
U
ser’s M

anual

www.renesas.com

RH850G3MH
User’s Manual: Software

Renesas microcontroller

Mar, 2015Rev.1.00

All information contained in these materials, including products and product specifications,
represents information on the product at the time of publication and is subject to change by
Renesas Electronics Corp. without notice. Please review the latest information published by
Renesas Electronics Corp. through various means, including the Renesas Electronics Corp.
website (http://www.renesas.com).

32

Cover

Notice

Notice
1. Descriptions of circuits, software and other related information in this document are provided only to illustrate the operation of

semiconductor products and application examples. You are fully responsible for the incorporation of these circuits, software,
and information in the design of your equipment. Renesas Electronics assumes no responsibility for any losses incurred by you
or third parties arising from the use of these circuits, software, or information.

2. Renesas Electronics has used reasonable care in preparing the information included in this document, but Renesas Electronics
does not warrant that such information is error free. Renesas Electronics assumes no liability whatsoever for any damages
incurred by you resulting from errors in or omissions from the information included herein.

3. Renesas Electronics does not assume any liability for infringement of patents, copyrights, or other intellectual property rights of
third parties by or arising from the use of Renesas Electronics products or technical information described in this document. No
license, express, implied or otherwise, is granted hereby under any patents, copyrights or other intellectual property rights of
Renesas Electronics or others.

4. You should not alter, modify, copy, or otherwise misappropriate any Renesas Electronics product, whether in whole or in part.
Renesas Electronics assumes no responsibility for any losses incurred by you or third parties arising from such alteration,
modification, copy or otherwise misappropriation of Renesas Electronics product.

5. Renesas Electronics products are classified according to the following two quality grades: “Standard” and “High Quality”. The
recommended applications for each Renesas Electronics product depends on the product’s quality grade, as indicated below.
“Standard”: Computers; office equipment; communications equipment; test and measurement equipment; audio and visual

equipment; home electronic appliances; machine tools; personal electronic equipment; and industrial robots etc.
“High Quality”: Transportation equipment (automobiles, trains, ships, etc.); traffic control systems; anti-disaster systems; anti-

crime systems; and safety equipment etc.
Renesas Electronics products are neither intended nor authorized for use in products or systems that may pose a direct threat to
human life or bodily injury (artificial life support devices or systems, surgical implantations etc.), or may cause serious property
damages (nuclear reactor control systems, military equipment etc.). You must check the quality grade of each Renesas
Electronics product before using it in a particular application. You may not use any Renesas Electronics product for any
application for which it is not intended. Renesas Electronics shall not be in any way liable for any damages or losses incurred
by you or third parties arising from the use of any Renesas Electronics product for which the product is not intended by Renesas
Electronics.

6. You should use the Renesas Electronics products described in this document within the range specified by Renesas Electronics,
especially with respect to the maximum rating, operating supply voltage range, movement power voltage range, heat radiation
characteristics, installation and other product characteristics. Renesas Electronics shall have no liability for malfunctions or
damages arising out of the use of Renesas Electronics products beyond such specified ranges.

7. Although Renesas Electronics endeavors to improve the quality and reliability of its products, semiconductor products have
specific characteristics such as the occurrence of failure at a certain rate and malfunctions under certain use conditions. Further,
Renesas Electronics products are not subject to radiation resistance design. Please be sure to implement safety measures to
guard them against the possibility of physical injury, and injury or damage caused by fire in the event of the failure of a Renesas
Electronics product, such as safety design for hardware and software including but not limited to redundancy, fire control and
malfunction prevention, appropriate treatment for aging degradation or any other appropriate measures. Because the evaluation
of microcomputer software alone is very difficult, please evaluate the safety of the final products or systems manufactured by
you.

8. Please contact a Renesas Electronics sales office for details as to environmental matters such as the environmental compatibility
of each Renesas Electronics product. Please use Renesas Electronics products in compliance with all applicable laws and
regulations that regulate the inclusion or use of controlled substances, including without limitation, the EU RoHS Directive.
Renesas Electronics assumes no liability for damages or losses occurring as a result of your noncompliance with applicable laws
and regulations.

9. Renesas Electronics products and technology may not be used for or incorporated into any products or systems whose
manufacture, use, or sale is prohibited under any applicable domestic or foreign laws or regulations. You should not use
Renesas Electronics products or technology described in this document for any purpose relating to military applications or use
by the military, including but not limited to the development of weapons of mass destruction. When exporting the Renesas
Electronics products or technology described in this document, you should comply with the applicable export control laws and
regulations and follow the procedures required by such laws and regulations.

10. It is the responsibility of the buyer or distributor of Renesas Electronics products, who distributes, disposes of, or otherwise
places the product with a third party, to notify such third party in advance of the contents and conditions set forth in this
document, Renesas Electronics assumes no responsibility for any losses incurred by you or third parties as a result of
unauthorized use of Renesas Electronics products.

11. This document may not be reproduced or duplicated in any form, in whole or in part, without prior written consent of Renesas
Electronics.

12. Please contact a Renesas Electronics sales office if you have any questions regarding the information contained in this document
or Renesas Electronics products, or if you have any other inquiries.

(Note 1) “Renesas Electronics” as used in this document means Renesas Electronics Corporation and also includes its majority-
owned subsidiaries.

(Note 2) “Renesas Electronics product(s)” means any product developed or manufactured by or for Renesas Electronics.

(2012.4)

NOTES FOR CMOS DEVICES

NOTES FOR CMOS DEVICES

(1) VOLTAGE APPLICATION WAVEFORM AT INPUT PIN: Waveform distortion due to input noise or a
reflected wave may cause malfunction. If the input of the CMOS device stays in the area between VIL
(MAX) and VIH (MIN) due to noise, etc., the device may malfunction. Take care to prevent chattering noise
from entering the device when the input level is fixed, and also in the transition period when the input level
passes through the area between VIL (MAX) and VIH (MIN).

(2) HANDLING OF UNUSED INPUT PINS: Unconnected CMOS device inputs can be cause of malfunction. If
an input pin is unconnected, it is possible that an internal input level may be generated due to noise, etc.,
causing malfunction. CMOS devices behave differently than Bipolar or NMOS devices. Input levels of
CMOS devices must be fixed high or low by using pull-up or pull-down circuitry. Each unused pin should be
connected to VDD or GND via a resistor if there is a possibility that it will be an output pin. All handling
related to unused pins must be judged separately for each device and according to related specifications
governing the device.

(3) PRECAUTION AGAINST ESD: A strong electric field, when exposed to a MOS device, can cause
destruction of the gate oxide and ultimately degrade the device operation. Steps must be taken to stop
generation of static electricity as much as possible, and quickly dissipate it when it has occurred.
Environmental control must be adequate. When it is dry, a humidifier should be used. It is recommended
to avoid using insulators that easily build up static electricity. Semiconductor devices must be stored and
transported in an anti-static container, static shielding bag or conductive material. All test and measurement
tools including work benches and floors should be grounded. The operator should be grounded using a wrist
strap. Semiconductor devices must not be touched with bare hands. Similar precautions need to be taken
for PW boards with mounted semiconductor devices.

(4) STATUS BEFORE INITIALIZATION: Power-on does not necessarily define the initial status of a MOS
device. Immediately after the power source is turned ON, devices with reset functions have not yet been
initialized. Hence, power-on does not guarantee output pin levels, I/O settings or contents of registers. A
device is not initialized until the reset signal is received. A reset operation must be executed immediately
after power-on for devices with reset functions.

(5) POWER ON/OFF SEQUENCE: In the case of a device that uses different power supplies for the internal
operation and external interface, as a rule, switch on the external power supply after switching on the internal
power supply. When switching the power supply off, as a rule, switch off the external power supply and then
the internal power supply. Use of the reverse power on/off sequences may result in the application of an
overvoltage to the internal elements of the device, causing malfunction and degradation of internal elements
due to the passage of an abnormal current. The correct power on/off sequence must be judged separately
for each device and according to related specifications governing the device.

(6) INPUT OF SIGNAL DURING POWER OFF STATE : Do not input signals or an I/O pull-up power supply
while the device is not powered. The current injection that results from input of such a signal or I/O pull-up
power supply may cause malfunction and the abnormal current that passes in the device at this time may
cause degradation of internal elements. Input of signals during the power off state must be judged
separately for each device and according to related specifications governing the device.

How to Use This Manual

Target and Readers This manual is intended for users who wish to understand the RH850G3M
software and design application systems using these products.

Conventions Data significance: Higher digits on the left and lower digits on the
right

Active low representation: xxx (overscore over pin or signal name)

Memory map address: Higher addresses on the top and lower addresses on
the bottom

Note: Footnote for item marked with Note in the text

Caution: Information requiring particular attention

Remark: Supplementary information

Numeric representation: Binary ... xxxx or xxxxB

Decimal ... xxxx

Hexadecimal ... xxxxH

Prefix indicating power of 2 (address space, memory capacity):

K (kilo): 210 = 1,024

M (mega): 220 = 1,0242

G (giga): 230 = 1,0243

All trademarks and registered trademarks are the property of their respective
owners.

Section 1 OVERVIEW.. 8

1.1 Features of the RH850G3MH... 8

1.2 Changes from the RH850G3M ... 9

Section 2 PROCESSOR MODEL .. 10

2.1 CPU Operating Modes.. 10

2.1.1 Definition of CPU Operating Modes ... 10

2.1.2 CPU Operating Mode Transition .. 11

2.1.3 CPU Operating Modes and Privileges.. 12

2.2 Instruction Execution .. 14

2.3 Exceptions and Interrupts ... 16

2.3.1 Exception Level .. 16

2.4 Coprocessors.. 17

2.4.1 Coprocessor Use Permissions ... 17

2.4.2 Correspondences between Coprocessor Use Permissions and Coprocessors 17

2.4.3 Coprocessor Unusable Exceptions .. 17

2.4.4 System Registers ... 17

2.5 Registers... 18

2.5.1 Program Registers.. 18

2.5.2 System Registers ... 18

2.5.3 Register Updating... 18

2.5.4 Accessing Undefined Registers.. 20

2.6 Data Types ... 21

2.6.1 Data formats ... 21

2.6.2 Data Representation... 23

2.6.3 Data Alignment ... 24

2.7 Address Space ... 26

2.7.1 Memory Map... 27

2.7.2 Instruction Addressing .. 28

2.7.3 Data Addressing ... 30

2.8 Acquiring the CPU Number .. 35

2.9 System Protection Identifier.. 35

Section 3 REGISTER SET... 36

3.1 Program Registers.. 36

3.1.1 General-Purpose Registers .. 37

3.1.2 PC — Program Counter... 38

3.2 Basic System Registers.. 39

3.3 Interrupt Function Registers ... 58

3.3.1 Interrupt Function System Registers .. 58

3.4 FPU Function Registers.. 62

3.4.1 Floating-Point Registers ... 62

3.4.2 Floating-Point Function System Registers ... 62

Table of Contents

3.5 MPU Function Registers... 69

3.5.1 MPU Function System Registers.. 69

3.6 Cache Operation Function Registers.. 77

3.6.1 Cache Control Function System Registers... 77

3.7 Data Buffer Operation Registers... 83

3.7.1 Data Buffer Control System Registers.. 83

Section 4 EXCEPTIONS AND INTERRUPTS ... 84

4.1 Outline of Exceptions.. 84

4.1.1 Exception Cause List.. 84

4.1.2 Overview of Exception Causes... 87

4.1.3 Types of Exceptions ... 88

4.1.4 Exception Acknowledgment Conditions and Priority Order .. 89

4.1.5 Interrupt Exception Priority and Priority Masking.. 90

4.1.6 Return and Restoration .. 91

4.1.7 Context Saving ... 92

4.2 Operation When Acknowledging an Exception... 93

4.2.1 Special Operations ... 95

4.3 Return from Exception Handling... 96

4.4 Exception Handler Address .. 98

4.4.1 Resets, Exceptions, and Interrupts... 98

4.4.2 System Calls... 103

4.4.3 Models for Application .. 104

Section 5 MEMORY MANAGEMENT.. 106

5.1 Memory Protection Unit (MPU)... 106

5.1.1 Features ... 106

5.1.2 Protection Area Settings... 107

5.1.3 Caution Points for Protection Area Setup... 108

5.1.4 Access Control ... 109

5.1.5 Violations and Exceptions .. 110

5.1.6 Memory Protection Setting Check Function ... 111

5.2 Cache ... 112

5.2.1 Cache Operation Registers .. 112

5.2.2 Change Cache Use Mode .. 112

5.2.3 Cache Operations using CACHE Instruction.. 113

5.2.4 Cache Operation when the PREF Instruction is Executed ... 114

5.2.5 Cache Index Specification Method ... 115

5.2.6 Execution Privilege of the CACHE/PREF Instruction ... 115

5.2.7 Memory Protection for CACHE and PREF Instructions.. 116

5.3 Mutual Exclusion... 117

5.3.1 Shared Data that does not Require Mutual Exclusion Processing 117

5.3.2 Performing Mutual Exclusion by Using the LDL.W and STC.W Instructions.................... 118

5.3.3 Performing Mutual Exclusion by Using the SET1 Instruction ... 120

5.3.4 Performing Mutual Exclusion by Using the CAXI Instruction.. 121

Section 6 COPROCESSOR... 122

6.1 Floating-Point Operation... 122

6.1.1 Configuration of Floating-Point Operation Function ... 122

6.1.2 Data Types ... 123

6.1.3 Register Set.. 126

6.1.4 Floating-Point Instructions .. 126

6.1.5 Floating-Point Operation Exceptions .. 127

6.1.6 Exception Details.. 130

6.1.7 Saving and Returning Status.. 134

6.1.8 Flushing Subnormal Numbers .. 135

6.1.9 Flush to Nearest ... 137

Section 7 INSTRUCTION .. 138

7.1 Opcodes and Instruction Formats... 138

7.1.1 CPU Instructions... 138

7.1.2 Coprocessor Instructions.. 143

7.1.3 Reserved Instructions... 143

7.2 Basic Instructions.. 144

7.2.1 Overview of Basic Instructions ... 144

7.2.2 Basic Instruction Set... 149

7.3 Cache Instructions .. 300

7.3.1 Overview of Cache Instructions.. 300

7.3.2 Cache Instruction Set ... 300

7.4 Floating-Point Instructions .. 305

7.4.1 Instruction formats .. 305

7.4.2 Overview of Floating-Point Instructions .. 306

7.4.3 Conditions for Comparison Instructions.. 309

7.4.4 Floating-Point Instruction Set ... 311

Section 8 RESET... 407

8.1 Status of Registers After Reset .. 407

APPENDIX A HAZARD RESOLUTION PROCEDURE FOR SYSTEM REGISTERS.... 408

APPENDIX B NUMBER OF INSTRUCTION EXECTUION CLOCKS 409

B.1 Numbers of Clock Cycles for Execution ... 409

B.2 Number of G3MH Instruction Execution Clocks ... 410

APPENDIX C REGISTER INDEX... 419

APPENDIX D INSTRUCTION INDEX.. 420

RH850G3MH Software Section 1　OVERVIEW

R01US0143EJ0100 Rev.1.00 Page 8 of 425
Mar 05, 2015

Section 1 OVERVIEW

1.1 Features of the RH850G3MH

The RH850G3MH features compatibility with the instruction set for all 32-bit RISC microcontrollers

of the RH850G3M Series, but has even better performance.

Table 1.1 shows the features of the RH850G3MH.

Table 1.1 Features of the RH850G3MH

Item Features

CPU High performance 32-bit architecture for embedded control

 32-bit internal data bus

 Thirty-two 32-bit general-purpose registers

 RISC type instruction set (compatible with RH850G3M)
Long/short type load/store instructions
Three-operand instructions
Instruction set based on C

 CPU operating modes
User mode and supervisor mode

 Address space: 4-Gbyte linear space for both data and instructions

Coprocessor A floating point operation coprocessor (FPU) can be installed.
Supports single precision (32-bit) and double precision (64-bit)
Supports IEEE754-compliant data types and exceptions
Rounding modes : Nearest, 0 direction, +∞ direction, and –∞ direction
Handling on non-normalized numbers: These are truncated to 0, or an exception is
reported because such numbers do not comply with IEEE754.

Exceptions/interrupts 16-level interrupt priority that can be specified for each channel

 Vector selection method that can be selected according to performance
requirements and the amount of consumed memory
Direct branch method exception vector (direct vector method)
Address-table-referencing indirect branch method exception vector (table reference
method)

 Support for high-speed context backup and restoration processing on interrupt by
using dedicated instructions (PUSHSP, POPSP)

Memory management A memory protection unit (MPU) can be installed.

Caches An instruction cache can be installed.

RH850G3MH Software Section 1　OVERVIEW

R01US0143EJ0100 Rev.1.00 Page 9 of 425
Mar 05, 2015

1.2 Changes from the RH850G3M

Table 1.2 Changes from the RH850G3M

Item Changes

CPU The specifications of system registers listed below were changed.
The specifications of MEI and MCTL were changed (see Section 3.2, Basic System
Registers).

 The function of the SYNCE instruction was changed (see Section 7.2.2, Basic
Instruction Set).

 The hazard resolution procedure does not proceed after updating of SCCFG as it
was found to be unnecessary in that case (see APPENDIX A, HAZARD
RESOLUTION PROCEDURE FOR SYSTEM REGISTERS).

Exceptions/interrupts The specifications of system registers were changed and a system register was
deleted as stated below.
FPIR was deleted, and the specifications of ISPR, PMR, and ICSR were changed
(see Section 3.3.1, Interrupt Function System Registers).

 Changes were made to the exceptions for floating-point operations.
The FPP exception and FPI exception were abolished. An FPINT exception was
added.

Coprocessor The specification of a system register was changed and a system register was
deleted as stated below.
The specification of FPSR was changed and FPEC was deleted (see Section 3.4.2,
Floating-Point Function System Registers).

 The hazard resolution procedure does not proceed after updating of any of the FPU
registers (FPSR, FPEPC, FPST, FPCC, or FPCFG) as it was found to be
unnecessary in these cases (see APPENDIX A, HAZARD RESOLUTION
PROCEDURE FOR SYSTEM REGISTERS).

Memory management A specification of the MPU was changed.
The operation in response to memory access spanning contiguous areas to which
access is enabled by the MPU was changed (see Section 5.1.3, Caution Points for
Protection Area Setup).

Cache The specifications of system registers listed below were changed.
The specifications of ICCTRL, ICTAGL, ICTAGH, and ICCFG were changed (see
Section 3.6.1, Cache Control Function System Registers).

 The wait for the completion of clearing of the instruction cache by the
ICCTRL.ICHCLR bit is not necessary (see APPENDIX A, HAZARD RESOLUTION
PROCEDURE FOR SYSTEM REGISTERS).

RH850G3MH Software Section 2　PROCESSOR MODEL

R01US0143EJ0100 Rev.1.00 Page 10 of 425
Mar 05, 2015

Section 2 PROCESSOR MODEL

This CPU defines a processor model that has basic operation functions, registers, and an exception

management function.

This section describes the unique features of the processor model of this CPU.

2.1 CPU Operating Modes

This CPU has defines two operating statuses of the supervisor mode (SV) and the user mode (UM).

Whether the system is in supervisor mode or user mode is indicated by the UM bit in the PSW register.

 Supervisor mode (PSW.UM = 0) : All hardware functions can be managed or used.

 User mode (PSW.UM = 1) : The usable hardware functions are restricted.

2.1.1 Definition of CPU Operating Modes

(1) Supervisor mode (SV)

All hardware functions can be managed or used in this mode. The system always starts up in supervisor

mode after the end of reset processing.

(2) User mode (UM)

This operating mode makes up a pair with the supervisor mode. In user mode, address spaces to which

access is permitted by the supervisor and the system registers defined as user resources can be used.

Supervisor-privileged instructions cannot be executed and result in exceptions if they are.

Restriction in user mode (PSW.UM = 1)

 Privileged instruction violations due to SV-privileged-instruction operating restrictions (→ PIE exceptions)

For details about privileged-instruction operating restrictions, see Section 2.1.3, CPU Operating Modes and
Privileges

RH850G3MH Software Section 2　PROCESSOR MODEL

R01US0143EJ0100 Rev.1.00 Page 11 of 425
Mar 05, 2015

2.1.2 CPU Operating Mode Transition

The CPU operating mode changes due to three events.

(1) Change due to acknowledging an exception

When an exception is acknowledged, the CPU operating mode changes to the mode specified for the

exception.

(2) Change due to a return instruction

When a return instruction is executed, the PSW value is restored according to the value of the

corresponding bit backed up to EIPSW and FEPSW.

(3) Change due to a system register instruction

The CPU operating mode changes when an LDSR instruction is used to directly overwrite the PSW

operating mode bits.

CAUTIONS

1. In supervisor mode, the LDSR instruction can be used to directly change the

value of the PSW.UM bit, but system-register-related hazards are defined in the

hardware specifications.For the change of this bit, it is recommended to use a

return instruction to avoid PSW-register-related hazards.

2. In user mode, the CPU operating mode cannot be changed because the higher 31

to 5 bits of the PSW register cannot be overwritten. The CPU operating mode

might be changed in supervisor mode, but system register access-related hazards

are defined in the hardware specifications. For the change of this bit, it is

recommended to use a return instruction to avoid PSW-register-related hazards.

RH850G3MH Software Section 2　PROCESSOR MODEL

R01US0143EJ0100 Rev.1.00 Page 12 of 425
Mar 05, 2015

2.1.3 CPU Operating Modes and Privileges

In this CPU, the usable functions can be restricted according to usage permission settings for specific

resources and the CPU operating mode. Specification instructions (including instructions that update

specific system registers) can only be executed in the defined operating mode. The permissions

necessary to execute these specification instructions are called “privileges” below. In operating modes

that do not have privileges, these instructions are not executed and exceptions occur.

This CPU defines the following two types of privileges (and usage permission).

 Supervisor (SV) privilege : Important system resources operation, fatal error processing,

privilege necessary for user-mode program execution management

 Coprocessor use permissions : Permissions necessary to use a coprocessor

Figure 2.1 CPU Operating Modes and Privileges

UM
User mode

SV
Supervisor

mode

UM
User mode

SV
Supervisor

mode

Exception

Restoration

PS
W

.U
M

 =
 0

PS
W

.U
M

 =
 1

SV
privilege

RH850G3MH Software Section 2　PROCESSOR MODEL

R01US0143EJ0100 Rev.1.00 Page 13 of 425
Mar 05, 2015

(1) Supervisor privilege (SV privilege)

The privilege necessary to perform the operation for important system resources, fatal error processing,

and user-mode program execution management is called the supervisor privilege (SV privilege). This

privilege is available in supervisor mode. The SV privilege is generally necessary to execute

instructions used to perform the operation for important system resources, and these instructions are

sometimes called SV privileged instructions.

(2) Coprocessor use permissions

Regardless of the CPU operating mode, it is possible to separately specify whether coprocessors can be

used.

The CU2 to CU0 bits in the PSW register are used in supervisor mode to specify whether coprocessors

can be used by each program. If the CU bits are not set to 1, a coprocessor unusable exception occurs

when the corresponding coprocessor instruction is executed or the system register is accessed.

If no coprocessor is installed, it is not possible to set the corresponding CU bits to 1. The setting of the

CU2 to CU0 bits is valid regardless of the CPU operating mode, and, if the supervisor accesses

coprocessor system registers, it is necessary to set the CU2 to CU0 bits to enable coprocessor use.

(3) Operation when there is a privilege violation

When an attempt is made to execute a privileged instruction by someone who does not have the

required privilege, a PIE exception or UCPOP exception occurs. Table 2.1 shows the relationships

between the operating mode, usage permission status, and whether instructions can be executed.

Note 1. This includes the LDSR/STSR instruction for the coprocessor system register.

Note: —: 0 or 1

Table 2.1 Operation When There is a Privilege Violation

PSW

Whether Operation is PossibleUM CU2 CU1 CU0

SV privileged instruction 0 — — — Possible

1 — — — Not possible/PIE exception

Coprocessor instruction 1*1
(PSW.CU0 bit)

— — — 1 Possible

— — — 0 Not possible/UCPOP exception

Coprocessor instruction 2*1
(PSW.CU1 bit)

— — 1 — Possible

— — 0 — Not possible/UCPOP exception

Coprocessor instruction 3*1
(PSW.CU2 bit)

— 1 — — Possible

— 0 — — Not possible/UCPOP exception

Instructions other than the above
(user instructions)

— — — — Possible

RH850G3MH Software Section 2　PROCESSOR MODEL

R01US0143EJ0100 Rev.1.00 Page 14 of 425
Mar 05, 2015

2.2 Instruction Execution

The instruction execution flow of this CPU is shown below.

Figure 2.2 Instruction Execution Flow

Execution of an instruction starts

Are the terminating
exception acknowledgment

conditions satisfied?

Is the execution privilege
of the instruction satisfied?

Reflect operation results
(register/memory/PC update, etc.)

Are the pending
exception acknowledgment

conditions satisfied?

Execution of the
next instruction starts

Exception transition processing
(register/PC update, etc.)

Execute operation

No

No

Yes
A resumable exception occurs
during operation

Yes (terminating exception)

No (PIE exception/UCPOP exception)

Yes (pending exception)

RH850G3MH Software Section 2　PROCESSOR MODEL

R01US0143EJ0100 Rev.1.00 Page 15 of 425
Mar 05, 2015

If terminating exceptions can be acknowledged or if the execution privilege of the instruction is not

satisfied, an exception occurs before the instruction is executed. If a resumable exception occurs during

the execution of an instruction, the exception is acknowledged during execution of the instruction. In

these cases, the result of instruction execution is not reflected in the registers or memory, and the CPU

state before the instruction was executed is retained*1.

For a pending exception such as a software exception, the exception is acknowledged after the result of

instruction execution has been reflected.

Note 1. The following instructions might cause intermediate results to be reflected in the memory.

PREPARE, DISPOSE, PUSHSP, POPSP

RH850G3MH Software Section 2　PROCESSOR MODEL

R01US0143EJ0100 Rev.1.00 Page 16 of 425
Mar 05, 2015

2.3 Exceptions and Interrupts

Exceptions and interrupts are exceptional events that cause the program under execution to branch to

another program. Exceptions and interrupts are triggered by various sources, including interrupts from

peripherals and program abnormalities.

For details, see Section 4, EXCEPTIONS AND INTERRUPTS.

2.3.1 Exception Level

In this CPU, if an exception with a high degree of urgency occurs while another exception is being

processed, the urgent exception will be processed by priority. To make it possible to return to the

interrupted exception handling after acknowledging the urgent exception, even if the context had not

been saved to the memory, exception causes are managed in the following two hierarchical levels.

 EI level exception

 FE level exception

EI level exceptions are used for processing such as regular user processing, interrupt servicing, and OS

processing. FE level exceptions are used to enable interrupts with a high degree of urgency for the

system or exceptions from the memory management function that might occur during OS processing to

be acknowledged even while an EI level exception is being processed.

RH850G3MH Software Section 2　PROCESSOR MODEL

R01US0143EJ0100 Rev.1.00 Page 17 of 425
Mar 05, 2015

2.4 Coprocessors

In this CPU, single-precision and double-precision FPU expansion functions are incorporated.

2.4.1 Coprocessor Use Permissions

To execute a coprocessor instruction or defined opcode processing, permission to use the

corresponding coprocessor instruction is necessary. Coprocessor use permissions are specified by the

PSW.CU2 to PSW.CU0 bits, and, if an attempt is made to execute an instruction for which the

corresponding coprocessor use permission is cleared to 0, a coprocessor unusable exception (UCPOP)

occurs.

2.4.2 Correspondences between Coprocessor Use Permissions and
Coprocessors

This CPU defines coprocessor use permissions to control the availability of the coprocessor for each

program during CPU operation. There are three coprocessor use permissions (CU0 to CU2), and their

correspondences with the coprocessors are shown in the following table.

2.4.3 Coprocessor Unusable Exceptions

A coprocessor unusable exception occurs if an attempt is made to execute a coprocessor instruction or

access a system register of the coprocessor without having the corresponding coprocessor use

permission (PSW.CUn = 0).

2.4.4 System Registers

Some coprocessor functions are defined by system registers. The coprocessor use permission is

necessary to access the system register of a coprocessor function. For some system registers, the

supervisor privilege (SV permission) is necessary in addition to the coprocessor use permission.

For details about the permissions necessary to access system registers, see Section 2.5, Registers.

Table 2.2 Correspondences Between Coprocessor Use Permissions and Coprocessors

Coprocessor Use Permission Coprocessor Function Exception Cause Code

CU0 Single-precision FPU expansion
function

80H

Double-precision FPU expansion
function

CU1 Reserved 81H

CU2 Reserved 82H

RH850G3MH Software Section 2　PROCESSOR MODEL

R01US0143EJ0100 Rev.1.00 Page 18 of 425
Mar 05, 2015

2.5 Registers

This CPU defines program registers (general-purpose registers and the program counter PC) and

system registers for controlling the status and storing exception information.

2.5.1 Program Registers

The program registers include general-purpose registers (r0 to r31) and the program counter (PC).

Note: UM: User register. This register can always be accessed because no access permission is required.

2.5.2 System Registers

For details about program registers, see Section 3.1, Program Registers.

Group numbers 0 to 3 : Registers related to basic functions

Group numbers 4 to 7 : Registers related to the memory management function

Group numbers 12 to 15 : Registers defined in the CPU hardware specifications

Group numbers 16 and later : Reserved for future expansion

For details about system registers, see the relevant sections in Section 3, REGISTER SET.

2.5.3 Register Updating

There are several methods used to update registers. Normally, no particular restrictions apply when

updating register by using an instruction. However, when updating registers by using the following

instructions, some restrictions might apply, depending on the operating mode.

 LDSR

 STSR

Table 2.3 Program Registers

Category Access Permission Name

Program counter UM PC

General-purpose registers UM r0 to r31

RH850G3MH Software Section 2　PROCESSOR MODEL

R01US0143EJ0100 Rev.1.00 Page 19 of 425
Mar 05, 2015

(1) LDSR and STSR

The LDSR and STSR instructions can access all the system registers. However, If a system register is

accessed without the proper permission, a PIE exception or UCPOP exception might occur. For details

about the access permission for each register, see the description of system registers in Section 3,

REGISTER SET. For details about behaviors when a privilege violation occurs, see Section 2.1.3,

CPU Operating Modes and Privileges.

Figure 2.3 shows the flow of executing the LDSR and STSR instructions.

Figure 2.3 Flow of Executing the LDSR and STSR Instructions

Execution of an instruction starts

Are the terminating
exception acknowledgment

conditions satisfied?

Reflect operation results
(register/memory/
PC update, etc.)

Execution of the next
instruction starts

Exception transition processing
(register/PC update, etc.)

Execute register access

Yes (any exception)

No

Is this an undefined
register? (or is it handled

as undefined?)

No

Execute operation

Is the access permission
CUn, and PSW.CUn = 0?

Yes (UCPOP exception)

No

Is the access permission SV
and PSW.UM = 1?

Yes (PIE exception)

No

Yes

The read result is undefined
or write is ignored

RH850G3MH Software Section 2　PROCESSOR MODEL

R01US0143EJ0100 Rev.1.00 Page 20 of 425
Mar 05, 2015

2.5.4 Accessing Undefined Registers

If a system register number without any register assigned is accessed or if an inaccessible register is

accessed, the following results occur.

 Undefined registers are handled as having the SV permission. When they are accessed by an

LDSR or STSR instruction in user mode (PSW.UM = 1), a PIE exception occurs.

 For a read operation, the read result is undefined. If the read value is used in a program,

unexpected behaviors might occur.

 For a write operation, the write operation is ignored.

However, writing to the following system register numbers is prohibited.

Writing prohibited: [SR11, 0], [SR1, 1], [SR7, 1], [SR10, 1], [SR13, 1], [SR14, 1], [SR15, 1],

[SR16, 1], [SR5, 2], [SR20, 5]

RH850G3MH Software Section 2　PROCESSOR MODEL

R01US0143EJ0100 Rev.1.00 Page 21 of 425
Mar 05, 2015

2.6 Data Types

2.6.1 Data formats

This CPU handles data in little endian format. This means that byte 0 of a halfword or a word is always

the least significant (rightmost) byte.

The supported data format is as follows.

 Byte (8-bit data)

 Halfword (16-bit data)

 Word (32-bit data)

 Double-word (64-bit data)

 Bit (1-bit data)

(1) Byte

A byte is 8 consecutive bits of data that starts from any byte boundary. Numbers from 0 to 7 are

assigned to these bits, with bit 0 as the LSB (least significant bit) and bit 7 as the MSB (most

significant bit). The byte address is specified as “A”.

(2) Halfword

A halfword is two consecutive bytes (16 bits) of data that starts from any byte boundary. Numbers from

0 to 15 are assigned to these bits, with bit 0 as the LSB and bit 15 as the MSB. The bytes in a halfword

are specified using address “A”, so that the two addresses comprise byte data of “A” and “A + 1”.

7 0

Data

AddressesA

L
B
S

M
B
S

15 7 0

Data

8

AddressesAA+1

M
B
S

L
B
S

RH850G3MH Software Section 2　PROCESSOR MODEL

R01US0143EJ0100 Rev.1.00 Page 22 of 425
Mar 05, 2015

(3) Word

A word is four consecutive bytes (32 bits) of data that starts from any byte boundary. Numbers from 0

to 31 are assigned to these bits, with bit 0 as the LSB (least significant bit) and bit 31 as the MSB (most

significant bit). A word is specified by address “A” and consists of byte data of four addresses: “A”,

“A + 1”, “A + 2”, and “A + 3”.

(4) Double-word

A double-word is eight consecutive bytes (64 bits) that start from any 4-byte boundary. Numbers from

0 to 63 are assigned to these bits, with bit 0 as the LSB and bit 63 as the MSB. A double-word is

specified by address “A” and consists of byte data of eight addresses: “A”, “A + 1”, “A + 2”, “A + 3”,

“A + 4”, “A + 5”, “A + 6”, and “A + 7”.

(5) Bit

A bit is bit data at the nth bit within 8-bit data that starts from any byte boundary. Each bit is specified

using its byte address “A” and its bit number “n” (n = 0 to 7).

L
S

31 24 23 16 15 7 0

Data

8

AddressesAA+1A+2A+3
B

M
B
S

L
S

31 24 23 16 15 7 0

Data

8

AddressesAA+1A+2A+3
B

63 56 55 48 47 39 32

Data

40

AddressesA+4A+5A+6A+7

M
B
S

7

Address “A” byte

0

AddressesA

Bit numbern

Data

RH850G3MH Software Section 2　PROCESSOR MODEL

R01US0143EJ0100 Rev.1.00 Page 23 of 425
Mar 05, 2015

2.6.2 Data Representation

(1) Integers

Integers are represented as binary values using 2’s complement, and are used in one of four lengths: 64

bits, 32 bits, 16 bits, or 8 bits. Regardless of the length of an integer, its place uses bit 0 as the LSB, and

this place gets higher as the bit number increases. Because this is a 2’s complement representation, the

MSB is used as a signed bit.

The integer ranges for various data lengths are as follows.

 Double-word (64 bits) : –9,223,372,036,854,775,808 to +9,223,372,036,854,775,807

 Word (32 bits) : –2,147,483,648 to +2,147,483,647

 Halfword (16 bits) : –32,768 to +32,767

 Byte (8 bits) : –128 to +127

(2) Unsigned integers

In contrast to “integers” which are data that can take either a positive or negative sign, “unsigned

integers” are never negative integers. Like integers, unsigned integers are represented as binary values,

and are used in one of four lengths: 64 bits, 32 bits, 16 bits, or 8 bits. Also like integers, the place of

unsigned integers uses bit 0 as the LSB and gets higher as the bit number increases. However, unsigned

integers do not use a sign bit.

The unsigned integer ranges for various data lengths are as follows.

 Double-word (64 bits): 0 to 18,446,744,073,709,551,615

 Word (32 bits): 0 to 4,294,967,295

 Halfword (16 bits): 0 to 65,535

 Byte (8 bits): 0 to 255

(3) Bits

Bit data are handled as single-bit data with either of two values: cleared (0) or set (1). There are four

types of bit-related operations (listed below), which target only single-byte data in the memory space.

 Set

 Clear

 Invert

 Test

RH850G3MH Software Section 2　PROCESSOR MODEL

R01US0143EJ0100 Rev.1.00 Page 24 of 425
Mar 05, 2015

2.6.3 Data Alignment

When the result of address calculation is a misaligned address, a misaligned access exception (MAE)

occurs.

When the data to be processed is in halfword format, misaligned access indicates the access to an

address that is not at the halfword boundary (where the address LSB = 0), and when the data to be

processed is in word format, misaligned access indicates the access to an address that is not at the word

boundary (where the lower two bits of the address = 0). When the data to be processed is in double-

word format, misaligned access indicates the access to an address that is not at the double-word

boundary (where the lower 3 bits of the address = 0).

For the double-word format only, a misaligned access exception does not occur when data is placed at

the word boundary rather than the double-word boundary.

CAUTIONS

1. The following instructions might possibly cause misaligned access. For details,

see the relevant descriptions in Section 7, INSTRUCTION.

 LD.H, LD.HU, LD.W, LD.DW

 SLD.H, SLD.HU, SLD.W

 ST.H, ST.W, ST.DW

 SST.H, SST.W

 LDL.W, STC.W, CAXI

2. The following instructions do not cause misaligned access, because the address

is rounded in the instruction specification when the alignment specification is

incorrect.

 PREPARE, DISPOSE

 PUSHSP, POPSP

RH850G3MH Software Section 2　PROCESSOR MODEL

R01US0143EJ0100 Rev.1.00 Page 25 of 425
Mar 05, 2015

Note: For details, see LD.DW and ST.DW in Section 7, INSTRUCTION.

Figure 2.4 Example of Data Placement for Misaligned Access

(b) Halfword access

(c) Word access

(a) Byte access

(n+0)H
(n+1)H ← Byte boundary

← Byte boundary

← Byte boundary

Aligned access

(2n+0)H
(2n+1)H
(2n+2)H
(2n+3)H ← Halfword boundary

← Halfword boundary

← Halfword boundary

Aligned access Misaligned access

(4n+0)H
(4n+1)H
(4n+2)H
(4n+3)H
(4n+4)H ← Word boundary

(4n+5)H
(4n+6)H
(4n+7)H

← Word boundary

← Word boundary

Aligned access Misaligned access

(d) Double-word access

(8n+0)H
(8n+1)H
(8n+2)H
(8n+3)H
(8n+4)H
(8n+5)H
(8n+6)H
(8n+7)H

← Double-word boundary/Word boundary

Aligned access

(8n+8)H
(8n+9)H

(8n+10)H
(8n+11)H
(8n+12)H
(8n+13)H
(8n+14)H
(8n+15)H

Misaligned access

← Double-word boundary/Word boundary

← Word boundary

← Double-word boundary/Word boundary

← Word boundary

Misaligned access
(MAE exception does not occurNote)

RH850G3MH Software Section 2　PROCESSOR MODEL

R01US0143EJ0100 Rev.1.00 Page 26 of 425
Mar 05, 2015

2.7 Address Space

This CPU supports a linear address space of up to 4 Gbytes. Both memory and I/O can be mapped to

this address space (using the memory mapped I/O method). The CPU outputs a 32-bit address for

memory and I/O, in which the highest address number is “232 – 1”.

The byte data placed at various addresses is defined with bit 0 as the LSB and bit 7 as the MSB. When

the data is comprised of multiple bytes, it is defined so that the byte data at the lowest address is the

LSB and the byte data at the highest address is the MSB (i.e., in little endian format).

This manual stipulates that, when representing data comprised of multiple bytes, the right edge must be

represented as the lower address and the left side as the upper address, as shown below.

Figure 2.5 Address Space Byte Format

31 24 23 16 15 7 0

Data

8

AddressAA+1A+2A+3

15 7 0

Data

8

AddressAA+1

7 0

Data

AddressA

.......
Word data at
Address “A”

..
Halfword data at

Address “A”

...
Byte data at
Address “A”

31 24 23 16 15 7 0

Data

8

AddressAA+1A+2A+3

.......
Double-word data at

Address “A”

63 56 55 48 47 39 32

Data

40

AddressA 4A+5A+6A+7

RH850G3MH Software Section 2　PROCESSOR MODEL

R01US0143EJ0100 Rev.1.00 Page 27 of 425
Mar 05, 2015

2.7.1 Memory Map

This CPU is 32-bit architecture and supports a linear address space of up to 4 Gbytes. The whole range

of this 4-Gbyte address space can be addressed by instruction addressing (instruction access) and

operand addressing (data access).

A memory map is shown in Figure 2.6.

Figure 2.6 Memory Map (Address Space)

00000000H
FFFFFFFFH

80000000H

7FFFFFFFH

Data
area

Program
area

Address space

RH850G3MH Software Section 2　PROCESSOR MODEL

R01US0143EJ0100 Rev.1.00 Page 28 of 425
Mar 05, 2015

2.7.2 Instruction Addressing

The instruction address is determined based on the contents of the program counter (PC), and is

automatically incremented according to the number of bytes in the executed instruction. When a branch

instruction is executed, the addressing shown below is used to set the branch destination address to the

PC.

(1) Relative addressing (PC relative)

Signed N-bit data (displacement: disp N) is added to the instruction code in the program counter (PC).

In this case, displacement is handled as 2’s complement data, and the MSB is a signed bit (S). If the

displacement is less than 32 bits, the higher bits are sign-extended (N differs from one instruction to

another).

The JARL, JR, and Bcond instructions are used with this type of addressing.

(2) Register addressing (register indirect)

The contents of the general-purpose register (reg1) or system register (regID) specified by the

instruction are transferred to the program counter (PC).

The JMP, CTRET, EIRET, FERET, and DISPOSE instructions are used with this type of addressing.

Note: This is an example of 22-bit displacement.

Figure 2.7 Relative Addressing

PC

31 0

PC

31 22 0

Sign extension S

+21

0disp22

Instruction
(branch destination)

31 0

0

0

Figure 2.8 Register Addressing

31 0

Reg1 or regID

Instruction
(branch destination)

31 0

PC 0

RH850G3MH Software Section 2　PROCESSOR MODEL

R01US0143EJ0100 Rev.1.00 Page 29 of 425
Mar 05, 2015

(3) Based addressing

Contents that are specified by the instruction in the general-purpose register (reg1) and that include the

added N-bit displacement (dispN) are transferred to the program counter (PC). At this time, the

displacement is handled as a 2’s complement data, and the MSB is a signed bit (S). If the displacement

is less than 32 bits, the higher bits are sign-extended (N differs from one instruction to another).

The JMP instruction is used with this type of addressing.

(4) Other addressing

A value specified by an instruction is transferred to the program counter (PC). How a value is specified

is explained in [Operation] or [Description] of each instruction.

The CALLT, SYSCALL, TRAP, FETRAP, and RIE instructions, and branch in case of an exception are

used with this type of addressing.

Figure 2.9 Based Addressing

31 0

reg1

31 0

S

+
0disp32

Instruction
(branch destination)

31 0

PC 0

RH850G3MH Software Section 2　PROCESSOR MODEL

R01US0143EJ0100 Rev.1.00 Page 30 of 425
Mar 05, 2015

2.7.3 Data Addressing

The following methods can be used to access the target registers or memory when executing an

instruction.

(1) Register addressing

This addressing method accesses the general-purpose register or system register specified in the

general-purpose register field as an operand.

Any instruction that includes the operand reg1, reg2, reg3, or regID is used with this type of

addressing.

(2) Immediate addressing

This address mode uses arbitrary size data as the operation target in the instruction code.

Any instruction that includes the operand imm5, imm16, vector, or cccc is used with this type of

addressing.

NOTE

vector : This is immediate data that specifies the exception vector (00H to 1FH), and is an

operand used by the TRAP, FETRAP, and SYSCALL instructions. The data width

differs from one instruction to another.

cccc : This is 4-bit data that specifies a condition code, and is an operand used in the CMOV

instruction, SASF instruction, and SETF instruction. One bit (0) is added to the higher

position and is then assigned to an opcode as a 5-bit immediate data.

(3) Based addressing

There are two types of based addressing, as described below.

(a) Type 1

The contents of the general-purpose register (reg1) specified at the addressing specification field

in the instruction code are added to the N-bit displacement (dispN) data sign-extended to word

length to obtain the operand address, and addressing accesses the target memory for the operation.

At this time, the displacement is handled as a 2’s complement data, and the MSB is a signed bit

(S). If the displacement is less than 32 bits, the higher bits are sign-extended (N differs from one

instruction to another).

The LD, ST, and CAXI instructions are used with this type of addressing.

Note: This is an example of 16-bit displacement.

Figure 2.10 Based Addressing (Type 1)

31 0

reg1

Target memory for
operation

31 0

Sign extension disp16

+
1516

S

RH850G3MH Software Section 2　PROCESSOR MODEL

R01US0143EJ0100 Rev.1.00 Page 31 of 425
Mar 05, 2015

(b) Type 2

This addressing accesses a memory to be manipulated by using as an operand address the sum of

the contents of the element pointer (r30) and N-bit displacement data (dispN) that is zero-

extended to a word length. If the displacement is less than 32 bits, the higher bits are sign-

extended (N differs from one instruction to another).

The SLD instruction and SST instruction are used with this type of addressing.

(4) Bit addressing

The contents of the general-purpose register (reg1) are added to the N-bit displacement (dispN) data

sign-extended to word length to obtain the operand address, and bit addressing accesses one bit (as

specified by 3-bit data “bit #3”) in one byte of the target memory space. At this time, the displacement

is handled as a 2’s complement data, and the MSB is a signed bit (S). If the displacement is less than 32

bits, the higher bits are sign-extended (N differs from one instruction to another).

The CLR1, SET1, NOT1, and TST1 instructions are used with this type of addressing.

Note: This is an example of 8-bit displacement.

Figure 2.11 Based Addressing (Type 2)

31 0

R30 (element pointer)

Target memory for
operation

31 0

0 (zero extension) disp8

+ 78

Note: n: Bit position specified by 3-bit data (bit #3) (n = 0 to 7)
This is an example of 16-bit displacement.

Figure 2.12 Bit Addressing

31 0

reg1

Target memory for operation

31 0

Sign extension disp16

+
1516

n

S

RH850G3MH Software Section 2　PROCESSOR MODEL

R01US0143EJ0100 Rev.1.00 Page 32 of 425
Mar 05, 2015

(5) Post index increment/decrement addressing

The contents of the general-purpose register (reg1) are used as an operand address to access the target

memory, and then the general-purpose register (reg1) is updated. The register is updated by either

incrementing or decrementing it, and there are three types (1 to 3).

If the result of incrementing the general-purpose register (reg1) value exceeds the positive maximum

value 0xFFFF FFFF, the result wraps around to 0x0000 0000, and, if the result of decrementing the

general-purpose register value is less than the positive minimum value 0x0000 0000, the result wraps

around to 0xFFFF FFFF.

(a) Type 1

The general-purpose register (reg1) is updated by adding a constant that depends on the type of

accessed data (the size of the accessed data) to the contents of the general-purpose register (reg1). If the

type of accessed data is a byte, 1 is added, if the type is a halfword, 2 is added, if the type is a word, 4 is

added, and if the type is a double-word, 8 is added.

Figure 2.13 Post Index Increment/Decrement Addressing (Type 1)

reg1
31 0

31 0
Target memory for

operation

Access data size

reg1
31 0

RH850G3MH Software Section 2　PROCESSOR MODEL

R01US0143EJ0100 Rev.1.00 Page 33 of 425
Mar 05, 2015

(b) Type 2

The general-purpose register (reg1) is updated by subtracting a constant that depends on the size of the

accessed data from the contents of the general-purpose register (reg1). If the size of accessed data is a

byte, 1 is subtracted, if the size is a halfword, 2 is subtracted, if the size is a word, 4 is subtracted, and if

the size is a double-word, 8 is subtracted.

(c) Type 3

The general-purpose register (reg1) is updated by adding the contents of another general-purpose

register (reg2) to it. If the MSB of the general-purpose register (reg2) is 1, a negative value is indicated,

so a post decrement operation is performed. If this MSB is 0, a positive value is indicated, so a post

increment operation is performed. The value of the general-purpose register (reg2) does not change.

Figure 2.14 Post Index Increment/Decrement Addressing (Type 2)

reg1
31 0

31 0
Target memory for

operation

Access data size

reg1
31 0

Figure 2.15 Post Index Increment/Decrement Addressing (Type 3)

reg1
31 0

31 0
Target memory for

operation

reg1
31 0

reg2
31 0

RH850G3MH Software Section 2　PROCESSOR MODEL

R01US0143EJ0100 Rev.1.00 Page 34 of 425
Mar 05, 2015

(6) Other addressing

This addressing is to access a memory to be manipulated by using a value specified by an instruction as

the operand address. How a value is specified is explained in [Operation] or [Description] of each

instruction.

The SWITCH, CALLT, SYSCALL, PREPARE, DISPOSE, PUSHSP, and POPSP instructions are used

with this type of addressing.

RH850G3MH Software Section 2　PROCESSOR MODEL

R01US0143EJ0100 Rev.1.00 Page 35 of 425
Mar 05, 2015

2.8 Acquiring the CPU Number

This CPU provides a method for identifying CPUs in a multi-processor system.

In the multi-processor configuration, you can identify which CPU core is running a program by

referencing HTCFG0.PEID. With HTCFG0.PEID, unique numbers are assigned within multi-

processor systems.

2.9 System Protection Identifier

In this CPU, memory resources and peripheral devices are managed by system protection groups. By

specifying the group to which the program being executed belongs, you can assign operable memory

resources and peripheral devices to each machine.

The program being executed belongs to the group shown by MCFG0.SPID, and whether the memory

resources and peripheral devices are operable is decided using this SPID. Any value can be set to

MCFG0.SPID by the supervisor.

CAUTION

According to the value of MCFG0.SPID, how operations are assigned to memory

resources and peripheral devices is determined by the hardware specifications.

RH850G3MH Software Section 3　REGISTER SET

R01US0143EJ0100 Rev.1.00 Page 36 of 425
Mar 05, 2015

Section 3 REGISTER SET

This chapter describes the program register and system register mounted on this CPU.

3.1 Program Registers

Program registers includes general-purpose registers (r0 to r31) and the program counter (PC). r0

always retains 0, whereas the value after reset is undefined in r1 to r31.

Note: For further descriptions of r1, r3 to r5, and r31 used for an assembler and/or C compiler, see the manual of
each software development environment.

Table 3.1 Program Registers

Program Register Name Function Description

General-purpose
registers

r0 Zero register Always retains 0

r1 Assembler reserved register Used as working register for generating
addresses

r2 Register for address and data variables
(used when the real-time OS used does not use this register)

r3 Stack pointer (SP) Used for generating a stack frame when a
function is called

r4 Global pointer (GP) Used for accessing a global variable in the
data area

r5 Text pointer (TP) Used as a register that indicates the start
of the text area
(area where program code is placed)

r6 to r29 Register for addresses and data variables

r30 Element pointer (EP) Used as a base pointer for generating
addresses when accessing memory

r31 Link pointer (LP) Used when the compiler calls a function

Program counter PC Retains instruction addresses during execution of programs

RH850G3MH Software Section 3　REGISTER SET

R01US0143EJ0100 Rev.1.00 Page 37 of 425
Mar 05, 2015

3.1.1 General-Purpose Registers

A total of 32 general-purpose registers (r0 to r31) are provided. All of these registers can be used for

either data variables or address variables.

Of the general-purpose registers, r0 to r5, r30, and r31 are assumed to be used for special purposes in

software development environments, so it is necessary to note the following when using them.

(a) r0, r3, and r30

These registers are implicitly used by instructions.

r0 is a register that always retains 0. It is used for operations that use 0, addressing with base address

being 0, etc.

r3 is implicitly used by the PREPARE, DISPOSE, PUSHSP, and POPSP instructions.

r30 is used as a base pointer when the SLD instruction or SST instruction accesses memory.

(b) r1, r4, r5, and r31

These registers are implicitly used by the assembler and C compiler.

When using these registers, register contents must first be saved so they are not lost and can be restored

after the registers are used.

(c) r2

This register is used by a real-time OS in some cases. If the real-time OS that is being used is not using

r2, r2 can be used as a register for address variables or data variables.

RH850G3MH Software Section 3　REGISTER SET

R01US0143EJ0100 Rev.1.00 Page 38 of 425
Mar 05, 2015

3.1.2 PC — Program Counter

The PC retains the address of the instruction being executed.

Note 1. For details, see the hardware manual of the product used.

31 0

PC
value after reset

*1PC31 to PC0

Table 3.2 PC Register Contents

Bit Name Description R/W
Value after
Reset

31 to 1 PC31 to PC1 These bits indicate the address of the instruction being executed. R/W *1

0 PC0 This bit is fixed to 0. Branching to an odd number address is disabled. R/W 0

RH850G3MH Software Section 3　REGISTER SET

R01US0143EJ0100 Rev.1.00 Page 39 of 425
Mar 05, 2015

3.2 Basic System Registers

The basic system registers are used to control CPU status and to retain exception information.

Basic system registers are read from or written to by using the LDSR and STSR instructions and

specifying the system register number, which is made up of a register number and selection ID.

Table 3.3 Basic System Registers (1/2)

Register No.
(regID, selID) Symbol Function Access Permission

SR0, 0 EIPC Status save registers when acknowledging
EI level exception

SV

SR1, 0 EIPSW Status save registers when acknowledging
EI level exception

SV

SR2, 0 FEPC Status save registers when acknowledging
FE level exception

SV

SR3, 0 FEPSW Status save registers when acknowledging
FE level exception

SV

SR5, 0 PSW Program status word *1

SR6, 0 FPSR (See Section 3.4, FPU Function
Registers)

CU0 and SV

SR7, 0 FPEPC (See Section 3.4, FPU Function
Registers)

CU0 and SV

SR8, 0 FPST (See Section 3.4, FPU Function
Registers)

CU0

SR9, 0 FPCC (See Section 3.4, FPU Function
Registers)

CU0

SR10, 0 FPCFG (See Section 3.4, FPU Function
Registers)

CU0

SR13, 0 EIIC EI level exception cause SV

SR14, 0 FEIC FE level exception cause SV

SR16, 0 CTPC CALLT execution status save register UM

SR17, 0 CTPSW CALLT execution status save register UM

SR20, 0 CTBP CALLT base pointer UM

SR28, 0 EIWR EI level exception working register SV

SR29, 0 FEWR FE level exception working register SV

SR31, 0 (BSEL) (Reserved for backward compatibility with
V850E2 series)*2

SV

SR0, 1 MCFG0 Machine configuration SV

SR2, 1 RBASE Reset vector base address SV

SR3, 1 EBASE Exception handler vector address SV

SR4, 1 INTBP Base address of the interrupt handler table SV

SR5, 1 MCTL CPU control SV

SR6, 1 PID Processor ID SV

SR11, 1 SCCFG SYSCALL operation setting SV

SR12, 1 SCBP SYSCALL base pointer SV

SR0, 2 HTCFG0 Thread configuration SV

SR6, 2 MEA Memory error address SV

SR7, 2 ASID Address space ID SV

SR8, 2 MEI Memory error information SV

RH850G3MH Software Section 3　REGISTER SET

R01US0143EJ0100 Rev.1.00 Page 40 of 425
Mar 05, 2015

Note 1. The access permission differs depending on the bit. For details, see (5), PSW — Program status word in
Section 3.2, Basic System Registers.

Note 2. This bit is reserved to maintain backward compatibility with V850E2 series. This bit is always 0 when read.
Writing to this bit is ignored.

(1) EIPC — Status save register when acknowledging EI level exception

When an EI level exception is acknowledged, the address of the instruction that was being executed

when the EI level exception occurred, or of the next instruction, is saved to the EIPC register (see

Section 4.1.3, Types of Exceptions).

Because there is only one pair of EI level exception status save registers, when processing multiple

exceptions, the contents of these registers must be saved by a program.

Be sure to set an even-numbered address to the EIPC register. An odd-numbered address must not be

specified.

31 0

EIPC
Value after reset

UndefinedEIPC31 to EIPC0

Table 3.4 EIPC Register Contents

Bit Name Description R/W
Value after
Reset

31 to 1 EIPC31 to
EIPC1

These bits indicate the PC saved when an EI level exception is
acknowledged.

R/W Undefined

0 EIPC0 This bit indicates the PC saved when an EI level exception is acknowledged.
Always set this bit to 0. Even if it is set to 1, the value transferred to the PC
when the EIRET instruction is executed is 0.

R/W Undefined

RH850G3MH Software Section 3　REGISTER SET

R01US0143EJ0100 Rev.1.00 Page 41 of 425
Mar 05, 2015

(2) EIPSW — Status save register when acknowledging EI level exception

When an EI level exception is acknowledged, the current PSW setting is saved to the EIPSW register.

Because there is only one pair of EI level exception status save registers, when processing multiple

exceptions, the contents of these registers must be saved by a program.

CAUTION

Bits 11 to 9 are related to the debug function and therefore cannot normally be

changed.

31 30 29 20 19 18 16 15 14 12 11 9 8 7 6 5 4 3 2 1 0

EIPSW V
M

U
M

HV
C

E
B
V

N
P

E
P

I
D

S
A
T

C
Y

O
V

Value after reset
0000 0020H

0 0 0 0 0 0 0 0 0 0 CU2 to
CU0

0 0 0 Debug 0 S V

Table 3.5 EIPSW Register Contents

Bit Name Description R/W
Value after
Reset

31 — (Reserved for future expansion. Be sure to set to 0.) R 0

30 UM This bit stores the PSW.UM bit setting when an EI level exception is
acknowledged.

R/W 0

29 to 19 — (Reserved for future expansion. Be sure to set to 0.) R 0

18 to 16 CU2 to CU0 These bits store the PSW.CU2-0 field setting when an EI level exception is
acknowledged. (CU2-1 are reserved for future expansion. Be sure to set to
0.)

R/W 0

15 EBV This bit stores the PSW.EBV bit setting when an EI level exception is
acknowledged.

R/W 0

14 to 12 — (Reserved for future expansion. Be sure to set to 0.) R 0

11 to 9 Debug These bits store the PSW.Debug field setting when an EI level exception is
acknowledged.

R/W 0

8 — (Reserved for future expansion. Be sure to set to 0.) R 0

7 NP This bit stores the PSW.NP bit setting when an EI level exception is
acknowledged.

R/W 0

6 EP This bit stores the PSW.EP bit setting when an EI level exception is
acknowledged.

R/W 0

5 ID This bit stores the PSW.ID bit setting when an EI level exception is
acknowledged.

R/W 1

4 SAT This bit stores the PSW.SAT bit setting when an EI level exception is
acknowledged.

R/W 0

3 CY This bit stores the PSW.CY bit setting when an EI level exception is
acknowledged.

R/W 0

2 OV This bit stores the PSW.OV bit setting when an EI level exception is
acknowledged.

R/W 0

1 S This bit stores the PSW.S bit setting when an EI level exception is
acknowledged.

R/W 0

0 Z This bit stores the PSW.Z bit setting when an EI level exception is
acknowledged.

R/W 0

RH850G3MH Software Section 3　REGISTER SET

R01US0143EJ0100 Rev.1.00 Page 42 of 425
Mar 05, 2015

(3) FEPC — Status save register when acknowledging FE level exception

When an FE level exception is acknowledged, the address of the instruction that was being executed

when the FE level exception occurred, or of the next instruction, is saved to the FEPC register (see

Section 4.1.3, Types of Exceptions). Because there is only one pair of FE level exception status

save registers, when processing multiple exceptions, the contents of these registers must be saved by a

program.

Be sure to set an even-numbered address to the FEPC register. An odd-numbered address must not be

specified.

31 0

FEPC
Value after reset

UndefinedFEPC31 to FEPC0

Table 3.6 FEPC Register Contents

Bit Name Description R/W
Value after
Reset

31 to 1 FEPC31 to
FEPC1

These bits indicate the PC saved when an FE level exception is
acknowledged.

R/W Undefined

0 FEPC0 This bit indicates the PC saved when an FE level exception is
acknowledged.
Always set this bit to 0. Even if it is set to 1, the value transferred to the PC
when the FERET instruction is executed is 0.

R/W Undefined

RH850G3MH Software Section 3　REGISTER SET

R01US0143EJ0100 Rev.1.00 Page 43 of 425
Mar 05, 2015

(4) FEPSW — Status save register when acknowledging FE level exception

When an FE level exception is acknowledged, the current PSW setting is saved to the FEPSW register.

Because there is only one pair of FE level exception status save registers, when processing multiple

exceptions, the contents of these registers must be saved by a program.

CAUTION

Bits 11 to 9 are related to the debug function and therefore cannot normally be

changed.

31 30 29 20 19 18 16 15 14 12 11 9 8 7 6 5 4 3 2 1 0

FEPSW V
M

U
M

H
V
C

E
B
V

N
P

E
P

I
D

S
A
T

C
Y

O
V

Value after reset
0000 0020H

0 0 0 0 0 0 0 0 0 0 CU2 to
CU0

0 0 0 Debug 0 S Z

Table 3.7 FEPSW Register Contents

Bit Name Description R/W
Value after
Reset

31 — (Reserved for future expansion. Be sure to set to 0.) R 0

30 UM This bit stores the PSW.UM bit setting when an FE level exception is
acknowledged.

R/W 0

29 to 19 — (Reserved for future expansion. Be sure to set to 0.) R 0

18 to 16 CU2 to CU0 These bits store the PSW.CU2-0 field setting when an FE level exception is
acknowledged. (CU2-1 are reserved for future expansion. Be sure to set to
0.)

R/W 0

15 EBV This bit stores the PSW.EBV bit setting when an FE level exception is
acknowledged.

R/W 0

14 to 12 — (Reserved for future expansion. Be sure to set to 0.) R 0

11 to 9 Debug These bits store the PSW.Debug field setting when an FE level exception is
acknowledged.

R/W 0

8 — (Reserved for future expansion. Be sure to set to 0.) R 0

7 NP This bit stores the PSW.NP bit setting when an FE level exception is
acknowledged.

R/W 0

6 EP This bit stores the PSW.EP bit setting when an FE level exception is
acknowledged.

R/W 0

5 ID This bit stores the PSW.ID bit setting when an FE level exception is
acknowledged.

R/W 1

4 SAT This bit stores the PSW.SAT bit setting when an FE level exception is
acknowledged.

R/W 0

3 CY This bit stores the PSW.CY bit setting when an FE level exception is
acknowledged.

R/W 0

2 OV This bit stores the PSW.OV bit setting when an FE level exception is
acknowledged.

R/W 0

1 S This bit stores the PSW.S bit setting when an FE level exception is
acknowledged.

R/W 0

0 Z This bit stores the PSW.Z bit setting when an FE level exception is
acknowledged.

R/W 0

RH850G3MH Software Section 3　REGISTER SET

R01US0143EJ0100 Rev.1.00 Page 44 of 425
Mar 05, 2015

(5) PSW — Program status word

PSW (program status word) is a set of flags that indicate the program status (instruction execution

result) and bits that indicate the operation status of the CPU (flags are bits in the PSW that are

referenced by a condition instruction (Bcond, CMOV, etc.)).

CAUTIONS

1. When the LDSR instruction is used to change the contents of bits 7 to 0 in this

register, the changed contents become valid from the instruction following the

LDSR instruction.

2. The access permission for the PSW register differs depending on the bit. All bits

can be read, but some bits can only be written under certain conditions. See Table

3.8 for the access permission for each bit.

Note 1. The access permission for the whole PSW register is UM, so the PIE exception does not occur even if the
register is written by using an LDSR instruction when PSW.UM is 1. In this case, writing is ignored.

Table 3.8 Access Permission for PSW Register

Bit
Access Permission When
Reading Access Permission When Writing

30 UM UM SV*1

19 HVC Special*1

18 to 16 CU2 to CU0 SV*1

15 EBV SV*1

11 to 9 Debug Special*1

7 NP SV*1

6 EP SV*1

5 ID SV*1

4 SAT UM

3 CY UM

2 OV UM

1 S UM

0 Z UM

RH850G3MH Software Section 3　REGISTER SET

R01US0143EJ0100 Rev.1.00 Page 45 of 425
Mar 05, 2015

31 30 29 20 19 18 16 15 14 12 11 9 8 7 6 5 4 3 2 1 0

PSW V
M

U
M

H
V
C

E
B
V

N
P

E
P

I
D

S
A
T

C
Y

O
V

Value after reset
0000 0020H

0 0 0 0 0 0 0 0 0 0 CU2 to
CU0

0 0 0 Debug 0 S V

Table 3.9 PSW Register Contents (1/2)

Bit Name Description R/W
Value after
Reset

31 — (Reserved for future expansion. Be sure to set to 0.) R 0

30 UM This bit indicates that the CPU is in user mode (in UM mode).
0: Supervisor mode
1: User mode

R/W 0

29 to 19 — (Reserved for future expansion. Be sure to set to 0.) R 0

18 to 16 CU2 to CU0 These bits indicate the coprocessor use permissions. When the bit
corresponding to the coprocessor is 0, a coprocessor unusable exception
occurs if an instruction for the coprocessor is executed or a coprocessor
resource (system register) is accessed.

CU2 bit 18: (Reserved for future expansion. Be sure to set to 0.)
CU1 bit 17: (Reserved for future expansion. Be sure to set to 0.)
CU0 bit 16: FPU

R/W 000

15 EBV This bit indicates the reset vector and exception vector operation. See the
description on RBASE and EBASE in this section.

R/W 0

14 to 12 — (Reserved for future expansion. Be sure to set to 0.) R 0

11 to 9 Debug This bit is used for the debug function for the development tool. Always set
this bit to 0.

— 0

8 — (Reserved for future expansion. Be sure to set to 0.) R 0

7 NP This bit disables the acknowledgement of FE level exception. When an FE
level exception is acknowledged, this bit is set to 1 to disable the
acknowledgement of EI level and FE level exceptions. As for the exceptions
which the NP bit disables the acknowledgment, see Table 4.1, Exception
Cause List.

0: The acknowledgement of FE level exception is enabled.
1: The acknowledgement of FE level exception is disabled.

R/W 0

6 EP This bit indicates that an exception other than an interrupt is being serviced.
It is set to 1 when the corresponding exception occurs. This bit does not
affect acknowledging an exception request even when it is set to 1.

0: An exception other than an interrupt is not being serviced.
1: An exception other than an interrupt is being serviced.

R/W 0

5 ID This bit disables the acknowledgement of EI level exception. When an EI
level or FE level exception is acknowledged, this bit is set to 1 to disable the
acknowledgement of EI level exception. As for the exceptions which the ID
bit disables the acknowledgment, see Table 4.1, Exception Cause List.
This bit is also used to disable EI level exceptions from being acknowledged
as a critical section while an ordinary program or interrupt is being serviced.
It is set to 1 when the DI instruction is executed, and cleared to 0 when the EI
instruction is executed.
The change of the ID bit by the EI or ID instruction will be enabled from the
next instruction.

0: The acknowledgement of EI level exception is enabled.
1: The acknowledgement of EI level exception is disabled.

R/W 1

4 SAT*1 This bit indicates that the operation result is saturated because the result of a
saturated operation instruction operation has overflowed. This is a
cumulative flag, so when the operation result of the saturated operation
instruction becomes saturated, this bit is set to 1, but it is not later cleared to
0 when the operation result for a subsequent instruction is not saturated.
This bit is cleared to 0 by the LDSR instruction. This bit is neither set to 1 nor
cleared to 0 when an arithmetic operation instruction is executed.

0: Not saturated
1: Saturated

R/W 0

RH850G3MH Software Section 3　REGISTER SET

R01US0143EJ0100 Rev.1.00 Page 46 of 425
Mar 05, 2015

Note 1. The operation result of the saturation processing is determined in accordance with the contents of the OV
flag and S flag during a saturated operation. When only the OV flag is set to 1 during a saturated operation,
the SAT flag is set to 1.

(6) EIIC — EI level exception cause

The EIIC register retains the cause of any EI level exception that occurs. The value retained in this

register is an exception code corresponding to a specific exception cause (see Table 4.1, Exception

Cause List).

3 CY This bit indicates whether a carry or borrow has occurred in the operation
result.

0: Carry and borrow have not occurred.
1: Carry or borrow has occurred.

R/W 0

2 OVNote*1 This bit indicates whether or not an overflow has occurred during an
operation.

0: Overflow has not occurred.
1: Overflow has occurred.

R/W 0

1 SNote*1 This bit indicates whether or not the result of an operation is negative.
0: Result of operation is positive or 0.
1: Result of operation is negative.

R/W 0

0 Z This bit indicates whether or not the result of an operation is 0.
0: Result of operation is not 0.
1: Result of operation is 0.

R/W 0

Table 3.9 PSW Register Contents (2/2)

Bit Name Description R/W
Value after
Reset

Operation Result Status

Flag Status
Operation Result after
Saturation ProcessingSAT OV S

Exceeded positive maximum value 1 1 0 7FFF FFFFH

Exceeded negative maximum value 1 1 1 8000 0000H

Positive (maximum value not exceeded) Value prior to
operation is
retained.

0 0 Operation result itself

Negative (maximum value not exceeded) 1

31 0

EIIC
Value after reset

0000 0000H
EIIC31 to EIIC0

Table 3.10 EIIC Register Contents

Bit Name Description R/W
Value after
Reset

31 to 0 EIIC31 to
EIIC0

These bits store the exception cause code when an EI level exception
occurs.
The EIIC15-0 field stores the exception cause codes shown in Table 4.1.
The EIIC31-16 field stores detailed exception cause codes defined
individually for each exception. If there is no particular definition, these bits
are set to 0.

R/W 0

RH850G3MH Software Section 3　REGISTER SET

R01US0143EJ0100 Rev.1.00 Page 47 of 425
Mar 05, 2015

(7) FEIC — FE level exception cause

The FEIC register retains the cause of any FE level exception that occurs. The value retained in this

register is an exception code corresponding to a specific exception cause (see Table 4.1, Exception

Cause List).

(8) CTPC — Status save register when executing CALLT

When a CALLT instruction is executed, the address of the next instruction after the CALLT instruction

is saved to CTPC.

Be sure to set an even-numbered address to the CTPC register. An odd-numbered address must not be

specified.

31 0

FEIC
Value after reset

0000 0000H
FEIC31 to FEIC0

Table 3.11 FEIC Register Contents

Bit Name Description R/W
Value after
Reset

31 to 0 FEIC31 to
FEIC0

These bits store the exception cause code when an FE level exception
occurs.
The FEIC15-0 field stores the exception cause codes shown in Table 4.1.
The FEIC31-16 field stores detailed exception cause codes defined
individually for each exception. If there is no particular definition, these bits
are set to 0.

R/W 0

31 0

CTPC
Value after reset

UndefinedCTPC31 to CTPC0

Table 3.12 CTPC Register Contents

Bit Name Description R/W
Value after
Reset

31 to 1 CTPC31 to
CTPC1

These bits indicate the PC of the instruction after the CALLT instruction. R/W Undefined

0 CTPC0 This bit indicates the PC of the instruction after the CALLT instruction.
Always set this bit to 0. Even if it is set to 1, the value transferred to the PC
when the CTRET instruction is executed is 0.

