1/9/2021 4.2.3 Documenting Forms, Functions, Structure Types, and Values

4.2.3 Documenting Forms, Functions, Structure Types, and Values

(defproc options prototype syntax
result-contract-expr-datum
maybe-value
pre-flow ...)

prototype = (id arg-spec ...)
| (prototype arg-spec ...)
arg-spec = (arg-id contract-expr-datum)

(arg-id contract-expr-datum default-expr)
(keyword arg-id contract-expr-datum)
(keyword arg-id contract-expr-datum default-expr)

ellipses

ellipses+

options = maybe-kind maybe-1link maybe-id

maybe-kind =
| #:kind kind-content-expr
maybe-link =
| #:link-target? link-target?-expr
maybe-id =

| #:id [src-id dest-id-expr]

maybe-value =
| #:value value-expr-datum

ellipses =
ellipses+ = ...+

Produces a sequence of flow elements (encapsulated in a splice) to document a procedure
named id. Nesting prototypes corresponds to a curried function, as in define. Unless 1ink-
target?-expr is specified and produces #f, the id is indexed, and it also registered so that
racket-typeset uses of the identifier (with the same for-label binding) are hyperlinked to this
documentation.

Examples:

adefproc[(make-sandwich [ingredients (listof ingredient?)])
sandwich?]{
Returns a sandwich given the right ingredients.

file:///Users/sorawee/projects/racket/racket/doc/scribble/doc-forms.html?q=defthing#%?28form._%28%?28lib._scribble%2Fmanual..rkt%?29._defthing%29%29

1/14

file:///Users/sorawee/projects/racket/racket/doc/reference/stx-patterns.html#%28form._%28%28lib._racket%2Fprivate%2Fstxcase-scheme..rkt%29._......%29%29
file:///Users/sorawee/projects/racket/racket/doc/scribble/decode.html?q=defthing#%28def._%28%28lib._scribble%2Fdecode..rkt%29._splice%29%29
file:///Users/sorawee/projects/racket/racket/doc/reference/define.html#%28form._%28%28lib._racket%2Fprivate%2Fbase..rkt%29._define%29%29
file:///Users/sorawee/projects/racket/racket/doc/scribble/scribble_manual_code.html?q=defthing#%28form._%28%28lib._scribble%2Fmanual..rkt%29._racket%29%29
file:///Users/sorawee/projects/racket/racket/doc/reference/data-structure-contracts.html#%28def._%28%28lib._racket%2Fcontract%2Fbase..rkt%29._listof%29%29

1/9/2021 4.2.3 Documenting Forms, Functions, Structure Types, and Values

}

@defproc[#:kind "sandwich-maker"
(make-reuben [ingredient sauerkraut?]
[#:veggie? veggie? any/c #f])
sandwich?]{
Produces a reuben given some number of @racket[ingredient]s.

If Qracket[veggie?] is @racket[#f], produces a standard
reuben with corned beef. Otherwise, produces a vegetable
reuben.

Renders like:

(make-sandwich ingredients) — sandwich? procedure
ingredients : (listof ingredient?)

Returns a sandwich given the right ingredients.

(make-reuben ingredient sandwich-maker

[#:veggie? veggie?]) — sandwich?
ingredient : sauerkraut?
veggie? : any/c = #f

Produces a reuben given some number of ingredients.

If veggie? is #f, produces a standard reuben with corned beef. Otherwise,
produces a vegetable reuben.

When id is indexed and registered, a defmodule or declare-exporting form (or one of the
variants) in an enclosing section determines the id binding that is being defined. The id
should also have a for-label binding (as introduced by (require (for-label))) that
matches the definition binding; otherwise, the defined i¢ will not typeset correctly within the
definition.

Each arg-spec must have one of the following forms:

(arg-id contract-expr-datum)

An argument whose contract is specified by contract-expr-datum which is typeset via
racketblock®o.

(arg-id contract-expr-datum default-expr)

Like the previous case, but with a default value. All arguments with a default value must
be grouped together, but they can be in the middle of required arguments.

file:///Users/sorawee/projects/racket/racket/doc/scribble/doc-forms.html?q=defthing#%?28form._%28%?28lib._scribble%2Fmanual..rkt%?29._defthing%29%29

