an empty path if can't find a route"],"ignoredFeatures":[],"stats":{"failures":0,"errors":1,"skipped":0,"totalRuns":4,"totalFeatures":4,"passed":3,"successRate":0.75,"time":69},"title":"Breadth First Search Algorithm","narrative":"Breadth First Search algorithm for finding the shortest paths between nodes in a graph"},"graph.DijkstrasAlgorithmSpec":{"executedFeatures":["should find a route for a complex graph","should find a route for a medium graph","should find a route for a simple graph","should return an empty path for an empty graph","should return an empty path if can't find a route"],"ignoredFeatures":[],"stats":{"failures":0,"errors":1,"skipped":0,"totalRuns":5,"totalFeatures":5,"passed":4,"successRate":0.8,"time":31},"title":"Dijkstra's Algorithm","narrative":"Dijkstra's algorithm is an algorithm for finding the fastest paths between nodes in a graph"},"graph.GraphSpec":{"executedFeatures":["should be zero distance for an empty path","should be zero distance for any one node path","should calculate distance for a path","should return edges for a given node","should throw NPE for incorrect path"],"ignoredFeatures":[],"stats":{"failures":0,"errors":0,"skipped":0,"totalRuns":5,"totalFeatures":5,"passed":5,"successRate":1.0,"time":38},"title":"Generic Graph","narrative":"A generic implementation of Graph structure"},"graph.SearchAlgorithmSpec":{"executedFeatures":["should find a route for a complex graph"],"ignoredFeatures":[],"stats":{"failures":0,"errors":0,"skipped":0,"totalRuns":1,"totalFeatures":1,"passed":1,"successRate":1.0,"time":7},"title":"Comparison of two algorithms","narrative":""},"graph.BreadthFirstSearchSpec":{"executedFeatures":["should find a route for complex graph","should find a route for simple graph","should return an empty path if can't find a route","should thrown NPE path for an empty graph"],"ignoredFeatures":[],"stats":{"failures":0,"errors":0,"skipped":0,"totalRuns":4,"totalFeatures":4,"passed":4,"successRate":1.0,"time":63},"title":"Breadth First Search Algorithm","narrative":"Breadth First Search algorithm for finding the shortest paths between nodes in a graph"},"graph.DijkstrasAlgorithmSpec":{"executedFeatures":["should find a route for a complex graph","should find a route for a medium graph","should find a route for a simple graph","should return an empty path if can't find a route","should thrown NPE for an empty graph"],"ignoredFeatures":[],"stats":{"failures":0,"errors":0,"skipped":0,"totalRuns":5,"totalFeatures":5,"passed":5,"successRate":1.0,"time":32},"title":"Dijkstra's Algorithm","narrative":"Dijkstra's algorithm is an algorithm for finding the fastest paths between nodes in a graph"},"graph.GraphSpec":{"executedFeatures":["should be zero distance for an empty path","should be zero distance for any one node path","should calculate distance for a path","should return edges for a given node","should throw NPE for incorrect path"],"ignoredFeatures":[],"stats":{"failures":0,"errors":0,"skipped":0,"totalRuns":5,"totalFeatures":5,"passed":5,"successRate":1.0,"time":37},"title":"Generic Graph","narrative":"A generic implementation of Graph structure"},"graph.SearchAlgorithmSpec":{"executedFeatures":["should find a route for a complex graph"],"ignoredFeatures":[],"stats":{"failures":0,"errors":0,"skipped":0,"totalRuns":1,"totalFeatures":1,"passed":1,"successRate":1.0,"time":15},"title":"Comparison of two algorithms","narrative":""},"graph.BreadthFirstSearchSpec":{"executedFeatures":["should find a route for complex graph","should find a route for simple graph","should return an empty path if can't find a route","should thrown NPE path for an empty graph"],"ignoredFeatures":[],"stats":{"failures":0,"errors":0,"skipped":0,"totalRuns":4,"totalFeatures":4,"passed":4,"successRate":1.0,"time":78},"title":"Breadth First Search Algorithm","narrative":"Breadth First Search algorithm for finding the shortest paths between nodes in a graph"},"graph.DijkstrasAlgorithmSpec":{"executedFeatures":["should find a route for a complex graph","should find a route for a medium graph","should find a route for a simple graph","should return an empty path if can't find a route","should thrown NPE for an empty graph"],"ignoredFeatures":[],"stats":{"failures":0,"errors":0,"skipped":0,"totalRuns":5,"totalFeatures":5,"passed":5,"successRate":1.0,"time":23},"title":"Dijkstra's Algorithm","narrative":"Dijkstra's algorithm is an algorithm for finding the fastest paths between nodes in a graph"},"graph.GraphSpec":{"executedFeatures":["should be zero distance for an empty path","should be zero distance for any one node path","should calculate distance for a path","should return edges for a given node","should throw NPE for incorrect path"],"ignoredFeatures":[],"stats":{"failures":0,"errors":0,"skipped":0,"totalRuns":5,"totalFeatures":5,"passed":5,"successRate":1.0,"time":47},"title":"Generic Graph","narrative":"A generic implementation of Graph structure"},"graph.SearchAlgorithmSpec":{"executedFeatures":["should find a route for a complex graph"],"ignoredFeatures":[],"stats":{"failures":0,"errors":0,"skipped":0,"totalRuns":1,"totalFeatures":1,"passed":1,"successRate":1.0,"time":0},"title":"Comparison of two algorithms","narrative":""},"graph.BreadthFirstSearchSpec":{"executedFeatures":["should find a route for complex graph","should find a route for simple graph","should return an empty path if can't find a route","should thrown NPE path for an empty graph"],"ignoredFeatures":[],"stats":{"failures":0,"errors":0,"skipped":0,"totalRuns":4,"totalFeatures":4,"passed":4,"successRate":1.0,"time":69},"title":"Breadth First Search Algorithm","narrative":"Breadth First Search algorithm for finding the shortest paths between nodes in a graph"},"graph.DijkstrasAlgorithmSpec":{"executedFeatures":["should find a route for a complex graph","should find a route for a medium graph","should find a route for a simple graph","should return an empty path if can't find a route","should thrown NPE for an empty graph"],"ignoredFeatures":[],"stats":{"failures":0,"errors":0,"skipped":0,"totalRuns":5,"totalFeatures":5,"passed":5,"successRate":1.0,"time":31},"title":"Dijkstra's Algorithm","narrative":"Dijkstra's algorithm is an algorithm for finding the fastest paths between nodes in a graph"},"graph.GraphSpec":{"executedFeatures":["should be zero distance