R/W Undefined

RH850G3MH Software Section 3　REGISTER SET

R01US0143EJ0100 Rev.1.00 Page 48 of 425
Mar 05, 2015

(9) CTPSW — Status save register when executing CALLT

When a CALLT instruction is executed, some of the PSW (program status word) settings are saved to

CTPSW.

(10) CTBP — CALLT base pointer

The CTBP register is used to specify table addresses of the CALLT instruction and generate target

addresses.

Be sure to set the CTBP register to a halfword address.

31 5 4 3 2 1 0

CTPSW
S
A
T

C
Y

O
V

Value after reset
0000 0000H

0 S Z

Table 3.13 CTPSW Register Contents

Bit Name Description R/W
Value after
Reset

31 to 5 — (Reserved for future expansion. Be sure to set to 0.) R 0

4 SAT This bit stores the PSW.SAT bit setting when the CALLT instruction is
executed.

R/W 0

3 CY This bit stores the PSW.CY bit setting when the CALLT instruction is
executed.

R/W 0

2 OV This bit stores the PSW.OV bit setting when the CALLT instruction is
executed.

R/W 0

1 S This bit stores the PSW.S bit setting when the CALLT instruction is executed. R/W 0

0 Z This bit stores the PSW.Z bit setting when the CALLT instruction is executed. R/W 0

31 0

CTBP
Value after reset

UndefinedCTBP31 to CTBP0

Table 3.14 CTBP Register Contents

Bit Name Description R/W
Value after
Reset

31 to 1 CTBP31 to
CTBP1

These bits indicate the base pointer address of the CALLT instruction.
These bits indicate the start address of the table used by the CALLT
instruction.

R/W Undefined

0 CTBP0 This bit indicates the base pointer address of the CALLT instruction.
These bits indicate the start address of the table used by the CALLT
instruction.
Always set this bit to 0.

R 0

RH850G3MH Software Section 3　REGISTER SET

R01US0143EJ0100 Rev.1.00 Page 49 of 425
Mar 05, 2015

(11) ASID — Address space ID

This is the address space ID. This is used to identify the address space provided by the memory

management function.

(12) EIWR — EI level exception working register

The EIWR register is used as a working register when an EI level exception has occurred.

(13) FEWR — FE level exception working register

The FEWR register is used as a working register when an FE level exception has occurred.

31 10 9 0

ASID
Value after reset

Undefined0 ASID

Table 3.15 ASID Register Contents

Bit Name Description R/W
Value after
Reset

31 to 10 — (Reserved for future expansion. Be sure to set to 0.) R 0

9 to 0 ASID This is the address space ID. R/W Undefined

31 0

EIWR
Value after reset

UndefinedEIWR31 to EIWR0

Table 3.16 EIWR Register Contents

Bit Name Description R/W
Value after
Reset

31 to 0 EIWR31 to
EIWR0

These bits constitute a working register that can be used for any purpose
during the processing of an EI level exception. Use this register for purposes
such as storing the values of general-purpose registers.

R/W Undefined

31 0

FEWR
Value after reset

UndefinedFEWR31 to FEWR0

Table 3.17 FEWR Register Contents

Bit Name Description R/W
Value after
Reset

31 to 0 FEWR31 to
FEWR0

These bits constitute a working register that can be used for any purpose
during the processing of an FE level exception. Use this register for
purposes such as storing the values of general-purpose registers.

R/W Undefined

RH850G3MH Software Section 3　REGISTER SET

R01US0143EJ0100 Rev.1.00 Page 50 of 425
Mar 05, 2015

(14) HTCFG0 — Thread configuration register

Note 1. The value after reset depends on the hardware specifications. For details, see the hardware manual of the
product used.

Note 2. When these bits are read, the CPU processor identifier defined in the product specifications is read. These
bits cannot be written. For details, see the hardware manual of the product used.

(15) MEA — Memory error address register

31 19 18 16 15 14 0

HTCFG0
Value after reset

*10 0 0 0 0 0 0 0 0 0 0 0 0 PEID 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 3.18 HTCFG0 Register Contents

Bit Name Description R/W
Value after
Reset

31 to 19 — (Reserved for future expansion. Be sure to set to 0.) R 0

18 to 16 PEID These bits indicate the processor element number. R *2

15 — (Reserved for future expansion. Be sure to set to 0.) R 1

14 to 0 — (Reserved for future expansion. Be sure to set to 0.) R 0

31 0

MEA
Value after reset

UndefinedMEA

Table 3.19 MEA Register Contents

Bit Name Description R/W
Value after
Reset

31 to 0 MEA These bits store the violation address when an MAE (misaligned) or MPU
occurs.

R/W Undefined

RH850G3MH Software Section 3　REGISTER SET

R01US0143EJ0100 Rev.1.00 Page 51 of 425
Mar 05, 2015

(16) MEI — Memory error information register

This register is used to store information about the instruction that caused the exception when a

misaligned (MAE) or memory protection (MDP) exception occurs.

Note: Even if the data is divided and access is made several times due to the specifications of the hardware, the
original data type indicated by the instruction is stored.

31 21 20 16 15 11 10 9 8 7 6 5 0

MEI R
W

Value after reset
Undefined0 0 0 0 0 0 0 0 0 0 0 REG 0 0 0 0 0 DS U 0 0 ITYPE

Table 3.20 MEI Register Contents

Bit Name Description R/W
Value after
Reset

31 to 21 — (Reserved for future expansion. Be sure to set to 0.) R 0

20 to 16 REG These bits indicate the number of the source or destination register
accessed by the instruction that caused the exception.
For details, see Table 3.21

R/W Undefined

15 to 11 — (Reserved for future expansion. Be sure to set to 0.) R 0

10, 9 DS These bits indicate the type of data handled by the instruction that caused
the exception.Note

 0: Byte (8 bits)
 1: Halfword (16 bits)
 2: Word (32 bits)
 3: Double-word (64 bits)
For details, see Table 3.21

R/W Undefined

8 U This bit indicates the sign extension method of the instruction that caused
the exception.
 0: Signed
 1: Unsigned
For details, see Table 3.21

R/W Undefined

7, 6 — (Reserved for future expansion. Be sure to set to 0.) R 0

5 to 1 ITYPE These bits indicate the instruction that caused the exception.
For details, see Table 3.21

R/W Undefined

0 RW This bit indicates whether the operation of the instruction that caused the
exception was read (Load-memory) or write (Store-memory).
 0: Read (Load-memory)
 1: Write (Store-memory)
For details, see Table 3.21

R/W Undefined

Table 3.21 Instructions Causing Exceptions and Values of MEI Register (1/2)

Instruction REG DS U RW ITYPE

SLD.B dst 0 (Byte) 0 (Signed) 0 (Read) 00000b

SLD.BU dst 0 (Byte) 1 (Unsigned) 0 (Read) 00000b

SLD.H dst 1 (Half-word) 0 (Signed) 0 (Read) 00000b

SLD.HU dst 1 (Half-word) 1 (Unsigned) 0 (Read) 00000b

SLD.W dst 2 (Word) 0 (Signed) 0 (Read) 00000b

SST.B src 0 (Byte) 0 (Signed) 1 (Write) 00000b

SST.H src 1 (Half-word) 0 (Signed) 1 (Write) 00000b

SST.W src 2 (Word) 0 (Signed) 1 (Write) 00000b

LD.B (disp16) dst 0 (Byte) 0 (Signed) 0 (Read) 00001b

LD.BU (disp16) dst 0 (Byte) 1 (Unsigned) 0 (Read) 00001b

LD.H (disp16) dst 1 (Half-word) 0 (Signed) 0 (Read) 00001b

LD.HU (disp16) dst 1 (Half-word) 1 (Unsigned) 0 (Read) 00001b

RH850G3MH Software Section 3　REGISTER SET

R01US0143EJ0100 Rev.1.00 Page 52 of 425
Mar 05, 2015

Note 1. This exception occurs when the instruction executes a read access.

Note 2. The value differs depending on the operation.

Note 3. When the interrupt vector of the table reference method is read.

Note 4. When the destination is r3, 0 is stored.

Note: dst: Destination register number, src: Source register number

LD.W (disp16) dst 2 (Word) 0 (Signed) 0 (Read) 00001b

ST.B (disp16) src 0 (Byte) 0 (Signed) 1 (Write) 00001b

ST.H (disp16) src 1 (Half-word) 0 (Signed) 1 (Write) 00001b

ST.W (disp16) src 2 (Word) 0 (Signed) 1 (Write) 00001b

LD.B (disp23) dst 0 (Byte) 0 (Signed) 0 (Read) 00010b

LD.BU (disp23) dst 0 (Byte) 1 (Unsigned) 0 (Read) 00010b

LD.H (disp23) dst 1 (Half-word) 0 (Signed) 0 (Read) 00010b

LD.HU (disp23) dst 1 (Half-word) 1 (Unsigned) 0 (Read) 00010b

LD.W (disp23) dst 2 (Word) 0 (Signed) 0 (Read) 00010b

ST.B (disp23) src 0 (Byte) 0 (Signed) 1 (Write) 00010b

ST.H (disp23) src 1 (Half-word) 0 (Signed) 1 (Write) 00010b

ST.W (disp23) src 2 (Word) 0 (Signed) 1 (Write) 00010b

LD.DW (disp23) dst 3 (Double-word) 0 (Signed) 0 (Read) 00010b

ST.DW (disp23) src 3 (Double-word) 0 (Signed) 1 (Write) 00010b

LDL.W dst 2 (Word) 0 (Signed) 0 (Read) 00111b

STC.W src 2 (Word) 0 (Signed) 1 (Write) 00111b

CAXI dst 2 (Word) 0 (Signed) 0 (Read)*1 01000b

SET1 ― 0 (Byte) 0 (Signed) 0 (Read)*1 01001b

CLR1 ― 0 (Byte) 0 (Signed) 0 (Read)*1 01001b

NOT1 ― 0 (Byte) 0 (Signed) 0 (Read)*1 01001b

TST1 ― 0 (Byte) 0 (Signed) 0 (Read) 01001b

PREPARE src 2 (Word) 0 (Signed) 1 (Write) 01100b

DISPOSE dst 2 (Word) 0 (Signed) 0 (Read) 01100b

PUSHSP src 2 (Word) 0 (Signed) 1 (Write) 01101b

POPSP dst*4 2 (Word) 0 (Signed) 0 (Read) 01101b

SWITCH ― 1 (Half-word) 0 (Signed) 0 (Read) 10000b

CALLT ― 1 (Half-word) 1 (Unsigned) 0 (Read) 10001b

SYSCALL ― 2 (Word) 0 (Signed) 0 (Read) 10010b

CACHE ― ― ― 0/1*2 10100b

Interrupt (table reference method)
*3 ― 2 (Word) 0 (Signed) 0 (Read) 10101b

Table 3.21 Instructions Causing Exceptions and Values of MEI Register (2/2)

Instruction REG DS U RW ITYPE

RH850G3MH Software Section 3　REGISTER SET

R01US0143EJ0100 Rev.1.00 Page 53 of 425
Mar 05, 2015

(17) RBASE — Reset vector base address

This register indicates the reset vector address when there is a reset. If the PSW.EBV bit is 0, this

vector address is also used as the exception vector address.

Note 1. The value after reset depends on the hardware specifications. For details, see the hardware manual of the
product used.

(18) EBASE — Exception handler vector address

This register indicates the exception handler vector address. This register is valid when the PSW.EBV

bit is 1.

31 9 8 1 0

RBASE

R
IN

T Value after reset
*1RBASE31 to RBASE9 0 0 0 0 0 0 0 0

Table 3.22 RBASE Register Contents

Bit Name Description R/W
Value after
Reset

31 to 9 RBASE31 to
RBASE9

These bits indicate the reset vector when there is a reset. When PSW.EBV =
0, this address is also used as the exception vector.
The RBASE8-0 bits are not assigned as names because these bits are
always 0.

R Note

8 to 1 — (Reserved for future expansion. Be sure to set to 0.) R 0

0 RINT When the RINT bit is set, the exception handler address for interrupt
processing is reduced. See 4.4.1 (1), Direct vector method. This bit is valid
when PSW.EBV = 0.

R Note

31 9 8 0

EBASE
R

IN
T Value after reset

UndefinedEBASE31 to EBASE9 0 0 0 0 0 0 0 0

Table 3.23 EBASE Register Contents

Bit Name Description R/W
Value after
Reset

31 to 9 EBASE31 to
EBASE9

The exception handler routine address is changed to the address resulting
from adding the offset address of each exception to the base address
specified for this register.
The EBASE8-0 bits are not assigned as names because these bits are
always 0.

R/W Undefined

8 to 1 — (Reserved for future expansion. Be sure to set to 0.) R 0

0 RINT When the RINT bit is set, the exception handler address for interrupt
processing is reduced. See 4.4.1 (1), Direct vector method.

R/W Undefined

RH850G3MH Software Section 3　REGISTER SET

R01US0143EJ0100 Rev.1.00 Page 54 of 425
Mar 05, 2015

(19) INTBP — Base address of the interrupt handler address table

This register indicates the base address of the table when the table reference method is selected as the

interrupt handler address selection method.

31 9 8 0

INTBP
Value after reset

UndefinedINTBP31 to INTBP9 0 0 0 0 0 0 0 0 0

Table 3.24 INTBP Register Contents

Bit Name Description R/W
Value after
Reset

31 to 9 INTBP31 to
INTBP9

These bits indicate the base pointer address for an interrupt when the table
reference method is used.
The value indicated by these bits is the first address in the table used to
determine the exception handler when the interrupt specified by the table
reference method (EIINT0 to EIINT511) is acknowledged.
The INTBP8-0 bits are not assigned as names because these bits are
always 0.

R/W Undefined

8 to 0 — (Reserved for future expansion. Be sure to set to 0.) R 0

RH850G3MH Software Section 3　REGISTER SET

R01US0143EJ0100 Rev.1.00 Page 55 of 425
Mar 05, 2015

(20) PID — Processor ID

The PID register retains a processor identifier that is unique to the CPU. The PID register is a read-only

register.

CAUTION

The PID register indicates information used to identify the incorporated CPU core and

CPU core configuration. Usage such that the software behavior varies dynamically

according to the PID register information is not assumed.

Note 1. For details, see the hardware manual of the product used.

31 0 Value after reset
Defined for each

processorPID PID

Table 3.25 PID Register Contents

Bit Name Description R/W
Value after
Reset

31 to 24 PID Architecture Identifier
This identifier indicates the architecture of the processor.

R *1

23 to 8 Function Identifier
This identifier indicates the functions of the processor.
These bits indicate whether or not functions defined per bit are implemented
(1: implemented, 0: not implemented).
Bits 23 and 11 : Reserved
Bit 10 : Double-precision floating-point operation function
Bit 9 : Single-precision floating-point operation function*1

Bit 8 : Memory protection unit (MPU) function

NOTE

If a double-precision floating-point operation function is implemented (when
bit 10 is 1), a single-precision floating-point operation function is also always
implemented (bit 9 is 1).

R *1

7 to 0 Version Identifier
This identifier indicates the version of the processor.

R *1

RH850G3MH Software Section 3　REGISTER SET

R01US0143EJ0100 Rev.1.00 Page 56 of 425
Mar 05, 2015

(21) SCCFG — SYSCALL operation setting

This register is used to set operations related to the SYSCALL instruction. Be sure to set an appropriate

value to this register before using the SYSCALL instruction.

(22) SCBP — SYSCALL base pointer

The SCBP register is used to specify a table address of the SYSCALL instruction and generate a target

address. Be sure to set an appropriate value to this register before using the SYSCALL instruction.

Be sure to set a word address to the SCBP register.

31 8 7 0

SCCFG
Value after reset

Undefined0 SIZE

Table 3.26 SCCFG Register Contents

Bit Name Description R/W
Value after
Reset

31 to 8 — (Reserved for future expansion. Be sure to set to 0.) R 0

7 to 0 SIZE These bits specify the maximum number of entries of a table that the
SYSCALL instruction references. The maximum number of entries the
SYSCALL instruction references is 1 if SIZE is 0, and 256 if SIZE is 255. By
setting the maximum number of entries appropriately in accordance with the
number of functions branched by the SYSCALL instruction, the memory area
can be effectively used.
If a vector exceeding the maximum number of entries is specified for the
SYSCALL instruction, the first entry is selected. Place an error processing
routine at the first entry.

R/W Undefined

31 0

SCBP
Value after reset

UndefinedSCBP31 to SCBP0

Table 3.27 SCBP Register Contents

Bit Name Description R/W
Value after
Reset

31 to 2 SCBP31 to
SCBP2

These bits indicate the base pointer address of the SYSCALL instruction.
These bits indicate the start address of the table used by the SYSCALL
instruction.

R/W Undefined

1, 0 SCBP1,
SCBP0

These bits indicate the base pointer address of the SYSCALL instruction.
These bits indicate the start address of the table used by the SYSCALL
instruction.
Always set these bits to 0.

R 0

RH850G3MH Software Section 3　REGISTER SET

R01US0143EJ0100 Rev.1.00 Page 57 of 425
Mar 05, 2015

(23) MCFG0 — Machine configuration

This register indicates the CPU configuration.

Note 1. For details, see the hardware manual of the product used.

(24) MCTL — Control of the CPU

This register is used to control the CPU.

31 24 23 16 15 3 2 1 0

MCFG0
Value after reset

*10 0 0 0 0 0 0 0 SPID 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

Table 3.28 MCFG0 Register Contents

Bit Name Description R/W
Value after
Reset

31 to 24 — (Reserved for future expansion. Be sure to set to 0.) R 0

23 to 16 SPID These bits indicate the system protection number.
The SPID bit width depends on the product and the value that can be written
might therefore be restricted.
For details, see the hardware manual of the product used.

R/W *1

15 to 3 — (Reserved for future expansion. Be sure to set to 0.) R 0

2 — (Reserved for future expansion. Be sure to set to 1.) R 1

1, 0 — (Reserved for future expansion. Be sure to set to 0.) R 0

31 30 1 0

MCTL 0
U
I
C

Value after reset
8000 0000H

1 0

Table 3.29 MCTL Register Contents

Bit Name Description R/W
Value after
Reset

31 — (Reserved for future expansion. Be sure to set to 1.) R 1

30 to 1 — (Reserved for future expansion. Be sure to set to 0.) R 0

0 UIC This bit is used to control the interrupt enable/disable operation in user
mode. When this bit is set to 1, executing the EI/DI instruction in user mode
become possible.

R/W 0

RH850G3MH Software Section 3　REGISTER SET

R01US0143EJ0100 Rev.1.00 Page 58 of 425
Mar 05, 2015

3.3 Interrupt Function Registers

3.3.1 Interrupt Function System Registers

Interrupt function system registers are read from or written to by using the LDSR and STSR

instructions and specifying the system register number, which is made up of a register number and

selection ID.

Table 3.30 Interrupt Function System Registers

Register No.
(regID, selID) Symbol Function

Access
Permission

SR10, 2 ISPR Priority of interrupt being serviced SV

SR11, 2 PMR Interrupt priority masking SV

SR12, 2 ICSR Interrupt control status SV

SR13, 2 INTCFG Interrupt function setting SV

RH850G3MH Software Section 3　REGISTER SET

R01US0143EJ0100 Rev.1.00 Page 59 of 425
Mar 05, 2015

(1) ISPR — Priority of interrupt being serviced

This register holds the priority of the EIINTn interrupt being serviced. This priority value is then used

to perform priority ceiling processing when multiple interrupts are generated.

Note 1. For details, see Section 4.1.5, Interrupt Exception Priority and Priority Masking.

Note 2. Interrupt acknowledgment and auto-updating of values when the EIRET instruction is executed are disabled
by setting (1) the INTCFG.ISPC bit. It is recommended to enable auto-updating of values, so in normal
cases, the INTCFG.ISPC bit should be cleared to 0.

Note 3. This is R or R/W, depending on the setting of the INTCFG.ISPC bit. It is recommended to use this register
as a read-only (R) register.

31 16 15 0

ISPR
Value after reset

0000 0000H
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ISP15 to ISP0

Table 3.31 ISPR Register Contents

Bit Name Description R/W
Value after
Reset

31 to 16 — (Reserved for future expansion. Be sure to set to 0.) R 0

15 to 0 ISP15 to
ISP0

These bits indicate the acknowledgment status of an EIINTn interrupt with a
priority*1 that corresponds to the relevant bit position.

0 : An interrupt request for an interrupt whose priority corresponds to the
relevant bit position has not been acknowledged.

1 : An interrupt request for an interrupt whose priority corresponds to the
relevant position is being serviced by the CPU core.

The bit positions correspond to the following priority levels:

When an interrupt request (EIINTn) is acknowledged, the bit corresponding
to the acknowledged interrupt request is automatically set to 1. If PSW.EP is
0 when the EIRET instruction is executed, the bit with the highest priority
among the ISP15-0 bits that are set (0 is the highest priority) is cleared to
0*2.
While a bit in this register is set to 1, lower priority interrupts (EIINTn) are
masked. Priority level judgment is therefore not performed when the system
is determining whether to acknowledge an exception, meaning that
exceptions will not be acknowledged.
For details, see Section 4.1.5, Interrupt Exception Priority and Priority
Masking.
When performing software-based priority control using the PMR register, be
sure to clear this register by using the INTCFG.ISPC bit.

R*3 0

Bit Priority

0 Priority 0 (highest)

1 Priority 1

... ...

14 Priority 14

15 Priority 15

RH850G3MH Software Section 3　REGISTER SET

R01US0143EJ0100 Rev.1.00 Page 60 of 425
Mar 05, 2015

(2) PMR — Interrupt priority masking

This register is used to mask the specified interrupt priority.

Note 1. Specify the masks by setting the bits to 1 in order from the lowest-priority bit. For example, FF00H can be
set, but F0F0H or 00FFH cannot.

(3) ICSR — Interrupt control status

This register indicates the interrupt control status in the CPU.

31 16 15 0

PMR
Value after reset

0000 0000H
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 PM15 to PMR0

Table 3.32 PMR Register Contents

Bit Name Description R/W
Value after
Reset

31 to 16 — (Reserved for future expansion. Be sure to set to 0.) R 0

15 to 0 PM15 to PM0 These bits mask an interrupt request with a priority level that corresponds to
the relevant bit position.

0 : Servicing of an interrupt request with a priority that corresponds to the
relevant bit position is enabled.

1 : Servicing of an interrupt request with a priority that corresponds to the
relevant bit position is disabled.

The bit positions correspond to the following priority levels:

While a bit in this register is set to 1, interrupts (EIINTn) with the priority
corresponding to that bit are masked. Priority level judgment is therefore not
performed when the system is determining whether to acknowledge an
exception, meaning that exceptions will not be acknowledged*1.

R/W 0

Bit Priority

0 Priority 0 (highest)

1 Priority 1

... ...

14 Priority 14

15 Priority 15 and priority 16

(lowest)

31 1 0

ICSR

P
M

E
I Value after reset

0000 0000H
0 0

Table 3.33 ICSR Register Contents

Bit Name Description R/W
Value after
Reset

31 to 1 — (Reserved for future expansion. Be sure to set to 0.) R 0

0 PMEI This bit indicates that an interrupt (EIINTn) with the priority level masked by
the PMR register exists.

R 0

RH850G3MH Software Section 3　REGISTER SET

R01US0143EJ0100 Rev.1.00 Page 61 of 425
Mar 05, 2015

(4) INTCFG — Interrupt function setting

This register is used to specify settings related to the CPU’s internal interrupt function.

31 1 0

INTCFG

IS
P

C Value after reset
0000 0000H

0 0

Table 3.34 INTCFG Register Contents

Bit Name Description R/W
Value after
Reset

31 to 1 — (Reserved for future expansion. Be sure to set to 0.) R 0

0 ISPC This bit changes how the ISPR register is written.
0: The ISPR register is automatically updated. Updates triggered by the

program (via execution of LDSR instruction) are ignored.
1: The ISPR register is not automatically updated. Updates triggered by the

program (via execution of LDSR instruction) are performed.

If this bit is cleared to 0, the bits of the ISPR register are automatically set to
1 when an interrupt (EIINTn) is acknowledged, and cleared to 0 when the
EIRET instruction is executed. In this case, the bits are not updated by an
LDSR instruction executed by the program.
If this bit is set to 1, the bits of the ISPR register are not updated by the
acknowledgement of an interrupt (EIINTn) or by execution of the EIRET
instruction. In this case, the bits can be updated by an LDSR instruction
executed by the program.
In normal cases, the ISPC bit should be cleared. When performing software-
based priority control, however, set this bit (1) and perform priority control by
using the PMR register.

R/W 0

RH850G3MH Software Section 3　REGISTER SET

R01US0143EJ0100 Rev.1.00 Page 62 of 425
Mar 05, 2015

3.4 FPU Function Registers

3.4.1 Floating-Point Registers

The FPU uses the CPU general-purpose registers (r0 to r31). There are no register files used only for

floating-point operations.

 Single-precision floating-point instruction:

Thirty-two 32-bit registers can be specified. These general-purpose registers correspond to r0 to

r31.

 Double-precision floating-point instruction:

Sixteen 64-bit registers can be specified. Paired general-purpose registers are used as register pairs

({r1, r0}, {r3, r2} … {r31, r30}). Each register pair is specified in the instruction format with an

even numbered register. Because r0 is a zero register (always holds 0), in principle {r1, r0} cannot

be used by a double-precision floating-point instruction.

3.4.2 Floating-Point Function System Registers

The FPU can use the following system registers to control floating-point operations. Floating-point

function system registers are read from or written to by using the LDSR and STSR instructions and

specifying the system register number, which is made up of a register number and selection ID.

 FPSR : This register is used to control and monitor exceptions. It also holds the result of compare

operations, and sets the FPU operation mode. Its bits are used to set condition code, subnormal

number flush enable, rounding mode control, cause, exception enable, and preservation.

 FPEPC : This register stores the program counter value for the instruction where a floating-point

operation exception has occurred.

 FPST : This register reflects the contents of the FPSR register bits related to the operation status.

 FPCC : This register reflects the contents of the FPSR.CC(7 : 0) bits.

 FPCFG : This register reflects the contents of the FPSR register bits related to the operation

settings.

Table 3.35 FPU System Registers

Register No.
(regID, selID) Symbol Function Access Permission

SR6, 0 FPSR Floating-point operation configuration/status CU0 and SV

SR7, 0 FPEPC Floating-point operation exception program counter CU0 and SV

SR8, 0 FPST Floating point operation status CU0

SR9, 0 FPCC Floating-point operation comparison result CU0

SR10, 0 FPCFG Floating-point operation configuration CU0

RH850G3MH Software Section 3　REGISTER SET

R01US0143EJ0100 Rev.1.00 Page 63 of 425
Mar 05, 2015

(1) FPSR — Floating-point configuration/status

This register indicates the execution status of floating-point operations and any exceptions that occur.

For details about exception, see Section 6.1.5, Floating-Point Operation Exceptions.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

FPSR CC7 CC6 CC5 CC4 CC3 CC2 CC1 CC0 FN IF 1 0 RM FS 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Value after reset
*1E V Z O U I V Z O U I V Z O U I

Cause bits (XC) Enable bits (XE) Preservation bits (XP)

Table 3.36 FPSR Register Contents (1/2)

Bit Name Description R/W
Value after
Reset

31 to 24 CC(7:0) These are the CC (condition) bits. They store the results of floating-point
comparison instructions. The CC7-0 bits are not affected by any instructions
except the comparison instruction and LDSR instruction.
 0: Comparison result is false
 1: Comparison result is true

R/W Undefined

23 FN This bit enables flush-to-nearest mode. When the FN bit is set to 1, if the
rounding mode is RN and the operation result is a subnormal number, the
number is flushed to the nearest number. For details, see Section 6.1.9,
Flush to Nearest.

R/W 0

22 IF This bit accumulates and indicates information about the flushing of input
operands. For details about flushing subnormal numbers, see Section 6.1.8,
Flushing Subnormal Numbers.

R/W 0

21 — (Reserved for future expansion. Be sure to set to 1.) R 0

20 — (Reserved for future expansion. Be sure to set to 0.) R 0

19, 18 RM These are the rounding mode control bits. The RM bits define the rounding
mode that the FPU uses for all floating-point instructions.

R/W 00

RM Bits

Mnemonic Description19 18

0 0 RN Rounds the result to the nearest representable
value. If the value is exactly in-between the two
nearest representable values, the result is
rounded toward the value whose least significant
bit is 0.

0 1 RZ Rounds the result toward 0. The result is the
nearest to the value that does not exceed the
absolute value of the result with infinite accuracy.

1 0 RP Rounds the result toward +∞. The result is
nearest to a value greater than the accurate
result with infinite accuracy.

1 1 RM Rounds the result toward –∞. The result is
nearest to a value less than the accurate result
with infinite accuracy.

RH850G3MH Software Section 3　REGISTER SET

R01US0143EJ0100 Rev.1.00 Page 64 of 425
Mar 05, 2015

Note 1. See the descriptions of each bit.

17 FS This bit enables values that could not be normalized (subnormal numbers) to
be flushed. If the FS bit is set, input operands and operation results that are
subnormal numbers are flushed without causing an unimplemented
operation exception (E). An input operand that is a subnormal number is
flushed to 0 with the same sign. Operation results that are subnormal
numbers either become 0 or the minimum .

Note 1. If the rounding mode is RN and the FPSR.FN bit is set, flushing
will occur in the direction of higher accuracy. For details, see
Section 6.1.9, Flush to Nearest.

R/W 1

16 — (Reserved for future expansion. Be sure to set to 0.) R 0

15 to 10 XC (E, V, Z, O,
U, I)

These are the cause bits. For details, see 3.4.2 (1) (a), Cause bits (XC). R/W Undefined

9 to 5 XE (V, Z, O,
U, I)

These are the enable bits. For details, see 3.4.2 (1) (b), Enable bits (XE). R/W 0

4 to 0 XP (V, Z, O,
U, I)

These are the preservation bits. For details, see 3.4.2 (1) (c), Preservation
bits (XP).

R/W Undefined

Table 3.36 FPSR Register Contents (2/2)

Bit Name Description R/W
Value after
Reset

Operation result that
is a subnormal
number

Rounding mode and value after flushing

RN*1 RZ RP RM

Positive +0 +0 +2Emin +0

Negative –0 –0 –0 –2Emin

RH850G3MH Software Section 3　REGISTER SET

R01US0143EJ0100 Rev.1.00 Page 65 of 425
Mar 05, 2015

(a) Cause bits (XC)

Bits 15 to 10 in the FPSR register are cause bits, which indicate the occurrence and cause of a floating-

point operation exception. If an exception defined by IEEE754 is generated, when an enable bit is set to

1 corresponding to the exception, a cause bit is set, and the exception then occurs. When two or more

exceptions occur during a single instruction, each corresponding bit is set to 1.

If two or more exceptions are detected, as long as the enable bit corresponding to one of the exceptions

is set to 1, the exception occurs. In this case, the cause bits of all the detected exceptions, including

exceptions whose enable bits are cleared to 0, are set to 1.

The cause bits are rewritten by a floating-point instruction (except the TRFSR instruction) where the

floating-point operation exception occurred. The E bit is set to 1 when software emulation is required,

otherwise it is cleared to 0. Other bits are set to 1 or cleared to 0 depending on whether or not an

IEEE754-defined exception has occurred.

When a floating-point operation exception has occurred, the operation result is not stored, and only the

cause bits are affected.

When the cause bits are set to 1 by an LDSR instruction, a floating-point operation exception does not

occur.

(b) Enable bits (XE)

Bits 9 to 5 in the FPSR register are the enable bits, which enable floating-point operation exceptions.

When an IEEE754-defined exception occurs, a floating-point operation exception occurs if the enable

bit corresponding to the exception has been set to 1.

There are no enable bits corresponding to an unimplemented operation exception (E). An

unimplemented operation exception (E) always occurs as a floating-point operation exception.

If the corresponding enable bit has not been set to 1, no exception occurs and the default result defined

by IEEE754 is stored.

(c) Preservation bits (XP)

Bits 4 to 0 in the FPSR register are preservation bits. These bits store and indicate the detected

exception after reset. An exception defined by IEEE754 occurs, and if a floating-point operation

exception is not generated, the preservation bit is set to 1, otherwise it does not change. The

preservation bits are not cleared to 0 by the floating-point operation. However, these bits can be set and

cleared by software when an LDSR instruction is used to write a new value to the FPSR register.

There are no preservation bits corresponding to unimplemented operation exceptions (E). An

unimplemented operation exception (E) always occurs as a floating-point operation exception.

NOTE

For details about the exception types and how they relate to particular bits, see Figure 6.6,

Cause, Enable, and Preservation Bits of FPSR Register.

RH850G3MH Software Section 3　REGISTER SET

R01US0143EJ0100 Rev.1.00 Page 66 of 425
Mar 05, 2015

(2) FPEPC — Floating-point exception program counter

When an exception that is enabled by an enable bit occurs, the program counter (PC) of the instruction

that caused the exception is stored.

(3) FPST — Floating-point operation status

This register reflects the contents of the FPSR register bits related to the operation status.

31 0

FPEPC
Value after reset

UndefinedFPEPC31 to 0

Table 3.37 FPEPC Register Contents

Bit Name Description R/W
Value after
Reset

31 to 1 FPEPC31 to
FPEPC1

These bits store the program counter (PC) of the floating-point instruction
that caused the exception when a floating-point operation exception that is
enabled by an enable bit occurs.

R/W Undefined

0 FPEPC0 This bit stores the program counter (PC) of the floating-point instruction that
caused the exception when a floating-point operation exception that is
enabled by an enable bit occurs.
Always set this bit to 0.

R 0

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

FPST 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Value after reset
Undefined0 0

E V Z O U I
0 0 IF

V Z O U I

Cause bits (XC) Preservation bits (XP)

Table 3.38 FPST Register Contents

Bit Name Description R/W
Value after
Reset

31 to 14 — (Reserved for future expansion. Be sure to set to 0.) R 0

13 to 8 XC (E, V, Z,
O, U, I)

These are cause bits. For details, see 3.4.2 (1) (a), Cause bits (XC). Values
written to these bits are reflected in FPSR.XC bits.

R/W Undefined

7, 6 — (Reserved for future expansion. Be sure to set to 0.) R 0

5 IF This bit accumulates and indicates information about the flushing of input
operands. For details about flushing subnormal numbers, see Section 6.1.8,
Flushing Subnormal Numbers.

R/W 0

4 to 0 XP (V, Z, O,
U, I)

These are preservation bits. For details, see 3.4.2 (1) (c), Preservation bits
(XP). Values written to these bits are reflected in FPSR.XP bits.

R/W Undefined

RH850G3MH Software Section 3　REGISTER SET

R01US0143EJ0100 Rev.1.00 Page 67 of 425
Mar 05, 2015

(4) FPCC — Floating-point operation comparison result

This register reflects the contents of the FPSR.CC(7:0) bits.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

FPCC 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Value after reset
Undefined0 0 0 0 0 0 0 0 CC7 CC6 CC5 CC4 CC3 CC2 CC1 CC0

Table 3.39 FPCC Register Contents

Bit Name Description R/W
Value after
Reset

31 to 8 — (Reserved for future expansion. Be sure to set to 0.) R 0

7 to 0 CC (7:0) These are CC (condition) bits. They store the result of a floating-point
comparison instruction. The CC(7:0) bits are not affected by any instructions
except the comparison instruction and LDSR instruction. Values written to
these bits are reflected in the CC(7:0) bits of FPSR.

0: Comparison result is false
1: Comparison result is true

R/W Undefined

RH850G3MH Software Section 3　REGISTER SET

R01US0143EJ0100 Rev.1.00 Page 68 of 425
Mar 05, 2015

(5) FPCFG — Floating-point operation configuration

This register reflects the contents of the FPSR register bits related to the operation settings.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

FPCFG 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Value after reset
0000 0000H

0 0 0 0 0 0 RM 0 0 0
V Z O U I

Enable bits (XE)

Table 3.40 FPCFG Register Contents

Bit Name Description R/W
Value after
Reset

31 to 10 — (Reserved for future expansion. Be sure to set to 0.) R 0

9, 8 RM These are rounding mode control bits. The RM bits define the rounding
mode that the FPU uses for all floating-point instructions. Values written to
these bits are reflected in RM bits of FPSR.

R/W 0

7 to 5 — (Reserved for future expansion. Be sure to set to 0.) R 0

4 to 0 XE
(V, Z, O, U, I)

These are the enable bits. For details, see 3.4.2 (1) (b), Enable bits (XE).
Values written to these bits are reflected in the FPSR.XE bits.

R/W 0

RM Bits

Mnemonic Description9 8

0 0 RN Rounds the result to the nearest representable
value. If the value is exactly in-between the two
representable values, the result is rounded
toward the value whose least significant bit is 0.

0 1 RZ Rounds the result toward 0. The result is the
nearest to the value that does not exceed the
absolute value of the result with infinite accuracy.

1 0 RP Rounds the result toward +∞. The result is
nearest to a value greater than the accurate
result with infinite accuracy.

1 1 RM Rounds the result toward -∞. The result is
nearest to a value less than the accurate result
with infinite accuracy.

RH850G3MH Software Section 3　REGISTER SET

R01US0143EJ0100 Rev.1.00 Page 69 of 425
Mar 05, 2015

3.5 MPU Function Registers

3.5.1 MPU Function System Registers

MPU function system registers are read from or written to by using the LDSR and STSR instructions

and specifying the system register number, which is made up of a register number and selection ID.

Table 3.41 MPU Function System Registers (1/2)

Register No.
(regID, selID) Symbol Function Access Permission

SR0, 5 MPM Memory protection operation mode setting SV

SR1, 5 MPRC MPU region control SV

SR4, 5 MPBRGN MPU base region number SV

SR5, 5 MPTRGN MPU end region number SV

SR8, 5 MCA Memory protection setting check address SV

SR9, 5 MCS Memory protection setting check size SV

SR10, 5 MCC Memory protection setting check
command

SV

SR11, 5 MCR Memory protection setting check result SV

SR0, 6 MPLA0 Protection area minimum address SV

SR1, 6 MPUA0 Protection area maximum address SV

SR2, 6 MPAT0 Protection area attribute SV

SR4, 6 MPLA1 Protection area minimum address SV

SR5, 6 MPUA1 Protection area maximum address SV

SR6, 6 MPAT1 Protection area attribute SV

SR8, 6 MPLA2 Lower address of the protection area SV

SR9, 6 MPUA2 Protection area maximum address SV

SR10, 6 MPAT2 Protection area attribute SV

SR12, 6 MPLA3 Protection area minimum address SV

SR13, 6 MPUA3 Protection area maximum address SV

SR14, 6 MPAT3 Protection area attribute SV

SR16, 6 MPLA4 Protection area minimum address SV

SR17, 6 MPUA4 Protection area maximum address SV

SR18, 6 MPAT4 Protection area attribute SV

SR20, 6 MPLA5 Protection area minimum address SV

SR21, 6 MPUA5 Protection area maximum address SV

SR22, 6 MPAT5 Protection area attribute SV

SR24, 6 MPLA6 Protection area minimum address SV

SR25, 6 MPUA6 Protection area maximum address SV

SR26, 6 MPAT6 Protection area attribute SV

SR28, 6 MLUA7 Protection area minimum address SV

SR29, 6 MPUA7 Protection area maximum address SV

SR30, 6 MPAT7 Protection area attribute SV

SR0, 7 MPLA8 Protection area minimum address SV

SR1, 7 MPUA8 Protection area maximum address SV

SR2, 7 MPAT8 Protection area attribute SV

SR4, 7 MPLA9 Protection area minimum address SV

SR5, 7 MPUA9 Protection area maximum address SV

RH850G3MH Software Section 3　REGISTER SET

R01US0143EJ0100 Rev.1.00 Page 70 of 425
Mar 05, 2015

Note: The number of incorporated MPLAn, MPUAn, and MPATn (n = 0 to 15) registers depends on the hardware
specifications. For details, see the hardware manual of the product used.

SR6, 7 MPAT9 Protection area attribute SV

SR8, 7 MPLA10 Protection area minimum address SV

SR9, 7 MPUA10 Protection area maximum address SV

SR10, 7 MPAT10 Protection area attribute SV

SR12, 7 MPLA11 Protection area minimum address SV

SR13, 7 MPUA11 Protection area maximum address SV

SR14, 7 MPAT11 Protection area attribute SV

SR16, 7 MPLA12 Protection area minimum address SV

SR17, 7 MPUA12 Protection area maximum address SV

SR18, 7 MPAT12 Protection area attribute SV

SR20, 7 MPLA13 Protection area minimum address SV

SR21, 7 MPUA13 Protection area maximum address SV

SR22, 7 MPAT13 Protection area attribute SV

SR24, 7 MPLA14 Protection area minimum address SV

SR25, 7 MPUA14 Protection area maximum address SV

SR26, 7 MPAT14 Protection area attribute SV

SR28, 7 MPLA15 Protection area minimum address SV

SR29, 7 MPUA15 Protection area maximum address SV

SR30, 7 MPAT15 Protection area attribute SV

Table 3.41 MPU Function System Registers (2/2)

Register No.
(regID, selID) Symbol Function Access Permission

RH850G3MH Software Section 3　REGISTER SET

R01US0143EJ0100 Rev.1.00 Page 71 of 425
Mar 05, 2015

(1) MPM — Memory protection operation mode

The memory protection mode register is used to define the basic operating state of the memory

protection function.

Note 1. When the SVP bit is set to 1, access is restricted according to the setting of each protection area even in
SV mode. Therefore, specify protection areas before setting the SVP bit to prevent the access of the
program itself from being restricted.

Note 2. If access is restricted in SV mode, execution of MDP exceptions or the MIP exception handling itself might
not be possible depending on the settings. Be careful to specify settings so that access to the memory area
necessary for the exception handler and exception handling is permitted.

31 11 10 9 8 7 3 2 1 0

MPM
D
X

D
W

D
R

S
V
P

M
P
E

Value after reset
0000 0000H

0 0

Table 3.42 MPM Register Contents

Bit Name Description R/W
Value after
Reset

31 to 11 — (Reserved for future expansion. Be sure to set to 0.) R 0

10 DX This bit specifies the default operation when an instruction is executed at an
address that does not exist in a protection area. “0” is fixed for this bit in this
CPU. Default operation is prohibited. Be sure to set to 0.

0 : Disable executing an instruction at an address that does not exist in a
protection area.

1 : Enable executing an instruction at an address that does not exist in a
protection area.

The setting of this bit affects the access operation when the protection areas
overlap. For details, see Section 5.1.3, Caution Points for Protection Area
Setup.

R 0

9 DW This bit specifies the default operation when writing to an address that does
not exist in a protection area. “0” is fixed for this bit in this CPU. Default
operation is prohibited. Be sure to set to 0.

0 : Disable writing to an address that does not exist in a protection area.
1 : Enable writing to an address that does not exist in a protection area.

The setting of this bit affects the access operation when the protection areas
overlap. For details, see Section 5.1.3, Caution Points for Protection Area
Setup.

R 0

8 DR This bit specifies the default operation when reading from an address that
does not exist in a protection area. “0” is fixed for this bit in this CPU. Default
operation is prohibited. Be sure to set to 0.

0 : Disable reading from an address that does not exist in a protection area.
1 : Enable reading from an address that does not exist in a protection area.

The setting of this bit affects the access operation when the protection areas
overlap. For details, see Section 5.1.3, Caution Points for Protection Area
Setup.

R 0

7 to 2 — (Reserved for future expansion. Be sure to set to 0.) R 0

1 SVP In SV mode (when PSW.UM = 0), this bit is used to specify whether to
restrict access according to the SX, SW, and SR bits of the MPAT register for
each protection area.*1

0 : As usual, implicitly enable all access in SV mode.
1 : Restrict access according to the SX, SW, and SR bits even in SV

mode.*2

R/W 0

0 MPE This bit is used to specify whether to enable or disable MPU function.
0 : Disable
1 : Enable

R/W 0

RH850G3MH Software Section 3　REGISTER SET

R01US0143EJ0100 Rev.1.00 Page 72 of 425
Mar 05, 2015

(2) MPRC — MPU region control

Bits used to perform special memory protection function operations are located in this register.

(3) MPBRGN — MPU base region number

This register indicates the minimum usable MPU area number.

(4) MPTRGN — MPU end region number

This register indicates the maximum usable MPU area number + 1.

Note 1. For details, see the hardware manual of the product used.

31 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

MPRC E
15

E
14

E
13

E
12

E
11

E
10

E
9

E
8

E
7

E
6

E
5

E
4

E
3

E
2

E
1

E
0

Value after reset
0000 0000H

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Table 3.43 MPRC Register Contents

Bit Name Description R/W
Value after
Reset

31 to 16 — (Reserved for future expansion. Be sure to set to 0.) R 0

15 to 0 E15 to E0 These are the enable bits for each protection area. Bit En is a copy of bit
MPATn.E (where n = 15 to 0).
For the number of protection areas, see the hardware manual of the product
used.

R/W 0

31 5 4 0

MPBRGN
Value after reset

0000 0000H
0 MPBRGN

Table 3.44 MPBRGN Register Contents

Bit Name Description R/W
Value after
Reset

31 to 5 — (Reserved for future expansion. Be sure to set to 0.) R 0

4 to 0 MPBRGN These bits indicate the smallest number of an MPU area.
These bits always indicate 0.

R 0

31 5 4 0

MPTRGN
Value after reset

0000 0000H
0 MPTRGN

Table 3.45 MPTRGN Register Contents

Bit Name Description R/W
Value after
Reset

31 to 5 — (Reserved for future expansion. Be sure to set to 0.) R 0

4 to 0 MPTRGN These bits indicate the largest number of an MPU area + 1.
These bits indicate the maximum number of MPU areas incorporated into
the hardware.

R *1

RH850G3MH Software Section 3　REGISTER SET

R01US0143EJ0100 Rev.1.00 Page 73 of 425
Mar 05, 2015

(5) MCA — Memory protection setting check address

This register is used to specify the base address of the area for which a memory protection setting

check is to be performed.

(6) MCS — Memory protection setting check size

This register is used to specify the size of the area for which a memory protection setting check is to be

performed.

(7) MCC — Memory protection setting check command

This command register is used to start a memory protection setting check.

31 0

MCA
Value after reset

UndefinedMCA31 to MCA0

Table 3.46 MCA Register Contents

Bit Name Description R/W
Value after
Reset

31 to 0 MCA31 to
MCA0

These bits are used to specify the starting address of the memory area which
subjects to a memory protection setting check in bytes.

R/W Undefined

31 0

MCS
Value after reset

UndefinedMCS31 to MCS0

Table 3.47 MCA Register Contents

Bit Name Description R/W
Value after
Reset

31 to 0 MCS31 to
MCS0

These bits are used to specify the size of the memory area which subjects to
a memory protection setting check and the size of the target area in bytes.
Because the specified size is assumed to represent an unsigned integer, it is
not possible to check an area in the direction in which the address value
decreases relative to the MCA register value.
Do not specify 0000 0000H for the MCS register.

R/W Undefined

31 0

MCC
Initial Value
0000 0000H

MCC31 to MCC0

Table 3.48 MCC Register Contents

Bit Name Description R/W
Value after
Reset

31 to 0 MCC31 to
MCC0

When any value is written to the MCC register, a memory protection setting
check starts. By setting up the MCA / MCS register and then writing to the
MCC register, results are stored in MCR.
Because the check is started by any written value, a check can be started by
using r0 as the source register without using any unnecessary registers.
Note that, for the check, the results are applied according to each area
setting regardless of the state of the PSW.UM bit.
When the MCC register is read, value 0000 0000H is always returned.

R/W 0

RH850G3MH Software Section 3　REGISTER SET

R01US0143EJ0100 Rev.1.00 Page 74 of 425
Mar 05, 2015

(8) MCR — Memory protection setting check result

This register is used to store the results of a memory protection setting check.

Be sure to clear bits 31 to 9, 7, and 6.

CAUTIONS

1. If the specified area to be checked crosses 0000 0000H or 7FFF FFFFH, it is judged

as an area setting error, and the MCR.OV bit is set to 1. This means that the

MCR.OV bit must be checked to access the check results. Do not use the check

result until it is confirmed that the result is not invalid (OV = 0).

2. When the default set (MPM.DX, DW, DR) is set to 1, it disables sometimes to get

the correct result. If enabling the specified default operation, do not use the

memory protection setting check function.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

MCR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Value after reset
Undefined0 0 0 0 0 0 0 OV 0 0 SXE SWE SRE UXE UWE URE

Table 3.49 MCC Register Contents

Bit Name Description R/W
Value after
Reset

31 to 9 — (Reserved for future expansion. Be sure to set to 0.) R 0

8 OV If the specified area includes 0000 0000H or 7FFF FFFFH, 1 is stored in this
bit. In other cases, 0 is stored in this bit.

R/W Undefined

7, 6 — (Reserved for future expansion. Be sure to set to 0.) R 0

5 SXE If the specified area is contained within one protection area and execution is
permitted for that area in supervisor mode, 1 is stored in this bit. In other
cases, 0 is stored in this bit.

R/W Undefined

4 SWE If the specified area is contained within one protection area and writing to
that area is permitted in supervisor mode, 1 is stored in this bit. In other
cases, 0 is stored in this bit.

R/W Undefined

3 SRE If the specified area is contained within one protection area and reading from
that area is permitted in supervisor mode, 1 is stored in this bit. In other
cases, 0 is stored in this bit.

R/W Undefined

2 UXE If the specified area is contained within one protection area and execution is
permitted for that area in user mode, 1 is stored in this bit. In other cases, 0
is stored in this bit.

R/W Undefined

1 UWE If the specified area is contained within one protection area and writing to
that area is permitted in user mode, 1 is stored in this bit. In other cases, 0 is
stored in this bit.

R/W Undefined

0 URE If the specified area is contained within one protection area and reading from
that area is permitted in user mode, 1 is stored in this bit. In other cases, 0 is
stored in this bit.

R/W Undefined

RH850G3MH Software Section 3　REGISTER SET

R01US0143EJ0100 Rev.1.00 Page 75 of 425
Mar 05, 2015

(9) MPLAn — Protection area minimum address

These registers indicate the minimum address of area n (where n = 0 to 15). The number of protection

area n depends on the hardware specifications. For details, see the hardware manual of the product

used.

(10) MPUAn — Protection area maximum address

These registers indicate the maximum address of area n (where n = 0 to 15). The number of protection

area n depends on the hardware specifications. For details, see the hardware manual of the product

used.

31 2 1 0

MPLAn
Value after reset

UndefinedMPLAn 0 0

Table 3.50 MPLAn Register Contents

Bit Name Description R/W
Value after
Reset

31 to 2 MPLA31 to
MPLA2

These bits indicate the minimum address of area n.
The MPLAn.MPLA1-0 bits are used implicitly set to 0.

R/W Undefined

1, 0 — (Reserved for future expansion. Be sure to set to 0.) R 0

31 2 1 0

MPUAn
Value after reset

UndefinedMPUAn 0 0

Table 3.51 MPUAn Register Contents

Bit Name Description R/W
Value after
Reset

31 to 2 MPUA31 to
MPUA2

These bits indicate the maximum address of area n.
The MPUAn.MPUA1-0 bits are used implicitly set to 1.

R/W Undefined

1, 0 — (Reserved for future expansion. Be sure to set to 0.) R 0

RH850G3MH Software Section 3　REGISTER SET

R01US0143EJ0100 Rev.1.00 Page 76 of 425
Mar 05, 2015

(11) MPATn — Protection area attribute

These registers indicate the attributes of area n (where n = 0 to 15). The number of protection area n

depends on the hardware specifications. For details, see the hardware manual of the product used.

Note 1. If access is restricted in SV mode, execution of MDP exceptions or the MIP exception handling itself might
not be possible depending on the settings. Be careful to specify settings so that access to the memory area
necessary for the exception handler and exception handling is permitted.

31 26 25 16 15 8 7 6 5 4 3 2 1 0

MPATn S
X

S
W

S
R

U
X

U
W

U
R

Initial Value
Undefined0 0 0 0 0 0 ASID 0 0 0 0 0 0 0 0 E G

Table 3.52 MPATn Register Contents

Bit Name Description R/W
Value after
Reset

31 to 26 — (Reserved for future expansion. Be sure to set to 0.) R 0

25 to 16 ASID These bits indicate the ASID value to be used as the area match condition. R/W Undefined

15 to 8 — (Reserved for future expansion. Be sure to set to 0.) R 0

7 E This bit indicates whether area n is enabled or disabled.
 0: Area n is disabled.
 1: Area n is enabled.

R/W 0

6 G 0: ASID match is used as the condition.
 1: ASID match is not used as the condition.
If this bit is 0, MPATn.ASID = ASID.ASID is used as the area match
condition.
If this bit is 1, the values of MPATn.ASID and ASID.ASID are not used as the
area match condition.

R/W Undefined

5 SX This bit indicates the execution privilege for the supervisor mode. *1

 0: Execution is disabled.
 1: Execution is enabled.

R/W Undefined

4 SW This bit indicates the write permission for the supervisor mode.*1

 0: Writing is disabled.
 1: Writing is enabled.

R/W Undefined

3 SR This bit indicates the read permission for the supervisor mode.*1

 0: Reading is disabled.
 1: Reading is enabled.

R/W Undefined

2 UX This bit indicates the execution privilege for the user mode.
 0: Execution is disabled.
 1: Execution is enabled.

R/W Undefined

1 UW This bit indicates the write permission for the user mode.
 0: Writing is disabled.
 1: Writing is enabled.

R/W Undefined

0 UR This bit indicates the read permission for the user mode.
 0: Reading is disabled.
 1: Reading is enabled

R/W Undefined

RH850G3MH Software Section 3　REGISTER SET

R01US0143EJ0100 Rev.1.00 Page 77 of 425
Mar 05, 2015

3.6 Cache Operation Function Registers

3.6.1 Cache Control Function System Registers

Cache control function system registers are read from or written to by using the LDSR and STSR

instructions and specifying the system register number, which is made up of a register number and

selection ID.

Table 3.53 Cache Control System Registers

Register No.
(regID, selID) Symbol Function Access Permission

SR16, 4 ICTAGL Instruction cache tag Lo access SV

SR17, 4 ICTAGH Instruction cache tag Hi access SV

SR18, 4 ICDATL Instruction cache data Lo access SV

SR19, 4 ICDATH Instruction cache data Hi access SV

SR24, 4 ICCTRL Instruction cache control SV

SR26, 4 ICCFG Instruction cache configuration SV

SR28, 4 ICERR Instruction cache error SV

RH850G3MH Software Section 3　REGISTER SET

R01US0143EJ0100 Rev.1.00 Page 78 of 425
Mar 05, 2015

(1) ICTAGL — Instruction cache tag Lo access

This register is used by the CIST/CILD instruction in relation to the instruction cache. During

execution of CIST, values that are stored to the tag RAM for the instruction cache are stored. During

execution of CILD, values read from the tag RAM for the instruction cache are stored.

31 11 10 6 5 4 3 2 1 0

ICTAGL
Value after reset

UndefinedLPN 0 0 0 0 0 LRU 0 L 0 V

Table 3.54 ICTAGL Register Contents

Bit Name Description R/W
Value after
Reset

31 to 11 LPN These bits store physical page number bits 24 to 11.
Be sure to set bits 31 to 25, and 0.

R/W Undefined

10 to 6 — (Reserved for future expansion. Be sure to set to 0.) R 0

5, 4 LRU These bits indicate LRU information of specified cache line. LRU information
cannot be freely changed to any value by the CIST instruction.

R/W Undefined

3 — (Reserved for future expansion. Be sure to set to 0.) R 0

2 L This bit stores the lock information. R/W Undefined

1 — (Reserved for future expansion. Be sure to set to 0.) R 0

0 V This bit stores valid/invalid information of specified cache line. R/W Undefined

RH850G3MH Software Section 3　REGISTER SET

R01US0143EJ0100 Rev.1.00 Page 79 of 425
Mar 05, 2015

(2) ICTAGH — Instruction cache tag Hi access

This register is used by the CIST/CILD instruction in relation to the instruction cache. During

execution of CIST, values that are stored to the tag RAM for the instruction cache are stored. During

execution of CILD, values read from the tag RAM for the instruction cache are stored.

(3) ICDATL — Instruction cache data Lo access

This register is used by the CIST/CILD instruction in relation to the instruction cache. During

execution of CIST, values that are stored to the tag RAM for the instruction cache are stored. During

execution of CILD, values read from the tag RAM for the instruction cache are stored.

31 30 29 28 27 24 23 16 15 8 7 6 5 2 1 0

ICTAGH W
D

P
D

W
T

P
T

U
ndefined

U
ndefined

U
ndefined

Value after reset
Undefined0 0 0 0 DATAECC TAGECC 0 0 0 0 0

Table 3.55 ICTAGH Register Contents

Bit Name Description R/W
Value after
Reset

31 WD When this bit is set to 1 during CIST execution, data RAM of cache is
updated.

R/W Undefined

30 PD When this bit is set to 1 during CIST execution, values in the DATAECC field
are overwritten to ECC for data RAM. When this value is 0, ECC is
generated automatically from the write data.

R/W Undefined

29 WT When this bit is set to 1 during CIST execution, tag RAM of cache is
updated.

R/W Undefined

28 PT When this bit is set to 1 during CIST execution, values in the TAGECC field
are overwritten to ECC for tag RAM. When this value is 0, ECC is generated
automatically from the write data.

R/W Undefined

27 to 24 — (Reserved for future expansion. Be sure to set to 0.) R 0

23 to 16 DATAECC These bits store ECC for data RAM. R/W Undefined

15 to 8 TAGECC These bits store ECC for tag RAM.
Write 0 to bits 15 and 14.

R/W Undefined

7 — (Reserved for future expansion. Be sure to set to 0.) R 0

6 — (Reserved for future expansion. Be sure to set to 0.) R Undefined

5 to 2 — (Reserved for future expansion. Be sure to set to 0.) R 0

1, 0 — (Reserved for future expansion. Be sure to set to 0.) R Undefined

31 0

ICDATL
Value after reset

UndefinedDATAL

Table 3.56 ICDATL Register Contents

Bit Name Description R/W
Value after
Reset

31 to 0 DATAL Bits 31 to 0, 95 to 64, 159 to 128, or 223 to 192 are stored among the
instruction data of a block in the specified cache line. The stored bits are
specified by the offset of index.

Offset of index = 00000: Bits 31 to 0
Offset of index = 01000: Bits 95 to 64
Offset of index = 10000: Bits 159 to 128
Offset of index = 11000: Bits 223 to 192

R/W Undefined

RH850G3MH Software Section 3　REGISTER SET

R01US0143EJ0100 Rev.1.00 Page 80 of 425
Mar 05, 2015

(4) ICDATH — Instruction cache data Hi access

This register is used by the CIST/CILD instruction in relation to the instruction cache. During

execution of CIST, values that are stored to the tag RAM for the instruction cache are stored. During

execution of CILD, values read from the tag RAM for the instruction cache are stored.

(5) ICCTRL — Instruction cache control

This register is used to control the instruction cache.

31 0

ICDATH
Value after reset

UndefinedDATAH

Table 3.57 ICDATH Register Contents

Bit Name Description R/W
Value after
Reset

31 to 0 DATAH Bits 63 to 32, 127 to 96, 191 to 160, or 255 to 224 are stored among the
instruction data of a block in the specified cache line. The stored bits are
specified by the offset of index.

Offset of index = 00000: Bits 63 to 32
Offset of index = 01000: Bits 127 to 96
Offset of index = 10000: Bits 191 to 160
Offset of index = 11000: Bits 255 to 224

R/W Undefined

31 17 16 15 9 8 7 3 2 1 0

ICCTRL

IC
H

C
LR

IC
H

E
IV

IC
H

E
M

K

IC
H

E
N Value after reset

0001 0003H
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

Table 3.58 ICCTRL Register Contents

Bit Name Description R/W
Value after
Reset

31 to 17 — (Reserved for future expansion. Be sure to set to 0.) R 0

16 — (Reserved for future expansion. Be sure to set to 1.) R 1

15 to 9 — (Reserved for future expansion. Be sure to set to 0.) R 0

8 ICHCLR When this bit is set to 1, the entire instruction cache is cleared. After this bit
is set to 1, it is read as 1 until clearing is completed. The bit is cleared to 0
once clearing is completed.

R/W 0

7 to 3 — (Reserved for future expansion. Be sure to set to 0.) R 0

2 ICHEIV When this bit is set to 1, the instruction cache is automatically set as invalid
(the ICHEN bit is cleared to 0) whenever a cache error occurs.

R/W 0

1 ICHEMK When this bit is set to 1, it masks notification of cache error exceptions for
the CPU after a cache error has occurred.

R/W 1

0 ICHEN This bit indicates valid/invalid status of instruction cache.
 0: Instruction cache is invalid
 1: Instruction cache is valid
This bit is read as the previous value until the setting is actually reflected in
the instruction cache.

R/W 1

RH850G3MH Software Section 3　REGISTER SET

R01US0143EJ0100 Rev.1.00 Page 81 of 425
Mar 05, 2015

(6) ICCFG — Instruction cache configuration

This register indicates the instruction cache configuration.

Note 1. The value after reset depends on the hardware specifications. For details, see the hardware manual of the
product used.

31 15 14 8 7 4 3 0

ICCFG
Value after reset

*10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ICHSIZE ICHLINE ICHWAY

Table 3.59 ICCFG Register Contents

Bit Name Description R/W
Value after
Reset

31 to 15 — (Reserved for future expansion. Be sure to set to 0.) R 0

14 to 8 ICHSIZE These bits indicate the size (in Kbytes) of the instruction cache.
 000 0000: No instruction cache
 000 0001: 1 Kbyte
 000 0010: 2 Kbytes
 000 0100: 4 Kbytes
 000 1000: 8 Kbytes
 001 0000: 16 Kbytes
 010 0000: 32 Kbytes
 100 0000: 64 Kbytes
 Other than above: Setting prohibited

R *1

7 to 4 ICHLINE These bits indicate the number of lines for each way in the instruction cache.
 0000: No instruction cache
 0001: 32 lines
 0010: 64 lines
 0100: 128 lines
 1000: 256 lines
 Other than above: Setting prohibited

R *1

3 to 0 ICHWAY These bits indicate the number of ways in the instruction cache.
 0000: No instruction cache
 0001: 1 way
 0010: 2 ways
 0100: 4 ways
 1000: 8 ways
 Other than above: Setting prohibited

R *1

RH850G3MH Software Section 3　REGISTER SET

R01US0143EJ0100 Rev.1.00 Page 82 of 425
Mar 05, 2015

(7) ICERR — Instruction cache error

This register is used to store cache error information for the instruction cache.

After the ICHERR bit is set to 1, any subsequent cache error information that is generated is not stored

until this setting is explicitly cleared to 0.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 5 4 3 2 1 0

ICERR

C
IS

T
W

E
S

M
H

E
S

P
B

S
E

E
S

T
E

1

E
S

T
E

2

E
S

D
C

E
S

D
E

E
R

M
M

H

E
R

M
P

B
S

E

E
R

M
T

E
1

E
R

M
T

E
2

E
R

M
D

C

E
R

M
D

E

IC
H

E
R

Q

IC
H

E
D

IC
H

E
T

IC
H

E
R

R Value after reset
Undefined0 0 0 0 ICHE

WY
ICHEIX 0

Table 3.60 ICERR Register Contents

Bit Name Description R/W
Value after
Reset

31 CISTW This bit is set to indicate that the destination way specified for a CISTI
instruction was in error. Although the entry information is overwritten so that
writing is completed, the V bit will be cleared the next time the cache line is
read (i.e. reading will be judged to have missed the cache). However, setting
of this bit is not accompanied by an exception for the CPU.

R/W 0

30 — (Reserved for future expansion. Be sure to set to 0.) R 0

29 ESMH Error status: Multi hit R/W Undefined

28 ESPBSE Error status: WAY error R/W Undefined

27 ESTE1 Error status: Tag RAM 1-bit error R/W Undefined

26 ESTE2 Error status: Tag RAM 2-bit error R/W Undefined

25 ESDC Error status: Data RAM 1-bit correction R/W Undefined

24 ESDE Error status: Data RAM 2-bit error R/W Undefined

23, 22 — (Reserved for future expansion. Be sure to set to 0.) R 0

21 ERMMH Error exception notification mask : Multi bit R/W 0

20 ERMPBSE Error exception notification mask : WAY error R/W 0

19 ERMTE1 Error exception notification mask : Tag RAM 1-bit error R/W 0

18 ERMTE2 Error exception notification mask : Tag RAM 2-bit error R/W 0

17 ERMDC Error exception notification mask : Data RAM 1-bit correction R/W 0

16 ERMDE Error exception notification mask : Data RAM 2-bit error R/W 0

15 — (Reserved for future expansion. Be sure to set to 0.) R 0

14, 13 ICHEWY These bits retain the way number where a cache error occurred. R/W Undefined

12 to 5 ICHEIX These bits retain the cache index where a cache error occurred. R/W Undefined

4 ICHERQ When this bit is set to 1, this bit indicates that cache error exception
notification is in progress. However, if cache error exception notification has
been masked, the CPU is not notified even when 1 has been set to this bit.

R/W 0

3 ICHED This bit indicates that an error has occurred in data RAM. R/W 0

2 ICHET This bit indicates that an error has occurred in tag RAM. R/W 0

1 — (Reserved for future expansion. Be sure to set to 0.) R 0

0 ICHERR This bit is set to 1 when a cache error has occurred. R/W 0

RH850G3MH Software Section 3　REGISTER SET

R01US0143EJ0100 Rev.1.00 Page 83 of 425
Mar 05, 2015

3.7 Data Buffer Operation Registers

3.7.1 Data Buffer Control System Registers

Data buffer control system registers are read from or written to by using the LDSR and STSR

instructions and specifying the system register number, which is made up of a register number and

selection ID. For data buffer functions, see the hardware manual of the product used.

(1) CDBCR — Data buffer control register

This is the register for controlling data buffer.

Table 3.61 List of Data Buffer Operation Registers

Register No.
(regID, selID) Symbol Function Access Permission

SR 24, 13 CDBCR Data buffer control register SV

31 2 1 0

CDBCR

C
D

B
C

L
R

C
D

B
E

N Value after reset
0000 0001H

0 0

Table 3.62 CDBCR Register Contents

Bit Name Description R/W
Value after
Reset

31 to 2 — (Reserved for future expansion. Be sure to set to 0.) R 0

1 CDBCLR When this bit is set to 1, data buffer is all cleared. This bit is always read as
0.

W 0

0 CDBEN This bit specifies enables or disables of the data buffer.
0: Data buffer is disabled.
1: Data buffer is enabled.

R/W 1

RH850G3MH Software Section 4　EXCEPTIONS AND INTERRUPTS

R01US0143EJ0100 Rev.1.00 Page 84 of 425
Mar 05, 2015

Section 4 EXCEPTIONS AND INTERRUPTS

An exception is an unusual event that forces a branch operation from the current program to another

program, due to certain causes.

A program at the branch destination of each exception is called an “exception handler”.

CAUTION

This CPU handles interrupts as types of exceptions.

4.1 Outline of Exceptions

This section describes the elements that assign properties to exceptions, and shows how exceptions

work.

4.1.1 Exception Cause List

RH850G3MH Software Section 4　EXCEPTIONS AND INTERRUPTS

R01US0143EJ0100 Rev.1.00 Page 85 of 425
Mar 05, 2015

Ta
b

le
 4

.1
E

xc
ep

ti
o

n
 C

au
se

 L
is

t
 (

1/
2)

E
x

c
ep

ti
o

n
N

am
e

S
o

u
rc

e
Ty

p
e

*1
S

av
e

d

R
e

so
u

rc
e

R
et

u
rn

/
R

e
s

to
ra

ti
o

n
E

x
c

ep
ti

o
n

C

a
u

s
e

 C
o

d
e

*5

P
ri

o
ri

ty
 O

rd
e

r
*2

A
ck

n
o

w
le

d
g

m
en

t
C

o
n

d
it

io
n

 (
P

S
W

)
U

p
d

a
te

 (
P

S
W

)

P
ri

o
ri

ty

L
ev

e
l

P
ri

o
ri

ty
ID

N
P

U
M

ID
N

P
E

P
E

B
V

R
E

S
E

T
R

e
se

t
R

e
se

t
in

p
u

t*
3

Te
rm

in
a

tin
g

―
―

N
o

n
e

1
―

x
x

0
1

0
0

0

F
E

N
M

I
F

E
N

M
I

in
te

rr
u

p
t

In
te

rr
u

p
t

co
n

tr
o

lle
r*3

Te
rm

in
a

tin
g

F
E

N
o

E
0

H
3

1
x

x
0

1
1

0
s

S
Y

S
E

R
R

S
ys

te
m

 e
rr

o
r

S
ys

te
m

 e
rr

o
r

in
p

u
t*3

Te
rm

in
a

tin
g

F
E

N
o

1
0 H

-1
F H

 *
3

3
2

x
x

0
1

1
1

s

F
E

IN
T

F
E

IN
T

 i
n

te
rr

u
p

t
In

te
rr

u
p

t
co

n
tr

o
lle

r *
3

Te
rm

in
a

tin
g

F
E

Y
e

s
F

0
H

3
3

x
0

0
1

1
0

s

E
II

N
T

0
-5

11
U

se
r

in
te

rr
u

p
t

In
te

rr
u

p
t

co
n

tr
o

lle
r *

3
Te

rm
in

a
tin

g
E

I
Y

e
s

1
0

0
0 H

-1
1F

F
H

 *
6

4
*4

0
0

0
1

s
0

s

M
IP

M
e

m
o

ry
 p

ro
te

ct
io

n

e
xc

e
p

tio
n

(e
xe

cu
tio

n
p

riv
ile

g
e

)

M
e

m
o

ry

p
ro

te
ct

io
n

vi

o
la

tio
n

R
e

su
m

a
b

le
F

E
Y

e
s

9
0 H

1
0

1
x

x
0

1
1

1
s

S
Y

S
E

R
R

S
ys

te
m

 e
rr

o
r

E
rr

or
 i

np
ut

du

rin
g

 in
st

ru
ct

io
n

fe

tc
h

 *
3

R
e

su
m

a
b

le
F

E
N

o
1

0 H
-1

F
H
 *

3
1

0
3

x
x

0
1

1
1

s

R
IE

R
e

se
rv

e
d

in
st

ru
ct

io
n

e
xc

e
p

tio
n

E
xe

cu
tio

n
 o

f
a

re

se
rv

e
d

in

st
ru

ct
io

n

R
e

su
m

a
b

le
F

E
Y

e
s

6
0 H

1
0

4
x

x
0

1
1

1
s

U
C

P
O

P
C

o
p

ro
ce

ss
o

r
u

n
u

sa
b

le

e
xc

e
p

tio
n

E
xe

cu
tio

n
of

 a

co
pr

oc
es

so
r

in
st

ru
ct

io
n/

ac
ce

ss

pe
rm

is
si

on

vi
ol

at
io

n

R
e

su
m

a
b

le
F

E
Y

e
s

8
0 H

-8
2 H

 *
9

1
0

5
x

x
0

1
1

1
s

P
IE

P
riv

ile
g

e
in

st
ru

ct
io

n

e
xc

e
p

tio
n

E
xe

cu
tio

n
 o

f
a

pr

iv
ile

ge
d

in

st
ru

ct
io

n
/

ac
ce

ss

pe
rm

is
si

on

vi
o
la

tio
n

R
e

su
m

a
b

le
F

E
Y

e
s

A
0

H
1

0
6

x
x

0
1

1
1

s

M
A

E
M

is
a

lig
n

m
e

n
t

e
xc

e
p

tio
n

M
is

a
lig

n
e

d

a
cc

e
ss

o

cc
u

rr
e

n
ce

R
e

su
m

a
b

le
F

E
Y

e
s

C
0

H
11

*7
x

x
0

1
1

1
s

M
D

P
M

e
m

o
ry

 p
ro

te
ct

io
n

e

xc
e

p
tio

n
(a

cc
e

ss
 p

ri
vi

le
g

e
)

M
e

m
o

ry

p
ro

te
ct

io
n

vi

o
la

tio
n

R
e

su
m

a
b

le
F

E
Y

e
s

9
1 H

11
*7

x
x

0
1

1
1

s

F
P

IN
T

F
lo

a
tin

g
-p

o
in

t
o

p
e

ra
tio

n
 e

xc
e

p
tio

n
E

xe
cu

tio
n

 o
f

a
n

F

P
U

 i
n

st
ru

ct
io

n
R

e
su

m
a

b
le

E
I

Y
e

s
7

1 H
11

*7
x

x
0

1
s

1
s

S
Y

S
C

A
LL

S
ys

te
m

 c
a

ll
E

xe
cu

tio
n

 o
f

th
e

S

Y
S

C
A

LL

in
st

ru
ct

io
n

P
e

n
d

in
g

E
I

Y
e

s
8

0
0

0 H
-8

0F
F H

1
2

*8
x

x
0

1
s

1
s

RH850G3MH Software Section 4　EXCEPTIONS AND INTERRUPTS

R01US0143EJ0100 Rev.1.00 Page 86 of 425
Mar 05, 2015

N
o

te
:

s:
 R

et
a

in
ed

,
x:

 N
o

t a
n

ac
kn

ow
le

dg
m

en
t c

o
nd

iti
on

N
ot

e
1.