2/14

file:///Users/sorawee/projects/racket/racket/doc/reference/stx-patterns.html#%28form._%28%28lib._racket%2Fprivate%2Fstxcase-scheme..rkt%29._......%29%29
file:///Users/sorawee/projects/racket/racket/doc/reference/data-structure-contracts.html#%28def._%28%28lib._racket%2Fcontract%2Fprivate%2Fmisc..rkt%29._any%2Fc%29%29
file:///Users/sorawee/projects/racket/racket/doc/scribble/scribble_manual_code.html?q=defthing#%28form._%28%28lib._scribble%2Fmanual..rkt%29._racket%29%29
file:///Users/sorawee/projects/racket/racket/doc/scribble/scribble_manual_code.html?q=defthing#%28form._%28%28lib._scribble%2Fmanual..rkt%29._racket%29%29
file:///Users/sorawee/projects/racket/racket/doc/scribble/scribble_manual_code.html?q=defthing#%28form._%28%28lib._scribble%2Fmanual..rkt%29._racket%29%29
file:///Users/sorawee/projects/racket/racket/doc/reference/data-structure-contracts.html#%28def._%28%28lib._racket%2Fcontract%2Fbase..rkt%29._listof%29%29
file:///Users/sorawee/projects/racket/racket/doc/reference/data-structure-contracts.html#%28def._%28%28lib._racket%2Fcontract%2Fprivate%2Fmisc..rkt%29._any%2Fc%29%29
file:///Users/sorawee/projects/racket/racket/doc/scribble/doc-modules.html?q=defthing#%28form._%28%28lib._scribble%2Fmanual..rkt%29._defmodule%29%29
file:///Users/sorawee/projects/racket/racket/doc/scribble/doc-modules.html?q=defthing#%28form._%28%28lib._scribble%2Fmanual..rkt%29._declare-exporting%29%29
file:///Users/sorawee/projects/racket/racket/doc/reference/require.html#%28form._%28%28lib._racket%2Fprivate%2Fbase..rkt%29._require%29%29
file:///Users/sorawee/projects/racket/racket/doc/reference/require.html#%28form._%28%28lib._racket%2Fprivate%2Fbase..rkt%29._for-label%29%29
file:///Users/sorawee/projects/racket/racket/doc/scribble/scribble_manual_code.html?q=defthing#%28form._%28%28lib._scribble%2Fmanual..rkt%29._racketblock0%29%29

1/9/2021 4.2.3 Documenting Forms, Functions, Structure Types, and Values

(keyword arg-id contract-expr-datum)

Like the first case, but for a keyword-based argument.

(keyword arg-id contract-expr-datum default-expr)

Like the previous case, but with a default value.

Any number of the preceding argument. This form is normally used at the end, but
keyword-based arguments can sensibly appear afterward. See also the documentation for
append for a use of ... before the last argument.

One or more of the preceding argument (normally at the end, like . ..).

The result-contract-expr-datum is typeset via racketblock0, and it represents a contract on
the procedure’s result.

The decoded pre-flow documents the procedure. In this description, references to arg-ids
using racket, racketblock, etc. are typeset as procedure arguments.

The typesetting of all information before the pre-f1ows ignores the source layout, except that

the local formatting is preserved for contracts and default-values expressions. The information
is formatted to fit (if possible) in the number of characters specified by the current-display-

width parameter.

An optional #:kind specification chooses the decorative label, which defaults to "procedure”.
A #f result for kind-content-expr uses the default, otherwise kind-content-expr should
produce content in the sense of content?. An alternate label should be all lowercase.

If #:i1d [src-id dest-id-expr] is supplied, then src-id is the identifier as it appears in the
prototype (to be replaced by a defining instance), and dest-id-expr produces the identifier
to be documented in place of src-id. This split between src-id and dest-id-expr roles is
useful for functional abstraction of defproc.

If #:value value-expr-datum is given, value-expr-datum is typeset using racketblock® and
included in the documentation. As a service to readers, please use #:value to document only
simple, short functions.

(defproc* options syntax
([prototype
result-contract-expr-datum
maybe-value] ...+)
pre-flow ...)

file:///Users/sorawee/projects/racket/racket/doc/scribble/doc-forms.html?q=defthing#%?28form._%28%?28lib._scribble%2Fmanual..rkt%?29._defthing%29%29

3/14

file:///Users/sorawee/projects/racket/racket/doc/reference/stx-patterns.html#%28form._%28%28lib._racket%2Fprivate%2Fstxcase-scheme..rkt%29._......%29%29
file:///Users/sorawee/projects/racket/racket/doc/reference/pairs.html#%28def._%28%28quote._~23~25kernel%29._append%29%29
file:///Users/sorawee/projects/racket/racket/doc/reference/stx-patterns.html#%28form._%28%28lib._racket%2Fprivate%2Fstxcase-scheme..rkt%29._......%29%29
file:///Users/sorawee/projects/racket/racket/doc/reference/stx-patterns.html#%28form._%28%28lib._racket%2Fprivate%2Fstxcase-scheme..rkt%29._......%29%29
file:///Users/sorawee/projects/racket/racket/doc/scribble/scribble_manual_code.html?q=defthing#%28form._%28%28lib._scribble%2Fmanual..rkt%29._racketblock0%29%29
file:///Users/sorawee/projects/racket/racket/doc/scribble/decode.html?q=defthing#%28tech._decode%29
file:///Users/sorawee/projects/racket/racket/doc/scribble/scribble_manual_code.html?q=defthing#%28form._%28%28lib._scribble%2Fmanual..rkt%29._racket%29%29
file:///Users/sorawee/projects/racket/racket/doc/scribble/scribble_manual_code.html?q=defthing#%28form._%28%28lib._scribble%2Fmanual..rkt%29._racketblock%29%29
file:///Users/sorawee/projects/racket/racket/doc/scribble/core.html?q=defthing#%28def._%28%28lib._scribble%2Fcore..rkt%29._content~3f%29%29
file:///Users/sorawee/projects/racket/racket/doc/scribble/scribble_manual_code.html?q=defthing#%28form._%28%28lib._scribble%2Fmanual..rkt%29._racketblock0%29%29

