
12/19/2020 1 Lexers

file:///Users/sorawee/projects/racket/racket/doc/parser-tools/Lexers.html?q=parser-tools 1/9

1 Lexers

(require parser-tools/lex) package: parser-tools-lib

1.1 Creating a Lexer

 =
 | #:suppress-warnings

 =
 | (eof)
 | (special)
 | (special-comment)

 =
 |
 |
 | (repetition)
 | (union ...)
 | (intersection ...)
 | (complement)
 | (concatenation ...)
 | (char-range)
 | (char-complement)
 | (...)

Produces a function that takes an input-port, matches the patterns against the buffer, and
returns the result of executing the corresponding . When multiple patterns match,
a lexer will choose the longest match, breaking ties in favor of the rule appearing first.

The implementation of syntax-color/racket-lexer contains a lexer for the racket language. In

addition, files in the "examples" sub-directory of the "parser-tools" collection contain simpler
example lexers.

An is matched as follows:

 — expands to the named lexer abbreviation; abbreviations are defined via define-lex-
abbrev or supplied by modules like parser-tools/lex-sre.

 — matches the sequence of characters in .

syntax

maybe-suppress-warnings

trigger re

re id
string
character

lo hi re
re

re
re

re
char char

re
id datum

re
action-expr

re

id

string string

(lexer [] ...)maybe-suppress-warnings trigger action-expr

file:///Users/sorawee/projects/racket/racket/doc/reference/require.html#%28form._%28%28lib._racket%2Fprivate%2Fbase..rkt%29._require%29%29
file:///Users/sorawee/projects/racket/racket/doc/parser-tools/Lexers.html?q=parser-tools
https://pkgs.racket-lang.org/package/parser-tools-lib
file:///Users/sorawee/projects/racket/racket/doc/reference/port-ops.html#%28def._%28%28quote._~23~25kernel%29._eof%29%29
file:///Users/sorawee/projects/racket/racket/doc/syntax-color/index.html#%28mod-path._syntax-color%2Fracket-lexer%29
file:///Users/sorawee/projects/racket/racket/doc/reference/index.html

12/19/2020 1 Lexers

file:///Users/sorawee/projects/racket/racket/doc/parser-tools/Lexers.html?q=parser-tools 2/9

 — matches a literal .

(repetition) — matches repeated between and times, inclusive; can
be +inf.0 for unbounded repetitions.

(union ...) — matches if any of the sub-expressions match

(intersection ...) — matches if all of the s match.

(complement) — matches anything that does not.

(concatenation ...) — matches each in succession.

(char-range) — matches any character between the two (inclusive); a single
character string can be used as a .

(char-complement) — matches any character not matched by . The sub-expression
must be a set of characters .

(...) — expands the lexer macro named ; macros are defined via define-lex-
trans.

Note that both (concatenation) and "" match the empty string, (union) matches nothing,
(intersection) matches any string, and (char-complement (union)) matches any single
character.

The regular expression language is not designed to be used directly, but rather as a basis for a
user-friendly notation written with regular expression macros. For example, parser-
tools/lex-sre supplies operators from Olin Shivers’s SREs, and parser-tools/lex-plt-v200
supplies (deprecated) operators from the previous version of this library. Since those libraries
provide operators whose names match other Racket bindings, such as * and +, they normally
must be imported using a prefix:

(require (prefix-in : parser-tools/lex-sre))

The suggested prefix is :, so that :* and :+ are imported. Of course, a prefix other than :
(such as re-) will work too.

Since negation is not a common operator on regular expressions, here are a few examples,
using : prefixed SRE syntax:

(complement "1")

Matches all strings except the string "1", including "11", "111", "0", "01", "", and so on.

(complement (:* "1"))

Matches all strings that are not sequences of "1", including "0", "00", "11110", "0111",
"11001010" and so on.

