
Rackspace Cloud Keep API 1.0
Use the following links to go directly to user and reference information for using the
Rackspace Cloud Keep service API.

• Getting Started Guide
• Developer Guide
• API Reference

About the API
The Rackspace Cloud Keep service provides a REST API that enables secure life-cycle
management of keys and credentials, called secrets, on behalf of customers. It is based on the
OpenStack Key Manager service (code named Barbican), a community-led open-source
platform.

You can use the API to securely store and retrieve credentials systematically and enable users to
have keys generated on their behalf based on their requested encryption algorithm and bit length.

Rackspace Cloud Keep provides the following APIs:

• Secrets API

• Containers API

• Consumers API

• Quotas API

Early Access program

Rackspace Cloud Keep is available to customers through an Early Access (EA) program. The
EA program is an opportunity for customers to work in partnership with Rackspace to ensure
that the implemented features align with business needs and can be used with maximum
efficiency.

Deleted: jump

Formatted: Font: Italic

Deleted: Using the API, y

Moved down [4]: <#>Quotas API¶

Moved (insertion) [4]

Deleted: Program

https://developer.rackspace.com/docs/cloud-keep/v1/developer-guide/%23getting-started
https://developer.rackspace.com/docs/cloud-keep/v1/developer-guide/%23developer-guide
https://developer.rackspace.com/docs/cloud-keep/v1/developer-guide/%23api-reference

As the service progresses towards General Availability, additional features and event
notifications will be added, and it is possible that existing implementations and formats might
change.

To learn more, visit the Cloud Keep Signup page.

API contract changes

The API contract is not locked and might change during the Early Access program.

Rackspace will notify customers in release notes when and if the contract does change.

Additional resources

We welcome feedback, comments, and bug reports.

• Send Cloud Keep feedback and support questions to keep@rackspace.com.
• For general issues about Rackspace products, visit the Rackspace Product Feedback page.
• For product updates and announcement through Twitter, see http://twitter.com/rackspace.
• To learn about using Rackspace Cloud SDKs, see SDKs and tools.
• To get information about the APIs for other Rackspace Cloud services, see the Rackspace

API Documentation.

http://go.rackspace.com/cloud-keep.html
mailto:keep%40rackspace.com
https://feedback.rackspace.com/
http://twitter.com/rackspace
https://developer.rackspace.com/sdks
http://developer.rackspace.com/docs/
http://developer.rackspace.com/docs/

Getting Started Guide
Use this Getting Started Guide to learn how to authenticate, send API requests, and complete
basic operations with the Cloud Keep API.

For more information about Rackspace Cloud Keep concepts and API operations, see
the Developer Guide and the API Reference.

Prerequisites
To run the examples in this guide, you must have the following prerequisites:

• Rackspace Cloud account

• Username and password to access the account

• API key to access Rackspace Cloud services

• Account number

• Command line tool or browser client to communicate with the API service

If you don’t have an account, sign up for one. You can find your account number and API key on
the Account Settings page in the Cloud Control Panel.

Get your credentials
To communicate with Rackspace Cloud services by using the REST API, you need your
Rackspace Cloud account username, API key, and account number. To get this information, log
in to the Cloud Control Panel.

Note: In the API service documentation, the account number is referred to as your tenant

ID or tenant name.

After you log in, click your username on the upper-right side of the top navigation pane. Then,
select Account Settings to open the page.

Comment [KH1]: Update with the new
boilerplate.

Deleted: +

Deleted: +

https://developer.rackspace.com/docs/cloud-keep/v1/developer-guide/%23developer-guide
https://developer.rackspace.com/docs/cloud-keep/v1/developer-guide/%23api-reference
https://developer.rackspace.com/docs/cloud-keep/v1/developer-guide/%23send-api-requests
https://cart.rackspace.com/cloud/
https://mycloud.rackspace.com/

Save your API key

1. On the Account Settings page, find the API Key field in the Login Details section.
2. Click Show to see the value and copy it to a text editor of your choice.
3. Click Hide to secure the API key value in the browser.

Important: Protect your API key. Do not expose the value in code samples, screen captures,

or insecure client-server communications. Also, ensure that the value is not
included in source code that is stored in public repositories.

Save your account number

1. On the Account Settings page, scroll down to the Account Details section.
2. Copy and save the account number.

Send requests to the API
This Getting Started Guide shows you how to send requests by using cURL.

Note: You can also use Rackspace Cloud API services by using the following methods:

• If you are developing applications or automation, try using Rackspace SDKs, the Rackspace
CLI, or OpenStack client applications.

Formatted: Font: Bold

Deleted: make sure

https://developer.rackspace.com/sdks/
https://developer.rackspace.com/docs/rack-cli/
https://developer.rackspace.com/docs/rack-cli/
https://wiki.openstack.org/wiki/OpenStackClients

• For API development, testing, and workflow management in a graphical environment, try
interacting with the API by using an application such as Postman or RESTClient for Firefox.

cURL is a command-line tool that you can use to interact with REST interfaces. cURL lets you
transmit and receive HTTP requests and responses from the command line or a shell script,
which enables you to work with the API directly. cURL is available for Linux distributions, Mac
OS® X, and Microsoft Windows®. For information about cURL, see http://curl.haxx.se/.

To run the cURL request examples shown in this guide, copy each example directly to the
command line or a script.

The following example shows a cURL command for sending an authentication request to the
Rackspace Cloud Identity service.

Example: cURL command for sending a JSON request

$ curl https://identity.api.rackspacecloud.com/v2.0/tokens \
 -X POST \
 -d '{"auth":{"RAX-KSKEY:apiKeyCredentials":{"username":"yourUserName","apiKey":"$apiKey"}}}' \
 -H "Content-Type: application/json" \
 | python -m json.tool

In this example, $apiKey is an environment variable that stores your API key value. Environment
variables make it easier to reference account information in API requests, to reuse the same
cURL commands with different credentials, and to keep sensitive information like your API key
from being exposed when you send requests to Rackspace Cloud API services. For details about
creating environment variables, see Configure environment variables.

Note: The carriage returns in the cURL request examples use a backslash (\) as an escape

character. The escape character allows continuation of the command across multiple
lines.

The cURL examples in this guide use the following command-line options.

Comment [KH2]: Insert a comma here

Deleted: type

http://www.getpostman.com/
https://addons.mozilla.org/en-US/firefox/addon/restclient
http://curl.haxx.se/
https://developer.rackspace.com/docs/cloud-keep/v1/developer-guide/%23configure-environment-variables

Option Description

-d Sends the specified data in a POST request to the HTTP server. Use this option to send a JSON
request body to the server.

-H

Specifies an extra HTTP header in the request. You can specify any number of extra
headers. Precede each header with the -H option.

Common headers in Rackspace API requests are as follows:

• Content-Type: Required for operations with a request body. Specifies the format of the
request body. Following is the syntax for the header where format is json:

Content-Type: application/json

• X-Auth-Token: Required. Specifies the authentication token.

• X-Auth-Project-Id: Optional. Specifies the project ID, which can be your account number or

another value.

• Accept: Optional. Specifies the format of the response body. Following is the syntax for the
header where the format is json, which is the default:

Accept: application/json

-i Includes the HTTP header in the output.

-s
Specifies silent or quiet mode, which makes cURL mute. No progress or error messages
are shown.

If your cURL command is not generating any output, try replacing the -s option with -i.

-T Transfers the specified local file to the remote URL.

-X Specifies the request method to use when communicating with the HTTP server. The specified
method is used instead of the default method, which is GET.

Formatted: Indent: Left: 0.28"

Comment [KH3]: Be sure to indent the code
blocks in this cell under the bullet items.

Formatted: Indent: Left: 0.28"

For commands that return a response, use json.tool to pretty-print the output by appending the
following command to the cURL call:

| python -m json.tool

To use json.tool, import the JSON module. For information about json.tool, see JSON encoder
and decoder.

If you run a Python version earlier than 2.6, import the simplejson module and use
simplejson.tool. For information about simplejson.tool, see simplejson encoder and decoder.

If you do not want to pretty-print JSON output, omit this code.

Authenticate to the Rackspace Cloud
Whether you use cURL, a REST client, or a command-line client (CLI) to send requests to the
Rackspace Cloud Keep API, you need an authentication token to include in the X-Auth-

Token header of each API request.

With a valid token, you can send API requests to any of the API service endpoints that you are
authorized to use. The authentication response includes a token expiration date. When a token
expires, you can send another authentication request to get a new one.

Note: For more information about authentication tokens, see the following topics in the
Rackspace Cloud Identity developer documentation.

• Authentication token operations
The examples in the Getting Started Guide show how to authenticate by using
username and API key credentials, which is a more secure way to communicate with
API services. The authentication token operations reference describes other types of
credentials that you can use for authentication.

• Manage tokens and token expiration

http://docs.python.org/2/library/json.html
http://docs.python.org/2/library/json.html
http://simplejson.googlecode.com/svn/tags/simplejson-2.0.9/docs/index.html
http://developer.rackspace.com/docs/cloud-identity/v2/developer-guide/%23document-api-operations/token-operations
http://developer.rackspace.com/docs/cloud-identity/v2/developer-guide/%23manage-authentication-tokens

Follow these steps to authenticate to the Rackspace Cloud by using cURL:
• Send an authentication request
• Review the authentication response
• Configure environment variables

Send an authentication request

From a command prompt, send a POST tokens request to the Rackspace Cloud Identity service.
Include your username and API key as shown in the following example.

Example: Authentication request

$ curl https://identity.api.rackspacecloud.com/v2.0/tokens \
 -X POST \
 -d '{"auth":{"RAX-KSKEY:apiKeyCredentials":{"username":"yourUserName","apiKey":"$apiKey"}}}' \
 -H "Content-type: application/json" \
 | python -m json.tool

Review the authentication response

If your credentials are valid, the Identity service returns an authentication response that includes
the following information:

• An authentication token

• A service catalog with information about the services that you can access

• User information and role assignments

Note: For detailed information about the authentication response, see Annotated authentication

request and response in the Rackspace Cloud Identity documentation.

In the following example response, the ellipsis (...) represents other service endpoints, which are
not shown. The values shown in this and other examples vary because the information returned is
specific to your account.

https://developer.rackspace.com/docs/cloud-keep/v1/developer-guide/%23how-curl-commands-work
https://developer.rackspace.com/docs/cloud-keep/v1/developer-guide/%23send-auth-req-curl
https://developer.rackspace.com/docs/cloud-keep/v1/developer-guide/%23review-auth-resp
https://developer.rackspace.com/docs/cloud-keep/v1/developer-guide/%23configure-environment-variables
https://developer.rackspace.com/docs/cloud-keep/v1/developer-guide/%23get-credentials
http://developer.rackspace.com/docs/cloud-identity/v2/developer-guide/%23document-authentication-info/sample-auth-req-response
http://developer.rackspace.com/docs/cloud-identity/v2/developer-guide/%23document-authentication-info/sample-auth-req-response

Example: Authentication response

{
 "access": {
 "token": {
 "id": "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx",
 "expires": "2014-11-24T22:05:39.115Z",
 "tenant": {
 "id": "110011",
 "name": "110011"
 },
 "RAX-AUTH:authenticatedBy": [
 "APIKEY"
]
 },
 "serviceCatalog": [
 {
 "name": "cloudDatabases",
 "endpoints": [
 {
 "publicURL": "https://syd.databases.api.rackspacecloud.com/v1.0/110011",
 "region": "SYD",
 "tenantId": "110011"
 },
 {
 "publicURL": "https://dfw.databases.api.rackspacecloud.com/v1.0/110011",
 "region": "DFW",
 "tenantId": "110011"
 },
 {
 "publicURL": "https://ord.databases.api.rackspacecloud.com/v1.0/110011",
 "region": "ORD",
 "tenantId": "110011"
 },
 {
 "publicURL": "https://iad.databases.api.rackspacecloud.com/v1.0/110011",
 "region": "IAD",
 "tenantId": "110011"
 },
 {
 "publicURL": "https://hkg.databases.api.rackspacecloud.com/v1.0/110011",
 "region": "HKG",
 "tenantId": "110011"
 }
],
 "type": "rax:database"
 },

 ...