for an empty path","should be zero distance for any one node path","should calculate distance for a path","should return edges for a given node","should throw NPE for incorrect path"],"ignoredFeatures":[],"stats":{"failures":0,"errors":0,"skipped":0,"totalRuns":5,"totalFeatures":5,"passed":5,"successRate":1.0,"time":70},"title":"Generic Graph","narrative":"A generic implementation of Graph structure"},"graph.SearchAlgorithmSpec":{"executedFeatures":["should find a route for a complex graph"],"ignoredFeatures":[],"stats":{"failures":0,"errors":0,"skipped":0,"totalRuns":1,"totalFeatures":1,"passed":1,"successRate":1.0,"time":15},"title":"Comparison of two algorithms","narrative":""},"graph.BreadthFirstSearchSpec":{"executedFeatures":["should find a route for complex graph","should find a route for simple graph","should return an empty path if can't find a route","should thrown NPE path for an empty graph"],"ignoredFeatures":[],"stats":{"failures":0,"errors":0,"skipped":0,"totalRuns":4,"totalFeatures":4,"passed":4,"successRate":1.0,"time":69},"title":"Breadth First Search Algorithm","narrative":"Breadth First Search algorithm for finding the shortest paths between nodes in a graph"},"graph.DijkstrasAlgorithmSpec":{"executedFeatures":["should find a route for a complex graph","should find a route for a medium graph","should find a route for a simple graph","should return an empty path if can't find a route","should thrown NPE for an empty graph"],"ignoredFeatures":[],"stats":{"failures":0,"errors":0,"skipped":0,"totalRuns":5,"totalFeatures":5,"passed":5,"successRate":1.0,"time":22},"title":"Dijkstra's Algorithm","narrative":"Dijkstra's algorithm is an algorithm for finding the fastest paths between nodes in a graph"},"graph.GraphSpec":{"executedFeatures":["should be zero distance for an empty path","should be zero distance for any one node path","should calculate distance for a path","should return edges for a given node","should throw NPE for incorrect path"],"ignoredFeatures":[],"stats":{"failures":0,"errors":0,"skipped":0,"totalRuns":5,"totalFeatures":5,"passed":5,"successRate":1.0,"time":37},"title":"Generic Graph","narrative":"A generic implementation of Graph structure"},"graph.SearchAlgorithmSpec":{"executedFeatures":["should find a route for a complex graph"],"ignoredFeatures":[],"stats":{"failures":0,"errors":0,"skipped":0,"totalRuns":1,"totalFeatures":1,"passed":1,"successRate":1.0,"time":3},"title":"Comparison of two algorithms","narrative":""}}
\ No newline at end of file
+{"graph.BreadthFirstSearchSpec":{"executedFeatures":["should find a route for complex graph","should find a route for simple graph"],"ignoredFeatures":[],"stats":{"failures":0,"errors":0,"skipped":0,"totalRuns":2,"totalFeatures":2,"passed":2,"successRate":1.0,"time":162},"title":"","narrative":""},"graph.SearchAlgorithmSpec":{"executedFeatures":["should find a route for a complex graph"],"ignoredFeatures":[],"stats":{"failures":0,"errors":0,"skipped":0,"totalRuns":1,"totalFeatures":1,"passed":1,"successRate":1.0,"time":46},"title":"Comparison of two algorithms","narrative":""},"graph.DijkstrasAlgorithmSpec":{"executedFeatures":["should find a route for a complex graph","should find a route for a medium graph","should find a route for a simple graph"],"ignoredFeatures":[],"stats":{"failures":0,"errors":0,"skipped":0,"totalRuns":3,"totalFeatures":3,"passed":3,"successRate":1.0,"time":66},"title":"","narrative":""},"graph.GraphSpec":{"executedFeatures":["should calculate distance"],"ignoredFeatures":[],"stats":{"failures":0,"errors":0,"skipped":0,"totalRuns":1,"totalFeatures":1,"passed":1,"successRate":1.0,"time":19},"title":"","narrative":""},"graph.BreadthFirstSearchSpec":{"executedFeatures":["should find a route for complex graph","should find a route for simple graph"],"ignoredFeatures":[],"stats":{"failures":0,"errors":0,"skipped":0,"totalRuns":2,"totalFeatures":2,"passed":2,"successRate":1.0,"time":133},"title":"Breadth First Search Algorithm","narrative":"Breadth First Search algorithm for finding the shortest paths between nodes in a graph"},"graph.SearchAlgorithmSpec":{"executedFeatures":["should find a route for a complex graph"],"ignoredFeatures":[],"stats":{"failures":0,"errors":0,"skipped":0,"totalRuns":1,"totalFeatures":1,"passed":1,"successRate":1.0,"time":40},"title":"Comparison of two algorithms","narrative":""},"graph.DijkstrasAlgorithmSpec":{"executedFeatures":["should find a route for a complex graph","should find a route for a medium graph","should find a route for a simple graph"],"ignoredFeatures":[],"stats":{"failures":0,"errors":0,"skipped":0,"totalRuns":3,"totalFeatures":3,"passed":3,"successRate":1.0,"time":67},"title":"Dijkstra's Algorithm","narrative":"Dijkstra's algorithm is an algorithm for finding the fastest paths between nodes in a graph"},"graph.GraphSpec":{"executedFeatures":["should be zero distance for an empty path","should be zero distance for any one node path","should calculate distance for a path","should return edges for a given node","should throw NPE for incorrect path"],"ignoredFeatures":[],"stats":{"failures":0,"errors":0,"skipped":0,"totalRuns":5,"totalFeatures":5,"passed":5,"successRate":1.0,"time":125},"title":"Generic Graph","narrative":"A generic implementation of Graph structure"},"graph.BreadthFirstSearchSpec":{"executedFeatures":["should find a route for complex graph","should find a route for simple graph"],"ignoredFeatures":[],"stats":{"failures":0,"errors":0,"skipped":0,"totalRuns":2,"totalFeatures":2,"passed":2,"successRate":1.0,"time":115},"title":"Breadth First Search Algorithm","narrative":"Breadth First Search algorithm for finding the shortest paths between nodes in a graph"},"graph.SearchAlgorithmSpec":{"executedFeatures":["should find a route for a complex graph"],"ignoredFeatures":[],"stats":{"failures":0,"errors":0,"skipped":0,"totalRuns":1,"totalFeatures":1,"passed":1,"successRate":1.0,"time":43},"title":"Comparison of two algorithms","narrative":""},"graph.DijkstrasAlgorithmSpec":{"executedFeatures":["should find a route for a complex graph","should find a route for a medium graph","should find a route for a simple graph"],"ignoredFeatures":[],"stats":{"failures":0,"errors":0,"skipped":0,"totalRuns":3,"totalFeatures":3,"passed":3,"successRate":1.0,"time":69},"title":"Dijkstra's