1/9/2021 4.2.3 Documenting Forms, Functions, Structure Types, and Values

Like defproc, but for multiple cases with the same id. Multiple distinct ids can also be defined
by a single defprocx, for the case that it’s best to document a related group of procedures at
once (but multiple defprocs grouped by deftogether also works for that case).

When an id has multiple calling cases, either they must be defined with a single defproc+, so
that a single definition point exists for the id, or else all but one definition should use #:1ink-
target? #f.

Examples:

adefproc*[([(make-pb&j) sandwich?]
[(make-pb&j [jelly jelly?]) sandwich?])]1{
Returns a peanut butter and jelly sandwich. If @racket[jelly]
is provided, then it is used instead of the standard (grape)
jelly.

Renders like:

(make-pb&j) — sandwich? procedure
(make-pb&j jelly) — sandwich?
jelly : jelly?

Returns a peanut butter and jelly sandwich. If jelly is provided, then it is
used instead of the standard (grape) jelly.

(defform options form-datum syntax
maybe-grammar maybe-contracts
pre-flow ...)

options = maybe-kind maybe-1link maybe-id maybe-literals

maybe-kind =
| #:kind kind-content-expr

maybe-link =

| #:link-target? link-target?-expr

maybe-id =
| #:id id
| #:id [id id-expr]

maybe-literals =
| #:literals (literal-id ...)

maybe-grammar =

| #:grammar ([nonterm-id clause-datum ...+]1 ...)

maybe-contracts =

| #:contracts ([subform-datum contract-expr-datum]

-)

file:///Users/sorawee/projects/racket/racket/doc/scribble/doc-forms.html?q=defthing#%?28form._%28%?28lib._scribble%2Fmanual..rkt%?29._defthing%29%29

4/14

file:///Users/sorawee/projects/racket/racket/doc/scribble/scribble_manual_code.html?q=defthing#%28form._%28%28lib._scribble%2Fmanual..rkt%29._racket%29%29

1/9/2021 4.2.3 Documenting Forms, Functions, Structure Types, and Values

Produces a sequence of flow elements (encapsulated in a splice) to document a syntatic form
named by id (or the result of id-expr) whose syntax is described by form-datum. If no #:1d is
used to specify id, then form-datum must have the form (id . datum).

If #:kind kind-content-expr is supplied, it is used in the same way as for defproc, but the
default kind is "syntax".

If #:1d [id id-expr] is supplied, then id is the identifier as it appears in the form-datum (to
be replaced by a defining instance), and id-expr produces the identifier to be documented.
This split between id and id-expr roles is useful for functional abstraction of defform.

Unless 1ink-target?-expr is specified and produces #f, the id (or result of id-expr) is
indexed, and it is also registered so that racket-typeset uses of the identifier (with the same
for-label binding) are hyperlinked to this documentation. The defmodule or declare-
exporting requirements, as well as the binding requirements for id (or result of id-expr), are
the same as for defproc.

The decoded pre-f1ow documents the form. In this description, a reference to any identifier in
form-datum via racket, racketblock, etc. is typeset as a sub-form non-terminal. If #:literals
clause is provided, however, instances of the literal-ids are typeset normally (i.e., as
determined by the enclosing context).

If a #:grammar clause is provided, it includes an auxiliary grammar of non-terminals shown
with the id form. Each nonterm-id is specified as being any of the corresponding clause-
datums.

If a #:contracts clause is provided, each subform-datum (typically an identifier that serves as
a meta-variable in form-datum or clause-datum) is shown as producing a value that must
satisfy the contract described by contract-expr-datum. Use #:contracts only to specify
constraints on a value produced by an expression; for constraints on the syntax of a subform-
datum, use grammar notation instead, possibly through an auxiliary grammar specified with

#:grammar.

The typesetting of form-datum, clause-datum, subform-datum, and contract-expr-datum
preserves the source layout, like racketblock.