(:& (:: any-string "111" any-string)
 (complement (:or (:: any-string "01") (:+ "1"))))

Matches all strings that have 3 consecutive ones, but not those that end in "01" and not
those that are ones only. These include "1110", "0001000111" and "0111" but not "", "11",

character character

lo hi re re lo hi hi

re

re re

re re

re re

char char
char

re re
re

id datum id

file:///Users/sorawee/projects/racket/racket/doc/reference/stx-patterns.html#%28form._%28%28lib._racket%2Fprivate%2Fstxcase-scheme..rkt%29._......%29%29
file:///Users/sorawee/projects/racket/racket/doc/reference/stx-patterns.html#%28form._%28%28lib._racket%2Fprivate%2Fstxcase-scheme..rkt%29._......%29%29
file:///Users/sorawee/projects/racket/racket/doc/reference/stx-patterns.html#%28form._%28%28lib._racket%2Fprivate%2Fstxcase-scheme..rkt%29._......%29%29
file:///Users/sorawee/projects/racket/racket/doc/reference/stx-patterns.html#%28form._%28%28lib._racket%2Fprivate%2Fstxcase-scheme..rkt%29._......%29%29
file:///Users/sorawee/projects/racket/racket/doc/reference/generic-numbers.html#%28def._%28%28quote._~23~25kernel%29._%2A%29%29
file:///Users/sorawee/projects/racket/racket/doc/reference/generic-numbers.html#%28def._%28%28quote._~23~25kernel%29._%2B%29%29
file:///Users/sorawee/projects/racket/racket/doc/reference/require.html#%28form._%28%28lib._racket%2Fprivate%2Fbase..rkt%29._require%29%29
file:///Users/sorawee/projects/racket/racket/doc/reference/require.html#%28form._%28%28lib._racket%2Fprivate%2Fbase..rkt%29._prefix-in%29%29

12/19/2020 1 Lexers

file:///Users/sorawee/projects/racket/racket/doc/parser-tools/Lexers.html?q=parser-tools 3/9

"11101", "111" and "11111".

(:: "/*" (complement (:: any-string "*/" any-string)) "*/")

Matches Java/C block comments. "/**/", "/******/", "/*////*/", "/*asg4*/" and so on.
It does not match "/**/*/", "/* */ */" and so on. (:: any-string "*/" any-string)
matches any string that has a "*/" in is, so (complement (:: any-string "*/" any-
string)) matches any string without a "*/" in it.

(:: "/*" (:* (complement "*/")) "*/")

Matches any string that starts with "/*" and ends with "*/", including "/* */ */ */".
(complement "*/") matches any string except "*/". This includes "*" and "/" separately.
Thus (:* (complement "*/")) matches "*/" by first matching "*" and then matching "/".
Any other string is matched directly by (complement "*/"). In other words, (:*
(complement "xx")) = any-string. It is usually not correct to place a :* around a
complement.

The following binding have special meaning inside of a lexer action:

start-pos — a position struct for the first character matched.

end-pos — a position struct for the character after the last character in the match.

lexeme — the matched string.

input-port — the input-port being processed (this is useful for matching input with
multiple lexers).

(return-without-pos x) is a function (continuation) that immediately returns the value of
x from the lexer. This useful in a src-pos lexer to prevent the lexer from adding source
information. For example:

(define get-token
 (lexer-src-pos
 ...
 ((comment) (get-token input-port))
 ...))

would wrap the source location information for the comment around the value of the
recursive call. Using ((comment) (return-without-pos (get-token input-port))) will
cause the value of the recursive call to be returned without wrapping position around it.

The lexer raises an exception (exn:read) if none of the regular expressions match the input.
Hint: If (any-char) is the last rule, then there will always be a
match, and is executed to handle the error situation as desired, only
consuming the first character from the input buffer.

In addition to returning characters, input ports can return eof-objects. Custom input ports
can also return a special-comment value to indicate a non-textual comment, or return another
arbitrary value (a special). The non- forms handle these cases:

custom-error-behavior
custom-error-behavior

re trigger

file:///Users/sorawee/projects/racket/racket/doc/reference/define.html#%28form._%28%28lib._racket%2Fprivate%2Fbase..rkt%29._define%29%29
file:///Users/sorawee/projects/racket/racket/doc/reference/stx-patterns.html#%28form._%28%28lib._racket%2Fprivate%2Fstxcase-scheme..rkt%29._......%29%29
file:///Users/sorawee/projects/racket/racket/doc/reference/stx-patterns.html#%28form._%28%28lib._racket%2Fprivate%2Fstxcase-scheme..rkt%29._......%29%29

12/19/2020 1 Lexers

file:///Users/sorawee/projects/racket/racket/doc/parser-tools/Lexers.html?q=parser-tools 4/9

The (eof) rule is matched when the input port returns an eof-object value. If no (eof)
rule is present, the lexer returns the symbol 'eof when the port returns an eof-object
value.