F
o

r
de

ta
ils

, s
ee

 S
ec

ti
o

n
 4

.1
.3

, T
yp

es
 o

f
E

xc
ep

ti
o

n
s.

N
ot

e
2.

T
h

e
ac

kn
ow

le
dg

m
en

t p
rio

rit
y

fo
r

ex
ce

p
tio

ns
 is

 c
he

ck
e

d
by

 th
e

pr
io

rit
y

le
ve

l,
an

d
th

en
 p

ri
o

rit
y.

 A
 s

m
al

le
r

va
lu

e
ha

s
a

hi
gh

er
 p

rio
rit

y.
F

o
r

de
ta

ils
, s

ee
 S

ec
ti

o
n

 4
.1

.4
, E

xc
ep

ti
o

n
 A

ck
n

o
w

le
d

g
m

en
t

C
o

n
d

it
io

n
s

an
d

 P
ri

o
ri

ty
 O

rd
er

.

N
ot

e
3.

F
o

r
de

ta
ils

, s
ee

 th
e

h
ar

dw
ar

e
m

an
ua

l o
f t

he
 p

ro
du

ct
 u

se
d.

N
ot

e
4.

T
h

e
pr

io
rit

ie
s

of
 E

IIN
T

0
to

 E
IIN

T
51

1
va

ry
 d

ep
en

di
ng

 o
n

th
e

re
gi

st
er

 s
et

tin
g.

F

o
r

de
ta

ils
, s

ee
 S

ec
ti

o
n

 4
.1

.5
, I

n
te

rr
u

p
t

E
xc

ep
ti

o
n

 P
ri

o
ri

ty
 a

n
d

 P
ri

o
ri

ty
 M

as
ki

n
g

.

N
ot

e
5.

T
h

e
lo

w
er

 1
6

bi
ts

 o
f t

he
 e

xc
ep

tio
n

ca
u

se
 c

od
e

ar
e

sh
ow

n.
 T

he
 h

ig
he

r
16

 b
its

 o
f t

he
 e

xc
ep

tio
n

ca
us

e
co

de
 c

on
ta

in
 th

e
 d

et
a

ile
d

co
de

 d
ef

in
ed

 fo
r

ea
ch

 e
xc

ep
tio

n
.

T
h

es
e

bi
ts

 a
re

 0
00

0
H

 u
nl

es
s

ot
he

rw
is

e
sp

ec
ifi

ed
 in

 th
e

de
sc

rip
tio

n
of

 th
e

fu
nc

tio
n.

N
ot

e
6.

10
00

H
 to

 1
1F

F
H

 (
ch

an
ne

ls
 0

 to
 5

11
)

ar
e

se
le

ct
ed

 a
cc

or
d

in
g

to
 th

e
ch

an
ne

l.

N
ot

e
7.

T
h

is
 d

ep
en

ds
 o

n
th

e
 o

pe
ra

tio
n

or
de

r
of

 in
st

ru
ct

io
ns

.

N
ot

e
8.

T
h

es
e

ex
ce

pt
io

ns
 o

cc
ur

 e
xc

lu
si

ve
ly

 b
ec

a
us

e
th

ey
 o

cc
ur

 d
ue

 t
o

in
st

ru
ct

io
n

ex
ec

ut
io

n.
 T

he
re

 is
 n

o
pr

io
rit

y
w

ith
in

 th
e

sa
m

e
pr

io
rit

y
le

ve
l.

N
ot

e
9.

80
H

 to
 8

2
H

 c
or

re
sp

on
d

to
 th

e
co

pr
oc

es
so

r
u

se
 p

e
rm

is
si

on
 (

C
U

0
 to

 C
U

2)
, r

es
pe

ct
iv

el
y.

F
E

T
R

A
P

F
E

 l
e

ve
l
tr

a
p

E
xe

cu
tio

n
 o

f
th

e

F
E

T
R

A
P

in

st
ru

ct
io

n

P
e

n
d

in
g

F
E

Y
e

s
3

1 H
-3

F H
1

2
*8

x
x

0
1

1
1

s

T
R

A
P

0
E

I
le

ve
l

tr
a

p
 0

E
xe

cu
tio

n
 o

f
th

e

T
R

A
P

in

st
ru

ct
io

n

P
e

n
d

in
g

E
I

Y
e

s
4

0 H
-4

F H
1

2
*8

x
x

0
1

s
1

s

T
R

A
P

1
E

I
le

ve
l

tr
a

p
 1

E
xe

cu
tio

n
 o

f
th

e

T
R

A
P

in

st
ru

ct
io

n

P
e

n
d

in
g

E
I

Y
e

s
5

0 H
-5

F H
1

2
*8

x
x

0
1

s
1

s

Ta
b

le
 4

.1
E

xc
ep

ti
o

n
 C

au
se

 L
is

t
 (

2/
2)

E
x

c
ep

ti
o

n
N

am
e

S
o

u
rc

e
Ty

p
e

*1
S

av
e

d

R
e

so
u

rc
e

R
et

u
rn

/
R

e
s

to
ra

ti
o

n
E

x
c

ep
ti

o
n

C

a
u

s
e

 C
o

d
e

*5

P
ri

o
ri

ty
 O

rd
e

r
*2

A
ck

n
o

w
le

d
g

m
en

t
C

o
n

d
it

io
n

 (
P

S
W

)
U

p
d

a
te

 (
P

S
W

)

P
ri

o
ri

ty

L
ev

e
l

P
ri

o
ri

ty
ID

N
P

U
M

ID
N

P
E

P
E

B
V

RH850G3MH Software Section 4　EXCEPTIONS AND INTERRUPTS

R01US0143EJ0100 Rev.1.00 Page 87 of 425
Mar 05, 2015

4.1.2 Overview of Exception Causes

The following is an overview of the exception causes handled in this CPU.

(1) RESET

These are signals generated when inputting a reset. For details, see Section 8, RESET.

(2) FENMI, FEINT, and EIINT

These are interrupt signals that are input from the interrupt controller to activate a certain program. For

details about the interrupt functions, see Section 3.3, Interrupt Function Registers and the

specifications of the interrupt controller incorporated in your product.

(3) SYSERR

This is a system error exception. This exception occurs when an error defined by the hardware

specifications is detected. An error that occurs at an instruction fetch access is reported as a resumable-

type SYSERR exception. Other errors are reported as a terminating-type SYSERR exception.

CAUTION

The cause of an SYSERR exception is determined according to the hardware

functions. For details, see the hardware manual of the product used.

(4) FPINT

These are exceptions that occur when a floating-point instruction is being executed. For details, see

Section 6.1, Floating-Point Operation.

(5) MIP and MDP

These are exceptions that occur when the MPU detects a violation. Detecting an exception is performed

when the address at which the instruction will access the memory is calculated. For details, see

Section 5.1, Memory Protection Unit (MPU).

(6) RIE

This is a reserved instruction exception. This exception occurs when an attempt is made to execute the

opcode of an instruction other than an instruction whose operation is defined. The operation is the same

as a RIE instruction whose operation is defined. For details, see 7.1.3, Reserved Instructions in

Section 7, INSTRUCTION.

(7) PIE

This is a privilege instruction exception. This exception occurs when an attempt is made to execute an

instruction that does not have the required privilege. For details, see Section 2.1.3, CPU Operating

Modes and Privileges, Section 2.2, Instruction Execution, and Section 2.5.3(1) LDSR and

STSR.

(8) UCPOP

This is an exception that occurs when an attempt is made to execute a coprocessor instruction when the

coprocessor in question is not usable. For details, see Section 2.4, Coprocessors.

(9) MAE

This is an exception that occurs when the result of address calculation is a misaligned address. For

details, see Section 2.6.3, Data Alignment.

RH850G3MH Software Section 4　EXCEPTIONS AND INTERRUPTS

R01US0143EJ0100 Rev.1.00 Page 88 of 425
Mar 05, 2015

(10) TRAP, FETRAP, and SYSCALL

These are exceptions that occur according to the result of instruction execution. For details, see

Section 7, INSTRUCTION.

4.1.3 Types of Exceptions

This CPU divides exceptions into the following three types according how they are executed.

 Terminating exceptions

 Resumable exceptions

 Pending exceptions

(1) Terminating exceptions

In the case of an exception of this type, the exception is acknowledged by interrupting the current

instruction before its operation is executed. These exceptions include interrupts and exceptions that are

generated by sources that are unrelated to the program currently running, such as hardware errors.

These interrupts do not occur as a result of executing the current instruction and are not related to the

instruction. When an interrupt occurs, the PSW.EP bit is cleared to 0, unlike other exceptions.

Consequently, termination of the exception handler routine is reported to the external interrupt

controller when the return instruction is executed. Be sure to execute an instruction that returns

execution from an interrupt while the PSW.EP bit is cleared to 0.

CAUTION

The PSW.EP bit is cleared to 0 only when an interrupt (INT0 to INT511, FEINT, or FENMI)

is acknowledged. It is set to 1 when any other exception occurs.

If an instruction to return execution from the exception handler routine that has been

started by generation of an interrupt is executed while the PSW.EP bit is set to 1, the

resources on the external interrupt controller might not be released, causing

malfunctioning.

The return PC of a terminating exception is the PC of the terminated instruction (current PC).

(2) Resumable exceptions

This is an exception acknowledged during the execution of instruction operation before the execution

is finished. The floating-point operation exception is an example of an exception of this type. General-

purpose registers and system registers are not updated due to the occurrence of an exception of this

type. The PC value on return from the exception continues to point to the instruction where the

exception occurred, so execution can be restarted from the state of before the exception occurred.

The return PC of a resumable exception is the PC of the instruction which caused the exception

(current PC).

RH850G3MH Software Section 4　EXCEPTIONS AND INTERRUPTS

R01US0143EJ0100 Rev.1.00 Page 89 of 425
Mar 05, 2015

(3) Pending exceptions

This is an exception acknowledged after the execution of an instruction finishes as a result of executing

the instruction operation. Pending exceptions include software exceptions. Because pending exceptions

occur as a result of normal instruction execution, the processing resumes with the instruction following

the instruction that caused the pending exceptions when processing control is returned. The original

processing can be normally continued after the exception handling.

The return PC of a pending exception is the PC of the next instruction (next PC).

4.1.4 Exception Acknowledgment Conditions and Priority Order

The CPU acknowledges only one exception at specific timing based on the exception acknowledgment

conditions and priority order. The exception to be acknowledged is determined based on the exception

acknowledgment conditions and priority order, as shown in Figure 4.1 below.

In Table 4.1, an exception with “0” in the acknowledgment condition column can be acknowledged

when the corresponding bit is “0”. For this kind of exception, acknowledgment is held pending when

the corresponding bit is “1”. When it changes to “0” and the acknowledgment conditions are met,

acknowledgment of the exception becomes possible. If no value is specified for a bit, it is not an

acknowledgment condition. If multiple bits are specified as conditions, all the conditions must be met

simultaneously.

If more than two exceptions satisfy the acknowledgment conditions simultaneously, one exception is

selected according to the priority order. The priority order is determined in multiple stages; priority

level, and then priority. A smaller number has a higher priority.

When a terminating exception is not acknowledged, it is held pending. If it occurs at the time of a reset,

it is not held pending. For details, see Section 4.2.1, Special Operations.

For details about acknowledgment conditions, priority level, and priority, see Table 4.1, Exception

Cause List.

Note 1. See Table 4.1

Figure 4.1 Exception Acknowledgment Conditions and Priority Order

Mask function defined
for each function

Mask by
acknowledgment

conditionNoteException request

Mask function defined
for each function

Mask by
acknowledgment

conditionNoteException request

Mask function defined
for each function

Mask by
acknowledgment

conditionNoteException request

Mask function defined
for each function

Mask by
acknowledgment

conditionNoteException request

Priority 1

Priority x

Priority 1

Priority y

Priority level 1

• • • • • • • Priority level n

Exception
acknowledged

Selection by
priorityNote

Selection by
priority levelNote

(Priority 1)

Selection by
priorityNote

• • • • •
• • • • •

• • • • • • •

• • •

• • •

• • •

• • •

RH850G3MH Software Section 4　EXCEPTIONS AND INTERRUPTS

R01US0143EJ0100 Rev.1.00 Page 90 of 425
Mar 05, 2015

4.1.5 Interrupt Exception Priority and Priority Masking

An interrupt (EIINTn) can be masked for each exception priority or interrupt priority by setting

registers. This function allows the software implementation of an interrupt ceiling with a more flexible

software structure and no maintenance.

Figure 4.2 shows an overview of the functions of interrupt exception priority and priority masking.

Note 1. For details about the interrupt controller, see the hardware manual of the product used.

Note 2. The PMEI bit in the ICSR register shows EIINTn masked by PMR. If EIINTn is masked by the ISPR
register or the masking specification of another function before masked by the PMR register, the PMEI
bit is not affected.

Figure 4.2 Interrupt Exception Priority and Priority Masking

Request flag
Interrupt request

Mask

Interrupt request
to the CPU core

Priority
judgment

Mask by
ISPR

Mask by
PMR

Priority
judgment
of EIINTn

To exception
priority order

judgment
if not masked

Setting for each channel

Request flag
Interrupt request

Mask

Setting for each channel

Interrupt
controllerNote 1

mask

mask

ICSR.
PMEI

If masked by PMRNote 2

RH850G3MH Software Section 4　EXCEPTIONS AND INTERRUPTS

R01US0143EJ0100 Rev.1.00 Page 91 of 425
Mar 05, 2015

(1) Interrupt priority

For an interrupt (EIINTn), the exception priority can be changed by setting registers.

(2) Interrupt priority mask

EIINTn might be masked at different priorities by the ISPR register and PMR register. These registers

should be used as follows.

For the ISPR register, the bit corresponding to the priority is set (1) when the hardware acknowledges

an interrupt, and interrupts with a lower priority are masked. When the EIRET instruction

corresponding to the interrupt is executed, the corresponding bit of the ISPR register is cleared (0) to

clear the mask.

This automatic interrupt ceiling makes multiplexed interrupt servicing easy without using software

control.

The PMR register allows you to mask specific interrupt priorities with software. Use it to raise the level

of the interrupt ceiling temporarily in a program. The mask setting specified by the ISPR register and

the mask setting of PMR might overlap, and an interrupt is masked if it is masked with one or the other

of them. Normally, use the PMR register to raise the ceiling value from the ceiling value of the ISPR

register.

The function of the INTCFG register allows you to disable auto update of the ISPR register upon

acknowledgment of and return from an interrupt. To perform interrupt ceiling control by using software

without using the function of the ISPR register, set (1) the ISPC bit of the INTCFG register, clear the

ISPR register, and then control the ceiling value with software by using the PMR register.

Also, when you are using the PMR register, you can check if any interrupt is masked with the PMR

register by using the ICSR register.

4.1.6 Return and Restoration

When exception handling has been performed, it might affect the original program that was interrupted

by the acknowledged exception. This effect is indicated from two perspectives: “Return” and

“Restoration”.

 Return : Indicates whether or not the original program can be re-executed from where it was

interrupted.

 Restoration : Indicates whether or not the processor statuses (status of processor resources such as

general-purpose registers and system registers) can be restored as they were when the original

program was interrupted.

An exception that cannot be returned or restored from (“No” in Table 4.1) might cause the return PC

to be lost, making it impossible to return from the exception to the original processing by using a return

instruction. An exception whose trigger cannot be selected is an unreturnable or unrestorable

exception.

For an unrestorable exception, it is possible to return to the original program flow. However, because

the state before the occurrence of the exception cannot be restored at that point, care must be taken in

continuing subsequent program operation.

RH850G3MH Software Section 4　EXCEPTIONS AND INTERRUPTS

R01US0143EJ0100 Rev.1.00 Page 92 of 425
Mar 05, 2015

4.1.7 Context Saving

To save the current program sequence when an exception occurs, appropriately save the following

resources according to the function definitions.

 Program counter (PC)

 Program status word (PSW)

 Exception cause code (EIIC, FEIC)

 Work system register (EIWR, FEWR)

The resource to use as the saving destination is determined according to the exception type. Saved

resource determination is described below.

(1) Context saving

Exceptions with certain acknowledgment conditions might not be acknowledged at the start of

exception handling, based on the pending bits (PSW.ID and NP bits) that are automatically set when

another exception is acknowledged.

To enable processing of multiple exceptions of the same level that can be acknowledged again, certain

information about the corresponding return registers and exception causes must be saved, such as to a

stack. This information that must be saved is called the “context”.

In principle, before saving the context, caution is needed to avoid the occurrence of exceptions at the

same level.

The work system registers that can be used for work to save the context, and the system registers that

must be at least saved to enable multiple exception handling are called basic context registers. These

basic context registers are provided for each level.

Table 4.2 Basic Context Registers

Exception Level Basic Context Registers

EI level EIPC, EIPSW, EIIC, EIWR

FE level FEPC, FEPSW, FEIC, FEWR

RH850G3MH Software Section 4　EXCEPTIONS AND INTERRUPTS

R01US0143EJ0100 Rev.1.00 Page 93 of 425
Mar 05, 2015

4.2 Operation When Acknowledging an Exception

Check whether each exception that is reported during instruction execution is acknowledged according

to the priority. The procedure for exception-specific acknowledgment operation is shown below.

(1) Check whether the acknowledgment conditions are satisfied and whether exceptions are

acknowledged according to their priority.

(2) Calculate the exception handler address according to the current PSW value*1.

(3) For FE level exceptions, the following processing is performed.

 Saving the PC to FEPC

 Saving the PSW to FEPSW

 Storing the exception cause code in FEIC

 Updating the PSW*2

 Store the exception handler address calculated in (2) in the PC, and then pass control to the

exception handler.

(4) For EI level exceptions, the following processing is performed.

 Saving the PC to EIPC

 Saving the PSW to EIPSW

 Storing the exception cause code in EIIC

 Updating the PSW*2

 Store the exception handler address calculated in (2) in the PC, and then pass control to the

exception handler.

Note 1. For details, see Section 4.4, Exception Handler Address.

Note 2. For the values to be updated, see Table 4.1, Exception Cause List.

The following figure shows steps (1) to (4).

RH850G3MH Software Section 4　EXCEPTIONS AND INTERRUPTS

R01US0143EJ0100 Rev.1.00 Page 94 of 425
Mar 05, 2015

Figure 4.3 Operation When Acknowledging an Exception

An exception occurs.

Yes

Yes

No

No

Yes

No

Are the PSW.NP
acknowledgment conditions

satisfied?

Are the PSW.ID
acknowledgment conditions

satisfied?

Calculate the exception
handler address.

Is this an FE level
exception?

FEPC ←PC
FEPSW ←PSW
FEIC ←Exception cause code
Update PSW.

EIPC ←PC
EIPSW ←PSW
EIIC ←Exception cause code
Update PSW.

PC←Exception handler address

Pending exception handling Exception handling

RH850G3MH Software Section 4　EXCEPTIONS AND INTERRUPTS

R01US0143EJ0100 Rev.1.00 Page 95 of 425
Mar 05, 2015

4.2.1 Special Operations

(1) EP bit of PSW register

If an interrupt is acknowledged, the PSW.EP bit is cleared to 0. If an exception other than an interrupt is

acknowledged, the PSW.EP bit is set to 1.

Depending on the EP bit setting, the operation changes when the EIRET or FERET instruction is

executed. If the EP bit is cleared to 0, the bit with the highest priority (0 is the highest) among the bits

set to 1 in ISPR.ISP15 to ISPR.ISP0 is cleared to 0. Also, the end of the exception handling routine is

reported to the external interrupt controller. This function is necessary for correctly controlling

resources, such as a request flag, on the interrupt controller when an interrupt is acknowledged or when

execution returns from the interrupt.

To return from an interrupt, be sure to execute the return instruction with the EP bit cleared to 0.

(2) Coprocessor unusable exception

For coprocessor unusable exceptions, the exception occurrence opcode corresponding to the status of

the CU bit of the PSW register differs according to the specifications of each product.

For coprocessor instructions and defined opcodes, if an attempt is made to execute a coprocessor

instruction that is not included in the product or for which the operation state prevents use, or an LDSR

or STSR instruction attempts to access a coprocessor system register, a coprocessor unusable exception

(UCPOP) immediately occurs.

For details, see Section 2.4.3, Coprocessor Unusable Exceptions.

(3) Reserved instruction exception

If an opcode that is reserved for future function extension and for which no instruction is defined is

executed, a reserved instruction exception (RIE) occurs.

However, which of the following two types of operations each opcode is to perform might be defined

by the hardware specifications.

 Reserved instruction exception occurs.

 Operates as a defined instruction.

An opcode for which a reserved instruction exception occurs is always defined as an RIE instruction.

(4) Reset

Reset is performed in the same way as exception handling, but it is not regarded as EI level exception

or FE level exception. The reset operation is the same that of an exception without acknowledgment

conditions, but the value of each register is changed to the value after reset. In addition, execution does

not return from the reset status.

All exceptions that have occurred at the same time as CPU initialization are canceled and not

acknowledged even after CPU initialization.

For details, see Section 8, RESET.

RH850G3MH Software Section 4　EXCEPTIONS AND INTERRUPTS

R01US0143EJ0100 Rev.1.00 Page 96 of 425
Mar 05, 2015

4.3 Return from Exception Handling

To return from exception handling, execute the return instruction (EIRET or FERET) corresponding to

the relevant exception level.

When a context has been saved, such as to a stack, the context must be restored before executing the

return instruction. When execution is returned from an irrecoverable exception, the status before the

exception occurs in the original program cannot be restored. Consequently, the execution result might

differ from that when the exception does not occur.

The EIRET instruction is used to return from EI level exception handling and the FERET instruction is

used to return from FE level exception handling.

When the EIRET or FERET instruction is executed, the CPU performs the following processing and

then passes control to the return PC address.

(1) When the EIRET instruction is executed, return PC and PSW are loaded from the EIPC and

EIPSW registers.

When the FERET instruction is executed, return PC and PSW are loaded from the FEPC and

FEPSW registers.

(2) Control is passed to the address indicated by the return PC that were loaded.

(3) When the EIRET instruction is executed while EP = 0 and INTCFG.ISPC = 0, the CPU updates

the ISPR register.

When the FERET instruction is executed, the CPU does not update the ISPR register.

The flow for returning from exception handling using the EIRET or FERET instruction is shown

below.

RH850G3MH Software Section 4　EXCEPTIONS AND INTERRUPTS

R01US0143EJ0100 Rev.1.00 Page 97 of 425
Mar 05, 2015

Note 1. It is the EIRET instruction when returning from an EI level exception, or the FERET instruction when
returning from an FE level exception.

Note 2. It is EIPC when returning from an EI level exception, or FEPC when returning from an FE level exception.

Note 3. It is EIPSW when returning from an EI level exception, or FEPSW when returning from an FE level
exception.

Note 4. Only for the EIRET instruction.

Figure 4.4 Return Instruction-Based Exception Return Flow

Execute the return destination
instruction.

Yes

No

xxRET instructionNote1

PC ←xxPCNote2

PSW ←xxPSWNote3

Update the ISPR registerNote4

(PSW.EP = 0) &&
(INTCFG.ISPC = 0)?

RH850G3MH Software Section 4　EXCEPTIONS AND INTERRUPTS

R01US0143EJ0100 Rev.1.00 Page 98 of 425
Mar 05, 2015

4.4 Exception Handler Address

For this CPU, the exception handler address used for execution during reset input, exception

acknowledgment, or interrupt acknowledgment can be changed according to the settings.

4.4.1 Resets, Exceptions, and Interrupts

The exception handler address for resets and exceptions is determined by using the direct vector

method, in which the reference point of the exception handler address can be changed by using the

PSW.EBV bit, RBASE register, and EBASE register. For interrupts, the direct vector method and table

reference method can be selected for each channel. If the table reference method is selected, execution

can branch to the address indicated by the exception handler table allocated in the memory.

(1) Direct vector method

The CPU uses the result of adding the exception cause offset shown in Table 4.3, Selection of Base

Register/Offset Address to the base address indicated by the RBASE or EBASE register as the

exception handler address.

Whether to use the RBASE or EBASE register as the base address is selected according to the

PSW.EBV bit*1. If the PSW.EBV bit is set to 1, the EBASE register value is used as the base address.

If the bit is cleared to 0, the RBASE register value is used as the base address.

However, reset input and some exceptions*2 always refer to the RBASE register.

In addition, user interrupts refer to the RINT bit of the corresponding base register, and reduce the

offset address according to the bit status. If the RBASE.RINT bit or EBASE.RINT bit is set to 1, all

user interrupts are handled using an offset of 100H. If the bit is cleared to 0, the offset address is

determined according to Table 4.3, Selection of Base Register/Offset Address.

Note 1. Exception acknowledgment itself sometimes updates the status of the PSW.EBV bit. In this

case, the base register is selected based on the new bit value. For details, see Section 4.4,

Exception Handler Address.

Note 2. The exceptions that always reference RBASE are determined according to the hardware

specifications.

RH850G3MH Software Section 4　EXCEPTIONS AND INTERRUPTS

R01US0143EJ0100 Rev.1.00 Page 99 of 425
Mar 05, 2015

Figure 4.5 Direct Vector Method

RBASE = EBASE RESET
SYSERR
HVTRAP

INTPR15

...

INTPR14

PIE

(1) Example of use when RBASE = EBASE

RBASE RESET
SYSERR

HVTRAP

INTPR15

...

INTPR14

PIE

(2) Example of use when RBASE ≠ EBASE

EBASE

Address space Address space

(Empty)
SYSERR

HVTRAP

INTPR15

...

INTPR14

PIE

RH850G3MH Software Section 4　EXCEPTIONS AND INTERRUPTS

R01US0143EJ0100 Rev.1.00 Page 100 of 425
Mar 05, 2015

The table below shows how base register selection and offset address reduction function for each

exception to determine the exception handler address. The PSW bit value determines the exception

handler, based on the value after being updated due to the acknowledgment of an exception.

Note 1. An exception generated to update EBV to 0.

Note 2. The exception for debug function.

Table 4.3 Selection of Base Register/Offset Address

PSW.EBV = 0 PSW.EBV = 1 RINT = 0 RINT = 1

Base Register Offset Address

RESET RBASE None*1 000H 000H

SYSERR EBASE 010H 010H

FETRAP 030H 030H

TRAP0 040H 040H

TRAP1 050H 050H

RIE 060H 060H

FPINT 070H 070H

UCPOP 080H 080H

MIP/MDP 090H 090H

PIE 0A0H 0A0H

Debug*2 0B0H 0B0H

MAE 0C0H 0C0H

(R.F.U.) 0D0H 0D0H

FENMI 0E0H 0E0H

FEINT 0F0H 0F0H

EIINTn (priority 0) 100H 100H

EIINTn (priority 1) 110H

EIINTn (priority 2) 120H

EIINTn (priority 3) 130H

EIINTn (priority 4) 140H

EIINTn (priority 5) 150H

EIINTn (priority 6) 160H

EIINTn (priority 7) 170H

EIINTn (priority 8) 180H

EIINTn (priority 9) 190H

EIINTn (priority 10) 1A0H

EIINTn (priority 11) 1B0H

EIINTn (priority 12) 1C0H

EIINTn (priority 13) 1D0H

EIINTn (priority 14) 1E0H

EIINTn (priority 15) 1F0H

RH850G3MH Software Section 4　EXCEPTIONS AND INTERRUPTS

R01US0143EJ0100 Rev.1.00 Page 101 of 425
Mar 05, 2015

Base register selection is used to execute the exception handling for resets and some hardware errors by

using programs in a relatively reliable area such as ROM instead of areas that are easily affected by soft

errors such as RAM and cache areas. The user interrupt offset address reduction function is used to

reduce the memory size required by the exception handler for specific system-internal operating

modes. The main purpose of this is to minimize the amount of memory consumed in operating modes

that use only the minimum functionality, which are used, for example, during system maintenance and

diagnosis.

(2) Table reference method

In the direct vector method, there is one user-interrupt exception handler for each interrupt priority

level, and interrupt channels that indicate multiple interrupts with the same priority branch to the same

interrupt handler, but some users might want to use code areas that differ from the start time for each

interrupt handler.

When using the table reference method, if the table reference method is specified as the interrupt

channel vector selection method for the interrupt controller, the method for determining the exception

handler address when an interrupt request corresponding to that interrupt channel is acknowledged

differs as follows.

(1) In any of the following cases, the exception handler address is determined by using the direct

vector method.

 When PSW.EBV = 0 and RBASE.RINT = 1

 When PSW.EBV = 1 and EBASE.RINT = 1

 When the interrupt channel setting is not the table reference method

(2) In cases other than (1), calculate the table reference position.

Exception handler address read position = INTBP register + channel number × 4 bytes

(3) Read word data starting at the interrupt handler address read position calculated in (2).

(4) Use the word data read in (3) as the exception handler address.

CAUTION

For details about the interrupt channel settings, see the hardware manual of the

product used.

RH850G3MH Software Section 4　EXCEPTIONS AND INTERRUPTS

R01US0143EJ0100 Rev.1.00 Page 102 of 425
Mar 05, 2015

A table of exception handler address read positions corresponding to interrupt channels and an

overview of the placement in memory are shown below.

For details about the exception handler address selection method settings for each interrupt channel,

see the hardware manual of the product used.

Table 4.4 Exception Handler Address Expansion

Type Exception Handler Address Read Position

EIINT interrupt channel 0 INTBP + 0 × 4

EIINT interrupt channel 1 INTBP + 1 × 4

... ...

EIINT interrupt channel 510 INTBP + 510 × 4

EIINT interrupt channel 511 INTBP + 511 × 4

Figure 4.6 Overview of Using the Table Reference Method

RBASE = EBASE RESET
SYSERR

INTPR15

...

INTPR14

PIE

Address space

INTBP

...

INT3 INT2 INT1 INT0
INT7 INT6 INT5 INT4

Handler INT1

Handler INT0

INT511 INT510 INT509 INT508
INT507 INT506 INT505 INT504

Reference the
absolute address in
the table, and then
branch to the handler.

If not using the table
is specified (for each
channel), branch to
the fixed address
handler according to
the interrupt priority
level.

RH850G3MH Software Section 4　EXCEPTIONS AND INTERRUPTS

R01US0143EJ0100 Rev.1.00 Page 103 of 425
Mar 05, 2015

4.4.2 System Calls

For system call exceptions, the referenced table entry is selected according to the value of the vector

specified based on the opcode and the value of the SCCFG.SIZE bit, and the exception handler address

is calculated according to the contents of the table entry and the SCBP register value.

As an example, if table size n is specified by SCCFG.SIZE, the table entry is selected as shown below.

Note that if the vector specified by the SYSCALL instruction (vector 8) is greater than table size n, the

table entry referenced by vector n + 1 to 255 is table entry 0.

CAUTION

Because table entry 0 is selected even if a vector that exceeds n, which is specified for

SCCFG.SIZE, is specified, allocate the error processing routine.

Table 4.5 System Calls

Vector Exception Cause Code Referenced Table Entry

0 0000 8000H Table entry 0

1 0000 8001H Table entry 1

2 0000 8002H Table entry 2

...

n – 1 0000 8000H + (n – 1)H Table entry n – 1

n 0000 8000H + nH Table entry n

n + 1 0000 8000H + (n + 1)H Table entry 0

...

254 0000 80FEH Table entry 0

255 0000 80FFH Table entry 0

RH850G3MH Software Section 4　EXCEPTIONS AND INTERRUPTS

R01US0143EJ0100 Rev.1.00 Page 104 of 425
Mar 05, 2015

4.4.3 Models for Application

The following describes the relations among the RBASE, EBASE, and PSW.EBV bit, and the models

intended for application. Principally, in cases where a reset occurs and there is no main code in the

address space, this main code is first expanded into the address space (which is often in DRAM) by

bootstrapping to enable execution, or it is used to when inserting an instruction cache into an exception

handling routine.

Immediately after a reset, when PSW.EBV = 0, operations use the ROM area where the minimum

maintenance code was placed as specified in RBASE. After bootstrapping, and after the required code

has been expanded in RAM, the code position in the RAM is set to the EBASE register and the

PSB.EBV bit is set to 1*1.

Normally, this is the mode of software operations. As for exceptions or interrupts in the range of

normal operations, because they are acknowledged when PSW.EBV = 1, the code operates in the RAM

area indicated by EBASE, but in cases where phenomena (such as RAM errors or cache errors) occur

that would indicate the RAM code itself has not remained correct, an exception is triggered to clear to

0 the PSB.EBV bit*2. In such cases, there is a possibility that the exception handler itself might not be

executed correctly using the code at the position indicated by EBASE, so control is moved to the

exception handler in the ROM code indicated by RBASE and the PSW.EBV bit is cleared to 0.

Once the PSW.EBV bit is cleared to 0, even if an ordinary exception were to occur while in this mode,

the status of the PSW.EBV bit is handed over, so that a mode enabling correct execution of RAM code

is maintained, and operation uses code in the ROM area indicated by RBASE until the PSW.EBV bit is

set to 1 by the maintenance code.

Note 1. Normally, an EIRET or FERET instruction should be used to set the PSW.EBV bit to 1.

Note 2. The hardware specifications determine which exception has which cause, and whether or not

an exception is needed to clear PSW.EBV to 0.

RH850G3MH Software Section 4　EXCEPTIONS AND INTERRUPTS

R01US0143EJ0100 Rev.1.00 Page 105 of 425
Mar 05, 2015

Figure 4.7 Example of Model for Application (Operation Flow)

PSW.EBV = 0
RBASE = ROM area
EBASE = ROM area

PSW.EBV = 1
RBASE = ROM area
EBASE = RAM area

PSW.EBV = 0
RBASE = ROM area
EBASE = RAM area

Reset

Ordinary exception

Exception when execution
in RAM cannot be continued

Ordinary exception

Maintenance complete

Initialization complete

Normal status Maintenance status

Figure 4.8 Example of Model for Application (Address Map)

RBASE = EBASE
RESET

SYSERR

INTPR15

...

INTPR14

PIE

RBASE
RESET

SYSERR

INTPR15

...

INTPR14

PIE

EBASE

Address space Address space

SYSERR

INTPR15

...

INTPR14

PIE

(1) Status when booted

DRAM/cache
area, etc.

Flash ROM, etc.

(2) Status after RAM setup

DRAM/cache
area, etc.

(Empty)

Boot ROM, etc.

RH850G3MH Software Section 5　MEMORY MANAGEMENT

R01US0143EJ0100 Rev.1.00 Page 106 of 425
Mar 05, 2015

Section 5 MEMORY MANAGEMENT

This CPU provides the following functions for managing the memory.

 Memory protection unit (MPU)

 Instruction cache function

 Mutual exclusion function

5.1 Memory Protection Unit (MPU)

Memory protection functions are provided in an MPU (memory protection unit) to maintain a smooth

system by detecting and preventing unauthorized use of system resources by unreliable programs,

runaway events, etc.

5.1.1 Features

(1) Memory access control

Multiple protection areas can be assigned to the address space. Consequently, unauthorized program

execution or data manipulation by user programs can be detected and prevented. The upper and lower

limit addresses of each area can be specified so that the address space can be used precisely and

efficiently.

(2) Access management for each CPU operation mode

In this CPU, several status bits are used to control access to resources, and these bits are used in

combination to perform protection that is appropriate, according to each program's level of reliability.

The initial settings are set as appropriate values in the MPM register. Always use the MPE bit to

validate the MPU. The SVP bit should be set to 1 only when protection is also being performed by a

supervisor such as an OS.

RH850G3MH Software Section 5　MEMORY MANAGEMENT

R01US0143EJ0100 Rev.1.00 Page 107 of 425
Mar 05, 2015

5.1.2 Protection Area Settings

(1) Protection area settings

Set the respective protection areas appropriately. For details about registers, see Section 3,

REGISTER SET.

Some additional description is provided below regarding certain caution points.

(a) E bit

This sets the target protection area setup as enabled or disabled. When disabled, all settings are

disabled. Make sure valid setting values have been stored for other protection areas (MPUA, MPLA,

and MPAT) at the time when this bit is set to 1.

(b) UX, UR, and UW bits

These bits indicate the access privileges for the target protection area during user mode.

(c) SX, SR, and SW bits

These bits indicate the access privileges for the target protection area during supervisor mode. These

bits are valid only when the MPM.SVP bit has been set to 1. If the MPM.SVP bit has been cleared to 0,

protection is not performed while in supervisor mode, regardless of the values of the SX, SR, and SW

bits, and the entire address space becomes access-enabled.

(d) G bit and ASID field

These are the G (Global) bit and the ASID field for comparison. When the G bit is cleared to 0, the

values in the ASID register are compared to those in the MPAT.ASID field, and protection area settings

are applied to determine accessibility only when these values match. When the G bit is set to 1,

protection area settings are applied regardless of the ASID values.

RH850G3MH Software Section 5　MEMORY MANAGEMENT

R01US0143EJ0100 Rev.1.00 Page 108 of 425
Mar 05, 2015

5.1.3 Caution Points for Protection Area Setup

(1) Crossing protection area boundaries

When the specified protection areas overlap, the access control settings for the overlapping parts differ

depending on the MPM.DX, DW, and DR bits. If access to the protection area is disabled by default,

access is enabled by priority; if access to the protection area is enabled by default, access is prohibited

by priority.

In other words, when access to protection areas is disabled by default and multiple protection areas

have been specified, if access is enabled for either of the protection areas, access is judged to be

enabled. If access to the protection area is enabled by default and access is prohibited for either of the

protection areas, access is judged to be prohibited.

In addition, the bits for MPM.DX, DW, and DR in this CPU are fixed to 0, and default operation is

prohibited.

(2) Invalid protection area settings

Protection area settings are invalid in the following case.

 When value set to lower-limit address is larger than value set to upper-limit address

CAUTION

Note, however, that addresses are handled as unsigned integers (0H to FFFF FFFFH).

(3) Memory access spanning contiguous areas to which access is enabled by the MPU

Access to load values from or store values in areas that may be under protection by the MPU should be

handled entirely in single areas. Even if access is enabled in contiguous areas for access control by the

MPU, access spanning the access-control areas is prohibited. In the case of this CPU, memory access

spanning areas under access control only possible in response to double-word access by the ld.dw or

st.dw instruction. The prepare, dispose, pushsp, and popsps instructions are handled as repeated rounds

of word access, so access by these instructions that spans areas for access control by the MPU is

permitted.

In the case of prefetching, when a whole instruction spans MPU access-control areas and the MPU is

enabling access for the area containing the entry point, memory protection allows the access to fetch

the instruction.

RH850G3MH Software Section 5　MEMORY MANAGEMENT

R01US0143EJ0100 Rev.1.00 Page 109 of 425
Mar 05, 2015

5.1.4 Access Control

In this CPU, accesses are controlled appropriately according to the settings specified as of the step

described in Section 5.1.3, Caution Points for Protection Area Setup. In any of the cases

listed below, the CPU ensures logical integrity by limiting actual access, detecting violations before

instruction execution is completed, and setting up exceptions.

 When about to execute an instruction that includes opcode, at an address outside the executable

range

 When about to execute an instruction that reads from an address outside the read-accessible range

 When about to execute an instruction that writes to an address outside the write-accessible range

The specifics of access control vary depending on the hardware specifications, but all have the

following points in common.

 When the access result is a prohibit judgment, it is not reflected in memory or I/O devices.

 When the access result is an enabled judgment, it is reflected in memory or I/O devices.

CAUTIONS

1. Even when access is enabled, there might be cases where access is blocked by

another function that prohibits it.

2. In some cases, access judged to be prohibited may be executed for a memory or

I/O device. The cases are as listed below.

 Reading local RAM

 Reading of code flash memory by an instruction prefetched from the

instruction cache

Since execution in response to exceptions due to instructions that read from the

local RAM or execute the results of prefetching and so on is inhibited, such

access does not affect the execution of instructions. However, when a debugger is

monitoring access to local RAM or code flash memory, it may observe access

judged to be prohibited.

RH850G3MH Software Section 5　MEMORY MANAGEMENT

R01US0143EJ0100 Rev.1.00 Page 110 of 425
Mar 05, 2015

5.1.5 Violations and Exceptions

In this CPU, violations are detected during instruction fetch access or operand access according to the

protection area settings, and an exception is generated.

 Execution protection violation (during instruction access)

 Data protection violation (during operand access)

(1) Execution protection violation (MIP exception)

This violation is detected when an instruction is executed. An execution protection violation such as

this is detected when attempting to execute an instruction that has been placed in a non-executable area

within the program area.

When an execution protection violation is detected, an MIP exception always occurs.

(2) Data protection violation (MDP exception)

This violation is detected during data access by an instruction. A data protection violation such as this

is detected when a memory access instruction attempts to access data from an access-prohibited part of

the data area.

When a data protection violation is detected, an MDP exception always occurs.

(3) Exception cause code and exception address

When an execution protection violation or data protection violation has been detected, the exception

cause code is determined as shown in Table 5.1. The determined exception cause code is set to the

FEIC register.

The MEA register is used to store either the PC of the instruction that detected the execution protection

violation or the access address used when the data protection violation occurred. The MEA register is

shared in order to prevent simultaneous occurrence of MIP and MDP exceptions. Also, when a data

protection violation occurs, the information of the instruction that caused the violation is stored in the

MEI register.

Note 1. When a read violation is caused by an instruction that includes a read operation, either the SR or UR bit is
set to 1.

Note 2. When a write violation is caused by an instruction that includes a write operation, either the SW or UW bit
is set to 1.

Note 3. This bit is set to 1 when a violation is caused by the SET1, NOT1, CLR1, or CAXI instruction.

Note 4. This bit is set to 1 when a violation is caused by the PREPARE, DISPOSE, PUSHSP, or POPSP instruction.

Note 5. This bit is set to 1 when the instruction causing the violation performs a misaligned access.

Note: UR : A violation is detected during a read operation in user mode (PSW.UM = 1).
UW : A violation is detected during a write operation in user mode (PSW.UM = 1).
UX : A violation is detected during instruction execution in user mode (PSW.UM = 1).
SR : A violation is detected during a read operation in supervisor mode (PSW.UM = 0).
SW : A violation is detected during a write operation in supervisor mode (PSW.UM = 0).
SX : A violation is detected during instruction execution in supervisor mode (PSW.UM = 0).

Table 5.1 Exception Cause Code of Memory Protection Violation

Exception

Operation Mode
When Violation
Occurred

Bit Number and Bit Name

31 to 25 24 23 22 21 20 19 18 17 16 15 to 0

― MS BL RMW SX SW SR UX UW UR ―

MIP User mode 0 0 0 0 ― ― ― ― ― ― 90H

Supervisor mode 0 0 0 0 ― ― ― ― ― ― 90H

MDP User mode 0 *5 *4 *3 0 0 0 0 *2 *1 91H

Supervisor mode 0 0 *2 *1 0 0 0 91H

RH850G3MH Software Section 5　MEMORY MANAGEMENT

R01US0143EJ0100 Rev.1.00 Page 111 of 425
Mar 05, 2015

RMW : Set to 1 when the instruction causing the violation contains a read-modify-write operation (SET1,
NOT1, CLR1, or CAXI).
BL : Set to 1 when the instruction causing the violation performs a block transfer (PREPARE, DISPOSE,
PUSHSP, or POPSP).
MS : Set to 1 when the instruction causing the violation performs a misaligned access.

5.1.6 Memory Protection Setting Check Function

When configuring programs that provide a service for the OS (etc.), this CPU provides a memory

protection setting check function to enable implementation of a service protection function that checks

in advance whether or not the data area to be used for the requested operations is within an area that is

accessible by the source that called the service. The OS can use this function to verify the suitability of

parameters set for system services provided by the user. Also, this verification processing can be

completed quickly when compared to software-based area setting read and comparison operations.

(1) Procedure

Set the base address (lower limit) of the target address range to the MCA register and the size of the

target range to the MCS register, then use the LDSR instruction (r0 specification is recommended) to

access the MCC register and execute a check. The results can be read from the MCR register by the

STSR instruction.

CAUTIONS

1. If the specified area to be checked crosses 0000 0000H, it is judged as an area

setting error, and the MCR.OV bit is set to 1. This means that the MCR.OV bit must

be checked to access the check results. Do not use the check result until it is

confirmed that the result is not invalid (OV = 0).

2. If the default operations specified by using the MPM.DX, DW, and DR bits are

enabled (1), the correct result might not be able to be obtained. If enabling the

specified default operation, do not use the memory protection setting check

function.

(2) Sample code

It is assumed that the memory protection setting check function will be used for the following

operations.

_service_protection:
…
ori 0x1000, r0, r12
…
mov ADDRESS, r10 // Store the start address of the area to be checked to r10
mov SIZE, r11 // Store the size of the area to be checked to r11
di
ldsr r10, sr8, 5 // Set the address to MCA
ldsr r11, sr9, 5 // Set the size to MCS
ldsr r0, sr10, 5 // Start checking with MCC
stsr sr11, r12, 5 // Get the results from MCR
ei
andi 0x0100, r12, r0
be _overflow // Processing of invalid input when OV = 1
br _result_check // Otherwise, result is determined

RH850G3MH Software Section 5　MEMORY MANAGEMENT

R01US0143EJ0100 Rev.1.00 Page 112 of 425
Mar 05, 2015

5.2 Cache

For information regarding the specific functions of mounted cache memory and which functions are

mounted, see the hardware manual of the product used.

5.2.1 Cache Operation Registers

Figure 5.1 shows the system registers for cache operation. These registers are native contexts, so the

hypervisor privilege is required for operation.

5.2.2 Change Cache Use Mode

(1) Change use mode of instruction cache

The instruction cache use mode can be changed by using the ICCTRL.ICHEN bit. To enable an

instruction cache, set the ICHEN bit to 1.

To disable the instruction cache, clear the ICHEN bit to 0.

Completion in executing the LDSR instruction that sets ICHEN might not coincide with completion of

the instruction cache operations. As in the following sample code, the SYNCI instruction is executed

after the settings are changed to ensure that the change in instruction cache settings take effect.

Figure 5.1 Cache Operation Registers

ICTAGLICTAGH
ICDATLICDATH

ICCTRL
ICCFG

Cache errorCache access Cache control

ICERR
Instruction

ICTAGLICTAGH
ICDATLICDATH

ICCTRL
ICCFG

Cache errorCache access Cache control

ICERR
Instruction

LDSR r10, sr24, 4 // Change the instruction cache settings (ICCTRL)
(setting value is stored in r10)

SYNCI // Syncs refetch to completion of LDSR instruction

RH850G3MH Software Section 5　MEMORY MANAGEMENT

R01US0143EJ0100 Rev.1.00 Page 113 of 425
Mar 05, 2015

5.2.3 Cache Operations using CACHE Instruction

The CACHE instruction manipulates data in the specified cache memory.

Such data manipulation by the CACHE instruction starts after updating of the cache memory by all

preceding memory access has been completed. Consequently, the result of preceding memory access is

guaranteed to be the target for operations using the CACHE instruction. Additionally, a suitable

synchronization period is needed following execution of the CACHE instruction to ensure that the

results are reflected in subsequent instructions.

(1) Specification method for target of CACHE instruction

There are basically two ways to specify the target for operations.

 Directly specify the address to be accessed :

In this CPU, this is called the address specification method. In this case, the cache line containing

the specified address is subject to operation.

 Directly specify the cache memory's way number and line number :

In this CPU, this is called the index specification method. In this case, no hit judgment for the

cache is performed, and the operation is performed on the specified cache index. For details about

the cache index specification method, see Section 5.2.5, Cache Index Specification

Method.

(2) Operations performed using the CACHE instruction

The operations performed on the cache memory are broadly divided into the six types described below.

Some of these operations might not be supported, depending on the cache memory to be manipulated

(instruction, data, etc.). For details about each operation, see Section 7, INSTRUCTION.

(a) Cache Hit Block Invalidate / Cache Indexed Block Invalidate (CHBI / CIBI)

This disables the specified cache line. When using the address specification method, the cache line is

disabled only when there is a hit. When using the index method, the cache line is disabled. If the

specified cache line is locked, it is unlocked. This operation can be used in cases such as when the

entire memory cache is initialized by software.

(b) Cache Fetch And Lock (CFAL)

This stores the data at the specified address to the cache memory. At this time, the cache line where the

data is stored is locked. This prevents the cache line from being switched. If the target cache line has

already been stored in the cache memory, it is simply locked. If the target cache line has already been

stored in the cache memory and is not locked, this operation is not performed.

This operation can be used to improve execution efficiency by reducing variations in instruction

execution time that occur due to cache misses in the specified memory area.

CAUTION

The target cache line might not be able to be locked, such as when all cache ways are

locked. This operation can be used to efficiently monopolize the cache memory, so

note with caution the cache locking specifications and the number of cache ways. For

details, see the hardware manual of the product used.

RH850G3MH Software Section 5　MEMORY MANAGEMENT

R01US0143EJ0100 Rev.1.00 Page 114 of 425
Mar 05, 2015

(c) Cache Indexed Load / Cache Indexed Store (CILD / CIST)

This operation is used to directly access the cache memory. Values can be written and read, via a

system register, at a position in the cache memory specified by using an index. Because cache data and

cache tags can be accessed directly, this operation can be used for purposes such as software

debugging.

(d) Other operations

Other special operations related to manipulating the bus and memory, such as deleting links to enable

efficient exclusive access, might also be defined as cache operations. For details, see Section 7,

INSTRUCTION.

5.2.4 Cache Operation when the PREF Instruction is Executed

The PREF instruction is provided to realize efficient cache access by advising the CPU that an address

is likely to be used in a certain way in the near future. Getting the CPU to prefetch data into the cache

memory before use in this way can reduce the read wait time when a cache miss occurs.

Assuming support by compilers and other tools, the PREF instruction can be executed regardless of the

CPU operating mode. Execution of the PREF instruction does not cause an exception generated by the

MPU, and has no effect on logical operations, just like a NOP instruction.

CAUTION

Because a data read request by the PREF instruction is rather speculative, it might not

be executed depending on the cache control policy or system conditions. For details,

see the hardware manual of the product used.

RH850G3MH Software Section 5　MEMORY MANAGEMENT

R01US0143EJ0100 Rev.1.00 Page 115 of 425
Mar 05, 2015

5.2.5 Cache Index Specification Method

For a cache instruction that uses the index specification method, explicitly specify the cache memory

subject to operation in the format shown in Figure 5.2, instead of specifying an address. The bit

positions (x, y, z) of each field depend on the size of the cache memory incorporated in the CPU core.

Information about the incorporated cache memory and size can be read from the ICCFG register.

CAUTION

The Offset field indicates the byte position within the cache line. This setting is not

required (i.e., ignored) in normal index specification operations. For a CILD/CIST

operation, it is used to specify a position within the cache line when the ICDAT[HL]

register is shorter than the cache line length.

5.2.6 Execution Privilege of the CACHE/PREF Instruction

Because the CACHE instruction directly manipulates the contents of the cache memory, privileges are

specified according to the type of operation. When the CACHE instruction is executed without the

privilege required for the CACHE operation, a privilege instruction exception (PIE) occurs.

On the other hand, the PREF instruction provides information for speculative execution, so it can be

executed in any mode.

The privileges required by the different operations performed by the CACHE instruction are shown

below.

(a) Operations allowed with the user privilege

Among address specification method operations, operations without a cache lock (CHBI) can be

executed in any operation mode.

(b) Operations requiring the supervisor privilege

Among address specification method operations, operations with a cache lock (CFAL) require the

supervisor privilege.

In addition, index specification method operations require the supervisor privilege.

Note: Way : Specify the way within the cache.
Index : Specify the cache index.
Offset : Specify the offset within the cache line.

Note 1. Bits 31 to x: Be sure to clear to 0.

Figure 5.2 Cache Memory Index Specification Method

Way Index Offset

31 0x y z

RH850G3MH Software Section 5　MEMORY MANAGEMENT

R01US0143EJ0100 Rev.1.00 Page 116 of 425
Mar 05, 2015

5.2.7 Memory Protection for CACHE and PREF Instructions

When manipulating the cache by specifying an address for the CACHE instruction, it might become

the target of memory protection by the MPU. Memory protection is judged based on the operating

mode in which the CACHE instruction is executed, and it is handled as a data-side access. It is

basically handled as a read access, but operations that damage memory consistency are handled as a

write access.

No memory protection judgment is performed when using the index specification method or the PREF

instruction.

Table 5.2 shows the correspondence between operations and access privileges.

Note 1. Functions as the CLL instruction. For details, see the description of the CLL instruction in Section 7,
INSTRUCTION.

Table 5.2 Relationship Between Cache Operations and Permissions

Instruction Target Address/Index

Instruction
Execution
Privilege

Access
Permission

CHBII Instruction Address UM Read

CIBII Instruction Index SV —

CFALI Instruction Address SV Read

CISTI Instruction Index SV —

CILDI Instruction Index SV —

(CLL instruction)*1 — — — —

RH850G3MH Software Section 5　MEMORY MANAGEMENT

R01US0143EJ0100 Rev.1.00 Page 117 of 425
Mar 05, 2015

5.3 Mutual Exclusion

This CPU provides instructions that enable shared resources to be controlled mutually exclusively from

multiple programs when the system is operating in a multi-processor environment.

When using mutual exclusion, mutual exclusion variables have to be defined in the memory and all

programs must operate in accordance with the appropriate instruction flow.

CAUTION

Embedded CPUs in a single-processor configuration use a programming model in

which data coherence is maintained by disabling the acknowledgment of maskable

interrupts. This is a very easy and sure method of maintaining data coherence, but

naturally in a multi-processor, multiple programs might be executing and attempting to

use the data at the same time. In this case it is not possible to maintain data coherence

simply by disabling maskable interrupt acknowledgment.

5.3.1 Shared Data that does not Require Mutual Exclusion Processing

This CPU maintains data access coherence even in a multi-processor environment by enabling the

following types of access.

 Access in which the data is aligned to the size that matches the data type (aligned access)

– LD, ST, SLD, SST, LDL, and STC instructions

 Access by using a bit manipulation instruction (SET1, CLR1, or NOT1) (read-modify-write)

 Access by using the CAXI instruction (read-modify-write)

With some exceptions, mutual exclusion is achieved by using these types of data access. In other

words, it is guaranteed that while one CPU is executing the instructions that perform the above data

accesses, another CPU is not accessing the data in question. This is known as an instruction being

executed atomically or an instruction providing an atomic guarantee.

Note that the atomic execution of an instruction means that a data access bus transaction completes

with no disruption; it does not necessarily mean that a series of transactions has been completed.

CAUTION

The extent to which coherency is guaranteed might be limited, depending on the

hardware specifications. For example, for some memories, coherency might not be

preserved even if aligned access is used. For details, see the hardware manual of the

product used.

RH850G3MH Software Section 5　MEMORY MANAGEMENT

R01US0143EJ0100 Rev.1.00 Page 118 of 425
Mar 05, 2015

5.3.2 Performing Mutual Exclusion by Using the LDL.W and STC.W Instructions

The LDL.W and STC.W instructions can be used to perform mutual exclusion over multiple data

arrays.

When acquiring a lock by using the LDL.W and STC.W instructions in a pair, first a link is created by

using the LDL.W instruction and then the STC.W instruction is executed.

At this time, if data is written to the address at which the link was created before the STC.W instruction

is executed, the link is immediately deleted, the subsequent execution of the STC.W instruction fails,

and a lock fails to be acquired.

(1) Link

Each link (LLbit) includes information on the address at which it was created, which is used to control

whether the STC instruction executes successfully or fails, and whether the link is deleted.

A link is created when the LDL.W instruction is executed. If the LDL.W instruction is executed again

after a link has been created, another link is created, which overwrites the first link. In other words,

only one link exists at a time, and that link contains the address information of the LDL.W executed

last.

Links are deleted when certain event or address conditions are satisfied. Table 5.3 shows the link

deletion conditions. A link is deleted if any of the conditions shown in Table 5.3 are satisfied.

CAUTION

Links that are deleted by a write operation are deleted in 32-byte units. Therefore, the

best way to prevent execution of the STC.W instruction from failing in this case is to

allocate only one mutual exclusion variable per 32 bytes of memory. If more than one

mutual exclusion variable is allocated in a 32-byte range, thrashing might occur when

an attempt is made to acquire a lock on a mutual exclusion variable.

Table 5.3 Link Deletion Conditions

Target Link Event Condition Remark

All links in the system
(including those in other CPU cores)

If a write operation occurs in a 32-byte-aligned
address range that includes the address of the
link in question

ST, SST, and STC instructions
SET1, NOT1, CLR1, and CAXI
instructions
PREPARE and PUSHSP instructions

CPU core link Execution of STC.W instruction The link is deleted whether the instruction
executes successfully or fails

Execution of CLL instruction Use a CLL instruction to clear a link in a
function explicitly
(abortion of an atomic operation).

Exception acknowledgment

Execution of return instruction Does not include CTRET instruction

RH850G3MH Software Section 5　MEMORY MANAGEMENT

R01US0143EJ0100 Rev.1.00 Page 119 of 425
Mar 05, 2015

(2) Sample code

The sample code of a spinlock executed by using the LDL.W and STC.W instructions is shown below.

Lock acquisition

Lock release

mov lock_adr, r20

Lock: ldl.w [r20], r21

cmp r0, r21

bnz Lock_wait

mov 1, r21

stc.w r21, [r20]

cmp r0, r21

bnz Lock_success

Lock_wait:

snooze

br Lock

Lock_success:

st.w r0, 0[r20]

RH850G3MH Software Section 5　MEMORY MANAGEMENT

R01US0143EJ0100 Rev.1.00 Page 120 of 425
Mar 05, 2015

5.3.3 Performing Mutual Exclusion by Using the SET1 Instruction

The SET1 instruction can be used to perform mutual exclusion over multiple data arrays. By executing

the SET1 instruction on the same bit in the memory and then checking the PSW.Z flag, which indicates

the execution result, it can be determined whether lock acquisition succeeded or failed.

CAUTIONS

1. Depending on the hardware specifications, the system performance might drop if

exclusive control is executed frequently by using the SET1 instruction, because

this causes the bus to be occupied for a long time. It is therefore recommended to

execute exclusive control by using the LDL/STC instructions as much as

possible.

2. When performing mutual exclusion by using the SET1 instruction, to prevent the

problem of excessive bus occupancy described in Caution 1 above, execute the

snooze instruction before attempting to acquire a lock again after lock acquisition

has failed, and adjust the lock acquisition loop execution interval.

(1) Sample code

The sample code of a spinlock executed by using the SET1 instruction is shown below.

Lock acquisition

Lock release

mov lock_adr, r20

Lock: set1 0, 0[r20]

bz Lock_success

snooze

br Lock

Lock_success:

clr1 0, 0[r20]

RH850G3MH Software Section 5　MEMORY MANAGEMENT

R01US0143EJ0100 Rev.1.00 Page 121 of 425
Mar 05, 2015

5.3.4 Performing Mutual Exclusion by Using the CAXI Instruction

The CAXI instruction can be used to perform mutual exclusion over multiple data arrays. By executing

the CAXI instruction on the same word in the memory and then checking the destination register, it can

be determined whether lock acquisition succeeded or failed.

CAUTIONS

1. Depending on the hardware specifications, the system performance might drop if

exclusive control is executed frequently by using the CAXI instruction, because

this causes the bus to be occupied for a long time. It is therefore recommended to

execute exclusive control by using the LDL/STC instructions as much as

possible.

2. When performing mutual exclusion by using the CAXI instruction, to prevent the

problem of excessive bus occupancy described in Caution 1 above, execute the

snooze instruction before attempting to acquire a lock again after lock acquisition

has failed, and adjust the lock acquisition loop execution interval.

(1) Sample code

The sample code of a spinlock executed by using the CAXI instruction is shown below.

Lock acquisition

Lock release

mov lock_adr, r20

Lock: mov 1, r21

caxi [r20], r0, r21

bz Lock_success

snooze

br Lock

Lock_success:

st.w r0, 0[r20]

RH850G3MH Software Section 6　COPROCESSOR

R01US0143EJ0100 Rev.1.00 Page 122 of 425
Mar 05, 2015

Section 6 COPROCESSOR

6.1 Floating-Point Operation

The floating-point unit (FPU) operates as the CPU coprocessor, and executes floating-point

instructions.

Either single-precision (32-bit) or double-precision (64-bit) data can be used. In addition, the

conversion between a floating point type and an integer type is possible.

The FPU of this CPU conforms to ANSI/IEEE standard 754-2008 (IEEE Standard for Floating-Point

Arithmetic).

6.1.1 Configuration of Floating-Point Operation Function

(1) Not implemented

If the floating-point operation function is not implemented, all the floating-point instructions cannot be

used. If an attempt is made to execute such an instruction, a coprocessor unusable exception occurs. In

addition, the operation of all the floating-point system registers is undefined. Therefore, do not

manipulate these registers by LDSR and STSR.

(2) Implementing only single precision

If only the floating-point operation function with single precision is implemented, only floating-point

instructions classified as single precision*1 can be used. If an attempt is made to execute a floating-

point instruction classified as double precision*2, a coprocessor unusable exception occurs. All the

floating-point system registers supply the function described in Section 3.4, FPU Function

Registers.

Note 1. The single-precision floating-point instruction is the instruction described as (Single) in the

description of each instruction in Section 7.4.4, Floating-Point Instruction Set.

Note 2. The double-precision floating-point instruction is the instruction described as (Double) in the

description of each instruction in Section 7.4.4, Floating-Point Instruction Set.

(3) Implementing single precision and double precision

All the floating-point instructions can be used when floating-point instructions of single precision and

double precision are implemented. All the floating-point system registers supply the functions

described in Section 3.4, FPU Function Registers.

RH850G3MH Software Section 6　COPROCESSOR

R01US0143EJ0100 Rev.1.00 Page 123 of 425
Mar 05, 2015

6.1.2 Data Types

(1) Floating-point format

The FPU supports 32-bit (single precision) and 64-bit (double precision) IEEE754 floating-point

operations.

The single-precision floating-point format consists of a 24-bit signed fraction (s + f) and an 8-bit

exponent (e), as shown in Figure 6.1.

The double-precision floating-point format consists of a 53-bit signed fraction (s + f) and an 11-bit

exponent (e), as shown in Figure 6.2.

A numerical value in the floating-point format includes the following three areas.

 Sign bit: s

 Exponent: e = E + bias value

 Fraction: f = .b1b2...bP-1 (value lower than the first decimal place)

The bias value for the single-precision format is 127. For double-precision format, the bias value is

1023.

The range of the exponent value E when unbiased covers all integers from Emin to Emax, along with

two reserved values, Emin –1 (±0 or subnormal number), and Emax +1 (±∞ or NaN: not-a-number). A

numeric value other than 0 is represented in one format, depending on the single-precision and double-

precision formats.

The numeric value (v) represented in this format can be calculated by the expression shown in Table

6.1.

Figure 6.1 Single-precision Floating-point Format

31

1
Sign Exponent Fraction

fes

8 23

30 23 22 22 0

Figure 6.2 Double-precision Floating-Point Format

63

1
Sign Exponent Fraction

fes

11 52

62 52 51 0

RH850G3MH Software Section 6　COPROCESSOR

R01US0143EJ0100 Rev.1.00 Page 124 of 425
Mar 05, 2015

 NaN (not-a-number)

IEEE754 defines a floating-point value called NaN (not-a-number). Because this value is not a

numerical value, it does not have any “greater than” or “less than” relationships to other values.

If v is NaN in all of the floating-point formats, it might be either SignalingNaN (S-NaN) or QuietNaN

(Q-NaN), depending on the value of the most significant bit of f. If the most significant bit of f is set, v

is QuietNaN; if the most significant bit is cleared, it is SignalingNaN.

Table 6.2 shows the value of each parameter defined in floating-point formats.

Table 6.3 shows the minimum and maximum values that can be represented in floating-point formats.

Table 6.1 Calculation Expression of Floating-Point Value

Type Calculation Expression

NaN (not-a-number) If E = Emax + 1 and f ≠ 0 then v = NaN regardless of s

±∞ (infinite number) If E = Emax + 1 and f = 0 then v = (–1)s∞

Normalized number If Emin ≤ E ≤ Emax then v = (–1)s2E (1.f)

Subnormal number If E = Emin – 1 and f ≠ 0 then v = (–1)s2Emin (0.f)

±0 (zero) If E = Emin – 1 and f = 0 then v = (–1)s0

Table 6.2 Floating-Point Formats and Parameter Values

Parameter

Format

Single Precision Double Precision

Emax +127 +1023

Emin –126 –1022

Bias value of exponent +127 +1023

Length of exponent (number of bits) 8 11

Integer bits Cannot be seen Cannot be seen

Length of fraction (number of bits) 23 52

Length of format (number of bits) 32 64

Table 6.3 Floating-Point Minimum and Maximum Values

Type Value

Minimum value of single-precision floating point 1.40129846e – 45

Minimum value of single-precision floating point (normal) 1.17549435e – 38

Maximum value of single-precision floating point 3.40282347e + 38

Minimum value of double-precision floating point 4.9406564584124654e – 324

Minimum value of double-precision floating point (normal) 2.2250738585072014e – 308

Maximum value of double-precision floating point 1.7976931348623157e + 308

RH850G3MH Software Section 6　COPROCESSOR

R01US0143EJ0100 Rev.1.00 Page 125 of 425
Mar 05, 2015

(2) Fixed-point formats

The value of a fixed point is held in the format of 2’s complement. Figure 6.3 shows a 32-bit fixed-

point format and Figure 6.4 shows a 64-bit fixed-point format. No signed bits exist in the unsigned

fixed-point format, and all bits represent the integer value.

(3) Expanded floating-point format

This CPU supports the 16-bit (half-precision) IEEE754 floating-point format as a floating-point format

for storing data. The half-precision floating-point format is used to decrease the amount of data; it is

not supported for arithmetic operations. Instructions are available for converting single-precision

floating-point format data into half-precision floating-point data and vice-versa. The single-precision

floating-point format consists of an 11-bit signed fraction (s + f) and a 5-bit exponent (e), as shown in

Figure 6.5.

Figure 6.3 32-bit Fixed-Point Format

31

1
Sign Integer

is

31

30 0

Figure 6.4 64-bit Fixed-Point Format

63

1
Sign Integer

is

63

62 0

Figure 6.5 Half-Precision Floating-Point Format

15

1
Sign Exponent Fraction

fes

5 10

14 10 9 0

RH850G3MH Software Section 6　COPROCESSOR

R01US0143EJ0100 Rev.1.00 Page 126 of 425
Mar 05, 2015

Like other floating-point formats, the numeric values represented in this format can be calculated by

using the expressions shown in Table 6.1. The values of the parameters defined by the half-precision

floating-point format are shown in Table 6.4.

Table 6.5 shows the minimum and maximum values that can be represented in the half-precision

floating-point format.

6.1.3 Register Set

For details about the register set, see Section 3.4, FPU Function Registers.

6.1.4 Floating-Point Instructions

Floating-point instructions are divided into single-precision instructions (single) and double-precision

instructions (double).

For details about the floating-point instructions, see Section 7.4, Floating-Point Instructions.

Table 6.4 Half-Precision Floating-Point Format and Parameter Values

Parameter Half Precision

Emax +15

Emin –14

Bias value of exponent +15

Length of exponent (number of bits) 5

Integer bits Cannot be seen

Length of fraction (number of bits) 10

Length of format (number of bits) 16

Table 6.5 Half-Precision Floating-Point Minimum and Maximum Values

Type Value

Minimum value of half-precision floating point 5.96046e– 8

Maximum value of half-precision floating point (normal) 6.10352e– 5

Maximum value of half-precision floating point 65504

RH850G3MH Software Section 6　COPROCESSOR

R01US0143EJ0100 Rev.1.00 Page 127 of 425
Mar 05, 2015

6.1.5 Floating-Point Operation Exceptions

This section describes how the FPU processes floating-point operation exceptions.

(1) Types of exceptions

When floating-point operations or processing of operation results cannot be done using the ordinary

method, a floating-point operation exception occurs.

One of the following two operations is performed when a floating-point operation exception has

occurred.

 When exceptions are enabled

The cause bit is set in the floating-point configuration/status register (FPSR), and processing (by

software) is passed to the exception handler routine.

 When exceptions are prohibited

The preservation bit is set in the floating-point configuration/status register (FPSR), an

appropriate value (initial value) is stored in the FPU destination register, then execution is

continued.

The FPU uses cause bits, enable bits, and preservation bits (status flags) to support the following five

types of IEEE754-defined exception causes.