 {
 "name": "cloudDNS",
 "endpoints": [
 {
 "publicURL": "https://dns.api.rackspacecloud.com/v1.0/110011",
 "tenantId": "110011"
 }
],
 "type": "rax:dns"
 },
 {
 "name": "rackCDN",
 "endpoints": [
 {
 "internalURL": "https://global.cdn.api.rackspacecloud.com/v1.0/110011",
 "publicURL": "https://global.cdn.api.rackspacecloud.com/v1.0/110011",
 "tenantId": "110011"
 }
],

 "type": "rax:cdn"
 }
],
 "user": {
 "id": "123456",
 "roles": [
 {
 "description": "A Role that allows a user access to keystone Service methods",
 "id": "6",
 "name": "compute:default",
 "tenantId": "110011"
 },
 {
 "description": "User Admin Role.",
 "id": "3",
 "name": "identity:user-admin"
 }
],
 "name": "jsmith",
 "RAX-AUTH:defaultRegion": "ORD"
 }
 }
}

If the request was successful, you can find the authentication token and other information in the
authentication response. You’ll need these values to submit requests to the API. See Configure
environment variables.

If the request failed, review the response message and the following error message descriptions
to determine next steps.

• If you see the following message, review the authentication request for syntax or coding
errors. If you are using cURL, see the section on using cURL.

400 Invalid request body: unable to parse Auth data. Please review XML or JSON formatting

• If you see the following message, verify the authentication credentials submitted in the
authentication request. If necessary, contact your Rackspace Cloud Administrator or
Rackspace Support to get valid credentials.

401 Unable to authenticate user with credentials provided.

• If you see the following message, verify that your user has the correct service catalog entries
and roles to access the service. If necessary, contact your Rackspace Cloud Administrator or
Rackspace Support to verify authorization.

403 Forbidden. Not Authorized.

Note: For more information about authentication and authorization errors, see the Cloud
Identity API Reference documentation.

Configure environment variables

The authentication response returns the following values that you need to include when you
make service requests to the Rackspace Cloud Keep API.

Formatted: Indent: Left: 0", Bulleted + Level:
1 + Aligned at: 0.25" + Indent at: 0.5"

Formatted: Indent: Left: 0", Bulleted + Level:
1 + Aligned at: 0.25" + Indent at: 0.5"

Formatted: Indent: Left: 0", Bulleted + Level:
1 + Aligned at: 0.25" + Indent at: 0.5"

Deleted: /or

Deleted: your

https://developer.rackspace.com/docs/cloud-keep/v1/developer-guide/%23configure-environment-variables
https://developer.rackspace.com/docs/cloud-keep/v1/developer-guide/%23configure-environment-variables
https://developer.rackspace.com/docs/cloud-keep/v1/developer-guide/%23how-curl-commands-work
http://developer.rackspace.com/docs/cloud-identity/v2/developer-guide/%23document-api-operations/token-operations
http://developer.rackspace.com/docs/cloud-identity/v2/developer-guide/%23document-api-operations/token-operations

token ID

The authentication token ID value is required to confirm your identity each time you
access the service. You include it in the X-Auth-Token header for each API request.
The expires attribute indicates the date and time that the token will expire, unless it is
revoked prior to the expiration. To get a new token, submit another authentication
request. For more information, see Manage tokens and token expiration.

tenant ID

The tenant ID value provides your account number. For most Rackspace Cloud service APIs, the
tenant ID is appended to the API endpoint in the service catalog automatically.

endpoints

The endpoints object provides the URLs that you can use to access the API service. For guidance
on choosing an endpoint, see Service access.

To make it easier to include these and other values in API requests, use the export command to
create environment variables that can be substituted for the actual values. For example, you can
create an ENDPOINT variable to store the URL for accessing an API service. To reference the
value in an API request, prefix the variable name with a $, for example $ENDPOINT.

Note: The environment variables created with the export command are valid only for the current

terminal session. If you start a new session, run the export commands again.

To reuse the variables across sessions, update the configuration file for your shell
environment to include the export statements. For details about using and managing
environment variables on different systems, see the Environment variables wiki.

Create environment variables

1. In the token section of the authentication response, copy the token id and tenant id values from

the token object. The following example shows sample values only.

{
 "access": {
 "token": {

http://developer.rackspace.com/docs/cloud-identity/v2/developer-guide/%23manage-authentication-tokens
https://developer.rackspace.com/docs/cloud-keep/v1/developer-guide/%23service-access-endpoints
http://environmentvariables.org/

 "id": "AA2345631l1NVdD6D1OCauKA0e9fioquZqVlS-
hpbCqQ5Yx1zLOREGf4efBh10CfB5AvjC1yld4ZNJUouE7DA0QB0n5nRbdDsYADA-
ORICIqHNqOVS_kYmedqDh75c_PLe123456789101",
 "expires": "2015-11-18T18:35:45.013Z",
 "tenant": {
 "id": "123456",
 "name": "123456"
 },
 "RAX-AUTH:authenticatedBy": [
 "APIKEY"
]
 },

2. Export the token ID to an environment variable that can be supplied in the X-Auth-

Token header required in each API request. Replace token-id with the authentication
token id value returned in the authentication response.

$ export AUTH_TOKEN="token-id"

3. Export the tenant ID to an environment variable that can be supplied in requests that require

you to specify a tenant ID or tenant name. Replace tenant-id with the authentication
token tenant id value returned in the authentication response.

$ export TENANT_ID="tenant-id"

4. In the service catalog section of the authentication response, copy the publicURL value for the

Rackspace Cloud Keep API, version, and region that you want to access.

The following example shows the endpoint available for the Rackspace Cloud Keep API.

 {
 "name": "cloudKeep",
 "endpoints": [
 {
 "region": "IAD",
 "tenantId": "123456",
 "publicURL": "https://iad.keep.api.rackspacecloud.com"
 }
],
 "type": "key-manager"
 }

Formatted: code_body Char, Font color: Auto,
Border: : (No border)

Formatted: code_body Char, Font color: Auto,
Border: : (No border)

Deleted: Example:

Note: For some services, the publicURL value for Rackspace Cloud Keep API consists of the
service access endpoint URL with the tenant ID for your account appended after the /.

5. Export the URL to an environment variable, as shown in the following example. Replace
publicURL with the publicURL value listed in the service catalog.

$ export ENDPOINT="publicURL"

Create and manage secrets
You can use the examples in this section to create and manage secrets by using Rackspace Cloud
Keep API operations. Example requests are provided in cURL, followed by the response.

Before running the examples, review the Rackspace Cloud Keep concepts to understand the API
workflow and use cases.

Note: These examples use the $ENDPOINT and $AUTH_TOKEN environment variables to specify

the API endpoint and authentication token for accessing the service. Be sure to configure
these variables before running the code samples.

For more information about all Cloud Keep operations, see the API reference.

Store a secret

You can store a secret by submitting a POST request against the secrets resource and including
the secret in the ``payload`` parameter. You specify the secret payload type in the
payload_content_type parameter:

• For text-based secrets, set the payload_content_type parameter to text/plain.
• For binary secrets, set the payload_content_type parameter to application/octet-stream.

Note: Note The secrets resource encrypts and stores client-provided secret information and

metadata. Submitting a POST request creates secret metadata. If the payload is provided
with the POST request, it is encrypted and stored, and then linked with this metadata. If

Deleted: Replace

Formatted: code_body Char, Font color: Auto,
Border: : (No border)

Deleted: include

Comment [KH4]: For some reason, the tagging
is appearing, instead of the correct formatting.

Comment [KH5]: Delete the word Note.

Deleted: then

https://developer.rackspace.com/docs/cloud-keep/v1/developer-guide/%23concepts
https://developer.rackspace.com/docs/cloud-keep/v1/developer-guide/%23configure-environment-variables
https://developer.rackspace.com/docs/cloud-keep/v1/developer-guide/%23configure-environment-variables
https://developer.rackspace.com/docs/cloud-keep/v1/developer-guide/%23api-reference

no payload is included with the POST request, it must be provided in a subsequent
PUT request.

The following example shows how to store a secret in the format of an AES key by submitting
a POST request with the base64-encoded secret payload specified against the secrets resource.

Example: Store a secret, request

$ curl -X POST -H 'Content-Type: application/json' -H 'Accept: application/json'\
-H 'X-Auth-Token: '$AUTH_TOKEN -d\
 '{
 "name": "AES key",
 "expiration": "2020-02-28T19:14:44.180394",
 "algorithm": "aes",
 "bit_length": 256,
 "mode": "cbc",
 "payload": "gF6+lLoF3ohA9aPRpt+6bQ==",
 "payload_content_type": "application/octet-stream",
 "payload_content_encoding": "base64"
 }' $API_ENDPOINT/v1/secrets

If the request is successful, you will receive a response like the following one.

Example: Store a secret, response

"{"secret_ref": "https://iad.keep.api.rackspacecloud.com/v1/secrets/578391c7-92fa-484f-8546-3562b170e5"}"

The preceding example shows the secret ID (578391c7-92fa-484f-8546-3562b170e5), which will
be returned in a successful response from the https://iad.keep.api.rackspacecloud.com endpoint.

For subsequent API calls that require a secret ID, you should set an environment variable as
follows:

$ export SECRET_ID=578391c7-92fa-484f-8546-3562b170e5

Note: Note You can also store a secret by submitting a POST request without specifying the

secret payload and then submitting a subsequent PUT request with the payload. This
storage mode enables you to upload a binary file to Cloud Keep directly for encrypted
storage. For more information, see Create and store a secret by using two requests.

Comment [KH6]: the payload?

Deleted: with

Formatted: Indent: Left: 0"

Comment [KH7]: This paragraph is part of the
preceding note, but it should not be. Remove it
from the note and make it a regular paragraph.

Deleted: wth

Deleted: ¶

Deleted: :

Deleted: The

Deleted: above

Deleted: Id

Deleted: endpoint

Deleted: requiring

Comment [KH8]: Delete the word Note.

Deleted: first

Deleted: a

Deleted: read

Deleted: -step storage

https://iad.keep.api.rackspacecloud.com/
https://developer.rackspace.com/docs/cloud-keep/v1/developer-guide/%23gsg-two-step-secret-creation
https://developer.rackspace.com/docs/cloud-keep/v1/developer-guide/%23gsg-two-step-secret-creation

Create and store a secret by using two requests

When you cannot easily provide secret data inside the JSON data in the initial POST request,
you can use a subsequent PUT request to provide the data.

1. Create the secret metadata in Cloud Keep by sending a POST request, as shown in the
following example:

$ curl -i -X POST -H 'Content-Type: application/json' -H 'X-Auth-Token: '$AUTH_TOKEN -d \ '{"name":
"Binary Key File"}' $API_ENDPOINT/v1/secrets

If the call is successful, you receive a 201 Created response, as shown in the following
example:

HTTP/1.1 201 Created
Date: Tue, 01 Mar 2016 23:04:16 GMT
Location: https://iad.keep.api.rackspacecloud.com:443/v1/secrets/e56fbf98-e670-41b4-96a1-8ed095df2345
Via: 1.1 Repose (Repose/7.3.1.0)
Date: Tue, 01 Mar 2016 23:04:16 GMT
x-trans-id:
09skcXF1ZXN0SWQiOijkms8yYTQ4MS1hOWEBABABOOEYEtYWZlOC0pl97sYzRhYTI3NmUiLCJvcml
naW4iOm51bGx9
X-NewRelic-App-Data:
0skclp8xDgoTVVBaBAYGXlwTGhE1AwE2QgNWEVlbQFtcCxY0QwgcFFUZRAQFEV1HQ0ZNUhsBGVZ
XBAUGUF9WNCJUS81UNAAMLH1cBTRMDBQFRV1JYUFUAAAgABQBV9k8jsV1FVj8=
x-openstack-request-id: req-01be5361-b1a8-4da5-bff3-683cb10f62dc
Content-Type: application/json; charset=UTF-8
Content-Length: 105
Server: Jetty(9.2.z-SNAPSHOT)

{"secret_ref": "https://iad.keep.api.rackspacecloud.com/v1/secrets/943c8f98-e980-4cc4-0da1-8ed0993bcf55"}

The secret metadata is now stored in Cloud Keep with a secret ID of 943c8f98-e980-4cc4-0da1-

8ed0993bcf55. Note that you have only created secret metadata, not the actual secret itself. You
need to remember the secret ID for the subsequent PUT request that will store the payload
itself. You can export it to an environment variable, as follows:

$ export SECRET_ID=943c8f98-e980-4cc4-0da1-8ed0993bcf55

[KH: The preceding code block is not indented, which causes the numbering below to restart.]

Comment [KH9]: Note that I have moved this
subsection from the end of the section to here. I
think that it makes more sense to provide all the
information about storing secrets together.