Examples:

adefform[(sandwich-promise sandwich-expr)
#:contracts ([sandwich-expr sandwich?])]{
Returns a promise to construct a sandwich. When forced, the promise
will produce the result of @racket[sandwich-expr].

adefform[#:literals (sandwich mixins)
(sandwich-promise* [sandwich sandwich-expr]
[mixins ingredient-expr ...])
#:contracts ([sandwich-expr sandwich?]
[ingredient-expr ingredient?])]{
Returns a promise to construct a sandwich. When forced, the promise
will produce the result of @racket[sandwich-expr]. Each result of

file:///Users/sorawee/projects/racket/racket/doc/scribble/doc-forms.html?q=defthing#%?28form._%28%?28lib._scribble%2Fmanual..rkt%?29._defthing%29%29

5/14

file:///Users/sorawee/projects/racket/racket/doc/scribble/decode.html?q=defthing#%28def._%28%28lib._scribble%2Fdecode..rkt%29._splice%29%29
file:///Users/sorawee/projects/racket/racket/doc/scribble/scribble_manual_code.html?q=defthing#%28form._%28%28lib._scribble%2Fmanual..rkt%29._racket%29%29
file:///Users/sorawee/projects/racket/racket/doc/scribble/doc-modules.html?q=defthing#%28form._%28%28lib._scribble%2Fmanual..rkt%29._defmodule%29%29
file:///Users/sorawee/projects/racket/racket/doc/scribble/doc-modules.html?q=defthing#%28form._%28%28lib._scribble%2Fmanual..rkt%29._declare-exporting%29%29
file:///Users/sorawee/projects/racket/racket/doc/scribble/decode.html?q=defthing#%28tech._decode%29
file:///Users/sorawee/projects/racket/racket/doc/scribble/scribble_manual_code.html?q=defthing#%28form._%28%28lib._scribble%2Fmanual..rkt%29._racket%29%29
file:///Users/sorawee/projects/racket/racket/doc/scribble/scribble_manual_code.html?q=defthing#%28form._%28%28lib._scribble%2Fmanual..rkt%29._racketblock%29%29
file:///Users/sorawee/projects/racket/racket/doc/scribble/scribble_manual_code.html?q=defthing#%28form._%28%28lib._scribble%2Fmanual..rkt%29._racketblock%29%29
file:///Users/sorawee/projects/racket/racket/doc/scribble/scribble_manual_code.html?q=defthing#%28form._%28%28lib._scribble%2Fmanual..rkt%29._racket%29%29
file:///Users/sorawee/projects/racket/racket/doc/reference/stx-patterns.html#%28form._%28%28lib._racket%2Fprivate%2Fstxcase-scheme..rkt%29._......%29%29
file:///Users/sorawee/projects/racket/racket/doc/scribble/scribble_manual_code.html?q=defthing#%28form._%28%28lib._scribble%2Fmanual..rkt%29._racket%29%29

1/9/2021 4.2.3 Documenting Forms, Functions, Structure Types, and Values
the @racket[ingredient-expr]s will be mixed into the resulting
sandwich.

adefform[(sandwich-factory maybe-name factory-component ...)
#:grammar
[(maybe-name (code:line)
name)
(factory-component (code:line #:protein protein-expr)
[vegetable vegetable-expr])]]{
Constructs a sandwich factory. If @racket[maybe-name] is provided,
the factory will be named. Each of the @racket[factory-component]
clauses adds an additional ingredient to the sandwich pipeline.

Renders like:

(sandwich-promise sandwich-expr) syntax

sandwich-expr : sandwich?

Returns a promise to construct a sandwich. When forced, the promise will
produce the result of sandwich-expr.

(sandwich-promise* [sandwich sandwich-expr] syntax
[mixins ingredient-expr ...1)

sandwich-expr : sandwich?
ingredient-expr : ingredient?

Returns a promise to construct a sandwich. When forced, the promise will

produce the result of sandwich-expr. Each result of the ingredient-exprs
will be mixed into the resulting sandwich.

(sandwich-factory maybe-name factory-component ...) syntax

maybe-name =

| name

factory-component = #:protein protein-expr
| [vegetable vegetable-expr]

Constructs a sandwich factory. If maybe-name is provided, the factory will be
named. Each of the factory-component clauses adds an additional
ingredient to the sandwich pipeline.

(defform* options [form-datum ...+] syntax
maybe-grammar maybe-contracts
pre-flow ...)

file:///Users/sorawee/projects/racket/racket/doc/scribble/doc-forms.html?q=defthing#%?28form._%28%?28lib._scribble%2Fmanual..rkt%?29._defthing%29%29

6/14

file:///Users/sorawee/projects/racket/racket/doc/scribble/scribble_manual_code.html?q=defthing#%28form._%28%28lib._scribble%2Fmanual..rkt%29._racket%29%29
file:///Users/sorawee/projects/racket/racket/doc/reference/stx-patterns.html#%28form._%28%28lib._racket%2Fprivate%2Fstxcase-scheme..rkt%29._......%29%29
file:///Users/sorawee/projects/racket/racket/doc/scribble/scribble_manual_code.html?q=defthing#%28form._%28%28lib._scribble%2Fmanual..rkt%29._racket%29%29
file:///Users/sorawee/projects/racket/racket/doc/scribble/scribble_manual_code.html?q=defthing#%28form._%28%28lib._scribble%2Fmanual..rkt%29._racket%29%29

1/9/2021 4.2.3 Documenting Forms, Functions, Structure Types, and Values

Like defform, but for multiple forms using the same id.