 Inexact operation (I)

 Overflow (O)

 Underflow (U)

 Division by zero (Z)

 Invalid operation (V)

A sixth type of exception cause is unimplemented operation (E), which causes an exception when a

floating-point operation cannot be executed. This exception requires processing by software. An

unimplemented operation exception (E) occurs when exceptions are always enabled, rather than by

using properties, enable bits, or preservation bits.

RH850G3MH Software Section 6　COPROCESSOR

R01US0143EJ0100 Rev.1.00 Page 128 of 425
Mar 05, 2015

Figure 6.6 shows the FPSR register bits that are used to support exceptions.

The five exceptions (V, Z, O, U, and I) defined by IEEE754 are enabled when the corresponding enable

bits are set. When an exception occurs, if the corresponding enable bit has been set, the FPU sets the

corresponding cause bit. If the exception can be acknowledged, processing is passed to the exception

handler routine. If exceptions are prohibited, the exception corresponding preservation bit is set, and

processing is not passed to the exception handler routine.

Figure 6.6 Cause, Enable, and Preservation Bits of FPSR Register

Bit 15 14 13 12 11 10

Bit 9 8 7 6 5

E V Z O U I

V Z O U I

V Z O U I

Bit 4 3 2 1 0

Cause bit (XC)

Enable bit (XE)

Preservation bit (XP)

Inexact operation
Underflow

Overflow
Division by zero

Invalid operation
Unimplemented operation

RH850G3MH Software Section 6　COPROCESSOR

R01US0143EJ0100 Rev.1.00 Page 129 of 425
Mar 05, 2015

(2) Exception handling

When a floating-point operation exception occurs, the cause bits of the FPSR register indicate the cause

of the floating-point operation exception.

(a) Status flag

A corresponding preservation bit is available for each IEEE754-defined exception. The preservation bit

is set when the corresponding exception is prohibited but the exception condition has been detected.

The preservation bit is set or reset whenever new values are written to the FPSR register by the LDSR

instruction.

If an exception is prohibited by an enable bit, predetermined processing is performed by the FPU. This

processing provides an initial value as the result, rather than a floating-point operation result. This

initial value is determined according to the type of exception. For an overflow exception or underflow

exception, the initial value also differs depending on the current rounding mode. Table 6.6 shows the

initial values provided for each of the FPU IEEE754-defined exceptions.

Note 1. If the FPSR.FS bit is cleared, an unimplemented operation exception (E) will occur if an underflow occurs
in the rounded result; an underflow exception (U) will not occur. If the FS bit of the FPSR register is set, the
flushed result is used as the default value

Note 2. If the rounding mode is RN and the FN bit of the FPSR register is set, flushing will occur in the direction of
higher accuracy. For details, see Section 6.1.9, Flush to Nearest.

Table 6.6 FPU Initial Values for IEEE754-Defined Exceptions

Area Description Rounding Mode Initial Value

V Invalid operation — Quiet not-a-number (Q-NaN)

Z Division by zero — Correctly signed ∞

O Overflow RN ∞ with sign of intermediate result

RZ Maximum normalized number with sign of intermediate
result

RP Negative overflow: Maximum negative normalized number
Positive overflow: +∞

RM Positive overflow: Maximum positive normalized number
Negative overflow: –∞

U Underflow*1 RN*2 0 with sign of intermediate result

RZ 0 with sign of intermediate result

RP Positive underflow: Minimum positive normalized number
Negative underflow: 0

RM Negative underflow: Minimum negative normalized number
Positive underflow: 0

I Inexact
operation

— Rounded result

RH850G3MH Software Section 6　COPROCESSOR

R01US0143EJ0100 Rev.1.00 Page 130 of 425
Mar 05, 2015

6.1.6 Exception Details

The following describes the conditions under which each of the FPU exceptions occurs and the FPU

responses.

(1) Inexact exception (I)

In the following cases, the FPU detects an inexact exception.

 When the precision of the rounded result is dropped

 When the rounded result overflows while overflow exceptions are prohibited

 When the rounded result underflows while underflow exceptions are prohibited

 When the operand that is a subnormal number is flushed, neither an invalid operation exception

(V) nor a division by zero exception (Z) is detected, and the other operands are not Q-NaN

CAUTION

If the FS bit of the FPSR register is cleared and the operation result underflows, an

unimplemented operation exception (E) occurs. In such cases, the underflow

exception is not detected, so the inexact exception is not detected either.

(a) If exception is enabled

The contents of the destination register are not changed, contents of the source register are saved,

and an inexact exception occurs.

(b) If exception is not enabled

If no other exception occurs, the rounded result or the result that underflows or overflows is stored

in the destination register.

RH850G3MH Software Section 6　COPROCESSOR

R01US0143EJ0100 Rev.1.00 Page 131 of 425
Mar 05, 2015

(2) Invalid operation exception (V)

An invalid operation exception occurs when one of both of the operands is invalid.

 Arithmetic operation with S-NaN included in operands. The conditional move instruction

(CMOV), absolute value (ABS), and arithmetic negation (NEG) are not handled as arithmetic

operations, but minimum value (MIN) and maximum value (MAX) are handled as arithmetic

operations.

 Multiplication: ±0 × ±∞ or ±∞ × ±0

 Fused-multiply-add: (±0 × ±∞) + c or (±∞ × ±0) + c. But only if c is not Q-NaN.

 Addition/subtraction or multiply-add operation*1:

Addition of infinite values with different signs or subtraction of infinite values with the same sign

 Division: ±0 ÷ ±0 or ±∞ ÷ ±∞

 Square root: When operand is less than 0

 Conversion to integer when source is outside of integer range.

 Comparison:With condition codes 8 to 15, if the operand is unordered (see Table 7.10,

Definitions of Condition Code Bits and Their Logical Inversions)

Note 1. When the multiplication result is infinite or when adding or subtracting between infinities

(a) If exception is enabled

The contents of the destination register are not changed, contents of the source register are saved,

and an invalid operation exception occurs.

(b) If exception is not enabled

If no other exception occurs, and the destination is a floating-point format, Q-NaN is stored in the

destination register. If the destination has an integer format, see the operation result description of

each instruction for the value to be stored in the destination register.

(3) Division by zero exception (Z)

A division by zero exception occurs when a divisor is 0 and a dividend is a finite number other than 0.

(a) If exception is enabled

The contents of the destination register are not changed, contents of the source register are saved,

and a division by zero exception occurs.

(b) If exception is not enabled

If no other exception occurs, a correctly signed infinite number (±∞) is stored in the destination

register.

RH850G3MH Software Section 6　COPROCESSOR

R01US0143EJ0100 Rev.1.00 Page 132 of 425
Mar 05, 2015

(4) Overflow exception (O)

An overflow exception is detected if the exponent range is infinite and if the result of the rounded

floating point is greater than maximum finite number in the destination format.

(a) If exception is enabled

The contents of the destination register are not changed, the contents of the source register are

saved, and an overflow exception occurs.

(b) If exception is not enabled

If no other exception occurs, the initial value that is determined by the rounding mode and the sign

of the intermediate result is stored in the destination register (see Table 6.6, FPU Initial Values

for IEEE754-Defined Exceptions).

(5) Underflow exception (U)

If the operation result is –2Emin to +2Emin (but not zero), an underflow exception is detected.

Although IEEE754 defines several methods for detecting an underflow, the same method should be

used to detect underflows, regardless of the processing to be performed.

The following two methods can be used to detect an underflow for binary floating point numbers.

 The result calculated after rounding and using an infinite exponent range is not zero and is within

±2Emin.

 The result calculated before rounding and using an infinite exponent range and precision is not

zero and is within ±2Emin.

In this CPU, an underflow is detected before rounding.

Or the rounded result is one of the following, an inexact result is detected.

 When a given result differs from the result calculated when the exponent range and precision are

infinite)

In this CPU, the behavior when an inexact result is detected differs as follows depending on whether

underflow exceptions are enabled or disabled:

(a) If exception is enabled

When the FS bit of the FPSR register has been set, if exceptions are enabled, an underflow

exception (U) occurs. When the FS bit of the FPSR register has been set, if exceptions are not

enabled but inexact exceptions are enabled, an inexact exception (I) occurs.

(b) If exception is not enabled

If the FS bit of the FPSR register has been set, the initial value determined according to the

rounding mode and intermediate result value is stored in the destination register (see Table 6.6,

FPU Initial Values for IEEE754-Defined Exceptions).

CAUTION

If the FS bit of the FPSR register has not been set, an unimplemented operation

exception (E) occurs regardless of whether or not exceptions are enabled. Because an

unimplemented operation exception (E) must occur, an underflow exception (U) does

not occur.

RH850G3MH Software Section 6　COPROCESSOR

R01US0143EJ0100 Rev.1.00 Page 133 of 425
Mar 05, 2015

(6) Unimplemented operation exception (E)

The E bit is set and an unimplemented operation exception (E) occurs when an abnormal operand or

abnormal result that cannot be correctly processed by hardware has been detected. The operand and

destination register contents do not change.

If the FS bit of the FPSR register has been set, an unimplemented operation exception (E) will not

occur.

If the FS bit of the FPSR register has been cleared, an unimplemented operation exception (E) will

occur under the following conditions (except for CMOVF.D, CMOVF.S, CMPF.D, CMPF.S, ABSF.D,

ABSF.S, MAXF.D, MAXF.S, MINF.D, MINF.S, NEGF.D, and NEGF.S instructions).

 When the operand is a subnormal number

 When the operation result is a subnormal number, or an underflow has occurred

CAUTION

If the FS bit of the FPSR register is set to 1, an unimplemented operation exception (E)

will not occur under any circumstances.

RH850G3MH Software Section 6　COPROCESSOR

R01US0143EJ0100 Rev.1.00 Page 134 of 425
Mar 05, 2015

6.1.7 Saving and Returning Status

When a floating-point operation exception occurs, the PC and PSW are saved to the EIPC and EIPSW

registers respectively, and the exception code is saved to the EIIC register.

When an EI level exception is acknowledged while processing a floating-point operation exception, an

EIPC register override occurs, which prevents the returning to the instruction that caused the floating-

point operation exception to occur. When acknowledgment of EI level exceptions is required, the

contents of the EIPC, EIPSW, and EIIC registers must be saved, such as to a stack.

When a floating-point instruction is used in a floating-point operation exception handler routine, the

FPSR and FPEPC registers will override if another floating-point operation exception occurred. In such

cases, the FPSR and FPEPC registers should be saved at the start of the floating-point operation

exception handler processing, and should be returned at the end of the handler processing.

The cause bits of the FPSR register hold the results from only one enabled exception. In any case, the

previous results are held until the next enabled exception occurs.

RH850G3MH Software Section 6　COPROCESSOR

R01US0143EJ0100 Rev.1.00 Page 135 of 425
Mar 05, 2015

6.1.8 Flushing Subnormal Numbers

This CPU can process subnormal numbers—very small numbers that are lower than the minimum
normalized number—in one of the following two ways:

 Normalize the operand or operation result and continue executing arithmetic processing

 Generate an unimplemented operation exception (E) and execute exception handling

Executing software-based exception handling will obtain a more accurate result, but the amount of time
required to obtain the result will vary depending on the input value. In control systems that require a
real-time performance, therefore, this is usually unacceptable. In this case, it is important to obtain the
result within a certain amount time rather than focus on accuracy.

(1) Normalize the subnormal numbers and continue executing arithmetic processing

By setting the FS bit of the FPSR register to 1, this CPU can normalize the operand or operation result
to a specific value and continue executing arithmetic processing if a subnormal number is input as the
operand or obtained as the operation result. At this time, extremely small differences in values might
not appear in the operation result.

For the operand and operation result, the values to which subnormal numbers are flushed when the FS
bit is set (1) are shown in Table 6.7 and Table 6.8 below.

Note 1. If the rounding mode is RN and the FN bit of the FPSR register is set, flushing will occur in the direction of
higher accuracy. For details, see Section 6.1.9, Flush to Nearest.

Whether an input operand that is a subnormal number has been flushed or not can be checked by
referencing the IF bit of the FPSR register. Whether an operation result that is a subnormal number has
been flushed or not can be checked by referencing the U bit of the FPSR register.

CAUTIONS

1. In control systems that require a real-time performance, it is recommended to
always set the FS bit to 1.

2. If the FS bit of the FPSR register is set (1), an unimplemented operation exception
(E) will not occur under any circumstances.

3. Whether the operation result is a subnormal number is judged by using the value
before rounding.

4. The IF bit of the FPSR register also accumulates and indicates information about
flushing instructions that have caused a floating-point operation exception.

Table 6.7 Rounding Mode and Flush Value of Input Operand

Sign of Subnormal Operand

Rounding Mode and Value to Which Input Operand Is
Flushed

RN RZ RP RM

+ +0

— –0

Table 6.8 Rounding Mode and Flush Value of Operation Result

Sign of Subnormal Operation Result

Rounding Mode and Value to Which Operation Result
Is Flushed

RNNote RZ RP RM

+ +0 +0 +2Emin +0

— –0 –0 –0 –2Emin

RH850G3MH Software Section 6　COPROCESSOR

R01US0143EJ0100 Rev.1.00 Page 136 of 425
Mar 05, 2015

(2) Generate an unimplemented operation exception (E) and execute exception handling

By clearing the FS bit of the FPSR register to 0, an unimplemented operation exception (E) will occur

if a subnormal number is input as the operand or obtained as the operation result. When an

unimplemented operation exception occurs, software-based progressive underflow processing is

performed in the floating-point operation exception handling routine, enabling a more accurate result to

be obtained. In this case, however, a real-time processing performance might not be realized due to the

software processing load.

(3) Instructions that can handle subnormal numbers

The following instructions can be executed without causing an unimplemented operation exception

even if an operand that is a subnormal number is input while the FS bit of the FPSR register is 0.

 Conditional move instruction (CMOV), absolute value (ABS), arithmetic negation (NEG)

 Minimum value (MIN), maximum value (MAX), compare (CMPF)

 Conversion from half-precision to single-precision (CVTF.HS)

(4) Instructions that are not affected by flushing subnormal numbers

For the following instructions, flushing does not occur even an operand that is a subnormal number is

input while the FS bit of the FPSR register is 1.

 Conditional move instruction (CMOV), absolute value (ABS), arithmetic negation (NEG)

 Minimum value (MIN), maximum value (MAX), compare (CMPF)

 Conversion from half-precision to single-precision (CVTF.HS)

RH850G3MH Software Section 6　COPROCESSOR

R01US0143EJ0100 Rev.1.00 Page 137 of 425
Mar 05, 2015

6.1.9 Flush to Nearest

This CPU provides flush-to-nearest mode, a feature for flushing to the nearest number with higher

accuracy when a flushing operation results subnormal number. Flush-to-nearest mode is enabled when

the rounding mode is RN and the FN bit of the FPSR register is set (1). When this mode is used, the

FPU determines the value to which to flush the subnormal number based on the number of the

operation result and not just the sign. This feature has no effect in rounding modes other than RN or on

the result of flushing an input operand.

CAUTION

Whether the operation result is a subnormal number is judged by using the value before rounding.

Table 6.9 Rounding Mode and Value to Which Operation Result is Flushed

Value of Subnormal Operation
Result

Rounding Mode and Value to Which Operation Result Is Flushed

RN

RZ RP RMFN = 1 FN = 0

+2Emin-1 ≤ Operation result < +2Emin +2Emin +0 +0 +2Emin +0

+0 ≤ Operation result < +2Emin-1 +0

–2Emin-1 < Operation result ≤ –0 –0 –0 –0 –0 –2Emin

–2Emin < Operation result ≤ –2Emin-1 –2Emin

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 138 of 425
Mar 05, 2015

Section 7 INSTRUCTION

7.1 Opcodes and Instruction Formats

This CPU has two types of instructions: CPU instructions, which are defined as basic

instructions, and coprocessor instructions, which are defined according to the application.

7.1.1 CPU Instructions

Instructions classified as CPU instructions are allocated in the opcode area other than the area

used in the format of the coprocessor instructions shown in Section 7.1.2, Coprocessor

Instructions.

CPU instructions are basically expressed in 16-bit and 32-bit formats. There are also several

instructions that use option data to add bits, enabling the configuration of 48-bit and 64-bit

instructions. For details, see the opcode of the relevant instruction in Section 7.2.2, Basic

Instruction Set.

Opcodes in the CPU instruction opcode area that do not define significant CPU instructions

are reserved for future function expansion and cannot be used. For details, see Section

7.1.3, Reserved Instructions.

(1) reg-reg instruction (Format I)

A 16-bit instruction format consists of a 6-bit opcode field and two general-purpose register

specification fields.

(2) imm-reg instruction (Format II)

A 16-bit instruction format consists of a 6-bit opcode field, 5-bit immediate field, and a

general-purpose register specification field.

15 4 0511 10

reg2 opcode reg1

15 4 0511 10

reg2 opcode imm

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 139 of 425
Mar 05, 2015

(3) Conditional branch instruction (Format III)

A 16-bit instruction format consists of a 4-bit opcode field, 4-bit condition code field, and an

8-bit displacement field.

(4) 16-bit load/store instruction (Format IV)

A 16-bit instruction format consists of a 4-bit opcode field, a general-purpose register

specification field, and a 7-bit displacement field (or 6-bit displacement field + 1-bit sub-

opcode field).

In addition, a 16-bit instruction format consists of a 7-bit opcode field, a general-purpose

register specification field, and a 4-bit displacement field.

(5) Jump instruction (Format V)

A 32-bit instruction format consists of a 5-bit opcode field, a general-purpose register

specification field, and a 22-bit displacement field.

15 4 0711 10

disp opcode cond

6

disp

3

15 0711 10

reg2 opcode

6

disp

1

disp/sub-opcode

15 4 011 10

reg2 opcode disp

3

15 5 011 10

reg2 opcode disp

6 31 17 16

0

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 140 of 425
Mar 05, 2015

(6) 3-operand instruction (Format VI)

A 32-bit instruction format consists of a 6-bit opcode field, two general-purpose register

specification fields, and a 16-bit immediate field.

(7) 32-bit load/store instruction (Format VII)

A 32-bit instruction format consists of a 6-bit opcode field, two general-purpose register

specification fields, and a 16-bit displacement field (or 15-bit displacement field + 1-bit sub-

opcode field).

(8) Bit manipulation instruction (Format VIII)

A 32-bit instruction format consists of a 6-bit opcode field, 2-bit sub-opcode field, 3-bit bit

specification field, a general-purpose register specification field, and a 16-bit displacement

field.

(9) Extended instruction format 1 (Format IX)

This is a 32-bit instruction format that has a 6-bit opcode field and two general-purpose

register specification fields, and handles the other bits as a sub-opcode field.

CAUTION

Extended instruction format 1 might use part of the general-purpose register

specification field or the sub-opcode field as a system register number field,

condition code field, immediate field, or displacement field. For details, see the

description of each instruction in Section 7.2.2, Basic Instruction Set.

15 5 011 10

reg1opcode imm

4 31 16

reg2

15 5 011 10

reg1opcode disp

4 31 16

reg2

17

disp/sub-opcode

15 5 011 10

reg1opcode disp

4 31 16

sub

14

bit #

13

15 5 011 10

reg1opcode

4 31 16

reg2

17

0sub-opcode

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 141 of 425
Mar 05, 2015

(10) Extended instruction format 2 (Format X)

This is a 32-bit instruction format that has a 6-bit opcode field and uses the other bits as a sub-

opcode field.

CAUTION

Extended instruction format 2 might use part of the general-purpose register

specification field or the sub-opcode field as a system register number field,

condition code field, immediate field, or displacement field. For details, see the

description of each instruction in Section 7.2.2, Basic Instruction Set.

(11) Extended instruction format 3 (Format XI)

This is a 32-bit instruction format that has a 6-bit opcode field and three general-purpose

register specification fields, and uses the other bits as a sub-opcode field.

CAUTION

Extended instruction format 3 might use part of the general-purpose register

specification field or the sub-opcode field as a system register number field,

condition code field, immediate field, or displacement field. For details, see the

description of each instruction in Section 7.2.2, Basic Instruction Set.

(12) Extended instruction format 4 (Format XII)

This is a 32-bit instruction format that has a 6-bit opcode field and two general-purpose

register specification fields, and uses the other bits as a sub-opcode field.

CAUTION

Extended instruction format 4 might use part of the general-purpose register

specification field or the sub-opcode field as a system register number field,

condition code field, immediate field, or displacement field. For details, see the

description of each instruction in Section 7.2.2, Basic Instruction Set.

15 5 011 10

opcode

4 31 1617

0sub-opcode
sub-opcode/
imm/vector sub-opcode

15 5 011 10

reg1opcode reg3

4 31 16

reg2

27 26

0

17

sub-opcode

15 5 011 10

opcode reg3

4 31 16

reg2

27 26

0

17

sub-opcode sub-opcode

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 142 of 425
Mar 05, 2015

(13) Stack manipulation instruction format (Format XIII)

A 32-bit instruction format consists of a 5-bit opcode field, 5-bit immediate field, 12-bit

register list field, 5-bit sub-opcode field, and one general-purpose register specification field

(or 5-bit sub-opcode field).

The general-purpose register specification field is used as a sub-opcode filed, depending on

the format of the instruction.

(14) Load/store instruction 48-bit format (Format XIV)

This is a 48-bit instruction format that has a 6-bit opcode field, two general-purpose register

specification fields, and a 23-bit displacement field, and uses the other bits as a sub-opcode

field.

15 5 011 10

immopcode list

31 162021

reg2

6 1

sub-opcode

15 5 011 10

reg1opcode reg3

31 16204 27 26 19

47 32

sub-opcode disp(low) sub-opcode

disp(high)

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 143 of 425
Mar 05, 2015

7.1.2 Coprocessor Instructions

Instructions in the following format are defined as coprocessor instructions.

Coprocessor instructions define the functions of each coprocessor.

(1) Coprocessor unusable exception

If an attempt is made to execute a coprocessor instruction defined by an opcode that refers to

a nonexistent coprocessor or a coprocessor that cannot be used due to the operational status of

the device, a coprocessor unusable exception (UCPOP) immediately occurs.

For details, see Section 2.4.3, Coprocessor Unusable Exceptions.

7.1.3 Reserved Instructions

An opcode reserved for future function extension and for which no instruction is defined is

defined as a reserved instruction. It is defined by the hardware specifications that either of the

following two types of operations is performed on the opcode of a reserved instruction.

 A reserved instruction exception occurs

 The reserved instruction is executed as an instruction

In this CPU, the following opcodes define the RIE instruction, which always causes a

reserved instruction exception to occur.

15 5 011 10

1 reg3

4 31 16

reg2

27 26

opcode

17

1 1 1 1 1 1 0

259 8 7 6

opcode or reg1

15 4 0511 10

0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

15 5 011 10

1 x x x x1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

4 31 16

x x x x x

· RIE instruction (16 bits)

· RIE instruction (32 bits)

(x = Don’ t care, either 0 or 1)

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 144 of 425
Mar 05, 2015

7.2 Basic Instructions

7.2.1 Overview of Basic Instructions

(1) Load instructions

Execute data transfer from memory to register. The following instructions (mnemonics) are
provided.

(a) LD instructions

 LD.B : Load byte

 LD.BU : Load byte unsigned

 LD.DW : Load double word

 LD.H : Load halfword

 LD.HU : Load halfword unsigned

 LD.W : Load word

(b) SLD instructions

 SLD.B : Short format load byte

 SLD.BU : Short format load byte unsigned

 SLD.H : Short format load halfword

 SLD.HU : Short format load halfword unsigned

 SLD.W : Short format load word

(2) Store instructions

Execute data transfer from register to memory. The following instructions (mnemonics) are
provided.

(a) ST instructions

 ST.B : Store byte

 ST.DW : Store double word

 ST.H : Store halfword

 ST.W : Store word

(b) SST instructions

 SST.B : Short format store byte

 SST.H : Short format store halfword

 SST.W : Short format store word

(3) Multiply instructions

Execute multiplication in one clock cycle with the on-chip hardware multiplier. The following
instructions (mnemonics) are provided.

 MUL : Multiply word

 MULH : Multiply halfword

 MULHI : Multiply halfword immediate

 MULU : Multiply word unsigned

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 145 of 425
Mar 05, 2015

(4) Multiply-accumulate instructions

After a multiplication operation, a value is added to the result. The following instructions

(mnemonics) are available.

 MAC : Multiply and add word

 MACU : Multiply and add word unsigned

(5) Arithmetic instructions

Add, subtract, transfer, or compare data between registers. The following instructions

(mnemonics) are provided.

 ADD : Add

 ADDI : Add immediate

 CMP : Compare

 MOV : Move

 MOVEA : Move effective address

 MOVHI : Move high halfword

 SUB : Subtract

 SUBR : Subtract reverse

(6) Conditional arithmetic instructions

Add and subtract operations are performed under specified conditions. The following

instructions (mnemonics) are available.

 ADF : Add on condition flag

 SBF : Subtract on condition flag

(7) Saturated operation instructions

Execute saturated addition and subtraction. If the operation result exceeds the maximum

positive value (7FFF FFFFH), 7FFF FFFFH returns. If the operation result exceeds the

maximum negative value (8000 0000H), 8000 0000H returns. The following instructions

(mnemonics) are provided.

 SATADD : Saturated add

 SATSUB : Saturated subtract

 SATSUBI : Saturated subtract immediate

 SATSUBR : Saturated subtract reverse

(8) Logical instructions

Include logical operation instructions. The following instructions (mnemonics) are provided.

 AND : AND

 ANDI : AND immediate

 NOT : NOT

 OR : OR

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 146 of 425
Mar 05, 2015

 ORI : OR immediate

 TST : Test

 XOR : Exclusive OR

 XORI : Exclusive OR immediate

(9) Data manipulation instructions

Include data manipulation instructions and shift instructions with arithmetic shift and logical

shift. Operands can be shifted by multiple bits in one clock cycle through the on-chip barrel

shifter. The following instructions (mnemonics) are provided.

 BINS : Bitfield insert

 BSH : Byte swap halfword

 BSW : Byte swap word

 CMOV : Conditional move

 HSH : Halfword swap halfword

 HSW : Halfword swap word

 ROTL : Rotate left

 SAR : Shift arithmetic right

 SASF : Shift and set flag condition

 SETF : Set flag condition

 SHL : Shift logical left

 SHR : Shift logical right

 SXB : Sign-extend byte

 SXH : Sign-extend halfword

 ZXB : Zero-extend byte

 ZXH : Zero-extend halfword

(10) Bit search instructions

The specified bit values are searched among data stored in registers.

 SCH0L : Search zero from left

 SCH0R : Search zero from right

 SCH1L : Search one from left

 SCH1R : Search one from right

(11) Divide instructions

Execute division operations. Regardless of values stored in a register, the operation can be

performed using a constant number of steps. The following instructions (mnemonics) are

provided.

 DIV : Divide word

 DIVH : Divide halfword

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 147 of 425
Mar 05, 2015

 DIVHU : Divide halfword unsigned

 DIVU : Divide word unsigned

(12) High-speed divide instructions

These instructions perform division operations. The number of valid digits in the quotient is

determined in advanced from values stored in a register, so the operation can be performed

using a minimum number of steps. The following instructions (mnemonics) are provided.

 DIVQ : Divide word quickly

 DIVQU : Divide word unsigned quickly

(13) Branch instructions

Include unconditional branch instructions (JARL, JMP, and JR) and a conditional branch

instruction (Bcond) which accommodates the flag status to switch controls. Program control

can be transferred to the address specified by a branch instruction. The following instructions

(mnemonics) are provided.

 Bcond (BC, BE, BGE, BGT, BH, BL, BLE, BLT, BN, BNC, BNE, BNH, BNL, BNV,

BNZ, BP, BR, BSA, BV, BZ) : Branch on condition code

 JARL : Jump and register link

 JMP : Jump register

 JR : Jump relative

(14) Loop instruction

 LOOP : Loop

(15) Bit manipulation instructions

Execute logical operation on memory bit data. Only a specified bit is affected. The following

instructions (mnemonics) are provided.

 CLR1 : Clear bit

 NOT1 : Not bit

 SET1 : Set bit

 TST1 : Test bit

(16) Special instructions

Include instructions not provided in the categories of instructions described above. The

following instructions (mnemonics) are provided.

 CALLT : Call with table look up

 CAXI : Compare and exchange for interlock

 CLL : Clear load link

 CTRET : Return from CALLT

 DI : Disable interrupt

 DISPOSE : Function dispose

 EI : Enable interrupt

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 148 of 425
Mar 05, 2015

 EIRET : Return from trap or interrupt

 FERET : Return from trap or interrupt

 FETRAP : Software trap

 HALT : Halt

 LDSR : Load system register

 LDL.W : Load linked word

 NOP : No operation

 POPSP : Pop registers from stack

 PREPARE : Function prepare

 PUSHSP : Push registers from stack

 RIE : Reserved instruction exception

 SNOOZE : Snooze

 STSR : Store system register

 STC.W : Store conditional word

 SWITCH : Jump with table look up

 SYNCE : Synchronize exceptions

 SYNCI : Synchronize memory for instruction writers

 SYNCM : Synchronize memory

 SYNCP : Synchronize pipeline

 SYSCALL : System call

 TRAP : Trap

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 149 of 425
Mar 05, 2015

7.2.2 Basic Instruction Set

This section details each instruction, dividing each mnemonic (in alphabetical order) into the

following items.

 Instruction format : Indicates how the instruction is written and its operand(s) (for

symbols, see Table 7.1).

 Operation : Indicates the function of the instruction (for symbols, see Table 7.2).

 Format : Indicates the instruction format (see Section 7.1, Opcodes and

Instruction Formats).

 Opcode : Indicates the bit field of the instruction opcode (for symbols, see Table 7.3).

 Flag : Indicates the change of flags of PSW (program status word) after the instruction

execution. “0” is to clear (reset), “1” to set, and “—” to remain unchanged.

 Description : Describes the operation of the instruction.

 Supplement : Provides supplementary information on the instruction.

 Caution : Provides precautionary notes.

Table 7.1 Conventions of Instruction Format

Symbol Meaning

reg1 General-purpose register (as source register)

reg2 General-purpose register (primarily as destination register with some as
source registers)

reg3 General-purpose register (primarily used to store the remainder of a division
result and/or the higher 32 bits of a multiplication result)

bit#3 3-bit data to specify bit number

imm -bit immediate data

disp -bit displacement data

regID System register number

selID System register group number

vector Data to specify vector (indicates the bit size)

cond Condition code (see Table 7.4 Condition Codes)

cccc 4-bit data to specify condition code (see Table 7.4 Condition Codes)

sp Stack pointer (r3)

ep Element pointer (r30)

list12 Lists of registers

rh-rt Indicates multiple general-purpose registers, from the general-purpose
register indicated by rh to the general-purpose register indicated by rt.

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 150 of 425
Mar 05, 2015

Table 7.2 Conventions of Operation

Symbol Meaning

← Assignment

GR [a] Value stored in general-purpose register a

SR [a, b] Value stored in system register (RegID = a, SelID = b)

(n:m) Bit selection. Select from bit n to bit m.

zero-extend (n) Zero-extends “n” to word

sign-extend (n) Sign-extends “n” to word

load-memory (a, b) Reads data of size b from address a

store-memory (a, b, c) Writes data b of size c to address a

extract-bit (a, b) Extracts value of bit b of data a

set-bit (a, b) Sets value of bit b of data a

not-bit (a, b) Inverts value of bit b of data a

clear-bit (a, b) Clears value of bit b of data a

saturated (n) Performs saturated processing of “n.”
If n > 7FFF FFFFH, n = 7FFF FFFFH.
If n < 8000 0000H, n = 8000 0000H.

result Outputs results on flag

Byte Byte (8 bits)

Halfword Halfword (16 bits)

Word Word (32 bits)

== Comparison (true upon a match)

!= Comparison (true upon a mismatch)

+ Add

– Subtract

|| Bit concatenation

× Multiply

÷ Divide

% Remainder of division results

AND AND

OR OR

XOR Exclusive OR

NOT Logical negate

logically shift left by Logical left-shift

logically shift right by Logical right-shift

arithmetically shift right by Arithmetic right-shift

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 151 of 425
Mar 05, 2015

Table 7.3 Conventions of Opcode

Symbol Meaning

R 1-bit data of code specifying reg1 or regID

r 1-bit data of code specifying reg2

w 1-bit data of code specifying reg3

D 1-bit data of displacement (indicates higher bits of displacement)

d 1-bit data of displacement

I 1-bit data of immediate (indicates higher bits of immediate)

i 1-bit data of immediate

V 1-bit data of code specifying vector (indicates higher bits of vector)

v 1-bit data of code specifying vector

cccc 4-bit data for condition code specification (See Table 7.4 Condition Codes)

bbb 3-bit data for bit number specification

L 1-bit data of code specifying general-purpose register in register list

S 1-bit data of code specifying EIPC/FEPC, EIPSW/FEPSW in register list

P 1-bit data of code specifying PSW in register list

Table 7.4 Condition Codes

Condition Code (cccc) Condition Name Condition Formula

0000 V OV = 1

1000 NV OV = 0

0001 C/L CY = 1

1001 NC/NL CY = 0

0010 Z Z = 1

1010 NZ Z = 0

0011 NH (CY or Z) = 1

1011 H (CY or Z) = 0

0100 S/N S = 1

1100 NS/P S = 0

0101 T Always (Unconditional)

1101 SA SAT = 1

0110 LT (S xor OV) = 1

1110 GE (S xor OV) = 0

0111 LE ((S xor OV) or Z) = 1

1111 GT ((S xor OV) or Z) = 0

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 152 of 425
Mar 05, 2015

[Instruction format] (1) ADD reg1, reg2

(2) ADD imm5, reg2

[Operation] (1) GR [reg2] ← GR [reg2] + GR [reg1]

(2) GR [reg2] ← GR [reg2] + sign-extend (imm5)

[Format] (1) Format I

(2) Format II

[Opcode]

[Flags]

[Description] (1) Adds the word data of general-purpose register reg1 to the word data of general-purpose

register reg2 and stores the result in general-purpose register reg2. General-purpose

register reg1 is not affected.

(2) Adds the 5-bit immediate data, sign-extended to word length, to the word data of

general-purpose register reg2 and stores the result in general-purpose register reg2.

<Arithmetic instruction>
Add register/immediate

ADD
Add

15 0

(1) rrrrr001110RRRRR

15 0

(2) rrrrr010010iiiii

CY “1” if a carry occurs from MSB; otherwise, “0”.

OV “1” if overflow occurs; otherwise, “0”.

S “1” if the operation result is negative; otherwise, “0”.

Z “1” if the operation result is “0”; otherwise, “0”.

SAT —

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 153 of 425
Mar 05, 2015

[Instruction format] ADDI imm16, reg1, reg2

[Operation] GR [reg2] ← GR [reg1] + sign-extend (imm16)

[Format] Format VI

[Opcode]

[Flags]

[Description] Adds the 16-bit immediate data, sign-extended to word length, to the word data of general-

purpose register reg1 and stores the result in general-purpose register reg2. General-purpose

register reg1 is not affected.

<Arithmetic instruction>
Add immediate

ADDI
Add immediate

15 031 16

rrrrr110000RRRRR iiiiiiiiiiiiiiii

CY “1” if a carry occurs from MSB; otherwise, “0”.

OV “1” if overflow occurs; otherwise, “0”.

S “1” if the operation result is negative; otherwise, “0”.

Z “1” if the operation result is “0”; otherwise “0”.

SAT —

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 154 of 425
Mar 05, 2015

[Instruction format] ADF cccc, reg1, reg2, reg3

[Operation] if conditions are satisfied

then GR [reg3] ← GR [reg1] + GR [reg2] +1

else GR [reg3] ← GR [reg1] + GR [reg2] +0

[Format] Format XI

[Opcode]

[Flags]

[Description] Adds 1 to the result of adding the word data of general-purpose register reg1 to the word data

of general-purpose register reg2 and stores the result of addition in general-purpose register

reg3, if the condition specified as condition code “cccc” is satisfied.

If the condition specified as condition code “cccc” is not satisfied, the word data of general-

purpose register reg1 is added to the word data of general-purpose register reg2, and the result

is stored in general-purpose register reg3.

General-purpose registers reg1 and reg2 are not affected. Designate one of the condition

codes shown in the following table as [cccc]. (cccc is not equal to 1101.)

<Conditional Operation Instructions>
Add on condition flag

ADF
Conditional add

15 031 16

rrrrr111111RRRRR wwwww011101cccc0

CY “1” if a carry occurs from MSB; otherwise, “0”.

OV “1” if overflow occurs; otherwise, “0”.

S “1” if the operation result is negative; otherwise, “0”.

Z “1” if the operation result is “0”; otherwise, “0”.

SAT —

Condition
Code Name Condition Formula

Condition
Code Name Condition Formula

0000 V OV = 1 0100 S/N S = 1

1000 NV OV = 0 1100 NS/P S = 0

0001 C/L CY = 1 0101 T Always
(Unconditional)

1001 NC/NL CY = 0 0110 LT (S xor OV) = 1

0010 Z Z = 1 1110 GE (S xor OV) = 0

1010 NZ Z = 0 0111 LE ((S xor OV) or Z) = 1

0011 NH (CY or Z) = 1 1111 GT ((S xor OV) or Z) = 0

1011 H (CY or Z) = 0 (1101) Setting prohibited

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 155 of 425
Mar 05, 2015

[Instruction format] AND reg1, reg2

[Operation] GR [reg2] ← GR [reg2] AND GR [reg1]

[Format] Format I

[Opcode]

[Flags]

[Description] ANDs the word data of general-purpose register reg2 with the word data of general-purpose

register reg1 and stores the result in general-purpose register reg2. General-purpose register

reg1 is not affected.

<Logical instruction>
AND

AND
AND

15 0

rrrrr001010RRRRR

CY —

OV 0

S “1” if operation result word data MSB is “1”; otherwise, “0”.

Z “1” if the operation result is “0”; otherwise, “0”.

SAT —

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 156 of 425
Mar 05, 2015

[Instruction format] ANDI imm16, reg1, reg2

[Operation] GR [reg2] ← GR [reg1] AND zero-extend (imm16)

[Format] Format VI

[Opcode]

[Flags]

[Description] ANDs the word data of general-purpose register reg1 with the 16-bit immediate data, zero-

extended to word length, and stores the result in general-purpose register reg2. General-

purpose register reg1 is not affected.

<Logical instruction>
AND immediate

ANDI
AND immediate

15 031 16

rrrrr110110RRRRR iiiiiiiiiiiiiiii

CY —

OV 0

S “1” if operation result word data MSB is “1”; otherwise, “0”.

Z “1” if the operation result is “0”; otherwise, “0”.

SAT —

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 157 of 425
Mar 05, 2015

[Instruction format] (1) Bcond disp9

(2) Bcond disp17

[Operation] (1) if conditions are satisfied

then PC ← PC + sign-extend (disp9)

(2) if conditions are satisfied

then PC ← PC + sign-extend (disp17)

[Format] (1) Format III

(2) Format VII

[Opcode]

dddddddd is the higher 8 bits of disp9.

cccc is the condition code of the condition indicated by cond (see Table 7.5, Bcond

Instructions).

dddddddddddddddd is the higher 16 bits of disp17.

cccc is the condition code of the condition indicated by cond. (For details, see Table 7.5,

Bcond Instructions).

[Flags]

<Branch instruction>
Branch on condition code with 9-bit displacement

Bcond
Conditional branch

15 0

(1) ddddd1011dddcccc

15 0 31 16

(2) 00000111111DCCCC ddddddddddddddd1

CY —

OV —

S —

Z —

SAT —

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 158 of 425
Mar 05, 2015

[Description] (1) Checks each PSW flag specified by the instruction and branches if a condition is met;

otherwise, executes the next instruction. The PC of branch destination is the sum of the

current PC value and the 9-bit displacement (= 8-bit immediate data shifted by 1 and

sign-extended to word length).

(2) Checks each PSW flag specified by the instruction and then adds the result of logically shifting the

16-bit immediate data 1 bit to the left and sign-extending it to word length to the current PC value

if the conditions are satisfied. Control is then transferred. If the conditions are not satisfied, the

system continues to the next instruction. BR (0101) cannot be specified as the condition code.

[Supplement] Bit 0 of the 9-bit displacement is masked to “0”. The current PC value used for calculation is

the address of the first byte of this instruction. The displacement value being “0” signifies that

the branch destination is the instruction itself.

Table 7.5 Bcond Instructions

Instruction
Condition Code
(cccc) Flag Status Branch Condition

Signed
integer

BGE 1110 (S xor OV) = 0 Greater than or equal to signed

BGT 1111 ((S xor OV) or Z) = 0 Greater than signed

BLE 0111 ((S xor OV) or Z) = 1 Less than or equal to signed

BLT 0110 (S xor OV) = 1 Less than signed

Unsigned
integer

BH 1011 (CY or Z) = 0 Higher (Greater than)

BL 0001 CY = 1 Lower (Less than)

BNH 0011 (CY or Z) = 1 Not higher (Less than or equal)

BNL 1001 CY = 0 Not lower (Greater than or equal)

Common BE 0010 Z = 1 Equal

BNE 1010 Z = 0 Not equal

Others BC 0001 CY = 1 Carry

BF 1010 Z = 0 False

BN 0100 S = 1 Negative

BNC 1001 CY = 0 No carry

BNV 1000 OV = 0 No overflow

BNZ 1010 Z = 0 Not zero

BP 1100 S = 0 Positive

BR 0101 — Always (unconditional)
Cannot be specified when using
instruction format (2).

BSA 1101 SAT = 1 Saturated

BT 0010 Z = 1 True

BV 0000 OV = 1 Overflow

BZ 0010 Z = 1 Zero

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 159 of 425
Mar 05, 2015

CAUTIONS

1. The branch condition loses its meaning if a conditional branch instruction is executed on
a signed integer (BGE, BGT, BLE, or BLT) when the saturated operation instruction sets
“1” to the SAT flag. In normal operations, if an overflow occurs, the S flag is inverted (0 →
1 or 1 → 0). This is because the result is a negative value if it exceeds the maximum
positive value and it is a positive value if it exceeds the maximum negative value.
However, when a saturated operation instruction is executed, and if the result exceeds
the maximum positive value, the result is saturated with a positive value; if the result
exceeds the maximum negative value, the result is saturated with a negative value.
Unlike the normal operation, the S flag is not inverted even if an overflow occurs.

2. For Bcond disp17 (instruction format (2)), BR (0101) cannot be specified as the condition
code.

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 160 of 425
Mar 05, 2015

[Instruction format] BINS reg1, pos, width, reg2

[Operation] GR [reg2] ← GR[reg2](31:width+pos) || GR[reg1](width-1:0) || GR[reg2](pos-1:0)

[Format] Format IX

[Opcode]

Most significant bit of field to be updated: msb = pos+width-1

Least significant bit of field to be updated: lsb = pos

MMMM = lower 4 bits of msb, KLLL = lower 4 bits of lsb

[Flags]

[Description] Loads the lower width bits in general-purpose register reg1 and stores them from the bit

position bit pos + width –1 in the specified field in general-purpose register reg2 in bit pos.

This instruction does not affect any fields in general-purpose register reg2 except the

specified field, nor does it affect general-purpose register reg1.

[Supplement] The most significant bit (msb: bit pos + width – 1) in the field in general-purpose register reg2

to be updated and the least significant bit (lsb: bit pos) in this field are specified by using,

respectively the lower 4 bits, the MMMM and KLLL fields in the BINS instruction.

The lower 3 bits of the sub-opcode field (bits 23 to 21) differ depending on the msb and lsb

values.

The operation is undefined if msb < lsb.

<Data manipulation instruction>
Bitfield Insert

BINS
Insert bit in register

15 0 31 16

rrrrr111111RRRRR MMMMK0001001LLL0 (msb 16, lsb 16)

15 0 31 16

rrrrr111111RRRRR MMMMK0001011LLL0 (msb 16, lsb < 16)

15 0 31 16

rrrrr111111RRRRR MMMMK0001101LLL0 (msb < 16, lsb < 16)

CY —

OV 0

S “1” if operation result word data MSB is “1”; otherwise, “0”.

Z “1” if operation result is “0”; otherwise, “0”.

SAT —

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 161 of 425
Mar 05, 2015

[Instruction format] BSH reg2, reg3

[Operation] GR [reg3] ← GR [reg2] (23:16) || GR [reg2] (31:24) || GR [reg2] (7:0) || GR [reg2] (15:8)

[Format] Format XII

[Opcode]

[Flags]

[Description] Executes endian swap.

<Data manipulation instruction>
Byte swap halfword

BSH
Byte swap of halfword data

15 031 16

rrrrr11111100000 wwwww01101000010

CY “1” when there is at least one byte value of zero in the lower halfword of the operation
result; otherwise; “0”.

OV 0

S “1” if operation result word data MSB is “1”; otherwise, “0”.

Z “1” when lower halfword of operation result is “0”; otherwise, “0”.

SAT —

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 162 of 425
Mar 05, 2015

[Instruction format] BSW reg2, reg3

[Operation] GR [reg3] ← GR [reg2] (7:0) || GR [reg2] (15:8) || GR [reg2] (23:16) || GR [reg2] (31:24)

[Format] Format XII

[Opcode]

[Flags]

[Description] Executes endian swap.

<Data manipulation instruction>
Byte swap word

BSW
Byte swap of word data

15 031 16

rrrrr11111100000 wwwww01101000000

CY “1” when there is at least one byte value of zero in the word data of the operation result;
otherwise; “0”.

OV 0

S “1” if operation result word data MSB is “1”; otherwise, “0”.

Z “1” if operation result word data is “0”; otherwise, “0”.

SAT —

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 163 of 425
Mar 05, 2015

[Instruction format] CALLT imm6

[Operation] CTPC ← PC + 2 (return PC)

CTPSW(4:0) ← PSW(4:0)

adr ← CTBP + zero-extend (imm6 logically shift left by 1)*1

PC ← CTBP + zero-extend (Load-memory (adr, Half-word))

Caution 1. An MDP exception might occur depending on the result of address calculation.

[Format] Format II

[Opcode]

[Flags]

[Description] The following steps are taken.

(1) Transfers the contents of both return PC and PSW to CTPC and CTPSW.

(2) Adds the CTBP value to the 6-bit immediate data, logically left-shifted by 1, and zero-

extended to word length, to generate a 32-bit table entry address.

(3) Loads the halfword entry data of the address generated in step (2) and zero-extend to

word length.

(4) Adds the CTBP value to the data generated in step (3) to generate a 32-bit target

address.

(5) Jumps to the target address.

<Special instruction>
Call with table look up

CALLT
Subroutine call with table look up

15 0

0000001000iiiiii

CY —

OV —

S —

Z —

SAT —

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 164 of 425
Mar 05, 2015

CAUTIONS

1. When an exception occurs during CALLT instruction execution, the execution is aborted
after the end of the read/write cycle.

2. Memory protection is performed when executing a memory read operation to read the
CALLT instruction table. When memory protection is enabled, the data for generating a
target address from a table allocated in an area to which access from a user program is
prohibited cannot be loaded

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 165 of 425
Mar 05, 2015

[Instruction format] CAXI [reg1], reg2, reg3

[Operation] adr ← GR[reg1]*1

token ← Load-memory (adr, Word)

result ← GR[reg2] – token

If result == 0

then Store-memory (adr, GR[reg3], Word)

GR[reg3] ← token

else Store-memory (adr, token,Word)

GR[reg3] ← token

Caution 1. An MAE, or MDP exception might occur depending on the result of address calculation.

[Format] Format XI

[Opcode]

[Flags]

[Description] Word data is read from the specified address and compared with the word data in general-

purpose register reg2, and the result is indicated by flags in the PSW. Comparison is

performed by subtracting the read word data from the word data in general-purpose register

reg2. If the comparison result is “0”, word data in general-purpose register reg3 is stored in

the generated address, otherwise the read word data is stored in the generated address.

Afterward, the read word data is stored in general-purpose register reg3. General-purpose

registers reg1 and reg2 are not affected.

<Special instruction>
Compare and exchange for interlock

CAXI
Comparison and swap

15 031 16

rrrrr111111RRRRR wwwww00011101110

CY “1” if a borrow occurs in the result operation; otherwise, “0”

OV “1” if overflow occurs in the result operation; otherwise, “0”

S “1” if result is negative; otherwise, “0”

Z “1” if result is 0; otherwise, “0”

SAT —

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 166 of 425
Mar 05, 2015

CAUTIONS

1. This instruction provides an atomic guarantee aimed at exclusive control, and during the
period between read and write operations, the target address is not affected by access
due to any other cause.

2. The CAXI instruction is included for backward compatibility. If you are using a multi-core
system and require an atomic guarantee, use the LDL.W and STC.W instructions.

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 167 of 425
Mar 05, 2015

[Instruction format] CLL

[Operation] Llbit ← 0

[Format] Format X

[Opcode]

[Flags]

[Description] The thread link generated by the LDL.W instruction is deleted.

For details about the link operation between the thread and core, see Section 5.3.2,

Performing Mutual Exclusion by Using the LDL.W and STC.W Instructions.

CAUTION

In systems such as a multi-core system, how the CLL instruction operates depends on the
system configuration of the product. For details, see the hardware manual of the product used.

<Special instruction>
Clear Load Link

CLL
Clear atomic manipulation link

15 031 16

1111111111111111 1111000101100000

CY —

OV —

S —

Z —

SAT —

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 168 of 425
Mar 05, 2015

[Instruction format] (1) CLR1 bit#3, disp16 [reg1]

(2) CLR1 reg2, [reg1]

[Operation] (1) adr ← GR [reg1] + sign-extend (disp16)*1

token ← Load-memory (adr, Byte)

Z flag ← Not (extract-bit (token, bit#3))

token ← clear-bit (token, bit#3)

Store-memory (adr, token, Byte)

(2) adr ← GR [reg1]*1

token ← Load-memory (adr, Byte)

Z flag ← Not (extract-bit (token, reg2))

token ← clear-bit (token, reg2)

Store-memory (adr, token, Byte)

Note 1. An MDP exception might occur depending on the result of address calculation.

[Format] (1) Format VIII

(2) Format IX

[Opcode]

[Flags]

<Bit manipulation instruction>
Clear bit

CLR1
Bit clear

15 0 31 16

(1) 10bbb111110RRRRR dddddddddddddddd

15 0 31 16

(2) rrrrr111111RRRRR 0000000011100100

CY —

OV —

S —

Z “1” if bit specified by operand = “0”, “0” if bit specified by operand = “1”.

SAT —

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 169 of 425
Mar 05, 2015

[Description] (1) Adds the word data of general-purpose register reg1 to the 16-bit displacement data,

sign-extended to word length, to generate a 32-bit address. Byte data is read from the

generated address, then the bits indicated by the 3-bit bit number are cleared (0) and the

data is written back to the original address.

(2) Reads the word data of general-purpose register reg1 to generate a 32-bit address. Byte

data is read from the generated address, the bits indicated by the lower three bits of reg2 are

cleared (0), and the data is written back to the original address.

[Supplement] The Z flag of PSW indicates the status of the specified bit (0 or 1) before this instruction is

executed, and does not indicate the content of the specified bit after this instruction is

executed.

CAUTION

This instruction provides an atomic guarantee aimed at exclusive control, and during the period
between read and write operations, the target address is not affected by access due to any
other cause.

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 170 of 425
Mar 05, 2015

[Instruction format] (1) CMOV cccc, reg1, reg2, reg3

(2) CMOV cccc, imm5, reg2, reg3

[Operation] (1) if conditions are satisfied

then GR [reg3] ← GR [reg1]

else GR [reg3] ← GR [reg2]

(2) if conditions are satisfied

then GR [reg3] ← sign-extended (imm5)

else GR [reg3] ← GR [reg2]

[Format] (1) Format XI

(2) Format XII

[Opcode]

[Flags]

<Data manipulation instruction>
Conditional move

CMOV
Conditional move

15 0 31 16

(1) rrrrr111111RRRRR wwwww011001cccc0

15 0 31 16

(2) rrrrr111111iiiii wwwww011000cccc0

CY —

OV —

S —

Z —

SAT —

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 171 of 425
Mar 05, 2015

[Description] (1) When the condition specified by condition code “cccc” is met, data in general-purpose

register reg1 is transferred to general-purpose register reg3. When that condition is not

met, data in general-purpose register reg2 is transferred to general-purpose register reg3.

Specify one of the condition codes shown in the following table as “cccc”.

(2) When the condition specified by condition code “cccc” is met, 5-bit immediate data sign-

extended to word-length is transferred to general-purpose register reg3. When that

condition is not met, the data in general-purpose register reg2 is transferred to general-

purpose register reg3. Specify one of the condition codes shown in the following table as

“cccc”.

[Supplement] See the description of the SETF instruction.

Condition
Code Name Condition Formula

Condition
Code Name Condition Formula

0000 V OV = 1 0100 S/N S = 1

1000 NV OV = 0 1100 NS/P S = 0

0001 C/L CY = 1 0101 T Always (unconditional)

1001 NC/NL CY = 0 1101 SA SAT = 1

0010 Z Z = 1 0110 LT (S xor OV) = 1

1010 NZ Z = 0 1110 GE (S xor OV) = 0

0011 NH (CY or Z) = 1 0111 LE ((S xor OV) or Z) = 1

1011 H (CY or Z) = 0 1111 GT ((S xor OV) or Z) = 0

Condition
Code Name Condition Formula

Condition
Code Name Condition Formula

0000 V OV = 1 0100 S/N S = 1

1000 NV OV = 0 1100 NS/P S = 0

0001 C/L CY = 1 0101 T Always (unconditional)

1001 NC/NL CY = 0 1101 SA SAT = 1

0010 Z Z = 1 0110 LT (S xor OV) = 1

1010 NZ Z = 0 1110 GE (S xor OV) = 0

0011 NH (CY or Z) = 1 0111 LE ((S xor OV) or Z) = 1

1011 H (CY or Z) = 0 1111 GT ((S xor OV) or Z) = 0

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 172 of 425
Mar 05, 2015

[Instruction format] (1) CMP reg1, reg2

(2) CMP imm5, reg2

[Operation] (1) result ← GR [reg2] – GR [reg1]

(2) result ← GR [reg2] – sign-extend (imm5)

[Format] (1) Format I

(2) Format II

[Opcode]

[Flags]

[Description] (1) Compares the word data of general-purpose register reg2 with the word data of general-

purpose register reg1 and outputs the result through the PSW flags. Comparison is

performed by subtracting the reg1 contents from the reg2 word data. General-purpose

registers reg1 and reg2 are not affected.

(2) Compares the word data of general-purpose register reg2 with the 5-bit immediate data,

sign-extended to word length, and outputs the result through the PSW flags. Comparison

is performed by subtracting the sign-extended immediate data from the reg2 word data.

General-purpose register reg2 is not affected.

<Arithmetic instruction>
Compare register/immediate (5-bit)

CMP
Compare

15 0

(1) rrrrr001111RRRRR

15 0

(2) rrrrr010011iiiii

CY “1” if a borrow occurs from MSB; otherwise, “0”.

OV “1” if overflow occurs; otherwise, “0”.

S “1” if the operation result is negative; otherwise, “0”.

Z “1” if the operation result is “0”; otherwise, “0”.

SAT —

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 173 of 425
Mar 05, 2015

[Instruction format] CTRET

[Operation] PC ← CTPC

PSW(4:0) ← CTPSW(4:0)

[Format] Format X

[Opcode]

[Flags]

[Description] Loads the return PC and PSW (the lower 5 bits) from the appropriate system register and

returns from a routine under CALLT instruction. The following steps are taken:

(1) The return PC and the return PSW (the lower 5 bits) are loaded from the CTPC and

CTPSW.

(2) The values are restored in PC and PSW (the lower 5 bits) and the control is transferred to

the return address.

CAUTION

When the CTRET instruction is executed, only the lower 5 bits of the PSW register are
updated; the higher 27 bits retain their previous values.

<Special instruction>
Return from CALLT

CTRET
Return from subroutine call

15 031 16

0000011111100000 0000000101000100

CY Value read from CTPSW is set.

OV Value read from CTPSW is set.

S Value read from CTPSW is set.

Z Value read from CTPSW is set.

SAT Value read from CTPSW is set.

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 174 of 425
Mar 05, 2015

[Instruction format] DI

[Operation] PSW.ID ← 1 (Disables EI level maskable interrupt)

[Format] Format X

[Opcode]

[Flags]

[Description] Sets “1” to the ID flag of the PSW to disable the acknowledgement of EI level maskable

exceptions after the execution of this instruction.

[Supplement] Overwrite of flags in the PSW by this instruction becomes valid as of the next instruction.

If the MCTL.UIC bit has been cleared to 0, this instruction is a supervisor-level instruction.

If the MCTL.UIC bit has been set to 1, this instruction can always be executed.

<Special instruction>
Disable interrupt

DI
Disable EI level maskable exception

15 031 16

0000011111100000 0000000101100000

CY —

OV —

S —

Z —

SAT —

ID 1

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 175 of 425
Mar 05, 2015

[Instruction format] (1) DISPOSE imm5, list12

(2) DISPOSE imm5, list12, [reg1]

[Operation] (1) tmp ← sp + zero-extend (imm5 logically shift by 2)

foreach (all regs in list12) {

adr ← tmp*1, *2

GR[reg in list12] ← Load-memory (adr, Word)

tmp ← tmp + 4

}

sp ← tmp

(2) tmp ← sp + zero-extend (imm5 logically shift by 2)

foreach (all regs in list12) {

adr ← tmp*1, *2

GR[reg in list12] ← Load-memory (adr, Word)

tmp ← tmp + 4

}

PC ← GR[reg1]

sp ← tmp

Note 1. An MDP exception might occur depending on the result of address calculation.

Note 2. When loading to memory, the lower 2 bits of adr are masked to 0.

[Format] Format XIII

[Opcode]

RRRRR ≠ 00000 (Do not specify r0 for reg1.)

The values of LLLLLLLLLLLL are the corresponding bit values shown in register list

“list12” (for example, the “L” at bit 21 of the opcode corresponds to the value of bit21 in list12).

list12 is a 32-bit register list, defined as follows.

<Special instruction>
Function dispose

DISPOSE
Stack frame deletion

15 0 31 16

(1) 0000011001iiiiiL LLLLLLLLLLL00000

15 0 31 16

(2) 0000011001iiiiiL LLLLLLLLLLLRRRRR

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 176 of 425
Mar 05, 2015

Bits 31 to 21 and bit 0 correspond to general-purpose registers (r20 to r31), so that when any

of these bits is set (1), it specifies a corresponding register operation as a processing target.

For example, when r20 and r30 are specified, the values in list12 appear as shown below

(register bits that do not correspond, i.e., bits 20 to 1 are set as “Don’t care”).

 When all of the register’s non-corresponding bits are “0”: 0800 0001H

 When all of the register’s non-corresponding bits are “1”: 081F FFFFH

[Flags]

[Description] (1) Adds the 5-bit immediate data, logically left-shifted by 2 and zero-extended to word

length, to sp; returns to general-purpose registers listed in list12 by loading the data from

the address specified by sp and adds 4 to sp.

(2) Adds the 5-bit immediate data, logically left-shifted by 2 and zero-extended to word

length, to sp; returns to general-purpose registers listed in list12 by loading the data from

the address specified by sp and adds 4 to sp; and transfers the control to the address

specified by general-purpose register reg1.

[Supplement] General-purpose registers in list12 are loaded in descending order (r31, r30, ... r20). The

imm5 restores a stack frame for automatic variables and temporary data. The lower 2 bits of

the address specified by sp is always masked to “0” and aligned to the word boundary.

CAUTIONS

1. If an exception occurs while this instruction is being executed, execution of the instruction
might be stopped after the read/write cycle and the register value write operation are
completed, but sp will retain its original value from before the start of execution. The
instruction will be executed again later, after a return from the exception.

2. For instruction format (2) DISPOSE imm5, list12, [reg1], do not specify r0 for reg1.

31 30 29 28 27 26 25 24 23 22 21 20 … 1 0

r24 r25 r26 r27 r20 r21 r22 r23 r28 r29 r31 — r30

CY —

OV —

S —

Z —

SAT —

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 177 of 425
Mar 05, 2015

[Instruction format] DIV reg1, reg2, reg3

[Operation] GR [reg2] ← GR [reg2] GR [reg1]

GR [reg3] ← GR [reg2] % GR [reg1]

[Format] Format XI

[Opcode]

[Flags]

[Description] Divides the word data of general-purpose register reg2 by the word data of general-purpose

register reg1 and stores the quotient to general-purpose register reg2 with the remainder set to

general-purpose register reg3. General-purpose register reg1 is not affected. When division by

zero occurs, an overflow results and all operation results except for the OV flag are undefined.

[Supplement] Overflow occurs when the maximum negative value (8000 0000H) is divided by –1 with the

quotient = 8000 0000H and when the data is divided by 0 with quotient being undefined.

If reg2 and reg3 are the same register, the remainder is stored in that register.

When an exception occurs during the DIV instruction execution, the execution is aborted to

process the exception. The execution resumes at the original instruction address upon

returning from the exception. General-purpose register reg1 and general-purpose register reg2

retain their values prior to execution of this instruction.

CAUTION

If general-purpose registers reg2 and reg3 are specified as being the same register, the
operation result quotient is not stored in reg2, so the flag is undefined.

<Divide instruction>
Divide word

DIV
Division of (signed) word data

15 031 16

rrrrr111111RRRRR wwwww01011000000

CY —

OV “1” if overflow occurs; otherwise, “0”

S “1” if the operation result quotient is negative; otherwise, “0”.

Z “1” if the operation result quotient is “0”; otherwise, “0”.

SAT —

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 178 of 425
Mar 05, 2015

[Instruction format] (1) DIVH reg1, reg2

(2) DIVH reg1, reg2, reg3

[Operation] (1) GR [reg2] ← GR [reg2] sign-extend (GR [reg1] (15:0))

(2) GR [reg2] ← GR [reg2] sign-extend (GR [reg1] (15:0))

GR [reg3] ← GR [reg2] % sign-extend (GR [reg1] (15:0))

[Format] (1) Format I

(2) Format XI

[Opcode]

RRRRR ≠ 00000 (Do not specify r0 for reg1.)

rrrrr ≠ 00000 (Do not specify r0 for reg2.)

[Flags]

[Description] (1) Divides the word data of general-purpose register reg2 by the lower halfword data of

general-purpose register reg1 and stores the quotient to general-purpose register reg2.

General-purpose register reg1 is not affected. When division by zero occurs, an overflow

results and all operation results except for the OV flag are undefined.

(2) Divides the word data of general-purpose register reg2 by the lower halfword data of

general-purpose register reg1 and stores the quotient to general-purpose register reg2

with the remainder set to general-purpose register reg3. General-purpose register reg1 is

not affected. When division by zero occurs, an overflow results and all operation results

except for the OV flag are undefined.

<Divide instruction>
Divide halfword

DIVH
Division of (signed) halfword data

15 0

(1) rrrrr000010RRRRR

15 0 31 16

(2) rrrrr111111RRRRR wwwww01010000000

CY —

OV “1” if overflow occurs; otherwise, “0”.

S “1” if the operation result quotient is negative; otherwise, “0”.

Z “1” if the operation result quotient is “0”; otherwise, “0”.

SAT —

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 179 of 425
Mar 05, 2015

[Supplement] (1) The remainder is not stored. Overflow occurs when the maximum negative value

(8000 0000H) is divided by –1 with the quotient = 8000 0000H and when the data is

divided by 0 with quotient being undefined.

When an exception occurs during the DIVH instruction execution, the execution is

aborted to process the exception. General-purpose register reg1 and general-purpose

register reg2 retain their values prior to execution of this instruction.

(2) Overflow occurs when the maximum negative value (8000 0000H) is divided by –1 with

the quotient = 8000 0000H and when the data is divided by 0 with quotient being

undefined.

If reg2 and reg3 are the same register, the remainder is stored in that register.

When an exception occurs during the DIVH instruction execution, the execution is

aborted to process the exception. The execution resumes at the original instruction

address upon returning from the exception. General-purpose register reg1 and general-

purpose register reg2 retain their values prior to execution of this instruction.

CAUTIONS

1. If general-purpose registers reg2 and reg3 are specified as being the same register, the
operation result quotient is not stored in reg2, so the flag is undefined.

2. Do not specify r0 as reg1 and reg2 for DIVH reg1 and reg2 in instruction format (1).

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 180 of 425
Mar 05, 2015

[Instruction format] DIVHU reg1, reg2, reg3

[Operation] GR [reg2] ← GR [reg2] zero-extend (GR [reg1] (15:0))

GR [reg3] ← GR [reg2] % zero-extend (GR [reg1] (15:0))

[Format] Format XI

[Opcode]

[Flags]

[Description] Divides the word data of general-purpose register reg2 by the lower halfword data of general-

purpose register reg1 and stores the quotient to general-purpose register reg2 with the

remainder set to general-purpose register reg3. General-purpose register reg1 is not affected.

When division by zero occurs, an overflow results and all operation results except for the OV

flag are undefined.

[Supplement] Overflow occurs by division by zero (with the operation result being undefined).

If reg2 and reg3 are the same register, the remainder is stored in that register.

When an exception occurs during the DIVHU instruction execution, the execution is aborted

to process the exception. The execution resumes at the original instruction address upon

returning from the exception. General-purpose register reg1 and general-purpose register reg2

retain their values prior to execution of this instruction.

CAUTION

If general-purpose registers reg2 and reg3 are specified as being the same register, the
operation result quotient is not stored in reg2, so the flag is undefined.

<Divide instruction>
Divide halfword unsigned

DIVHU
Division of (unsigned) halfword data

15 031 16

rrrrr111111RRRRR wwwww01010000010

CY —

OV “1” if overflow occurs; otherwise, “0”.

S “1” when the operation result quotient word data is “1”; otherwise, “0”

Z “1” if the operation result quotient is “0”; otherwise, “0”.

SAT —

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 181 of 425
Mar 05, 2015

[Instruction format] DIVQ reg1, reg2, reg3

[Operation] GR [reg2] ← GR [reg2] GR [reg1]

GR [reg3] ← GR [reg2] % GR [reg1]

[Format] Format XI

[Opcode]

[Flags]

[Description] Divides the word data in general-purpose register reg2 by the word data in general-purpose

register reg1, stores the quotient in reg2, and stores the remainder in general-purpose register

reg3. General-purpose register reg1 is not affected.

The minimum number of steps required for division is determined from the values in reg1 and

reg2, then this operation is executed. When division by zero occurs, an overflow results and

all operation results except for the OV flag are undefined.

[Supplement] (1) Overflow occurs when the maximum negative value (8000 0000H) is divided by 1 (with

the quotient = 8000 0000H) and when the data is divided by 0 with the quotient being

undefined.

If reg2 and reg3 are the same register, the remainder is stored in that register.

When an exception occurs during execution of this instruction, the execution is aborted.

After exception handling is completed, the execution resumes at the original instruction

address when returning from the exception. General-purpose register reg1 and general-

purpose register reg2 retain their values prior to execution of this instruction.

(2) The smaller the difference in the number of valid bits between reg1 and reg2, the smaller

the number of execution cycles. In most cases, the number of instruction cycles is

smaller than that of the ordinary division instruction. If data of 16-bit integer type is

divided by another 16-bit integer type data, the difference in the number of valid bits is

15 or less, and the operation is completed within 20 cycles.

<High-speed divide instructions>
Divide word quickly

DIVQ
Division of (signed) word data (variable steps)

15 031 16

rrrrr111111RRRRR wwwww01011111100

CY —

OV “1” when overflow occurs; otherwise, “0”.

S “1” when operation result quotient is a negative value; otherwise, “0”.

Z “1” when operation result quotient is a “0”; otherwise, “0”.

SAT —

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 182 of 425
Mar 05, 2015

CAUTIONS

1. If general-purpose registers reg2 and reg3 are specified as being the same register, the
operation result quotient is not stored in reg2, so the flag is undefined.

2. For the accurate number of execution cycles, see the appendix.

3. If the number of execution cycles must always be constant to guarantee real-time
features, use the ordinary division instruction.

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 183 of 425
Mar 05, 2015

[Instruction format] DIVQU reg1, reg2, reg3

[Operation] GR [reg2] ← GR [reg2] GR [reg1]

GR [reg3] ← GR [reg2] % GR [reg1]

[Format] Format XI

[Opcode]

[Flags]

[Description] Divides the word data in general-purpose register reg2 by the word data in general-purpose

register reg1, stores the quotient in reg2, and stores the remainder in general-purpose register

reg3. General-purpose register reg1 is not affected.

The minimum number of steps required for division is determined from the values in reg1 and

reg2, then this operation is executed.

When division by zero occurs, an overflow results and all operation results except for the OV

flag are undefined.

[Supplement] (1) An overflow occurs when there is division by zero (the operation result is undefined).

If reg2 and reg3 are the same register, the remainder is stored in that register.

When an exception occurs during execution of this instruction, the execution is aborted.

After exception handling is completed, using the return address as this instruction’s start

address, the execution resumes when returning from the exception. General-purpose

register reg1 and general-purpose register reg2 retain their values prior to execution of

this instruction.

(2) The smaller the difference in the number of valid bits between reg1 and reg2, the smaller

the number of execution cycles. In most cases, the number of instruction cycles is

smaller than that of the ordinary division instruction. If data of 16-bit integer type is

divided by another 16-bit integer type data, the difference in the number of valid bits is

15 or less, and the operation is completed within 20 cycles.

<High-speed divide instructions>
Divide word unsigned quickly

DIVQU
Division of (unsigned) word data (variable steps)

15 031 16

rrrrr111111RRRRR wwwww01011111110

CY —

OV “1” when overflow occurs; otherwise, “0”.

S “1” when operation result quotient is a negative value; otherwise, “0”.

Z “1” when operation result quotient is a “0”; otherwise, “0”.

SAT —

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 184 of 425
Mar 05, 2015

CAUTIONS

1. If general-purpose registers reg2 and reg3 are specified as being the same register, the
operation result quotient is not stored in reg2, so the flag is undefined.

2. For the accurate number of execution cycles, see the appendix.

3. If the number of execution cycles must always be constant to guarantee real-time
features, use the ordinary division instruction.

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 185 of 425
Mar 05, 2015

[Instruction format] DIVU reg1, reg2, reg3

[Operation] GR [reg2] ← GR [reg2] GR [reg1]

GR [reg3] ← GR [reg2] % GR [reg1]

[Format] Format XI

[Opcode]

[Flags]

[Description] Divides the word data of general-purpose register reg2 by the word data of general-purpose

register reg1 and stores the quotient to general-purpose register reg2 with the remainder set to

general-purpose register reg3. General-purpose register reg1 is not affected.

When division by zero occurs, an overflow results and all operation results except for the OV

flag are undefined.

[Supplement] When an exception occurs during the DIVU instruction execution, the execution is aborted to

process the exception.

If reg2 and reg3 are the same register, the remainder is stored in that register.

The execution resumes at the original instruction address upon returning from the exception.