Deleted: -step storage

Deleted: You can use a two-step secret storage
process when secret data cannot be easily provided
inside the JSON data in a one-step secret storage

Deleted: To follow the two-step process, first c

Deleted: successfull

Deleted: which

1. Create a file with random data to be used as a secret key file. The following command creates
a 5 KB file in the current directory that contains random data:

$ dd if=/dev/random of=secret_key_file count=5 bs=1024

2. Submit a PUT request that includes the secret key file that you just created, as shown in the

following example:

$ curl -i -X PUT -H 'Content-Type: application/octet-stream'\
 -H 'X-Auth-Token: '$AUTH_TOKEN \
 -T ./secret_key_file $API_ENDPOINT/v1/secrets/$SECRET_ID

3. Cloud Keep encrypts and stores the contents of the secret key file, associates it with the

previously created metadata, and responds with an empty 204 No Content message, as shown
in the following example:

HTTP/1.1 204 No Content
Date: Tue, 01 Mar 2016 23:13:10 GMT
Via: 1.1 Repose (Repose/7.3.1.0)
Date: Tue, 01 Mar 2016 23:13:10 GMT
x-trans-id:
ekdmc8F1ZXN0SWQiOiIzMTMyNTQ4ZS00NDA1LTQ2OTgtOTYzOS0093jcmksz5DA1ZTYiLCJvcmlnaW
4iOm51bGx9
X-NewRelic-App-Data:
kjm83ghzn0oTVVBaBAYGXlwTGhE1AwE2QgNWEVlbQFtcCxY0QwgcFFUZRAQFEV1HQ0sCWlYIB15c
VBtXUFFaTwRXCgQVWgdWAkhbB1QABFBdUwcEUFMaHwBIUUwFAQFRXAUGA1tfUFEEVQlUABQ
BAwFVFUMEBFBaVgMAWVBQDQQAVVJTFR1RBwhCU24=
x-openstack-request-id: req-c90c5678-c3df-9279-a94c-94c9f5c062e3
Server: Jetty(9.2.z-SNAPSHOT)

Now you can use a GET request to retrieve the secret, as explained in Retrieve a secret.

Retrieve a secret

After you have created and stored a secret, you can submit a GET request to retrieve either the
secret metadata or the actual decrypted secret, depending on the URL that is used in
the GET request.

• To retrieve only the secret metadata, submit the request to the /v1/secrets/$SECRET_ID resource.
• To retrieve the decrypted secret, submit the request to the /v1/secrets/$SECRET_ID/payload resource.

Deleted: Next, c

Deleted: 5KB

Deleted: in the current directory:

Deleted: Next, s

Comment [KH10]: This should not be formatted
as a step. Instead, it should be a paragraph under
the preceding step.

https://developer.rackspace.com/docs/cloud-keep/v1/developer-guide/%23gsg-retrieve-a-secret

The following example retrieves the secret metadata by submitting a GET request against the
endpoint URL with the secret ID specified.

Example: Retrieve secret metadata, request

$ curl -X GET $API_ENDPOINT/v1/secrets/$SECRET_ID \
 -H "X-Auth-Token: $AUTH_TOKEN" | python -m json.tool

If the call is successful, the response looks like the following example, assuming that your
API_ENDPOINT is https://iad.keep.api.rackspacecloud.com. :

Example: Retrieve secret metadata, response

{
 "algorithm": "aes",
 "bit_length": 256,
 "content_types": {
 "default": "application/octet-stream"
 },
 "created": "2016-02-29T19:25:31.993225",
 "creator_id": "9a756651fa1046c983d8afaefd4f0c71",
 "expiration": "2020-02-28T19:14:44.180394",
 "mode": "cbc",
 "name": "AES key",
 "secret_ref": "https://iad.keep.api.rackspacecloud.com/v1/secrets/578391c7-
92fa-484f-8546-3562b170e5",
 "secret_type": "opaque",
 "status": "ACTIVE",
 "updated": "2016-02-29T19:25:31.999733"
}

The following example shows how to retrieve the secret payload by submitting a GET request
against the endpoint URL with the secret ID specified.

Example: Retrieve decrypted secret, request

$ curl -X GET $API_ENDPOINT/v1/secrets/$SECRET_ID/payload \
 -H "X-Auth-Token: $AUTH_TOKEN"

Deleted: ¶
Example: Retrieve secret metadata request¶

Moved down [1]: Example: Retrieve
decrypted secret request¶

Moved (insertion) [1]

https://iad.keep.api.rackspacecloud.com/

If the call is successful, you receive a response that contains the decrypted secret.

Retrieve a list of stored secrets

Perform a GET request on the secrets resource to retrieve a list of secrets that are associated with
your tenant.

By default, the API request returns the first 11 secrets associated with the tenant. You can use
the limit and offset request parameters to specify the number of secrets returned in a single
request and to set the starting point for the list.

The following example specifies limit and offset values to return five secrets, starting with the
first.

Example: Retrieve list of secrets, request

$ curl -X GET $API_ENDPOINT/v1/secrets?limit=5\&offset=0 \
 -H "Accept: application/json" \
 -H "X-Auth-Token: $AUTH_TOKEN" \
 -H "Content-Type: application/json" \
 | python -m json.tool

If the operation is successful, the response returns a list of secrets as shown in the following
example.

Note: If additional secrets have been stored, the returned data contains next and previous links so
that you can page through the data.

Example: Retrieve list of secrets, response

{
"next": "https://iad.keep.api.rackspacecloud.com/v1/secrets?limit=5&offset=5",
"secrets": [
 {
 "algorithm": "aes",
 "bit_length": 256,
 "content_types": {
 "default": "application/octet-stream"
 },
 "created": "2016-02-29T19:25:31.993225",

Deleted: containing

Comment [KH11]: This term is not linked in any
of the preceding sections. I would say that if you
want to link to the concept section, do it at the first
occurrence of the term in the beginning of this
section, rather than here.

Comment [KH12]: In the “Get secrets” section
of the API Reference, the description of the limit
parameter says that the default is 10. That seems
more likely to be the correct number!

Formatted: code_body Char, Font color: Auto,
Border: : (No border)

Formatted: code_body Char, Font color: Auto,
Border: : (No border)

Deleted: limit

https://developer.rackspace.com/docs/cloud-keep/v1/developer-guide/%23secrets-concept

 "creator_id": "9a756651fa1046c983d8afaefd4f0c71",
 "expiration": "2020-02-28T19:14:44.180394",
 "mode": "cbc",
 "name": "AES key",
 "secret_ref": "https://iad.keep.api.rackspacecloud.com/v1/secrets/578391c7-
92fa-484f-8546-3562b170e5",
 "secret_type": "opaque",
 "status": "ACTIVE",
 "updated": "2016-02-29T19:25:31.999733"
 },
 {
 "algorithm": "aes",
 "bit_length": 256,
 "content_types": {
 "default": "application/octet-stream"
 },
 "created": "2016-02-29T19:23:44.974085",
 "creator_id": "9a756651fa1046c983d8afaefd4f0c71",
 "expiration": "2020-02-28T19:14:44.180394",
 "mode": "cbc",
 "name": "AES key",
 "secret_ref": "https://iad.keep.api.rackspacecloud.com/v1/secrets/94f88434-
512c-4b4b-be3e-9469fc6824e2",
 "secret_type": "opaque",
 "status": "ACTIVE",
 "updated": "2016-02-29T19:23:44.981439"
 },
 {
 "algorithm": "aes",
 "bit_length": 256,
 "content_types": {
 "default": "application/octet-stream"
 },
 "created": "2016-02-29T19:18:15.639569",
 "creator_id": "9a756651fa1046c983d8afaefd4f0c71",
 "expiration": "2020-02-28T19:14:44.180394",
 "mode": "cbc",
 "name": "AES key",
 "secret_ref": "https://iad.keep.api.rackspacecloud.com/v1/secrets/98bccb6e-
67c6-87a9-b7a4-98198b4f1732",
 "secret_type": "opaque",
 "status": "ACTIVE",
 "updated": "2016-02-29T19:18:15.648516"
 },
 {
 "algorithm": "aes",
 "bit_length": 256,
 "content_types": {
 "default": "application/octet-stream"

 },
 "created": "2016-02-29T19:13:37.888706",
 "creator_id": "9a756651fa1046c983d8afaefd4f0c71",
 "expiration": "2018-02-28T19:14:44.180394",
 "mode": "cbc",
 "name": "AES key",
 "secret_ref": "https://iad.keep.api.rackspacecloud.com/v1/secrets/ba87c04f-
797c-4f69-8fb6-d01db61d9573",
 "secret_type": "opaque",
 "status": "ACTIVE",
 "updated": "2016-02-29T19:13:37.896416"
 },
 {
 "algorithm": "aes",
 "bit_length": 256,
 "content_types": {
 "default": "application/octet-stream"
 },
 "created": "2016-02-29T15:54:34.474305",
 "creator_id": "9a756651fa1046c983d8afaefd4f0c71",
 "expiration": "2018-02-28T19:14:44.180394",
 "mode": "cbc",
 "name": "AES key",
 "secret_ref": "https://iad.keep.api.rackspacecloud.com/v1/secrets/19f7f7aa-
817c-49cc-b252-441df7b44a4c",
 "secret_type": "opaque",
 "status": "ACTIVE",
 "updated": "2016-02-29T15:54:34.485707"
 }
],
"total": 23
}

Developer Guide
This guide is intended to assist software developers who want to develop applications by using
the REST application programming interface (API) for the Rackspace Cloud Keep service.

To use the information provided here, you should have a general understanding of the Rackspace
Cloud Keep service and have a Rackspace Cloud account with access to the Cloud Keep service.
You should also be familiar with the following technologies:

• RESTful web services
• HTTP/1.1

• JSON data serialization format

Concepts
Review the following key concepts and architectural overview to learn how Rackspace Cloud
Keep enables secure life-cycle management for keys and credentials.

Secret

A secret is a single item that is stored within Rackspace Cloud Keep. A secret is any data that
requires security-conscious storage, such as a key, credential, or configuration file. The typical
use case for a secret is an encryption key that you want to keep safe.

Following are some examples of a secret:

• Private key

• Certificate

• Password

• SSH key

The secret schema represents the actual data that is presented to the Rackspace Cloud Keep
service. Secrets themselves can be any format.

The following example shows the specification for a secret that has been added to Rackspace
Cloud Keep:

Comment [KH13]: Do not italicize.

Comment [KH14]: Do not italicize.

Deleted: s

Formatted: Font: Italic

Deleted: singular

Deleted: It

Deleted: , etc

Deleted: wish

Deleted: store away from prying eyes

Deleted: S

Deleted: may include

Comment [KH15]: This look like it is formatted
as a definition list, but it should not be. Just make
this a regular paragraph.

Deleted: Key

Deleted: Keys

Deleted: secret or key

https://cart.rackspace.com/cloud

{
 "uuid": "e2b633c7-fda5-4be8-b42c-9a2c9280284d",
 "name": "AES key",
 "expiration": "2018-02-28T19:14:44.180394",
 "secret": "b7990b786ee9659b43e6b1cd6136de07d9c5…",
 "secret_type": "application/aes-256-cbc",
 }

A secret consists of the following elements:

Element Description

uuid
Unique identifier for the secret. This value is assigned by the API.

name
Human-readable name for the secret.

expiration
The expiration date for the secret in ISO 8601 format. After the secret expires, it is no
longer returned by the API or agent.

secret
The base64-encoded value of the secret.

secret_type

(optional) The secret type. The possible secret types are as follows:

• symmetric: Used for storing byte arrays such as keys suitable for symmetric
encryption

• public: Used for storing the public key of an asymmetric key pair

• private: Used for storing the private key of an asymmetric key pair

• passphrase: Used for storing plain-text passphrases

• certificate: Used for storing cryptographic certificates such as X.509 certificates

You can use one of the following methods to store a secret:

• Submit a POST request against the secrets resource. Include the secret metadata in the JSON body
and include the secret itself in the payload parameter.

• Submit a POST request without a payload parameter against the secrets resource and then include the
payload in a subsequent PUT request. This mode enables you to upload a binary file to the Rackspace

Deleted: -

Deleted: Once

Deleted: has

Deleted: d

Deleted: will

Deleted: be

Formatted: Font: Italic

Comment [KH16]: I’m a little confused by the
types listed here. In the examples shown earlier, the
secret_type values don’t match what is shown here.
Are these just general type values, and the actual
values will be specific examples of these general
types? I guess I would just want it to be clear that
these are not actual values.

