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Abstract

We address a fundamental problem in reverse engineering
of object-oriented code: the reconstruction of a program’s
class hierarchy from its stripped binary. Existing approaches
rely heavily on structural information that is not always
available, e.g., calls to parent constructors. As a result, these
approaches often leave gaps in the hierarchies they con-
struct, or fail to construct them altogether. Our main insight
is that behavioral information can be used to infer subclass/-
superclass relations, supplementing any missing structural
information. Thus, we propose the first statistical approach
for static reconstruction of class hierarchies based on behav-
ioral similarity. We capture the behavior of each type using
a statistical language model (SLM), define a metric for pair-
wise similarity between types based on the Kullback-Leibler
divergence between their SLMs, and lift it to determine the
most likely class hierarchy.

We implemented our approach in a tool called Rock and
used it to automatically reconstruct the class hierarchies of
several real-world stripped C++ binaries. Our results demon-
strate that Rock obtained significantly more accurate class
hierarchies than those obtained using structural analysis
alone.
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1 Introduction

A fundamental challenge in reverse engineering of object-
oriented code is reconstructing the class hierarchy of the
original program. Obtaining the class hierarchy is a critical
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step in understanding the flow of control in a program, and a
stepping stone for understanding the overall program archi-
tecture [40]. Additionally, knowing the class hierarchy helps
to improve software security as it makes it possible to harden
existing applications without breaking programs [30].

Interest in the analysis of executables has increased in
recent years [3, 4, 13, 19, 21, 35-38, 44]. Most techniques have
focused on the recovery of debug symbols and control-flow.
There has been relatively little work on the reconstruction
of class hierarchies, despite the importance of this problem
to reverse engineering of modern software (as highlighted
nicely in [30]). Furthermore, existing techniques, e.g., [17,
30, 40], rely heavily on the existence of debug information or
optional structural cues, e.g., calls to parent constructors or
runtime type information (RTTI) records. This is unfortunate,
as in many real-world binaries this information is removed,
either during stripping or as an optimization (e.g., inlining
calls to parent constructors).

The goal of this paper is to develop a technique for recon-
structing the class hierarchy of an unknown object-oriented
program from its stripped binary, i.e., from an executable
code with no debug information. This task is challenging as
it requires identifying types and their relationships based
solely on assembly code with no explicit names. In particular,
we have to determine the parent of each class and construct
a consistent inheritance tree.!

The Problem Given a stripped binary bin(P) produced by
a known compiler CC from an unknown object-oriented
source program, src(P)

1. Identify the binary types in bin(P), where binary types
are represented as virtual function tables.

2. Construct a hierarchy over the binary types of bin(P),
such that binary type vt, is an ancestor of type vt,
if the source class compiled into the binary type vt,,
denoted by vtToSrc(vt.), is a subclass derived from
vtToSrc(vty).

Class Hierarchies vs. Type Grouping Existing techniques
[17, 30, 40] do not reconstruct an actual class hierarchy but
compute a set of possible parents for each type, effectively
creating groups of related types. In contrast, we take an addi-
tional step by lifting the local may-be-parent information to
accurately reconstruct an actual, global, class hierarchy. For

1To simplify presentation, we assume each class has at most one superclass.
Our approach, however, does handle multiple inheritance (see Section 5.3).
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std::string readInternal (DataSource ds) {
ds.connect () ;
std::string data = ds.read();
return data;

}

int readExternal (DataSource ds) {
ds.connect () ;
ds.verifiyCredentials();
std::string data = ds.read();
data = filterAndEscape (data);
return data;
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Figure 1. Methods used to read data from data sources.
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Figure 2. Class hierarchy of data sources.

many applications, the precision of the extracted hierarchy
is crucial. For example, when the reconstructed hierarchy
is used to harden binaries by applying control-flow integrity
(CFI) [1], as done in [30], imprecision in the hierarchy leads
to false positives, detrimental to security.

For a simple example of a scenario in which type group-
ing does not suffice, consider the C++ program shown in
Fig. 1. The program uses data from internal and external
sources, each containing several types of data (see Fig. 2 for
a graphical depiction of the program’s class hierarchy). Inter-
nal sources are trusted and secure, requiring no validation,
while external sources are not. Therefore, any data provided
by an external source should be checked and validated before
it can be used. Clearly, an external data source should not
be passed as a parameter to readInternal ().