General-purpose register reg1 and general-purpose register reg2 retain their values prior to

execution of this instruction.

CAUTION

If general-purpose registers reg2 and reg3 are specified as being the same register, the
operation result quotient is not stored in reg2, so the flag is undefined.

<Divide instruction>
Divide word unsigned

DIVU
Division of (unsigned) word data

15 031 16

rrrrr111111RRRRR wwwww01011000010

CY —

OV “1” if overflow occurs; otherwise, “0”.

S “1” when operation result quotient word data MSB is “1”; otherwise, “0”.

Z “1” if the operation result quotient is “0”; otherwise, “0”.

SAT —

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 186 of 425
Mar 05, 2015

[Instruction format] EI

[Operation] PSW.ID ← 0 (enables EI level maskable exception)

[Format] Format X

[Opcode]

[Flags]

[Description] Clears the ID flag of the PSW to “0” and enables the acknowledgement of maskable

exceptions starting the next instruction.

[Supplement] If the MCTL.UIC bit has been cleared to 0, this instruction is a supervisor-level instruction.

If the MCTL.UIC bit has been set to 1, this instruction can always be executed.

<Special instruction>
Enable interrupt

EI
Enable EI level maskable exception

15 031 16

1000011111100000 0000000101100000

CY —

OV —

S —

Z —

SAT —

ID 0

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 187 of 425
Mar 05, 2015

[Instruction format] EIRET

[Operation] PC ← EIPC

PSW ← EIPSW

[Format] Format X

[Opcode]

[Flags]

[Description] Returns execution from an EI level exception. The return PC and PSW are loaded from the

EIPC and EIPSW registers and set in the PC and PSW, and control is passed.

If EP = 0, it means that interrupt (EIINTn) processing has finished, so the corresponding bit of

the ISPR register is cleared.

[Supplement] This instruction is a supervisor-level instruction.

<Special instruction>
Return from trap or interrupt

EIRET
Return from EL level exception

15 031 16

0000011111100000 0000000101001000

CY Value read from EIPSW is set

OV Value read from EIPSW is set

S Value read from EIPSW is set

Z Value read from EIPSW is set

SAT Value read from EIPSW is set

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 188 of 425
Mar 05, 2015

[Instruction format] FERET

[Operation] PC ← FEPC

PSW ← FEPSW

[Format] Format X

[Opcode]

[Flags]

[Description] Returns execution from an FE level exception. The return PC and PSW are loaded from the

FEPC and FEPSW registers and set in the PC and PSW, and control is passed.

[Supplement] This instruction is a supervisor-level instruction.

CAUTION

The FERET instruction can also be used as a hazard barrier instruction when the CPU’s
operating status (PSW) is changed by a control program such as the OS. Use the FERET
instruction to clarify the program blocks on which to effect the hardware function associated
with the UM bit in the PSW when these bits are changed to accord with the mounted CPU. The
hardware function that operates in accordance with the PSW value updated by the FERET
instruction is guaranteed to be effected from the instruction indicated by the return address of
the FERET instruction.

<Special instruction>
Return from trap or interrupt

FERET
Return from FE level exception

15 031 16

0000011111100000 0000000101001010

CY Value read from FEPSW is set

OV Value read from FEPSW is set

S Value read from FEPSW is set

Z Value read from FEPSW is set

SAT Value read from FEPSW is set

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 189 of 425
Mar 05, 2015

[Instruction format] FETRAP vector4

[Operation] FEPC ← PC + 2 (return PC)

FEPSW ← PSW

FEIC ← exception cause code*1

PSW.UM ← 0

PSW.NP ← 1

PSW.EP ← 1

PSW.ID ← 1

PC ← exception handler address*2

Note 1. See Table 4.1, Exception Cause List.

Note 2. See Section 4.4, Exception Handler Address.

[Format] Format I

[Opcode]

Where vvvv is vector4.

Do not set 0H to vector4 (vvvv ≠ 0000).

[Flags]

<Special instruction>
FE-level Trap

FETRAP
FE level software exception

15 0

0vvvv00001000000

CY —

OV —

S —

Z —

SAT —

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 190 of 425
Mar 05, 2015

[Description] Saves the contents of the return PC (address of the instruction next to the FETRAP

instruction) and the current contents of the PSW to FEPC and FEPSW, respectively, stores the

exception cause code in the FEIC register, and updates the PSW according to the exception

causes listed in Table 4.1. Execution then branches to the exception handler address and

exception handling is started.

Table 7.6 shows the correspondence between vector4 and exception cause codes and

exception handler address offset. Exception handler addresses are calculated based on the

offset addresses listed in Table 7.6. For details, see Section 4.4, Exception Handler

Address.

Table 7.6 Correspondence between vector4 and Exception Cause Codes
and Exception Handler Address Offset

vector4 Exception Cause Code Offset Address

0H Not specifiable

1H 0000 0031H 30H

2H 0000 0032H

...

FH 0000 003FH

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 191 of 425
Mar 05, 2015

[Instruction format] HALT

[Operation] Places the CPU core in the HALT state.

[Format] Format X

[Opcode]

[Flags]

[Description] Places the CPU core that executed the HALT instruction in the HALT state.

Occurrence of the HALT state release request will return the system to normal execution

status.

If an exception is acknowledged while the system is in HALT state, the return PC of that

exception is the PC of the instruction that follows the HALT instruction.

The HALT state is released under the following condition.

 A terminating exception occurs

Even if the conditions for acknowledging the above exceptions are not satisfied (due to the ID

or NP value), as long as a HALT mode release request exists, HALT state is released (for

example, even if PSW.ID = 1, HALT state is released when INT0 occurs).

Note, however, that the HALT mode will not be released if terminating exceptions are masked

by the following mask settings, which are defined individually for each function:

 Terminating exceptions are masked by an interrupt channel mask setting specified by the

interrupt controller*1.

 Terminating exceptions are masked by a mask setting specified by using the floating-

point operation exception enable bit.

 Terminating exceptions are masked by a mask setting defined by a hardware function

other than the above.

<Special instruction>
Halt

HALT
Halt

15 031 16

0000011111100000 0000000100100000

CY —

OV —

S —

Z —

SAT —

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 192 of 425
Mar 05, 2015

Note 1. This does not include masking specified by the ISPR and PMR registers.

[Supplement] This instruction is a supervisor-level instruction.

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 193 of 425
Mar 05, 2015

[Instruction format] HSH reg2, reg3

[Operation] GR [reg3] ← GR [reg2]

[Format] Format XII

[Opcode]

[Flags]

[Description] Stores the content of general-purpose register reg2 in general-purpose register reg3, and stores

the flag judgment result in PSW.

<Data manipulation instructions>
Halfword swap halfword

HSH
Halfword swap of halfword data

15 031 16

rrrrr11111100000 wwwww01101000110

CY “1” if the lower halfword of the operation result is “0”; otherwise, “0”.

OV 0

S “1” if operation result word data MSB is “1”; otherwise, “0”.

Z “1” if the lower halfword of the operation result is “0”; otherwise, “0”.

SAT —

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 194 of 425
Mar 05, 2015

[Instruction format] HSW reg2, reg3

[Operation] GR [reg3] ← GR [reg2] (15:0) || GR [reg2] (31:16)

[Format] Format XII

[Opcode]

[Flags]

[Description] Executes endian swap.

<Data manipulation instructions>
Halfword swap word

HSW
Halfword swap of word data

15 031 16

rrrrr11111100000 wwwww01101000100

CY “1” when there is at least one halfword of zero in the word data of the operation result;
otherwise; “0”.

OV 0

S “1” if operation result word data MSB is “1”; otherwise, “0”.

Z “1” if operation result word data is “0”; otherwise, “0”.

SAT —

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 195 of 425
Mar 05, 2015

[Instruction format] (1) JARL disp22, reg2

(2) JARL disp32, reg1

(3) JARL [reg1], reg3

[Operation] (1) GR [reg2] ← PC + 4

PC ← PC + sign-extend (disp22)

(2) GR [reg1] ← PC + 6

PC ← PC + disp32

(3) GR[reg3] ← PC + 4

PC ← GR[reg1]

[Format] (1) Format V

(2) Format VI

(3) Format XI

[Opcode]

ddddddddddddddddddddd is the higher 21 bits of disp22.

rrrrr ≠ 00000 (Do not specify r0 for reg2.)

DDDDDDDDDDDDDDDDddddddddddddddd is the higher 31 bits of disp32.

RRRRR ≠ 00000 (Do not specify r0 for reg1.)

WWWWW ≠ 00000 (Do not specify r0 for reg3.)

<Branch instruction>
Jump and register link

JARL
Branch and register link

15 0 31 16

(1) rrrrr11110dddddd ddddddddddddddd0

15 0 31 16 47 32

(2) 00000010111RRRRR ddddddddddddddd0 DDDDDDDDDDDDDDDD

15 0 31 16

(3) 11000111111RRRRR WWWWW00101100000

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 196 of 425
Mar 05, 2015

[Flags]

[Description] (1) Saves the current PC value + 4 in general-purpose register reg2, adds the 22-bit

displacement data, sign-extended to word length, to PC; stores the value in and transfers

the control to PC. Bit 0 of the 22-bit displacement is masked to “0”.

(2) Saves the current PC value + 6 in general-purpose register reg1, adds the 32-bit

displacement data to PC and stores the value in and transfers the control to PC. Bit 0 of

the 32-bit displacement is masked to “0”.

(3) Stores the current PC value + 4 in reg3, specifies the contents of reg1 for the PC value,

and then transfers the control.

[Supplement] The current PC value used for calculation is the address of the first byte of this instruction

itself. The jump destination is this instruction with the displacement value = 0. JARL

instruction corresponds to the call function of the subroutine control instruction, and saves the

return PC address in either reg1 or reg2. JMP instruction corresponds to the return function of

the subroutine control instruction, and can be used to specify general-purpose register

containing the return address as reg1 to the return PC.

CAUTION

Do not specify r0 for the general-purpose register reg2 in the instruction format (1) JARL
disp22, reg2.

Do not specify r0 for the general-purpose register reg1 in the instruction format (2) JARL
disp32, reg1.

Do not specify r0 for the general-purpose register reg3 in the instruction format (3) JARL
[reg1], reg3.

CY —

OV —

S —

Z —

SAT —

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 197 of 425
Mar 05, 2015

[Instruction format] (1) JMP [reg1]

(2) JMP disp32 [reg1]

[Operation] (1) PC ← GR [reg1]

(2) PC ← GR [reg1] + disp32

[Format] (1) Format I

(2) Format VI

[Opcode]

DDDDDDDDDDDDDDDDddddddddddddddd is the higher 31 bits of disp32.

[Flags]

[Description] (1) Transfers the control to the address specified by general-purpose register reg1. Bit 0 of

the address is masked to “0”.

(2) Adds the 32-bit displacement to general-purpose register reg1, and transfers the control

to the resulting address. Bit 0 of the address is masked to “0”.

[Supplement] Using this instruction as the subroutine control instruction requires the return PC to be

specified by general-purpose register reg1.

<Branch instruction>
Jump register

JMP
Unconditional branch (register relative)

15 0

(1) 00000000011RRRRR

15 0 31 16 47 32

(2) 00000110111RRRRR ddddddddddddddd0 DDDDDDDDDDDDDDDD

CY —

OV —

S —

Z —

SAT —

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 198 of 425
Mar 05, 2015

[Instruction format] (1) JR disp22

(2) JR disp32

[Operation] (1) PC ← PC + sign-extend (disp22)

(2) PC ← PC + disp32

[Format] (1) Format V

(2) Format VI

[Opcode]

ddddddddddddddddddddd is the higher 21 bits of disp22.

DDDDDDDDDDDDDDDDddddddddddddddd is the higher 31 bits of disp32.

[Flags]

[Description] (1) Adds the 22-bit displacement data, sign-extended to word length, to the current PC and

stores the value in and transfers the control to PC. Bit 0 of the 22-bit displacement is

masked to “0”.

(2) Adds the 32-bit displacement data to the current PC and stores the value in PC and

transfers the control to PC. Bit 0 of the 32-bit displacement is masked to “0”.

[Supplement] The current PC value used for calculation is the address of the first byte of this instruction

itself. The displacement value being “0” signifies that the branch destination is the instruction

itself.

<Branch instruction>
Jump relative

JR
Unconditional branch (PC relative)

15 0 31 16

(1) 0000011110dddddd ddddddddddddddd0

15 0 31 16 47 32

(2) 0000001011100000 ddddddddddddddd0 DDDDDDDDDDDDDDDD

CY —

OV —

S —

Z —

SAT —

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 199 of 425
Mar 05, 2015

[Instruction format] (1) LD.B disp16 [reg1] , reg2

(2) LD.B disp23 [reg1] , reg3

[Operation] (1) adr ← GR [reg1] + sign-extend (disp16)*1

GR [reg2] ← sign-extend (Load-memory (adr, Byte))

(2) adr ← GR [reg1] + sign-extend (disp23)*1

GR [reg3] ← sign-extend (Load-memory (adr, Byte))

Note 1. An MDP exception might occur depending on the result of address calculation.

[Format] (1) Format VII

(2) Format XIV

[Opcode]

Where RRRRR = reg1, wwwww = reg3.

ddddddd is the lower side bits 6 to 1 of disp23.

DDDDDDDDDDDDDDDD is the higher 16 bits of disp23.

[Flags]

[Description] (1) Adds the word data of general-purpose register reg1 to the 16-bit displacement data, sign-

extended to word length, to generate a 32-bit address. Byte data is read from the generated

address, sign-extended to word length, and stored in general-purpose register reg2.

(2) Adds the word data of general-purpose register reg1 to the 23-bit displacement data, sign-

extended to word length, to generate a 32-bit address. Byte data is read from the generated

address, sign-extended to word length, and stored in general-purpose register reg3.

<Load instruction>
Load byte

LD.B
Load of (signed) byte data

15 0 31 16

(1) rrrrr111000RRRRR dddddddddddddddd

15 0 31 16 47 32

(2) 00000111100RRRRR wwwwwddddddd0101 DDDDDDDDDDDDDDDD

CY —

OV —

S —

Z —

SAT —

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 200 of 425
Mar 05, 2015

[Instruction format] (1) LD.BU disp16 [reg1] , reg2

(2) LD.BU disp23 [reg1] , reg3

[Operation] (1) adr ← GR [reg1] + sign-extend (disp16)*1

GR [reg2] ← zero-extend (Load-memory (adr, Byte))

(2) adr ← GR [reg1] + sign-extend (disp23)*1

GR [reg3] ← zero-extend (Load-memory (adr, Byte))

Note 1. An MDP exception might occur depending on the result of address calculation.

[Format] (1) Format VII

(2) Format XIV

[Opcode]

ddddddddddddddd is the higher 15 bits of disp16, and b is bit 0 of disp16.

rrrrr ≠ 00000 (Do not specify r0 for reg2.)

Where RRRRR = reg1, wwwww = reg3.

ddddddd is the lower 7 bits of disp23.

DDDDDDDDDDDDDDDD is the higher 16 bits of disp23.

[Flags]

<Load instruction>
Load byte unsigned

LD.BU
Load of (unsigned) byte data

15 0 31 16

(1) rrrrr11110bRRRRR ddddddddddddddd1

15 0 31 16 47 32

(2) 00000111101RRRRR wwwwwddddddd0101 DDDDDDDDDDDDDDDD

CY —

OV —

S —

Z —

SAT —

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 201 of 425
Mar 05, 2015

[Description] (1) Adds the word data of general-purpose register reg1 to the 16-bit displacement data,

sign-extended to word length, to generate a 32-bit address. Byte data is read from the

generated address, zero-extended to word length, and stored in general-purpose register

reg2.

(2) Adds the word data of general-purpose register reg1 to the 23-bit displacement data,

sign-extended to word length, to generate a 32-bit address. Byte data is read from the

generated address, zero-extended to word length, and stored in general-purpose register

reg3.

CAUTION

Do not specify r0 for reg2.

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 202 of 425
Mar 05, 2015

[Instruction format] LD.DW disp23[reg1], reg3

[Operation] adr ← GR [reg1] + sign-extend (disp23)*1

data ← Load-memory (adr, Double-word)
GR [reg3 + 1] || GR [reg3] ← data

Note 1. An MAE or MDP exception might occur depending on the result of address calculation.

[Format] Format XIV

[Opcode]

Where RRRRRR = reg1, wwwww = reg3.

dddddd is the lower side bits 6 to 1 of disp23.

DDDDDDDDDDDDDDDD is the higher 16 bits of disp23.

[Flags]

[Description] Generates a 32-bit address by adding a 23-bit displacement value sign-extended to word

length to the word data of general-purpose register reg1. Doubleword data is read from the

generated 32-bit address and the lower 32 bits are stored in general-purpose register reg3, and

the higher 32 bits in reg3 + 1.

[Supplement] reg3 must be an even-numbered register.

<Load instruction>
Load Double Word

LD.DW
Load of doubleword data

15 0 31 16 47 32

00000111101RRRRR wwwwwdddddd01001 DDDDDDDDDDDDDDDD

CY —

OV —

S —

Z —

SAT —

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 203 of 425
Mar 05, 2015

[Instruction format] (1) LD.H disp16 [reg1] , reg2

(2) LD.H disp23 [reg1] , reg3

[Operation] (1) adr ← GR [reg1] + sign-extend (disp16)*1

GR [reg2] ← sign-extend (Load-memory (adr, Halfword))

(2) adr ← GR [reg1] + sign-extend (disp23)*1

GR [reg3] ← sign-extend (Load-memory (adr, Halfword))

Note 1. An MAE or MDP exception might occur depending on the result of address calculation.

[Format] (1) Format VII

(2) Format XIV

[Opcode]

Where ddddddddddddddd is the higher 15 bits of disp16.

Where RRRRR = reg1, wwwww = reg3.

dddddd is the lower side bits 6 to 1 of disp23.

DDDDDDDDDDDDDDDD is the higher 16 bits of disp23.

[Flags]

<Load instruction>
Load halfword

LD.H
Load of (unsigned) halfword data

15 0 31 16

(1) rrrrr111001RRRRR ddddddddddddddd0

15 0 31 16 47 32

(2) 00000111100RRRRR wwwwwdddddd00111 DDDDDDDDDDDDDDDD

CY —

OV —

S —

Z —

SAT —

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 204 of 425
Mar 05, 2015

[Description] (1) Adds the word data of general-purpose register reg1 to the 16-bit displacement data,

sign-extended to word length, to generate a 32-bit address. Halfword data is read from

this 32-bit address, sign-extended to word length, and stored in general-purpose register

reg2.

(2) Adds the word data of general-purpose register reg1 to the 23-bit displacement data,

sign-extended to word length, to generate a 32-bit address. Halfword data is read from

this 32-bit address, sign-extended to word length, and stored in general-purpose register

reg3.

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 205 of 425
Mar 05, 2015

[Instruction format] (1) LD.HU disp16 [reg1] , reg2

(2) LD.HU disp23 [reg1] , reg3

[Operation] (1) adr ← GR [reg1] + sign-extend (disp16)*1

GR [reg2] ← zero-extend (Load-memory (adr, Halfword))

(2) adr ← GR [reg1] + sign-extend (disp23)*1

GR [reg3] ← zero-extend (Load-memory (adr, Halfword))

Note 1. An MAE or MDP exception might occur depending on the result of address calculation.

[Format] (1) Format VII

(2) Format XIV

[Opcode]

Where ddddddddddddddd is the higher 15 bits of disp16.

rrrrr ≠ 00000 (Do not specify r0 for reg2.)

Where RRRRR = reg1, wwwww = reg3.

dddddd is the lower side bits 6 to1 of disp23.

DDDDDDDDDDDDDDDD is the higher 16 bits of disp23.

[Flags]

<Load instruction>
Load halfword unsigned

LD.HU
Load of (signed) halfword data

15 0 31 16

(1) rrrrr111111RRRRR ddddddddddddddd1

15 0 31 16 47 32

(2) 00000111101RRRRR wwwwwdddddd00111 DDDDDDDDDDDDDDDD

CY —

OV —

S —

Z —

SAT —

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 206 of 425
Mar 05, 2015

[Description] (1) Adds the word data of general-purpose register reg1 to the 16-bit displacement data,

sign-extended to word length, to generate a 32-bit address. Halfword data is read from

this 32-bit address, zero-extended to word length, and stored in general-purpose register

reg2.

(2) Adds the word data of general-purpose register reg1 to the 23-bit displacement data,

sign-extended to word length, to generate a 32-bit address. Halfword data is read from

this address, zero-extended to word length, and stored in general-purpose register reg3.

CAUTION

Do not specify r0 for reg2.

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 207 of 425
Mar 05, 2015

[Instruction format] (1) LD.W disp16 [reg1] , reg2

(2) LD.W disp23 [reg1] , reg3

[Operation] (1) adr ← GR [reg1] + sign-extend (disp16)*1

GR [reg2] ← Load-memory (adr, Word)

(2) adr ← GR [reg1] + sign-extend (disp23)*1

GR [reg3] ← Load-memory (adr, Word)

Note 1. An MAE or MDP exception might occur depending on the result of address calculation.

[Format] (1) Format VII

(2) Format XIV

[Opcode]

Where ddddddddddddddd is the higher 15 bits of disp16.

Where RRRRR = reg1, wwwww = reg3.

dddddd is the lower side bits 6 to 1 of disp23.

DDDDDDDDDDDDDDDD is the higher 16 bits of disp23.

[Flags]

<Load instruction>
Load word

LD.W
Load of word data

15 0 31 16

(1) rrrrr111001RRRRR ddddddddddddddd1

15 0 31 16 47 32

(2) 00000111100RRRRR wwwwwdddddd01001 DDDDDDDDDDDDDDDD

CY —

OV —

S —

Z —

SAT —

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 208 of 425
Mar 05, 2015

[Description] (1) Adds the word data of general-purpose register reg1 to the 16-bit displacement data,

sign-extended to word length, to generate a 32-bit address. Word data is read from this

32-bit address, and stored in general-purpose register reg2.

(2) Adds the word data of general-purpose register reg1 to the 23-bit displacement data,

sign-extended to word length, to generate a 32-bit address. Word data is read from this

address, and stored in general-purpose register reg3.

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 209 of 425
Mar 05, 2015

[Instruction format] LDL.W [reg1], reg3

[Operation] adr ← GR[reg1]*1

GR[reg3] ← Load-memory (adr, Word)

LLbit ← 1*2

Note 1. An MAE, MDP, or DTLBE exception might occur depending on the result of address
calculation.

Note 2. The result of an interrupt or exception, or the execution of a CLL, EIRET, or FERET
instruction is LLbit ← 0.

[Format] Format VII

[Opcode]

[Flags]

[Description] In order to perform an atomic read-modify-write operation, word data is read from the

memory and stored in general-purpose register reg3. A link is then generated corresponding

to the address range that includes the specified address.

Subsequently, if a specific condition is satisfied before an STC.W instruction is executed for

this LDL.W instruction, the link will be deleted. If an STC.W instruction is executed after the

link has been deleted, STC.W execution will fail.

If an STC.W instruction is executed while the link is still available, STC.W execution will

succeed. The link is also deleted in this case.

The LDL.W and STC.W instructions can be used to accurately update the memory in a multi-

core system.

[Supplement] Use the LDL.W and STC.W instructions instead of the CAXI instruction if an atomic

guarantee is required when updating the memory in a multi-core system.

<Special instruction>
Load Linked

LDL.W
Load to start atomic word data manipulation

15 0 31 16

00000111111RRRRR wwwww01101111000

CY —

OV —

S —

Z —

SAT —

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 210 of 425
Mar 05, 2015

[Instruction format] LDSR reg2, regID, selID

LDSR reg2, regID

[Operation] SR [regID, selID] ← GR [reg2]*1

Note 1. An exception might occur depending on the access permission. For details, see Section
2.5.3, Register Updating.

[Format] Format IX

[Opcode]

rrrrr: regID, sssss: selID, RRRRR: reg2

[Flags]

[Description] Loads the word data of general-purpose register reg2 to the system register specified by the
system register number and group number (regID, selID). General-purpose register reg2 is not
affected. If selID is omitted, it is assumed that selID is 0.

[Supplement] A PIE or UCPOP exception might occur as a result of executing this instruction, depending
on the combination of CPU operating mode and system register to be accessed. For details,
see Section 2.5.3, Register Updating.

CAUTIONS

1. In this instruction, general-purpose register reg2 is used as the source register, but, for
mnemonic description convenience, the general-purpose register reg1 field is used in the
opcode. The meanings of the register specifications in the mnemonic descriptions and
opcode therefore differ from those of other instructions.

2. The system register number or group number is a unique number used to identify each
system register. How to access undefined registers is described in Section 2.5.4,
Accessing Undefined Registers, but accessing undefined registers is not
recommended.

<Special instruction>
Load to system register

LDSR
Load to system register

15 0 31 16

rrrrr111111RRRRR sssss00000100000

CY —

OV —

S —

Z —

SAT —

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 211 of 425
Mar 05, 2015

[Instruction format] LOOP reg1,disp16

[Operation] GR[reg1] ← GR[reg1] + (–1)*1

if (GR[reg1] != 0)

then

 PC ← PC – zero-extend (disp16)

Note 1. –1 (0xFFFFFFFF) is added. The carry flag is updated in the same way as when the ADD
instruction is executed.

[Format] Format VII

[Opcode]

 Where ddddddddddddddd is the higher 15 bits of disp16.

[Flags]

[Description] Updates the general-purpose register reg1 by adding –1 from its contents. If the contents after

this update are not 0, the following processing is performed. If the contents are 0, the system

continues to the next instruction.

 The result of logically shifting the 15-bit immediate data 1 bit to the left and zero-

extending it to word length is subtracted from the current PC value, and then the control

is transferred.

 –1 (0xFFFFFFFF) is added to general-purpose register reg1. The carry flag is updated in

the same way as when the ADD instruction, not the SUB instruction, is executed.

<Loop instruction>
Loop

LOOP
Loop

15 0 31 16

00000110111RRRRR ddddddddddddddd1

CY “1” if a carry occurs from MSB in the reg1 operation; otherwise, “0”.

OV “1” if an overflow occurs in the reg1 operation; otherwise, “0”.

S “1” if reg1 is negative; otherwise, “0”.

Z “1” if reg1 is 0; otherwise, “0”.

SAT —

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 212 of 425
Mar 05, 2015

[Supplement] “0” is implicitly used for bit 0 of the 16-bit displacement. Note that, because the current PC

value used for calculation is the address of the first byte of this instruction, if the displacement

value is 0, the branch destination is this instruction.

CAUTION

Do not specify r0 for reg1.

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 213 of 425
Mar 05, 2015

[Instruction format] MAC reg1, reg2, reg3, reg4

[Operation] GR [reg4+1] || GR [reg4] ← GR [reg2] GR [reg1] + GR [reg3+1] || GR [reg3]

[Format] Format XI

[Opcode]

[Flags]

[Description] Multiplies the word data in general-purpose register reg2 by the word data in general-purpose

register reg1, then adds the result (64-bit data) to 64-bit data consisting of the lower 32 bits of

general-purpose register reg3 and the data in general-purpose register reg3+1 (for example,

this would be “r7” if the reg3 value is r6 and “1” is added) as the higher 32 bits. Of the result

(64-bit data), the higher 32 bits are stored in general-purpose register reg4+1 and the lower 32

bits are stored in general-purpose register reg4.

The contents of general-purpose registers reg1 and reg2 are handled as 32-bit signed integers.

This has no effect on general-purpose register reg1, reg2, reg3, or reg3+1.

CAUTION

General-purpose registers that can be specified as reg3 or reg4 must be an even-numbered
register (r0, r2, r4, …, r30). The result is undefined if an odd-numbered register (r1, r3, …, r31)
is specified.

<Multiply-accumulate instruction>
Multiply and add word

MAC
Multiply-accumulate for (signed) word data

15 0 31 16

rrrrr111111RRRRR wwww0011110mmmm0

CY —

OV —

S —

Z —

SAT —

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 214 of 425
Mar 05, 2015

[Instruction format] MACU reg1, reg2, reg3, reg4

[Operation] GR [reg4+1] || GR [reg4] ← GR [reg2] GR [reg1] + GR [reg3+1] || GR [reg3]

[Format] Format XI

[Opcode]

[Flags]

[Description] Multiplies the word data in general-purpose register reg2 by the word data in general-purpose

register reg1, then adds the result (64-bit data) to 64-bit data consisting of the lower 32 bits of

general-purpose register reg3 and the data in general-purpose register reg3+1 (for example,

this would be “r7” if the reg3 value is r6 and “1” is added) as the higher 32 bits. Of the result

(64-bit data), the higher 32 bits are stored in general-purpose register reg4+1 and the lower 32

bits are stored in general-purpose register reg4.

The contents of general-purpose registers reg1 and reg2 are handled as 32-bit signed integers.

This has no effect on general-purpose register reg1, reg2, reg3, or reg3+1.

CAUTION

General-purpose registers that can be specified as reg3 or reg4 must be an even-numbered
register (r0, r2, r4, …, r30). The result is undefined if an odd-numbered register (r1, r3, …, r31)
is specified.

<Multiply-accumulate instruction>
Multiply and add word unsigned

MACU
Multiply-accumulate for (unsigned) word data

15 0 31 16

rrrrr111111RRRRR wwww0011111mmmm0

CY —

OV —

S —

Z —

SAT —

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 215 of 425
Mar 05, 2015

[Instruction format] (1) MOV reg1, reg2

(2) MOV imm5, reg2

(3) MOV imm32, reg1

[Operation] (1) GR [reg2] ← GR [reg1]

(2) GR [reg2] ← sign-extend (imm5)

(3) GR [reg1] ← imm32

[Format] (1) Format I

(2) Format II

(3) Format VI

[Opcode]

rrrrr ≠ 00000 (Do not specify r0 for reg2.)

rrrrr ≠ 00000 (Do not specify r0 for reg2.)

i (bits 31 to 16) refers to the lower 16 bits of 32-bit immediate data.

I (bits 47 to 32) refers to the higher 16 bits of 32-bit immediate data.

[Flags]

<Arithmetic instruction>
Move register/immediate (5-bit) /immediate (32-bit)

MOV
Data transfer

15 0

(1) rrrrr000000RRRRR

15 0

(2) rrrrr010000iiiii

15 0 31 16 47 32

(3) 00000110001RRRRR iiiiiiiiiiiiiiii IIIIIIIIIIIIIIII

CY —

OV —

S —

Z —

SAT —

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 216 of 425
Mar 05, 2015

[Description] (1) Copies and transfers the word data of general-purpose register reg1 to general-purpose

register reg2. General-purpose register reg1 is not affected.

(2) Copies and transfers the 5-bit immediate data, sign-extended to word length, to general-

purpose register reg2.

(3) Copies and transfers the 32-bit immediate data to general-purpose register reg1.

CAUTION

Do not specify r0 as reg2 in MOV reg1, reg2 for instruction format (1) or in MOV imm5, reg2 for
instruction format (2).

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 217 of 425
Mar 05, 2015

[Instruction format] MOVEA imm16, reg1, reg2

[Operation] GR [reg2] ← GR [reg1] + sign-extend (imm16)

[Format] Format VI

[Opcode]

rrrrr ≠ 00000 (Do not specify r0 for reg2.)

[Flags]

[Description] Adds the 16-bit immediate data, sign-extended to word length, to the word data of general-

purpose register reg1 and stores the result in general-purpose register reg2. Neither general-

purpose register reg1 nor the flags is affected.

[Supplement] This instruction is to execute a 32-bit address calculation with the PSW flag value unchanged.

CAUTION

Do not specify r0 for reg2.

<Arithmetic instruction>
Move effective address

MOVEA
Effective address transfer

15 0 31 16

rrrrr110001RRRRR iiiiiiiiiiiiiiii

CY —

OV —

S —

Z —

SAT —

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 218 of 425
Mar 05, 2015

[Instruction format] MOVHI imm16, reg1, reg2

[Operation] GR [reg2] ← GR [reg1] + (imm16 || 016)

[Format] Format VI

[Opcode]

rrrrr ≠ 00000 (Do not specify r0 for reg2.)

[Flags]

[Description] Adds the word data with its higher 16 bits specified as the 16-bit immediate data and the

lower 16 bits being “0” to the word data of general-purpose register reg1 and stores the result

in general-purpose register reg2. Neither general-purpose register reg1 nor the flags is

affected.

[Supplement] This instruction is to generate the higher 16 bits of a 32-bit address.

CAUTION

Do not specify r0 for reg2.

<Arithmetic instruction>
Move high halfword

MOVHI
Higher halfword transfer

15 0 31 16

rrrrr110010RRRRR iiiiiiiiiiiiiiii

CY —

OV —

S —

Z —

SAT —

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 219 of 425
Mar 05, 2015

[Instruction format] (1) MUL reg1, reg2, reg3

(2) MUL imm9, reg2, reg3

[Operation] (1) GR [reg3] || GR [reg2] ← GR [reg2] GR [reg1]

(2) GR [reg3] || GR [reg2] ← GR [reg2] sign-extend (imm9)

[Format] (1) Format XI

(2) Format XII

[Opcode]

iiiii are the lower 5 bits of 9-bit immediate data.

IIII are the higher 4 bits of 9-bit immediate data.

[Flags]

[Description] (1) Multiplies the word data in general-purpose register reg2 by the word data in general-

purpose register reg1, then stores the higher 32 bits of the result (64-bit data) in general-

purpose register reg3 and the lower 32 bits in general-purpose register reg2.

The contents of general-purpose registers reg1 and reg2 are handled as 32-bit signed

integers. General-purpose register reg1 is not affected.

(2) Multiplies the word data in general-purpose register reg2 by 9-bit immediate data,

extended to word length, then stores the higher 32 bits of the result (64-bit data) in

general-purpose register reg3 and the lower 32 bits in general-purpose register reg2.

[Supplement] When general-purpose register reg2 and general-purpose register reg3 are the same register,

only the higher 32 bits of the multiplication result are stored in the register.

<Multiply instruction>
Multiply word by register/immediate (9-bit)

MUL
Multiplication of (signed) word data

15 0 31 16

(1) rrrrr111111RRRRR wwwww01000100000

15 0 31 16

(2) rrrrr111111iiiii wwwww01001IIII00

CY —

OV —

S —

Z —

SAT —

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 220 of 425
Mar 05, 2015

[Instruction format] (1) MULH reg1, reg2

(2) MULH imm5, reg2

[Operation] (1) GR [reg2] ← GR [reg2] (15:0) GR [reg1] (15:0)

(2) GR [reg2] ← GR [reg2] sign-extend (imm5)

[Format] (1) Format I

(2) Format II

[Opcode]

rrrrr ≠ 00000 (Do not specify r0 for reg2.)

rrrrr ≠ 00000 (Do not specify r0 for reg2.)

[Flags]

[Description] (1) Multiplies the lower halfword data of general-purpose register reg2 by the halfword data

of general-purpose register reg1 and stores the result in general-purpose register reg2.

General-purpose register reg1 is not affected.

(2) Multiplies the lower halfword data of general-purpose register reg2 by the 5-bit

immediate data, sign-extended to halfword length, and stores the result in general-

purpose register reg2.

<Multiply instruction>
Multiply halfword by register/immediate (5-bit)

MULH
Multiplication of (signed) halfword data

15 0

(1) rrrrr000111RRRRR

15 0

(2) rrrrr010111iiiii

CY —

OV —

S —

Z —

SAT —

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 221 of 425
Mar 05, 2015

[Supplement] In the case of a multiplier or a multiplicand, the higher 16 bits of general-purpose registers

reg1 and reg2 are ignored.

CAUTION

Do not specify r0 for reg2.

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 222 of 425
Mar 05, 2015

[Instruction format] MULHI imm16, reg1, reg2

[Operation] GR [reg2] ← GR [reg1](15:0) imm16

[Format] Format VI

[Opcode]

rrrrr ≠ 00000 (Do not specify r0 for reg2.)

[Flags]

[Description] Multiplies the lower halfword data of general-purpose register reg1 by the 16-bit immediate

data and stores the result in general-purpose register reg2. General-purpose register reg1 is

not affected.

[Supplement] In the case of a multiplicand, the higher 16 bits of general-purpose register reg1 are ignored.

CAUTION

Do not specify r0 for reg2.

<Multiply instruction>
Multiply halfword by immediate (16-bit)

MULHI
Multiplication of (signed) halfword immediate data

15 0 31 16

rrrrr110111RRRRR iiiiiiiiiiiiiiii

CY —

OV —

S —

Z —

SAT —

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 223 of 425
Mar 05, 2015

[Instruction format] (1) MULU reg1, reg2, reg3

(2) MULU imm9, reg2, reg3

[Operation] (1) GR [reg3] || GR [reg2] ← GR [reg2] GR [reg1]

(2) GR [reg3] || GR [reg2] ← GR [reg2] zero-extend (imm9)

[Format] (1) Format XI

(2) Format XII

[Opcode]

iiiii are the lower 5 bits of 9-bit immediate data.

IIII are the higher 4 bits of 9-bit immediate data.

[Flags]

[Description] (1) Multiplies the word data in general-purpose register reg2 by the word data in general-

purpose register reg1, then stores the higher 32 bits of the result (64-bit data) in general-

purpose register reg3 and the lower 32 bits in general-purpose register reg2.

General-purpose register reg1 is not affected.

(2) Multiplies the word data in general-purpose register reg2 by 9-bit immediate data, zero-

extended to word length, then stores the higher 32 bits of the result (64-bit data) in

general-purpose register reg3 and the lower 32 bits in general-purpose register reg2.

[Supplement] When general-purpose register reg2 and general-purpose register reg3 are the same register,

only the higher 32 bits of the multiplication result are stored in the register.

<Multiply instruction>
Multiply word unsigned by register/immediate (9-bit)

MULU
Multiplication of (unsigned) word data

15 0 31 16

(1) rrrrr111111RRRRR wwwww01000100010

15 0 31 16

(2) rrrrr111111iiiii wwwww01001IIII10

CY —

OV —

S —

Z —

SAT —

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 224 of 425
Mar 05, 2015

[Instruction format] NOP

[Operation] No operation is performed.

[Format] Format I

[Opcode]

[Flags]

[Description] Performs no processing and executes the next instruction.

[Supplement] The opcode is the same as that of MOV r0, r0.

<Special instruction>
No operation

NOP
No operation

15 0

0000000000000000

CY —

OV —

S —

Z —

SAT —

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 225 of 425
Mar 05, 2015

[Instruction format] NOT reg1, reg2

[Operation] GR [reg2] ← NOT (GR [reg1])

[Format] Format I

[Opcode]

[Flags]

[Description] Logically negates the word data of general-purpose register reg1 using 1’s complement and

stores the result in general-purpose register reg2. General-purpose register reg1 is not

affected.

<Logical instruction>
NOT

NOT
Logical negation (1’s complement)

15 0

rrrrr000001RRRRR

CY —

OV 0

S “1” if operation result word data MSB is “1”; otherwise, “0”.

Z “1” if the operation result is “0”; otherwise, “0”.

SAT —

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 226 of 425
Mar 05, 2015

[Instruction format] (1) NOT1 bit#3, disp16 [reg1]

(2) NOT1 reg2, [reg1]

[Operation] (1) adr ← GR [reg1] + sign-extend (disp16)*1

token ← Load-memory (adr, Byte)

Z flag ← Not (extract-bit (token, bit#3))

token ← not-bit (token, bit#3)

Store-memory (adr, token, Byte)

(2) adr ← GR [reg1]*1

token ← Load-memory (adr, Byte)

Z flag ← Not (extract-bit (token, reg2))

token ← not-bit (token, reg2)

Store-memory (adr, token, Byte)

Note 1. An MDP exception might occur depending on the result of address calculation.

[Format] (1) Format VIII

(2) Format IX

[Opcode]

[Flags]

<Bit manipulation instruction>
NOT bit

NOT1
NOT bit

15 0 31 16

(1) 01bbb111110RRRRR dddddddddddddddd

15 0 31 16

(2) rrrrr111111RRRRR 0000000011100010

CY —

OV —

S —

Z “1” if bit specified by operand = “0”, “0” if bit specified by operand = “1”.

SAT —

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 227 of 425
Mar 05, 2015

[Description] (1) Adds the word data of general-purpose register reg1 to the 16-bit displacement data,

sign-extended to word length, to generate a 32-bit address. Byte data is read from the

generated address, then the bits indicated by the 3-bit bit number are inverted (0 → 1, 1

→ 0) and the data is written back to the original address.

If the specified bit of the read byte data is “0”, the Z flag is set to “1”, and if the specified

bit is “1”, the Z flag is cleared to “0”.

(2) Reads the word data of general-purpose register reg1 to generate a 32-bit address. Byte

data is read from the generated address, then the bits specified by lower 3 bits of general-

purpose register reg2 are inverted (0 → 1, 1 → 0) and the data is written back to the

original address.

If the specified bit of the read byte data is “0”, the Z flag is set to “1”, and if the specified

bit is “1”, the Z flag is cleared to “0”.

[Supplement] The Z flag of PSW indicates the status of the specified bit (0 or 1) before this instruction is

executed and does not indicate the content of the specified bit resulting from the instruction

execution.

CAUTION

This instruction provides an atomic guarantee aimed at exclusive control, and during the period
between read and write operations, the target address is not affected by access due to any
other cause.

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 228 of 425
Mar 05, 2015

[Instruction format] OR reg1, reg2

[Operation] GR [reg2] ← GR [reg2] OR GR [reg1]

[Format] Format I

[Opcode]

[Flags]

[Description] ORs the word data of general-purpose register reg2 with the word data of general-purpose

register reg1 and stores the result in general-purpose register reg2. General-purpose register

reg1 is not affected.

<Logical instruction>
OR

OR
OR

15 0

rrrrr001000RRRRR

CY —

OV 0

S “1” if operation result word data MSB is “1”; otherwise, “0”.

Z “1” if the operation result is “0”; otherwise, “0”.

SAT —

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 229 of 425
Mar 05, 2015

[Instruction format] ORI imm16, reg1, reg2

[Operation] GR [reg2] ← GR [reg1] OR zero-extend (imm16)

[Format] Format VI

[Opcode]

[Flags]

[Description] ORs the word data of general-purpose register reg1 with the 16-bit immediate data, zero-

extended to word length, and stores the result in general-purpose register reg2. General-

purpose register reg1 is not affected.

<Logical instruction>
OR immediate (16-bit)

ORI
OR immediate

15 0 31 16

rrrrr110100RRRRR iiiiiiiiiiiiiiii

CY —

OV 0

S “1” if operation result word data MSB is “1”; otherwise, “0”.

Z “1” if the operation result is “0”; otherwise, “0”.

SAT —

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 230 of 425
Mar 05, 2015

[Instruction format] POPSP rh-rt

[Operation] if rh ≤ rt

then cur ← rt

end ← rh

tmp ← sp

while (cur ≥ end) {

adr ← tmp*1, *2

GR[cur] ← Load-memory (adr, Word)

cur ← cur – 1

tmp ← tmp + 4

}

sp ← tmp

Note 1. An MDP exception might occur depending on the result of address calculation.

Note 2. The lower 2 bits of adr are masked to 0.

[Format] Format XI

[Opcode]

RRRRR indicates rh.

wwwww indicates rt.

[Flags]

[Description] Loads general-purpose register rt to rh from the stack in descending order (rt, rt –1, rt – 2, …,

rh). After all the registers down to the specified register have been loaded, sp is updated

(incremented).

<Special instruction>
Pop registers from Stack

POPSP
POP from the stack

15 0 31 16

01100111111RRRRR wwwww00101100000

CY —

OV —

S —

Z —

SAT —

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 231 of 425
Mar 05, 2015

[Supplement] The lower two bits of the address specified by sp are masked by 0.

If an exception is acknowledged before sp is updated, instruction execution is halted and

exception handling is executed with the start address of this instruction used as the return

address. The POPSP instruction is then executed again. (The sp value from before the

exception handling is saved.)

CAUTION

If a register that includes sp(r3) is specified as the restore register (rh = 3 to 31), the value read
from the memory is not stored in sp(r3). This allows the POPSP instruction to be correctly re-
executed after execution has been halted.

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 232 of 425
Mar 05, 2015

[Instruction format] (1) PREPARE list12, imm5

(2) PREPARE list12, imm5, sp/imm*1

Note 1. The sp/imm values are specified by bits 19 and 20 of the sub-opcode.

[Operation] (1) tmp ← sp

foreach (all regs in list12) {

tmp ← tmp – 4

adr ← tmp*1, *2

Store-memory (adr, GR[reg in list12], Word)

}

sp ← tmp – zero-extend (imm5 logically shift left by 2)

(2) tmp ← sp

foreach (all regs in list12) {

tmp ← tmp – 4

adr ← tmp*1, *2

Store-memory (adr, GR[reg in list12], Word)

}

sp ← tmp – zero-extend (imm5 logically shift left by 2)

case

ff = 00: ep ← sp

ff = 01: ep ← sign-extend (imm16)

ff = 10: ep ← imm16 logically shift left by 16

ff = 11: ep ← imm32

Note 1. An MDP exception might occur depending on the result of address calculation.

Note 2. The lower 2 bits of adr are masked to 0.

[Format] Format XIII

<Special instruction>
Function prepare

PREPARE
Create stack frame

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 233 of 425
Mar 05, 2015

[Opcode]

In the case of 32-bit immediate data (imm32), bits 47 to 32 are the lower 16 bits of imm32 and

bits 63 to 48 are the higher 16 bits of imm32.

ff = 00: sp is loaded to ep

ff = 01: Sign-extended 16-bit immediate data (bits 47 to 32) is loaded to ep

ff = 10: 16-bit logical left-shifted 16-bit immediate data (bits 47 to 32) is loaded to ep

ff = 11: 32-bit immediate data (bits 63 to 32) is loaded to ep

The values of LLLLLLLLLLLL are the corresponding bit values shown in register list

“list12” (for example, the “L” at bit 21 of the opcode corresponds to the value of bit 21 in

list12).

list12 is a 32-bit register list, defined as follows.

Bits 31 to 21 and bit 0 correspond to general-purpose registers (r20 to r31), so that when any

of these bits is set (1), it specifies a corresponding register operation as a processing target.

For example, when r20 and r30 are specified, the values in list12 appear as shown below

(register bits that do not correspond, i.e., bits 20 to 1 are set as “Don’t care”).

 When all of the register’s non-corresponding bits are “0”: 0800 0001H

 When all of the register’s non-corresponding bits are “1”: 081F FFFFH

[Flags]

15 0 31 16

(1) 0000011110iiiiiL LLLLLLLLLLL00001

15 0 31 16 Option (47-32 or 63-32)

(2) 0000011110iiiiiL LLLLLLLLLLLff011

31 30 29 28 27 26 25 24 23 22 21 20 … 1 0

r24 r25 r26 r27 r20 r21 r22 r23 r28 r29 r31 – r30

imm16/imm32

CY —

OV —

S —

Z —

SAT —

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 234 of 425
Mar 05, 2015

[Description] (1) Saves general-purpose registers specified in list12 (4 is subtracted from the sp value and

the data is stored in that address). Next, subtracts 5-bit immediate data, logically left-

shifted by 2 bits and zero-extended to word length, from sp.

(2) Saves general-purpose registers specified in list12 (4 is subtracted from the sp value and

the data is stored in that address). Next, subtracts 5-bit immediate data, logically left-

shifted by 2 bits and zero-extended to word length, from sp.

Then, loads the data specified by the third operand (sp/imm) to ep.

[Supplement] list12 general-purpose registers are saved in ascending order (r20, r21, ..., r31).

imm5 is used to create a stack frame that is used for auto variables and temporary data.

The lower two bits of the address specified by sp are masked to 0 and aligned to the word

boundary.

CAUTION

If an exception occurs while this instruction is being executed, execution of the instruction
might be stopped after the write cycle and the register value write operation are completed, but
sp will retain its original value from before the start of execution. The instruction will be
executed again later, after a return from the exception.

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 235 of 425
Mar 05, 2015

[Instruction format] PUSHSP rh-rt

[Operation] if rh ≤ rt

then cur ← rh

end ← rt

tmp ← sp

while (cur ≤ end) {

tmp ← tmp – 4

adr ← tmp*1, *2

Store-memory (adr, GR[cur], Word)

cur ← cur + 1

}

sp ← tmp

Note 1. An MDP exception might occur depending on the result of address calculation.

Note 2. The lower 2 bits of adr are masked to 0.

[Format] Format XI

[Opcode]

RRRRR indicates rh.

wwwww indicates rt.

[Flags]

[Description] Stores general-purpose register rh to rt in the stack in ascending order (rh, rh +1, rh + 2, …,

rt). After all the specified registers have been stored, sp is updated (decremented).

<Special instruction>
Push registers to Stack

PUSHSP
Push registers to Stack

15 0 31 16

01000111111RRRRR wwwww00101100000

CY —

OV —

S —

Z —

SAT —

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 236 of 425
Mar 05, 2015

[Supplement] The lower two bits of the address specified by sp are masked by 0.

If an exception is acknowledged before sp is updated, instruction execution is halted and

exception handling is executed with the start address of this instruction used as the return

address. The PUSHSP instruction is then executed again. (The sp value from before the

exception handling is saved.)

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 237 of 425
Mar 05, 2015

[Instruction format] (1) RIE

(2) RIE imm5, imm4

[Operation] FEPC ← PC (return PC)

FEPSW ← PSW

FEIC ← exception cause code (0000 0060H)

PSW.UM ← 0

PSW.NP ← 1

PSW.EP ← 1

PSW.ID ← 1

PC ← exception handler address (offset address 60H)

[Format] (1) Format I

(2) Format X

[Opcode]

Where iiiii = imm5, IIII = imm4.

[Flags]

[Description] Saves the contents of the return PC (address of the RIE instruction) and the current contents of

the PSW to FEPC and FEPSW, respectively, stores the exception cause code in the FEIC

register, and updates the PSW according to the exception causes listed in Table 4.1.

Execution then branches to the exception handler address and exception handling is started.

Exception handler addresses are calculated based on the offset address 60H. For details, see

Section 4.4, Exception Handler Address.

<Special instruction>
Reserved instruction exception

RIE
Reserved instruction exception

15 0

(1) 0000000001000000

15 0 31 16

(2) iiiii1111111IIII 0000000000000000

CY —

OV —

S —

Z —

SAT —

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 238 of 425
Mar 05, 2015

[Instruction format] (1) ROTL imm5, reg2, reg3

(2) ROTL reg1, reg2, reg3

[Operation] (1) GR[reg3] ← GR[reg2] rotate left by zero-extend (imm5)

(2) GR[reg3] ← GR[reg2] rotate left by GR[reg1]

[Format] Format VII

[Opcode]

[Flags]

[Description] (1) Rotates the word data of general-purpose register reg2 to the left by the specified shift

amount, which is indicated by a 5-bit immediate value zero-extended to word length. The

result is written to general-purpose register reg3. General-purpose register reg2 is not

affected.

(2) Rotates the word data of general-purpose register reg2 to the left by the specified shift

amount indicated by the lower 5 bits of general-purpose register reg1. The result is

written to general-purpose register reg3. General-purpose registers reg1 and reg2 are not

affected.

<Data manipulation instruction>
Rotate Left

ROTL
Rotate

15 0 31 16

(1) rrrrr111111iiiii wwwww00011000100

15 0 31 16

(2) rrrrr111111RRRRR wwwww00011000110

CY “1” if operation result bit 0 is “1”; otherwise “0”, including if the rotate amount is “0”.

OV 0

S “1” if the operation result is negative; otherwise, “0”.

Z “1” if the operation result is “0”; otherwise, “0”.

SAT —

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 239 of 425
Mar 05, 2015

[Instruction format] (1) SAR reg1, reg2

(2) SAR imm5, reg2

(3) SAR reg1, reg2, reg3

[Operation] (1) GR [reg2] ← GR [reg2] arithmetically shift right by GR [reg1]

(2) GR [reg2] ← GR [reg2] arithmetically shift right by zero-extend (imm5)

(3) GR [reg3] ← GR [reg2] arithmetically shift right by GR [reg1]

[Format] (1) Format IX

(2) Format II

(3) Format XI

[Opcode]

[Flags]

<Data manipulation instruction>
Shift arithmetic right by register/immediate (5-bit)

SAR
Arithmetic right shift

15 0 31 16

(1) rrrrr111111RRRRR 0000000010100000

15 0

(2) rrrrr010101iiiii

15 0 31 16

(3) rrrrr111111RRRRR wwwww00010100010

CY “1” if the last bit shifted out is “1”; otherwise, “0” including non-shift.

OV 0

S “1” if the operation result is negative; otherwise, “0”.

Z “1” if the operation result is “0”; otherwise, “0”.

SAT —

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 240 of 425
Mar 05, 2015

[Description] (1) Arithmetically right-shifts the word data of general-purpose register reg2 by ‘n’ (0 to

+31), the position specified by the lower 5 bits of general-purpose register reg1, by

copying the pre-shift MSB value to the post-shift MSB. The result is written to general-

purpose register reg2. General-purpose register reg1 is not affected.

(2) Arithmetically right-shifts the word data of general-purpose register reg2 by ‘n’ (0 to

+31), the position specified by the 5-bit immediate data, zero-extended to word length,

by copying the pre-shift MSB value to the post-shift MSB. The result is written to

general-purpose register reg2.

(3) Arithmetically right-shifts the word data of general-purpose register reg2 by ‘n’ (0 to

+31), the position specified by the lower 5 bits of general-purpose register reg1, by

copying the pre-shift MSB value to the post-shift MSB. The result is written to general-

purpose register reg3. General-purpose registers reg1 and reg2 are not affected.

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 241 of 425
Mar 05, 2015

[Instruction format] SASF cccc, reg2

[Operation] if conditions are satisfied

 then GR [reg2] ← (GR [reg2] Logically shift left by 1) OR 0000 0001H

 else GR [reg2] ← (GR [reg2] Logically shift left by 1) OR 0000 0000H

[Format] Format IX

[Opcode]

[Flags]

[Description] When the condition specified by condition code “cccc” is met, logically left-shifts data of

general-purpose register reg2 by 1 bit, and sets (1) the least significant bit (LSB). If a

condition is not met, logically left-shifts data of reg2 and clears the LSB.

Designate one of the condition codes shown in the following table as [cccc].

[Supplement] See the SETF instruction.

<Data manipulation instruction>
Shift and set flag condition

SASF
Shift and flag condition setting

15 0 31 16

rrrrr1111110cccc 0000001000000000

CY —

OV —

S —

Z —

SAT —

Condition
Code Name Condition Formula

Condition
Code Name Condition Formula

0000 V OV = 1 0100 S/N S = 1

1000 NV OV = 0 1100 NS/P S = 0

0001 C/L CY = 1 0101 T Always (unconditional)

1001 NC/NL CY = 0 1101 SA SAT = 1

0010 Z Z = 1 0110 LT (S xor OV) = 1

1010 NZ Z = 0 1110 GE (S xor OV) = 0

0011 NH (CY or Z) = 1 0111 LE ((S xor OV) or Z) = 1

1011 H (CY or Z) = 0 1111 GT ((S xor OV) or Z) = 0

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 242 of 425
Mar 05, 2015

[Instruction format] (1) SATADD reg1, reg2

(2) SATADD imm5, reg2

(3) SATADD reg1, reg2, reg3

[Operation] (1) GR [reg2] ← saturated (GR [reg2] + GR [reg1])

(2) GR [reg2] ← saturated (GR [reg2] + sign-extend (imm5))

(3) GR [reg3] ← saturated (GR [reg2] + GR [reg1])

[Format] (1) Format I

(2) Format II

(3) Format XI

[Opcode]

rrrrr ≠ 00000 (Do not specify r0 for reg2.)

rrrrr ≠ 00000 (Do not specify r0 for reg2.)

[Flags]

<Saturated operation instructions>
Saturated add register/immediate (5-bit)

SATADD
Saturated addition

15 0

(1) rrrrr000110RRRRR

15 0

(2) rrrrr010001iiiii

15 0 31 16

(3) rrrrr111111RRRRR wwwww01110111010

CY “1” if a carry occurs from MSB; otherwise, “0”.

OV “1” if overflow occurs; otherwise, “0”.

S “1” if saturated operation result is negative; otherwise, “0”.

Z “1” if saturated operation result is “0”; otherwise, “0”.

SAT “1” if OV = 1; otherwise, does not change.

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 243 of 425
Mar 05, 2015

[Description] (1) Adds the word data of general-purpose register reg1 to the word data of general-purpose

register reg2, and stores the result in general-purpose register reg2. However, when the

result exceeds the maximum positive value 7FFF FFFFH, 7FFF FFFFH is stored in reg2,

and when it exceeds the maximum negative value 8000 0000H, 8000 0000H is stored in

reg2; then the SAT flag is set (1). General-purpose register reg1 is not affected.

(2) Adds the 5-bit immediate data, sign-extended to the word length, to the word data of

general-purpose register reg2, and stores the result in general-purpose register reg2.

However, when the result exceeds the maximum positive value 7FFF FFFFH,

7FFF FFFFH is stored in reg2, and when it exceeds the maximum negative value

8000 0000H, 8000 0000H is stored in reg2; then the SAT flag is set (1).

(3) Adds the word data of general-purpose register reg1 to the word data of general-purpose

register reg2, and stores the result in general-purpose register reg3. However, when the

result exceeds the maximum positive value 7FFF FFFFH, 7FFF FFFFH is stored in reg3,

and when it exceeds the maximum negative value 8000 0000H, 8000 0000H is stored in

reg3; then the SAT flag is set (1). General-purpose registers reg1 and reg2 are not

affected.

[Supplement] The SAT flag is a cumulative flag. The saturate result sets the flag to “1” and will not be

cleared to “0” even if the result of the subsequent operation is not saturated. The saturated

operation instruction is executed normally, even with the SAT flag set to “1”.

CAUTIONS

1. Use LDSR instruction and load data to the PSW to clear the SAT flag to “0”.

2. Do not specify r0 as reg2 in instruction format (1) SATADD reg1, reg2 and in instruction
format (2) SATADD imm5, reg2.

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 244 of 425
Mar 05, 2015

[Instruction format] (1) SATSUB reg1, reg2

(2) SATSUB reg1, reg2, reg3

[Operation] (1) GR [reg2] ← saturated (GR [reg2] – GR [reg1])

(2) GR [reg3] ← saturated (GR [reg2] – GR [reg1])

[Format] (1) Format I

(2) Format XI

[Opcode]

rrrrr ≠ 00000 (Do not specify r0 for reg2.)

[Flags]

[Description] (1) Subtracts the word data of general-purpose register reg1 from the word data of general-

purpose register reg2 and stores the result in general-purpose register reg2. If the result

exceeds the maximum positive value 7FFF FFFFH, 7FFF FFFFH is stored in reg2; if the

result exceeds the maximum negative value 8000 0000H, 8000 0000H is stored in reg2.

The SAT flag is set to “1”. General-purpose register reg1 is not affected.

(2) Subtracts the word data of general-purpose register reg1 from the word data of general-

purpose register reg2, and stores the result in general-purpose register reg3. However,

when the result exceeds the maximum positive value 7FFF FFFFH, 7FFF FFFFH is

stored in reg3, and when it exceeds the maximum negative value 8000 0000H,

8000 0000H is stored in reg3; then the SAT flag is set (1). General-purpose registers reg1

and reg2 are not affected.

<Saturated operation instructions>
Saturated subtract

SATSUB
Saturated subtraction

15 0

(1) rrrrr000101RRRRR

15 0 31 16

(2) rrrrr111111RRRRR wwwww01110011010

CY “1” if a borrow occurs from MSB; otherwise, “0”.

OV “1” if overflow occurs; otherwise, “0”.

S “1” if saturated operation result is negative; otherwise, “0”.

Z “1” if saturated operation result is “0”; otherwise, “0”.

SAT “1” if OV = 1; otherwise, does not change.

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 245 of 425
Mar 05, 2015

[Supplement] The SAT flag is a cumulative flag. The saturate result sets the flag to “1” and will not be

cleared to “0” even if the result of the subsequent operation is not saturated. The saturated

operation instruction is executed normally, even with the SAT flag set to “1”.

CAUTIONS

1. Use LDSR instruction and load data to the PSW to clear the SAT flag to “0”.

2. Do not specify r0 as reg2 in instruction format (1) SATSUB reg1, reg2.

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 246 of 425
Mar 05, 2015

[Instruction format] SATSUBI imm16, reg1, reg2

[Operation] GR [reg2] ← saturated (GR [reg1] – sign-extend (imm16))

[Format] Format VI

[Opcode]

rrrrr ≠ 00000 (Do not specify r0 for reg2.)

[Flags]

[Description] Subtracts the 16-bit immediate data, sign-extended to word length, from the word data of

general-purpose register reg1 and stores the result in general-purpose register reg2. If the

result exceeds the maximum positive value 7FFF FFFFH, 7FFF FFFFH is stored in reg2; if the

result exceeds the maximum negative value 8000 0000H, 8000 0000H is stored in reg2. The

SAT flag is set to “1”. General-purpose register reg1 is not affected.

[Supplement] The SAT flag is a cumulative flag. The saturation result sets the flag to “1” and will not be

cleared to “0” even if the result of the subsequent operation is not saturated. The saturated

operation instruction is executed normally, even with the SAT flag set to “1”.

CAUTIONS

1. Use LDSR instruction and load data to the PSW to clear the SAT flag to “0”.

2. Do not specify r0 for reg2.

<Saturated operation instructions>
Saturated subtract immediate

SATSUBI
Saturated subtraction

15 0 31 16

rrrrr110011RRRRR iiiiiiiiiiiiiiii

CY “1” if a borrow occurs from MSB; otherwise, “0”.

OV “1” if overflow occurs; otherwise, “0”.

S “1” if saturated operation result is negative; otherwise, “0”.

Z “1” if saturated operation result is “0”; otherwise, “0”.

SAT “1” if OV = 1; otherwise, does not change.

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 247 of 425
Mar 05, 2015

[Instruction format] SATSUBR reg1, reg2

[Operation] GR [reg2] ← saturated (GR [reg1] – GR [reg2])

[Format] Format I

[Opcode]

rrrrr ≠ 00000 (Do not specify r0 for reg2.)

[Flags]

[Description] Subtracts the word data of general-purpose register reg2 from the word data of general-

purpose register reg1 and stores the result in general-purpose register reg2. If the result

exceeds the maximum positive value 7FFF FFFFH, 7FFF FFFFH is stored in reg2; if the result

exceeds the maximum negative value 8000 0000H, 8000 0000H is stored in reg2. The SAT

flag is set to “1”. General-purpose register reg1 is not affected.

[Supplement] The SAT flag is a cumulative flag. The saturation result sets the flag to “1” and will not be

cleared to “0” even if the result of the subsequent operation is not saturated. The saturated

operation instruction is executed normally, even with the SAT flag set to “1”.

CAUTIONS

1. Use LDSR instruction and load data to the PSW to clear the SAT flag to “0”.

2. Do not specify r0 for reg2.

<Saturated operation instructions>
Saturated subtract reverse

SATSUBR
Saturated reverse subtraction

15 0

rrrrr000100RRRRR

CY “1” if a borrow occurs from MSB; otherwise, “0”.

OV “1” if overflow occurs; otherwise, “0”.

S “1” if saturated operation result is negative; otherwise, “0”.

Z “1” if saturated operation result is “0”; otherwise, “0”.

SAT “1” if OV = 1; otherwise, does not change.

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 248 of 425
Mar 05, 2015

[Instruction format] SBF cccc, reg1, reg2, reg3

[Operation] if conditions are satisfied

then GR [reg3] ← GR [reg2] – GR [reg1] –1

else GR [reg3] ← GR [reg2] – GR [reg1] –0

[Format] Format XI

[Opcode]

[Flags]

[Description] Subtracts 1 from the result of subtracting the word data of general-purpose register reg1 from

the word data of general-purpose register reg2, and stores the result of subtraction in general-

purpose register reg3, if the condition specified by condition code “cccc” is satisfied.

If the condition specified by condition code “cccc” is not satisfied, subtracts the word data of

general-purpose register reg1 from the word data of general-purpose register reg2, and stores

the result in general-purpose register reg3.

General-purpose registers reg1 and register 2 are not affected.

Designate one of the condition codes shown in the following table as [cccc]. (However, cccc

cannot equal 1101.)

<Conditional operation instructions>
Subtract on condition flag

SBF
Conditional subtraction

15 0 31 16

rrrrr111111RRRRR wwwww011100cccc0

CY “1” if a borrow occurs from MSB; otherwise, “0”.

OV “1” if overflow occurs; otherwise, “0”.

S “1” if operation result is negative; otherwise, “0”.

Z “1” if operation result is “0”; otherwise, “0”.

SAT —

Condition
Code Name Condition Formula

Condition
Code Name Condition Formula

0000 V OV = 1 0100 S/N S = 1

1000 NV OV = 0 1100 NS/P S = 0

0001 C/L CY = 1 0101 T Always (Unconditional)

1001 NC/NL CY = 0 0110 LT (S xor OV) = 1

0010 Z Z = 1 1110 GE (S xor OV) = 0

1010 NZ Z = 0 0111 LE ((S xor OV) or Z) = 1

0011 NH (CY or Z) = 1 1111 GT ((S xor OV) or Z) = 0

1011 H (CY or Z) = 0 (1101) Setting prohibited

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 249 of 425
Mar 05, 2015

[Instruction format] SCH0L reg2, reg3

[Operation] GR [reg3] ← search zero from left of GR [reg2]

[Format] Format IX

[Opcode]

[Flags]

[Description] Searches word data of general-purpose register reg2 from the left side (MSB side), and writes

the number of 1s before the bit position (0 to 31) at which 0 is first found plus 1 to general-

purpose register reg3 (e.g., when bit 31 of reg2 is 0, 01H is written to reg3).

When bit (0) is not found, 0 is written to reg3, and the Z flag is simultaneously set (1). If the

bit (0) found is the LSB, the CY flag is set (1).

<Bit search instructions>
Search zero from left

SCH0L
Bit (0) search from MSB side

15 0 31 16

rrrrr11111100000 wwwww01101100100

CY “1” if bit (0) is found eventually; otherwise, “0”.

OV 0

S 0

Z “1” if bit (0) is not found; otherwise, “0”.

SAT —

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 250 of 425
Mar 05, 2015

[Instruction format] SCH0R reg2, reg3

[Operation] GR [reg3] ← search zero from right of GR [reg2]

[Format] Format IX

[Opcode]

[Flags]

[Description] Searches word data of general-purpose register reg2 from the right side (LSB side), and writes

the number of 1s before the bit position (0 to 31) at which 0 is first found plus 1 to general-

purpose register reg3 (e.g., when bit 0 of reg2 is 0, 01H is written to reg3).

When bit (0) is not found, 0 is written to reg3, and the Z flag is simultaneously set (1). If the

bit (0) found is the MSB, the CY flag is set (1).

<Bit search instructions>
Search zero from right

SCH0R
Bit (0) search from LSB side

15 0 31 16

rrrrr11111100000 wwwww01101100000

CY “1” if bit (0) is found eventually; otherwise, “0”.

OV 0

S 0

Z “1” if bit (0) is not found; otherwise, “0”.

SAT —

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 251 of 425
Mar 05, 2015

[Instruction format] SCH1L reg2, reg3

[Operation] GR [reg3] ← search one from left of GR [reg2]

[Format] Format IX

[Opcode]

[Flags]

[Description] Searches word data of general-purpose register reg2 from the left side (MSB side), and writes

the number of 0s before the bit position (0 to 31) at which 1 is first found plus 1 to general-

purpose register reg3 (e.g., when bit 31 of reg2 is 1, 01H is written to reg3).

When bit (1) is not found, 0 is written to reg3, and the Z flag is simultaneously set (1). If the

bit (1) found is the LSB, the CY flag is set (1).

<Bit search instructions>
Search one from left

SCH1L
Bit (1) search from MSB side

15 0 31 16

rrrrr11111100000 wwwww01101100110

CY “1” if bit (0) is found eventually; otherwise, “0”.

OV 0

S 0

Z “1” if bit (0) is not found; otherwise, “0”.

SAT —

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 252 of 425
Mar 05, 2015

[Instruction format] SCH1R reg2, reg3

[Operation] GR [reg3] ← search one from right of GR [reg2]

[Format] Format IX

[Opcode]

[Flags]

[Description] Searches word data of general-purpose register reg2 from the right side (LSB side), and writes

the number of 0s before the bit position (0 to 31) at which 1 is first found plus 1 to general-

purpose register reg3 (e.g., when bit 0 of reg2 is 1, 01H is written to reg3).

When bit (1) is not found, 0 is written to reg3, and the Z flag is simultaneously set (1). If the

bit (1) found is the MSB, the CY flag is set (1).

<Bit search instructions>
Search one from right

SCH1R
Bit (1) search from LSB side

15 0 31 16

rrrrr11111100000 wwwww01101100010

CY “1” if bit (0) is found eventually; otherwise, “0”.

OV 0

S 0

Z “1” if bit (0) is not found; otherwise, “0”.

SAT —

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 253 of 425
Mar 05, 2015

[Instruction format] (1) SET1 bit#3, disp16 [reg1]

(2) SET1 reg2, [reg1]

[Operation] (1) adr ← GR [reg1] + sign-extend (disp16)*1

token ← Load-memory (adr, Byte)

Z flag ← Not (extract-bit (token, bit#3))

token ← set-bit (token, bit#3)

Store-memory (adr, token, Byte)

(2) adr ← GR [reg1]*1

token ← Load-memory (adr, Byte)

Z flag ← Not (extract-bit (token, reg2))

token ← set-bit (token, reg2)

Store-memory (adr, token, Byte)

Note 1. An MDP exception might occur depending on the result of address calculation.

[Format] (1) Format VIII

(2) Format IX

[Opcode]

[Flags]

<Bit manipulation instruction>
Set bit

SET1
Bit setting

15 0 31 16

(1) 00bbb111110RRRRR dddddddddddddddd

15 0 31 16

(2) rrrrr111111RRRRR 0000000011100000

CY —

OV —

S —

Z “1” if bit specified by operand = “0”, “0” if bit specified by operand = “1”.

SAT —

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 254 of 425
Mar 05, 2015

[Description] (1) Adds the word data of general-purpose register reg1 to the16-bit displacement data, sign-

extended to word length, to generate a 32-bit address. Byte data is read from the generated

address, the bits indicated by the 3-bit bit number are set (1) and the data is written back

to the original address.

If the specified bit of the read byte data is “0”, the Z flag is set to “1”, and if the specified

bit is “1”, the Z flag is cleared to “0”.

(2) Reads the word data of general-purpose register reg1 to generate a 32-bit address. Byte

data is read from the generated address, the lower 3 bits indicated of general-purpose

register reg2 are set (1) and the data is written back to the original address.

If the specified bit of the read byte data is “0”, the Z flag is set to “1”, and if the specified

bit is “1”, the Z flag is cleared to “0”.

[Supplement] The Z flag of PSW indicates the initial status of the specified bit (0 or 1) and does not indicate

the content of the specified bit resulting from the instruction execution.