Examples:

adefform+[((call-with-current-sandwich expr)
(call-with-current-sandwich expr sandwich-handler-expr))Il{
Runs qracket[expr] and passes it the value of the current
sandwich. If @racket[sandwich-handler-expr] is provided, its result
is invoked when the current sandwich is eaten.

Renders like:

(call-with-current-sandwich expr) syntax
(call-with-current-sandwich expr sandwich-handler-expr)

Runs expr and passes it the value of the current sandwich. If sandwich-
handler-expr is provided, its result is invoked when the current sandwich is
eaten.

(defform/none maybe-kind maybe-literal form-datum syntax
maybe-grammar maybe-contracts
pre-flow ...)

Like defform with #:1link-target? #f.

(defidform maybe-kind maybe-link id pre-flow ...) syntax

Like defform, but with a plain id as the form.

(defidform/inline id) syntax
(defidform/inline (unsyntax id-expr))

Like defidform, but id (or the result of id-expr, analogous to defform) is typeset as an inline
element. Use this form sparingly, because the typeset form does not stand out to the reader as
a specification of id.

(defsubform options form-datum syntax
maybe-grammar maybe-contracts
pre-flow ...)

(defsubform* options [form-datum ...+] syntax
maybe-grammar maybe-contracts
pre-flow ...)

Like defform and defform+, but with indenting on the left for both the specification and the
pre-flows.

file:///Users/sorawee/projects/racket/racket/doc/scribble/doc-forms.html?q=defthing#%?28form._%28%?28lib._scribble%2Fmanual..rkt%?29._defthing%29%29

/14

file:///Users/sorawee/projects/racket/racket/doc/scribble/scribble_manual_code.html?q=defthing#%28form._%28%28lib._scribble%2Fmanual..rkt%29._racket%29%29
file:///Users/sorawee/projects/racket/racket/doc/scribble/scribble_manual_code.html?q=defthing#%28form._%28%28lib._scribble%2Fmanual..rkt%29._racket%29%29
file:///Users/sorawee/projects/racket/racket/doc/reference/stx-patterns.html#%28form._%28%28lib._racket%2Fprivate%2Fqqstx..rkt%29._unsyntax%29%29

1/9/2021 4.2.3 Documenting Forms, Functions, Structure Types, and Values

(specform maybe-literals datum maybe-grammar maybe-contracts syntax
pre-flow ...)

Like defform with #:1ink-target? #f, but with indenting on the left for both the
specification and the pre-flows.

(specsubform maybe-literals datum maybe-grammar maybe-contracts syntax
pre-flow ...)

Similar to defform with #:1link-target? #f, but without the initial identifier as an implicit
literal, and the table and flow are typeset indented. This form is intended for use when
refining the syntax of a non-terminal used in a defform or other specsubform. For example, it
is used in the documentation for defproc in the itemization of possible shapes for arg-spec.

The pre-flows list is parsed as a flow that documents the procedure. In this description, a
reference to any identifier in datum is typeset as a sub-form non-terminal.

(specspecsubform maybe-literals datum maybe-grammar maybe-contracts syntax
pre-flow ...)

Like specsubform, but indented an extra level. Since using specsubform within the body of
specsubform already nests indentation, specspecsubform is for extra indentation without
nesting a description.

(defform/subs options form-datum syntax
([nonterm-id clause-datum ...+]1 ...)
maybe-contracts
pre-flow ...)
(defform+/subs options [form-datum ...+] syntax
([nonterm-id clause-datum ...+] ...)
maybe-contracts
pre-flow ...)
(specform/subs maybe-literals datum syntax
([nonterm-id clause-datum ...+] ...)
maybe-contracts
pre-flow ...)
(specsubform/subs maybe-literals datum syntax
([nonterm-id clause-datum ...+] ...)
maybe-contracts
pre-flow ...)
(specspecsubform/subs maybe-literals datum syntax
(Lnonterm-id clause-datum ...+] ...)
maybe-contracts
pre-flow ...)

Like defform, defformx, specform, specsubform, and specspecsubform, respectively, but the
auxiliary grammar is mandatory and the #:grammar keyword is omitted.