Deleted: .

Deleted: keypair

Deleted: .

Deleted: keypair

Deleted: .

Deleted: .

Deleted: .

Cloud Keep database directly for encrypted storage.

Note: Note Submitting a POST request creates secret metadata. If the payload is provided with
the POST request, then it is encrypted and stored, and then linked with this metadata. If
no payload is included with the POST request, it must be provided with a subsequent
PUT request. The secret resource encrypts and stores client-provided secret information
and metadata.

Container

The containers resource simplifies secrets management in environments that have large numbers
of secrets.

A container is a logical object that you can use to store reference links to secrets resources that
are related by relationship or type. For example, you can create a single container to group
secrets for a private key, certificate, and bundle for an SSL certificate. Containers simplify the
task of managing large numbers of secrets resources.

Rackspace Cloud Keep supports the following types of containers:

• Generic
• Certificate
• RSA

Each of these types have explicit restrictions as to what type of secrets should be held within.
These will be broken down in their respective sections.

This guide assumes that you are running Rackspace Cloud Keep in a local development
environment.

Generic containers

A generic container is used to hold any type or number of secrets. There are no restrictions on
the type or number of secrets that can be held within a generic container.

Comment [KH17]: Delete the word Note.

Comment [KH18]: I don’t think you need this
note here. It is provided in the section about storing
secrets.

Deleted: is the organizational center piece of
Rackspace Cloud Keep that

Formatted: Font: Italic

Deleted: that can be used

Deleted: references

Deleted: 3

Comment [KH19]: This look like it is formatted
as a definition list, but it should not be. Just make
this a regular paragraph.

Comment [KH20]: This paragraph isn’t really
necessary, and it is misleading because generic
containers don’t have explicit restrictions. Plus. the
subsequent sections describe any restrictions.

Comment [KH21]: It is not clear to me why this
information is here. What does running Cloud Keep
in a local development environment have to do with
containers? Make the connection more explicit.
Also, do we expect this only in regards to
containers? Or should this statement be made
earlier in the doc?

Deleted: Containers

Deleted: for any type of container that a user may
wish to create.

Deleted: amount

https://developer.rackspace.com/docs/cloud-keep/v1/developer-guide/%23generic-containers
https://developer.rackspace.com/docs/cloud-keep/v1/developer-guide/%23certificate-containers
https://developer.rackspace.com/docs/cloud-keep/v1/developer-guide/%23rsa-containers

An example use case for a generic container is storing multiple passwords in the same container
reference, as shown in the following example:

{
 "type": "generic",
 "status": "ACTIVE",
 "name": "Test Environment User Passwords",
 "consumers": [],
 "container_ref": "https://{cloudkeep_host}/v1/containers/{container_uuid}",
 "secret_refs": [
 {
 "name": "test_admin_user",
 "secret_ref": "https://{cloudkeep_host}/v1/secrets/{secret1_uuid}"
 },
 {
 "name": "test_audit_user",
 "secret_ref": "https://{cloudkeep_host}/v1/secrets/{secret2_uuid}"
 }
],
 "created": "2015-03-30T21:10:45.417835",
 "updated": "2015-03-30T21:10:45.417835"
}

Certificate containers

A certificate container is used to store the following secrets that are relevant to certificates:

• certificate

• private_key (optional)

• private_key_passphrase (optional)

• intermediates (optional)

{
 "type": "certificate",
 "status": "ACTIVE",
 "name": "Example.com Certificates",
 "consumers": [],
 "container_ref": "https://{cloudkeep_host}/v1/containers/{container_uuid}",
 "secret_refs": [
 {
 "name": "certificate",
 "secret_ref": "https://{cloudkeep_host}/v1/secrets/{cert_uuid}"

Deleted: of a

Deleted: would be

Deleted: having

Deleted: stored

Deleted: Containers

Deleted: for storing

Comment [KH22]: The implication is that the
container can hold any of the secrets in this list, not
that it must. Given that, the (optional) qualifiers do
not seem necessary.

 },
 {
 "name": "private_key",
 "secret_ref": "https://{cloudkeep_host}/v1/secrets/{pk_uuid}"
 },
 {
 "name": "private_key_passphrase",
 "secret_ref": "https://{cloudkeep_host}/v1/secrets/{pass_uuid}"
 },
 {
 "name": "intermediates",
 "secret_ref": "https://{cloudkeep_host}/v1/secrets/{inters_uuid}"
 }

],
 "created": "2015-03-30T21:10:45.417835",
 "updated": "2015-03-30T21:10:45.417835"
}

The payload for the secret referenced as the certificate is expected to be a PEM formatted
x509 certificate.

The payload for the secret referenced as the intermediates is expected to be a PEM formatted
PKCS7 certificate chain.

RSA containers

An RSA container is used to store RSA public keys, private keys, and private key pass phrases.

{
 "type": "rsa",
 "status": "ACTIVE",
 "name": "John Smith RSA",
 "consumers": [],
 "container_ref": "https://{cloudkeep_host}/v1/containers/{container_uuid}",
 "secret_refs": [
 {
 "name": "private_key",
 "secret_ref": "https://{cloudkeep_host}/v1/secrets/{pk_uuid}"
 },
 {
 "name": "private_key_passphrase",
 "secret_ref": "https://{cloudkeep_host}/v1/secrets/{pass_uuid}"
 },
 {

Deleted: “

Formatted: code_body Char, Font: (Default)
Times New Roman, Font color: Auto

Deleted: ”

Deleted: “

Formatted: code_body Char, Font: (Default)
Times New Roman, Font color: Auto

Deleted: ”

Deleted: Containers

Deleted: for storing

 "name": "public_key",
 "secret_ref": "https://{cloudkeep_host}/v1/secrets/{pubkey_uuid}"
 }

],
 "created": "2015-03-30T21:10:45.417835",
 "updated": "2015-03-30T21:10:45.417835"
}

Quotas

All users authenticated with Rackspace Cloud Keep are able to read the effective quota values
that apply to their project. Rackspace Cloud Keep can derive the project that a user belongs to by
reading the project scope from the authentication token.

Service administrators can read, set, and delete quota configurations for each project known to
Rackspace Cloud Keep. These operations are available to an authenticated user that has the
service administrator role. This role is defined in the Rackspace Cloud Keep policy.json
configuration file. The name for a service administrator role is keep:service-admin.

Quotas can be enforced for the following Rackspace Cloud Keep resources: secrets, containers,
and consumers. The configured quota value can be as follows:

• -1, which means there is no limit to the number of resources that you can create

• 0, which means that the resource has been disabled

• A positive integer, which defines the maximum number of a resource that is allowed for a project

If no value is specified, Rackspace Cloud Keep uses the default setting (see the following
section), and the quota value is set to None.

Default quotas

When no quotas have been set for a project, the default quotas are enforced for that project.
Default quotas are specified in the Rackspace Cloud Keep configuration file (barbican.conf).
The defaults provided in the standard configuration file are as follows:

default number of secrets allowed per project

Comment [KH23]: I think that it might be better
to start this section with the paragraph that begins,
“Quotas can be enforced…,” followed by the bullet
list and the last paragraph. Then, the paragraphs
that are now first and second would be last. This
way, quota is defined first, then the user is told how
to find them.

Comment [KH24]: I know that project is a main
idea in OpenStack, but it is not that widely used as a
concept in Rackspace Cloud products. I think that it
should probably be defined here, to provide some
context. Or,

Formatted: code_body Char, Font: (Default)
Times New Roman, Font color: Auto

Deleted: ¶

Deleted: “

Formatted: code_body Char, Font: (Default)
Times New Roman, Font color: Auto

Deleted: ”

Deleted: ing

Deleted: meaning

Deleted: is

Deleted: positive

Deleted: defining

Comment [KH25]: Is this the actual value that is
shown? If so, show it in monospace.

Deleted: Quotas

Deleted: project

Deleted: project

Formatted: code_body Char, Font: (Default)
Times New Roman, Font color: Auto

Deleted: .

quota_secrets = -1

default number of containers allowed per project
quota_containers = -1

default number of consumers allowed per project
quota_consumers = -1

The default quotas are returned via a GET request on the quotas resource when no explicit
project quotas have been set for the current project.

Consumer

A consumer is registered as an interested party for a container. You can view all of the registered
consumers of a container by performing a GET request on the {container_ref}/consumers
resource. Before a container is deleted, all consumers should be notified of the deletion.

General API information
The Rackspace Cloud Keep API is defined as a RESTful HTTP service that uses all aspects of
the HTTP protocol, including methods, URIs, media and content types, and response codes.
Review the topics in this section to learn more about these API components and how to access
and use the API for this service.

The Rackspace Cloud Keep API supports JSON data serialization request and response formats.

Note: All requests to authenticate against and operate the service are performed using SSL over
HTTP (HTTPS) on TCP port 443.

Authentication

Each REST request to the Rackspace Cloud Keep API service requires the inclusion of a specific
authorization token, supplied in the X-Auth-Token HTTP header of each API request. You get a
token by submitting an authentication request with valid account credentials to the following
Rackspace Cloud Identity API service endpoint:

https://identity.api.rackspacecloud.com/v2.0

Formatted: Font: Italic

Deleted: a way to to

Deleted: register

Deleted: A

Deleted: can be viewed

Formatted: code_body Char, Font: (Default)
Times New Roman, Font color: Auto

Deleted: delete

Deleted: Information

Deleted: /

For details, see the following information:

• Authenticate to the Rackspace Cloud
• Rackspace Cloud Identity API developer documentation

Role-based access control

Like many other services, the Rackspace Cloud Keep service protects its APIs by enforcing
policy rules that are defined in a policy file. The Cloud Keep service stores a reference to a
policy JSON file in its configuration file, /etc/barbican/barbican.conf. Typically, this file is
named policy.json and is stored in /etc/barbican/policy.json.

Each Rackspace Cloud Keep API operation has a line in the policy file that dictates which level
of access applies, as shown in the following example:

API_NAME: RULE_STATEMENT or MATCH_STATEMENT

The RULE_STATEMENT``value can be another ``RULE_STATEMENT or a MATCH_STATEMENT as
shown in the following example:

RULE_STATEMENT: RULE_STATEMENT or MATCH_STATEMENT

The MATCH_STATEMENT parameter specifies a set of identifiers that must match between the
token provided by the user of the API and the parameters or target entities of the API in question.
For example, the following code sample indicates that to create a new secret via a POST request,
you must have either the admin or creator role in your token.

"secrets:post": "role:admin or role:creator"

Warning: The Rackspace Cloud Keep service scopes the ownership of a secret at the project

level. This means that many operations in the API perform an additional check to
ensure that the project ID of the token matches the project ID stored as the secret
owner.

Deleted: B

Deleted: Access

Deleted: Control

Comment [KH26]: In other Cloud service API
docs, this section provides information about the
roles that are available for users of the service. Even
if Cloud Keep is not enabled with the Rackspace
RBAC, should the roles that are mentioned
(role:admin and role:creator) be explained?

Oh, I see that roles are defined in the next section!
Hm. I think that it would make more sense for this
section to follow the “Default policy” section. That
way the idea of a policy, and the different roles, are
defined before they are referred to here.

Deleted: supports the protection of

Deleted: Rackspace

Deleted: call

Comment [KH27]: API_OPERATION ?

Comment [KH28]: Insert a space between
STATEMENT and value to fix the formatting here.

Deleted: .

Deleted: caller

Formatted: Font: Bold

Deleted: calls

Deleted: will

Deleted: _id

Deleted: _id

https://developer.rackspace.com/docs/cloud-keep/v1/developer-guide/%23authenticate-to-cloud
http://developer.rackspace.com/docs/cloud-identity/v2/developer-guide/

Policy

The Rackspace Cloud Keep service provides a sample policy.json file that you can use as the
starting point for a customized policy that meets your particular needs. The sample policy
defines the following distinct roles:

key-manager:service-admin

The cloud administrator in charge of the Rackspace Cloud Keep service. This user has access to
all management APIs, such as the project quotas.

admin

Project administrator. This user has full access to all resources owned by the project for which the
admin role is scoped.

creator

Users with this role are allowed to create new resources but are not allowed to delete any existing
resources. They are also allowed full access to existing secrets owned by the project in scope.

observer

Users with this role are allowed to access existing resources but are not allowed to upload new
secrets or delete existing secrets.

audit

Users with this role are allowed access only to the resource metadata. Users with this role cannot
decrypt secrets.