CAUTION

This instruction provides an atomic guarantee aimed at exclusive control, and during the period
between read and write operations, the target address is not affected by access due to any
other cause.

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 255 of 425
Mar 05, 2015

[Instruction format] SETF cccc, reg2

[Operation] if conditions are satisfied

 then GR [reg2] ← 0000 0001H

 else GR [reg2] ← 0000 0000H

[Format] Format IX

[Opcode]

[Flags]

[Description] When the condition specified by condition code “cccc” is met, stores “1” to general-purpose

register reg2 if a condition is met and stores “0” if a condition is not met.

Designate one of the condition codes shown in the following table as [cccc].

<Data manipulation instruction>
Set flag condition

SETF
Flag condition setting

15 0 31 16

rrrrr1111110cccc 0000000000000000

CY —

OV —

S —

Z —

SAT —

Condition
Code Name Condition Formula

Condition
Code Name Condition Formula

0000 V OV = 1 0100 S/N S = 1

1000 NV OV = 0 1100 NS/P S = 0

0001 C/L CY = 1 0101 T Always (Unconditional)

1001 NC/NL CY = 0 1101 SA SAT = 1

0010 Z Z = 1 0110 LT (S xor OV) = 1

1010 NZ Z = 0 1110 GE (S xor OV) = 0

0011 NH (CY or Z) = 1 0111 LE ((S xor OV) or Z) = 1

1011 H (CY or Z) = 0 1111 GT ((S xor OV) or Z) = 0

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 256 of 425
Mar 05, 2015

[Supplement] Examples of SETF instruction:

(1) Translation of multiple condition clauses

If A of statement if (A) in C language consists of two or greater condition clauses (a1, a2,

a3, and so on), it is usually translated to a sequence of if (a1) then, if (a2) then. The object

code executes “conditional branch” by checking the result of evaluation equivalent to an.

Because a pipeline operation requires more time to execute “condition judgment” +

“branch” than to execute an ordinary operation, the result of evaluating each condition

clause if (an) is stored in register Ra. By performing a logical operation to Ran after all

the condition clauses have been evaluated, the pipeline delay can be prevented.

(2) Double-length operation

To execute a double-length operation, such as “Add with Carry”, the result of the CY

flag can be stored in general-purpose register reg2. Therefore, a carry from the lower

bits can be represented as a numeric value.

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 257 of 425
Mar 05, 2015

[Instruction format] (1) SHL reg1, reg2

(2) SHL imm5, reg2

(3) SHL reg1, reg2, reg3

[Operation] (1) GR [reg2] ← GR [reg2] logically shift left by GR [reg1]

(2) GR [reg2] ← GR [reg2] logically shift left by zero-extend (imm5)

(3) GR [reg3] ← GR [reg2] logically shift left by GR [reg1]

[Format] (1) Format IX

(2) Format II

(3) Format XI

[Opcode]

[Flags]

<Data manipulation instruction>
Shift logical left by register/immediate (5-bit)

SHL
Logical left shift

15 0 31 16

(1) rrrrr111111RRRRR 0000000011000000

15 0

(2) rrrrr010110iiiii

15 0 31 16

(3) rrrrr111111RRRRR wwwww00011000010

CY “1” if the last bit shifted out is “1”; otherwise, “0” including non-shift.

OV 0

S “1” if the operation result is negative; otherwise, “0”.

Z “1” if the operation result is “0”; otherwise, “0”.

SAT —

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 258 of 425
Mar 05, 2015

[Description] (1) Logically left-shifts the word data of general-purpose register reg2 by ‘n’ (0 to +31), the

position specified by the lower 5 bits of general-purpose register reg1, by shifting “0” to

LSB. The result is written to general-purpose register reg2. General-purpose register

reg1 is not affected.

(2) Logically left-shifts the word data of general-purpose register reg2 by ‘n’ (0 to +31), the

position specified by the 5-bit immediate data, zero-extended to word length, by shifting

“0” to LSB. The result is written to general-purpose register reg2.

(3) Logically left-shifts the word data of general-purpose register reg2 by ‘n’ (0 to +31), the

position specified by the lower 5 bits of general-purpose register reg1, by shifting “0” to

LSB. The result is written to general-purpose register reg3. General-purpose registers

reg1 and reg2 are not affected.

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 259 of 425
Mar 05, 2015

[Instruction format] (1) SHR reg1, reg2

(2) SHR imm5, reg2

(3) SHR reg1, reg2, reg3

[Operation] (1) GR [reg2] ← GR [reg2] logically shift right by GR [reg1]

(2) GR [reg2] ← GR [reg2] logically shift right by zero-extend (imm5)

(3) GR [reg3] ← GR [reg2] logically shift right by GR [reg1]

[Format] (1) Format IX

(2) Format II

(3) Format XI

[Opcode]

[Flags]

<Data manipulation instruction>
Shift logical right by register/immediate (5-bit)

SHR
Logical right shift

15 0 31 16

(1) rrrrr111111RRRRR 0000000010000000

15 0

(2) rrrrr010100iiiii

15 0 31 16

(3) rrrrr111111RRRRR wwwww00010000010

CY “1” if the last bit shifted out is “1”; otherwise, “0” including non-shift.

OV 0

S “1” if the operation result is negative; otherwise, “0”.

Z “1” if the operation result is “0”; otherwise, “0”.

SAT —

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 260 of 425
Mar 05, 2015

[Description] (1) Logically right-shifts the word data of general-purpose register reg2 by ‘n’ (0 to +31), the

position specified by the lower 5 bits of general-purpose register reg1, by shifting “0” to

MSB. The result is written to general-purpose register reg2. General-purpose register

reg1 is not affected.

(2) Logically right-shifts the word data of general-purpose register reg2 by ‘n’ (0 to +31), the

position specified by the 5-bit immediate data, zero-extended to word length, by shifting

“0” to MSB. The result is written to general-purpose register reg2.

(3) Logically right-shifts the word data of general-purpose register reg2 by ‘n’ (0 to +31), the

position specified by the lower 5 bits of general-purpose register reg1, by shifting “0” to

MSB. The result is written to general-purpose register reg3. General-purpose registers

reg1 and reg2 are not affected.

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 261 of 425
Mar 05, 2015

[Instruction format] SLD.B disp7 [ep] , reg2

[Operation] adr ← ep + zero-extend (disp7)*1

GR [reg2] ← sign-extend (Load-memory (adr, Byte))

Note 1. An MDP exception might occur depending on the result of address calculation.

[Format] Format IV

[Opcode]

[Flags]

[Description] Adds the 7-bit displacement data, zero-extended to word length, to the element pointer to

generate a 32-bit address. Byte data is read from the generated address, sign-extended to word

length, and stored in reg2.

<Load instruction>
Short format load byte

SLD.B
Load of (signed) byte data

15 0

rrrrr0110ddddddd

CY —

OV —

S —

Z —

SAT —

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 262 of 425
Mar 05, 2015

[Instruction format] SLD.BU disp4 [ep] , reg2

[Operation] adr ← ep + zero-extend (disp4)*1

GR [reg2] ← zero-extend (Load-memory (adr, Byte))

Note 1. An MDP exception might occur depending on the result of address calculation.

[Format] Format IV

[Opcode]

rrrrr ≠ 00000 (Do not specify r0 for reg2.)

[Flags]

[Description] Adds the 4-bit displacement data, zero-extended to word length, to the element pointer to

generate a 32-bit address. Byte data is read from the generated address, zero-extended to word

length, and stored in reg2.

CAUTION

Do not specify r0 for reg2.

<Load instruction>
Short format load byte unsigned

SLD.BU
Load of (unsigned) byte data

15 0

rrrrr0000110dddd

CY —

OV —

S —

Z —

SAT —

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 263 of 425
Mar 05, 2015

[Instruction format] SLD.H disp8 [ep] , reg2

[Operation] adr ← ep + zero-extend (disp8)*1

GR [reg2] ← sign-extend (Load-memory (adr, Halfword))

Note 1. An MAE or MDP exception might occur depending on the result of address calculation.

[Format] Format IV

[Opcode]

ddddddd is the higher 7 bits of disp8.

[Flags]

[Description] Adds the element pointer to the 8-bit displacement data, zero-extended to word length, to

generate a 32-bit address. Halfword data is read from this 32-bit address, sign-extended to

word length, and stored in general-purpose register reg2.

<Load instruction>
Short format load halfword

SLD.H
Load of (signed) halfword data

15 0

rrrrr1000ddddddd

CY —

OV —

S —

Z —

SAT —

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 264 of 425
Mar 05, 2015

[Instruction format] SLD.HU disp5 [ep] , reg2

[Operation] adr ← ep + zero-extend (disp5)*1

GR [reg2] ← zero-extend (Load-memory (adr, Halfword))

Note 1. An MAE or MDP exception might occur depending on the result of address calculation.

[Format] Format IV

[Opcode]

rrrrr ≠ 00000 (Do not specify r0 for reg2.)

dddd is the higher 4 bits of disp5.

[Flags]

[Description] Adds the element pointer to the 5-bit displacement data, zero-extended to word length, to

generate a 32-bit address. Halfword data is read from this 32-bit address, zero-extended to

word length, and stored in general-purpose register reg2.

CAUTION

Do not specify r0 for reg2.

<Load instruction>
Short format load halfword unsigned

SLD.HU
Load of (unsigned) halfword data

15 0

rrrrr0000111dddd

CY —

OV —

S —

Z —

SAT —

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 265 of 425
Mar 05, 2015

[Instruction format] SLD.W disp8 [ep] , reg2

[Operation] adr ← ep + zero-extend (disp8)*1

GR [reg2] ← Load-memory (adr, Word)

Note 1. An MAE or MDP exception might occur depending on the result of address calculation.

[Format] Format IV

[Opcode]

dddddd is the higher 6 bits of disp8.

[Flags]

[Description] Adds the element pointer to the 8-bit displacement data, zero-extended to word length, to

generate a 32-bit address. Word data is read from this 32-bit address, and stored in general-

purpose register reg2.

<Load instruction>
Short format load word

SLD.W
Load of word data

15 0

rrrrr1010dddddd0

CY —

OV —

S —

Z —

SAT —

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 266 of 425
Mar 05, 2015

[Instruction format] Snooze

[Operation] Snooze while hardware-defined period

[Format] Format X

[Opcode]

[Flags]

[Description] Temporarily halts operation of the CPU core for the period defined by the hardware

specifications or when the CPU enters a specific state.

When the specified period has elapsed or the CPU exits the specified state, CPU operation

automatically resumes and instruction execution begins from the next instruction.

The SNOOZE state is released under the following conditions:

 The predefined period of time passes

 A terminating exception occurs

Even if the conditions for acknowledging the above exceptions are not satisfied (due to the ID

or NP value), as long as a SNOOZE mode release request exists, the SNOOZE state is

released (for example, even if PSW.ID = 1, the SNOOZE state is released when INT0 occurs).

Note, however, that the SNOOZE mode will not be released if terminating exceptions are

masked by the following mask settings, which are defined individually for each function:

 Terminating exceptions are masked by an interrupt channel mask setting specified by the

interrupt controller*1
.

 Terminating exceptions are masked by a mask setting specified by using the floating-

point operation exception enable bit.

 Terminating exceptions are masked by a mask setting defined by a hardware function

other than the above.

Note 1. This does not include masking specified by the ISPR and PMR registers.

<Special instruction>
Snooze

SNOOZE
Snooze

15 0 31 16

0000111111100000 0000000100100000

CY —

OV —

S —

Z —

SAT —

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 267 of 425
Mar 05, 2015

[Supplement] This instruction is used to prevent the CPU performance from dropping in a multi-core system

due to bus band occupancy during a spinlock.

CAUTION

The period of the pause triggered by the SNOOZE instruction is defined

according to the hardware specifications of the CPU core. For details, see the

hardware manual of the product used.

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 268 of 425
Mar 05, 2015

[Instruction format] SST.B reg2, disp7 [ep]

[Operation] adr ← ep + zero-extend (disp7)*1

Store-memory (adr, GR [reg2] , Byte)

Note 1. An MDP exception might occur depending on the result of address calculation.

[Format] Format IV

[Opcode]

[Flags]

[Description] Adds the element pointer to the 7-bit displacement data, zero-extended to word length, to

generate a 32-bit address and stores the data of the lowest byte of reg2 to the generated

address.

<Store instruction>
Short format store byte

SST.B
Storage of byte data

15 0

rrrrr0111ddddddd

CY —

OV —

S —

Z —

SAT —

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 269 of 425
Mar 05, 2015

[Instruction format] SST.H reg2, disp8 [ep]

[Operation] adr ← ep + zero-extend (disp8)*1

Store-memory (adr, GR [reg2] , Halfword)

Note 1. An MAE or MDP exception might occur depending on the result of address calculation.

[Format] Format IV

[Opcode]

ddddddd is the higher 7 bits of disp8.

[Flags]

[Description] Adds the element pointer to the 8-bit displacement data, zero-extended to word length, to

generate a 32-bit address, and stores the lower halfword data of reg2 to the generated 32-bit

address.

<Store instruction>
Short format store halfword

SST.H
Storage of halfword data

15 0

rrrrr1001ddddddd

CY —

OV —

S —

Z —

SAT —

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 270 of 425
Mar 05, 2015

[Instruction format] SST.W reg2, disp8 [ep]

[Operation] adr ← ep + zero-extend (disp8)*1

Store-memory (adr, GR [reg2] , Word)

Note 1. An MAE or MDP exception might occur depending on the result of address calculation.

[Format] Format IV

[Opcode]

dddddd is the higher 6 bits of disp8.

[Flags]

[Description] Adds the element pointer to the 8-bit displacement data, zero-extended to word length, to

generate a 32-bit address and stores the word data of reg2 to the generated 32-bit address.

<Store instruction>
Short format store word

SST.W
Storage of word data

15 0

rrrrr1010dddddd1

CY —

OV —

S —

Z —

SAT —

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 271 of 425
Mar 05, 2015

[Instruction format] (1) ST.B reg2, disp16 [reg1]

(2) ST.B reg3, disp23 [reg1]

[Operation] (1) adr ← GR [reg1] + sign-extend (disp16)*1

Store-memory (adr, GR [reg2], Byte)

(2) adr ← GR [reg1] + sign-extend (disp23)*1

Store-memory (adr, GR [reg3], Byte)

Note 1. An MDP exception might occur depending on the result of address calculation.

[Format] (1) Format VII

(2) Format XIV

[Opcode]

Where RRRRR = reg1, wwwww = reg3.

ddddddd is the lower 7 bits of disp23.

DDDDDDDDDDDDDDDD is the higher 16 bits of disp23.

 [Flags]

[Description] (1) Adds the data of general-purpose register reg1 to the 16-bit displacement data, sign-

extended to word length, to generate a 32-bit address and stores the lowest byte data of

general-purpose register reg2 to the generated address.

(2) Adds the data of general-purpose register reg1 to the 23-bit displacement data, sign-

extended to word length, to generate a 32-bit address and stores the lowest byte data of

general-purpose register reg3 to the generated address.

<Store instruction>
Store byte

ST.B
Storage of byte data

15 0 31 16

(1) rrrrr111010RRRRR dddddddddddddddd

15 0 31 16 47 32

(2) 00000111100RRRRR wwwwwddddddd1101 DDDDDDDDDDDDDDDD

CY —

OV —

S —

Z —

SAT —

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 272 of 425
Mar 05, 2015

[Instruction format] ST.DW reg3, disp23[reg1]

[Operation] adr ← GR [reg1] + sign-extend (disp23)*1

data ← GR[reg3+1] || GR[reg3]
Store-memory (adr, data, Double-word)

Note 1. An MAE or MDP exception might occur depending on the result of address calculation.

[Format] Format XIV

[Opcode]

Where RRRRRR = reg1, wwwww = reg3.
dddddd is the lower side bits 6 to 1 of disp23.
DDDDDDDDDDDDDDDD is the higher 16 bits of disp23.

[Flags]

[Description] Adds the data of general-purpose register reg1 to a 23-bit displacement value sign-extended to
word length to generate a 32-bit address. Doubleword data consisting of the lower 32 bits of
the word data of general-purpose register reg3 and the higher 32 bits of the word data of reg3
+ 1 is then stored at this address.

[Supplement] reg3 must be an even-numbered register.

<Store instruction>
Store Double Word

ST.DW
Storage of doubleword data

15 0 31 16 47 32

00000111101RRRRR wwwwwdddddd01111 DDDDDDDDDDDDDDDD

CY —

OV —

S —

Z —

SAT —

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 273 of 425
Mar 05, 2015

[Instruction format] (1) ST.H reg2, disp16 [reg1]

(2) ST.H reg3, disp23 [reg1]

[Operation] (1) adr ← GR [reg1] + sign-extend (disp16)*1

Store-memory (adr, GR [reg2], Halfword)

(2) adr ← GR [reg1] + sign-extend (disp23)*1

Store-memory (adr, GR [reg3], Halfword)

Note 1. An MAE or MDP exception might occur depending on the result of address calculation.

[Format] (1) Format VII

(2) Format XIV

[Opcode]

Where ddddddddddddddd is the higher 15 bits of disp16.

Where RRRRR = reg1, wwwww = reg3.

dddddd is the lower side bits 6 to 1 of disp23.

DDDDDDDDDDDDDDDD is the higher 16 bits of disp23.

[Flags]

<Store instruction>
Store halfword

ST.H
Storage of halfword data

15 0 31 16

(1) rrrrr111011RRRRR ddddddddddddddd0

15 0 31 16 47 32

(2) 00000111101RRRRR wwwwwdddddd01101 DDDDDDDDDDDDDDDD

CY —

OV —

S —

Z —

SAT —

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 274 of 425
Mar 05, 2015

[Description] (1) Adds the data of general-purpose register reg1 to the 16-bit displacement data, sign-

extended to word length, to generate a 32-bit address and stores the lower halfword data

of general-purpose register reg2 to the generated address.

(2) Adds the data of general-purpose register reg1 to the 23-bit displacement data, sign-

extended to word length, to generate a 32-bit address and stores the lower halfword data

of general-purpose register reg3 to the generated address.

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 275 of 425
Mar 05, 2015

[Instruction format] (1) ST.W reg2, disp16 [reg1]

(2) ST.W reg3, disp23 [reg1]

[Operation] (1) adr ← GR [reg1] + sign-extend (disp16)*1

Store-memory (adr, GR [reg2], Word)

(2) adr ← GR [reg1] + sign-extend (disp23)*1

Store-memory (adr, GR [reg3], Word)

Note 1. An MAE or MDP exception might occur depending on the result of address calculation.

[Format] (1) Format VII

(2) Format XIV

[Opcode]

Where ddddddddddddddd is the higher 15 bits of disp16.

Where RRRRR = reg1, wwwww = reg3.

dddddd is the lower side bits 6 to 1 of disp23.

DDDDDDDDDDDDDDDD is the higher 16 bits of disp23.

[Flags]

<Store instruction>
Store word

ST.W
Storage of word data

15 0 31 16

(1) rrrrr111011RRRRR ddddddddddddddd1

15 0 31 16 47 32

(2) 00000111100RRRRR wwwwwdddddd01111 DDDDDDDDDDDDDDDD

CY —

OV —

S —

Z —

SAT —

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 276 of 425
Mar 05, 2015

[Description] (1) Adds the data of general-purpose register reg1 to the 16-bit displacement data, sign-

extended to word length, to generate a 32-bit address and stores the word data of general-

purpose register reg2 to the generated 32-bit address.

(2) Adds the data of general-purpose register reg1 to the 23-bit displacement data, sign-

extended to word length, to generate a 32-bit address and stores the word data of general-

purpose register reg3 to the generated 32-bit address.

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 277 of 425
Mar 05, 2015

[Instruction format] STC.W reg3, [reg1]

[Operation] adr ← GR[reg1]*1

data ← GR[reg3]

token ← LLbit*2

if (token == 1)

then Store-memory (adr, data, Word)

GR[reg3] ← 1

else GR[reg3] ← 0

endif

LLbit ← 0*2

Note 1. An MAE, MDP exception might occur depending on the result of address calculation.

Note 2. For details about the link operation, see Section 5.3.2, Performing Mutual Exclusion by
Using the LDL.W and STC.W Instructions.

[Format] Format VII

[Opcode]

[Flags]

<Store instruction>
Store Conditional

STC.W
Conditional storage when atomic word data manipulation is complete

15 0 31 16

00000111111RRRRR wwwww01101111010

CY —

OV —

S —

Z —

SAT —

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 278 of 425
Mar 05, 2015

[Description] This instruction can only be executed successfully if a link exists that corresponds to the

specified address. If a corresponding link exists, the word data of general-purpose register

reg3 is stored in the memory and an atomic read-modify-write is executed.

If the corresponding link has been lost, the data is not stored in the memory and execution of

this instruction fails.

Whether execution of the STC.W instruction has succeeded or not can be ascertained by

checking the contents of general-purpose register reg3 after the instruction has been executed.

If execution of the STC.W instruction was successful, general-purpose register reg3 will be

set (1). If execution failed, reg3 will be cleared (0).

This instruction can be used together with the LDL.W instruction to ensure accurate updating

of the memory in a multi-core system.

[Supplement] Use the LDL.W and STC.W instructions instead of the CAXI instruction if an atomic

guarantee is required when updating the memory in a multi-core system.

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 279 of 425
Mar 05, 2015

[Instruction format] STSR regID, reg2, selID

STSR regID, reg2

[Operation] GR [reg2] ← SR [regID, selID]*1

Note 1. An exception might occur depending on the access permission. For details, see Section
2.5.3, Register Updating.

[Format] Format IX

[Opcode]

rrrrr: reg2, sssss: selID, RRRRR: regID

[Flags]

[Description] Stores the system register contents specified by the system register number and group number

(regID, selID) in general-purpose register reg2. The system register is not affected. If selID is

omitted, it is assumed that selID is 0.

[Supplement] A PIE or UCPOP exception might occur as a result of executing this instruction, depending

on the combination of CPU operating mode and system register to be accessed. For details,

see Section 2.5.3, Register Updating.

CAUTION

The system register number or group number is a unique number used to identify each system
register. How to access undefined registers is described in Section 2.5.4, Accessing
Undefined Registers, but accessing undefined registers is not recommended.

<Store instruction>
Store contents of system register

STSR
Storage of contents of system register

15 0 31 16

rrrrr111111RRRRR sssss00001000000

CY —

OV —

S —

Z —

SAT —

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 280 of 425
Mar 05, 2015

[Instruction format] SUB reg1, reg2

[Operation] GR [reg2] ← GR [reg2] - GR [reg1]

[Format] Format I

[Opcode]

[Flags]

[Description] Subtracts the word data of general-purpose register reg1 from the word data of general-

purpose register reg2 and stores the result in general-purpose register reg2. General-purpose

register reg1 is not affected.

<Arithmetic instruction>
Subtract

SUB
Subtraction

15 0

rrrrr001101RRRRR

CY “1” if a borrow occurs from MSB; otherwise, “0”.

OV “1” if overflow occurs; otherwise, “0”.

S “1” if the operation result is negative; otherwise, “0”.

Z “1” if the operation result is “0”; otherwise, “0”.

SAT —

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 281 of 425
Mar 05, 2015

[Instruction format] SUBR reg1, reg2

[Operation] GR [reg2] ←GR [reg1] – GR [reg2]

[Format] Format I

[Opcode]

[Flags]

[Description] Subtracts the word data of general-purpose register reg2 from the word data of general-

purpose register reg1 and stores the result in general-purpose register reg2. General-purpose

register reg1 is not affected.

<Arithmetic instruction>
Subtract reverse

SUBR
Reverse subtraction

15 0

rrrrr001100RRRRR

CY “1” if a borrow occurs from MSB; otherwise, “0”.

OV “1” if overflow occurs; otherwise, “0”.

S “1” if the operation result is negative; otherwise, “0”.

Z “1” if the operation result is “0”; otherwise, “0”.

SAT —

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 282 of 425
Mar 05, 2015

[Instruction format] SWITCH reg1

[Operation] adr ← (PC + 2) + (GR [reg1] logically shift left by 1)*1

PC ← (PC + 2) + (sign-extend (Load-memory (adr, Halfword))) logically shift left by 1

Note 1. An MDP exception might occur depending on the result of address calculation.

[Format] Format I

[Opcode]

RRRRR ≠ 00000 (Do not specify r0 for reg1.)

[Flags]

[Description] The following steps are taken.

(1) Adds the start address (the one subsequent to the SWITCH instruction) to general-

purpose register reg1, logically left-shifted by 1, to generate a 32-bit table entry address.

(2) Loads the halfword entry data indicated by the address generated in step (1).

(3) Adds the table start address after sign-extending the loaded halfword data and logically

left-shifting it by 1 (the one subsequent to the SWITCH instruction) to generate a 32-bit

target address.

(4) Jumps to the target address generated in step (3).

CAUTIONS

1. Do not specify r0 for reg1.

2. In the SWITCH instruction memory read operation executed in order to read the table,
memory protection is performed.

<Special instruction>
Jump with table look up

SWITCH
Jump with table look up

15 0

00000000010RRRRR

CY —

OV —

S —

Z —

SAT —

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 283 of 425
Mar 05, 2015

[Instruction format] SXB reg1

[Operation] GR [reg1] ← sign-extend (GR [reg1] (7:0))

[Format] Format I

[Opcode]

[Flags]

[Description] Sign-extends the lowest byte of general-purpose register reg1 to word length.

<Data manipulation instruction>
Sign extend byte

SXB
Sign-extension of byte data

15 0

00000000101RRRRR

CY —

OV —

S —

Z —

SAT —

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 284 of 425
Mar 05, 2015

[Instruction format] SXH reg1

[Operation] GR [reg1] ← sign-extend (GR [reg1] (15:0))

[Format] Format I

[Opcode]

[Flags]

[Description] Sign-extends the lower halfword of general-purpose register reg1 to word length.

<Data manipulation instruction>
Sign extend halfword

SXH
Sign-extension of halfword data

15 0

00000000111RRRRR

CY —

OV —

S —

Z —

SAT —

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 285 of 425
Mar 05, 2015

[Instruction format] SYNCE

[Operation] No operation is performed.

[Format] Format I

[Opcode]

[Flags]

[Description] In this CPU, the SYNCE instruction is handled as the NOP instruction.

<Special instruction>
Synchronize exceptions

SYNCE
Exception synchronization instruction

15 0

0000000000011101

CY —

OV —

S —

Z —

SAT —

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 286 of 425
Mar 05, 2015

[Instruction format] SYNCI

[Operation] Resolves instruction hazards.

[Format] Format I

[Opcode]

[Flags]

[Description] Makes subsequent instructions wait until all the instructions ahead of this instruction have

finished executing. The instructions executed after the SYNCI instruction are guaranteed to

adapt to the effects produced by the execution of the instructions preceding SYNCI. This

instruction can be used to realize “self-programming code” to overwrite instructions in the

memory.

[Supplement] The SYNCI instruction clears the CPU instruction fetch pipeline so that subsequently

executed instructions are re-fetched.

If the CPU includes an instruction cache, the instruction cache must be disabled to enable the

realization of this self-programming code.

<Special instruction>
Synchronize instruction pipeline

SYNCI
Instruction pipeline synchronization instruction

15 0

0000000000011100

CY —

OV —

S —

Z —

SAT —

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 287 of 425
Mar 05, 2015

[Instruction format] SYNCM

[Operation] Waits for the synchronization of the memory device.

[Format] Format I

[Opcode]

[Flags]

[Description] Synchronizes the CPU execution pipeline and memory accesses.

Waits for the start of execution until all preceding memory access has been synchronized.

“Synchronization” refers to the status where the result of preceding memory accesses can be

referenced by any master device within the system.

In cases such as when buffering is used to delay memory accesses and synchronization of all

memory accesses has not occurred, the SYNCM instruction does not complete and waits for

the synchronization. The subsequent instructions will not be executed until the SYNCM

instruction execution is complete.

This instruction can be used to realize the “synchronization primitive” in a multi-processing

environment, if the above function is provided as the system.

<Special instruction>
Synchronize memory

SYNCM
Memory synchronize instruction

15 0

0000000000011110

CY —

OV —

S —

Z —

SAT —

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 288 of 425
Mar 05, 2015

[Instruction format] SYNCP

[Operation] Waits for the synchronization of pipeline.

[Format] Format I

[Opcode]

[Flags]

[Description] Waits until execution of all previous instructions is completed before being executed.

<Special instruction>
Synchronize pipeline

SYNCP
Pipeline synchronize instruction

15 0

0000000000011111

CY —

OV —

S —

Z —

SAT —

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 289 of 425
Mar 05, 2015

[Instruction format] SYSCALL vector8

[Operation] EIPC ← PC + 4 (return PC)

EIPSW ← PSW

EIIC ← exception cause code*1

PSW.UM ← 0

PSW.EP ← 1

PSW.ID ← 1

if (vector8 <= SCCFG.SIZE) is satisfied

then adr ← SCBP + zero-extend (vector8 logically shift left by 2)*2

else adr ← SCBP*2

PC ← SCBP + Load-memory (adr, Word)

Note 1. See Table 4.1, Exception Cause List.

Note 2. An MDP exception might occur depending on the result of address calculation.

[Format] Format X

[Opcode]

Where VVV is the higher 3 bits of vector8 and vvvvv is the lower 5 bits of vector8.

[Flags]

<Special instruction>
System call

SYSCALL
System call exception

15 0 31 16

11010111111vvvvv 00VVV00101100000

CY —

OV —

S —

Z —

SAT —

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 290 of 425
Mar 05, 2015

[Description] (1) Saves the contents of the return PC (address of the instruction next to the SYSCALL

instruction) and PSW to EIPC and EIPSW.

(2) Stores the exception cause code corresponding to vector8 in the EIIC register.

The exception cause code is the value of vector8 plus 8000H.

(3) Updates the PSW according to the exception causes listed in Table 4.1.

(4) Generates a 32-bit table entry address by adding the value of the SCBP register and

vector8 that is logically shifted 2 bits to the left and zero-extended to a word length.

If vector8 is greater than the value specified by the SIZE bit of system register SCCFG;

however, vector8 that is used for the generation of a 32-bit table entry address is handled

as 0.

(5) Loads the word of the address generated in (4).

(6) Generates a 32-bit target address by adding the value of the SCBP register to the data in

(5).

(7) Branches to the target address generated in (6).

CAUTION

In the SYSCALL instruction memory read operation executed in order to read the table,
memory protection is performed with the supervisor privilege.

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 291 of 425
Mar 05, 2015

[Instruction format] TRAP vector5

[Operation] EIPC ← PC + 4 (return PC)

EIPSW ← PSW

EIIC ← exception cause code*1

PSW.UM ← 0

PSW.EP ← 1

PSW.ID ← 1

PC ← exception handler address*2

Note 1. See Table 4.1, Exception Cause List.

Note 2. See Section 4.4, Exception Handler Address.

[Format] Format X

[Opcode]

vvvvv = vector5

[Flags]

<Special instruction>
Trap

TRAP
Software exception

15 0 31 16

00000111111vvvvv 0000000100000000

CY —

OV —

S —

Z —

SAT —

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 292 of 425
Mar 05, 2015

[Description] Saves the contents of the return PC (address of the instruction next to the TRAP instruction)

and the current contents of the PSW to EIPC and EIPSW, respectively, stores the exception

cause code in the EIIC register, and updates the PSW according to the exception causes listed

in Table 4.1. Execution then branches to the exception handler address and exception

handling is started.

The following table shows the correspondence between vector5 and exception cause codes

and exception handler address offset. Exception handler addresses are calculated based on the

offset addresses listed in the following table. For details, see Section 4.4, Exception

Handler Address.

vector5 Exception Cause Code Offset Address

00H 0000 0040H 40H

01H 0000 0041H

...

0FH 0000 004FH

10H 0000 0050H 50H

11H 0000 0051H

...

1FH 0000 005FH

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 293 of 425
Mar 05, 2015

[Instruction format] TST reg1, reg2

[Operation] result ← GR [reg2] AND GR [reg1]

[Format] Format I

[Opcode]

[Flags]

[Description] ANDs the word data of general-purpose register reg2 with the word data of general-purpose

register reg1. The result is not stored with only the flags being changed. General-purpose

registers reg1 and reg2 are not affected.

<Logical instruction>
Test

TST
Test

15 0

rrrrr001011RRRRR

CY —

OV 0

S “1” if operation result word data MSB is “1”; otherwise, “0”.

Z “1” if the operation result is “0”; otherwise, 0.

SAT —

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 294 of 425
Mar 05, 2015

[Instruction format] (1) TST1 bit#3, disp16 [reg1]

(2) TST1 reg2, [reg1]

[Operation] (1) adr ← GR [reg1] + sign-extend (disp16)*1

token ← Load-memory (adr, Byte)

Z flag ← Not (extract-bit (token, bit#3))

(2) adr ← GR [reg1]*1

token ← Load-memory (adr, Byte)

Z flag ← Not (extract-bit (token, reg2))

Note 1. An MDP exception might occur depending on the result of address calculation.

[Format] (1) Format VIII

(2) Format IX

[Opcode]

[Flags]

<Bit manipulation instruction>
Test bit

TST1
Bit test

15 0 31 16

(1) 11bbb111110RRRRR dddddddddddddddd

15 0 31 16

(2) rrrrr111111RRRRR 0000000011100110

CY —

OV —

S —

Z “1” if bit specified by operand = “0”, “0” if bit specified by operand = “1”.

SAT —

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 295 of 425
Mar 05, 2015

[Description] (1) Adds the word data of general-purpose register reg1 to the16-bit displacement data, sign-

extended to word length, to generate a 32-bit address; checks the bit specified by the 3-

bit bit number at the byte data location referenced by the generated address. If the

specified bit is “0”, “1” is set to the Z flag of PSW and if the bit is “1”, the Z flag is

cleared to “0”. The byte data, including the specified bit, is not affected.

(2) Reads the word data of general-purpose register reg1 to generate a 32-bit address; checks

the bit specified by the lower 3 bits of reg2 at the byte data location referenced by the

generated address. If the specified bit is “0”, “1” is set to the Z flag of PSW and if the bit

is “1”, the Z flag is cleared to “0”. The byte data, including the specified bit, is not

affected.

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 296 of 425
Mar 05, 2015

[Instruction format] XOR reg1, reg2

[Operation] GR [reg2] ← GR [reg2] XOR GR [reg1]

[Format] Format I

[Opcode]

[Flags]

[Description] Exclusively ORs the word data of general-purpose register reg2 with the word data of

general-purpose register reg1 and stores the result in general-purpose register reg2. General-

purpose register reg1 is not affected.

<Logical instruction>
Exclusive OR

XOR
Exclusive OR

15 0

rrrrr001001RRRRR

CY —

OV 0

S “1” if operation result word data MSB is “1”; otherwise, “0”.

Z “1” if the operation result is “0”; otherwise, “0”.

SAT —

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 297 of 425
Mar 05, 2015

[Instruction format] XORI imm16, reg1, reg2

[Operation] GR [reg2] ← GR [reg1] XOR zero-extend (imm16)

[Format] Format VI

[Opcode]

[Flags]

[Description] Exclusively ORs the word data of general-purpose register reg1 with the 16-bit immediate

data, zero-extended to word length, and stores the result in general-purpose register reg2.

General-purpose register reg1 is not affected.

<Logical instruction>
Exclusive OR immediate (16-bit)

XORI
Exclusive OR immediate

15 0 31 16

rrrrr110101RRRRR iiiiiiiiiiiiiiii

CY —

OV 0

S “1” if operation result word data MSB is “1”; otherwise, “0”.

Z “1” if the operation result is “0”; otherwise, “0”.

SAT —

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 298 of 425
Mar 05, 2015

[Instruction format] ZXB reg1

[Operation] GR [reg1] ← zero-extend (GR [reg1] (7:0))

[Format] Format I

[Opcode]

[Flags]

[Description] Zero-extends the lowest byte of general-purpose register reg1 to word length.

<Data manipulation instruction>
Zero extend byte

ZXB
Zero-extension of byte data

15 0

00000000100RRRRR

CY —

OV —

S —

Z —

SAT —

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 299 of 425
Mar 05, 2015

[Instruction format] ZXH reg1

[Operation] GR [reg1] ← zero-extend (GR [reg1] (15:0))

[Format] Format I

[Opcode]

[Flags]

[Description] Zero-extends the lower halfword of general-purpose register reg1 to word length.

<Data manipulation instruction>
Zero extend halfword

ZXH
Zero-extension of halfword data

15 0

00000000110RRRRR

CY —

OV —

S —

Z —

SAT —

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 300 of 425
Mar 05, 2015

7.3 Cache Instructions

7.3.1 Overview of Cache Instructions

This CPU provides the cache instructions to enable efficient manipulation of the cache by the

CPU.

The following cache instructions (mnemonics) are available.

 CACHE: Cache

 PREF: Prefetch

7.3.2 Cache Instruction Set

This section details each instruction, dividing each mnemonic (in alphabetical order) into the

following items.

 Instruction format: Indicates how the instruction is written and its operand(s).

 Operation: Indicates the function of the instruction.

 Format: Indicates the instruction format.

 Opcode: Indicates the bit field of the instruction opcode.

 Description: Describes the operation of the instruction.

 Supplement: Provides supplementary information on the instruction.

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 301 of 425
Mar 05, 2015

[Instruction format] CACHE cacheop, [reg1]

[Operation] Manipulates the cache specified by cacheop.

[Format] Format X

[Opcode]

ppPPPPP indicates cacheop.

[Flags]

[Description] Sets the word data of general-purpose register reg1 as a 32-bit address or the cache index and

manipulates the cache specified by cacheop. For details about the cache index specification

method, see Section 5.2.5, Cache Index Specification Method.

[Supplement] Each cache operation has its own instruction execution privilege. For details about the

correspondence between cache operations and instruction execution privileges, see Section

5.2.6, Execution Privilege of the CACHE/PREF Instruction.

When manipulating the cache by specifying the address, it might become the target of

memory protection by the MPU. For details about the relationship between cache

manipulation and memory protection, see Section 5.2.7, Memory Protection for

CACHE and PREF Instructions.

<Cache instruction>
Cache

CACHE
Cache operation

15 0 31 16

111pp111111RRRRR PPPPP00101100000

CY —

OV —

S —

Z —

SAT —

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 302 of 425
Mar 05, 2015

Table 7.7 Cache Operation

cacheop Target Processing Cache Specification Operation

0000000 Instruction CHBII Address (Cache Hit Block Invalidate, Instruction cache)
If the specified address hits an address in the instruction cache, the
corresponding cache line is disabled. If the specified address does not
hit an address in the instruction cache, no processing is performed.

0100000 Instruction CIBII Index (Cache Indexed Block Invalidate, Instruction cache)
Disables the instruction cache line of the specified index.
This instruction can be used in cases such as when the entire memory
cache is initialized by software.

1000000 Instruction CFALI Address (Cache Fetch And Lock, Instruction cache)
Loads the data from the specified address and stores it in the
instruction cache. At this time, the corresponding cache line is locked.
If the data at the specified address is already stored in the instruction
cache, this instruction only locks the cache line. If the data at the
specified address is already stored in the instruction cache and the
corresponding cache line is locked, no processing is performed.

1100000 Instruction CISTI Index (Cache Indexed Store, Instruction cache)
Writes (stores) data from a system register to the instruction cache line
of the specified index. The specifications of the data to be written and
the system register depend on the specifications of the CPU core. For
details, see the hardware manual of the product used.

1100001 Instruction CILDI Index (Cache Indexed Load, Instruction cache)
Reads (loads) data from the instruction cache line of the specified
index to a system register. The specifications of the data to be read
and the system register depend on the specifications of the CPU core.
For details, see the hardware manual of the product used.

1111110 — CLL — (Clear Load Link-bit)
Functions as the CLL instruction.

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 303 of 425
Mar 05, 2015

[Instruction format] PREF prefop, [reg1]

[Operation] Executes the prefetch operation specified by prefop.

[Format] Format X

[Opcode]

PPPPP indicates prefop.

[Flags]

[Description] Executes the prefetch operation specified by prefop on the word data of general-purpose

register reg1 used as a 32-bit address.

[Supplement] The prefetch instruction does not generate a privilege instruction exception in any CPU mode.

If the CPU being used does not have a cache, this instruction will not generate a reserved

instruction exception and no processing is performed, in the same way as a NOP instruction.

Memory protection by the MMU does not generate memory protection exceptions (privilege

or access permission violation exceptions) during prefetch operations. In such a case, the

prefetch operation is implicitly ignored and no processing is performed, in the same way as a

NOP instruction.

CAUTION

Be aware that even after the prefetch instruction has finished executing, a prefetch operation
might not necessarily have been performed.

<Cache instruction>
Prefetch

PREF
Prefetch

15 0 31 16

11011111111RRRRR PPPPP00101100000

CY —

OV —

S —

Z —

SAT —

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 304 of 425
Mar 05, 2015

CAUTION

The size of the data prefetched in one prefetch operation depends on the specifications of the
CPU core.

Table 7.8 Prefetch Operation

prefop Target Processing Cache Specification Operation

00000 Instruction PREFI Address (Prefetch Instruction cache)
Stores the data at the specified address in the instruction cache. If the
data at the specified address is already stored in the instruction cache,
no processing is performed.

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 305 of 425
Mar 05, 2015

7.4 Floating-Point Instructions

7.4.1 Instruction formats

All floating-point instructions are in 32-bit format.

When an instruction is actually saved to memory, it is placed as shown below.

 Lower part of instruction format (including bit 0) → Lower address side

 Higher part of instruction format (including bit 15 or bit 31) → Upper address side

(1) Format F:I

The 32-bit long floating-point instruction format includes a 6-bit opcode field, 4-bit sub-

opcode field, three fields that specify general-purpose registers, a 3-bit category field, and a 2-

bit type field.

15 5 011 10

reg1opcode reg3

4 31 16

reg2

27 26

sub-opcode

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 306 of 425
Mar 05, 2015

7.4.2 Overview of Floating-Point Instructions

Floating-point instructions are divided into single-precision instructions (single) and double-

precision instructions (double), and include the following instructions (mnemonics).

(1) Basic operation instructions

 ABSF.D: Floating-point Absolute Value (Double)

 ABSF.S: Floating-point Absolute Value (Single)

 ADDF.D: Floating-point Add (Double)

 ADDF.S: Floating-point Add (Single)

 DIVF.D: Floating-point Divide (Double)

 DIVF.S: Floating-point Divide (Single)

 MAXF.D: Floating-point Maximum (Double)

 MAXF.S: Floating-point Maximum (Single)

 MINF.D: Floating-point Minimum (Double)

 MULF.S: Floating-point Multiply (Single)

 NEGF.D: Floating-point Negate (Double)

 NEGF.S: Floating-point Negate (Single)

 RECIPF.D: Reciprocal of a floating-point value (Double)

 RECIPF.S: Reciprocal of a floating-point value (Single)

 RSQRTF.D: Reciprocal of the square root of a floating-point value (Double)

 RSQRTF.S: Reciprocal of the square root of a floating-point value (Single)

 SQRTF.D: Floating-point Square Root (Double)

 SQRTF.S: Floating-point Square Root (Single)

 SUBF.D: Floating-point Subtract (Double)

 SUBF.S: Floating-point Subtract (Single)

(2) Extended basic operation instructions

 FMAF.S: Floating-point fused-multiply-add (Single)

 FMSF.S: Floating-point fused-multiply-subtract (Single)

 FNMAF.S: Floating-point fused-negate-multiply-add (Single)

 FNMSF.S: Floating-point fused-negate-multiply-subtract (Single)

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 307 of 425
Mar 05, 2015

(3) Conversion instructions

 CEILF.SUW: Floating-point convert single to unsigned-word, round toward positive
(Single)

 CEILF.DW: Floating-point Convert Double to Word, round toward positive
(Double)

 CEILF.DUL: Floating-point Convert Double to Unsigned-Long, round toward
positive (Double)

 CEILF.DUW: Floating-point Convert Double to Unsigned-Word, round toward
positive (Double)

 CEILF.SL: Floating-point Convert Single to Long, round toward positive (Single)

 CEILF.SW: Floating-point Convert Single to Word, round toward positive (Single)

 CEILF.SUL: Floating-point Convert Single to Unsigned-Long, round toward
positive (Single)

 CEILF.SUW: Floating-point Convert Single to Unsigned-Word, round toward
positive (Single)

 CVTF.DL: Floating-point convert double to long (Double)

 CVTF.DS: Floating-point convert double to single (Double)

 CVTF.DUL: Floating-point convert double to unsigned-long (Double)

 CVTF.DUW: Floating-point convert double to unsigned-word (Double)

 CVTF.DW: Floating-point convert double to long (Double)

 CVTF.LD: Floating-point convert long to double (Double)

 CVTF.LS: Floating-point convert long to single (Single)

 CVTF.SD: Floating-point convert single to double (Double)

 CVTF.SL: Floating-point convert single to long (Single)

 CVTF.SUL: Floating-point convert single to unsigned-long (Single)

 CVTF.SUW: Floating-point convert single to unsigned-word (Single)

 CVTF.SW: Floating-point convert single to long (Single)

 CVTF.ULD: Floating-point convert unsigned-long to double (Double)

 CVTF.ULS: Floating-point convert unsigned-long to single (Single)

 CVTF.UWD: Floating-point convert unsigned-word to double (Double)

 CVTF.UWS: Floating-point convert unsigned-word to single (Single)

 CVTF.WD: Floating-point convert word to double (Double)

 CVTF.WS: Floating-point convert word to single (Single)

 FLOORF.DL: Floating-point convert double to long, round toward negative
(Double)

 FLOORF.DW: Floating-point convert double to long, round toward negative
(Double)

 FLOORF.DUL: Floating-point convert double to unsigned-long, round toward
negative (Double)

 FLOORF.DUW: Floating-point convert double to unsigned-word, round toward

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 308 of 425
Mar 05, 2015

negative (Double)

 FLOORF.SL: Floating-point convert single to long, round toward negative (Single)

 FLOORF.SW: Floating-point convert single to long, round toward negative (Single)

 FLOORF.SUL: Floating-point convert single to unsigned-long, round toward negative
(Single)

 FLOORF.SUW: Floating-point convert single to unsigned-word, round toward
negative (Single)

 TRNCF.DL: Floating-point convert double to long, round toward zero (Double)

 TRNCF.DUL: Floating-point convert double to unsigned-long, round toward zero
(Double)

 TRNCF.DUW: Floating-point convert double to unsigned-word, round toward zero
(Double)

 TRNCF.DW: Floating-point convert double to long, round toward zero (Double)

 TRNCF.SL: Floating-point convert single to long, round toward zero (Single)

 TRNCF.SUL: Floating-point convert single to unsigned-long, round toward zero
(Single)

 TRNCF.SUW: Floating-point convert single to unsigned-word, round toward zero
(Single)

 TRNCF.SW: Floating-point convert single to long, round toward zero (Single)

 CVTF.HS: Floating-point convert half to single (Single)

 CVTF.SH: Floating-point convert single to half (Single)

(4) Comparison instructions

 CMPF.S: Compare floating-point values (Single)

 CMPF.D: Compare floating-point values (Double)

(5) Conditional move instructions

 CMOVF.S: Floating-point conditional move (Single)

 CMOVF.D: Floating-point conditional move (Double)

(6) Condition bit transfer instruction

 TRFSR: Transfers specified CC bit to Zero flag in PSW (Single)

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 309 of 425
Mar 05, 2015

7.4.3 Conditions for Comparison Instructions

Floating-point comparison instructions (CMPF.D and CMPF.S) perform two floating-point

data compare operations. The result is determined based on the comparison condition

contained in the data and code. Table 7.9 lists the mnemonics for conditions that can be

specified by comparison instructions.

The comparison instruction result is transferred by the TRFSR instruction to the Z flag of

PSW (program status word), and when performing a conditional branch, the condition logic is

inverted and then can be used. Table 7.10 shows logic inversion based on the true/false

status of conditions. In a 4-bit condition code for a floating-point comparison instruction, the

condition is specified in the “True” column of the table. The conditional branch instruction

BT performs a branch when the comparison result is true, while BF performs a branch when

the result is false.

Table 7.9 List of Conditions for Comparison Instructions

Mnemonic Definition Inverted Logic

F Always false (T) Always true

UN Unordered (OR) Ordered

EQ Equal (NEQ) Not equal

UEQ Unordered or equal (OLG) Ordered and less than or greater than

OLT Ordered and less than (UGE) Unordered or greater than or equal to

ULT Unordered or less than (OGE) Ordered and greater than or equal to

OLE Ordered and less than or equal to (UGT) Unordered or greater than

ULE Unordered or less than or equal to (OGT) Ordered and greater than

SF Signaling and false (ST) Signaling and true

NGLE Not greater than, not less than, and not equal to (GLE) Greater than, less than, or equal to

SEQ Signaling and equal to (SNE) Signaling and not equal to

NGL Not greater than and not less than (GL) Greater than or less than

LT Less than (NLT) Not less than

NGE Not greater than and not equal to (GE) Greater than or equal to

LE Less than or equal to (NLE) Not less than and not equal to

NGT Not greater than (GT) Greater than

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 310 of 425
Mar 05, 2015

Table 7.10 Definitions of Condition Code Bits and Their Logical Inversions

Mnemonic
(True)

Condition Code
fcond

Bit Definition of Condition Code fcond(3:0)

Inverted
Logic
(False)

Less than Equal to Unordered

Invalid operation
exception occurs
when unordered

Decimal Binary fcond(2) fcond(1) fcond(0) fcond(3)

F 0 0b0000 F F F No (T)

UN 1 0b0001 F F T No (OR)

EQ 2 0b0010 F T F No (NEQ)

UEQ 3 0b0011 F T T No (OLG)

OLT 4 0b0100 T F F No (UGE)

ULT 5 0b0101 T F T No (OGE)

OLE 6 0b0110 T T F No (UGT)

ULE 7 0b0111 T T T No (OGT)

SF 8 0b1000 F F F Yes (ST)

NGLE 9 0b1001 F F T Yes (GLE)

SEQ 10 0b1010 F T F Yes (SNE)

NGL 11 0b1011 F T T Yes (GL)

LT 12 0b1100 T F F Yes (NLT)

NGE 13 0b1101 T F T Yes (GE)

LE 14 0b1110 T T F Yes (NLE)

NGT 15 0b1111 T T T Yes (GT)

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 311 of 425
Mar 05, 2015

7.4.4 Floating-Point Instruction Set

This section describes the following items in each instruction (based on alphabetical order of

instruction mnemonics).

 Instruction format: Indicates how the instruction is written and its operand(s)

(symbols are listed in Table 7.11).

 Operation: Indicates the function of the instruction. (symbols are listed in

Table 7.12).

 Format: Indicates the instruction format (see Section 7.4.1, Instruction

formats).

 Opcode: Indicates the instruction opcode in bit fields (symbols are listed in

Table 7.13).

 Description: Describes the operation of the instruction.

 Supplement: Provides supplementary information on the instruction.

Table 7.11 Instruction Format

Symbol Explanation

reg1 General-purpose register

reg2 General-purpose register

reg3 General-purpose register

reg4 General-purpose register

fcbit Specifies the bit number of the condition bit that stores the result of a floating-
point comparison instruction.

imm × × bit immediate data

fcond Specifies the mnemonic or condition code of the comparison condition of a
comparison instruction (for details, see Section 7.4.3, Conditions for
Comparison Instructions).

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 312 of 425
Mar 05, 2015

Table 7.12 Operations

Symbol Explanation

← Assignment (input for)

GR [a] Value stored in general-purpose register a

SR [a, b] Value stored in system register (RegID = a, SelID = b)

result Result is reflected in flag.

== Comparison (true upon a match)

+ Add

– Subtract

║ Bit concatenation

× Multiply

÷ Divide

abs Absolute value

ceil Rounding in +∞ direction

compare Comparison

cvt Converts type according to rounding mode

floor Rounding in –∞ direction

max Maximum value

min Minimum value

neg Sign inversion

round Rounding to closest value

sqrt Square root

trunc Rounding in zero direction

fma(a, b, c) Result of multiplying a and b and then adding c

fms(a, b, c) Result of multiplying a and b and then subtracting c

Table 7.13 Opcodes

Symbol Explanation

R Single bit data of code specifying reg1

r Single bit data of code specifying reg2

w Single bit data of code specifying reg3

W Single bit data of code specifying reg4

I Single bit data of immediate data (indicates higher bit of immediate data)

i Single bit data of immediate data

fff 3-bit data that specifies the bit number (fcbit) of the condition bit that stores the
result of a floating-point comparison instruction

FFFF 4-bit data corresponding to the mnemonic or condition code (fcond) of the
comparison condition of a comparison instruction

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 313 of 425
Mar 05, 2015

[Instruction format] ABSF.D reg2, reg3

[Operation] reg3 ← abs (reg2)

[Format] Format F:I

[Opcode]

[Description] This instruction takes the absolute value from the double-precision floating-point format

contents of the register pair specified by general-purpose register reg2, and stores it in the

register pair specified by general-purpose register reg3.

[Floating-point

operation exceptions]

None

[Supplement] A subnormal input will not be flushed even if the FS bit of the FPSR register is 1.

<Floating-point instruction>
Floating-point Absolute Value (Double)

ABSF.D
Floating-point absolute value (double precision)

15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

r r r r 0 1 1 1 1 1 1 0 0 0 0 0 w w w w 0 1 0 0 0 1 0 1 1 0 0 0

reg2 reg3 category type sub-op

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 314 of 425
Mar 05, 2015

[Instruction format] ABSF.S reg2, reg3

[Operation] reg3 ← abs (reg2)

[Format] Format F:I

[Opcode]

[Description] This instruction takes the absolute value from the single-precision floating-point format

contents of general-purpose register reg2, and stores it in general-purpose register reg3.

[Floating-point

operation exceptions]

None

[Supplement] A subnormal input will not be flushed even if the FS bit of the FPSR register is 1.

<Floating-point instruction>
Floating-point Absolute Value (Single)

ABSF.S
Floating-point absolute value (single precision)

15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

r r r r r 1 1 1 1 1 1 0 0 0 0 0 w w w w w 1 0 0 0 1 0 0 1 0 0 0

reg2 reg3 category type sub-op

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 315 of 425
Mar 05, 2015

[Instruction format] ADDF.D reg1, reg2, reg3

[Operation] reg3 ← reg2 + reg1

[Format] Format F:I

[Opcode]

[Description] This instruction adds the double-precision floating-point format contents of the register pair

specified by general-purpose register reg1 with the double-precision floating-point format

contents of the register pair specified by general-purpose register reg2, and stores the result in

the register pair specified by general-purpose register reg3. The operation is executed as if it

were of infinite accuracy, and the result is rounded in accordance with the current rounding

mode.

[Floating-point

operation exceptions]

Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

Overflow exception (O)

Underflow exception (U)

<Floating-point instruction>
Floating-point Add (Double)

ADDF.D
Floating-point add (double precision)

15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

r r r r 0 1 1 1 1 1 1 R R R R 0 w w w w 0 1 0 0 0 1 1 1 0 0 0 0

reg2 reg1 reg3 category type sub-op

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 316 of 425
Mar 05, 2015

[Operation result]

Note 1. [] indicates an exception that must occur.

Note 2. When the FS bit of the FPSR register is 1, subnormal numbers are flushed to the normalized
numbers shown in Section 6.1.8, Flushing Subnormal Numbers.

reg2(B)

reg1(A) +Normal –Normal +0 –0 +∞ –∞ Q-NaN S-NaN

+Normal

A + B –∞
–Normal

+0

–0

+∞ +∞ Q-NaN [V]

–∞ –∞ Q-NaN [V] –∞

Q-NaN Q-NaN

S-NaN Q-NaN [V]

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 317 of 425
Mar 05, 2015

[Instruction format] ADDF.S reg1, reg2, reg3

[Operation] reg3 ← reg2 + reg1

[Format] Format F:I

[Opcode]

[Description] This instruction adds the single-precision floating-point format contents of general-purpose

register reg1 with the single-precision floating-point format contents of general-purpose

register reg2, and stores the result in general-purpose register reg3. The operation is executed

as if it were of infinite accuracy, and the result is rounded in accordance with the current

rounding mode.

[Floating-point

operation exceptions]

Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

Overflow exception (O)

Underflow exception (U)

<Floating-point instruction>
Floating-point Add (Single)

ADDF.S
Floating-point add (single precision)

15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

r r r r r 1 1 1 1 1 1 R R R R R w w w w w 1 0 0 0 1 1 0 0 0 0 0

reg2 reg1 reg3 category type sub-op

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 318 of 425
Mar 05, 2015

[Operation result]

Note 1. [] indicates an exception that must occur.

Note 2. When the FS bit of the FPSR register is 1, subnormal numbers are flushed to the normalized
numbers shown in Section 6.1.8, Flushing Subnormal Numbers.

reg2(B)

reg1(A) +Normal –Normal +0 –0 +∞ –∞ Q-NaN S-NaN

+Normal

A + B –∞
–Normal

+0

–0

+∞ +∞ Q-NaN [V]

–∞ –∞ Q-NaN [V] –∞

Q-NaN Q-NaN

S-NaN Q-NaN [V]

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 319 of 425
Mar 05, 2015

[Instruction format] CEILF.DL reg2, reg3

[Operation] reg3 ← ceil reg2 (double → long-word)

[Format] Format F:I

[Opcode]

[Description] This instruction arithmetically converts the double-precision floating-point format contents of

the register pair specified by general-purpose register reg2 to 64-bit fixed-point format, and

stores the result in the register pair specified by general-purpose register reg3.

The result is rounded in the +∞ direction regardless of the current rounding mode.

When the source operand is infinite or not-a-number, or when the rounded result is outside the

range of 263 – 1 to –263, an IEEE754-defined invalid operation exception is detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR

register is set as an invalid operation and no exception occurs. The return value differs as

follows, according to differences among sources.

 Source is a positive number or +∞: 263 – 1 is returned.

 Source is a negative number, not-a-number, or –∞: –263 is returned.

[Floating-point

operation exceptions]

Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

[Operation result]

Note 1. [] indicates an exception that must occur.

Note 2. When the FS bit of the FPSR register is 1, subnormal numbers are flushed to the normalized
numbers shown in Section 6.1.8, Flushing Subnormal Numbers.

<Floating-point instruction>
Floating-point Convert Double to Long, round toward positive (Double)

CEILF.DL
Conversion to fixed-point format (double precision)

15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

r r r r 0 1 1 1 1 1 1 0 0 0 1 0 w w w w 0 1 0 0 0 1 0 1 0 1 0 0

reg2 reg3 category type sub-op

reg2 (A) +Normal –Normal +0 –0 +∞ –∞ Q-NaN S-NaN

Operation
result
[exception]

A (integer) 0 (integer) +Max Int
[V]

–Max Int [V]

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 320 of 425
Mar 05, 2015

[Instruction format] CEILF.DUL reg2, reg3

[Operation] reg3 ← ceil reg2 (double → unsigned long-word)

[Format] Format F:I

[Opcode]

[Description] This instruction arithmetically converts the double-precision floating-point format contents of

the register pair specified by general-purpose register reg2 to unsigned 64-bit fixed-point

format, and stores the result in the register pair specified by general-purpose register reg3.

The result is rounded in the + direction regardless of the current rounding mode.

When the source operand is infinite, not-a-number, or negative number, or when the rounded

result is outside the range of 264 – 1 to 0, an IEEE754-defined invalid operation exception is

detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR

register is set as an invalid operation and no exception occurs. The return value differs as

follows, according to differences among sources.

 Source is a positive number outside the range of 264 – 1 to 0, or +∞: 264 – 1 is returned.

 Source is a negative number, not-a-number, or –∞: 0 is returned.

[Floating-point

operation exceptions]

Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

[Operation result]

Note 1. [] indicates an exception that must occur.

Note 2. When the FS bit of the FPSR register is 1, subnormal numbers are flushed to the normalized
numbers shown in Section 6.1.8, Flushing Subnormal Numbers.

<Floating-point instruction>
Floating-point Convert Double to Unsigned-Long, round toward positive (Double)

CEILF.DUL
Conversion to unsigned fixed-point format (double precision)

15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

r r r r 0 1 1 1 1 1 1 1 0 0 1 0 w w w w 0 1 0 0 0 1 0 1 0 1 0 0

reg2 reg3 category type sub-op

reg2 (A) +Normal –Normal +0 –0 +∞ –∞ Q-NaN S-NaN

Operation
result
[exception]

A
(integer)

0 [V] 0 (integer) Max U-Int
[V]

0 [V]

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 321 of 425
Mar 05, 2015

[Instruction format] CEILF.DUW reg2, reg3

[Operation] reg3 ← ceil reg2 (double → unsigned word)

[Format] Format F:I

[Opcode]

[Description] This instruction arithmetically converts the double-precision floating-point format contents of

the register pair specified by general-purpose register reg2 to unsigned 32-bit fixed-point

format, and stores the result in general-purpose register reg3.

The result is rounded in the + direction regardless of the current rounding mode.

When the source operand is infinite, not-a-number, or negative number, or when the rounded

result is outside the range of 232 – 1 to 0, an IEEE754-defined invalid operation exception is

detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR

register is set as an invalid operation and no exception occurs. The return value differs as

follows, according to differences among sources.

 Source is a positive number outside the range of 264 – 1 to 0, or +∞: 232 – 1 is returned.

 Source is a negative number, not-a-number, or –∞: 0 is returned.

[Floating-point

operation exceptions]

Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

[Operation result]

Note 1. [] indicates an exception that must occur.

Note 2. When the FS bit of the FPSR register is 1, subnormal numbers are flushed to the normalized
numbers shown in Section 6.1.8, Flushing Subnormal Numbers.

<Floating-point instruction>
Floating-point Convert Double to Unsigned-Word, round toward positive (Double)

CEILF.DUW
Conversion to unsigned fixed-point format (double precision)

15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

r r r r 0 1 1 1 1 1 1 1 0 0 1 0 w w w w w 1 0 0 0 1 0 1 0 0 0 0

reg2 reg3 category type sub-op

reg2 (A) +Normal –Normal +0 –0 +∞ –∞ Q-NaN S-NaN

Operation
result
[exception]

A
(integer)

0 [V] 0 (integer) Max U-Int
[V]

0 [V]

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 322 of 425
Mar 05, 2015

[Instruction format] CEILF.DW reg2, reg3

[Operation] reg3 ← ceil reg2 (double → word)

[Format] Format F:I

[Opcode]

[Description] This instruction arithmetically converts the double-precision floating-point format contents of

the register pair specified by general-purpose register reg2 to 32-bit fixed-point format, and

stores the result in general-purpose register reg3.

The result is rounded in the +∞ direction regardless of the current rounding mode.

When the source operand is infinite or not-a-number, or when the rounded result is outside the

range of 231 – 1 to –231, an IEEE754-defined invalid operation exception is detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR

register is set as an invalid operation and no exception occurs. The return value differs as

follows, according to differences among sources.

 Source is a positive number or +∞: 231 – 1 is returned.

 Source is a negative number, not-a-number, or -: –231 is returned.

[Floating-point

operation exceptions]

Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

[Operation result]

Note 1. [] indicates an exception that must occur.

Note 2. When the FS bit of the FPSR register is 1, subnormal numbers are flushed to the normalized
numbers shown in Section 6.1.8, Flushing Subnormal Numbers.

<Floating-point instruction>
Floating-point Convert Double to Word, round toward positive (Double)

CEILF.DW
Conversion to fixed-point format (double precision)

15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

r r r r 0 1 1 1 1 1 1 0 0 0 1 0 w w w w w 1 0 0 0 1 0 1 0 0 0 0

reg2 reg3 category type sub-op

reg2 (A) +Normal –Normal +0 –0 +∞ –∞ Q-NaN S-NaN

Operation
result
[exception]

A (integer) 0 (integer) +Max Int
[V]

–Max Int [V]

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 323 of 425
Mar 05, 2015

[Instruction format] CEILF.SL reg2, reg3

[Operation] reg3 ← ceil reg2 (single → long-word)

[Format] Format F:I

[Opcode]

[Description] This instruction arithmetically converts the single-precision floating-point format contents of

general-purpose register reg2 to 64-bit fixed-point format, and stores the result in the register

pair specified by general-purpose register reg3.

The result is rounded in the + direction regardless of the current rounding mode.

When the source operand is infinite or not-a-number, or when the rounded result is outside the

range of 263 – 1 to –263, an IEEE754-defined invalid operation exception is detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR

register is set as an invalid operation and no exception occurs. The return value differs as

follows, according to differences among sources.

 Source is a positive number or +∞: 263 – 1 is returned.

 Source is a negative number, not-a-number, or –∞: –263 is returned.

[Floating-point

operation exceptions]

Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

[Operation result]

Note 1. [] indicates an exception that must occur.

Note 2. When the FS bit of the FPSR register is 1, subnormal numbers are flushed to the normalized
numbers shown in Section 6.1.8, Flushing Subnormal Numbers.

<Floating-point instruction>
Floating-point Convert Single to Long, round toward positive (Single)

CEILF.SL
Conversion to fixed-point format (single precision)

15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

r r r r r 1 1 1 1 1 1 0 0 0 1 0 w w w w 0 1 0 0 0 1 0 0 0 1 0 0

reg2 reg3 category type sub-op

reg2 (A) +Normal -Normal +0 –0 +∞ –∞ Q-NaN S-NaN

Operation
result
[exception]

A (integer) 0 (integer) +Max Int
[V]

–Max Int [V]

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 324 of 425
Mar 05, 2015

[Instruction format] CEILF.SUL reg2, reg3

[Operation] reg3 ← ceil reg2 (single → unsigned long-word)

[Format] Format F:I

[Opcode]

[Description] This instruction arithmetically converts the single-precision floating-point format contents

specified by general-purpose register reg2 to unsigned 64-bit fixed-point format, and stores

the result in the register pair specified by general-purpose register reg3.

The result is rounded in the +∞ direction regardless of the current rounding mode.

When the source operand is infinite, not-a-number, or negative number, or when the rounded

result is outside the range of 264 – 1 to 0, an IEEE754-defined invalid operation exception is

detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR

register is set as an invalid operation and no exception occurs. The return value differs as

follows, according to differences among sources.

 Source is a positive number outside the range of 264 – 1 to 0, or +∞: 264 – 1 is returned.

 Source is a negative number, not-a-number, or –∞: 0 is returned.

[Floating-point

operation exceptions]

Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

[Operation result]

Note 1. [] indicates an exception that must occur.

Note 2. When the FS bit of the FPSR register is 1, subnormal numbers are flushed to the normalized
numbers shown in Section 6.1.8, Flushing Subnormal Numbers.

<Floating-point instruction>
Floating-point Convert Single to Unsigned-Long, round toward positive (Single)

CEILF.SUL
Conversion to unsigned fixed-point format (single precision)

15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

r r r r r 1 1 1 1 1 1 1 0 0 1 0 w w w w 0 1 0 0 0 1 0 0 0 1 0 0

reg2 reg3 category type sub-op

reg2 (A) +Normal –Normal +0 –0 +∞ –∞ Q-NaN S-NaN

Operation
result
[exception]

A
(integer)

0 [V] 0 (integer) Max U-Int
[V]

0 [V]

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 325 of 425
Mar 05, 2015

[Instruction format] CEILF.SUW reg2, reg3

[Operation] reg3 ← ceil reg2 (single → unsigned word)

[Format] Format F:I

[Opcode]

[Description] This instruction arithmetically converts the single-precision floating-point format contents of

the register pair specified by general-purpose register reg2 to unsigned 32-bit fixed-point

format, and stores the result in general-purpose register reg3.

The result is rounded in the +∞ direction regardless of the current rounding mode.

When the source operand is infinite, not-a-number, or negative number, or when the rounded

result is outside the range of 232 – 1 to 0, an IEEE754-defined invalid operation exception is

detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR

register is set as an invalid operation and no exception occurs. The return value differs as

follows, according to differences among sources.

 Source is a positive number outside the range of 264 – 1 to 0, or +∞: 232 – 1 is returned.

 Source is a negative number, not-a-number, or –∞: 0 is returned.

[Floating-point

operation exceptions]

Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

[Operation result]

Note 1. [] indicates an exception that must occur.

Note 2. When the FS bit of the FPSR register is 1, subnormal numbers are flushed to the normalized
numbers shown in Section 6.1.8, Flushing Subnormal Numbers.

<Floating-point instruction>
Floating-point Convert Single to Unsigned-Word, round toward positive (Single)

CEILF.SUW
Conversion to unsigned fixed-point format (single precision)

15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

r r r r r 1 1 1 1 1 1 1 0 0 1 0 w w w w w 1 0 0 0 1 0 0 0 0 0 0

reg2 reg3 category type sub-op

reg2 (A) +Normal –Normal +0 –0 +∞ –∞ Q-NaN S-NaN

Operation
result
[exception]

A
(integer)

0 [V] 0 (integer) Max U-Int
[V]

0 [V]

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 326 of 425
Mar 05, 2015

[Instruction format] CEILF.SW reg2, reg3

[Operation] reg3 ← ceil reg2 (single → word)

[Format] Format F:I

[Opcode]

[Description] This instruction arithmetically converts the single-precision floating-point format contents of

general-purpose register reg2 to 32-bit fixed-point format, and stores the result in general-

purpose register reg3.

The result is rounded in the +∞ direction regardless of the current rounding mode.

When the source operand is infinite or not-a-number, or when the rounded result is outside the

range of 231 – 1 to –231, an IEEE754-defined invalid operation exception is detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR

register is set as an invalid operation and no exception occurs. The return value differs as

follows, according to differences among sources.

 Source is a positive number or +∞: 231 – 1 is returned.

 Source is a negative number, not-a-number, or –∞: –231 is returned.

[Floating-point

operation exceptions]

Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

[Operation result]

Note 1. [] indicates an exception that must occur.

Note 2. When the FS bit of the FPSR register is 1, subnormal numbers are flushed to the normalized
numbers shown in Section 6.1.8, Flushing Subnormal Numbers.

<Floating-point instruction>
Floating-point Convert Single to Word, round toward positive (Single)

CEILF.SW
Conversion to fixed-point format (single precision)

15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

r r r r r 1 1 1 1 1 1 0 0 0 1 0 w w w w w 1 0 0 0 1 0 0 0 0 0 0

reg2 reg3 category type sub-op

reg2 (A) +Normal –Normal +0 –0 +∞ –∞ Q-NaN S-NaN

Operation
result
[exception]

A (integer) 0 (integer) +Max Int
[V]

–Max Int [V]

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 327 of 425
Mar 05, 2015

[Instruction format] CMOVF.D fcbit, reg1, reg2, reg3

[Operation] if (FPSR.CCn == 1) then

reg3 ← reg1

else

reg3 ← reg2

endif

Note 1. n = fcbit

[Format] Format F:I

[Opcode]

Caution 1. reg3: wwww! = 0
wwww 0000 (do not set reg3 to r0)

Note: fcbit: fff

[Description] When the CC(7:0) bits of the FPSR register specified by fcbit in the opcode are true (1), data

from the register pair specified by reg1 is stored in the register pair specified by reg3. When

these bits are false (0), data from the register pair specified by reg2 is stored in the register

pair specified by reg3.