The (special-comment) rule is matched when the input port returns a special-comment
structure. If no special-comment rule is present, the lexer automatically tries to return the
next token from the input port.

The (special) rule is matched when the input port returns a value other than a character,
eof-object, or special-comment structure. If no (special) rule is present, the lexer
returns (void).

End-of-files, specials, special-comments and special-errors cannot be parsed via a rule using an
ordinary regular expression (but dropping down and manipulating the port to handle them is
possible in some situations).

Since the lexer gets its source information from the port, use port-count-lines! to enable the
tracking of line and column information. Otherwise, the line and column information will
return #f.

When peeking from the input port raises an exception (such as by an embedded XML editor
with malformed syntax), the exception can be raised before all tokens preceding the exception
have been returned.

Each time the racket code for a lexer is compiled (e.g. when a ".rkt" file containing a lexer
form is loaded), the lexer generator is run. To avoid this overhead place the lexer into a
module and compile the module to a ".zo" bytecode file.

If the lexer can accept the empty string, a message is sent to current-logger. These warnings
can be disabled by giving the #:suppress-warnings flag.

Examples:

> (define the-lexer
 (lexer
 [(eof) eof]
 ["(" 'left-paren]
 [")" 'right-paren]
 [(repetition 1 +inf.0 numeric) (string->number lexeme)]
 [(concatenation (union alphabetic #_)
 (repetition 0 +inf.0 (union alphabetic numeric #_)))
 lexeme]
 ; invoke the lexer again to skip the current token
 [whitespace (the-lexer input-port)]))
> (define s (open-input-string "(lambda (a) (add_number a 42))"))
> (list (the-lexer s) (the-lexer s) (the-lexer s) (the-lexer s) (the-lexer s))
'(left-paren "lambda" left-paren "a" right-paren)

Changed in version 7.7.0.7 of package parser-tools-lib: Add #:suppress-warnings flag.

syntax(lexer-src-pos [] ...)maybe-suppress-warnings trigger action-expr

file:///Users/sorawee/projects/racket/racket/doc/reference/port-ops.html#%28def._%28%28quote._~23~25kernel%29._eof%29%29
file:///Users/sorawee/projects/racket/racket/doc/reference/port-ops.html#%28def._%28%28quote._~23~25kernel%29._eof%29%29
file:///Users/sorawee/projects/racket/racket/doc/reference/void.html#%28def._%28%28quote._~23~25kernel%29._void%29%29
file:///Users/sorawee/projects/racket/racket/doc/reference/linecol.html#%28def._%28%28quote._~23~25kernel%29._port-count-lines%21%29%29
file:///Users/sorawee/projects/racket/racket/doc/reference/logging.html#%28def._%28%28quote._~23~25kernel%29._current-logger%29%29
file:///Users/sorawee/projects/racket/racket/doc/reference/define.html#%28form._%28%28lib._racket%2Fprivate%2Fbase..rkt%29._define%29%29
file:///Users/sorawee/projects/racket/racket/doc/reference/port-ops.html#%28def._%28%28quote._~23~25kernel%29._eof%29%29
file:///Users/sorawee/projects/racket/racket/doc/reference/port-ops.html#%28def._%28%28quote._~23~25kernel%29._eof%29%29
file:///Users/sorawee/projects/racket/racket/doc/reference/generic-numbers.html#%28def._%28%28quote._~23~25kernel%29._string-~3enumber%29%29
file:///Users/sorawee/projects/racket/racket/doc/reference/define.html#%28form._%28%28lib._racket%2Fprivate%2Fbase..rkt%29._define%29%29
file:///Users/sorawee/projects/racket/racket/doc/reference/stringport.html#%28def._%28%28quote._~23~25kernel%29._open-input-string%29%29
file:///Users/sorawee/projects/racket/racket/doc/reference/pairs.html#%28def._%28%28quote._~23~25kernel%29._list%29%29

12/19/2020 1 Lexers

file:///Users/sorawee/projects/racket/racket/doc/parser-tools/Lexers.html?q=parser-tools 5/9

Like lexer, but for each produced by an , returns (make-
position-token start-pos end-pos) instead of simply .

Use of these names outside of a lexer action is a syntax error.