Regionalized service access endpoints

The Rackspace Cloud Keep service is a regionalized service. The user of the service is therefore
responsible for selecting the appropriate regional endpoint to ensure access to servers, networks,
or other Cloud services.

Tip: To help you decide which regionalized endpoint to use, read about special considerations
for choosing a data center.

Deleted: Default Policy

Deleted: The policy engine in OpenStack is very
flexible and allows for customized policies that make
sense for your particular cloud.

Deleted: comes with

Deleted: which

Deleted: be used

Deleted: 5

Deleted: like

Deleted: to

Deleted: are unable to

Comment [KH29]: Make this the link text.

Deleted:
athttp://www.rackspace.com/knowledge_center/ar
ticle/about-regions

If you are working with cloud services that are in one of the Rackspace data centers, using the
ServiceNet endpoint in the same data center has no network costs and provides a faster
connection. ServiceNet is the data center internet network. In the service catalog that Rackspace
Cloud Identity returns in the authentication response, this endpoint is listed as internalURL.

If you are working with services that are not in one of the Rackspace data centers, you must use a
public endpoint to connect. In your authentication response, public endpoints are listed as
publicURL. If you are working with services in multiple data centers or have a mixed
environment where you have services both in your data centers and in Rackspace data centers,
use a public endpoint because it is accessible from all the servers in the different environments.

Note: Copy the base URLs directly from the catalog rather than trying to construct them
manually.

The regional endpoints in the service catalog contain your account ID. Your account ID,
also known as project ID or tenant ID, refers to your Rackspace account number.

Tip: If you do not know your account ID or which data center you are working in, you can

find that information in your Cloud Control Panel at mycloud.rackspace.com.

Rackspace Cloud Keep contract version

The Rackspace Cloud Keep version defines the contract and build information for the API.

The contract version denotes the data model and behavior that the API supports. The requested
contract version is included in all request URLs.

Example: Request URL

https://iad.keep.api.rackspacecloud.com/v1/secrets

Different contract versions of the API might be available at any given time and are not
guaranteed to be compatible with one another.

Deleted: your

Deleted: service catalog

Deleted: it

Formatted: code_body Char, Font: (Default)
Times New Roman, Font color: Auto

Formatted: code_body Char, Font: (Default)
Times New Roman, Font color: Auto

Deleted: You should c

Deleted: Rackspace Cloud Identity returns a

Deleted: service catalog, which includes

Deleted: with

Moved down [2]: Different contract versions of
the API might be available at any given time and are
not guaranteed to be compatible with one another.

Moved down [3]: This document pertains to
contract version 1.0.

Moved (insertion) [2]

http://mycloud.rackspace.com/

This document pertains to contract version 1.0.

Request and response types

The Rackspace Cloud Keep API supports JSON data serialization formats.

Response format

Format Accept header Query extension Default

JSON application/json .json Yes

Specify the request format by using the Content-Type header, which is required for operations that
have a request body.

You can specify the response format in requests by using the Accept header. If no response format
is specified, JSON is the default response format.

Limits

All accounts are configured with default thresholds, or limits, that manage capacity and prevent
abuse of the system.

Rate limits control the frequency at which the user can issue specific API requests.

For Rackspace Cloud Keep, the rate limit is 600 requests per minute.

Note: If the default limits are too low for your particular application, contact Rackspace Cloud
support to request an increase. All requests require reasonable justification.

Common headers

The following table describes the common headers used by the API.

Moved (insertion) [3]

Deleted: Format

Deleted: Header

Deleted: Extension

Common headers

Header Description

X-Auth-Token Authentication token. Required.

X-Project-Id
A unique ID for the user to which the value of X-Auth-Token grants access. The
unique ID is your account ID.

Accept Media type. Initially, only text and binary types are supported.

Accept-Encoding Specifies that the agent accepts gzip-encoded response bodies.

Content-Length
For POST or PUT requests, the length in bytes of the message document being
submitted.

Content-Type application/json

Date Current date and time.

Host Host name of the API.

Date and time format

For the display and consumption of date and time values, Rackspace Cloud services use a date
format that complies with ISO 8601.

YYYY-MM-DD'T'hh:mm:ssZ

The system time is expressed as UTC. For example, the UTC-5 format for May 19, 2016 at
8:07:08 a.m. is as follows:

2016-05-19T08:07:08-05:00

Deleted: Table:

Comment [KH30]: What does “Initially” mean
here? The first time you use the API? For the EA
release? Can we be more specific?

Formatted: Space After: 18 pt

Deleted: ¶
The system time is expressed as UTC.¶
Example: |product name| date and time format

Deleted: yyyy

Deleted: dd

Deleted: HH

The following table describes the date and time format codes.

Date and time format codes

YYYY Four-digit year

MM Two-digit month

DD Two-digit day

T Separator for the date and time

hh Two-digit hour (00-23)

mm Two-digit minute

ss Two-digit second

Z
RFC 822 time zone (offset from GMT). If Z is not replaced with the offset from GMT, it
indicates a 00:00 offset.

Response codes

The Rackspace Cloud Keep REST API returns an HTTP response code that denotes the success
or failure of the operation.

• Successful response codes are returned only if all configured providers were successful in processing
the request.

• Error response codes are accompanied by an application/json response body that contains the error
messages.

The following table lists possible responses with their associated codes and descriptions.

Deleted: yyyy

Comment [KH31]: This should not be the
header row. Insert a header row.

Deleted: /

Deleted: HH

Deleted: 8601

Deleted: timezone

Deleted: call

List of common response codes

Response
Associated

response code Description

OK 200 The request to retrieve a resource was successful.

Created 201 The request to create a resource was successful.

Accepted 202 The request was accepted for asynchronous processing.

No Content 204

The request was successful, and the service did not return any
content. For example, a successful DELETE operation returns this
code.

Bad Request 400
The request was not processed because of an error in the input
values. Recheck the parameters to the service and resubmit.

Unauthorized 401
The request was not processed because of an authentication failure.
This response is often the result of a bad user ID or password.

Forbidden 403

The request was not processed because of an authorization failure.
Check that your service catalog contains the Cloud Keep endpoint
and that your user has the correct role-based access control (RBAC)
roles.

Service
Unavailable 503

The service is currently unavailable. For example, it might be offline
for scheduled platform maintenance. Try again later.

Example: Error message

HTTP/1.1 400 Bad Request
Content-Type: application/json

{
 "title": "Unsupported limit",

Deleted: Table:

Deleted: has been

Deleted: has

Deleted: call

Deleted: will

Deleted: due to

Deleted: due to

Deleted: userid

Deleted: due to

Deleted: RBAC

Deleted: down

Deleted: example

 "description": "The given limit cannot be negative, and cannot be greater than 50.",
 "code": 1092,
 "link": {
 "rel": "help",
 "href": "http://docs.example.com/messages#limit",
 "text": "API documentation for the limit parameter"
 }
}

API Reference
Learn about the available Rackspace Cloud Keep API resources and methods and see request and
response examples.

Note: This document refers to version v1 of the API. When you submit a request to the
Rackspace Cloud Keep API, append the version number to the API endpoint in the URI,
for example, $ENDPOINT/v1/containers/{containerID}/consumers. In the examples, replace
any {version} placeholder values with v1.

Secrets API operations

A secret is any data that requires security-conscious storage, for example, an encryption key,
credential, or configuration file. You can use the Secrets API operations to store, view, and
manage secrets data in a Rackspace Cloud Keep project.

Note: The examples use the $ENDPOINT and $AUTH_TOKEN environment variables to specify the

API endpoint and authentication token values for accessing the service. Before you run
the code samples, be sure to configure your environment variables.

Retrieve secrets

GET /{version}/secrets

This operation retrieves all of the secrets for a given tenant.

The following table shows the possible response codes for this operation.

Response code Name Description

200 OK
This status code is returned when the secrets have been successfully
retrieved for the tenant.

401 Unauthorized
This status code is returned when the user was not successfully

Formatted: Font: Bold

Formatted: code_body Char, Font: (Default)
Times New Roman, Font color: Auto, Border: :
(No border)

Deleted:

Deleted: Operations

Deleted: se

Formatted: code_body Char, Font: (Default)
Times New Roman, Font color: Auto

Formatted: code_body Char, Font: (Default)
Times New Roman, Font color: Auto

Deleted: Make

Deleted: you

Deleted: C

Deleted: before running the code samples

Deleted: Get

Deleted: Secrets

Deleted: method

Deleted: :

Deleted: Code

Deleted: succesfully

https://developer.rackspace.com/docs/cloud-keep/v1/developer-guide/%23secrets-concept
https://developer.rackspace.com/docs/cloud-keep/v1/developer-guide/%23configure-environment-variables
https://developer.rackspace.com/docs/cloud-keep/v1/developer-guide/%23configure-environment-variables

Response code Name Description

authenticated.

403 Forbidden
This status code is returned when the user does not have the correct
RBAC role or roles.

Request
The following table shows the URI parameters for the request.

Name Type Description

offset integer The starting index within the total list of the secrets that you want to retrieve.

limit integer The maximum number of secrets to return (up to 100). The default limit is 10.

This operation does not accept a request body.

Example: Retrieve secrets, cURL request

curl -H 'Accept: application/json' \
 -H 'X-Auth-Token: $AUTH-TOKEN' \
 $ENDPOINT/v1/secrets?offset={offset}&limit={limit}

Response
The following table shows the response attributes.

Name Type Description

secrets list Contains a list of dictionaries filled with secrets data

total integer The total number of secrets available to the user

Deleted: Code

Deleted: (s)

Deleted: :

Deleted: would like

Deleted: take

Deleted: Delete secret

Deleted: atttributes

Deleted: for the request

Deleted: :

Name Type Description

next string

A HATEOAS URL to retrieve the next set of secrets based on the offset and limit
parameters. This attribute is available only when the total number of secrets is
greater than the values of the offset and limit parameters combined.

previous string

A HATEOAS URL to retrieve the previous set of secrets based on the offset and
limit parameters. This attribute is available only when the request offset is greater
than 0.

The following response example shows the results of sending an API request where the offset is
0 and the limit is 2.

Example: Retrieve secrets, JSON response

{
 "secrets": [
 {
 "status": "ACTIVE",
 "secret_ref":
"https://iad.keep.api.rackspacecloud.com/v1/secrets/15108db8-4505-4c5b-96b9-
a9838951f28f",
 "updated": "2014-08-25T20:43:01.510569",
 "name": "secretname",
 "algorithm": "aes",
 "created": "2014-08-25T20:43:01.421625",
 "content_types": {
 "default": "application/octet-stream"
 },
 "mode": "cbc",
 "bit_length": 256,
 "expiration": null
 },
 {
 "status": "ACTIVE",
 "secret_ref":
"https://iad.keep.api.rackspacecloud.com/v1/secrets/485950f0-37a5-4ba4-b1d6-
413f79b849ef",
 "updated": "2014-08-25T21:18:35.821340",
 "name": "secretname",
 "algorithm": "aes",
 "created": "2014-08-25T21:18:35.719952",

Deleted: url

Formatted: code_body Char, Font: +Body
(Calibri)

Formatted: code_body Char, Font: +Body
(Calibri)

Deleted: only

Formatted: code_body Char, Font: +Body
(Calibri)

Formatted: code_body Char, Font: +Body
(Calibri)

Deleted: url

Formatted: code_body Char, Font: +Body
(Calibri)

Formatted: code_body Char, Font: +Body
(Calibri)

Deleted: only

Deleted: s

Deleted: resutls

Deleted: Get

 "content_types": {
 "default": "application/octet-stream"
 },
 "mode": "cbc",
 "bit_length": 256,
 "expiration": null
 }
],
 "total": 2,
 "next":
"https://iad.keep.api.rackspacecloud.com/v1/secrets?limit=2&offset=3",
 "previous":
"https://iad.keep.api.rackspacecloud.com/v1/secrets?limit=2&offset=0"
}

Retrieve secret metadata

GET /{version}/secrets/{secret_id}

This operation retrieves the metadata for the specified secret.

The following table shows possible response codes for this operation.

Response code Name Description

200 Success
This status code is returned when the secret metadata has been
successfully retrieved.

404
Not
Found This error code is returned when the secret ID is invalid.

Request
The following table shows the URI parameter for the request.

Name Type Description

Deleted: Get

Deleted: method

Deleted: :

Deleted: Code

Deleted: id

Name Type Description

{secret_id} String This parameter specifies the unique identifier of a secret that has been stored.

This operation does not accept a request body.