[Floating-point

operation exceptions]

None

[Supplement] A subnormal input will not be flushed even if the FS bit of the FPSR register is 1.

CAUTION

Do not set reg3 to r0.

<Floating-point instruction>
Floating-point Conditional Move (Double)

CMOVF.D
Conditional move (double precision)

15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

r r r r 0 1 1 1 1 1 1 R R R R 0 w w w w 0 1 0 0 0 0 0 1 f f f 0

reg2 reg1 reg3*1 category type sub-op

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 328 of 425
Mar 05, 2015

[Instruction format] CMOVF.S fcbit, reg1, reg2, reg3

[Operation] if (FPSR.CCn == 1) then

reg3 ← reg1

else

reg3 ← reg2

endif

Note 1. n = fcbit

[Format] Format F:I

[Opcode]

Caution 1. reg3: wwwww! = 0
wwwww 00000 (do not set reg3 to r0)

Note: fcbit: fff

[Description] When the CC(7:0) bits of the FPSR register specified by fcbit in the opcode are true (1), data

from reg1 is stored in reg3. When these bits are false (0), the reg2 data is stored in reg3.

[Floating-point

operation exceptions]

None

[Supplement] A subnormal input will not be flushed even if the FS bit of the FPSR register is 1.

CAUTION

Do not set reg3 to r0.

<Floating-point condition instruction >
Floating-point Conditional Move (Single)

CMOVF.S
Conditional move (single precision)

15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

r r r r r 1 1 1 1 1 1 R R R R R w w w w w 1 0 0 0 0 0 0 f f f 0

reg2 reg1 reg3*1 category type sub-op

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 329 of 425
Mar 05, 2015

[Instruction format] CMPF.D fcond, reg2, reg1, fcbit

CMPF.D fcond, reg2, reg1

[Operation] if isNaN(reg1) or isNaN(reg2) then

result.less ← 0

result.equal ← 0

result.unordered ← 1

if fcond[3] == 1 then

Invalid operation exception is detected.

endif

else

result.less ← reg2 < reg1

result.equal ← reg2 == reg1

result.unordered ← 0

endif

FPSR.CCn ← (fcond[2] & result.less) | (fcond[1] & result.equal) |

(fcond[0] & result.unordered)

Note 1. n: fcbit

[Format] Format F:I

[Opcode]

Note: fcond: FFFF
fcbit: fff

<Floating-point instruction>
Compare floating-point values (Double)

CMPF.D
loating-point comparison (double precision)

15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

r r r r 0 1 1 1 1 1 1 R R R R 0 0 F F F F 1 0 0 0 0 1 1 f f f 0

reg2 reg1 category type sub-op

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 330 of 425
Mar 05, 2015

[Description] This instruction compares the double-precision floating-point format contents of the register

pair specified by general-purpose register reg2 with the double-precision floating-point

format contents of the register pair specified by general-purpose register reg1, based on the

condition “fcond”, and sets the result (1 if true, 0 if false) to the condition bits (the CC(7:0)

bits: bits 31 to 24) in the FPSR register specified by fcbit in the opcode. If fcbit is omitted, the

result is set to the CC0 bit (bit 24).

For description of the comparison condition “fcond” code, see Table 7.14, Comparison

Conditions.

If one of the values is not-a-number, and the MSB of the comparison condition “fcond” has

been set, an IEEE754-defined invalid operation exception is detected. If invalid operation

exceptions are enabled, the comparison result is not set and processing is passed to the

exception.

If the enable bits are not set, no exception occurs, and the preservation bit (bit 4) of the FPSR

register is set, then the comparison result is set to the CC(7:0) bits of the FPSR register.

When SignalingNaN (S-NaN) is acknowledged as an operand value in a floating-point

instruction (including a comparison), it is regarded as an invalid operation condition. When

using only S-NaN but also QuietNaN (Q-NaN) for a comparison that is an invalid operation,

it is simpler to use a program in which any NaN results in an error. In other words, there is no

need to insert code that checks for Q-NaN that would result in an unordered result. Instead,

the exception handling system should perform error processing when an exception occurs

after detecting an invalid operation. The following shows a comparison that checks for

equivalence of two numerical values and triggers an error when an unordered result is

detected.

Note: ?: Unordered (invalid comparison)

Table 7.14 Comparison Conditions

Comparison
Conditions

Definition Description

Detection of
invalid
operation
exception
by
unorderedfcond

F 0 FALSE Always false No

UN 1 Unordered One of reg1 and reg2 is not-a-number No

EQ 2 reg2 = reg1 Ordered (both reg1 and reg2 is not not-a-number) and equal No

UEQ 3 reg2 ? = reg1 Unordered (at least, one of reg1 and reg2 is not-a-number) or equal No

OLT 4 reg2 < reg1 Ordered (both reg1 and reg2 are not not-a-number) and less than No

ULT 5 reg2 ? < reg1 Unordered (one of reg1 and reg2 is not-a-number) or less than or equal to No

OLE 6 reg2 ≤ reg1 Ordered (both reg1 and reg2 are not not-a-number) and less than or equal to No

ULE 7 reg2 ? ≤ reg1 Unordered (one of reg1 and reg2 is not-a-number) or less than or equal to No

SF 8 FALSE Always false Yes

NGLE 9 Unordered One of reg1 and reg2 is not-a-number Yes

SEQ 10 reg2 = reg1 Ordered (both reg1 and reg2 are not not-a-number) and equal Yes

NGL 11 reg2 ? = reg1 Unordered (one of reg1 and reg2 is not-a-number) or equal Yes

LT 12 reg2 < reg1 Ordered (both reg1 and reg2 are not not-a-number) and less than Yes

NGE 13 reg2 ? < reg1 Unordered (one of reg1 and reg2 is not-a-number) or less than Yes

LE 14 reg2 ≤ reg1 Ordered (both reg1 and reg2 are not not-a-number) and less than or equal to Yes

NGT 15 reg2 ? ≤ reg1 Unordered (one of reg1 and reg2 is not-a-number) or less than or equal to Yes

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 331 of 425
Mar 05, 2015

When explicitly testing Q-NaN

CMPF.D OLT, r12, r14, 0 # Check if r12 < r14

CMPF.D UN, r12, r14, 1 # Check if unordered

TRFSR 0

BT L2 # If true, go to L2

TRFSR 1

BT ERROR # If true, go to error processing

Enter code for processing when neither unordered nor r12 < r14

L2:

Enter code for processing when r12 < r14

...

When using a comparison to detect Q-NaN

CMPF.D LT, r12, r14, 0 # Check if r12 ?< r14

TRFSR 0

BT L2 # If true, go to L2

Enter code for processing when not r12 < r14

L2:

Enter code for processing when r12 < r14

...

[Floating-point

operation exceptions]

Invalid operation exception (V)

[Supplement] A subnormal input will not be flushed even if the FS bit of the FPSR register is 1.

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 332 of 425
Mar 05, 2015

[Operation result] [Condition code (fcond) = 0 to 7]

[Condition code (fcond) = 8 to 15]

Note: [] indicates an exception that must occur.

reg1(B)

+Normal -Normal +0 –0 +∞ –∞ Q-NaN S-NaN

reg2(A)

±Normal
Stores result of comparison (true or false) executed under the
comparison condition (fcond) in the FPSR.CCn bit (n = fcbit)

±0

±∞

Q-NaN Unordered

S-NaN Unordered [V]

reg1(B)

+Normal -Normal +0 -0 +∞ –∞ Q-NaN S-NaN

reg2(A)

±Normal
Stores result of comparison (true or false) executed under the
comparison condition (fcond) in the FPSR.CCn bit (n = fcbit)

±0

±∞

Q-NaN
Unordered [V]

S-NaN

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 333 of 425
Mar 05, 2015

[Instruction format] CMPF.S fcond, reg2, reg1, fcbit

CMPF.S fcond, reg2, reg1

[Operation] if isNaN(reg1) or isNaN(reg2) then

result.less ← 0

result.equal ← 0

result.unordered ← 1

if fcond[3] == 1 then

Invalid operation exception is detected.

endif

else

result.less ← reg2 < reg1

result.equal ← reg2 == reg1

result.unordered ← 0

endif

FPSR.CCn ← (fcond[2] & result.less) | (fcond[1] & result.equal) |

(fcond[0] & result.unordered)

Note 1. n: fcbit

[Format] Format F:I

[Opcode]

Note 1. fcond: FFFF
fcbit: fff

<Floating-point instruction>
Compare floating-point values (Single)

CMPF.S
Floating-point comparison (single precision)

15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

r r r r r 1 1 1 1 1 1 R R R R R 0 F F F F 1 0 0 0 0 1 0 f f f 0

reg2 reg1 category type sub-op

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 334 of 425
Mar 05, 2015

[Description] This instruction compares the single-precision floating-point format contents of general-

purpose register reg2 with the single-precision floating-point format contents of general-

purpose register reg1, based on the comparison condition “fcond”, then sets the result (1 if

true, 0 if false) to the condition bits (the CC(7:0) bits: bits 31 to 24) in the FPSR register

specified by fcbit in the opcode. If fcbit is omitted, the result is set to the CC0 bit (bit 24).

For description of the comparison condition “fcond” code, see Table 7.15, Comparison

Conditions.

If one of the values is not-a-number, and the MSB of the comparison condition “fcond” has

been set, an IEEE754-defined invalid operation exception is detected. If invalid operation

exceptions are enabled, the comparison result is not set and processing is passed to the

exception.

If the enable bits are not set, no exception occurs, and the preservation bit (bit 4) of the FPSR

register is set, then the comparison result is set to the CC(7:0) bits of the FPSR register.

When SignalingNaN (S-NaN) is acknowledged as an operand value in a floating-point

instruction (including a comparison), it is regarded as an invalid operation condition. When

using only S-NaN but also QuietNaN (Q-NaN) for a comparison that is an invalid operation,

it is simpler to use a program in which any NaN results in an error. In other words, there is no

need to insert code that explicitly checks for Q-NaN that would result in an unordered result.

Instead, the exception handling system should perform error processing when an exception

occurs after detecting an invalid operation. The following shows a comparison that checks for

equivalence of two numerical values and triggers an error when an unordered result is

detected.

Note: ?: Unordered (invalid comparison)

Table 7.15 Comparison Conditions

Comparison
Conditions

Definition Description

Detection of
invalid
operation
exception by
unorderedfcond

F 0 FALSE Always false No

UN 1 Unordered One of reg1 and reg2 is not-a-number No

EQ 2 reg2 = reg1 Ordered (both reg1 and reg2 is not not-a-number) and equal No

UEQ 3 reg2 ? = reg1 Unordered (at least, one of reg1 and reg2 is not-a-number) or equal No

OLT 4 reg2 < reg1 Ordered (both reg1 and reg2 are not not-a-number) and less than No

ULT 5 reg2 ? < reg1 Unordered (one of reg1 and reg2 is not-a-number) or less than or equal to No

OLE 6 reg2 ≤ reg1 Ordered (both reg1 and reg2 are not not-a-number) and less than or equal to No

ULE 7 reg2 ? ≤ reg1 Unordered (one of reg1 and reg2 is not-a-number) or less than or equal to No

SF 8 FALSE Always false Yes

NGLE 9 Unordered One of reg1 and reg2 is not-a-number Yes

SEQ 10 reg2 = reg1 Ordered (both reg1 and reg2 are not not-a-number) and equal Yes

NGL 11 reg2 ? = reg1 Unordered (one of reg1 and reg2 is not-a-number) or equal Yes

LT 12 reg2 < reg1 Ordered (both reg1 and reg2 are not not-a-number) and less than Yes

NGE 13 reg2 ? < reg1 Unordered (one of reg1 and reg2 is not-a-number) or less than Yes

LE 14 reg2 ≤ reg1 Ordered (both reg1 and reg2 are not not-a-number) and less than or equal to Yes

NGT 15 reg2 ? ≤ reg1 Unordered (one of reg1 and reg2 is not-a-number) or less than or equal to Yes

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 335 of 425
Mar 05, 2015

When explicitly testing Q-NaN

CMPF.S OLT, r12, r13, 0 # Check if r12 < r14

CMPF.S UN, r12, r13, 1 # Check if unordered

TRFSR 0

BT L2 # If true, go to L2

TRFSR 1

BT ERROR # If true, go to error processing

Enter code for processing when neither unordered nor r12 < r14

L2:

Enter code for processing when r12 < r14

...

When using a comparison to detect Q-NaN

CMPF.S LT, r12, r13, 0 # Check if r12 ?< r14

TRFSR 0

BT L2 # If true, go to L2

Enter code for processing when not r12 < r14

L2:

Enter code for processing when r12 < r14

...

[Floating-point

operation exceptions]

Invalid operation exception (V)

[Supplement] A subnormal input will not be flushed even if the FS bit of the FPSR register is 1.

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 336 of 425
Mar 05, 2015

[Operation result] [Condition code (fcond) = 0 to 7]

[Condition code (fcond) = 8 to 15]

Note: [] indicates an exception that must occur.

reg1(B)

+Normal -Normal +0 –0 +∞ –∞ Q-NaN S-NaNreg2(A)

±Normal
Stores result of comparison (true or false) executed under

the comparison condition (fcond) in the FPSR.CCn bit (n = fcbit)
±0

±∞

Q-NaN Unordered

S-NaN Unordered [V]

reg1(B)

+Normal –Normal +0 –0 +∞ –∞ Q-NaN S-NaNreg2(A)

±Normal
Stores result of comparison (true or false) executed under

the comparison condition (fcond) in the FPSR.CCn bit (n = fcbit)
±0

±∞

Q-NaN
Unordered [V]

S-NaN

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 337 of 425
Mar 05, 2015

[Instruction format] CVTF.DL reg2, reg3

[Operation] reg3 ← cvt reg2 (double → long-word)

[Format] Format F:I

[Opcode]

[Description] This instruction arithmetically converts the double-precision floating-point format contents of

the register pair specified by general-purpose register reg2 to 64-bit fixed-point format, in

accordance with the current rounding mode, and stores the result in the register pair specified

by general-purpose register reg3.

When the source operand is infinite or not-a-number, or when the rounded result is outside the

range of 263 – 1 to –263, an IEEE754-defined invalid operation exception is detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR

register is set as an invalid operation and no exception occurs. The return value differs as

follows, according to differences among sources.

 Source is a positive number or +∞: 263 – 1 is returned.

 Source is a negative number, not-a-number, or -∞: –263 is returned.

[Floating-point

operation exceptions]

Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

[Operation result]

Note 1. [] indicates an exception that must occur.

Note 2. When the FS bit of the FPSR register is 1, subnormal numbers are flushed to the normalized
numbers shown in Section 6.1.8, Flushing Subnormal Numbers.

<Floating-point instruction>
Floating-point Convert Double to Long (Double)

CVTF.DL
Conversion to fixed-point format (double precision)

15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

r r r r 0 1 1 1 1 1 1 0 0 1 0 0 w w w w 0 1 0 0 0 1 0 1 0 1 0 0

reg2 reg3 category type sub-op

reg2 (A) +Normal –Normal +0 –0 +∞ –∞ Q-NaN S-NaN

Operation
result
[exception]

A (integer) 0 (integer) +Max Int
[V]

–Max Int [V]

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 338 of 425
Mar 05, 2015

[Instruction format] CVTF.DS reg2, reg3

[Operation] reg3 ← cvt reg2 (double → single)

[Format] Format F:I

[Opcode]

[Description] This instruction arithmetically converts the double-precision floating-point format contents of

the register pair specified by general-purpose register reg2 to single-precision floating-point

format, and stores the result in general-purpose register reg3. The result is rounded in

accordance with the current rounding mode.

[Floating-point

operation exceptions]

Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

Overflow exception (O)

Underflow exception (U)

[Operation result]

Note: [] indicates an exception that must occur.

Note: When the FS bit of the FPSR register is 1, subnormal numbers are flushed to the normalized
numbers shown in Section 6.1.8, Flushing Subnormal Numbers.

<Floating-point instruction>
Floating-point Convert Double to Single (Double)

CVTF.DS
Conversion to floating-point format (double precision)

15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

r r r r 0 1 1 1 1 1 1 0 0 0 1 1 w w w w w 1 0 0 0 1 0 1 0 0 1 0

reg2 reg3 category type sub-op

reg2 (A) +Normal –Normal +0 –0 +∞ –∞ Q-NaN S-NaN

Operation
result
[exception]

A (Single) +0 –0 +∞ –∞ Q-NaN Q-NaN
[V]

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 339 of 425
Mar 05, 2015

[Instruction format] CVTF.DUL reg2, reg3

[Operation] reg3 ← cvt reg2 (double → unsigned long-word)

[Format] Format F:I

[Opcode]

[Description] This instruction arithmetically converts the double-precision floating-point format contents of

the register pair specified by general-purpose register reg2 to unsigned 64-bit fixed-point

format, in accordance with the current rounding mode, and stores the result in the register pair

specified by general-purpose register reg3.

When the source operand is infinite, not-a-number, or negative number, or when the rounded

result is outside the range of 264 – 1 to 0, an IEEE754-defined invalid operation exception is

detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR

register is set as an invalid operation and no exception occurs. The return value differs as

follows, according to differences among sources.

 Source is a positive number outside the range of 264 – 1 to 0, or +∞: 264 – 1 is returned.

 Source is a negative number, not-a-number, or –∞: 0 is returned.

[Floating-point

operation exceptions]

Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

[Operation result]

Note 1. [] indicates an exception that must occur.

Note 2. When the FS bit of the FPSR register is 1, subnormal numbers are flushed to the normalized
numbers shown in Section 6.1.8, Flushing Subnormal Numbers.

<Floating-point instruction>
Floating-point Convert Double to Unsigned-Long (Double)

CVTF.DUL
Conversion to unsigned fixed-point format (double precision)

15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

r r r r 0 1 1 1 1 1 1 1 0 1 0 0 w w w w 0 1 0 0 0 1 0 1 0 1 0 0

reg2 reg3 category type sub-op

reg2 (A) +Normal –Normal +0 –0 +∞ –∞ Q-NaN S-NaN

Operation
result
[exception]

A
(integer)

0 [V] 0 (integer) Max U-Int
[V]

0 [V]

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 340 of 425
Mar 05, 2015

[Instruction format] CVTF.DUW reg2, reg3

[Operation] reg3 ← cvt reg2 (double → word)

[Format] Format F:I

[Opcode]

[Description] This instruction arithmetically converts the double-precision floating-point format contents of

the register pair specified by general-purpose register reg2 to unsigned 32-bit fixed-point

format, and stores the result in general-purpose register reg3.

When the source operand is infinite, not-a-number, or negative number, or when the rounded

result is outside the range of 232 – 1 to 0, an IEEE754-defined invalid operation exception is

detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR

register is set as an invalid operation and no exception occurs. The return value differs as

follows, according to differences among sources.

 Source is a positive number outside the range of 264 – 1 to 0, or +∞: 232 – 1 is returned.

 Source is a negative number, not-a-number, or –∞: 0 is returned.

[Floating-point

operation exceptions]

Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

[Operation result]

Note 1. [] indicates an exception that must occur.

Note 2. When the FS bit of the FPSR register is 1, subnormal numbers are flushed to the normalized
numbers shown in Section 6.1.8, Flushing Subnormal Numbers.

<Floating-point instruction>
Floating-point Convert Double to Unsigned-Word (Double)

CVTF.DUW
Conversion to unsigned fixed-point format (double precision)

15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

r r r r 0 1 1 1 1 1 1 1 0 1 0 0 w w w w w 1 0 0 0 1 0 1 0 0 0 0

reg2 reg3 category type sub-op

reg2 (A) +Normal –Normal +0 –0 +∞ –∞ Q-NaN S-NaN

Operation
result
[exception]

A
(integer)

0 [V] 0 (integer) Max U-Int
[V]

0 [V]

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 341 of 425
Mar 05, 2015

[Instruction format] CVTF.DW reg2, reg3

[Operation] reg3 ← cvt reg2 (double → word)

[Format] Format F:I

[Opcode]

[Description] This instruction arithmetically converts the double-precision floating-point format contents of

the register pair specified by general-purpose register reg2 to 32-bit fixed-point format, and

stores the result in general-purpose register reg3.

When the source operand is infinite or not-a-number, or when the rounded result is outside the

range of 231 – 1 to –231, an IEEE754-defined invalid operation exception is detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR

register is set as an invalid operation and no exception occurs. The return value differs as

follows, according to differences among sources.

 Source is a positive number or +∞: 231 – 1 is returned.

 Source is a negative number, not-a-number, or –∞: –231 is returned.

[Floating-point

operation exceptions]

Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

[Operation result]

Note 1. [] indicates an exception that must occur.

Note 2. When the FS bit of the FPSR register is 1, subnormal numbers are flushed to the normalized
numbers shown in Section 6.1.8, Flushing Subnormal Numbers.

<Floating-point instruction>
Floating-point Convert Double to Word (Double)

CVTF.DW
Conversion to fixed-point format (double precision)

15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

r r r r 0 1 1 1 1 1 1 0 0 1 0 0 w w w w w 1 0 0 0 1 0 1 0 0 0 0

reg2 reg3 category type sub-op

reg2 (A) +Normal -Normal +0 –0 +∞ –∞ Q-NaN S-NaN

Operation
result
[exception]

A (integer) 0 (integer) +Max Int
[V]

–Max Int [V]

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 342 of 425
Mar 05, 2015

[Instruction format] CVTF.HS reg2, reg3

[Operation] reg3 ← cvt reg2 (half → single)

[Format] Format F:I

[Opcode]

[Description] This instruction arithmetically converts the half-precision floating-point format contents in

the lower 16 bits of general-purpose register reg2 to single-precision floating-point format,

rounding the result in accordance with the current rounding mode, and stores the result in

general-purpose register reg3.

[Floating-point

operation exceptions]

Invalid operation exception (V)

[Supplement] With the exception of not-a-number values, all half-precision floating-point format values can

be accurately converted into single-precision floating-point format values. A subnormal input

will not be flushed even if the FS bit of the FPSR register is 1.

[Operation result]

Note: [] indicates an exception that must occur.

<Floating-point instruction>
Floating-point Convert Half to Single (Single)

CVTF.HS
Conversion to floating-point format (single precision)

15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

r r r r r 1 1 1 1 1 1 0 0 0 1 0 w w w w w 1 0 0 0 1 0 0 0 0 1 0

reg2 reg3 category type sub-op

reg2 (A) +Normal –Normal +0 –0 +∞ –∞ Q-NaN S-NaN

Operation
result
[exception]

A (Half) +0 –0 +∞ –∞ Q-NaN Q-NaN
[V]

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 343 of 425
Mar 05, 2015

[Instruction format] CVTF.LD reg2, reg3

[Operation] reg3 ← cvt reg2 (long-word → double)

[Format] Format F:I

[Opcode]

[Description] This instruction arithmetically converts the 64-bit fixed-point format contents of the register

pair specified by general-purpose register reg2 to double-precision floating-point format in

accordance with the current rounding mode, and stores the result in the register pair specified

by general-purpose register reg3.

[Floating-point

operation exceptions]

Inexact exception (I)

[Operation result]

<Floating-point instruction>
Floating-point Convert Long to Double (Double)

CVTF.LD
Conversion to floating-point format (double precision)

15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

r r r r 0 1 1 1 1 1 1 0 0 0 0 1 w w w w 0 1 0 0 0 1 0 1 0 0 1 0

reg2 reg3 category type sub-op

reg2 (A) +Integer –Integer 0 (integer)

Operation
result
[exception]

A (Normal) +0

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 344 of 425
Mar 05, 2015

[Instruction format] CVTF.LS reg2, reg3

[Operation] reg3 ← cvt reg2 (long-word → single)

[Format] Format F:I

[Opcode]

[Description] This instruction arithmetically converts the 64-bit fixed-point format contents of the register

pair specified by general-purpose register reg2 to single-precision floating-point format, and

stores the result in general-purpose register reg3. The result is rounded in accordance with the

current rounding mode.

[Floating-point

operation exceptions]

Inexact exception (I)

[Operation result]

<Floating-point instruction>
Floating-point Convert Long to Single (Single)

CVTF.LS
Conversion to floating-point format (single precision)

15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

r r r r 0 1 1 1 1 1 1 0 0 0 0 1 w w w w w 1 0 0 0 1 0 0 0 0 1 0

reg2 reg3 category type sub-op

reg2 (A) +Integer –Integer 0 (integer)

Operation
result
[exception]

A (Normal) +0

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 345 of 425
Mar 05, 2015

[Instruction format] CVTF.SD reg2, reg3

[Operation] reg3 ← cvt reg2 (single → double)

[Format] Format F:I

[Opcode]

[Description] This instruction arithmetically converts the single-precision floating-point format contents of

general-purpose register reg2 to double-precision floating-point format, in accordance with

the current rounding mode, and stores the result in the register pair specified by general-

purpose register reg3.

[Floating-point

operation exceptions]

Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

[Operation result]

Note 1. [] indicates an exception that must occur.

Note 2. When the FS bit of the FPSR register is 1, subnormal numbers are flushed to the normalized
numbers shown in Section 6.1.8, Flushing Subnormal Numbers.

<Floating-point instruction>
Floating-point Convert Single to Double (Double)

CVTF.SD
Conversion to floating-point format (double precision)

15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

r r r r r 1 1 1 1 1 1 0 0 0 1 0 w w w w 0 1 0 0 0 1 0 1 0 0 1 0

reg2 reg3 category type sub-op

reg2 (A) +Normal –Normal +0 –0 +∞ –∞ Q-NaN S-NaN

Operation
result
[exception]

A (Double) +0 –0 +∞ –∞ Q-NaN Q-NaN
[V]

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 346 of 425
Mar 05, 2015

[Instruction format] CVTF.SL reg2, reg3

[Operation] reg3 ← cvt reg2 (single → long-word)

[Format] Format F:I

[Opcode]

[Description] This instruction arithmetically converts the single-precision floating-point format contents of

general-purpose register reg2 to 64-bit fixed-point format, in accordance with the current

rounding mode, and stores the result in the register pair specified by general-purpose register

reg3.

When the source operand is infinite or not-a-number, or when the rounded result is outside the

range of 263 – 1 to –263, an IEEE754-defined invalid operation exception is detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR

register is set as an invalid operation and no exception occurs. The return value differs as

follows, according to differences among sources.

 Source is a positive number or +∞: 263 – 1 is returned.

 Source is a negative number, not-a-number, or –∞: –263 is returned.

[Floating-point

operation exceptions]

Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

[Operation result]

Note 1. [] indicates an exception that must occur.

Note 2. When the FS bit of the FPSR register is 1, subnormal numbers are flushed to the normalized
numbers shown in Section 6.1.8, Flushing Subnormal Numbers.

<Floating-point instruction>
Floating-point Convert Single to Long (Single)

CVTF.SL
Conversion to fixed-point format (single precision)

15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

r r r r r 1 1 1 1 1 1 0 0 1 0 0 w w w w 0 1 0 0 0 1 0 0 0 1 0 0

reg2 reg3 category type sub-op

reg2 (A) +Normal –Normal +0 –0 +∞ –∞ Q-NaN S-NaN

Operation
result
[exception]

A (integer) 0 (integer) +Max Int
[V]

–Max Int [V]

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 347 of 425
Mar 05, 2015

[Instruction format] CVTF.SH reg2, reg3

[Operation] reg3 ← zero-extend (cvt reg2 (single → half))

[Format] Format F:I

[Opcode]

[Description] This instruction arithmetically converts the single-precision floating-point format contents in

general-purpose register reg2 to half-precision floating-point format, rounding the result in

accordance with the current rounding mode. The result is zero-extended to word length and

stored in general-purpose register reg3.

[Floating-point

operation exceptions]

Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

Overflow exception (O)

Underflow exception (U)

[Operation result]

Note 1. [] indicates an exception that must occur.

Note 2. When the FS bit of the FPSR register is 1, subnormal numbers are flushed to the normalized
numbers shown in Section 6.1.8, Flushing Subnormal Numbers.

<Floating-point instruction>
Floating-point Convert Single to Half (Single)

CVTF.SH
Conversion to half-precision floating-point format (single precision)

15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

r r r r r 1 1 1 1 1 1 0 0 0 1 1 w w w w w 1 0 0 0 1 0 0 0 0 1 0

reg2 reg3 category type sub-op

reg2 (A) +Normal –Normal +0 –0 +∞ –∞ Q-NaN S-NaN

Operation
result
[exception]

A (Half) +0 –0 +∞ –∞ Q-NaN Q-NaN
[V]

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 348 of 425
Mar 05, 2015

[Instruction format] CVTF.SUL reg2, reg3

[Operation] reg3 ← cvt reg2 (single → unsigned long-word)

[Format] Format F:I

[Opcode]

[Description] This instruction arithmetically converts the single-precision floating-point format contents of

general-purpose register reg2 to unsigned 64-bit fixed-point format, in accordance with the

current rounding mode, and stores the result in the register pair specified by general-purpose

register reg3.

When the source operand is infinite, not-a-number, or negative number, or when the rounded

result is outside the range of 264 – 1 to 0, an IEEE754-defined invalid operation exception is

detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR

register is set as an invalid operation and no exception occurs. The return value differs as

follows, according to differences among sources.

 Source is a positive number outside the range of 264 – 1 to 0, or +∞: 264 – 1 is returned.

 Source is a negative number, not-a-number, or –∞: 0 is returned.

[Floating-point

operation exceptions]

Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

[Operation result]

Note 1. [] indicates an exception that must occur.

Note 2. When the FS bit of the FPSR register is 1, subnormal numbers are flushed to the normalized
numbers shown in Section 6.1.8, Flushing Subnormal Numbers.

<Floating-point instruction>
Floating-point Convert Single to Unsigned-Long (Single)

CVTF.SUL
Conversion to unsigned fixed-point format (single precision)

15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

r r r r r 1 1 1 1 1 1 1 0 1 0 0 w w w w w 1 0 0 0 1 0 0 0 1 0 0

reg2 reg3 category type sub-op

reg2 (A) +Normal –Normal +0 –0 +∞ –∞ Q-NaN S-NaN

Operation
result
[exception]

A
(integer)

0 [V] 0 (integer) Max U-Int
[V]

0 [V]

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 349 of 425
Mar 05, 2015

[Instruction format] CVTF.SUW reg2, reg3

[Operation] reg3 ← cvt reg2 (single → unsigned word)

[Format] Format F:I

[Opcode]

[Description] This instruction arithmetically converts the single-precision floating-point format contents of

general-purpose register reg2 to unsigned 32-bit fixed-point format, and stores the result in

general-purpose register reg3.

When the source operand is infinite, not-a-number, or negative number, or when the rounded

result is outside the range of 232 – 1 to 0, an IEEE754-defined invalid operation exception is

detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR

register is set as an invalid operation and no exception occurs. The return value differs as

follows, according to differences among sources.

 Source is a positive number outside the range of 264 – 1 to 0, or +∞: 232 – 1 is returned.

 Source is a negative number, not-a-number, or –∞: 0 is returned.

[Floating-point

operation exceptions]

Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

[Operation result]

Note 1. [] indicates an exception that must occur.

Note 2. When the FS bit of the FPSR register is 1, subnormal numbers are flushed to the normalized
numbers shown in Section 6.1.8, Flushing Subnormal Numbers.

<Floating-point instruction>
Floating-point Convert Single to Unsigned-Word (Single)

CVTF.SUW
Conversion to unsigned fixed-point format (single precision)

15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

r r r r r 1 1 1 1 1 1 1 0 1 0 0 w w w w w 1 0 0 0 1 0 0 0 0 0 0

reg2 reg3 category type sub-op

reg2 (A) +Normal –Normal +0 –0 +∞ –∞ Q-NaN S-NaN

Operation
result
[exception]

A
(integer)

0 [V] 0 (integer) Max U-Int
[V]

0 [V]

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 350 of 425
Mar 05, 2015

[Instruction format] CVTF.SW reg2, reg3

[Operation] reg3 ← cvt reg2 (single → word)

[Format] Format F:I

[Opcode]

[Description] This instruction arithmetically converts the single-precision floating-point format contents of

general-purpose register reg2 to 32-bit fixed-point format, and stores the result in general-

purpose register reg3.

When the source operand is infinite or not-a-number, or when the rounded result is outside the

range of 231 – 1 to -231, an IEEE754-defined invalid operation exception is detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR

register is set as an invalid operation and no exception occurs. The return value differs as

follows, according to differences among sources.

 Source is a positive number or +∞: 231 – 1 is returned.

 Source is a negative number, not-a-number, or –∞: –231 is returned.

[Floating-point

operation exceptions]

Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

[Operation result]

Note 1. [] indicates an exception that must occur.

Note 2. When the FS bit of the FPSR register is 1, subnormal numbers are flushed to the normalized
numbers shown in Section 6.1.8, Flushing Subnormal Numbers.

<Floating-point instruction>
Floating-point Convert Single to Word (Single)

CVTF.SW
Conversion to fixed-point format (single precision)

15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

r r r r r 1 1 1 1 1 1 0 0 1 0 0 w w w w w 1 0 0 0 1 0 0 0 0 0 0

reg2 reg3 category type sub-op

reg2 (A) +Normal –Normal +0 –0 +∞ –∞ Q-NaN S-NaN

Operation
result
[exception]

A (integer) 0 (integer) +Max Int
[V]

–Max Int [V]

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 351 of 425
Mar 05, 2015

[Instruction format] CVTF.ULD reg2, reg3

[Operation] reg3 ← cvt reg2 (unsigned long-word → double)

[Format] Format F:I

[Opcode]

[Description] This instruction arithmetically converts the unsigned 64-bit fixed-point format contents of the

register pair specified by general-purpose register reg2 to double-precision floating-point

format in accordance with the current rounding mode, and stores the result in the register pair

specified by general-purpose register reg3.

[Floating-point

operation exceptions]

Inexact exception (I)

[Operation result]

<Floating-point instruction>
Floating-point Convert Unsigned-Long to Double (Double)

CVTF.ULD
Conversion to floating-point format (double precision)

15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

r r r r 0 1 1 1 1 1 1 1 0 0 0 1 w w w w 0 1 0 0 0 1 0 1 0 0 1 0

reg2 reg3 category type sub-op

reg2 (A) +Integer –Integer 0 (integer)

Operation
result
[exception]

A (Normal) +0

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 352 of 425
Mar 05, 2015

[Instruction format] CVTF.ULS reg2, reg3

[Operation] reg3 ← cvt reg2 (unsigned long-word → single)

[Format] Format F:I

[Opcode]

[Description] This instruction arithmetically converts the unsigned 64-bit fixed-point format contents of the

register pair specified by general-purpose register reg2 to single-precision floating-point

format, and stores the result in general-purpose register reg3. The result is rounded in

accordance with the current rounding mode.

[Floating-point

operation exceptions]

Inexact exception (I)

[Operation result]

<Floating-point instruction>
Floating-point Convert Unsigned-Long to Single (Single)

CVTF.ULS
Conversion to floating-point format (single precision)

15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

r r r r 0 1 1 1 1 1 1 1 0 0 0 1 w w w w w 1 0 0 0 1 0 0 0 0 1 0

reg2 reg3 category type sub-op

reg2 (A) +Integer –Integer 0 (integer)

Operation
result
[exception]

A (Normal) +0

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 353 of 425
Mar 05, 2015

[Instruction format] CVTF.UWD reg2, reg3

[Operation] reg3 ← cvt reg2 (unsigned word → double)

[Format] Format F:I

[Opcode]

[Description] This instruction arithmetically converts the unsigned 32-bit fixed-point format contents of

general-purpose register reg2 to double-precision floating-point format, in accordance with

the current rounding mode, and stores the result in the register pair specified by general-

purpose register reg3.

This conversion operation is performed accurately, without any loss of precision.

[Floating-point

operation exceptions]

None

[Operation result]

<Floating-point instruction>
Floating-point Convert Unsigned-Word to Double (Double)

CVTF.UWD
Conversion to floating-point format (double precision)

15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

r r r r r 1 1 1 1 1 1 1 0 0 0 0 w w w w 0 1 0 0 0 1 0 1 0 0 1 0

reg2 reg3 category type sub-op

reg2 (A) +Integer –Integer 0 (integer)

Operation
result
[exception]

A (Normal) +0

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 354 of 425
Mar 05, 2015

[Instruction format] CVTF.UWS reg2, reg3

[Operation] reg3 ← cvt reg2 (unsigned word → single)

[Format] Format F:I

[Opcode]

[Description] This instruction arithmetically converts the unsigned 32-bit fixed-point format contents of

general-purpose register reg2 to single-precision floating-point format, and stores the result in

general-purpose register reg3. The result is rounded in accordance with the current rounding

mode.

[Floating-point

operation exceptions]

Inexact exception (I)

[Operation result]

<Floating-point instruction>
Floating-point Convert Unsigned-Word to Single (Single)

CVTF.UWS
Conversion to floating-point format (single precision)

15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

r r r r r 1 1 1 1 1 1 1 0 0 0 0 w w w w w 1 0 0 0 1 0 0 0 0 1 0

reg2 reg3 category type sub-op

reg2 (A) +Integer –Integer 0 (integer)

Operation
result
[exception]

A (Normal) +0

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 355 of 425
Mar 05, 2015

[Instruction format] CVTF.WD reg2, reg3

[Operation] reg3 ← cvt reg2 (word → double)

[Format] Format F:I

[Opcode]

[Description] This instruction arithmetically converts the 32-bit fixed-point format contents of general-

purpose register reg2 to double-precision floating-point format, in accordance with the

current rounding mode, and stores the result in the register pair specified by general-purpose

register reg3.

This conversion operation is performed accurately, without any loss of precision.

[Floating-point

operation exceptions]

None

[Operation result]

<Floating-point instruction>
Floating-point Convert Word to Double (Double)

CVTF.WD
Conversion to floating-point format (double precision)

15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

r r r r r 1 1 1 1 1 1 0 0 0 0 0 w w w w 0 1 0 0 0 1 0 1 0 0 1 0

reg2 reg3 category type sub-op

reg2 (A) +Integer –Integer 0 (integer)

Operation
result
[exception]

A (Normal) +0

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 356 of 425
Mar 05, 2015

[Instruction format] CVTF.WS reg2, reg3

[Operation] reg3 ← cvt reg2 (word → single)

[Format] Format F:I

[Opcode]

[Description] This instruction arithmetically converts the 32-bit fixed-point format contents of general-

purpose register reg2 to single-precision floating-point format, and stores the result in

general-purpose register reg3. The result is rounded in accordance with the current rounding

mode.

[Floating-point

operation exceptions]

Inexact exception (I)

[Operation result]

<Floating-point instruction>
Floating-point Convert Word to Single (single)

CVTF.WS
Conversion to floating-point format (single precision)

15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

r r r r r 1 1 1 1 1 1 0 0 0 0 0 w w w w w 1 0 0 0 1 0 0 0 0 1 0

reg2 reg3 category type sub-op

reg2 (A) +Integer –Integer 0 (integer)

Operation
result
[exception]

A (Normal) +0

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 357 of 425
Mar 05, 2015

[Instruction format] DIVF.D reg1, reg2, reg3

[Operation] reg3 ← reg2 reg1

[Format] Format F:I

[Opcode]

[Description] This instruction divides double-precision floating-point format contents of the register pair

specified by general-purpose register reg2 by the double-precision floating-point format

contents of the register pair specified by general-purpose register reg1, and stores the result in

the register pair specified by general-purpose register reg3. The operation is executed as if it

were of infinite accuracy, and the result is rounded in accordance with the current rounding

mode.

[Floating-point

operation exceptions]

Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

Division by zero exception (Z)

Overflow exception (O)

Underflow exception (U)

<Floating-point instruction>
Floating-point Divide (Double)

DIVF.D
Floating-point division (double precision)

15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

r r r r 0 1 1 1 1 1 1 R R R R 0 w w w w 0 1 0 0 0 1 1 1 1 1 1 0

reg2 reg1 reg3 category type sub-op

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 358 of 425
Mar 05, 2015

[Operation result]

Note 1. [] indicates an exception that must occur.

Note 2. When the FS bit of the FPSR register is 1, subnormal numbers are flushed to the normalized
numbers shown in Section 6.1.8, Flushing Subnormal Numbers.

reg2(B)

reg1(A) Normal -Normal +0 –0 +∞ –∞ Q-NaN S-NaN

+Normal B A +∞ –∞

–Normal –∞ +∞

+0
±∞ [Z] Q-NaN [V]

+∞ –∞

–0 –∞ +∞

+∞ +0 –0 +0 –0
Q-NaN [V]

–∞ –0 +0 –0 +0

Q-NaN Q-NaN

S-NaN Q-NaN [V]

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 359 of 425
Mar 05, 2015

[Instruction format] DIVF.S reg1, reg2, reg3

[Operation] reg3 ← reg2 reg1

[Format] Format F:I

[Opcode]

[Description] This instruction divides the single-precision floating-point format contents of general-purpose

register reg2 by the single-precision floating-point format contents of general-purpose register

reg1, and stores the result in general-purpose register reg3. The operation is executed as if it

were of infinite accuracy, and the result is rounded in accordance with the current rounding

mode.

[Floating-point

operation exceptions]

Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

Division by zero exception (Z)

Overflow exception (O)

Underflow exception (U)

<Floating-point instruction>
Floating-point Divide (Single)

DIVF.S
Floating-point division (single precision)

15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

r r r r r 1 1 1 1 1 1 R R R R R w w w w w 1 0 0 0 1 1 0 1 1 1 0

reg2 reg1 reg3 category type sub-op

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 360 of 425
Mar 05, 2015

[Operation result]

Note 1. [] indicates an exception that must occur.

Note 2. When the FS bit of the FPSR register is 1, subnormal numbers are flushed to the normalized
numbers shown in Section 6.1.8, Flushing Subnormal Numbers.

reg2(B)

reg1(A) Normal –Normal +0 –0 +∞ –∞ Q-NaN S-NaN

+Normal B A +∞ –∞

-Normal –∞ +∞

+0 ±∞ [Z] Q-NaN [V] +∞ –∞

–0 –∞ +∞

+∞ +0 –0 +0 –0
Q-NaN [V]

–∞ –0 +0 –0 +0

Q-NaN Q-NaN

S-NaN Q-NaN [V]

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 361 of 425
Mar 05, 2015

[Instruction format] FLOORF.DL reg2, reg3

[Operation] reg3 ← floor reg2 (double → long-word)

[Format] Format F:I

[Opcode]

[Description] This instruction arithmetically converts the double-precision floating-point format contents of

the register pair specified by general-purpose register reg2 to 64-bit fixed-point format, and

stores the result in the register pair specified by general-purpose register reg3.

The result is rounded in the - direction, regardless of the current rounding mode.

When the source operand is infinite or not-a-number, or when the rounded result is outside the

range of 263 – 1 to –263, an IEEE754-defined invalid operation exception is detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR

register is set as an invalid operation and no exception occurs. The return value differs as

follows, according to differences among sources.

 Source is a positive number or +∞: 263 – 1 is returned.

 Source is a negative number, not-a-number, or -∞: –263 is returned.

[Floating-point

operation exceptions]

Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

[Operation result]

Note 1. [] indicates an exception that must occur.

Note 2. When the FS bit of the FPSR register is 1, subnormal numbers are flushed to the normalized
numbers shown in Section 6.1.8, Flushing Subnormal Numbers.

<Floating-point instruction>
Floating-point Convert Double to Long, round toward negative (Double)

FLOORF.DL
Conversion to fixed-point format (double precision)

15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

r r r r 0 1 1 1 1 1 1 0 0 0 1 1 w w w w 0 1 0 0 0 1 0 1 0 1 0 0

reg2 reg3 category type sub-op

reg2 (A) +Normal –Normal +0 –0 +∞ –∞ Q-NaN S-NaN

Operation
result
[exception]

A (integer) 0 (integer) +Max Int
[V]

–Max Int [V]

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 362 of 425
Mar 05, 2015

[Instruction format] FLOORF.DUL reg2, reg3

[Operation] reg3 ← floor reg2 (double → unsigned long-word)

[Format] Format F:I

[Opcode]

[Description] This instruction arithmetically converts the double-precision floating-point format contents of

the register pair specified by general-purpose register reg2 to unsigned 64-bit fixed-point

format, and stores the result in the register pair specified by general-purpose register reg3.

The result is rounded in the – direction, regardless of the current rounding mode.

When the source operand is infinite, not-a-number, or negative number, or when the rounded

result is outside the range of 264 – 1 to 0, an IEEE754-defined invalid operation exception is

detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR

register is set as an invalid operation and no exception occurs. The return value differs as

follows, according to differences among sources.

 Source is a positive number outside the range of 264 – 1 to 0, or +∞: 264 – 1 is returned.

 Source is a negative number, not-a-number, or –∞: 0 is returned.

[Floating-point

operation exceptions]

Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

[Operation result]

Note 1. [] indicates an exception that must occur.

Note 2. When the FS bit of the FPSR register is 1, subnormal numbers are flushed to the normalized
numbers shown in Section 6.1.8, Flushing Subnormal Numbers.

<Floating-point instruction>
Floating-point Convert Double to Unsigned-Long, round toward negative (Double)

FLOORF.DUL
Conversion to unsigned fixed-point format (double precision)

15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

r r r r 0 1 1 1 1 1 1 1 0 0 1 1 w w w w 0 1 0 0 0 1 0 1 0 1 0 0

reg2 reg3 category type sub-op

reg2 (A) +Normal –Normal +0 –0 +∞ –∞ Q-NaN S-NaN

Operation
result
[exception]

A
(integer)

0 [V] 0 (integer) Max U-Int
[V]

0 [V]

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 363 of 425
Mar 05, 2015

[Instruction format] FLOORF.DUW reg2, reg3

[Operation] reg3 ← floor reg2 (double → unsigned word)

[Format] Format F:I

[Opcode]

[Description] This instruction arithmetically converts the double-precision floating-point format contents of

the register pair specified by general-purpose register reg2 to unsigned 32-bit fixed-point

format, and stores the result in general-purpose register reg3.

The result is rounded in the - direction, regardless of the current rounding mode.

When the source operand is infinite, not-a-number, or negative number, or when the rounded

result is outside the range of 232 – 1 to 0, an IEEE754-defined invalid operation exception is

detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR

register is set as an invalid operation and no exception occurs. The return value differs as

follows, according to differences among sources.

 Source is a positive number outside the range of 264 – 1 to 0, or +∞: 232 – 1 is returned.

 Source is a negative number, not-a-number, or –∞: 0 is returned.

[Floating-point

operation exceptions]

Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

[Operation result]

Note 1. [] indicates an exception that must occur.

Note 2. When the FS bit of the FPSR register is 1, subnormal numbers are flushed to the normalized
numbers shown in Section 6.1.8, Flushing Subnormal Numbers.

<Floating-point instruction>
Floating-point Convert Double to Unsigned-Word, round toward negative (Double)

FLOORF.DUW
Conversion to unsigned fixed-point format (double precision)

15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

r r r r 0 1 1 1 1 1 1 1 0 0 1 1 w w w w w 1 0 0 0 1 0 1 0 0 0 0

reg2 reg3 category type sub-op

reg2 (A) +Normal –Normal +0 –0 +∞ –∞ Q-NaN S-NaN

Operation
result
[exception]

A
(integer)

0 [V] 0 (integer) Max U-Int
[V]

0 [V]

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 364 of 425
Mar 05, 2015

[Instruction format] FLOORF.DW reg2, reg3

[Operation] reg3 ← floor reg2 (double → word)

[Format] Format F:I

[Opcode]

[Description] This instruction arithmetically converts the double-precision floating-point format contents of

the register pair specified by general-purpose register reg2 to 32-bit fixed-point format, and

stores the result in general-purpose register reg3.

The result is rounded in the –∞ direction, regardless of the current rounding mode.

When the source operand is infinite or not-a-number, or when the rounded result is outside the

range of 231 – 1 to –231, an IEEE754-defined invalid operation exception is detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR

register is set as an invalid operation and no exception occurs. The return value differs as

follows, according to differences among sources.

 Source is a positive number or +∞: 231 – 1 is returned.

 Source is a negative number, not-a-number, or –∞: –231 is returned.

[Floating-point

operation exceptions]

Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

[Operation result]

Note 1. [] indicates an exception that must occur.

Note 2. When the FS bit of the FPSR register is 1, subnormal numbers are flushed to the normalized
numbers shown in Section 6.1.8, Flushing Subnormal Numbers.

<Floating-point instruction>
Floating-point Convert Double to Word, round toward negative (Double)

FLOORF.DW
Conversion to fixed-point format (double precision)

15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

r r r r r 1 1 1 1 1 1 0 0 0 1 1 w w w w w 1 0 0 0 1 0 1 0 0 0 0

reg2 reg3 category type sub-op

reg2 (A) +Normal –Normal +0 –0 +∞ –∞ Q-NaN S-NaN

Operation
result
[exception]

A (integer) 0 (integer) +Max Int
[V]

–Max Int [V]

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 365 of 425
Mar 05, 2015

[Instruction format] FLOORF.SL reg2, reg3

[Operation] reg3 ← floor reg2 (single → long-word)

[Format] Format F:I

[Opcode]

[Description] This instruction arithmetically converts the single-precision floating-point format contents of

general-purpose register reg2 to 64-bit fixed-point format, and stores the result in the register

pair specified by general-purpose register reg3.

The result is rounded in the – direction, regardless of the current rounding mode.

When the source operand is infinite or not-a-number, or when the rounded result is outside the

range of 263 – 1 to –263, an IEEE754-defined invalid operation exception is detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR

register is set as an invalid operation and no exception occurs. The return value differs as

follows, according to differences among sources.

 Source is a positive number or +∞: 263 – 1 is returned.

 Source is a negative number, not-a-number, or –∞: –263 is returned.

[Floating-point

operation exceptions]

Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

[Operation result]

Note 1. [] indicates an exception that must occur.

Note 2. When the FS bit of the FPSR register is 1, subnormal numbers are flushed to the normalized
numbers shown in Section 6.1.8, Flushing Subnormal Numbers.

<Floating-point instruction>
Floating-point Convert Double to Long, round toward negative (Single)

FLOORF.SL
Conversion to fixed-point format (single precision)

15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

r r r r r 1 1 1 1 1 1 0 0 0 1 1 w w w w 0 1 0 0 0 1 0 0 0 1 0 0

reg2 reg3 category type sub-op

reg2 (A) Normal –Normal +0 –0 +∞ –∞ Q-NaN S-NaN

Operation
result
[exception]

A (integer) 0 (integer) +Max Int
[V]

–Max Int [V]

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 366 of 425
Mar 05, 2015

[Instruction format] FLOORF.SUL reg2, reg3

[Operation] reg3 ← floor reg2 (single → unsigned long-word)

[Format] Format F:I

[Opcode]

[Description] This instruction arithmetically converts the single-precision floating-point format contents of

general-purpose register reg2 to unsigned 64-bit fixed-point format, and stores the result in

the register pair specified by general-purpose register reg3.

The result is rounded in the – direction, regardless of the current rounding mode.

When the source operand is infinite, not-a-number, or negative number, or when the rounded

result is outside the range of 264 – 1 to 0, an IEEE754-defined invalid operation exception is

detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR

register is set as an invalid operation and no exception occurs. The return value differs as

follows, according to differences among sources.

 Source is a positive number outside the range of 264 – 1 to 0, or +∞: 264 – 1 is returned.

 Source is a negative number, not-a-number, or –∞: 0 is returned.

[Floating-point

operation exceptions]

Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

[Operation result]

Note 1. [] indicates an exception that must occur.

Note 2. When the FS bit of the FPSR register is 1, subnormal numbers are flushed to the normalized
numbers shown in Section 6.1.8, Flushing Subnormal Numbers.

<Floating-point instruction>
Floating-point Convert Single to Unsigned-Long, round toward negative (Single)

FLOORF.SUL
Conversion to unsigned fixed-point format (single precision)

15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

r r r r r 1 1 1 1 1 1 1 0 0 1 1 w w w w 0 1 0 0 0 1 0 0 0 1 0 0

reg2 reg3 category type sub-op

reg2 (A) Normal –Normal +0 –0 +∞ –∞ Q-NaN S-NaN

Operation
result
[exception]

A
(integer)

0 [V] 0 (integer) Max U-Int
[V]

0 [V]

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 367 of 425
Mar 05, 2015

[Instruction format] FLOORF.SUW reg2, reg3

[Operation] reg3 ← floor reg2 (single → unsigned word)

[Format] Format F:I

[Opcode]

[Description] This instruction arithmetically converts the single-precision floating-point format contents of

general-purpose register reg2 to unsigned 32-bit fixed-point format, and stores the result in

general-purpose register reg3.

The result is rounded in the – direction, regardless of the current rounding mode.

When the source operand is infinite, not-a-number, or negative number, or when the rounded

result is outside the range of 232 – 1 to 0, an IEEE754-defined invalid operation exception is

detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR

register is set as an invalid operation and no exception occurs. The return value differs as

follows, according to differences among sources.

 Source is a positive number outside the range of 264 – 1 to 0, or +∞: 232 – 1 is returned.

 Source is a negative number, not-a-number, or –∞: 0 is returned.

[Floating-point

operation exceptions]

Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

[Operation result]

Note 1. [] indicates an exception that must occur.

Note 2. When the FS bit of the FPSR register is 1, subnormal numbers are flushed to the normalized
numbers shown in Section 6.1.8, Flushing Subnormal Numbers.

<Floating-point instruction>
Floating-point Convert Single to Unsigned-Word, round toward negative (Single)

FLOORF.SUW
Conversion to unsigned fixed-point format (single precision)

15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

r r r r r 1 1 1 1 1 1 1 0 0 1 1 w w w w w 1 0 0 0 1 0 0 0 0 0 0

reg2 reg3 category type sub-op

reg2 (A) +Normal –Normal +0 –0 +∞ –∞ Q-NaN S-NaN

Operation
result
[exception]

A
(integer)

0 [V] 0 (integer) Max U-Int
[V]

0 [V]

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 368 of 425
Mar 05, 2015

[Instruction format] FLOORF.SW reg2, reg3

[Operation] reg3 ← floor reg2 (single → word)

[Format] Format F:I

[Opcode]

[Description] This instruction arithmetically converts the single-precision floating-point format contents of

general-purpose register reg2 to 32-bit fixed-point format, and stores the result in general-

purpose register reg3.

The result is rounded in the - direction, regardless of the current rounding mode.

When the source operand is infinite or not-a-number, or when the rounded result is outside the

range of 231 – 1 to –231, an IEEE754-defined invalid operation exception is detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR

register is set as an invalid operation and no exception occurs. The return value differs as

follows, according to differences among sources.

 Source is a positive number or +∞: 231 – 1 is returned.

 Source is a negative number, not-a-number, or –∞: –231 is returned.

[Floating-point

operation exceptions]

Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

[Operation result]

Note 1. [] indicates an exception that must occur.

Note 2. When the FS bit of the FPSR register is 1, subnormal numbers are flushed to the normalized
numbers shown in Section 6.1.8, Flushing Subnormal Numbers.

<Floating-point instruction>
Floating-point Convert Single to Word, round toward negative (Single)

FLOORF.SW
Conversion to fixed-point format (single precision)

15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

r r r r r 1 1 1 1 1 1 0 0 0 1 1 w w w w w 1 0 0 0 1 0 0 0 0 0 0

reg2 reg3 category type sub-op

reg2 (A) +Normal –Normal +0 –0 +∞ –∞ Q-NaN S-NaN

Operation
result
[exception]

A (integer) 0 (integer) +Max Int
[V]

–Max Int [V]

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 369 of 425
Mar 05, 2015

[Instruction format] FMAF.S reg1, reg2, reg3

[Operation] reg3 ← fma (reg2, reg1, reg3)

[Format] Format F:I

[Opcode]

[Description] This instruction multiplies the single-precision floating-point format contents in general-

purpose register reg2 with the single-precision floating-point format contents in general-

purpose register reg1, adds the single-precision floating-point format contents in general-

purpose register reg3, and stores the result in general-purpose register reg3. The operation is

executed as if it were of infinite accuracy. The result of the multiply operation is not rounded,

but the result of the add operation is rounded, in accordance with the current rounding mode.

[Floating-point

operation exceptions]

Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

Overflow exception (O)

Underflow exception (U)

<Floating-point instruction>
Floating-point Fused-Multiply-add (Single)

FMAF.S
Floating-point fused-multiply-add operation (single precision)

15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

r r r r r 1 1 1 1 1 1 R R R R R w w w w w 1 0 0 1 1 1 0 0 0 0 0

reg2 reg1 reg3 category type sub-op

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 370 of 425
Mar 05, 2015

[Operation result]

Note 1. [] indicates an exception that must occur.

Note 2. When the FS bit of the FPSR register is 1, subnormal numbers are flushed to the normalized
numbers shown in Section 6.1.8, Flushing Subnormal Numbers.

[Supplement] The operation is executed as if it were of infinite accuracy and the result is rounded in

accordance with the current rounding mode. The result therefore differs from the result

obtained when using a combination of the ADDF and MULF instructions.

reg2(B)

+ Normal – Normal +0 –0 +∞ –∞ Q-NaN S-NaNreg3(C) reg1(A)

±Normal

+Normal

FMA (A, B, C)

+∞ –∞

-Normal –∞ +∞

±0 Q-NaN[V]

+∞ +∞ –∞
Q-NaN[V]

+∞ –∞

–∞ -∞ +∞ –∞ +∞

±0

+Normal

FMA (A, B, C)

+∞ -∞

–Normal -∞ +∞

±0 Q-NaN[V]

+∞ +∞ –∞
Q-NaN[V]

+∞ –∞

–∞ –∞ +∞ –∞ +∞

+∞

+Normal

+∞

+∞ Q-NaN[V]

–Normal Q-NaN[V] +∞

±0 Q-NaN[V]

+∞ +∞ Q-NaN[V]
Q-NaN[V]

+∞ Q-NaN[V]

–∞ Q-NaN[V] +∞ Q-NaN[V] +∞

–∞

+Normal

–∞

Q-NaN[V] –∞

-Normal –∞ Q-NaN[V]

±0 Q-NaN[V]

+∞ Q-NaN[V] –∞
Q-NaN[V]

Q-NaN[V] –∞

–∞ –∞ Q-NaN[V] –∞ Q-NaN[V]

Q-NaN

±Normal

Q-NaN±0

±∞

Not S-NaN Q-NaN Q-NaN

Don’t care S-NaN
Q-NaN[V]

S-NaN Don’t care

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 371 of 425
Mar 05, 2015

[Instruction format] FMSF.S reg1, reg2, reg3

[Operation] reg3 ← fms (reg2, reg1, reg3)

[Format] Format F:I

[Opcode]

[Description] This instruction multiplies the single-precision floating-point format contents in general-

purpose register reg2 with the single-precision floating-point format contents in general-

purpose register reg1, subtracts the single-precision floating-point format contents in general-

purpose register reg3, and stores the result in general-purpose register reg3. The operation is

executed as if it were of infinite accuracy. The result of the multiply operation is not rounded,

but the result of the subtract operation is rounded, in accordance with the current rounding

mode.

[Floating-point

operation exceptions]

Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

Overflow exception (O)

Underflow exception (U)

<Floating-point instruction>
Floating-point Fused-Multiply-subtract (Single)

FMSF.S
Floating-point fused-multiply-subtract operation (single precision)

15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

r r r r r 1 1 1 1 1 1 R R R R R w w w w w 1 0 0 1 1 1 0 0 0 1 0

reg2 reg1 reg3 category type sub-op

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 372 of 425
Mar 05, 2015

[Operation result]

Note 1. [] indicates an exception that must occur.

Note 2. When the FS bit of the FPSR register is 1, subnormal numbers are flushed to the normalized
numbers shown in Section 6.1.8, Flushing Subnormal Numbers.

[Supplement] The operation is executed as if it were of infinite accuracy and the result is rounded in

accordance with the current rounding mode. The result therefore differs from the result

obtained when using a combination of the SUBF and MULF instructions.

reg2(B)

+Normal –Normal +0 –0 +∞ –∞ Q-NaN S-NaNreg3(C) reg1(A)

±Normal

+Normal

FMS (A, B, C)

+∞ –∞

–Normal –∞ +∞

±0 Q-NaN[V]

+∞ +∞ –∞ Q-NaN[V] +∞ –∞

–∞ –∞ +∞ –∞ +∞

±0

+Normal

FMS (A, B, C)

+∞ –∞

–Normal –∞ +∞

±0 Q-NaN[V]

+∞ +∞ –∞ Q-NaN[V] +∞ –∞

–∞ –∞ +∞ –∞ +∞

+∞

+Normal

–∞

Q-NaN[V] –∞

–Normal –∞ Q-NaN[V]

±0 Q-NaN[V]

+∞ Q-NaN[V] –∞ Q-NaN[V] Q-NaN[V] –∞

–∞ –∞ Q-NaN[V] –∞ Q-NaN[V]

–∞

+Normal

+∞

+∞ Q-NaN[V]

–Normal Q-NaN[V] +∞

±0 Q-NaN[V]

+∞ +∞ Q-NaN[V] Q-NaN[V] +∞ Q-NaN[V]

–∞ Q-NaN[V] +∞ Q-NaN[V] +∞

Q-NaN

±Normal

Q-NaN±0

±∞

Not S-NaN Q-NaN Q-NaN

Don’t care S-NaN
Q-NaN[V]

S-NaN Don’t care

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 373 of 425
Mar 05, 2015

[Instruction format] FNMAF.S reg1, reg2, reg3

[Operation] reg3 ← neg (fma (reg2, reg1, reg3))

[Format] Format F:I

[Opcode]

[Description] This instruction multiplies the single-precision floating-point format contents in general-

purpose register reg2 with the single-precision floating-point format contents in general-

purpose register reg1, adds the single-precision floating-point format contents in general-

purpose register reg3, inverts the sign, and stores the result in general-purpose register reg3.

The operation is executed as if it were of infinite accuracy. The result of the multiply

operation is not rounded, but the result of the add operation is rounded, in accordance with the

current rounding mode. The signs are reversed after rounding.

[Floating-point

operation exceptions]

Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

Overflow exception (O)

Underflow exception (U)

<Floating-point instruction>
Floating-point Fused-Negate-Multiply-add (Single)

FNMAF.S
Floating-point fused-multiply-add operation (single precision)

15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

r r r r r 1 1 1 1 1 1 R R R R R w w w w w 1 0 0 1 1 1 0 0 1 0 0

reg2 reg1 reg3 category type sub-op

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 374 of 425
Mar 05, 2015

[Operation result]

Note 1. [] indicates an exception that must occur.

Note 2. When the FS bit of the FPSR register is 1, subnormal numbers are flushed to the normalized
numbers shown in Section 6.1.8, Flushing Subnormal Numbers.

[Supplement] The operation is executed as if it were of infinite accuracy and the result is rounded in

accordance with the current rounding mode. The result therefore differs from the result

obtained when using a combination of the ADDF, MULF, and NEGF instructions.

reg2(B)

+Normal –Normal +0 –0 +∞ –∞ Q-NaN S-NaNreg3(C) reg1(A)

±Normal

+Normal

FNMA (A, B, C)

–∞ +∞

–Normal +∞ –∞

±0 Q-NaN[V]

+∞ –∞ +∞
Q-NaN[V]

–∞ +∞

–∞ +∞ –∞ +∞ –∞

±0

+Normal

FNMA (A, B, C)

–∞ +∞

–Normal +∞ –∞

±0 Q-NaN[V]

+∞ –∞ +∞
Q-NaN[V]

–∞ +∞

–∞ +∞ –∞ +∞ –∞

+∞

+Normal

–∞

–∞ Q-NaN[V]

–Normal Q-NaN[V] –∞

±0 Q-NaN[V]

+∞ –∞ Q-NaN[V]
Q-NaN[V]

–∞ Q-NaN[V]

–∞ Q-NaN[V] –∞ Q-NaN[V] –∞

–∞

+Normal

+∞

Q-NaN[V] +∞

–Normal +∞ Q-NaN[V]

±0 Q-NaN[V]

+∞ Q-NaN[V] +∞ Q-NaN[V] Q-NaN[V] +∞

–∞ +∞ Q-NaN[V] +∞ Q-NaN[V]

Q-NaN

±Normal

Q-NaN±0

±∞

Not S-NaN Q-NaN Q-NaN

Don’t care S-NaN
Q-NaN[V]

S-NaN Don’t care

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 375 of 425
Mar 05, 2015

[Instruction format] FNMSF.S reg1, reg2, reg3

[Operation] reg3 ← neg (fms (reg2, reg1, reg3))

[Format] Format F:I

[Opcode]

[Description] This instruction multiplies the single-precision floating-point format contents in general-

purpose register reg2 with the single-precision floating-point format contents in general-

purpose register reg1, subtracts the single-precision floating-point format contents in general-

purpose register reg3, inverts the sign, and stores the result in general-purpose register reg3.

The operation is executed as if it were of infinite accuracy. The result of the multiply

operation is not rounded, but the result of the subtract operation is rounded, in accordance

with the current rounding mode. The signs are reversed after rounding.

[Floating-point

operation exceptions]

Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

Overflow exception (O)

Underflow exception (U)

<Floating-point instruction>
Floating-point Fused-Negate-Multiply-subtract (Single)

FNMSF.S
Floating-point fused-multiply-subtract operation (single precision)

15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

r r r r r 1 1 1 1 1 1 R R R R R w w w w w 1 0 0 1 1 1 0 0 1 1 0

reg2 reg1 reg3 category type sub-op

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 376 of 425
Mar 05, 2015

[Operation result]

Note 1. [] indicates an exception that must occur.

Note 2. When the FS bit of the FPSR register is 1, subnormal numbers are flushed to the normalized
numbers shown in Section 6.1.8, Flushing Subnormal Numbers.

[Supplement] The operation is executed as if it were of infinite accuracy and the result is rounded in

accordance with the current rounding mode. The result therefore differs from the result

obtained when using a combination of the SUBF, MULF, and NEGF instructions.

reg2(B)

+Normal –Normal +0 –0 +∞ –∞ Q-NaN S-NaNreg3(C) reg1(A)

±Normal

+Normal

FNMS (A, B, C)

–∞ +∞

-Normal +∞ –∞

±0 Q-NaN[V]

+∞ –∞ +∞
Q-NaN[V]

–∞ +∞

–∞ +∞ –∞ +∞ –∞

±0

+Normal

FNMS (A, B, C)

–∞ +∞

-Normal +∞ –∞

±0 Q-NaN[V]

+∞ –∞ +∞
Q-NaN[V]

–∞ +∞

–∞ +∞ –∞ +∞ –∞

+∞

+Normal

+∞

Q-NaN[V] +∞

-Normal +∞ Q-NaN[V]

±0 Q-NaN[V]

+∞ Q-NaN[V] +∞
Q-NaN[V]

Q-NaN[V] +∞

–∞ +∞ Q-NaN[V] +∞ Q-NaN[V]

–∞

+Normal

–∞

–∞ Q-NaN[V]

-Normal Q-NaN[V] –∞

±0 Q-NaN[V]

+∞ –∞ Q-NaN[V]
Q-NaN[V]

–∞ Q-NaN[V]

–∞ Q-NaN[V] –∞ Q-NaN[V] –∞

Q-NaN

±Normal

Q-NaN±0

±∞

Not S-NaN Q-NaN Q-NaN

Don’t care S-NaN
Q-NaN[V]

S-NaN Don’t care

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 377 of 425
Mar 05, 2015

[Instruction format] MAXF.D reg1, reg2, reg3

[Operation] reg3 ← max (reg2, reg1)

[Format] Format F:I

[Opcode]

[Description] This instruction extracts the maximum value from the double-precision floating-point format

data in the register pair specified by general-purpose registers reg1 and reg2, and stores it in

the register pair specified by general-purpose register reg3.

If one of the source operands is S-NaN, an IEEE754-defined invalid operation exception is

detected. If invalid operation exceptions are not enabled, Q-NaN is stored and no exception

occurs.

[Floating-point

operation exceptions]

Invalid operation exception (V)

[Supplement] When both reg1 and reg2 is either +0 or –0, it is undefined whether+0 or -0 is stored in reg3.

A subnormal input will not be flushed even if the FS bit of the FPSR register is 1.

<Floating-point instruction>
Floating-point Maximum (Double)

MAXF.D
Floating-point maximum value (double precision)

15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

r r r r 0 1 1 1 1 1 1 R R R R 0 w w w w 0 1 0 0 0 1 1 1 1 0 0 0

reg2 reg1 reg3 category type sub-op

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 378 of 425
Mar 05, 2015

[Operation result]

Note: [] indicates an exception that must occur.

reg2(B)

reg1(A) +Normal –Normal +0 –0 +∞ –∞ Q-NaN S-NaN

+Normal

MAX (A, B) reg1 (A)

–Normal

+0

–0

+∞

–∞

Q-NaN reg2 (B) Q-NaN

S-NaN Q-NaN [V]

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 379 of 425
Mar 05, 2015

[Instruction format] MAXF.S reg1, reg2, reg3

[Operation] reg3 ← max (reg2, reg1)

[Format] Format F:I

[Opcode]

[Description] This instruction extracts the maximum value from the single-precision floating-point format

data in general-purpose registers reg1 and reg2, and stores it in general-purpose register reg3.

If one of the source operands is S-NaN, an IEEE754-defined invalid operation exception is

detected. If invalid operation exceptions are not enabled, Q-NaN is stored and no exception

occurs.

[Floating-point

operation exceptions]

Invalid operation exception (V)

[Supplement] When both reg1 and reg2 is either +0 or –0, it is undefined whether +0 or –0 is stored in reg3.

A subnormal input will not be flushed even if the FS bit of the FPSR register is 1.

[Operation result]

Note: [] indicates an exception that must occur.

<Floating-point instruction>
Floating-point Maximum (Single)

MAXF.S
Floating-point maximum value (single precision)

15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

r r r r r 1 1 1 1 1 1 R R R R R w w w w w 1 0 0 0 1 1 0 1 0 0 0

reg2 reg1 reg3 category type sub-op

reg2(B)

reg1(A) Normal –Normal +0 –0 +∞ –∞ Q-NaN S-NaN

+Normal

MAX (A, B) reg1 (A)

–Normal

+0

–0

+∞

–∞

Q-NaN reg2 (A) Q-NaN

S-NaN Q-NaN [V]

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 380 of 425
Mar 05, 2015

[Instruction format] MINF.D reg1, reg2, reg3

[Operation] reg3 ← min (reg2, reg1)

[Format] Format F:I

[Opcode]

[Description] This instruction extracts the minimum value from the double-precision floating-point format

data in the register pair specified by general-purpose registers reg1 and reg2, and stores it in

the register pair specified by general-purpose register reg3.

If one of the source operands is S-NaN, an IEEE754-defined invalid operation exception is

detected. If invalid operation exceptions are not enabled, Q-NaN is stored and no exception

occurs.