Note that in this program, all the data sources reside in
the same hierarchy. Therefore, existing techniques would
put them all in the same type group. Applying CFI based
on this result would not guarantee program security it as it
would allow reading unvalidated data from external sources.
Indeed, an actual hierarchy of the types is required to deter-
mine that external data sources cannot be a subtype of an
internal data source. As our results in Section 6 demonstrate,
our technique generates a more precise hierarchy than any
existing technique.

Main Insight Given a non-optimized binary, determin-
ing the exact class hierarchy is fairly simple. In the case of
stripped binaries, however, this problem becomes extremely

challenging due to the lack of debug symbols or the struc-
tural information utilized by most existing techniques. Thus,
we suggest using behavioral information to infer subclass/su-
perclass relations. The main idea is to capture the behaviors
of each type using a statistical language model (SLM) [39] and
define pairwise similarity based on the Kullback-Leibler diver-
gence (DKL) [23]. Since derived types inherit the behaviors
of the parent type, the parent’s set of legitimate behaviors
is contained in the set of each of its derived types. SLMs
trained on similar languages are fairly similar; we therefore
hypothesized and then experimentally validated that SLMs
of related types are similar as well. This pairwise similarity
is then lifted to infer the most likely class hierarchy.

The use of SLMs to capture pairwise similarity makes
it possible to measure behavioral similarity between types.
Behavioral similarity can be used to augment the structural
similarity used in previous work.

Our Approach We present the first statistical approach
for static reconstruction of the class hierarchy based on be-
havioral similarity between types. Our technique combines
statistical modeling of the behaviors in each type with a
preceding structural analysis, used to filter out cases where
types cannot be in the same hierarchy, as described below.

e Structural Analysis: We partition the types in the pro-
gram into different type families. Types in the same
family might be related by inheritance. More impor-
tantly, types in different families are determined not
to be related. The analysis in this stage is based on the
structure of vtables (addresses of virtual functions) and
observed instances of each type. We then eliminate
infeasible class hierarchies within each family based
on structural code features that can be extracted from
the binary. Our structural analysis is similar to those
utilized in previous work, e.g., [30].

Behavioral Analysis: A static analysis that extracts se-
quences of operations performed on objects of each
type. These sequences are used to train a statistical
language model that captures the behaviors of each
type. Once a model has been trained for each type,
we use a distance metric based on DKL to define the
likelihood of two types being related by inheritance.
We use an arborescence algorithm to infer the most
likely class hierarchy that can be constructed using
the pairwise distance.

Main Contributions The contributions of this paper are:

e A novel framework for statistical static reconstruc-
tion of a class hierarchy from stripped binaries. Our
approach augments the technique of [21], which cap-
tures a behavioral model of each binary type using
a statistical language model, with a notion of pair-
wise asymmetric distance between types based on the
Kullback-Leibler divergence.



1 class Stream{ // socket interface

2 virtual void send (int n);

3 1

4 class ConfirmableStream : public Stream{
5

6 virtual void confirm();

7 )i

8 class FlushableStream : public Stream{
9

10 virtual void flush();

11 virtual void close();

12 };

13

14 int useStream(Stream* stream) {

15 stream->send (0) ;

16 stream->send (1) ;

17 stream->send (2) ;

18}

19 int useConfirmableStream(ConfirmableStream* stream) {
20 stream—->send (0) ;

21 stream->confirm();

22 stream->send (1) ;

23 stream->confirm();

24 stream->send (2) ;

25 stream->confirm();

26}

27 int useFlushableStream(FlushableStreamx stream) {
28 stream->send (0) ;

29 stream->send (1) ;

30 stream->send (2) ;

31 stream—->flush () ;

32 stream->close () ;

33}

Figure 3. Class definitions and example code.

o A formalization of the problem of lifting the pairwise
distances into the most likely class hierarchy as a natu-
ral problem in graph theory, finding a minimum-weight
maximal forest in a directed weighted graph.

e An implementation of our approach in a tool named
Rock, which we use to automatically reconstruct the
class hierarchies of several real-world C++ binaries.
We measure the quality of our algorithm using an
applicative distance between the constructed hierarchy
and a known ground truth computed from source code.
We usually manage to reconstruct the original class
hierarchy with much higher accuracy than is possible
using traditional non-statistical techniques.