 #:extra-constructor-name make-position)
 offset : exact-positive-integer?
 line : exact-positive-integer?
 col : exact-nonnegative-integer?

Instances of position are bound to start-pos and end-pos. The offset field contains the
offset of the character in the input. The line field contains the line number of the character.
The col field contains the offset in the current line.

 #:extra-constructor-name make-position-token)
 token : any/c
 start-pos : position?
 end-pos : position?

Lexers created with lexer-src-pos return instances of position-token.

(file-path) → void?
 : any/c

A parameter that the lexer uses as the source location if it raises a exn:fail:read error.
Setting this parameter allows DrRacket, for example, to open the file containing the error.

1.2 Lexer Abbreviations and Macros

A lexer macro that matches any character in .

action-result action-expr
action-result action-result

syntax

syntax

syntax

syntax

syntax

struct

struct

parameter

source
source

syntax

string

syntax

start-pos
end-pos
lexeme
input-port
return-without-pos

(struct position (offset line col)

(struct position-token (token start-pos end-pos)

(file-path) → any/c

(char-set)string

any-char

file:///Users/sorawee/projects/racket/racket/doc/reference/number-types.html#%28def._%28%28quote._~23~25kernel%29._exact-positive-integer~3f%29%29
file:///Users/sorawee/projects/racket/racket/doc/reference/number-types.html#%28def._%28%28quote._~23~25kernel%29._exact-positive-integer~3f%29%29
file:///Users/sorawee/projects/racket/racket/doc/reference/number-types.html#%28def._%28%28quote._~23~25kernel%29._exact-nonnegative-integer~3f%29%29
file:///Users/sorawee/projects/racket/racket/doc/reference/data-structure-contracts.html#%28def._%28%28lib._racket%2Fcontract%2Fprivate%2Fmisc..rkt%29._any%2Fc%29%29
file:///Users/sorawee/projects/racket/racket/doc/reference/void.html#%28def._%28%28quote._~23~25kernel%29._void~3f%29%29
file:///Users/sorawee/projects/racket/racket/doc/reference/data-structure-contracts.html#%28def._%28%28lib._racket%2Fcontract%2Fprivate%2Fmisc..rkt%29._any%2Fc%29%29
file:///Users/sorawee/projects/racket/racket/doc/reference/exns.html#%28def._%28%28lib._racket%2Fprivate%2Fbase..rkt%29._exn~3afail~3aread%29%29
file:///Users/sorawee/projects/racket/racket/doc/reference/define-struct.html#%28form._%28%28lib._racket%2Fprivate%2Fbase..rkt%29._struct%29%29
file:///Users/sorawee/projects/racket/racket/doc/reference/define-struct.html#%28form._%28%28lib._racket%2Fprivate%2Fbase..rkt%29._struct%29%29
file:///Users/sorawee/projects/racket/racket/doc/reference/data-structure-contracts.html#%28def._%28%28lib._racket%2Fcontract%2Fprivate%2Fmisc..rkt%29._any%2Fc%29%29

12/19/2020 1 Lexers

file:///Users/sorawee/projects/racket/racket/doc/parser-tools/Lexers.html?q=parser-tools 6/9

A lexer abbreviation that matches any character.

A lexer abbreviation that matches any string.

A lexer abbreviation that matches no string.

Lexer abbreviations that match char-alphabetic? characters, char-lower-case? characters,
etc.

Defines a lexer abbreviation by associating a regular expression to be used in place of the in
other regular expression. The definition of name has the same scoping properties as a other
syntactic binding (e.g., it can be exported from a module).

Like define-lex-abbrev, but defines several lexer abbreviations.

Defines a lexer macro, where produces a transformer procedure that takes one
argument. When (...) appears as a regular expression, it is replaced with the
result of applying the transformer to the expression.