Algorithm","narrative":"Dijkstra's algorithm is an algorithm for finding the fastest paths between nodes in a graph"},"graph.GraphSpec":{"executedFeatures":["should be zero distance for an empty path","should be zero distance for any one node path","should calculate distance for a path","should return edges for a given node","should throw NPE for incorrect path"],"ignoredFeatures":[],"stats":{"failures":0,"errors":0,"skipped":0,"totalRuns":5,"totalFeatures":5,"passed":5,"successRate":1.0,"time":127},"title":"Generic Graph","narrative":"A generic implementation of Graph structure"},"graph.BreadthFirstSearchSpec":{"executedFeatures":["should find a route for complex graph","should find a route for simple graph"],"ignoredFeatures":[],"stats":{"failures":0,"errors":0,"skipped":0,"totalRuns":2,"totalFeatures":2,"passed":2,"successRate":1.0,"time":136},"title":"Breadth First Search Algorithm","narrative":"Breadth First Search algorithm for finding the shortest paths between nodes in a graph"},"graph.SearchAlgorithmSpec":{"executedFeatures":["should find a route for a complex graph"],"ignoredFeatures":[],"stats":{"failures":0,"errors":0,"skipped":0,"totalRuns":1,"totalFeatures":1,"passed":1,"successRate":1.0,"time":44},"title":"Comparison of two algorithms","narrative":""},"graph.DijkstrasAlgorithmSpec":{"executedFeatures":["should find a route for a complex graph","should find a route for a medium graph","should find a route for a simple graph"],"ignoredFeatures":[],"stats":{"failures":0,"errors":0,"skipped":0,"totalRuns":3,"totalFeatures":3,"passed":3,"successRate":1.0,"time":80},"title":"Dijkstra's Algorithm","narrative":"Dijkstra's algorithm is an algorithm for finding the fastest paths between nodes in a graph"},"graph.GraphSpec":{"executedFeatures":["should be zero distance for an empty path","should be zero distance for any one node path","should calculate distance for a path","should return edges for a given node","should throw NPE for incorrect path"],"ignoredFeatures":[],"stats":{"failures":0,"errors":0,"skipped":0,"totalRuns":5,"totalFeatures":5,"passed":5,"successRate":1.0,"time":112},"title":"Generic Graph","narrative":"A generic implementation of Graph structure"},"graph.BreadthFirstSearchSpec":{"executedFeatures":["should find a route for complex graph","should find a route for simple graph"],"ignoredFeatures":[],"stats":{"failures":0,"errors":0,"skipped":0,"totalRuns":2,"totalFeatures":2,"passed":2,"successRate":1.0,"time":204},"title":"Breadth First Search Algorithm","narrative":"Breadth First Search algorithm for finding the shortest paths between nodes in a graph"},"graph.SearchAlgorithmSpec":{"executedFeatures":["should find a route for a complex graph"],"ignoredFeatures":[],"stats":{"failures":0,"errors":0,"skipped":0,"totalRuns":1,"totalFeatures":1,"passed":1,"successRate":1.0,"time":61},"title":"Comparison of two algorithms","narrative":""},"graph.DijkstrasAlgorithmSpec":{"executedFeatures":["should find a route for a complex graph","should find a route for a medium graph","should find a route for a simple graph"],"ignoredFeatures":[],"stats":{"failures":0,"errors":0,"skipped":0,"totalRuns":3,"totalFeatures":3,"passed":3,"successRate":1.0,"time":74},"title":"Dijkstra's Algorithm","narrative":"Dijkstra's algorithm is an algorithm for finding the fastest paths between nodes in a graph"},"graph.GraphSpec":{"executedFeatures":["should be zero distance for an empty path","should be zero distance for any one node path","should calculate distance for a path","should return edges for a given node","should throw NPE for incorrect path"],"ignoredFeatures":[],"stats":{"failures":0,"errors":0,"skipped":0,"totalRuns":5,"totalFeatures":5,"passed":5,"successRate":1.0,"time":154},"title":"Generic Graph","narrative":"A generic implementation of Graph structure"},"graph.DijkstrasAlgorithmSpec":{"executedFeatures":["should find a route for a complex graph","should find a route for a medium graph","should find a route for a simple graph","should returns an empty path for an empty graph"],"ignoredFeatures":[],"stats":{"failures":0,"errors":1,"skipped":0,"totalRuns":1,"totalFeatures":4,"passed":0,"successRate":0.0,"time":32},"title":"Dijkstra's Algorithm","narrative":"Dijkstra's algorithm is an algorithm for finding the fastest paths between nodes in a graph"},"graph.DijkstrasAlgorithmSpec":{"executedFeatures":["should find a route for a complex graph","should find a route for a medium graph","should find a route for a simple graph","should throw NPE for an empty graph"],"ignoredFeatures":[],"stats":{"failures":0,"errors":0,"skipped":0,"totalRuns":1,"totalFeatures":4,"passed":1,"successRate":1.0,"time":32},"title":"Dijkstra's Algorithm","narrative":"Dijkstra's algorithm is an algorithm for finding the fastest paths between nodes in a graph"},"graph.DijkstrasAlgorithmSpec":{"executedFeatures":["should find a route for a complex graph","should find a route for a medium graph","should find a route for a simple graph","should return an empty path if can't find a route","should throw NPE for an empty graph"],"ignoredFeatures":[],"stats":{"failures":1,"errors":0,"skipped":0,"totalRuns":1,"totalFeatures":5,"passed":0,"successRate":0.0,"time":54},"title":"Dijkstra's Algorithm","narrative":"Dijkstra's algorithm is an algorithm for finding the fastest paths between nodes in a graph"},"graph.BreadthFirstSearchSpec":{"executedFeatures":["should find a route for complex graph","should find a route for simple graph","should return an empty path if can't find a route"],"ignoredFeatures":[],"stats":{"failures":0,"errors":0,"skipped":0,"totalRuns":1,"totalFeatures":3,"passed":1,"successRate":1.0,"time":31},"title":"Breadth First Search Algorithm","narrative":"Breadth First Search algorithm for finding the shortest paths between nodes in a graph"},"graph.BreadthFirstSearchSpec":{"executedFeatures":["should find a route for complex graph","should find a route for simple graph","should return an empty path if can't find a route"],"ignoredFeatures":[],"stats":{"failures":0,"errors":0,"skipped":0,"totalRuns":3,"totalFeatures":3,"passed":3,"successRate":1.0,"time":62},"title":"Breadth First Search Algorithm","narrative":"Breadth First Search algorithm for finding the shortest paths between nodes in a graph"},"graph.DijkstrasAlgorithmSpec":{"executedFeatures":["should find a route for