Examples:

file:///Users/sorawee/projects/racket/racket/doc/scribble/doc-forms.html?q=defthing#%?28form._%28%?28lib._scribble%2Fmanual..rkt%?29._defthing%29%29

8/14

1/9/2021 4.2.3 Documenting Forms, Functions, Structure Types, and Values
adefform/subs[(sandwich-factory maybe-name factory-component ...)
[(maybe-name (code:line)
name)
(factory-component (code:line #:protein protein-expr)
[vegetable vegetable-expr])]]{
Constructs a sandwich factory. If @racket[maybe-name] is provided,
the factory will be named. Each of the @racket[factory-component]
clauses adds an additional ingredient to the sandwich pipeline.

Renders like:

(sandwich-factory maybe-name factory-component ...) syntax

maybe-name =

| name

factory-component = #:protein protein-expr
| [vegetable vegetable-expr]

Constructs a sandwich factory. If maybe-name is provided, the factory will be
named. Each of the factory-component clauses adds an additional
ingredient to the sandwich pipeline.

(defparam maybe-link id arg-id syntax
contract-expr-datum
maybe-value
pre-flow ...)

Like defproc, but for a parameter. The contract-expr-datum serves as both the result
contract on the parameter and the contract on values supplied for the parameter. The arg-id
refers to the parameter argument in the latter case.

Examples:

ddefparam[current-sandwich sandwich sandwich?
#:value empty-sandwich]{
A parameter that defines the current sandwich for operations that
involve eating a sandwich. Default value is the empty sandwich.

Renders like:

(current-sandwich) — sandwich? parameter
(current-sandwich sandwich) — void?
sandwich : sandwich?

= empty-sandwich

A parameter that defines the current sandwich for operations that involve
eating a sandwich. Default value is the empty sandwich.

file:///Users/sorawee/projects/racket/racket/doc/scribble/doc-forms.html?q=defthing#%?28form._%28%?28lib._scribble%2Fmanual..rkt%?29._defthing%29%29

9/14

file:///Users/sorawee/projects/racket/racket/doc/reference/stx-patterns.html#%28form._%28%28lib._racket%2Fprivate%2Fstxcase-scheme..rkt%29._......%29%29
file:///Users/sorawee/projects/racket/racket/doc/scribble/scribble_manual_code.html?q=defthing#%28form._%28%28lib._scribble%2Fmanual..rkt%29._racket%29%29
file:///Users/sorawee/projects/racket/racket/doc/scribble/scribble_manual_code.html?q=defthing#%28form._%28%28lib._scribble%2Fmanual..rkt%29._racket%29%29
file:///Users/sorawee/projects/racket/racket/doc/reference/void.html#%28def._%28%28quote._~23~25kernel%29._void~3f%29%29

1/9/2021 4.2.3 Documenting Forms, Functions, Structure Types, and Values

(defparam* maybe-link id arg-id syntax
in-contract-expr-datum out-contract-expr-datum
maybe-value
pre-flow ...)

Like defparam, but with separate contracts for when the parameter is being set versus when it
is being retrieved (for the case that a parameter guard coerces values matching a more flexible
contract to a more restrictive one; current-directory is an example).

(defboolparam maybe-link id arg-id syntax
maybe-value
pre-flow ...)

Like defparam, but the contract on a parameter argument is any/c, and the contract on the
parameter result is boolean?.

(defthing options id contract-expr-datum maybe-value syntax
pre-flow ...)

options maybe-kind maybe-1link maybe-id

maybe-kind =
| #:kind kind-content-expr

maybe-link =

| #:link-target? link-target?-expr

maybe-id =
| #:id id-expr

maybe-value =

| #:value value-expr-datum

Like defproc, but for a non-procedure binding.

If #:kind kind-content-expr is supplied, it is used in the same way as for defproc, but the
default kind is "value".

If #:1d id-expr is supplied, then the result of id-expr is used in place of id.

If #:value value-expr-datumis given, value-expr-datum is typeset using racketblock® and
included in the documentation. Wide values are put on a separate line.

Examples:

adefthing[moldy-sandwich sandwich?]{
Don't eat this. Provided for backwards compatibility.

adefthing[empty-sandwich sandwich? #:value (make-sandwich empty)]{
The empty sandwich.

file:///Users/sorawee/projects/racket/racket/doc/scribble/doc-forms.html?q=defthing#%?28form._%28%?28lib._scribble%2Fmanual..rkt%?29._defthing%29%29

10/14

file:///Users/sorawee/projects/racket/racket/doc/reference/Filesystem.html#%28def._%28%28quote._~23~25kernel%29._current-directory%29%29
file:///Users/sorawee/projects/racket/racket/doc/reference/data-structure-contracts.html#%28def._%28%28lib._racket%2Fcontract%2Fprivate%2Fmisc..rkt%29._any%2Fc%29%29
file:///Users/sorawee/projects/racket/racket/doc/reference/booleans.html#%28def._%28%28quote._~23~25kernel%29._boolean~3f%29%29
file:///Users/sorawee/projects/racket/racket/doc/scribble/scribble_manual_code.html?q=defthing#%28form._%28%28lib._scribble%2Fmanual..rkt%29._racketblock0%29%29
file:///Users/sorawee/projects/racket/racket/doc/reference/pairs.html#%28def._%28%28lib._racket%2Flist..rkt%29._empty%29%29

1/9/2021 4.2.3 Documenting Forms, Functions, Structure Types, and Values

}

Renders like:

moldy-sandwich : sandwich? value

Don’t eat this. Provided for backwards compatibility.

empty-sandwich : sandwich? = (make-sandwich empty) value

The empty sandwich.