1.3 Lexer SRE Operators

(require parser-tools/lex-sre)

syntax

syntax

syntax

syntax

syntax

syntax

syntax

syntax

syntax

syntax

syntax

syntax

syntax

syntax

id

syntax

syntax

trans-expr
id datum

any-string

nothing

alphabetic
lower-case
upper-case
title-case
numeric
symbolic
punctuation
graphic
whitespace
blank
iso-control

(define-lex-abbrev)id re

(define-lex-abbrevs () ...)id re

(define-lex-trans)id trans-expr

file:///Users/sorawee/projects/racket/racket/doc/reference/characters.html#%28def._%28%28quote._~23~25kernel%29._char-alphabetic~3f%29%29
file:///Users/sorawee/projects/racket/racket/doc/reference/characters.html#%28def._%28%28quote._~23~25kernel%29._char-lower-case~3f%29%29
file:///Users/sorawee/projects/racket/racket/doc/reference/stx-patterns.html#%28form._%28%28lib._racket%2Fprivate%2Fstxcase-scheme..rkt%29._......%29%29
file:///Users/sorawee/projects/racket/racket/doc/reference/require.html#%28form._%28%28lib._racket%2Fprivate%2Fbase..rkt%29._require%29%29

12/19/2020 1 Lexers

file:///Users/sorawee/projects/racket/racket/doc/parser-tools/Lexers.html?q=parser-tools 7/9

 package: parser-tools-lib

Repetition of sequence 0 or more times.

Repetition of sequence 1 or more times.

Zero or one occurrence of sequence.

Exactly occurrences of sequence, where must be a literal exact, non-negative number.

At least occurrences of sequence, where must be a literal exact, non-negative number.

Between and (inclusive) occurrences of sequence, where must be a literal exact, non-
negative number, and must be literally either #f, +inf.0, or an exact, non-negative number;
a #f value for is the same as +inf.0.

Same as (union ...).

Both forms concatenate the s.

Intersects the s.

syntax

re

syntax

re

syntax

re

syntax

n re n

syntax

n re n

syntax

n m re n
m

m

syntax

re

syntax

syntax

re

syntax

re

syntax

(* ...)re

(+ ...)re

(? ...)re

(= ...)n re

(>= ...)n re

(** ...)n m re

(or ...)re

(: ...)re
(seq ...)re

(& ...)re

(- ...)re

https://pkgs.racket-lang.org/package/parser-tools-lib
file:///Users/sorawee/projects/racket/racket/doc/reference/stx-patterns.html#%28form._%28%28lib._racket%2Fprivate%2Fstxcase-scheme..rkt%29._......%29%29

12/19/2020 1 Lexers

file:///Users/sorawee/projects/racket/racket/doc/parser-tools/Lexers.html?q=parser-tools 8/9

The set difference of the s.

Character-set complement, which each must match exactly one character.

Character ranges, matching characters between successive pairs of characters.

1.4 Lexer Legacy Operators

(require parser-tools/lex-plt-v200)
 package: parser-tools-lib

The parser-tools/lex-plt-v200 module re-exports *, +, ?, and & from parser-tools/lex-
sre. It also re-exports :or as :, :: as @, :~ as ^, and :/ as -.

A lexer macro that matches an empty sequence.

The same as (complement ...).

1.5 Tokens

Each in a lexer form can produce any kind of value, but for many purposes,
producing a token value is useful. Tokens are usually necessary for inter-operating with a
parser generated by parser-tools/yacc or parser-tools/cfg-parser, but tokens may not be
the right choice when using lexer in other situations.

Examples:

> (define-tokens basic-tokens (number id))
> (define-empty-tokens punct-tokens (left-paren right-paren the-end))
> (define the-lexer
 (lexer
 [(eof) (token-the-end)]
 ["(" (token-left-paren)]
 [")" (token-right-paren)]
 [(repetition 1 +inf.0 numeric) (token-number (string->number lexeme))]
 [(concatenation (union alphabetic #_)
 (repetition 0 +inf.0 (union alphabetic numeric #_)))
 (token-id (string->symbol lexeme))]

re

syntax

re

syntax

syntax

syntax

re

action-expr

(~ ...)re

(/ ...)char-or-string

(epsilon)