a complex graph","should find a route for a medium graph","should find a route for a simple graph","should return an empty path if can't find a route","should throw NPE for an empty graph"],"ignoredFeatures":[],"stats":{"failures":3,"errors":0,"skipped":0,"totalRuns":5,"totalFeatures":5,"passed":2,"successRate":0.4,"time":47},"title":"Dijkstra's Algorithm","narrative":"Dijkstra's algorithm is an algorithm for finding the fastest paths between nodes in a graph"},"graph.GraphSpec":{"executedFeatures":["should be zero distance for an empty path","should be zero distance for any one node path","should calculate distance for a path","should return edges for a given node","should throw NPE for incorrect path"],"ignoredFeatures":[],"stats":{"failures":0,"errors":0,"skipped":0,"totalRuns":5,"totalFeatures":5,"passed":5,"successRate":1.0,"time":48},"title":"Generic Graph","narrative":"A generic implementation of Graph structure"},"graph.SearchAlgorithmSpec":{"executedFeatures":["should find a route for a complex graph"],"ignoredFeatures":[],"stats":{"failures":1,"errors":0,"skipped":0,"totalRuns":1,"totalFeatures":1,"passed":0,"successRate":0.0,"time":10},"title":"Comparison of two algorithms","narrative":""},"graph.DijkstrasAlgorithmSpec":{"executedFeatures":["should find a route for a complex graph","should find a route for a medium graph","should find a route for a simple graph","should return an empty path if can't find a route","should throw NPE for an empty graph"],"ignoredFeatures":[],"stats":{"failures":3,"errors":0,"skipped":0,"totalRuns":5,"totalFeatures":5,"passed":2,"successRate":0.4,"time":96},"title":"Dijkstra's Algorithm","narrative":"Dijkstra's algorithm is an algorithm for finding the fastest paths between nodes in a graph"},"graph.DijkstrasAlgorithmSpec":{"executedFeatures":["should find a route for a complex graph","should find a route for a medium graph","should find a route for a simple graph","should return an empty path if can't find a route","should throw NPE for an empty graph"],"ignoredFeatures":[],"stats":{"failures":0,"errors":0,"skipped":0,"totalRuns":5,"totalFeatures":5,"passed":5,"successRate":1.0,"time":69},"title":"Dijkstra's Algorithm","narrative":"Dijkstra's algorithm is an algorithm for finding the fastest paths between nodes in a graph"},"graph.BreadthFirstSearchSpec":{"executedFeatures":["should find a route for complex graph","should find a route for simple graph","should return an empty path if can't find a route"],"ignoredFeatures":[],"stats":{"failures":0,"errors":0,"skipped":0,"totalRuns":3,"totalFeatures":3,"passed":3,"successRate":1.0,"time":69},"title":"Breadth First Search Algorithm","narrative":"Breadth First Search algorithm for finding the shortest paths between nodes in a graph"},"graph.DijkstrasAlgorithmSpec":{"executedFeatures":["should find a route for a complex graph","should find a route for a medium graph","should find a route for a simple graph","should return an empty path if can't find a route","should throw NPE for an empty graph"],"ignoredFeatures":[],"stats":{"failures":0,"errors":0,"skipped":0,"totalRuns":5,"totalFeatures":5,"passed":5,"successRate":1.0,"time":31},"title":"Dijkstra's Algorithm","narrative":"Dijkstra's algorithm is an algorithm for finding the fastest paths between nodes in a graph"},"graph.GraphSpec":{"executedFeatures":["should be zero distance for an empty path","should be zero distance for any one node path","should calculate distance for a path","should return edges for a given node","should throw NPE for incorrect path"],"ignoredFeatures":[],"stats":{"failures":0,"errors":0,"skipped":0,"totalRuns":5,"totalFeatures":5,"passed":5,"successRate":1.0,"time":47},"title":"Generic Graph","narrative":"A generic implementation of Graph structure"},"graph.SearchAlgorithmSpec":{"executedFeatures":["should find a route for a complex graph"],"ignoredFeatures":[],"stats":{"failures":0,"errors":0,"skipped":0,"totalRuns":1,"totalFeatures":1,"passed":1,"successRate":1.0,"time":16},"title":"Comparison of two algorithms","narrative":""},"graph.BreadthFirstSearchSpec":{"executedFeatures":["should find a route for complex graph","should find a route for simple graph","should return an empty path if can't find a route"],"ignoredFeatures":[],"stats":{"failures":0,"errors":0,"skipped":0,"totalRuns":3,"totalFeatures":3,"passed":3,"successRate":1.0,"time":69},"title":"Breadth First Search Algorithm","narrative":"Breadth First Search algorithm for finding the shortest paths between nodes in a graph"},"graph.DijkstrasAlgorithmSpec":{"executedFeatures":["should find a route for a complex graph","should find a route for a medium graph","should find a route for a simple graph","should return an empty path if can't find a route","should throw NPE for an empty graph"],"ignoredFeatures":[],"stats":{"failures":0,"errors":0,"skipped":0,"totalRuns":5,"totalFeatures":5,"passed":5,"successRate":1.0,"time":31},"title":"Dijkstra's Algorithm","narrative":"Dijkstra's algorithm is an algorithm for finding the fastest paths between nodes in a graph"},"graph.GraphSpec":{"executedFeatures":["should be zero distance for an empty path","should be zero distance for any one node path","should calculate distance for a path","should return edges for a given node","should throw NPE for incorrect path"],"ignoredFeatures":[],"stats":{"failures":0,"errors":0,"skipped":0,"totalRuns":5,"totalFeatures":5,"passed":5,"successRate":1.0,"time":69},"title":"Generic Graph","narrative":"A generic implementation of Graph structure"},"graph.SearchAlgorithmSpec":{"executedFeatures":["should find a route for a complex graph"],"ignoredFeatures":[],"stats":{"failures":0,"errors":0,"skipped":0,"totalRuns":1,"totalFeatures":1,"passed":1,"successRate":1.0,"time":16},"title":"Comparison of two algorithms","narrative":""},"graph.BreadthFirstSearchSpec":{"executedFeatures":["should find a route for complex graph","should find a route for simple graph","should return an empty path if can't find a route"],"ignoredFeatures":[],"stats":{"failures":0,"errors":3,"skipped":0,"totalRuns":3,"totalFeatures":3,"passed":0,"successRate":0.0,"time":62},"title":"Breadth First Search Algorithm","narrative":"Breadth First Search algorithm for finding the shortest paths between nodes in a graph"},"graph.DijkstrasAlgorithmSpec":{"executedFeatures":["should