(defthing* options ([id contract-expr-datum maybe-valuel ...+) syntax
pre-flow ...)

Like defthing, but for multiple non-procedure bindings. Unlike defthing, id-expr is not
supported.

Examples:

adefthing+[([moldy-sandwich sandwich?]
[empty-sandwich sandwich?])]{
Predefined sandwiches.

Renders like:

moldy-sandwich : sandwich? value
empty-sandwich : sandwich?

Predefined sandwiches.

(defstruct* maybe-link struct-name ([field-name contract-expr-datum] ...) syntax
maybe-mutable maybe-non-opaque maybe-constructor
pre-flow ...)

(defstruct maybe-link struct-name ([field-name contract-expr-datum] ...) syntax
maybe-mutable maybe-non-opaque maybe-constructor
pre-flow ...)

maybe-link =
| #:link-target? link-target?-expr

struct-name = 1id

| (id super-id)

maybe-mutable
| #:mutable

maybe-non-opaque
file:///Users/sorawee/projects/racket/racket/doc/scribble/doc-forms.html?q=defthing#%?28form._%28%?28lib._scribble%2Fmanual..rkt%?29._defthing%29%29

11/14

file:///Users/sorawee/projects/racket/racket/doc/reference/pairs.html#%28def._%28%28lib._racket%2Flist..rkt%29._empty%29%29

1/9/2021 4.2.3 Documenting Forms, Functions, Structure Types, and Values

#:prefab

| #:transparent
| #:inspector #f

maybe-constructor =
| #:constructor-name constructor-id
| #:extra-constructor-name constructor-id

| #:omit-constructor

Similar to defform or defproc, but for a structure definition. The defstruct* form
corresponds to struct, while defstruct corresponds to define-struct.

Examples:
An example using defstruct:

ddefstruct[sandwich ([protein ingredient?] [sauce ingredient?])]{
A structure type for sandwiches. Sandwiches are a pan-human foodstuff
composed of a partially-enclosing bread material and various

ingredients.

Renders like:

(struct sandwich (protein sauce) struct
#:extra-constructor-name make-sandwich)

protein : ingredient?
sauce : ingredient?

A structure type for sandwiches. Sandwiches are a pan-human foodstuff
composed of a partially-enclosing bread material and various ingredients.

Additionally, an example using defstructx:

ddefstructx[burrito ([salsa ingredient?] [tortilla ingredient?])]{
A structure type for burritos. Burritos are a pan-human foodstuff
composed of a @emph{fully}-encolosed bread material and various

ingredients.

Renders like:

(struct burrito (salsa tortilla)) struct
salsa : ingredient?
tortilla : ingredient?

A structure type for burritos. Burritos are a pan-human foodstuff composed
of a fully-encolosed bread material and various ingredients.

(deftogether [def-expr ...+] pre-flow ...) syntax

file:///Users/sorawee/projects/racket/racket/doc/scribble/doc-forms.html?q=defthing#%?28form._%28%?28lib._scribble%2Fmanual..rkt%?29._defthing%29%29

12/14

file:///Users/sorawee/projects/racket/racket/doc/reference/define-struct.html#%28form._%28%28lib._racket%2Fprivate%2Fbase..rkt%29._struct%29%29
file:///Users/sorawee/projects/racket/racket/doc/reference/define-struct.html#%28form._%28%28lib._racket%2Fprivate%2Fbase..rkt%29._define-struct%29%29
file:///Users/sorawee/projects/racket/racket/doc/scribble/base.html?q=defthing#%28def._%28%28lib._scribble%2Fbase..rkt%29._emph%29%29
file:///Users/sorawee/projects/racket/racket/doc/reference/define-struct.html#%28form._%28%28lib._racket%2Fprivate%2Fbase..rkt%29._struct%29%29
file:///Users/sorawee/projects/racket/racket/doc/reference/define-struct.html#%28form._%28%28lib._racket%2Fprivate%2Fbase..rkt%29._struct%29%29

1/9/2021 4.2.3 Documenting Forms, Functions, Structure Types, and Values

Combines the definitions created by the def-exprs into a single definition box. Each def-expr
should produce a definition point via defproc, defform, etc. Each def-expr should have an

empty pre-flow; the decoded pre-flow sequence for the deftogether form documents the
collected bindings.