[Floating-point

operation exceptions]

Invalid operation exception (V)

[Supplement] When both reg1 and reg2 is either +0 or –0, whether +0 or –0 is stored in reg3 is undefined.

A subnormal input will not be flushed even if the FS bit of the FPSR register is 1.

<Floating-point instruction>
Floating-point Minimum (Double)

MINF.D
Floating-point minimum value (double precision)

15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

r r r r 0 1 1 1 1 1 1 R R R R 0 w w w w 0 1 0 0 0 1 1 1 1 0 1 0

reg2 reg1 reg3 category type sub-op

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 381 of 425
Mar 05, 2015

[Operation result]

Note: [] indicates an exception that must occur.

reg2(B)

reg1(A) Normal -Normal +0 –0 +∞ –∞ Q-NaN S-NaN

+Normal

MIN (A, B) reg1 (A)

–Normal

+0

-0

+∞

–∞

Q-NaN reg2 (B) Q-NaN

S-NaN Q-NaN [V]

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 382 of 425
Mar 05, 2015

[Instruction format] MINF.S reg1, reg2, reg3

[Operation] reg3 ← min (reg2, reg1)

[Format] Format F:I

[Opcode]

[Description] This instruction extracts the minimum value from the single-precision floating-point format

data in general-purpose registers reg1 and reg2, and stores it in general-purpose register reg3.

If one of the source operands is S-NaN, an IEEE754-defined invalid operation exception is

detected. If invalid operation exceptions are not enabled, Q-NaN is stored and no exception

occurs.

[Floating-point

operation exceptions]

Invalid operation exception (V)

[Supplement] When both reg1 and reg2 is either +0 or –0, whether +0 or –0 is stored in reg3 is undefined.

A subnormal input will not be flushed even if the FS bit of the FPSR register is 1.

<Floating-point instruction>
Floating-point Minimum (Single)

MINF.S
Floating-point minimum value (single precision)

15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

r r r r r 1 1 1 1 1 1 R R R R R w w w w w 1 0 0 0 1 1 0 1 0 1 0

reg2 reg1 reg3 category type sub-op

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 383 of 425
Mar 05, 2015

[Operation result]

Note 1. [] indicates an exception that must occur.

[Operation result]

Note 1. [] indicates an exception that must occur.

Note 2. When the FS bit of the FPSR register is 1, subnormal numbers are flushed to the normalized
numbers shown in Section 6.1.8, Flushing Subnormal Numbers.

reg2(B)

reg1(A) Normal –Normal +0 –0 +∞ –∞ Q-NaN S-NaN

+Normal

MIN (A, B) reg1 (A)

–Normal

+0

–0

+∞

–∞

Q-NaN reg2 (B) Q-NaN

S-NaN Q-NaN [V]

reg2(B)

+Normal –Normal +0 –0 +∞ –∞ Q-NaN S-NaNreg3(C) reg1(A)

±Normal

+Normal

MUSB (A, B, C)

+∞ –∞

–Normal –∞ +∞

±0 Q-NaN[V]

+∞ +∞ –∞
Q-NaN[V]

+∞ –∞

–∞ –∞ +∞ –∞ +∞

±0

+Normal

MUSB (A, B, C)

+∞ –∞

–Normal –∞ +∞

±0 Q-NaN[V]

+∞ +∞ –∞
Q-NaN[V]

+∞ –∞

–∞ –∞ +∞ –∞ +∞

+∞

+Normal

–∞

Q-NaN[V] –∞

–Normal –∞ Q-NaN[V]

±0 Q-NaN[V]

+∞ Q-NaN[V] –∞
Q-NaN[V]

Q-NaN[V] –∞

–∞ –∞ Q-NaN[V] –∞ Q-NaN[V]

–∞

+Normal

+∞

+∞ Q-NaN[V]

–Normal Q-NaN[V] +∞

±0 Q-NaN[V]

+∞ +∞ Q-NaN[V]
Q-NaN[V]

+∞ Q-NaN[V]

–∞ Q-NaN[V] +∞ Q-NaN[V] +∞

Q-NaN

±Normal

Q-NaN±0

±∞

Not S-NaN Q-NaN Q-NaN

Don’t care S-NaN
Q-NaN[V]

S-NaN Don’t care

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 384 of 425
Mar 05, 2015

[Description] The operation is executed as if it were of infinite accuracy and the result is rounded in

accordance with the current rounding mode. The result therefore differs from the result

obtained when using a combination of the SUBF and MULF instructions.

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 385 of 425
Mar 05, 2015

[Instruction format] MULF.D reg1, reg2, reg3

[Operation] reg3 ← reg2 reg1

[Format] Format F:I

[Opcode]

[Description] This instruction multiplies double-precision floating-point format contents of the register pair

specified by general-purpose register reg2 by the double-precision floating-point format

contents of the register pair specified by general-purpose register reg1, and stores the result in

general-purpose register reg3.

[Floating-point

operation exceptions]

Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

Overflow exception (O)

Underflow exception (U)

[Operation result]

Note 1. [] indicates an exception that must occur.

Note 2. When the FS bit of the FPSR register is 1, subnormal numbers are flushed to the normalized
numbers shown in Section 6.1.8, Flushing Subnormal Numbers.

<Floating-point instruction>
Floating-point Multiply (Double)

MULF.D
Floating-point multiplication (double precision)

15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

r r r r 0 1 1 1 1 1 1 R R R R 0 w w w w 0 1 0 0 0 1 1 1 0 1 0 0

reg2 reg1 reg3 category type sub-op

reg2(B)

reg1(A) Normal -Normal +0 –0 +∞ –∞ Q-NaN S-NaN

+Normal

A × B

+∞ –∞

–Normal –∞ +∞

+0
Q-NaN [V]

–0

+∞ +∞ –∞ Q-NaN [V] +∞ –∞

–∞ –∞ +∞ –∞ +∞

Q-NaN Q-NaN

S-NaN Q-NaN [V]

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 386 of 425
Mar 05, 2015

[Instruction format] MULF.S reg1, reg2, reg3

[Operation] reg3 ← reg2 reg1

[Format] Format F:I

[Opcode]

[Description] This instruction multiplies the single-precision floating-point format contents of general-

purpose register reg2 by the single-precision floating-point format contents of general-

purpose register reg1, and stores the result in general-purpose register reg3.

[Floating-point

operation exceptions]

Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

Overflow exception (O)

Underflow exception (U)

[Operation result]

Note 1. [] indicates an exception that must occur.

Note 2. When the FS bit of the FPSR register is 1, subnormal numbers are flushed to the normalized
numbers shown in Section 6.1.8, Flushing Subnormal Numbers.

<Floating-point instruction>
Floating-point Multiply (Single)

MULF.S
Floating-point multiplication (single precision)

15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

r r r r r 1 1 1 1 1 1 R R R R R w w w w w 1 0 0 0 1 1 0 0 1 0 0

reg2 reg1 reg3 category type sub-op

reg2(B)

reg1(A) Normal –Normal +0 –0 +∞ –∞ Q-NaN S-NaN

+Normal

A × B

+∞ –∞

–Normal –∞ +∞

+0
Q-NaN [V]

–0

+∞ +∞ –∞
Q-NaN [V]

+∞ –∞

–∞ –∞ +∞ –∞ +∞

Q-NaN Q-NaN

S-NaN Q-NaN [V]

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 387 of 425
Mar 05, 2015

[Instruction format] NEGF.D reg2, reg3

[Operation] reg3 ← neg reg2

[Format] Format F:I

[Opcode]

[Description] This instruction inverts the sign of double-precision floating-point format contents of the

register pair specified by general-purpose register reg2, and stores the result in general-

purpose register reg3.

[Floating-point

operation exceptions]

None

[Supplement] A subnormal input will not be flushed even if the FS bit of the FPSR register is 1.

<Floating-point instruction>
Floating-point Negate (Double)

NEGF.D
Floating-point sign inversion (double precision)

15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

r r r r 0 1 1 1 1 1 1 0 0 0 0 1 w w w w 0 1 0 0 0 1 0 1 1 0 0 0

reg2 reg3 category type sub-op

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 388 of 425
Mar 05, 2015

[Instruction format] NEGF.S reg2, reg3

[Operation] reg3 ← neg reg2

[Format] Format F:I

[Opcode]

[Description] This instruction inverts the sign of the single-precision floating-point format contents of

general-purpose register reg2, and stores the result in general-purpose register reg3.

[Floating-point

operation exceptions]

None

[Supplement] A subnormal input will not be flushed even if the FS bit of the FPSR register is 1.

<Floating-point instruction>
Floating-point Negate (Single)

NEGF.S
Floating-point sign inversion (single precision)

15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

r r r r r 1 1 1 1 1 1 0 0 0 0 1 w w w w w 1 0 0 0 1 0 0 1 0 0 0

reg2 reg3 category type sub-op

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 389 of 425
Mar 05, 2015

[Instruction format] RECIPF.D reg2, reg3

[Operation] reg3 ← 1 reg2

[Format] Format F:I

[Opcode]

[Description] This instruction approximates the reciprocal of the double-precision floating-point format

contents of the register pair specified by general-purpose register reg2, and stores the result in

the register pair specified by general-purpose register reg3. The result differs from the result

obtained by using the DIVF instruction.

[Floating-point

operation exceptions]

Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

Division by zero exception (Z)

Underflow exception (U)

[Operation result]

Note 1. [] indicates an exception that must occur.

Note 2. When the FS bit of the FPSR register is 1, subnormal numbers are flushed to the normalized
numbers shown in Section 6.1.8, Flushing Subnormal Numbers.

<Floating-point instruction>
Reciprocal of a Floating-point Value (Double)

RECIPF.D
Reciprocal (double precision)

15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

r r r r 0 1 1 1 1 1 1 0 0 0 0 1 w w w w 0 1 0 0 0 1 0 1 1 1 1 0

reg2 reg3 category type sub-op

reg2 (A) Normal –Normal +0 –0 +∞ –∞ Q-NaN S-NaN

Operation
result
[exception]

1/A [I] –∞ [Z] –∞ [Z] +0 –0 Q-NaN Q-NaN
[V]

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 390 of 425
Mar 05, 2015

[Instruction format] RECIPF.S reg2, reg3

[Operation] reg3 ← 1 reg2

[Format] Format F:I

[Opcode]

[Description] This instruction approximates the reciprocal of the single-precision floating-point format

contents of general-purpose register reg2, and stores the result in general-purpose register

reg3. The result differs from the result obtained by using the DIVF instruction.

[Floating-point

operation exceptions]

Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

Division by zero exception (Z)

Underflow exception (U)

[Operation result]

Note 1. [] indicates an exception that must occur.

Note 2. When the FS bit of the FPSR register is 1, subnormal numbers are flushed to the normalized
numbers shown in Section 6.1.8, Flushing Subnormal Numbers.

<Floating-point instruction>
Reciprocal of a Floating-point Value (Single)

RECIPF.S
Reciprocal (single precision)

15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

r r r r r 1 1 1 1 1 1 0 0 0 0 1 w w w w w 1 0 0 0 1 0 0 1 1 1 0

reg2 reg3 category type sub-op

reg2 (A) Normal –Normal +0 –0 +∞ –∞ Q-NaN S-NaN

Operation
result
[exception]

1/A [I] +∞ [Z] –∞ [Z] +0 –0 Q-NaN Q-NaN
[V]

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 391 of 425
Mar 05, 2015

[Instruction format] RSQRTF.D reg2, reg3

[Operation] reg3 ← 1 (sqrt reg2)

[Format] Format F:I

[Opcode]

[Description] This instruction obtains the arithmetic positive square root of the double-precision floating-

point format contents of the register pair specified by general-purpose register reg2, then

approximates the reciprocal of this result and stores the result in the register pair specified by

general-purpose register reg3.

The result differs from the result obtained when using a combination of the SQRTF and DIVF

instructions.

[Floating-point

operation exceptions]

Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

Division by zero exception (Z)

[Operation result]

Note 1. [] indicates an exception that must occur.

Note 2. When the FS bit of the FPSR register is 1, subnormal numbers are flushed to the normalized
numbers shown in Section 6.1.8, Flushing Subnormal Numbers.

<Floating-point instruction>
Reciprocal of the Square Root of a Floating-point Value (Double)

RSQRTF.D
Reciprocal of square root (double precision)

15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

r r r r 0 1 1 1 1 1 1 0 0 0 1 0 w w w w 0 1 0 0 0 1 0 1 1 1 1 0

reg2 reg3 category type sub-op

reg2 (A) Normal –Normal +0 –0 +∞ –∞ Q-NaN S-NaN

Operation
result
[exception]

1/-A [I] Q-NaN
[V]

+∞ [Z] –∞ [Z] +0 Q-NaN
[V]

Q-NaN Q-NaN
[V]

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 392 of 425
Mar 05, 2015

[Instruction format] RSQRTF.S reg2, reg3

[Operation] reg3 ← 1 (sqrt reg2)

[Format] Format F:I

[Opcode]

[Description] This instruction obtains the arithmetic positive square root of the single-precision floating-

point format contents of general-purpose register reg2, then approximates the reciprocal of

this result and stores it in general-purpose register reg3. The result differs from the result

obtained when using a combination of the SQRTF and DIVF instructions.

[Floating-point

operation exceptions]

Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

Division by zero exception (Z)

[Operation result]

Note 1. [] indicates an exception that must occur.

Note 2. When the FS bit of the FPSR register is 1, subnormal numbers are flushed to the normalized
numbers shown in Section 6.1.8, Flushing Subnormal Numbers.

<Floating-point instruction>
Reciprocal of the Square Root of a Floating-point Value (Single)

RSQRTF.S
Reciprocal of square root (single precision)

15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

r r r r r 1 1 1 1 1 1 0 0 0 1 0 w w w w w 1 0 0 0 1 0 0 1 1 1 0

reg2 reg3 category type sub-op

reg2 (A) Normal –Normal +0 –0 +∞ –∞ Q-NaN S-NaN

Operation
result
[exception]

1/-A [I] Q-NaN
[V]

+∞ [Z] –∞ [Z] +0 Q-NaN
[V]

Q-NaN Q-NaN
[V]

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 393 of 425
Mar 05, 2015

[Instruction format] SQRTF.D reg2, reg3

[Operation] reg3 ← sqrt reg2

[Format] Format F:I

[Opcode]

[Description] This instruction obtains the arithmetic positive square root of the double-precision floating-

point format contents of the register pair specified by general-purpose register reg2, and

stores the result in the register pair specified by general-purpose register reg3. The operation

is executed as if it were of infinite accuracy, and the result is rounded in accordance with the

current rounding mode. When the source operand value is –0, the result becomes –0.

[Floating-point

operation exceptions]

Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

[Operation result]

Note 1. [] indicates an exception that must occur.

Note 2. When the FS bit of the FPSR register is 1, subnormal numbers are flushed to the normalized
numbers shown in Section 6.1.8, Flushing Subnormal Numbers.

<Floating-point instruction>
Floating-point Square Root (Double)

SQRTF.D
Square root (double precision)

15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

r r r r 0 1 1 1 1 1 1 0 0 0 0 0 w w w w 0 1 0 0 0 1 0 1 1 1 1 0

reg2 reg3 category type sub-op

reg2 (A) Normal –Normal +0 –0 +∞ –∞ Q-NaN S-NaN

Operation
result
[exception]

A Q-NaN
[V]

+0 –0 +∞ Q-NaN
[V]

Q-NaN Q-NaN
[V]

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 394 of 425
Mar 05, 2015

[Instruction format] SQRTF.S reg2, reg3

[Operation] reg3 ← sqrt reg2

[Format] Format F:I

[Opcode]

[Description] This instruction obtains the arithmetic positive square root of the single-precision floating-

point format contents of general-purpose register reg2, and stores it in general-purpose

register reg3. The operation is executed as if it were of infinite accuracy, and the result is

rounded in accordance with the current rounding mode. When the source operand value is –0,

the result becomes –0.

[Floating-point

operation exceptions]

Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

[Operation result]

Note 1. [] indicates an exception that must occur.

Note 2. When the FS bit of the FPSR register is 1, subnormal numbers are flushed to the normalized
numbers shown in Section 6.1.8, Flushing Subnormal Numbers.

<Floating-point instruction>
Floating-point Square Root (Single)

SQRTF.S
Square root (single precision)

15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

r r r r r 1 1 1 1 1 1 0 0 0 0 0 w w w w w 1 0 0 0 1 0 0 1 1 1 0

reg2 reg3 category type sub-op

reg2 (A) Normal –Normal +0 –0 +∞ –∞ Q-NaN S-NaN

Operation
result
[exception]

A Q-NaN
[V]

+0 –0 +∞ Q-NaN
[V]

Q-NaN Q-NaN
[V]

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 395 of 425
Mar 05, 2015

[Instruction format] SUBF.D reg1, reg2, reg3

[Operation] reg3 ← reg2 – reg1

[Format] Format F:I

[Opcode]

[Description] This instruction subtracts the double-precision floating-point format contents of the register

pair specified by general-purpose register reg1 from the double-precision floating-point

format contents of the register pair specified by general-purpose register reg2, and stores the

result in the register pair specified by general-purpose register reg3. The operation is executed

as if it were of infinite accuracy, and the result is rounded in accordance with the current

rounding mode.

[Floating-point

operation exceptions]

Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

Overflow exception (O)

Underflow exception (U)

<Floating-point instruction>
Floating-point Subtract (Double)

SUBF.D
Floating-point subtraction (double precision)

15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

r r r r 0 1 1 1 1 1 1 R R R R 0 w w w w 0 1 0 0 0 1 1 1 0 0 1 0

reg2 reg1 reg3 category type sub-op

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 396 of 425
Mar 05, 2015

[Operation result]

Note 1. [] indicates an exception that must occur.

Note 2. When the FS bit of the FPSR register is 1, subnormal numbers are flushed to the normalized
numbers shown in Section 6.1.8, Flushing Subnormal Numbers.

reg2(B)

reg1(A) Normal –Normal +0 –0 +∞ –∞ Q-NaN S-NaN

Normal

B – A +∞

–∞

–Normal

+0

–0

+∞ –∞ Q-NaN
[V]

–∞ +∞ Q-NaN
[V]

Q-NaN Q-NaN

S-NaN Q-NaN [V]

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 397 of 425
Mar 05, 2015

[Instruction format] SUBF.S reg1, reg2, reg3

[Operation] reg3 ← reg2 – reg1

[Format] Format F:I

[Opcode]

[Description] This instruction subtracts the single-precision floating-point format contents of general-purpose register

reg1 from the single-precision floating-point format contents of general-purpose register reg2, and stores

the result in general-purpose register reg3. The operation is executed as if it were of infinite accuracy,

and the result is rounded in accordance with the current rounding mode.

[Floating-point

operation exceptions]

Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

Overflow exception (O)

Underflow exception (U)

[Operation result]

Note 1. [] indicates an exception that must occur.

Note 2. When the FS bit of the FPSR register is 1, subnormal numbers are flushed to the normalized
numbers shown in Section 6.1.8, Flushing Subnormal Numbers.

<Floating-point instruction>
Floating-point Subtract (Single)

SUBF.S
Floating-point subtraction (single precision)

15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

r r r r r 1 1 1 1 1 1 R R R R R w w w w w 1 0 0 0 1 1 0 0 0 1 0

reg2 reg1 reg3 category type sub-op

reg2(B)

reg1(A) Normal –Normal +0 –0 +∞ –∞ Q-NaN S-NaN

Normal

B – A +∞
–∞

–Normal

+0

–0

+∞ –∞ Q-NaN [V]

–∞ +∞ Q-NaN [V]

Q-NaN Q-NaN

S-NaN Q-NaN [V]

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 398 of 425
Mar 05, 2015

[Instruction format] TRFSR fcbit

TRFSR

[Operation] PSW.Z ← fcbit

[Format] Format F:I

[Opcode]

Note: fcbit: fff

[Description] This instruction transfers the condition bits (the CC(7:0) bits: bits 31 to 24) in the FPSR

register specified by fcbit to the Z flag in the PSW. If fcbit is omitted, this instruction transfers

the CC0 bit (bit 24).

[Floating-point

operation exceptions]

None

<Floating-point instruction>
Transfers specified CC bit to Zero flag in PSW (Single)

TRFSR
Flag transfer

15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 f f f 0

reg3 category type sub-op

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 399 of 425
Mar 05, 2015

[Instruction format] TRNCF.DL reg2, reg3

[Operation] reg3 ← trunc reg2 (double → long-word)

[Format] Format F:I

[Opcode]

[Description] This instruction arithmetically converts the double-precision floating-point format contents of

the register pair specified by general-purpose register reg2 to 64-bit fixed-point format, and

stores the result in the register pair specified by general-purpose register reg3.

The result is rounded in the zero direction, regardless of the current rounding mode.

When the source operand is infinite or not-a-number, or when the rounded result is outside the

range of 263 – 1 to –263, an IEEE754-defined invalid operation exception is detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR

register is set as an invalid operation and no exception occurs. The return value differs as

follows, according to differences among sources.

 Source is a positive number or +∞: 263 – 1 is returned.

 Source is a negative number, not-a-number, or –∞: –263 is returned.

[Floating-point

operation exceptions]

Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

[Operation result]

Note 1. [] indicates an exception that must occur.

Note 2. When the FS bit of the FPSR register is 1, subnormal numbers are flushed to the normalized
numbers shown in Section 6.1.8, Flushing Subnormal Numbers.

<Floating-point instruction>
Floating-point Convert Double to Long, round toward zero (Double)

TRNCF.DL
Conversion to fixed-point format (double precision)

15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

r r r r 0 1 1 1 1 1 1 0 0 0 0 1 w w w w 0 1 0 0 0 1 0 1 0 1 0 0

reg2 reg3 category type sub-op

reg2 (A) Normal –Normal +0 –0 +∞ –∞ Q-NaN S-NaN

Operation
result
[exception]

A (integer) 0 (integer) Max Int
[V]

–Max Int [V]

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 400 of 425
Mar 05, 2015

[Instruction format] TRNCF.DUL reg2, reg3

[Operation] reg3 ← trunc reg2 (double → unsigned long-word)

[Format] Format F:I

[Opcode]

[Description] This instruction arithmetically converts the double-precision floating-point format contents of

the register pair specified by general-purpose register reg2 to unsigned 64-bit fixed-point

format, and stores the result in the register pair specified by general-purpose register reg3.

The result is rounded in the zero direction, regardless of the current rounding mode.

When the source operand is infinite, not-a-number, or negative number, or when the rounded

result is outside the range of 264 – 1 to 0, an IEEE754-defined invalid operation exception is

detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR

register is set as an invalid operation and no exception occurs. The return value differs as

follows, according to differences among sources.

 Source is a positive number outside the range of 264 – 1 to 0, or +∞: 264 – 1 is returned.

 Source is a negative number, not-a-number, or –∞: 0 is returned.

[Floating-point

operation exceptions]

Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

[Operation result]

Note 1. [] indicates an exception that must occur.

Note 2. When the FS bit of the FPSR register is 1, subnormal numbers are flushed to the normalized
numbers shown in Section 6.1.8, Flushing Subnormal Numbers.

<Floating-point instruction>
Floating-point Convert Double to Unsigned-Long, round toward zero (Double)

TRNCF.DUL
Conversion to unsigned fixed-point format (double precision)

15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

r r r r 0 1 1 1 1 1 1 1 0 0 0 1 w w w w 0 1 0 0 0 1 0 1 0 1 0 0

reg2 reg3 category type sub-op

reg2 (A) Normal –Normal +0 –0 +∞ –∞ Q-NaN S-NaN

Operation
result
[exception]

A
(Integer)

0 [V] 0 (Integer) Max U-Int
[V]

0 [V]

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 401 of 425
Mar 05, 2015

[Instruction format] TRNCF.DUW reg2, reg3

[Operation] reg3 ← trunc reg2 (double → unsigned word)

[Format] Format F:I

[Opcode]

[Description] This instruction arithmetically converts the double-precision floating-point format contents of

the register pair specified by general-purpose register reg2 to unsigned 32-bit fixed-point

format, and stores the result in general-purpose register reg3.

The result is rounded in the zero direction, regardless of the current rounding mode.

When the source operand is infinite, not-a-number, or negative number, or when the rounded

result is outside the range of 232 – 1 to 0, an IEEE754-defined invalid operation exception is

detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR

register is set as an invalid operation and no exception occurs. The return value differs as

follows, according to differences among sources.

 Source is a positive number outside the range of 232 – 1 to 0, or +∞: 232 – 1 is returned.

 Source is a negative number, not-a-number, or –∞: 0 is returned.

[Floating-point

operation exceptions]

Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

[Operation result]

Note 1. [] indicates an exception that must occur.

Note 2. When the FS bit of the FPSR register is 1, subnormal numbers are flushed to the normalized
numbers shown in Section 6.1.8, Flushing Subnormal Numbers.

<Floating-point instruction>
Floating-point Convert Double to Unsigned-Word, round toward zero (Double)

TRNCF.DUW
Conversion to unsigned fixed-point format (double precision)

15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

r r r r 0 1 1 1 1 1 1 1 0 0 0 1 w w w w w 1 0 0 0 1 0 1 0 0 0 0

reg2 reg3 category type sub-op

reg2 (A) Normal –Normal +0 –0 +∞ –∞ Q-NaN S-NaN

Operation
result
[exception]

A
(Integer)

0 [V] 0 (Integer) Max U-Int
[V]

0 [V]

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 402 of 425
Mar 05, 2015

[Instruction format] TRNCF.DW reg2, reg3

[Operation] reg3 ← trunc reg2 (double → word)

[Format] Format F:I

[Opcode]

[Description] This instruction arithmetically converts the double-precision floating-point format contents of

the register pair specified by general-purpose register reg2 to 32-bit fixed-point format, and

stores the result in general-purpose register reg3.

The result is rounded in the zero direction, regardless of the current rounding mode.

When the source operand is infinite or not-a-number, or when the rounded result is outside the

range of 231 – 1 to –231, an IEEE754-defined invalid operation exception is detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR

register is set as an invalid operation and no exception occurs. The return value differs as

follows, according to differences among sources.

 Source is a positive number or +∞: 231 – 1 is returned.

 Source is a negative number, not-a-number, or –∞: –231 is returned.

[Floating-point

operation exceptions]

Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

[Operation result]

Note 1. [] indicates an exception that must occur.

Note 2. When the FS bit of the FPSR register is 1, subnormal numbers are flushed to the normalized
numbers shown in Section 6.1.8, Flushing Subnormal Numbers.

<Floating-point instruction>
Floating-point Convert Double to Word, round toward zero (Double)

TRNCF.DW
Conversion to fixed-point format (double precision)

15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

r r r r 0 1 1 1 1 1 1 0 0 0 0 1 w w w w w 1 0 0 0 1 0 1 0 0 0 0

reg2 reg3 category type sub-op

reg2 (A) Normal –Normal +0 –0 +∞ –∞ Q-NaN S-NaN

Operation
result
[exception]

A (Integer) 0 (Integer) Max Int
[V]

–Max Int [V]

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 403 of 425
Mar 05, 2015

[Instruction format] TRNCF.SL reg2, reg3

[Operation] reg3 ← trunc reg2 (single → long-word)

[Format] Format F:I

[Opcode]

[Description] This instruction arithmetically converts the single-precision floating-point format contents of

general-purpose register reg2 to 64-bit fixed-point format, and stores the result in the register

pair specified by general-purpose register reg3.

The result is rounded in the zero direction, regardless of the current rounding mode.

When the source operand is infinite or not-a-number, or when the rounded result is outside the

range of 263 – 1 to –263, an IEEE754-defined invalid operation exception is detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR

register is set as an invalid operation and no exception occurs. The return value differs as

follows, according to differences among sources.

 Source is a positive number or +∞: 263 – 1 is returned.

 Source is a negative number, not-a-number, or –∞: –263 is returned.

[Floating-point

operation exceptions]

Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

[Operation result]

Note 1.] indicates an exception that must occur.

Note 2. When the FS bit of the FPSR register is 1, subnormal numbers are flushed to the normalized
numbers shown in Section 6.1.8, Flushing Subnormal Numbers.

<Floating-point instruction>
Floating-point Convert Single to Long, round toward zero (Single)

TRNCF.SL
Conversion to fixed-point format (single precision)

15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

r r r r r 1 1 1 1 1 1 0 0 0 0 1 w w w w 0 1 0 0 0 1 0 0 0 1 0 0

reg2 reg3 category type sub-op

reg2 (A) Normal –Normal +0 –0 +∞ –∞ Q-NaN S-NaN

Operation
result
[exception]

A (Integer) 0 (Integer) Max Int
[V]

–Max Int [V]

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 404 of 425
Mar 05, 2015

[Instruction format] TRNCF.SUL reg2, reg3

[Operation] reg3 ← trunc reg2 (single → unsigned long-word)

[Format] Format F:I

[Opcode]

[Description] This instruction arithmetically converts the single-precision floating-point format contents of

general-purpose register reg2 to unsigned 64-bit fixed-point format, and stores the result in

the register pair specified by general-purpose register reg3.

The result is rounded in the zero direction, regardless of the current rounding mode.

When the source operand is infinite, not-a-number, or negative value, or when the rounded

result is outside the range of 264 – 1 to 0, an IEEE754-defined invalid operation exception is

detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR

register is set as an invalid operation and no exception occurs. The return value differs as

follows, according to differences among sources.

 Source is a positive number outside the range of 264 – 1 to 0, or +∞: 264 – 1 is returned.

 Source is a negative number, not-a-number, or –∞: 0 is returned.

[Floating-point

operation exceptions]

Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

[Operation result]

Note 1. [] indicates an exception that must occur.

Note 2. When the FS bit of the FPSR register is 1, subnormal numbers are flushed to the normalized
numbers shown in Section 6.1.8, Flushing Subnormal Numbers.

<Floating-point instruction>
Floating-point Convert Single to Unsigned-Long, round toward zero (Single)

TRNCF.SUL
Conversion to unsigned fixed-point format (single precision)

15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

r r r r r 1 1 1 1 1 1 1 0 0 0 1 w w w w 0 1 0 0 0 1 0 0 0 1 0 0

reg2 reg3 category type sub-op

reg2 (A) Normal –Normal +0 –0 +∞ –∞ Q-NaN S-NaN

Operation
result
[exception]

A
(Integer)

0 [V] 0 (Integer) Max U-Int
[V]

0 [V]

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 405 of 425
Mar 05, 2015

[Instruction format] TRNCF.SUW reg2, reg3

[Operation] reg3 ← trunc reg2 (single → unsigned word)

[Format] Format F:I

[Opcode]

[Description] This instruction arithmetically converts the single-precision floating-point number format

contents of general-purpose register reg2 to unsigned 32-bit fixed-point format, and stores the

result in general-purpose register reg3.

The result is rounded in the zero direction, regardless of the current rounding mode.

When the source operand is infinite, not-a-number, or negative number, or when the rounded

result is outside the range of 232 – 1 to 0, an IEEE754-defined invalid operation exception is

detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR

register is set as an invalid operation and no exception occurs. The return value differs as

follows, according to differences among sources.

 Source is a positive number outside the range of 232 – 1 to 0, or +∞: 232 – 1 is returned.

 Source is a negative number, not-a-number, or –∞: 0 is returned.

[Floating-point

operation exceptions]

Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

[Operation result]

Note 1. [] indicates an exception that must occur.

Note 2. When the FS bit of the FPSR register is 1, subnormal numbers are flushed to the normalized
numbers shown in Section 6.1.8, Flushing Subnormal Numbers.

<Floating-point instruction>
Floating-point Convert Single to Unsigned-Word, round toward zero (Single)

TRNCF.SUW
Conversion to unsigned fixed-point format (single precision)

15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

r r r r r 1 1 1 1 1 1 1 0 0 0 1 w w w w w 1 0 0 0 1 0 0 0 0 0 0

reg2 reg3 category type sub-op

reg2 (A) Normal –Normal +0 –0 +∞ –∞ Q-NaN S-NaN

Operation
result
[exception]

A
(Integer)

0 [V] 0 (Integer) Max U-Int
[V]

0 [V]

RH850G3MH Software Section 7　INSTRUCTION

R01US0143EJ0100 Rev.1.00 Page 406 of 425
Mar 05, 2015

[Instruction format] TRNCF.SW reg2, reg3

[Operation] reg3 ← trunc reg2 (single → word)

[Format] Format F:I

[Opcode]

[Description] This instruction arithmetically converts the single-precision floating-point number format

contents of general-purpose register reg2 to 32-bit fixed-point format, and stores the result in

general-purpose register reg3.

The result is rounded in the zero direction, regardless of the current rounding mode.

When the source operand is infinite or not-a-number, or when the rounded result is outside the

range of 231 – 1 to –231, an IEEE754-defined invalid operation exception is detected.

If invalid operation exceptions are not enabled, the preservation bit (bit 4) of the FPSR

register is set as an invalid operation and no exception occurs. The return value differs as

follows, according to differences among sources.

 Source is a positive number or +∞: 231 – 1 is returned.

 Source is a negative number, not-a-number, or –∞: –231 is returned.

[Floating-point

operation exceptions]

Unimplemented operation exception (E)

Invalid operation exception (V)

Inexact exception (I)

[Operation result]

Note 1. [] indicates an exception that must occur.

Note 2. When the FS bit of the FPSR register is 1, subnormal numbers are flushed to the normalized
numbers shown in Section 6.1.8, Flushing Subnormal Numbers.

<Floating-point instruction>
Floating-point Convert Single to Word, round toward zero (Single)

TRNCF.SW
Conversion to fixed-point format (single precision)

15 11 10 5 4 0 31 27 26 25 23 22 21 20 17 16

r r r r r 1 1 1 1 1 1 0 0 0 0 1 w w w w w 1 0 0 0 1 0 0 0 0 0 0

reg2 reg3 category type sub-op

reg2 (A) Normal –Normal +0 –0 +∞ –∞ Q-NaN S-NaN

Operation
result
[exception]

A (Integer) 0 (Integer) Max Int
[V]

–Max Int [V]

RH850G3MH Software Section 8　RESET

R01US0143EJ0100 Rev.1.00 Page 407 of 425
Mar 05, 2015

Section 8 RESET

8.1 Status of Registers After Reset

If a reset signal is input by a method defined by the hardware specifications, the program registers and

system registers are placed in the status shown by the value after reset of each register in Section 3,

REGISTER SET, and program execution is started. Set the contents of each register to an appropriate

value in the program.

The CPU executes a reset to start execution of a program from the reset address specified by 4.4,

Exception Handler Address.

Note that because the PSW.ID bit is set (1) immediately after a reset, conditional EI level exceptions

will not be acknowledged. To acknowledge conditional EI level exceptions, clear (0) the PSW.ID bit.

RH850G3MH Software APPENDIX A　HAZARD RESOLUTION PROCEDURE FOR SYSTEM REGISTERS

R01US0143EJ0100 Rev.1.00 Page 408 of 425
Mar 05, 2015

APPENDIX A HAZARD RESOLUTION PROCEDURE FOR
SYSTEM REGISTERS

Certain system registers require the following procedures to resolve hazards when their values are

updated in the case of the instructions listed below.

 Instruction fetching

When an instruction is to be fetched after updating a register covered by the description below,

after executing the instruction to update the register, only allow the instruction fetch to start after

execution of an EIRET, FERET, or SYNCI instruction.

– PSW.UM, MCFG0.SPID

When an instruction is to be fetched after updating a register covered by the description below,

execute the instruction to update the register before allowing the instruction fetch to start.

– All registers related to ASID and MPU (register number : SR*, 5–7)

 Load/Store

When an instruction associated with Load/Store after updating the registers below, execute a

SYNCP instruction after executing the instruction to update the registers before Load/Store

instruction.

– ASID, MPU protection area setting register (Register number: SR*,6–7)

 Interrupt

Update the registers below when interrupt is inhibited. (PSW.ID = 1).

– PSW.EBV, EBASE, INTBP, ISPR, PMR, ICSR, INTCFG

 Coprocessor instruction

When a coprocessor instruction (floating-point operation instruction) is to be executed after

updating the register below, execute instructions of EIRET, FERET or SYNCI after executing the

instruction to update the registers and before executing a coprocessor instruction.

– PSW.CU0

RH850G3MH Software APPENDIX B　NUMBER OF INSTRUCTION EXECTUION CLOCKS

R01US0143EJ0100 Rev.1.00 Page 409 of 425
Mar 05, 2015

APPENDIX B NUMBER OF INSTRUCTION EXECTUION CLOCKS

B.1 Numbers of Clock Cycles for Execution

Numbers of clock cycles for execution are given in this section. Since the G3MH has a pipe-lined

architecture that differs from that of other CPUs, the various values given cannot be treated in a

uniform manner. Moreover, the number of clock cycles required to execute an actual instruction may

differ with the state of execution of the previous and next instruction.

RH850G3MH Software APPENDIX B　NUMBER OF INSTRUCTION EXECTUION CLOCKS

R01US0143EJ0100 Rev.1.00 Page 410 of 425
Mar 05, 2015

B.2 Number of G3MH Instruction Execution Clocks

(1) Basic instruction

Types of Instructions Mnemonics Operand

Instruction
Length
(Number
of Bytes)

Number of Execution Clocks

issue repeat latency

Load instruction LD.B disp16 [reg1] , reg2 4 1 1 3*1

disp23 [reg1] , reg3 6 1 1 3*1

LD.BU disp16 [reg1] , reg2 4 1 1 3*1

disp23 [reg1] , reg3 6 1 1 3*1

LD.H disp16 [reg1] , reg2 4 1 1 3*1

disp23 [reg1] , reg3 6 1 1 3*1

LD.HU disp16 [reg1] , reg2 4 1 1 3*1

disp23 [reg1] , reg3 6 1 1 3*1

LD.W disp16 [reg1] , reg2 4 1 1 3*1

disp23 [reg1] , reg3 6 1 1 3*1

LD.DW disp23 [reg1] , reg3 6 1 1 3*1

ep relative SLD.B disp7 [ep] , reg2 2 1 1 3*1

SLD.BU disp4 [ep] , reg2 2 1 1 3*1

SLD.H disp8 [ep] , reg2 2 1 1 3*1

SLD.HU disp5 [ep] , reg2 2 1 1 3*1

SLD.W disp8 [ep] , reg2 2 1 1 3*1

Store instrucrion ST.B reg2, disp16 [reg1] 4 1 1 1

reg3, disp23 [reg1] 6 1 1 1

ST.H reg2, disp16 [reg1] 4 1 1 1

reg3, disp23 [reg1] 6 1 1 1

ST.W reg2, disp16 [reg1] 4 1 1 1

reg3, disp23 [reg1] 6 1 1 1

ST.DW reg3, disp23 [reg1] 6 1 1 1

ep relative SST.B reg2, disp7 [ep] 2 1 1 1

SST.H reg2, disp8 [ep] 2 1 1 1

SST.W reg2, disp8 [ep] 2 1 1 1

Multiplication
instruction

MUL reg1, reg2, reg3 4 1 1 3

imm9, reg2, reg3 4 1 1 3

MULH reg1, reg2 2 1 1 3

imm5, reg2 2 1 1 3

MULHI imm16, reg1, reg2 4 1 1 3

MULU reg1, reg2, reg3 4 1 1 3

imm9, reg2, reg3 4 1 1 3

Multiply-accumulate
operation

MAC reg1, reg2, reg3, reg4 4 2 2 4

MACU reg1, reg2, reg3, reg4 4 2 2 4

RH850G3MH Software APPENDIX B　NUMBER OF INSTRUCTION EXECTUION CLOCKS

R01US0143EJ0100 Rev.1.00 Page 411 of 425
Mar 05, 2015

Arithmetic instruction ADD reg1, reg2 2 1 1 1

imm5, reg2 2 1 1 1

ADDI imm16, reg1, reg2 4 1 1 1

CMP reg1, reg2 2 1 1 1

imm5, reg2 2 1 1 1

MOV reg1, reg2 2 1 1 1

imm5, reg2 2 1 1 1

imm32, reg1 6 1 1 1

MOVEA imm16, reg1, reg2 4 1 1 1

MOVHI imm16, reg1, reg2 4 1 1 1

SUB reg1, reg2 2 1 1 1

SUBR reg1, reg2 2 1 1 1

Operation with
condition

ADF cccc, reg1, reg2, reg3 4 1 1 1

SBF cccc, reg1, reg2, reg3 4 1 1 1

Saturated operation SATADD reg1, reg2 2 1 1 1

imm5, reg2 2 1 1 1

reg1, reg2, reg3 4 1 1 1

SATSUB reg1, reg2 2 1 1 1

reg1, reg2, reg3 4 1 1 1

SATSUBI imm16, reg1, reg2 4 1 1 1

SATSUBR reg1, reg2 2 1 1 1

Logical instruction AND reg1, reg2 2 1 1 1

ANDI imm16, reg1, reg2 4 1 1 1

NOT reg1, reg2 2 1 1 1

OR reg1, reg2 2 1 1 1

ORI imm16, reg1, reg2 4 1 1 1

TST reg1, reg2 2 1 1 1

XOR reg1, reg2 2 1 1 1

XORI imm16, reg1, reg2 4 1 1 1

Types of Instructions Mnemonics Operand

Instruction
Length
(Number
of Bytes)

Number of Execution Clocks

issue repeat latency

RH850G3MH Software APPENDIX B　NUMBER OF INSTRUCTION EXECTUION CLOCKS

R01US0143EJ0100 Rev.1.00 Page 412 of 425
Mar 05, 2015

Data operation
instruction

BINS reg1, pos, width, reg2 4 1 1 1

BSH reg2, reg3 4 1 1 1

BSW reg2, reg3 4 1 1 1

CMOV cccc, reg1, reg2, reg3 4 1 1 1

cccc, imm5, reg2, reg3 4 1 1 1

HSH reg2, reg3 4 1 1 1

HSW reg2, reg3 4 1 1 1

ROTL imm5. reg2. reg3 4 1 1 1

reg1, reg2, reg3 4 1 1 1

SAR reg1, reg2 4 1 1 1

imm5, reg2 2 1 1 1

reg1, reg2, reg3 4 1 1 1

SASF cccc. reg2 4 1 1 1

SETF cccc. reg2 4 1 1 1

SHL reg1, reg2 4 1 1 1

imm5, reg2 2 1 1 1

reg1, reg2, reg3 4 1 1 1

SHR reg1, reg2 4 1 1 1

imm5, reg2 2 1 1 1

reg1, reg2, reg3 4 1 1 1

SXB reg1 2 1 1 1

SXH reg1 2 1 1 1

ZXB reg1 2 1 1 1

ZXH reg1 2 1 1 1

Bit search instruction SCH0L reg2, reg3 4 1 1 1

SCH0R reg2, reg3 4 1 1 1

SCH1L reg2, reg3 4 1 1 1

SCH1R reg2, reg3 4 1 1 1

Division instruction DIV reg1, reg2, reg3 4 1 19 19

DIVH reg1, reg2 2 1 19 19

reg1, reg2, reg3 4 1 19 19

DIVHU reg1, reg2, reg3 4 1 19 19

DIVU reg1, reg2, reg3 4 1 19 19

High-speed divide
operation

DIVQ reg1, reg2, reg3 4 1 N+3*2 N+3*2

DIVQU reg1, reg2, reg3 4 1 N+3*2 N+3*2

Types of Instructions Mnemonics Operand

Instruction
Length
(Number
of Bytes)

Number of Execution Clocks

issue repeat latency

RH850G3MH Software APPENDIX B　NUMBER OF INSTRUCTION EXECTUION CLOCKS

R01US0143EJ0100 Rev.1.00 Page 413 of 425
Mar 05, 2015

Branch instructions Bcond disp9 2 2 to 6*3 2 to 6*3 2 to 6*3

disp9 (When Branch prediction is
matched)

2 2 to 3*3 2 to 3*3 2 to 3*3

disp17 4 2 to 6*3 2 to 6*3 2 to 6*3

JARL disp22, reg2 4 2 to 3*3 2 to 3*3 2 to 3*3

disp32, reg1 6 2 to 3*3 2 to 3*3 2 to 3*3

[reg1], reg3 4 2 to 6*3 2 to 6*3 2 to 6*3

JMP [reg1] 2 2 to 6*3 2 to 6*3 2 to 6*3

disp32 [reg1] 6 2 to 7*3 2 to 7*3 2 to 7*3

JR disp22 4 2 to 3*3 2 to 3*3 2 to 3*3

disp32 6 2 to 3*3 2 to 3*3 2 to 3*3

Loop instruction LOOP reg1, disp16 4 2 to 6*3 2 to 6*3 2 to 6*3

Bit manipulation
instruction

CLR1 bit#3, disp16 [reg1] 4 1 1 4*4

reg2, [reg1] 4 1 1 4*4

NOT1 bit#3, disp16 [reg1] 4 1 1 4*4

reg2, [reg1] 4 1 1 4*4

SET1 bit#3, disp16 [reg1] 4 1 1 4*4

reg2, [reg1] 4 1 1 4*4

TST1 bit#3, disp16 [reg1] 4 1 1 4*4

reg2, [reg1] 4 1 1 4*4

Special instruction

Table reference
branch

SWITCH reg1 2 11 to 18*3 11 to 18*3 11 to 18*3

Sub routine call CALLT imm6 2 17 17 17

CTRET — 4 8 8 8

System call exception SYSCALL vector8 4 17 17 17

Software exception FETRAP vector4 2 8 8 8

TRAP vector5 4 8 8 8

Return from
exception processing

EIRET — 4 8 8 8

FERET — 4 8 8 8

EI level interrupt DI — 4 3 3 3

EI — 4 3 3 3

Restoration from &
storage on stack

DISPOSE imm5, list12 4 N+1*5 N+2*5 N+1*5

imm5, list12, [reg1] 4 N+3 to
N+8*5

N+4 to
N+8*5

N+3 to
N+8*5

PREPARE list12, imm5 4 N+1*5 N+2*5 N+1*5

list12, imm5, sp 4 N+2*5 N+3*5 N+2*5

list12, imm5, imm16 6 N+2*5 N+3*5 N+2*5

list12, imm5, imm16<<16 6 N+2*5 N+3*5 N+2*5

list12, imm5, imm32 8 N+2*5 N+3*5 N+2*5

POPSP rh-rt 4 N+1*6 N+2*6 N+1*6

PUSHSP rh-rt 4 N+1*6 N+2*6 N+1*6

Types of Instructions Mnemonics Operand

Instruction
Length
(Number
of Bytes)

Number of Execution Clocks

issue repeat latency

RH850G3MH Software APPENDIX B　NUMBER OF INSTRUCTION EXECTUION CLOCKS

R01US0143EJ0100 Rev.1.00 Page 414 of 425
Mar 05, 2015

(2) Cache instruction

System register
operation

LDSR reg2, regID, selID 4 3*7 3*7 3

STSR regID, reg2, selID 4 1 1 3

Exclusive control CAXI [reg1], reg2, reg3 4 1 1 8*4

LDL.W [reg1], reg3 4 1 1 3*1

STC.W reg3, [reg1] 4 1 1 6*4

Stop HALT — 4 1 1 1

SNOOZE — 4 *8 *8 *8

Synchronization SYNCE — 2 1 1 1

SYNCI — 2 *9 *9 *9

SYNCM — 2 *10 *10 *10

SYNCP — 2 *11 *11 *11

Others NOP — 2 1 1 1

RIE — 4 8 8 8

Types of Instructions Mnemonics Operand

Instruction
Length
(Number
of Bytes)

Number of Execution Clocks

issue repeat latency

Type of Instructions Mnemonics Operand

Instruction
Length
(Number
of Bytes)

Number of Execution Clocks

issue repeat latency

Cache operation
instruction

CACHE cacheop, [reg1] 4 1*12 1*12 1*12

Pre-fetch instruction PREF prefop, [reg1] 4 1*12 1*12 1*12

RH850G3MH Software APPENDIX B　NUMBER OF INSTRUCTION EXECTUION CLOCKS

R01US0143EJ0100 Rev.1.00 Page 415 of 425
Mar 05, 2015

(3) Floating-point operation instruction — single precision —

Type of Instructions Mnemonics Operand

Instruction
Length
(Number of
Bytes)

Number of Execution Clocks

issue repeat latency

Floating-point arithmetic
operation

ABSF.S reg2, reg3 4 1 1 4*13

ADDF.S reg1, reg2, reg3 4 1 1 4*13

NEGF.S reg2, reg3 4 1 1 4*13

SUBF.S reg1, reg2, reg3 4 1 1 4*13

Floating-point
multiplication

MULF.S reg1, reg2, reg3 4 1 1 4*13

Multiply-accumulate/
subtract operation

FMAF.S reg1, reg2, reg3 4 1 1 4*13

FMSF.S reg1, reg2, reg3 4 1 1 4*13

FNMAF.S reg1, reg2, reg3 4 1 1 4*13

FNMSF.S reg1, reg2, reg3 4 1 1 4*13

Floating-point subtraction DIVF.S reg1, reg2, reg3 4 8*14 8 11*13

Square root of a
Floatingpoint
value /Reciprocal

RECIPF.S reg2, reg3 4 8*14 8 11*13

RSQRTF.S reg2, reg3 4 21*14 21 24*13

SQRTF.S reg2, reg3 4 14*14 14 17*13

Conversion between
floatingpoint formats/
Conversion between
fixedpoint and flating
point formats

CVTF.HS reg2, reg3 4 1 1 4*13

CVTF.LS reg2, reg3 4 1 1 4*13

CVTF.SH reg2, reg3 4 1 1 4*13

CVTF.SL reg2, reg3 4 1 1 4*13

CVTF.SUL reg2, reg3 4 1 1 4*13

CVTF.SUW reg2, reg3 4 1 1 4*13

CVTF.SW reg2, reg3 4 1 1 4*13

CVTF.ULS reg2, reg3 4 1 1 4*13

CVTF.UWS reg2, reg3 4 1 1 4*13

CVTF.WS reg2, reg3 4 1 1 4*13

CEILF.SL reg2, reg3 4 1 1 4*13

CEILF.SUL reg2, reg3 4 1 1 4*13

CEILF.SUW reg2, reg3 4 1 1 4*13

CEILF.SW reg2, reg3 4 1 1 4*13

FLOORF.SL reg2, reg3 4 1 1 4*13

FLOORF.SUL reg2, reg3 4 1 1 4*13

FLOORF.SUW reg2, reg3 4 1 1 4*13

FLOORF.SW reg2, reg3 4 1 1 4*13

TRNCF.SL reg2, reg3 4 1 1 4*13

TRNCF.SUL reg2, reg3 4 1 1 4*13

TRNCF.SUW reg2, reg3 4 1 1 4*13

TRNCF.SW reg2, reg3 4 1 1 4*13

RH850G3MH Software APPENDIX B　NUMBER OF INSTRUCTION EXECTUION CLOCKS

R01US0143EJ0100 Rev.1.00 Page 416 of 425
Mar 05, 2015

(4) Floating-point operation instruction — double precision —

Floating-point
comparison

CMPF.S cond, reg1, reg2, cc 4 1 1 1

Transfer with
conditions

CMOVF.S cc, reg1, reg2, reg3 4 1 1 4*13

Bit transfer with
conditions

TRFSR cc 4 1 1 5

Floating-point maximum/
minimum values

MAXF.S reg1, reg2, reg3 4 1 1 4*13

MINF.S reg1, reg2, reg3 4 1 1 4*13

Type of Instructions Mnemonics Operand

Instruction
Length
(Number
of Bytes)

Number of Execution Clocks

issue repeat latency

Floating-point arithmetic
operation

ABSF.D reg2, reg3 4 1 1 4*13

ADDF.D reg1, reg2, reg3 4 1 1 4*13

NEGF.D reg2, reg3 4 1 1 4*13

SUBF.D reg1, reg2, reg3 4 1 1 4*13

Floating-point
multiplication

MULF.D reg1, reg2, reg3 4 4 4 7*13

Floating-point division DIVF.D reg1, reg2, reg3 4 16*14 16 19*13

Square root of a
Floatingpoint value /
Reciprocal

RECIPF.D reg2, reg3 4 16*14 16 19*13

RSQRTF.D reg2, reg3 4 45*14 45 48*13

SQRTF.D reg2, reg3 4 30*14 30 33*13

Type of Instructions Mnemonics Operand

Instruction
Length
(Number of
Bytes)

Number of Execution Clocks

issue repeat latency

RH850G3MH Software APPENDIX B　NUMBER OF INSTRUCTION EXECTUION CLOCKS

R01US0143EJ0100 Rev.1.00 Page 417 of 425
Mar 05, 2015

Note 1. When no waiting is required (3 + number of wait states for read access).

Note 2. N = int(((number of valid bits in absolute value of dividend) – (number of valid bits in absolute value of
divisor)) ÷ 2) + 1
N becomes 1 for the result of N < 1. Division by 0 leads to N being 0. The range of N is from 0 to 16.

Note 3. Executing an instruction to rewrite the contents of the PSW register immediately beforehand does not affect
the number of clock cycles for execution. Even if an immediately preceding instruction has rewritten the
contents of the PSW register, parallel execution is possible.

Note 4. When no waiting is required (4 + number of wait states for read access).

Note 5. “N” depends on the total number of registers specified by list12, but not on the register numbers.
Since up to two registers are handled per clock cycle, if no waiting is required, the values are as shown
below.
PREPARE: Minimum value is 1, maximum value is 6 (if the EP register is updated, add 1 clock cycle).
DISPOSE: Minimum value is 1, maximum value is 6 (if accompanied by JMP, add 2 clock cycles).

Note 6. “N” depends on the total number of registers specified by (rh-rt).
Since up to two registers are handled per clock cycle, if no waiting is required, the values are as shown
below.
PUSHSH: Minimum value is 1, maximum value is 16.
POPSP: Minimum value is 1, maximum value is 16.

Note 7. When accessing the system register to control the operation of PSW or so, stop issuing the subsequent

Conversion between
floatingpoint formats/
Conversion between
fixedpoint and floating
point formats

CVTF.DL reg2, reg3 4 1 1 4*13

CVTF.DS reg2, reg3 4 1 1 4*13

CVTF.DUL reg2, reg3 4 1 1 4*13

CVTF.DUW reg2, reg3 4 1 1 4*13

CVTF.DW reg2, reg3 4 1 1 4*13

CVTF.LD reg2, reg3 4 1 1 4*13

CVTF.SD reg2, reg3 4 1 1 4*13

CVTF.ULD reg2, reg3 4 1 1 4*13

CVTF.UWD reg2, reg3 4 1 1 4*13

CVTF.WD reg2, reg3 4 1 1 4*13

CEILF.DL reg2, reg3 4 1 1 4*13

CEILF.DUL reg2, reg3 4 1 1 4*13

CEILF.DUW reg2, reg3 4 1 1 4*13

CEILF.DW reg2, reg3 4 1 1 4*13

FLOORF.DL reg2, reg3 4 1 1 4*13

FLOORF.DUL reg2, reg3 4 1 1 4*13

FLOORF.DUW reg2, reg3 4 1 1 4*13

FLOORF.DW reg2, reg3 4 1 1 4*13

TRANCF.DL reg2, reg3 4 1 1 4*13

TRANCF.DUL reg2, reg3 4 1 1 4*13

TRANCF.DUW reg2, reg3 4 1 1 4*13

TRANCF.DW reg2, reg3 4 1 1 4*13

Floating-point
comparison

CMPF.D cond, reg1, reg2, cc 4 1 1 1

Transfer with
conditions

CMOVF.D cc, reg1, reg2, reg3 4 1 1 4*13

Floating-point maximum/
minimum values

MAXF.D reg1, reg2, reg3 4 1 1 4*13

MINF.D reg1, reg2, reg3 4 1 1 4*13

Type of Instructions Mnemonics Operand

Instruction
Length
(Number
of Bytes)

Number of Execution Clocks

issue repeat latency

RH850G3MH Software APPENDIX B　NUMBER OF INSTRUCTION EXECTUION CLOCKS

R01US0143EJ0100 Rev.1.00 Page 418 of 425
Mar 05, 2015

instructions.
If not, perform the operation with issue = 1.

Note 8. The number of execution clocks for the SNOOZE instruction is specified by the hardware specifications.
For details, see the hardware manual of the corresponding product.

Note 9. Wait for the hazard resolution for the instruction.

Note 10. Perform the synchronization of memory access.

Note 11. Wait for the synchronization of the pipeline.

Note 12. Though the execution of the instruction is completed, the completion of the internal processing depends on
the state of the instruction fetch unit.

Note 13. “latency” might be added by 1 depending on the subsequent instruction.
For details, see Note 1.

Note 14. “issue” is set to 1 for the instructions other than the one with the floating-point division (DIVF, RECIPF,
RSQRTF, or SQRTF)

Note 1. Example of execution clocks

Note 1. In the following case, “latency” is added by 1.
• When the preceding instruction is the floating-point operation instruction, the instruction other than the
floating-point operation one follows.
• When the subsequent instruction is the floating-point operation instruction, the instruction other than the
load, store, bit-manipulation, special (memory access), or floating-point operation one precedes.

Symbol Description

issue When the other instruction is executed immediately after the execution of the current
instruction

repeat When the same instruction is repeated immediately after the execution of the current
instruction

latency When the following instruction uses the result of the current instruction*1

RH850G3MH Software APPENDIX C　REGISTER INDEX

R01US0143EJ0100 Rev.1.00 Page 419 of 425
Mar 05, 2015

A

ASID ... 49

C

CDBCR 83
CTBP .. 48
CTPC .. 47
CTPSW 48

E

EBASE 53
EIIC .. 46
EIPC ... 40
EIPSW 41
EIWR .. 49

F

FEIC ... 47
FEPC .. 42
FEPSW 43
FEWR 49
FPCC .. 67
FPCFG 68
FPEPC 66
FPSR .. 63
FPST .. 66

H

HTCFG0 50

I

ICCFG 81
ICCTRL 80
ICDATH 80
ICDATL 79
ICERR 82
ICSR ... 60
ICTAGH 79
ICTAGL 78
INTBP 54
INTCFG 61
ISPR ... 59

M

MCA ... 73
MCC ... 73
MCFG0 57
MCR ... 74
MCS ... 73
MCTL .. 57
MEA .. 50
MEI ... 51
MPATn 76

MPBRGN 72
MPLAn 75
MPM ... 71
MPRC 72
MPTRGN 72
MPUAn 75

P

PC .. 38
PID ... 55
PMR ... 60
PSW ... 44

R

RBASE 53

S

SCBP 56
SCCFG 56

APPENDIX C REGISTER INDEX

RH850G3MH Software APPENDIX D　INSTRUCTION INDEX

R01US0143EJ0100 Rev.1.00 Page 420 of 425
Mar 05, 2015

A

ABSF.D 313
ABSF.S 314
ADD 152
ADDF.D 315
ADDF.S 317
ADDI 153
ADF 154
AND 155
ANDI 156

B

Bcond 157
BINS 160
BSH 161
BSW 162

C

CACHE 301
CALLT 163
CAXI 165
CEILF.DL 319
CEILF.DUL 320
CEILF.DUW 321
CEILF.DW 322
CEILF.SL 323
CEILF.SUL 324
CEILF.SUW 325
CEILF.SW 326
CLL .. 167
CLR1 168
CMOV 170
CMOVF.D 327
CMOVF.S 328
CMP 172
CMPF.D 329
CMPF.S 333
CTRET 173
CVTF.DL 337
CVTF.DS 338
CVTF.DUL 339
CVTF.DUW 340
CVTF.DW 341
CVTF.HS 342
CVTF.LD 343
CVTF.LS 344
CVTF.SD 345
CVTF.SH 347
CVTF.SL 346
CVTF.SUL 348
CVTF.SUW 349
CVTF.SW 350
CVTF.ULD 351
CVTF.ULS 352

CVTF.UWD 353
CVTF.UWS 354
CVTF.WD 355
CVTF.WS 356

D

DI .. 174
DISPOSE 175
DIV .. 177
DIVF.D 357
DIVF.S 359
DIVH 178
DIVHU 180
DIVQ 181
DIVQU 183
DIVU 185

E

EI ... 186
EIRET 187

F

FERET 188
FETRAP 189
FLOORF.DL 361
FLOORF.DUL 362
FLOORF.DUW 363
FLOORF.DW 364
FLOORF.SL 365
FLOORF.SUL 366
FLOORF.SUW 367
FLOORF.SW 368
FMAF.S 369
FMSF.S 371
FNMAF.S 373
FNMSF.S 375

H

HALT 191
HSH 193
HSW 194

J

JARL 195
JMP 197
JR .. 198

L

LD.B 199
LD.BU 200
LD.DW 202
LD.H 203
LD.HU 205

LD.W207
LDL.W209
LDSR210
LOOP211

M

MAC213
MACU214
MAXF.D377
MAXF.S379
MINF.D380
MINF.S382
MOV215
MOVEA217
MOVHI218
MUL219
MULF.D385
MULF.S386
MULH220
MULHI222
MULU223

N

NEGF.D387
NEGF.S388
NOP224
NOT225
NOT1226

O

OR ...228
ORI ..229

P

POPSP230
PREF303
PREPARE232
PUSHSP235

R

RECIPF.D389
RECIPF.S390
RIE ...237
ROTL238
RSQRTF.D391
RSQRTF.S392

S

SAR239
SASF241
SATADD242
SATSUB244
SATSUBI246

APPENDIX D INSTRUCTION INDEX

RH850G3MH Software APPENDIX D　INSTRUCTION INDEX

R01US0143EJ0100 Rev.1.00 Page 421 of 425
Mar 05, 2015

SATSUBR 247
SBF 248
SCH0L 249
SCH0R 250
SCH1L 251
SCH1R 252
SET1 253
SETF 255
SHL 257
SHR 259
SLD.B 261
SLD.BU 262
SLD.H 263
SLD.HU 264
SLD.W 265
SNOOZE 266
SQRTF.D 393
SQRTF.S 394
SST.B 268
SST.H 269
SST.W 270
ST.B 271
ST.DW 272
ST.H 273
ST.W 275
STC.W 277
STSR 279
SUB 280
SUBF.D 395
SUBF.S 397
SUBR 281
SWITCH 282
SXB 283
SXH 284
SYNCE 285
SYNCI 286
SYNCM 287
SYNCP 288
SYSCALL 289

T

TRAP 291
TRFSR 398
TRNCF.DL 399
TRNCF.DUL 400
TRNCF.DUW 401
TRNCF.DW 402
TRNCF.SL 403
TRNCF.SUL 404
TRNCF.SUW 405
TRNCF.SW 406
TST .. 293
TST1 294

X

XOR 296
XORI 297

Z

ZXB 298
ZXH 299

RH850G3MH User’s Manual: Software

RH850G3MH Software 　REVISION HISTORY

R01US0143EJ0100 Rev.1.00 Page 422 of 425
Mar 05, 2015

Note: The classification in the table above means as follows.
(a): Error correction (b): Specifications added or changed (c): descriptions or notes added or changed

Page Description Classification

— First Edition issued —

REVISION HISTORY

RH850G3MH User’s Manual: Software

Publication Date: Rev.1.00 Mar 05, 2015

Published by: Renesas Electronics Corporation

Colophon

Address List

http://www.renesas.com
Refer to "http://www.renesas.com/" for the latest and detailed information.

California Eastern Laboratories, Inc.
4590 Patrick Henry Drive, Santa Clara, California 95054-1817, U.S.A.
Tel: +1-408-919-2500, Fax: +1-408-988-0279
Renesas Electronics Europe Limited
Dukes Meadow, Millboard Road, Bourne End, Buckinghamshire, SL8 5FH, U.K
Tel: +44-1628-585-100, Fax: +44-1628-585-900
Renesas Electronics Europe GmbH
Arcadiastrasse 10, 40472 Düsseldorf, Germany
Tel: +49-211-6503-0, Fax: +49-211-6503-1327
Renesas Electronics (China) Co., Ltd.
Room 1709, Quantum Plaza, No.27 ZhiChunLu Haidian District, Beijing 100191, P.R.China
Tel: +86-10-8235-1155, Fax: +86-10-8235-7679
Renesas Electronics (Shanghai) Co., Ltd.
Unit 301, Tower A, Central Towers, 555 Langao Road, Putuo District, Shanghai, P. R. China 200333
Tel: +86-21-2226-0888, Fax: +86-21-2226-0999
Renesas Electronics Hong Kong Limited
Unit 1601-1611, 16/F., Tower 2, Grand Century Place, 193 Prince Edward Road West, Mongkok, Kowloon, Hong Kong
Tel: +852-2265-6688, Fax: +852 2886-9022
Renesas Electronics Taiwan Co., Ltd.
13F, No. 363, Fu Shing North Road, Taipei 10543, Taiwan
Tel: +886-2-8175-9600, Fax: +886 2-8175-9670
Renesas Electronics Singapore Pte. Ltd.
80 Bendemeer Road, Unit #06-02 Hyflux Innovation Centre, Singapore 339949
Tel: +65-6213-0200, Fax: +65-6213-0300
Renesas Electronics Malaysia Sdn.Bhd.
Unit 1207, Block B, Menara Amcorp, Amcorp Trade Centre, No. 18, Jln Persiaran Barat, 46050 Petaling Jaya, Selangor Darul Ehsan, Malaysia
Tel: +60-3-7955-9390, Fax: +60-3-7955-9510
Renesas Electronics India Pvt. Ltd.
No.777C, 100 Feet Road, HALⅡ Stage, Indiranagar, Bangalore, India
Tel: +91-80-67208700, Fax: +91-80-67208777
Renesas Electronics Korea Co., Ltd.
12F., 234 Teheran-ro, Gangnam-Gu, Seoul, 135-080, Korea
Tel: +82-2-558-3737, Fax: +82-2-558-5141

SALES OFFICES

© 2015 Renesas Electronics Corporation. All rights reserved.
Colophon 4.0

RH850G3MH

R01US0143EJ0100

Back Cover

	Cover
	Notice
	NOTES FOR CMOS DEVICES
	How to Use This Manual
	Table of Contents
	Section 1 OVERVIEW
	1.1 Features of the RH850G3MH
	1.2 Changes from the RH850G3M

	Section 2 PROCESSOR MODEL
	2.1 CPU Operating Modes
	2.1.1 Definition of CPU Operating Modes
	2.1.2 CPU Operating Mode Transition
	2.1.3 CPU Operating Modes and Privileges

	2.2 Instruction Execution
	2.3 Exceptions and Interrupts
	2.3.1 Exception Level

	2.4 Coprocessors
	2.4.1 Coprocessor Use Permissions
	2.4.2 Correspondences between Coprocessor Use Permissions and Coprocessors
	2.4.3 Coprocessor Unusable Exceptions
	2.4.4 System Registers

	2.5 Registers
	2.5.1 Program Registers
	2.5.2 System Registers
	2.5.3 Register Updating
	2.5.4 Accessing Undefined Registers

	2.6 Data Types
	2.6.1 Data formats
	2.6.2 Data Representation
	2.6.3 Data Alignment

	2.7 Address Space
	2.7.1 Memory Map
	2.7.2 Instruction Addressing
	2.7.3 Data Addressing

	2.8 Acquiring the CPU Number
	2.9 System Protection Identifier

	Section 3 REGISTER SET
	3.1 Program Registers
	3.1.1 General-Purpose Registers
	3.1.2 PC — Program Counter

	3.2 Basic System Registers
	3.3 Interrupt Function Registers
	3.3.1 Interrupt Function System Registers

	3.4 FPU Function Registers
	3.4.1 Floating-Point Registers
	3.4.2 Floating-Point Function System Registers

	3.5 MPU Function Registers
	3.5.1 MPU Function System Registers

	3.6 Cache Operation Function Registers
	3.6.1 Cache Control Function System Registers

	3.7 Data Buffer Operation Registers
	3.7.1 Data Buffer Control System Registers

	Section 4 EXCEPTIONS AND INTERRUPTS
	4.1 Outline of Exceptions
	4.1.1 Exception Cause List
	4.1.2 Overview of Exception Causes
	4.1.3 Types of Exceptions
	4.1.4 Exception Acknowledgment Conditions and Priority Order
	4.1.5 Interrupt Exception Priority and Priority Masking
	4.1.6 Return and Restoration
	4.1.7 Context Saving

	4.2 Operation When Acknowledging an Exception
	4.2.1 Special Operations

	4.3 Return from Exception Handling
	4.4 Exception Handler Address
	4.4.1 Resets, Exceptions, and Interrupts
	4.4.2 System Calls
	4.4.3 Models for Application

	Section 5 MEMORY MANAGEMENT
	5.1 Memory Protection Unit (MPU)
	5.1.1 Features
	5.1.2 Protection Area Settings
	5.1.3 Caution Points for Protection Area Setup
	5.1.4 Access Control
	5.1.5 Violations and Exceptions
	5.1.6 Memory Protection Setting Check Function

	5.2 Cache
	5.2.1 Cache Operation Registers
	5.2.2 Change Cache Use Mode
	5.2.3 Cache Operations using CACHE Instruction
	5.2.4 Cache Operation when the PREF Instruction is Executed
	5.2.5 Cache Index Specification Method
	5.2.6 Execution Privilege of the CACHE/PREF Instruction
	5.2.7 Memory Protection for CACHE and PREF Instructions

	5.3 Mutual Exclusion
	5.3.1 Shared Data that does not Require Mutual Exclusion Processing
	5.3.2 Performing Mutual Exclusion by Using the LDL.W and STC.W Instructions
	5.3.3 Performing Mutual Exclusion by Using the SET1 Instruction
	5.3.4 Performing Mutual Exclusion by Using the CAXI Instruction

	Section 6 COPROCESSOR
	6.1 Floating-Point Operation
	6.1.1 Configuration of Floating-Point Operation Function
	6.1.2 Data Types
	6.1.3 Register Set
	6.1.4 Floating-Point Instructions
	6.1.5 Floating-Point Operation Exceptions
	6.1.6 Exception Details
	6.1.7 Saving and Returning Status
	6.1.8 Flushing Subnormal Numbers
	6.1.9 Flush to Nearest

	Section 7 INSTRUCTION
	7.1 Opcodes and Instruction Formats
	7.1.1 CPU Instructions
	7.1.2 Coprocessor Instructions
	7.1.3 Reserved Instructions

	7.2 Basic Instructions
	7.2.1 Overview of Basic Instructions
	7.2.2 Basic Instruction Set

	7.3 Cache Instructions
	7.3.1 Overview of Cache Instructions
	7.3.2 Cache Instruction Set

	7.4 Floating-Point Instructions
	7.4.1 Instruction formats
	7.4.2 Overview of Floating-Point Instructions
	7.4.3 Conditions for Comparison Instructions
	7.4.4 Floating-Point Instruction Set

	Section 8 RESET
	8.1 Status of Registers After Reset

	APPENDIX A HAZARD RESOLUTION PROCEDURE FOR SYSTEM REGISTERS
	APPENDIX B NUMBER OF INSTRUCTION EXECTUION CLOCKS
	B.1 Numbers of Clock Cycles for Execution
	B.2 Number of G3MH Instruction Execution Clocks

	APPENDIX C REGISTER INDEX
	APPENDIX D INSTRUCTION INDEX
	REVISION HISTORY
	Colophon
	Address List
	Back Cover