find a route for a complex graph","should find a route for a medium graph","should find a route for a simple graph","should return an empty path if can't find a route","should throw NPE for an empty graph"],"ignoredFeatures":[],"stats":{"failures":1,"errors":4,"skipped":0,"totalRuns":5,"totalFeatures":5,"passed":0,"successRate":0.0,"time":46},"title":"Dijkstra's Algorithm","narrative":"Dijkstra's algorithm is an algorithm for finding the fastest paths between nodes in a graph"},"graph.GraphSpec":{"executedFeatures":["should be zero distance for an empty path","should be zero distance for any one node path","should calculate distance for a path","should return edges for a given node","should throw NPE for incorrect path"],"ignoredFeatures":[],"stats":{"failures":0,"errors":0,"skipped":0,"totalRuns":5,"totalFeatures":5,"passed":5,"successRate":1.0,"time":54},"title":"Generic Graph","narrative":"A generic implementation of Graph structure"},"graph.SearchAlgorithmSpec":{"executedFeatures":["should find a route for a complex graph"],"ignoredFeatures":[],"stats":{"failures":0,"errors":1,"skipped":0,"totalRuns":1,"totalFeatures":1,"passed":0,"successRate":0.0,"time":0},"title":"Comparison of two algorithms","narrative":""},"graph.BreadthFirstSearchSpec":{"executedFeatures":["should find a route for complex graph","should find a route for simple graph","should return an empty path if can't find a route"],"ignoredFeatures":[],"stats":{"failures":0,"errors":0,"skipped":0,"totalRuns":3,"totalFeatures":3,"passed":3,"successRate":1.0,"time":78},"title":"Breadth First Search Algorithm","narrative":"Breadth First Search algorithm for finding the shortest paths between nodes in a graph"},"graph.DijkstrasAlgorithmSpec":{"executedFeatures":["should find a route for a complex graph","should find a route for a medium graph","should find a route for a simple graph","should return an empty path if can't find a route","should throw NPE for an empty graph"],"ignoredFeatures":[],"stats":{"failures":0,"errors":0,"skipped":0,"totalRuns":5,"totalFeatures":5,"passed":5,"successRate":1.0,"time":84},"title":"Dijkstra's Algorithm","narrative":"Dijkstra's algorithm is an algorithm for finding the fastest paths between nodes in a graph"},"graph.SearchAlgorithmSpec":{"executedFeatures":["should find a route for a complex graph"],"ignoredFeatures":[],"stats":{"failures":0,"errors":0,"skipped":0,"totalRuns":1,"totalFeatures":1,"passed":1,"successRate":1.0,"time":85},"title":"Comparison of two algorithms","narrative":""},"graph.GraphSpec":{"executedFeatures":["should be zero distance for an empty path","should be zero distance for any one node path","should calculate distance for a path","should return edges for a given node","should throw NPE for incorrect path"],"ignoredFeatures":[],"stats":{"failures":0,"errors":0,"skipped":0,"totalRuns":5,"totalFeatures":5,"passed":5,"successRate":1.0,"time":116},"title":"Generic Graph","narrative":"A generic implementation of Graph structure"},"graph.BreadthFirstSearchSpec":{"executedFeatures":["should find a route for complex graph","should find a route for simple graph","should return an empty path if can't find a route"],"ignoredFeatures":[],"stats":{"failures":0,"errors":0,"skipped":0,"totalRuns":3,"totalFeatures":3,"passed":3,"successRate":1.0,"time":68},"title":"Breadth First Search Algorithm","narrative":"Breadth First Search algorithm for finding the shortest paths between nodes in a graph"},"graph.DijkstrasAlgorithmSpec":{"executedFeatures":["should find a route for a complex graph","should find a route for a medium graph","should find a route for a simple graph","should return an empty path if can't find a route","should throw NPE for an empty graph"],"ignoredFeatures":[],"stats":{"failures":0,"errors":0,"skipped":0,"totalRuns":5,"totalFeatures":5,"passed":5,"successRate":1.0,"time":17},"title":"Dijkstra's Algorithm","narrative":"Dijkstra's algorithm is an algorithm for finding the fastest paths between nodes in a graph"},"graph.GraphSpec":{"executedFeatures":["should be zero distance for an empty path","should be zero distance for any one node path","should calculate distance for a path","should return edges for a given node","should throw NPE for incorrect path"],"ignoredFeatures":[],"stats":{"failures":0,"errors":0,"skipped":0,"totalRuns":5,"totalFeatures":5,"passed":5,"successRate":1.0,"time":54},"title":"Generic Graph","narrative":"A generic implementation of Graph structure"},"graph.SearchAlgorithmSpec":{"executedFeatures":["should find a route for a complex graph"],"ignoredFeatures":[],"stats":{"failures":0,"errors":0,"skipped":0,"totalRuns":1,"totalFeatures":1,"passed":1,"successRate":1.0,"time":15},"title":"Comparison of two algorithms","narrative":""},"graph.BreadthFirstSearchSpec":{"executedFeatures":["should find a route for complex graph","should find a route for simple graph","should return an empty path if can't find a route"],"ignoredFeatures":[],"stats":{"failures":0,"errors":0,"skipped":0,"totalRuns":3,"totalFeatures":3,"passed":3,"successRate":1.0,"time":69},"title":"Breadth First Search Algorithm","narrative":"Breadth First Search algorithm for finding the shortest paths between nodes in a graph"},"graph.DijkstrasAlgorithmSpec":{"executedFeatures":["should find a route for a complex graph","should find a route for a medium graph","should find a route for a simple graph","should return an empty path if can't find a route","should throw NPE for an empty graph"],"ignoredFeatures":[],"stats":{"failures":1,"errors":0,"skipped":0,"totalRuns":5,"totalFeatures":5,"passed":4,"successRate":0.8,"time":32},"title":"Dijkstra's Algorithm","narrative":"Dijkstra's algorithm is an algorithm for finding the fastest paths between nodes in a graph"},"graph.GraphSpec":{"executedFeatures":["should be zero distance for an empty path","should be zero distance for any one node path","should calculate distance for a path","should return edges for a given node","should throw NPE for incorrect path"],"ignoredFeatures":[],"stats":{"failures":0,"errors":0,"skipped":0,"totalRuns":5,"totalFeatures":5,"passed":5,"successRate":1.0,"time":53},"title":"Generic Graph","narrative":"A generic implementation of Graph structure"},"graph.SearchAlgorithmSpec":{"executedFeatures":["should find a route for a complex