Examples:

adeftogether[(@defthing[test-sandwich-1 sandwich?]
adefthing[test-sandwich-2 sandwich?])]{
Two high-quality sandwiches. These are provided for convenience
in writing test cases

Renders like:

test-sandwich-1 : sandwich? value

test-sandwich-2 : sandwich? value

Two high-quality sandwiches. These are provided for convenience in writing
test cases

(racketgrammar maybe-literals id clause-datum ...+) syntax

maybe-literals =
| #:literals (literal-id ...)

Creates a table to define the grammar of id. Each identifier mentioned in a clause-datum is

typeset as a non-terminal, except for the identifiers listed as literal-ids, which are typeset as
with racket.

(racketgrammar* maybe-literals [id clause-datum ...+] ...) syntax

Like racketgrammar, but for typesetting multiple productions at once, aligned around the =
and |.

(defidentifier id procedure
[#:form? form?
#:index? index?
#:show-1ibs? show-1ibs?]) — element?
id : identifier?

form? : boolean? = #f
index? : boolean? = #t
show-1ibs? : boolean? = #t

Typesets id as a Racket identifier, and also establishes the identifier as the definition of a
binding in the same way as defproc, defform, etc. As always, the library that provides the
identifier must be declared via defmodule or declare-exporting for an enclosing section.

file:///Users/sorawee/projects/racket/racket/doc/scribble/doc-forms.html?q=defthing#%?28form._%28%?28lib._scribble%2Fmanual..rkt%?29._defthing%29%29

13/14

file:///Users/sorawee/projects/racket/racket/doc/scribble/decode.html?q=defthing#%28tech._decode%29
file:///Users/sorawee/projects/racket/racket/doc/scribble/scribble_manual_code.html?q=defthing#%28form._%28%28lib._scribble%2Fmanual..rkt%29._racket%29%29
file:///Users/sorawee/projects/racket/racket/doc/reference/stxops.html#%28def._%28%28lib._racket%2Fprivate%2Fstx..rkt%29._identifier~3f%29%29
file:///Users/sorawee/projects/racket/racket/doc/reference/booleans.html#%28def._%28%28quote._~23~25kernel%29._boolean~3f%29%29
file:///Users/sorawee/projects/racket/racket/doc/reference/booleans.html#%28def._%28%28quote._~23~25kernel%29._boolean~3f%29%29
file:///Users/sorawee/projects/racket/racket/doc/reference/booleans.html#%28def._%28%28quote._~23~25kernel%29._boolean~3f%29%29
file:///Users/sorawee/projects/racket/racket/doc/scribble/doc-modules.html?q=defthing#%28form._%28%28lib._scribble%2Fmanual..rkt%29._defmodule%29%29
file:///Users/sorawee/projects/racket/racket/doc/scribble/doc-modules.html?q=defthing#%28form._%28%28lib._scribble%2Fmanual..rkt%29._declare-exporting%29%29
file:///Users/sorawee/projects/racket/racket/doc/scribble/core.html?q=defthing#%28def._%28%28lib._scribble%2Fcore..rkt%29._element~3f%29%29

1/9/2021 4.2.3 Documenting Forms, Functions, Structure Types, and Values

If form? is a true value, then the identifier is documented as a syntactic form, so that uses of
the identifier (normally including id itself) are typeset as a syntactic form.

If index? is a true value, then the identifier is registered in the index.

If show-1ibs? is a true value, then the identifier’s defining module may be exposed in the
typeset form (e.g., when viewing HTML and the mouse hovers over the identifier).

(schemegrammar maybe-literals id clause-datum ...+) syntax
(schemegrammar* maybe-literals [id clause-datum ...+] ...) syntax

Compatibility aliases for racketgrammar and racketgrammarx.

(current-display-width) — exact-nonnegative-integer? parameter
(current-display-width w) — void?

w : exact-nonnegative-integer?

Specifies the target maximum width in characters for the output of defproc and defstruct.

file:///Users/sorawee/projects/racket/racket/doc/scribble/doc-forms.html?q=defthing#%?28form._%28%?28lib._scribble%2Fmanual..rkt%?29._defthing%29%29 14/14

file:///Users/sorawee/projects/racket/racket/doc/reference/void.html#%28def._%28%28quote._~23~25kernel%29._void~3f%29%29
file:///Users/sorawee/projects/racket/racket/doc/reference/number-types.html#%28def._%28%28quote._~23~25kernel%29._exact-nonnegative-integer~3f%29%29
file:///Users/sorawee/projects/racket/racket/doc/reference/number-types.html#%28def._%28%28quote._~23~25kernel%29._exact-nonnegative-integer~3f%29%29