2 Overview

In this section, we provide an informal overview of our ap-
proach using a simple illustrative example. We provide a
formal model and experimental results over realistic exam-
ples in later sections.

Motivating Example The code fragment shown in Fig. 3
defines the class hierarchy depicted in Fig. 4: (i) Stream, a
base class containing a single method used to send values,
(ii) ConfirmableStream, an extension of Stream that re-
quires confirmation of each send, and (iii) FlushableSt ream,

Stream

(ConﬁrmableStream) (FlushableStream)

Figure 4. Class hierarchy as seen in source code.

1 class Classl{

2 virtual void fO0 (int n);
34

4 class Class2{

5 virtual void fO0 (int n);
6 virtual void f1l();

7 )i

8 class Class3{

9 virtual void fO0 (int n);
10 virtual void f1();

11 virtual void f2();

12 };

13

14 int useClassl (Classl+* s){
15 s=>£0(0);

16 s=>£0(1);

17 s=>f0(2);

18}

19 int useClass2(Class2x s){
20 s=>£0(0);

21 s—>f1();

22 s=>f0(1);

23 s=>fl1();

24 s—>£0(2);

25 s=>f1();

26}

27 int useClass3(Class3* s){
28 s=>£0(0);

29 s=>f0(1);

30 s—=>£0(2);

31 s=>f1();

32 s—=>f2();

33}

Figure 5. Class definitions as observed in a stripped binary.

another extension of Stream that requires explicit flushing
and closing of the stream. The useX methods demonstrate
the proper way to use class X.

Compiling and stripping our motivating example produces
a binary that does not contain any meaningful names and
is missing the inheritance relations between the different
classes. Fig. 5 depicts, in code, the generated stripped binary.
Here, Class1, Class2,and Class3 correspond to Stream,
ConfirmableStream,and FlushableStream, respectively.
Note that the function names in Fig. 5 are generalized stripped
names derived solely from the order of the functions in the
code (such that £0 is the 1st function of a class, £1 is the
2nd, etc.). There is no guarantee that £1 of classes Class2
and Class3 will point to the same implementation despite
sharing the same name.

Our goal is to reconstruct the class hierarchy of the origi-
nal source code (see Fig. 4), using only information from the
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Figure 6. Possible class hierarchy structures.

stripped binary. We achieve our goal using a combination of
structural analysis and behavioral analysis.

2.1 Step I: Structural Analysis

Structural analysis uses the content of virtual function tables
and the relationships between tables to infer constraints on
the class hierarchy. For example:

e ConfirmableStreamandFlushableStreamdo not
override St ream’s implementation of send (). Hence,
in the stripped binary, all three classes use the same
implementation for £0 () . This information is encoded
in the binary by having the entries corresponding to
£0 in all 3 virtual function tables (one for each class)
point to the same implementation. The fact that entries
of different virtual tables point to the same implemen-
tation is a structural hint that these classes are part of
the same hierarchy.

e Classl contains a single virtual function, Class2
contains two virtual functions, and Class3 contains
three virtual functions. In C++, a derived class cannot
have fewer virtual functions than its parent class. As
aresult, Class1 cannot be a derived class. Similarly,
the only possible parent of Class2 is Classl. On
the other hand, both Class1 and Class2 may be the
parent of Class3.

In our motivating example, the use of structural informa-
tion was sufficient to determine part of the hierarchy, but we
are still left with the task of determining the correct parent
of Class3.If we had any debug symbols containing the orig-
inal function names, we could determine that £1 of Class?2
and f1 of Class3 are unrelated (based on the functions’
names), making Class1 the only possible parent of Class3.
However, that information is not available, and therefore
both classl and Class2 are possible parents of Class3,
and both of the hierarchies demonstrated in Fig. 6 are viable
options.

Our structural analysis, described in Section 5, uses multi-
ple structural hints in addition to the ones described above,
e.g., calls to constructors or the destructor of the parent. We
note that the first step of our approach can be thought of as
the inter-procedural equivalent of the technique used in [30].

Classl:

Figure 7. Usage sequences for instances of the different
classes (extracted from the stripped binary).

Figure 8. Trained statistical language model of Class3.