graph"],"ignoredFeatures":[],"stats":{"failures":0,"errors":0,"skipped":0,"totalRuns":1,"totalFeatures":1,"passed":1,"successRate":1.0,"time":16},"title":"Comparison of two algorithms","narrative":""},"graph.DijkstrasAlgorithmSpec":{"executedFeatures":["should find a route for a complex graph","should find a route for a medium graph","should find a route for a simple graph","should return an empty path for an empty graph","should return an empty path if can't find a route"],"ignoredFeatures":[],"stats":{"failures":1,"errors":0,"skipped":0,"totalRuns":1,"totalFeatures":5,"passed":0,"successRate":0.0,"time":47},"title":"Dijkstra's Algorithm","narrative":"Dijkstra's algorithm is an algorithm for finding the fastest paths between nodes in a graph"},"graph.DijkstrasAlgorithmSpec":{"executedFeatures":["should find a route for a complex graph","should find a route for a medium graph","should find a route for a simple graph","should return an empty path for an empty graph","should return an empty path if can't find a route"],"ignoredFeatures":[],"stats":{"failures":0,"errors":0,"skipped":0,"totalRuns":1,"totalFeatures":5,"passed":1,"successRate":1.0,"time":32},"title":"Dijkstra's Algorithm","narrative":"Dijkstra's algorithm is an algorithm for finding the fastest paths between nodes in a graph"},"graph.BreadthFirstSearchSpec":{"executedFeatures":["should find a route for complex graph","should find a route for simple graph","should return an empty path if can't find a route"],"ignoredFeatures":[],"stats":{"failures":0,"errors":0,"skipped":0,"totalRuns":3,"totalFeatures":3,"passed":3,"successRate":1.0,"time":63},"title":"Breadth First Search Algorithm","narrative":"Breadth First Search algorithm for finding the shortest paths between nodes in a graph"},"graph.DijkstrasAlgorithmSpec":{"executedFeatures":["should find a route for a complex graph","should find a route for a medium graph","should find a route for a simple graph","should return an empty path for an empty graph","should return an empty path if can't find a route"],"ignoredFeatures":[],"stats":{"failures":0,"errors":0,"skipped":0,"totalRuns":5,"totalFeatures":5,"passed":5,"successRate":1.0,"time":31},"title":"Dijkstra's Algorithm","narrative":"Dijkstra's algorithm is an algorithm for finding the fastest paths between nodes in a graph"},"graph.GraphSpec":{"executedFeatures":["should be zero distance for an empty path","should be zero distance for any one node path","should calculate distance for a path","should return edges for a given node","should throw NPE for incorrect path"],"ignoredFeatures":[],"stats":{"failures":0,"errors":0,"skipped":0,"totalRuns":5,"totalFeatures":5,"passed":5,"successRate":1.0,"time":47},"title":"Generic Graph","narrative":"A generic implementation of Graph structure"},"graph.SearchAlgorithmSpec":{"executedFeatures":["should find a route for a complex graph"],"ignoredFeatures":[],"stats":{"failures":0,"errors":0,"skipped":0,"totalRuns":1,"totalFeatures":1,"passed":1,"successRate":1.0,"time":16},"title":"Comparison of two algorithms","narrative":""},"graph.BreadthFirstSearchSpec":{"executedFeatures":["should find a route for complex graph","should find a route for simple graph","should return an empty path for an empty graph","should return an empty path if can't find a route"],"ignoredFeatures":[],"stats":{"failures":0,"errors":0,"skipped":0,"totalRuns":4,"totalFeatures":4,"passed":4,"successRate":1.0,"time":69},"title":"Breadth First Search Algorithm","narrative":"Breadth First Search algorithm for finding the shortest paths between nodes in a graph"},"graph.DijkstrasAlgorithmSpec":{"executedFeatures":["should find a route for a complex graph","should find a route for a medium graph","should find a route for a simple graph","should return an empty path for an empty graph","should return an empty path if can't find a route"],"ignoredFeatures":[],"stats":{"failures":0,"errors":0,"skipped":0,"totalRuns":5,"totalFeatures":5,"passed":5,"successRate":1.0,"time":16},"title":"Dijkstra's Algorithm","narrative":"Dijkstra's algorithm is an algorithm for finding the fastest paths between nodes in a graph"},"graph.GraphSpec":{"executedFeatures":["should be zero distance for an empty path","should be zero distance for any one node path","should calculate distance for a path","should return edges for a given node","should throw NPE for incorrect path"],"ignoredFeatures":[],"stats":{"failures":0,"errors":0,"skipped":0,"totalRuns":5,"totalFeatures":5,"passed":5,"successRate":1.0,"time":47},"title":"Generic Graph","narrative":"A generic implementation of Graph structure"},"graph.SearchAlgorithmSpec":{"executedFeatures":["should find a route for a complex graph"],"ignoredFeatures":[],"stats":{"failures":0,"errors":0,"skipped":0,"totalRuns":1,"totalFeatures":1,"passed":1,"successRate":1.0,"time":16},"title":"Comparison of two algorithms","narrative":""},"graph.BreadthFirstSearchSpec":{"executedFeatures":["should find a route for complex graph","should find a route for simple graph","should return an empty path for an empty graph","should return an empty path if can't find a route"],"ignoredFeatures":[],"stats":{"failures":0,"errors":1,"skipped":0,"totalRuns":4,"totalFeatures":4,"passed":3,"successRate":0.75,"time":69},"title":"Breadth First Search Algorithm","narrative":"Breadth First Search algorithm for finding the shortest paths between nodes in a graph"},"graph.DijkstrasAlgorithmSpec":{"executedFeatures":["should find a route for a complex graph","should find a route for a medium graph","should find a route for a simple graph","should return an empty path for an empty graph","should return an empty path if can't find a route"],"ignoredFeatures":[],"stats":{"failures":0,"errors":1,"skipped":0,"totalRuns":5,"totalFeatures":5,"passed":4,"successRate":0.8,"time":31},"title":"Dijkstra's Algorithm","narrative":"Dijkstra's algorithm is an algorithm for finding the fastest paths between nodes in a graph"},"graph.GraphSpec":{"executedFeatures":["should be zero distance for an empty path","should be zero distance for any one node path","should calculate distance for a path","should return edges for a given node","should throw NPE for incorrect path"],"ignoredFeatures":[],"stats":{"failures":0,"errors":0,"skipped":0,"totalRuns":5,"totalFeatures":5,"passed":5,"successRate":1.0,"time":38},"title":"Generic Graph","narrative":"A