(~ ...)re

file:///Users/sorawee/projects/racket/racket/doc/reference/require.html#%28form._%28%28lib._racket%2Fprivate%2Fbase..rkt%29._require%29%29
https://pkgs.racket-lang.org/package/parser-tools-lib
file:///Users/sorawee/projects/racket/racket/doc/reference/stx-patterns.html#%28form._%28%28lib._racket%2Fprivate%2Fstxcase-scheme..rkt%29._......%29%29
file:///Users/sorawee/projects/racket/racket/doc/parser-tools/LALR_1__Parsers.html?q=parser-tools
file:///Users/sorawee/projects/racket/racket/doc/parser-tools/Context-Free_Parsers.html?q=parser-tools
file:///Users/sorawee/projects/racket/racket/doc/reference/define.html#%28form._%28%28lib._racket%2Fprivate%2Fbase..rkt%29._define%29%29
file:///Users/sorawee/projects/racket/racket/doc/reference/port-ops.html#%28def._%28%28quote._~23~25kernel%29._eof%29%29
file:///Users/sorawee/projects/racket/racket/doc/reference/generic-numbers.html#%28def._%28%28quote._~23~25kernel%29._string-~3enumber%29%29
file:///Users/sorawee/projects/racket/racket/doc/reference/symbols.html#%28def._%28%28quote._~23~25kernel%29._string-~3esymbol%29%29

12/19/2020 1 Lexers

file:///Users/sorawee/projects/racket/racket/doc/parser-tools/Lexers.html?q=parser-tools 9/9

 ; invoke the lexer again to skip the current token
 [whitespace (the-lexer input-port)]))
> (define s (open-input-string "(lambda (a) (add_number a 42))"))
> (list (the-lexer s) (the-lexer s) (the-lexer s) (the-lexer s) (the-lexer s))
(list 'left-paren (token 'id 'lambda) 'left-paren (token 'id 'a) 'right-paren)

Binds to the group of tokens being defined. For each , a function token-
 is created that takes any value and puts it in a token record specific to .

The token value is inspected using and token-value.

A token cannot be named error, since error it has special use in the parser.

Like define-tokens, except a each token constructor token- takes no arguments and
returns (quote).

 : (or/c token? symbol?)

Returns the name of a token that is represented either by a symbol or a token structure.

 : (or/c token? symbol?)

Returns the value of a token that is represented either by a symbol or a token structure,
returning #f for a symbol token.

 : any/c

Returns #t if val is a token structure, #f otherwise.

syntax

group-id token-id
token-id token-id

token-id

syntax

token-id
token-id

procedure

t

procedure

t

procedure

v

(define-tokens (...))group-id token-id

(define-empty-tokens (...))group-id token-id

(token-name) → symbol?t

(token-value) → any/ct

(token?) → boolean?v

file:///Users/sorawee/projects/racket/racket/doc/reference/define.html#%28form._%28%28lib._racket%2Fprivate%2Fbase..rkt%29._define%29%29
file:///Users/sorawee/projects/racket/racket/doc/reference/stringport.html#%28def._%28%28quote._~23~25kernel%29._open-input-string%29%29
file:///Users/sorawee/projects/racket/racket/doc/reference/pairs.html#%28def._%28%28quote._~23~25kernel%29._list%29%29
file:///Users/sorawee/projects/racket/racket/doc/reference/quote.html#%28form._%28%28quote._~23~25kernel%29._quote%29%29
file:///Users/sorawee/projects/racket/racket/doc/reference/data-structure-contracts.html#%28def._%28%28lib._racket%2Fcontract%2Fbase..rkt%29._or%2Fc%29%29
file:///Users/sorawee/projects/racket/racket/doc/reference/symbols.html#%28def._%28%28quote._~23~25kernel%29._symbol~3f%29%29
file:///Users/sorawee/projects/racket/racket/doc/reference/data-structure-contracts.html#%28def._%28%28lib._racket%2Fcontract%2Fbase..rkt%29._or%2Fc%29%29
file:///Users/sorawee/projects/racket/racket/doc/reference/symbols.html#%28def._%28%28quote._~23~25kernel%29._symbol~3f%29%29
file:///Users/sorawee/projects/racket/racket/doc/reference/data-structure-contracts.html#%28def._%28%28lib._racket%2Fcontract%2Fprivate%2Fmisc..rkt%29._any%2Fc%29%29
file:///Users/sorawee/projects/racket/racket/doc/reference/symbols.html#%28def._%28%28quote._~23~25kernel%29._symbol~3f%29%29
file:///Users/sorawee/projects/racket/racket/doc/reference/data-structure-contracts.html#%28def._%28%28lib._racket%2Fcontract%2Fprivate%2Fmisc..rkt%29._any%2Fc%29%29
file:///Users/sorawee/projects/racket/racket/doc/reference/booleans.html#%28def._%28%28quote._~23~25kernel%29._boolean~3f%29%29