Example: Retrieve secret metadata, cURL request

curl -H 'Accept: application/json'
 -H 'X-Auth-Token: $AUTH-TOKEN'\
 $ENDPOINT/v1/secrets/{secret_id}

Response
The following table shows the response attributes.

Name Type Description

status integer Returns the current state of the secret resource.

secret_ref URI Returns a HATEOAS URL to retrieve information about the specified secret.

updated date Returns the date and time that the consumer was last updated.

name string Returns the name assigned to the secret resource when it was created.

algorithm string Returns the algorithm type used to generate the secret.

created date Returns the date and time that the secret was created.

content_types dict

Returns a dictionary of content type information for the resource. Supported
formats are plain text format (text/plain) and binary format (application/octet-
stream). Content types are specified when the resource is created.

Formatted: Font: 11 pt

Formatted: Normal

Deleted: Get

Deleted: /secretID

Deleted: secretID

Deleted: atttributes

Deleted: for this request

Deleted: url

Deleted: the

Deleted: or

Name Type Description

mode string
(Optional) Returns the type or mode of the algorithm associated with the secret
information.

bit_length integer Returns the bit length of the secret resource, if available.

expiration date Returns the expiration date for the secret resource.

Example: Retrieve secret metadata, JSON response

{
 "status": "ACTIVE",
 "secret_ref": "https://iad.keep.api.rackspacecloud.com/v1/secrets/485950f0-
37a5-4ba4-b1d6-413f79b849ef",
 "updated": "2014-05-02T06:29:25.415271",
 "name": "AES key",
 "algorithm": "aes",
 "created": "2014-05-02T06:29:25.415261",
 "content_types": {
 "default": "application/octet-stream"
 },
 "mode": "cbc",
 "bit_length": 256,
 "expiration": "2014-05-28T19:14:44.180394"
}

Create a secret

POST /{version}/secrets

This method creates and stores a secret.

Note: The POST request always creates and stores secret metadata. If a payload is provided
with the POST request, it is encrypted and stored, and then linked with this metadata. If

Deleted: /

Deleted: This parameter is optional.

Deleted: Get

Deleted: information

Deleted: Secret

Formatted: Font: Bold

Formatted: Font: Bold

no payload is provided in the request, it must be provided in a subsequent PUT request.

The following table shows possible response codes for this operation.

Response
code Name Description

201 Success This status code is returned when the secret has been successfully created.

400 Error

This error code is returned if the payload parameter is empty. This response
indicates that the payload JSON attribute was provided but no value was
assigned to it.

400 Error
This error code is returned if the secret has invalid data. This response might
include schema violations such as mime-type not specified.

400 Error

This error code is returned if the value specified in the
payload_content_type parameter is not supported. This error is caused
when no crypto plug-in supports the payload_content_type requested.

413 Error
This error code is returned when the secret specified in the payload parameter
is too large.

Request
The following table shows the body parameters for the request.

Name Type Description

name string

(Optional) Specifies the human-readable name for the
secret. If no name is supplied, the UUID is displayed
for this parameter on subsequent GET calls.

expiration integer

(Optional) Specifies the expiration date for the secret in
ISO 8601 format. ISO 8601 formats dates by using the
following representation: yyyy-mm-
ddThh:mm:ss[.mmm]. For example, September 27,

Deleted: POST

Formatted: Font: Bold

Deleted: :

Deleted: Code

Deleted: “

Formatted: code_body Char, Font: +Body
(Calibri)

Deleted: ”

Deleted: ‘

Formatted: code_body Char, Font: +Body
(Calibri)

Deleted: ’

Deleted: ,

Deleted: may

Deleted: “

Formatted: code_body Char, Font: +Body
(Calibri)

Deleted: ”

Deleted: It

Formatted: code_body Char, Font: +Body
(Calibri)

Deleted: “

Formatted: code_body Char, Font: +Body
(Calibri)

Deleted: ”

Deleted: :

Comment [KH32]: In previous parameter
tables, the name is not bolded. Be consistent
throughout.

Deleted: String

Deleted: (Optional)

Deleted: This parameter is optional.

Deleted: will be

Deleted: Integer

Deleted: (Optional)

Deleted: -

Deleted: -

Name Type Description

2015 is represented as 2015-09-27. After the secret has
expired, it is no longer returned by the API or agent.

If this parameter is not supplied, the secret has no
expiration date.

algorithm string

(Optional) Specifies the algorithm type used to
generate the secret. Cloud Keep does not validate the
information provided for this parameter because it is
client and application specific.

bit_length integer

(Optional) Specifies the bit length of the secret. The
value must be a positive integer. Cloud Keep does not
validate the information provided for this parameter
because it is client and application specific.

mode string

(Optional) Specifies the type or mode of the algorithm
associated with the secret information. Cloud Keep
does not validate the information provided for this
parameter because it is client and application specific.

payload string

(Optional) Specifies the secret’s unencrypted plain text.
If this parameter is specified, the
payload_content_type parameter must also be
specified. If this parameter is not specified, you can
provide the payload information via a subsequent PUT
request. If the payload is not provided, only the secret
metadata is retrievable from Cloud Keep and any
attempt to retrieve decrypted data for that secret fails.
Deferring the secret information to a PUT request is
useful for secrets that are in binary format and are not
suitable for base64 encoding.

payload_content_typ
e string

(Optional) Specifies the type or format in which the
secret data is provided. This parameter is required if the
payload parameter is specified. The following values
are supported:

Deleted: 2012

Deleted: 2012

Deleted: Once

Deleted: This parameter is optional.

Deleted: String

Deleted: (Optional)

Deleted: This parameter is optional. Barbican

Deleted: /

Deleted: Integer

Deleted: (Optional)

Deleted: Must

Deleted: This parameter is optional. Barbican

Deleted: /

Deleted: String

Deleted: (Optional)

Deleted: /

Deleted: This parameter is optional. Barbican

Deleted: /

Deleted: String

Deleted: (Optional)

Formatted: code_body Char, Font: +Body
(Calibri)

Deleted: as well

Formatted: Font: Bold

Deleted: will be

Deleted: Barbican

Deleted: will

Formatted: Font: Bold

Deleted: String

Deleted: (Optional)

Deleted: /

Deleted: in

Formatted: code_body Char, Font: +Body
(Calibri)

Name Type Description

text/plain - This value is used to store plain text
secrets. Other options are text/plain;
charset=utf-8. If the charset value is omitted, UTF-8
is used. Note that Cloud Keep normalizes some formats
before storing them as secret metadata; for example,
text/plain; charset=utf-8 is converted to
text/plain. Retrieved metadata might not exactly
match what was originally specified in the request.
When the payload_content_type parameter is set to
text/plain, you cannot specify a value for the
payload_content_encoding parameter.

application/octet- stream - This value is used to
store binary secrets from a base64-encoded payload. If
this value is used, you must also include the
payload_content_encoding parameter.

payload_content_en
coding string

(Optional) Specifies the encoding format used to
provide the payload data. Cloud Keep might translate
and store the secret data into another format. This
parameter is required if the payload_content_type
parameter is set to application/octet- stream. The
only supported value for this parameter is base64,
which specifies base64- encoded payloads.

Example: Create a secret, JSON request

curl -X POST $ENDPOINT/v1/secrets -H 'Content-Type: application/json'\
 -H 'Accept: application/json -H 'X-Auth-Token: $AUTH-TOKEN' -d \
 '{
 "name": "key",
 "expiration": "2014-09-01T19:14:44.180394",
 "algorithm": "aes",
 "bit_length": 256,
 "mode": "cbc",
 "payload": "secretsecretsecret",
 "payload_content_type": "text/plain"
 }'

Deleted: - “

Formatted ...

Deleted: ”

Deleted: “

Formatted ...

Deleted: ”

Deleted: will be

Deleted: assumed

Deleted: Barbican

Deleted: ,

Deleted: ”

Formatted ...

Deleted: ”

Deleted: “

Formatted ...

Deleted: ”

Deleted: may

Deleted: POST or PUT

Formatted ...

Deleted: “

Formatted ...

Deleted: ”

Formatted ...

Deleted: - “

Formatted ...

Deleted: ”

Formatted ...

Deleted: String

Deleted: (Optional)

Deleted: Barbican

Deleted: may

Formatted ...

Deleted: “

Formatted ...

Deleted: ”

Deleted: “

Formatted ...

Deleted: ”

Deleted: Example:Create

Deleted: Secret

Deleted: :

Comment [KH33]: Earlier sections use “cURL ...

Response
The following table shows the response attribute.

Name Type Description

secret_ref URI

Returns a HATEOAS URL to retrieve information about the specified secret. The
reference URL concatenates the URI for the retrieve secrets API operation and the
system-generated secret ID that is assigned automatically when the secret is created.
In the example, the secret ID value is 485950f0-37a5-4ba4-b1d6-413f79b849ef.

Example: Create a secret, JSON response

{
 "secret_ref": "https://iad.keep.api.rackspacecloud.com/v1/secrets/485950f0-
37a5-4ba4-b1d6-413f79b849ef"
}

Update a secret

PUT /{version}/secrets/{secret_id}

This operation stores the payload for an existing secret that was created without a payload. To
provide secret information after the secret is created, submit a PUT request to the URI that
contains the secret ID of the secret that you want to update. The PUT request should include the
payload and the appropriate Content-Type and Content-Encoding definitions.

Note: You can send a PUT request only once after a POST operation that does not include a
payload. Also, you cannot modify any other attributes for a secret resource by using the
PUT operation.

The following table shows the possible response codes for this operation.

Deleted: for this request

Deleted: url

Deleted: the

Deleted: ‘

Deleted: `

Deleted: and the

Deleted: secretID

Deleted: secretID

Deleted: Secret

Deleted: Secret

Deleted: method

Formatted: Font: Bold

Formatted: Font: Bold

Deleted: , as well as

Formatted: code_body Char, Font: (Default)
Times New Roman, Font color: Auto

Formatted: code_body Char, Font: (Default)
Times New Roman, Font color: Auto

Deleted: only make

Formatted: Font: Bold

Formatted: Font: Bold

Deleted: note that

Formatted: Font: Bold

Deleted: :

Response code Name Description

204
No
Content

This status code is returned when the secret has been successfully
updated.

400 Error
This error code is returned when no crypto plug-in supports the payload
content type requested in the Content-Type header.

400 Error
This error code is returned when no value was provided for the payload
parameter.

404 Error
This error code is returned when the supplied UUID doesn’t match a
secret in the datastore for the specified tenant.

409 Error
This error code is returned when the secret already has encrypted data
associated with it.

413 Error
This error code is returned when the secret specified in the payload
parameter is too large. The current size limit is 10,000 bytes.

Request
The following table shows the URI parameters for the request.

Name Type Description

secret_id string The unique identifier of a secret that has been stored.

secret_data_file binary
A file that contains the binary data to be stored as the secret
payload.

This operation does not accept a request body.

Example: Update a secret, cURL request

Deleted: Code

Deleted: _

Deleted: _

Formatted: code_body Char, Font: +Body
(Calibri)

Deleted: “

Formatted: code_body Char, Font: +Body
(Calibri)

Deleted: ”

Deleted: “

Formatted: code_body Char, Font: +Body
(Calibri)

Deleted: ”

Deleted: :

Deleted: {

Deleted: }

Deleted: String

Deleted: This parameter specifies t

Deleted: {

Deleted: D

Deleted: ataFile

Deleted: }

Deleted: Binary

Deleted: containing

Comment [KH34]: cURL or JSON ? Whichever
one you use, be consistent throughout the whole
doc. I won’t mark it again.

curl -X PUT -H 'Content-Type: application/octet-stream' \
 -H 'X-Auth-Token: $AUTH-TOKEN' \
 -T {secret_data_file} $ENDPOINT/v1/secrets/{secret_id}

The -T option to cURL is used to send the contents of the specified file as the body of the
request. For more information, see https://curl.haxx.se/docs/manual.html.

Response
The operation returns an HTTP 204 Accepted response code, if successful. It does not return a
response body.

Delete a secret

DELETE /{version}/secrets/{secret_id}

This operation deletes the specified secret.

The following table shows the possible response codes for this operation.

Code Description

204 Successful request

401 Invalid X-Auth-Token or the token doesn’t have permissions to this resource

404 Secret not found

Request
The following table shows the URI parameter for the request.