generic implementation of Graph structure"},"graph.SearchAlgorithmSpec":{"executedFeatures":["should find a route for a complex graph"],"ignoredFeatures":[],"stats":{"failures":0,"errors":0,"skipped":0,"totalRuns":1,"totalFeatures":1,"passed":1,"successRate":1.0,"time":7},"title":"Comparison of two algorithms","narrative":""},"graph.BreadthFirstSearchSpec":{"executedFeatures":["should find a route for complex graph","should find a route for simple graph","should return an empty path if can't find a route","should thrown NPE path for an empty graph"],"ignoredFeatures":[],"stats":{"failures":0,"errors":0,"skipped":0,"totalRuns":4,"totalFeatures":4,"passed":4,"successRate":1.0,"time":63},"title":"Breadth First Search Algorithm","narrative":"Breadth First Search algorithm for finding the shortest paths between nodes in a graph"},"graph.DijkstrasAlgorithmSpec":{"executedFeatures":["should find a route for a complex graph","should find a route for a medium graph","should find a route for a simple graph","should return an empty path if can't find a route","should thrown NPE for an empty graph"],"ignoredFeatures":[],"stats":{"failures":0,"errors":0,"skipped":0,"totalRuns":5,"totalFeatures":5,"passed":5,"successRate":1.0,"time":32},"title":"Dijkstra's Algorithm","narrative":"Dijkstra's algorithm is an algorithm for finding the fastest paths between nodes in a graph"},"graph.GraphSpec":{"executedFeatures":["should be zero distance for an empty path","should be zero distance for any one node path","should calculate distance for a path","should return edges for a given node","should throw NPE for incorrect path"],"ignoredFeatures":[],"stats":{"failures":0,"errors":0,"skipped":0,"totalRuns":5,"totalFeatures":5,"passed":5,"successRate":1.0,"time":37},"title":"Generic Graph","narrative":"A generic implementation of Graph structure"},"graph.SearchAlgorithmSpec":{"executedFeatures":["should find a route for a complex graph"],"ignoredFeatures":[],"stats":{"failures":0,"errors":0,"skipped":0,"totalRuns":1,"totalFeatures":1,"passed":1,"successRate":1.0,"time":15},"title":"Comparison of two algorithms","narrative":""},"graph.BreadthFirstSearchSpec":{"executedFeatures":["should find a route for complex graph","should find a route for simple graph","should return an empty path if can't find a route","should thrown NPE path for an empty graph"],"ignoredFeatures":[],"stats":{"failures":0,"errors":0,"skipped":0,"totalRuns":4,"totalFeatures":4,"passed":4,"successRate":1.0,"time":78},"title":"Breadth First Search Algorithm","narrative":"Breadth First Search algorithm for finding the shortest paths between nodes in a graph"},"graph.DijkstrasAlgorithmSpec":{"executedFeatures":["should find a route for a complex graph","should find a route for a medium graph","should find a route for a simple graph","should return an empty path if can't find a route","should thrown NPE for an empty graph"],"ignoredFeatures":[],"stats":{"failures":0,"errors":0,"skipped":0,"totalRuns":5,"totalFeatures":5,"passed":5,"successRate":1.0,"time":23},"title":"Dijkstra's Algorithm","narrative":"Dijkstra's algorithm is an algorithm for finding the fastest paths between nodes in a graph"},"graph.GraphSpec":{"executedFeatures":["should be zero distance for an empty path","should be zero distance for any one node path","should calculate distance for a path","should return edges for a given node","should throw NPE for incorrect path"],"ignoredFeatures":[],"stats":{"failures":0,"errors":0,"skipped":0,"totalRuns":5,"totalFeatures":5,"passed":5,"successRate":1.0,"time":47},"title":"Generic Graph","narrative":"A generic implementation of Graph structure"},"graph.SearchAlgorithmSpec":{"executedFeatures":["should find a route for a complex graph"],"ignoredFeatures":[],"stats":{"failures":0,"errors":0,"skipped":0,"totalRuns":1,"totalFeatures":1,"passed":1,"successRate":1.0,"time":0},"title":"Comparison of two algorithms","narrative":""},"graph.BreadthFirstSearchSpec":{"executedFeatures":["should find a route for complex graph","should find a route for simple graph","should return an empty path if can't find a route","should thrown NPE path for an empty graph"],"ignoredFeatures":[],"stats":{"failures":0,"errors":0,"skipped":0,"totalRuns":4,"totalFeatures":4,"passed":4,"successRate":1.0,"time":69},"title":"Breadth First Search Algorithm","narrative":"Breadth First Search algorithm for finding the shortest paths between nodes in a graph"},"graph.DijkstrasAlgorithmSpec":{"executedFeatures":["should find a route for a complex graph","should find a route for a medium graph","should find a route for a simple graph","should return an empty path if can't find a route","should thrown NPE for an empty graph"],"ignoredFeatures":[],"stats":{"failures":0,"errors":0,"skipped":0,"totalRuns":5,"totalFeatures":5,"passed":5,"successRate":1.0,"time":31},"title":"Dijkstra's Algorithm","narrative":"Dijkstra's algorithm is an algorithm for finding the fastest paths between nodes in a graph"},"graph.GraphSpec":{"executedFeatures":["should be zero distance for an empty path","should be zero distance for any one node path","should calculate distance for a path","should return edges for a given node","should throw NPE for incorrect path"],"ignoredFeatures":[],"stats":{"failures":0,"errors":0,"skipped":0,"totalRuns":5,"totalFeatures":5,"passed":5,"successRate":1.0,"time":70},"title":"Generic Graph","narrative":"A generic implementation of Graph structure"},"graph.SearchAlgorithmSpec":{"executedFeatures":["should find a route for a complex graph"],"ignoredFeatures":[],"stats":{"failures":0,"errors":0,"skipped":0,"totalRuns":1,"totalFeatures":1,"passed":1,"successRate":1.0,"time":15},"title":"Comparison of two algorithms","narrative":""},"graph.BreadthFirstSearchSpec":{"executedFeatures":["should find a route for complex graph","should find a route for simple graph","should return an empty path if can't find a route","should thrown NPE path for an empty graph"],"ignoredFeatures":[],"stats":{"failures":0,"errors":0,"skipped":0,"totalRuns":4,"totalFeatures":4,"passed":4,"successRate":1.0,"time":69},"title":"Breadth First Search Algorithm","narrative":"Breadth First Search algorithm for finding the shortest paths between nodes in a graph"},"graph.DijkstrasAlgorithmSpec":{"executedFeatures":["should find a route for a complex graph","should