2.2 Step II: Behavioral Analysis

We reconstruct the class hierarchy accurately by static ex-
traction of behavioral information that captures the way
instances (i.e., objects) of classes are used: for each class, we
capture behavioral information in the form of a statistical
language model that assigns a probability to sequences of op-
erations applied to instances of the class. We gather training
data for the statistical language models using a static anal-
ysis that extracts object tracelets—an approximation of the
sequences of operations applied to instances of each class.?

For example, recall that the useX methods shown in Fig. 5
demonstrate the proper way to use each class X. Fig. 7 de-
picts the usage sequences extracted from the code of these
methods.

A trained SLM (of depth 2) for C1ass3 is depicted in Fig. 8.
The values along the edges show the probability assigned by
the model to each of the possible outcomes of each state®. By
multiplying the probabilities along a path, we can compute
the probability of the sequence correlating to that path. As
can be seen from the figure, given a prefix of £0; £1, the
most likely suffix is an invocation of £2.

From Fig. 7, we can observe that the tracelet matching
Class3 seems more similar to the tracelet matching an in-
stance of Class1 than to that of C1ass2. This is because the
tracelet of Class1 is contained in the tracelet of Class3.To
formalize this intuition and lift it from individual sequences
to sets of behaviors, we measure a distance between the
statistical language models trained for the different classes.

We measure the distance between statistical language
models using the Kullback-Leibler divergence (DKL) [23].

20Object tracelets are formally defined in Section 3.2.
3The escape outcome is used as a backoff mechanism. See Section 3.1.



DKL measures the similarity between two probability dis-
tributions and can be applied to measure distances between
statistical language models. DKL, and other metrics based
on it, have been successfully used to measure similarity of
music [41], evolution of languages [16], similarity of pro-
tein sequences [10], DNA sequences [48], and more. To the
best of our knowledge, we are the first to use it to deter-
mine behavioral similarity in the context of programming
languages.

DKL is computed by combining the measured probabilities
for each of the sequences (see Section 4.2.1). For example,
computing the DKL distance between different pairs of mod-
els of the classes in our motivating example, we get that
the distance between Class3 and Classl is 0.07, while
the distance between Class3 and Class2 is 0.21, making
Classl the more likely parent. Therefore, we can determine
that Fig. 6a, which corresponds to the original hierarchy tree
in Fig. 4, is indeed the most likely class hierarchy structure.

3 Background

In this section, we provide necessary background on statisti-
cal language models and how they can be used to represent
potential runtime behaviors. Parts of this section summarize
concepts presented by Katz et al. [21].

3.1 Statistical Language Models (SLM)

Given a finite alphabet X, a probabilistic model Pr trained
on some training sequence qf] = q192°-"qN, such that g; € 3,
can be used to assign a probability to any single symbol
o € X given a past s € X*. This probability is denoted
as Pr(ols). Given a sequence x! = x;---xr, the probabil-
ity of the sequence can be computed using Pr as Pr(x]) =
T, Pr(oc; ey--xi-1).

Given M different training sequences assumed to have
emerged from M different sources, we can build M separate
models, one for each source, and use them for classification
and ranking of new test sequences.

Variable-order Markov Models In this work we use variable-
order Markov models (VMMs). In a fixed-order Markov model
of order-k, the conditional probability Pr(c|s) is assumed to
equal Pr(cls’), where s is a suffix of s of length k. VMM al-
gorithms can adaptively determine the effective model order
based on the data itself, and therefore the set of fixed-order
sub-models required to represent the data.

In this paper we rely on n-gram models with smoothing
and backoff mechanisms, referred to as variable-order n-
gram models. We base these models on the prediction by
partial matching (PPM) technique [12]. We use the variant
PPM-C [29]; however, other methods, such as the well known
Katz backoff model [11, 22], could also be applied.

Assuming a known upper bound D on the order of the
model, a typical variable-order n-gram model is composed of
several sub-models of orders 0 < k < D. The model can revert

to a lower-order model when the current model does not
hold enough information. For each sequence s, to allow for
symbols that did not appear after s in the training sequence
to appear after s in test sequences, the model reserves a small
probability mass known as backoff. Given a test sequence,
its probability is computed using the following recursive
relation:

Pri(ols), if so appeared
in the training
Pri(ols = xF) = sequences;
/3, ifs|]=0
Pry(backoff|s) - Pri_1(c]xX), otherwise.