Parameter name Type Description Default

Deleted: secretDataFile

Deleted: a83018d1-e657-4957-9ddd-
42a479753e6b

Formatted: code_body Char, Font: (Default)
Times New Roman, Font color: Auto

Deleted: curl

Deleted: D

Deleted: :

Comment [KH35]: The preceding response code
tables have three columns: “Response code,”
“Name,” and “Description.” All of the response code
tables should have the same format.

Comment [KH36]: Preceding response code
tables use sentences to describe the codes. Do the
same in this table.

Deleted: :

Comment [KH37]: None of the URI parameter
tables in the preceding sections have a “Default”
column. Is it necessary here?

https://curl.haxx.se/docs/manual.html

Parameter name Type Description Default

secret_id string The UUID of the secret. None

This operation does not accept a request body.

Example: Delete a secret, cURL request

curl -X DELETE -H 'X-Auth-Token: $AUTH-TOKEN' \
 $ENDPOINT/v1/secrets/{secret_id}

Response
The operation returns an HTTP 204 Accepted response code, if successful. It does not return a
response body.

Containers API operations
A container is a logical object that you can use to store reference links to secrets resources that
are related by relationship or type. For example, you can create a single container to group
secrets for a private key, certificate, and bundle for an SSL certificate.

Use the Containers API operations to create and manage groups of related secrets for Rackspace
Cloud Keep projects.

Note: These examples use the $ENDPOINT and $AUTH_TOKEN environment variables to specify the
API endpoint and authentication token values for accessing the service. Before you run
the code samples, be sure to configure your environment variables.

Create a container

POST /{version}/containers

This operation creates a container. You can create the following types of containers: generic,
RSA, and certificate.

Comment [KH37]: None of the URI parameter
tables in the preceding sections have a “Default”
column. Is it necessary here?

Deleted: ID

Deleted: for

Deleted: doesn’t take

Deleted: secretID

Deleted: Operations

Deleted: can be used

Formatted: code_body Char, Font: (Default)
Times New Roman, Font color: Auto

Formatted: code_body Char, Font: (Default)
Times New Roman, Font color: Auto

Deleted: Make sure you

Deleted: C

Deleted: before running the code samples

Deleted: C

Deleted: ¶
There are three different types of containers that can
be created:

Deleted: rsa

https://developer.rackspace.com/docs/cloud-keep/v1/developer-guide/%23containers-concept
https://developer.rackspace.com/docs/cloud-keep/v1/developer-guide/%23configure-environment-variables
https://developer.rackspace.com/docs/cloud-keep/v1/developer-guide/%23configure-environment-variables

Generic

This type of container holds references to any type or number of secrets. Each secret reference is
accompanied by a name. Unlike other container types, no specific restrictions are enforced on the
contents name attribute.

RSA

This type of container is used to hold references to only the following types of secrets, which are
enforced by their names: public_key, private_key, and private_key_passphrase.

Certificate

This type of container is used to hold a reference to a certificate and optionally private_key,
private_key_passphrase, and intermediates.

The following table shows the possible response codes for this operation:

Code Description

201 Successful creation of the container

401 Invalid X-Auth-Token or the token doesn’t have permissions to this resource

403
Forbidden. The user has been authenticated, but is not authorized to create a container. This can
be based on the user’s role or the project’s quota.

Request
There are no URL parameters for this request.

The following table shows the body parameters for the request.

Name Type Description

type string Type of container. Possible values are generic, rsa, and certificate.

Deleted: any number of

Comment [KH38]: I want this to correspond to
one of the attributes listed in the request
parameters table. Would it be the
secret_refs.name parameter?

Deleted: designed

Deleted: three different

Deleted: . These secrets are enforced by the
their accompanied names

Deleted: designed

Comment [KH39]: See my comments for the
table under "Delete a secret."

Deleted: the

Deleted: :

Deleted: Options:

Name Type Description

name string (Optional) Human-readable name for identifying your container.

secret_refs list A list of dictionaries that contain references to secrets.

secret_refs.name string The name assigned to the secret resource when it was created.

secret_refs.secret_ref URI A HATEOAS URL to retrieve information about the specified secret.

secret_id string The UUID for the secret to be added to the container.

Example: Create a container, cURL request

curl -X POST -H 'X-Auth-Token $AUTH-TOKEN -d \
 '{
 "type": "generic",
 "name": "container name",
 "secret_refs": [
 {
 "name": "private_key",
 "secret_ref": "$ENDPOINT/v1/secrets/{secret_id}"
 }
]
 }' $ENDPOINT/v1/containers

Response
The following table shows the response attributes.

Parameter
name Type Description

container_ref URI Returns a HATEOS URL to retrieve information about the container resource.

container_id string
The UUID value assigned to the container. In the following example, the
container ID is /6ad67bc0-17fd-45ce-b84a-a9be44fe06.

Formatted: Font: Italic

Deleted: optional

Deleted: containing

Deleted: url

Deleted: secretID

Deleted: Container

Deleted: secretID

Deleted: atttributes

Deleted: for this request

Deleted: url

Deleted: ID

Deleted: shown belowcontainerID=

Example: Create a container, JSON response

{
 "container_ref":
"https://iad.keep.api.rackspacecloud.com/v1/containers/6ad67bc0-17fd-45ce-
b84a-a9be44fe069b"
}

Retrieve containers

GET /{version}/containers

This operation returns a list of the containers in a project. Returned containers are ordered by
creation date, oldest to newest.

The following table shows the possible response codes for this operation.

Response code Name Description

200 OK
This status code is returned when the containers have been
successfully retrieved for the tenant.

401 Unauthorized
This status code is returned when the user was not successfully
authenticated.

403 Forbidden
This status code is returned when the user does not have the correct
RBAC role or roles.

Request
The following table shows the URI parameters for the request.

Name Type Description

Deleted: Container

Deleted: Get

Deleted: Containers

Deleted: R

Deleted: ’s containers

Deleted: ¶

Deleted: ;

Deleted: :

Deleted: Code

Deleted: succesfully

Deleted: (s)

Deleted: :

Name Type Description

offset integer The starting index within the total list of the containers that you want to retrieve.

limit integer The maximum number of containers to return (up to 100). The default limit is 10.

This operation does not accept a request body.

Example: Retrieve containers, cURL request

curl -H 'Accept: application/json' \
 -H 'X-Auth-Token:$AUTH-TOKEN' \
 $ENDPOINT/v1/containers?offset={offset}&limit={limit}

Response
The following table shows the response attributes.

Name Type Description

containers list
Returns a list of dictionaries with information about each container that has been
created in Cloud Keep.

total integer The total number of containers available to the user.

next string

A HATEOAS URL to retrieve the next set of containers based on the offset and
limit parameters. This attribute is available only when the total number of
containers is greater than the offset and limit parameter values combined.

previous string

A HATEOAS URL to retrieve the previous set of containers based on the offset
and limit parameters. This attribute is available only when the request offset is
greater than 0.

Example: Retrieve containers, JSON response

{

Deleted: would like

Deleted: Get

Deleted: atttributes

Deleted: for the req

Deleted: uest:

Deleted: url

Deleted: only

Deleted: url

Deleted: only

Deleted: Get

 "containers": [
 {
 "consumers": [],
 "container_ref":
"https://iad.keep.api.rackspacecloud.com/v1/containers/6ad67bc0-17fd-45ce-
b84a-a9be44fe069b",
 "created": "2015-03-26T21:10:45.417835",
 "name": "container name",
 "secret_refs": [
 {
 "name": "private_key",
 "secret_ref":
"https://iad.keep.api.rackspacecloud.com/v1/secrets/485950f0-37a5-4ba4-b1d6-
413f79b849ef"
 }
],
 "status": "ACTIVE",
 "type": "generic",
 "updated": "2015-03-26T21:10:45.417835"
 }
],
 "total": 1
}

Retrieve container information

GET /{version}/containers/{container_id}

This operation retrieves information about the specified container.

The following table shows the possible response codes for this operation.

Code Description

200 Successful Request

401 Invalid X-Auth-Token or the token doesn’t have permissions to this resource

Deleted: Get

Deleted: Container

Deleted: Information

Deleted: method

Deleted: a

Deleted: :

Comment [KH40]: Make this like other
response code tables, with the third column and
descriptions in sentences.

Code Description

404 Container not found or unavailable

Request
The following table shows the URI parameter for the request.

Name Type Description

container_id string Specifies the unique identifier of a container that has been stored.

This operation does not accept a request body.

Example: Retrieve container information, cURL request

curl -H 'Accept: application/json' -H 'X-Auth-Token:$AUTH-TOKEN' \
 $ENDPOINT/v1/containers/{container_id}

Response
The following table shows the response attributes.

Name Type Description

type string Indicates the container type: generic, rsa, or certificate.

status string Returns the current state of the container.

name string The name assigned to the container when it was created.

consumers dict
Returns a list of dictionaries with information about the consumers
included in the container.

Comment [KH40]: Make this like other
response code tables, with the third column and
descriptions in sentences.

Deleted: s

Deleted: :

Deleted: {

Deleted: }

Deleted: S

Deleted: (Required)

Deleted: This parameter s

Deleted: Get

Deleted: Container

Deleted: I

Deleted: containerID

Deleted: atttributes

Deleted: for this request

Formatted: Font: Not Italic

Formatted: Font: Not Italic

Formatted: Font: Not Italic

Deleted: for

Deleted: specified

Deleted: specified

Deleted: specified

Name Type Description

container_ref URI A HATEOS URL to retrieve information about the specified container.

secret_refs dict
Returns a dictionary with information about the secrets included in the
container.

secret_refs.name string The name assigned to the secret resource when it was created.

secret_refs.secret_ref URI A HATEOAS URL to retrieve information about the specified secret.

created date The date and time that the container was created.

updated date | The date and time that the container was last updated.

Example: Retrieve container information, JSON response

{
 "type": "generic",
 "status": "ACTIVE",
 "name": "container name",
 "consumers": [],
 "container_ref":
"https://iad.keep.api.rackspacecloud.com/v1/containers/6ad67bc0-17fd-45ce-
b84a-a9be44fe069b",
 "secret_refs": [
 {
 "name": "private_key",
 "secret_ref":
"https://iad.keep.api.rackspacecloud.com/v1/secrets/485950f0-37a5-4ba4-b1d6-
413f79b849ef"
 }
],
 "created": "2015-03-26T21:10:45.417835",
 "updated": "2015-03-26T21:10:45.417835"
}

Deleted: url

Deleted: url

Comment [KH41]: Some funky formatting here.
. .

Deleted: Get

Delete a container

DELETE /{version}/containers/{container_id}

This operation deletes a container.

Note: To prevent unexpected service issues, notify all consumers registered for the container
before you delete it. Use the retrieve consumers operation to get a list of consumers.

The following table shows the possible response codes for this operation.

Code Description

204 Successful deletion of a container

401 Invalid X-Auth-Token or the token doesn’t have permissions to this resource

404 Container not found or unavailable

Request
The following table shows the URI parameters for the request.

Parameter name Type Description Default

container_id string The UUID for the container None

This operation does not require a response body.

Example: Delete a container, cURL request

curl -X DELETE -H 'X-Auth-Token: $AUTH-TOKEN' \
 $ENDPOINT/v1/containers/{container_id}

Deleted: D

Deleted: ensure that you

Deleted: :

Comment [KH42]: Update table to be like
others.

Deleted: :

Comment [KH43]: Delete this column, unless
you are adding “Default” columns to the other
parameter tables.

Deleted: ID

Deleted: containerID

https://developer.rackspace.com/docs/cloud-keep/v1/developer-guide/%23get-containers-consumers

Response
The operation returns an HTTP 204 Accepted response code, if successful. It does not return a
response body.

Consumers API operations
The consumers resource provides a method to register as an interested party for a container.

Use the Consumers API operations to view and manage registered consumers.

Note: These examples use the $ENDPOINT and $AUTH_TOKEN environment variables to specify the
API endpoint and authentication token values for accessing the service. Before you run
the code samples, be sure to configure your environment variables.

Retrieve consumers for a container

GET /{version}/containers/{container_ref}/consumers

This operation lists a container’s consumers. The list of consumers can be filtered by the
parameters passed in via the URL.

The following table shows the possible response codes for this operation.