find a route for a medium graph","should find a route for a simple graph","should return an empty path if can't find a route","should thrown NPE for an empty graph"],"ignoredFeatures":[],"stats":{"failures":0,"errors":0,"skipped":0,"totalRuns":5,"totalFeatures":5,"passed":5,"successRate":1.0,"time":22},"title":"Dijkstra's Algorithm","narrative":"Dijkstra's algorithm is an algorithm for finding the fastest paths between nodes in a graph"},"graph.GraphSpec":{"executedFeatures":["should be zero distance for an empty path","should be zero distance for any one node path","should calculate distance for a path","should return edges for a given node","should throw NPE for incorrect path"],"ignoredFeatures":[],"stats":{"failures":0,"errors":0,"skipped":0,"totalRuns":5,"totalFeatures":5,"passed":5,"successRate":1.0,"time":37},"title":"Generic Graph","narrative":"A generic implementation of Graph structure"},"graph.SearchAlgorithmSpec":{"executedFeatures":["should find a route for a complex graph"],"ignoredFeatures":[],"stats":{"failures":0,"errors":0,"skipped":0,"totalRuns":1,"totalFeatures":1,"passed":1,"successRate":1.0,"time":3},"title":"Comparison of two algorithms","narrative":""},"graph.BreadthFirstSearchSpec":{"executedFeatures":["should find a route for complex graph","should find a route for simple graph","should return an empty path if can't find a route","should thrown NPE path for an empty graph"],"ignoredFeatures":[],"stats":{"failures":0,"errors":0,"skipped":0,"totalRuns":4,"totalFeatures":4,"passed":4,"successRate":1.0,"time":71},"title":"Breadth First Search Algorithm","narrative":"Breadth First Search algorithm for finding the shortest paths between nodes in a graph"},"graph.DijkstrasAlgorithmSpec":{"executedFeatures":["should find a route for a complex graph","should find a route for a medium graph","should find a route for a simple graph","should return an empty path if can't find a route","should thrown NPE for an empty graph"],"ignoredFeatures":[],"stats":{"failures":0,"errors":0,"skipped":0,"totalRuns":5,"totalFeatures":5,"passed":5,"successRate":1.0,"time":23},"title":"Dijkstra's Algorithm","narrative":"Dijkstra's algorithm is an algorithm for finding the fastest paths between nodes in a graph"},"graph.GraphSpec":{"executedFeatures":["should be zero distance for an empty path","should be zero distance for any one node path","should calculate distance for a path","should return edges for a given node","should throw NPE for incorrect path"],"ignoredFeatures":[],"stats":{"failures":0,"errors":0,"skipped":0,"totalRuns":5,"totalFeatures":5,"passed":5,"successRate":1.0,"time":45},"title":"Generic Graph","narrative":"A generic implementation of Graph structure"},"graph.SearchAlgorithmSpec":{"executedFeatures":["should find a route for a complex graph"],"ignoredFeatures":[],"stats":{"failures":0,"errors":0,"skipped":0,"totalRuns":1,"totalFeatures":1,"passed":1,"successRate":1.0,"time":11},"title":"Comparison of two algorithms","narrative":""}}
\ No newline at end of file
diff --git a/docs/spock-reports/graph.BreadthFirstSearchSpec.html b/docs/spock-reports/graph.BreadthFirstSearchSpec.html
index eb40416..72fc493 100644
--- a/docs/spock-reports/graph.BreadthFirstSearchSpec.html
+++ b/docs/spock-reports/graph.BreadthFirstSearchSpec.html
@@ -251,7 +251,7 @@
Report for graph.BreadthFirstSearchSpec
Summary:
-
Created on Mon Jan 03 21:16:51 EET 2022 by jegors.cemisovs
+
Created on Mon Jan 03 21:28:27 EET 2022 by jegors.cemisovs
@@ -272,7 +272,7 @@ Summary:
0 |
0 |
100.0% |
-0.069 seconds |
+0.071 seconds |
diff --git a/docs/spock-reports/graph.DijkstrasAlgorithmSpec.html b/docs/spock-reports/graph.DijkstrasAlgorithmSpec.html
index 6125802..d26af3e 100644
--- a/docs/spock-reports/graph.DijkstrasAlgorithmSpec.html
+++ b/docs/spock-reports/graph.DijkstrasAlgorithmSpec.html
@@ -251,7 +251,7 @@
Report for graph.DijkstrasAlgorithmSpec
Summary:
-
Created on Mon Jan 03 21:16:51 EET 2022 by jegors.cemisovs
+
Created on Mon Jan 03 21:28:27 EET 2022 by jegors.cemisovs
@@ -272,7 +272,7 @@ Summary:
0 |
0 |
100.0% |
-0.022 seconds |
+0.023 seconds |
diff --git a/docs/spock-reports/graph.GraphSpec.html b/docs/spock-reports/graph.GraphSpec.html
index 04717ad..cf37495 100644
--- a/docs/spock-reports/graph.GraphSpec.html
+++ b/docs/spock-reports/graph.GraphSpec.html
@@ -251,7 +251,7 @@
Report for graph.GraphSpec
Summary:
-
Created on Mon Jan 03 21:16:51 EET 2022 by jegors.cemisovs
+
Created on Mon Jan 03 21:28:28 EET 2022 by jegors.cemisovs
@@ -272,7 +272,7 @@ Summary:
0 |
0 |
100.0% |
-0.037 seconds |
+0.045 seconds |
diff --git a/docs/spock-reports/graph.SearchAlgorithmSpec.html b/docs/spock-reports/graph.SearchAlgorithmSpec.html
index 2065f75..c796b02 100644
--- a/docs/spock-reports/graph.SearchAlgorithmSpec.html
+++ b/docs/spock-reports/graph.SearchAlgorithmSpec.html
@@ -251,7 +251,7 @@
Report for graph.SearchAlgorithmSpec
Summary:
-
Created on Mon Jan 03 21:16:51 EET 2022 by jegors.cemisovs
+
Created on Mon Jan 03 21:28:28 EET 2022 by jegors.cemisovs
@@ -272,7 +272,7 @@ Summary:
0 |
0 |
100.0% |
-0.003 seconds |
+0.011 seconds |
diff --git a/docs/spock-reports/index.html b/docs/spock-reports/index.html
index 164c039..40a9694 100644
--- a/docs/spock-reports/index.html
+++ b/docs/spock-reports/index.html
@@ -84,7 +84,7 @@
Specification run results
Specifications summary:
-
Created on Mon Jan 03 21:16:52 EET 2022 by jegors.cemisovs
+
Created on Mon Jan 03 21:28:28 EET 2022 by jegors.cemisovs
@@ -111,7 +111,7 @@ Specifications summary:
0 |
0 |
100.0% |
-0.131 seconds |
+0.150 seconds |
@@ -142,7 +142,7 @@
Specifications:
0 |
0 |
100.0% |
-
0.069 seconds |
+
0.071 seconds |
@@ -155,7 +155,7 @@ Specifications:
| 0 |
0 |
100.0% |
-0.022 seconds |
+0.023 seconds |
@@ -168,7 +168,7 @@ Specifications:
| 0 |
0 |
100.0% |
-0.037 seconds |
+0.045 seconds |
@@ -181,7 +181,7 @@ Specifications:
| 0 |
0 |
100.0% |
-0.003 seconds |
+0.011 seconds |
diff --git a/src/test/groovy/graph/GraphSpec.groovy b/src/test/groovy/graph/GraphSpec.groovy
index ff3f328..7264018 100644
--- a/src/test/groovy/graph/GraphSpec.groovy
+++ b/src/test/groovy/graph/GraphSpec.groovy
@@ -10,7 +10,6 @@ import spock.lang.Title
class GraphSpec extends Specification {
def "should return edges for a given node"() {
-
given: 'a simple graph with three nodes'
def graph = Graph.of([
A: [B: 7, C: 2],