Finally, we define Pr(ols) = Prp(ols).

Training SLMs Given a set of sequences, training an SLM
on these sequences consists of learning the probability of a
symbol appearing in some context. The model learns this by
reading all sequences and updating internal counters based
on the currently read symbol and previous symbols (which
determine the context). For example, given the sequences
aa and ab, we can say that a is 100% likely to appear first
in the sequence. We can also say that a is only 50% likely to
appear after a previous a, meaning in the context set by a.

During training, the model essentially constructs a tree
such that each level consists of all possible symbols and their
associated probabilities. A context, or the sequence of pre-
vious symbols, is determined by the path in the tree used
to reach the relevant node. Querying an SLM for the proba-
bility of a sequence becomes a traversal of the constructed
tree. The model starts with an empty sequence, the root of
the tree, and traverses the tree one symbol at a time, saving
the relevant probability at each step. The probability of the
sequence is the product of these probabilities.

3.2 Generating Type Usage Models

In this section, we briefly discuss the notion of object tracelets.
Our discussion assumes that the technical aspects of ana-
lyzing a binary, locating objects and types, and determining
events are known [21]. We only discuss the notion of object
tracelets as used in our technique.

Tracelets and Events We represent the sequences of events
applied to an object using object tracelets [21, 34], which
capture the high-level usages of objects. Given a binary, we
analyze its functions and maintain a set of explicit object
tracelets for each (abstract) object. The events tracked are
described in Table 1. Each object tracelet is a sequence of
these events, which are used as our alphabet >.

Extracting Tracelets In the context of this work we are
only interested in objects we can predetermine to belong
to some type. We use the set of virtual tables (vtables) to
represent the explicit types in the program, denoted as VT.



Event Description

C(i) Call to a virtual function at offset i in the object’s virtual table

R(i) Read from a field at offset i in the object

W (i) | Write to a field at offset i in the object

this Object passed as this pointer to a function.
Arg(i) | Object passed as i-th argument to a function
ret Object returned from called function
call(f) | A call to a concrete function f.

Table 1. Descriptions of the events tracked by our analysis

We use a static intra-procedural analysis to identify these ob-
jects. Our analysis relies on assignments of vtable addresses,
as seen in object initialization/destruction, and on virtual
functions, from which it can determine the object pointed to
by the this pointer.

For each predetermined object o we create a symbolic
value 6. An intra-procedural symbolic execution executes
each function, tracking usages, accesses and actions applied
to the symbolic values. The output for each symbolic value
0 is a set of sequences of events, each induced by a differ-
ent symbolic execution path. These sequences, which were
tracked on 0, are split into subsequences of limited length
(up to length 7 in our experiments), which we refer to as the
object tracelets of the object o, denoted as OT (o).

We denote the set of tracelets for some type t as TT(t)
and define it as TT(t) = Usype(o)=t OT (0).

Since our analysis and symbolic execution are entirely
intra-procedural — we handle each procedure separately —
they are inherently scalable. The number of procedures in a
binary and the complexity of the call graph between proce-
dures have no effect on our analysis.

The analysis time of our reported benchmarks (Section 6)
was at most 2 hours per benchmark. Note that we can further
scale our approach by parallelization, and, if necessary, trade
off accuracy for scalability by extracting fewer and/or shorter
traclets from each procedure.

Defining and building the SLMs. We define the SLMs’ al-
phabet symbols as the set of all unique actions we find in
our tracelets. Each action corresponds to a different symbol.
Thus the tracelets are sequences of letters that the SLM can
parse and analyze. For each type t, we train an SLM instance
using the tracelets from TT(t). Training is conducted by
inputting the tracelets to the model’s learning algorithm one
at a time, which generates a probabilistic model for this type,
as explained in Section 3.1. The result is a trained SLM in-
stance for each type that captures the behavior of objects of
type t. We denote the SLM computed for binary type vt by
SLM(vt).

4 Behavioral Hierarchy Reconstruction

In this section, we formalize the problem of reconstructing
class hierarchies from stripped binary code and present an
approach to solve it using a static probabilistic technique.

4.1 Problem Definition

Let src(P) be the source code of a program P, assumed to be
written in some object-oriented programming language, such
as C++. The programming language is expected to include an
inheritance mechanism for defining classes, allowing every
class to inherit code and fields from other classes.