Response
Code Name Description

200 OK
This status code is returned when the consumers have been successfully
retrieved for the tenant.

401 Unauthorized
This status code is returned when the user was not successfully
authenticated.

403 Forbidden
This status code is returned when the user does not have the correct
RBAC role or roles.

Deleted: Operations

Formatted: code_body Char, Font: (Default)
Times New Roman, Font color: Auto

Formatted: code_body Char, Font: (Default)
Times New Roman, Font color: Auto

Deleted: Make sure you

Deleted: C

Deleted: before running the code samples

Deleted: Get

Deleted: ’s consumers

Deleted: Lists

Deleted: ¶

Deleted: :

Deleted: succesfully

Deleted: (s)

https://developer.rackspace.com/docs/cloud-keep/v1/developer-guide/%23configure-environment-variables
https://developer.rackspace.com/docs/cloud-keep/v1/developer-guide/%23configure-environment-variables

Request
The following table shows the URI parameters for the request.

Name Type Description

container_id integer
The UUID for the container for which you want to retrieve
consumers.

offset integer
(Optional) The starting index within the total list of the
consumers that you want to retrieve.

limit integer
(Optional) The maximum number of records to return (up to
100). The default limit is 10.

Example: Retrieve consumers for a container, cURL request

curl -H 'Accept: application/json' -H 'X-Auth-Token:$AUTH-TOKEN'\
 $ENDPOINT/v1/containers/{container_id}/consumers/?offset={offset}&limit={limit}

Response
The following table shows the response attributes.

Name Type Description

total integer Returns the number of consumers in the specified container.

consumers dict Returns a dictionary of consumer information for the specified container.

consumers.status string Returns the current state of the consumer.

consumers.URL string Returns the URL for the user or service using the container.

consumers.updated date The date and time that the consumer was last updated.

Deleted: :

Deleted: {

Deleted: ID

Deleted: }

Deleted: you would like to

Deleted: {

Deleted: }

Deleted: (Optional)

Deleted: would like

Deleted: {

Deleted: }

Deleted: (Optional)

Deleted: Get

Deleted: containerID

Deleted: for this request

Deleted: consumers resource

Deleted: for

Deleted: specified

Deleted: for the containers resource.

Name Type Description

consumers.name string The name of the consumer set by the user.

consumers.created date The date and time that the consumer was created.

consumers.next URI

A HATEOAS URL to retrieve the next set of consumers based on the
offset and limit parameters. This attribute is available only when the
total number of consumers is greater than offset and limit parameter
values combined.

consumers.previous string

A HATEOAS URL to retrieve the previous set of consumers based on
the offset and limit parameters. This attribute is available only when the
request offset is greater than 0.

Example: Retrieve consumers for a container, JSON response

{
 "total": 3,
 "consumers": [
 {
 "status": "ACTIVE",
 "URL": "consumerurl",
 "updated": "2015-10-15T21:06:33.123878",
 "name": "consumername",
 "created": "2015-10-15T21:06:33.123872"
 },
 {
 "status": "ACTIVE",
 "URL": "consumerURL2",
 "updated": "2015-10-15T21:17:08.092416",
 "name": "consumername2",
 "created": "2015-10-15T21:17:08.092408"
 },
 {
 "status": "ACTIVE",
 "URL": "consumerURL3",
 "updated": "2015-10-15T21:21:29.970370",
 "name": "consumername3",
 "created": "2015-10-15T21:21:29.970365"
 }
]

Deleted: consumers resource.

Deleted: url

Deleted: only

Deleted: url

Deleted: only

Deleted: Get

Deleted: specified

}

Example: Retrieve consumers for container with offset and limit parameters, JSON
response

{
 "total": 3,
 "next": "https://iad.keep.api.rackspacecloud.com/v1/containers/6ad67bc0-
17fd-45ce-b84a-a9be44fe069b/consumers?limit=1&offset=2",
 "consumers": [
 {
 "status": "ACTIVE",
 "URL": "consumerURL2",
 "updated": "2015-10-15T21:17:08.092416",
 "name": "consumername2",
 "created": "2015-10-15T21:17:08.092408"
 }
],
 "previous": "https://iad.keep.api.rackspacecloud.com/v1/containers/6ad67bc0-
17fd-45ce-b84a-a9be44fe069b/consumers?limit=1&offset=0"
}

Create a consumer

POST /{version}/containers/{container_id}/consumers

This operation creates a consumer for the specified container.

The following table shows the possible response codes for this operation.

Code Description

201 Successful creation of the consumer

401 Invalid X-Auth-Token or the token doesn’t have permissions to this resource

403
Forbidden. The user has been authenticated, but is not authorized to create a consumer. This can

Deleted: Get

Deleted: C

Deleted: :

Comment [KH44]: See my earlier comments
about response code tables.

Code Description

be based on the user’s role or the project’s quota.

Request
The following table shows the URI parameters for this request.

Name Type Description Default

container_id string The UUID for the container. None

The following table shows the body parameters for the request.

Name Type Description Default

name string The name of the consumer set by the user. None

URL string The URL for the user or service using the container. None

Example: Create a consumer, cURL request

curl -X POST -H 'X-Auth-Token $AUTH-TOKEN' \
 -H 'Content-Type: application/json' \
 -d '{
 "name": "your consumer name",
 "URL": "{consumerURL}"
 }' \
 $ENDPOINT/v1/containers/{container_id}/consumers

Response
The following table shows the response attributes.

Name Type Description

Comment [KH44]: See my earlier comments
about response code tables.

Deleted: the

Deleted: Parameter n

Comment [KH45]: Delete this column, unless
you are adding “Default” columns to the other
parameter tables.

Deleted: containerID

Deleted: There are no URL parameters for this
request.¶

Deleted: :

Deleted: Parameter n

Comment [KH46]: Delete this column.

Deleted: url

Deleted: containerID

Deleted: for this request

Name Type Description

status string Returns the current state of the specified consumer.

updated date The date and time that the consumer was last updated.

name string The name of the container that the user is registering for.

consumers dict Returns a dictionary of information for the consumer resource.

consumers.URL string
Returns the URL for the user or service using the container. In the response
example, the consumer URL is https://consum.er.

consumers.name string The name of the consumer set by the user.

Example: Create a consumer, JSON response

{
 "status": "ACTIVE",
 "updated": "2015-10-15T17:56:18.626724",
 "name": "your container name",
 "consumers": [
 {
 "URL": "https://consum.er",
 "name": "your consumer name"
 }
}

Delete a consumer

DELETE /{version}/{container_id}/consumers/{consumer_id}

This operation deletes the specified consumer for the specified container.

The following table shows the possible response codes for this operation.

Deleted: for

Deleted: . for the containers resource

Deleted: Consumer

Deleted: ref

Deleted: D

Code Description

204 Successful request

401 Invalid X-Auth-Token or the token doesn’t have permissions to this resource

404 Not Found

Request
The following table shows the URI parameters for the request.

Parameter name Type Description Default

container_id string The UUID for the container None

consumer_id string The UUID for the consumer None

The following table shows the body parameters for the request.

Parameter
name Type Description Default

name string
The name of the consumer set by the user. The name must match
the name that was used when the consumer was created. None

URL string

The URL for the user or service using the container. The URL
must match the URL that was used when the consumer was
created. None

Example: Delete a consumer, cURL request

curl -X DELETE -H 'X-Auth-Token: $AUTH-TOKEN' \
 -d '{"name": "consumername", "URL": "consumerURL"}' \

Comment [KH47]: See my preceding comments
about the response code table.

Deleted: :

Comment [KH48]: Delete this column, unless
you are adding “Default” columns to the other
parameter tables.

Deleted: containerID

Deleted: consumerID

Deleted: :

Comment [KH49]: Delete.

Deleted: url

 $ENDPOINT/v1/containers/{container_id}/consumers/{consumer_id}

Response
The operation returns an HTTP 204 Accepted response code, if successful. It does not return a
response body.

Quota API operations
Quotas specify resource limits for a Rackspace Cloud Keep project. Rackspace Cloud Keep
provides a way to configure default quota values in the Rackspace Cloud Keep configuration file
(barbican.conf). The default values are used unless a custom value is configured.

Use the Quotas API to retrieve a list of quotas for your project.

Note: These examples use the $ENDPOINT and $AUTH_TOKEN environment variables to specify the
API endpoint and authentication token values for accessing the service. Before you run
the code samples, be sure to configure your environment variables.

Retrieve project quotas

GET /{version}/quotas

This operation lists the effective quotas for the project of the requester. The project ID of the
requester is derived from the authentication token provided in the X-Auth-Token header.

The following table shows the possible response codes for this operation.

Code Description

200 Successful Request

401 Invalid X-Auth-Token or the token doesn’t have permissions to this resource

Deleted: containerID

Deleted: consumerID

Deleted: where name and URL must match the
name and URL that were used when the consumer
was created.

Deleted: Operations

Deleted: to

Formatted: code_body Char, Font: (Default)
Times New Roman, Font color: Auto

Formatted: code_body Char, Font: (Default)
Times New Roman, Font color: Auto

Formatted: code_body Char, Font: (Default)
Times New Roman, Font color: Auto

Deleted: Make sure you

Deleted: C

Deleted: before running the code samples

Deleted: Get

Deleted: Get

Comment [KH50]: tenant?

Deleted: id

Comment [KH51]: tenant?

Formatted: code_body Char, Font: (Default)
Times New Roman, Font color: Auto

Deleted: :

Comment [KH52]: See my earlier comments
about this table.

https://developer.rackspace.com/docs/cloud-keep/v1/developer-guide/%23quotas-concept
https://developer.rackspace.com/docs/cloud-keep/v1/developer-guide/%23configure-environment-variables
https://developer.rackspace.com/docs/cloud-keep/v1/developer-guide/%23configure-environment-variables

Request
This request does not accept URI or body parameters.

Example: Retrieve project quotas, cURL request

curl -H 'Accept: application/json' -H 'X-Auth-Token:$AUTH_TOKEN'\
 $ENDPOINT/v1/quotas

Response
The following table shows the response attributes.

Name Type Description

quotas dict Returns a dictionary with quota information.

quotas.secrets integer
Returns the effective quota value of the current project for the secret
resource.

quotas.cas integer
Returns the effective quota value of the current project for the CAs
resource.

quotas.orders integer
Returns the effective quota value of the current project for the orders
resource.

quotas.containers integer
Returns the effective quota value of the current project for the containers
resource.

quotas.consumers integer
Returns the effective quota value of the current project for the consumers
resource.

Effective quota values are interpreted as follows:

Value Description

Deleted: Get

Deleted: for this request

Comment [KH53]: This is not defined anywhere
in the guide. What is the CAs resource?

Value Description

-1 A negative value indicates that the resource is unconstrained by a quota.

0 A zero value indicates that the resource is disabled.

integer
A positive value indicates the maximum number of that resource that can be created for the
current project.

Example: Retrieve project quotas, JSON response

{
 "quotas": {
 "secrets": 1000,
 "cas": 0,
 "orders": 0,
 "containers": 1000,
 "consumers": 1000
 }
}

Deleted: Get

Deleted: HTTP header and

	About the API
	Early Access program
	API contract changes
	Additional resources

	Getting Started Guide
	Prerequisites
	Get your credentials
	Save your API key
	Save your account number

	Send requests to the API
	Authenticate to the Rackspace Cloud
	Send an authentication request
	Review the authentication response
	Configure environment variables
	Create environment variables

	Create and manage secrets
	Store a secret
	Example: Store a secret, request
	Example: Store a secret, response

	Create and store a secret by using two requests
	Now you can use a GET request to retrieve the secret, as explained in Retrieve a secret.
	Retrieve a secret
	Example: Retrieve secret metadata, request
	Example: Retrieve decrypted secret, request

	Retrieve a list of stored secrets

	Developer Guide
	Concepts
	Secret
	Container
	Generic containers
	Certificate containers
	RSA containers

	Quotas
	Default quotas

	Consumer

	General API information
	Authentication
	Role-based access control
	Policy
	Policy
	Regionalized service access endpoints
	Rackspace Cloud Keep contract version
	Request and response types
	Limits
	Common headers
	Date and time format
	Response codes

	API Reference
	Secrets API operations
	Retrieve secrets
	Retrieve secrets
	Request
	Response

	Retrieve secret metadata
	Request
	Response

	Create a secret
	Request
	Response

	Update a secret
	Request
	Response

	Delete a secret
	Request
	Response

	Containers API operations
	Create a container
	Request
	Response

	Retrieve containers
	Request
	Response

	Retrieve container information
	Request
	Response

	Delete a container
	Request
	Response

	Consumers API operations
	Retrieve consumers for a container
	Retrieve consumers for a container
	Request
	Response

	Create a consumer
	Request
	Response

	Delete a consumer
	Request
	Response

	Quota API operations
	Retrieve project quotas
	Retrieve project quotas
	Request
	Response