Class Hierarchy as a Labeled Forest A class A can be
defined either as the root of a class hierarchy or as a subclass
of an already defined class. We refer to a class B derived
from class A as a child of A, and refer to A as the super-class
or parent of B. The child relation between classes in src(P)
creates a node-labeled directed forest (NLD-forest), labeled
using the names of the classes, which we refer to as the
source class hierarchy of P.

During compilation, the compiler translates source classes
to binary types, each represented by its virtual functions
table. The compilation output is the binary code bin(P). We
assume that every binary type vt has a source class coun-
terpart, denoted by viToSrc(vt). In practice, this assumption
does not directly hold, as the compiler may generate syn-
thetic classes that do not have a source class counterpart.
However, we identify and remove synthetic classes to enable
comparison of the hierarchies we compute with the source
class hierarchy.

We refer to the hierarchy resulting from the compilation
process as the induced binary type hierarchy, and denote it
by Hp. We say that a binary type vt is derived from a binary
type vt, if vtToSrc(vt,) is an ancestor of vtToSrc(vt.) in the
source class hierarchy.

Given a binary code bin(P), the goal of this work is to
find the binary type hierarchy of P over the binary types in
bin(P).

Optimized Class Hierarchies We assume the compiler
optimizes and strips the program, such that bin(P) does not
contain any source information or debug symbols.

One optimization applied by the compiler is inlining. Vir-
tual classes, which cannot be instantiated, might be com-
pletely inlined in their child classes. Inlining might result
in entire classes being absent from the binary. Furthermore,
source inheritance trees might split into several binary in-
heritance trees if the root of the tree was inlined.

Interestingly, while we did not originally expect to over-
come the latter challenge, our algorithm sometimes splices
together such binary inheritance trees, based on their be-
havioral and structural similarities. This allows us to infer
relations between classes split into different hierarchies by
the compiler.

We amend the parent-child relation such that vt is a child
of vt, if it is an immediate descendant of vt, in the post-
optimization induced binary type hierarchy, and we refer to
Vvtp as vt.'s parent.



4.2 Finding the Most Likely Class Hierarchy

Without knowing the source class hierarchy of src(P), we
can rarely find enough evidence in bin(P) to determine the
true induced binary type hierarchy Hp of bin(P). Thus, a
more reasonable approach is to treat the class hierarchy
reconstruction problem as an optimization problem. Given
some distance metric between NLD-forests forestDist(H;, Hz),
we say that a hierarchy H; is more precise than H, if, assum-
ing that we do have Hp, it turns out that forestDist(H;, Hp) <
forestDist(H,, Hp ). Obviously, we cannot look directly for a
hierarchy H that minimizes the distance forestDist(H, Hp),
as this would be Hp. Instead, we rely on a measure w(-) on
NLD-forests, and we treat the NLD-forest that minimizes it
as the most likely binary type hierarchy.

In this paper, we suggest using the distance between be-
haviors of types as the basis for a measure over NLD-forests.
Because inheritance in object-oriented programs serves as a
mechanism to implement subtyping, we expect that derived
types will behave similarly to their parents.

Hypothesis 4.1. A NLD-forest that minimizes the distance
between behaviors of a parent type and a child type is more
likely than a NLD-forest with greater distances.

Expanding on the behavioral modeling described in Sec-
tion 3.2, we now need a metric behaviorDist(vty, vtz ), which
measures the distance between these behaviors, and a means
of lifting this metric to the construction of a binary type
hierarchy. We address these challenges next.

4.2.1 Measuring Distance Between Types using
Kullback-Leibler Divergence

Following [21], we model the behavior of binary types using
statistical language models (See Section 3.2). A novel aspect
of our work is that we lift the computed SLMs to distances
between types. Specifically, we define behaviorDist(vty, vtz)
as the Kullback-Leibler divergence (Dk 1) between the SLMs
of vt; and vi,.

The Dk between two distributions A and B, represented
by SLMs defined over the same alphabet ¥, denoted by
DL (A || B), is the relative entropy between the distribu-
tions. Dk (A || B) is measured over a set of words, W, as:

Pr(A.)
Dkr(A | B) W;W (Pr(AW) 1n(Pr(BW) )) :

Dk is a standard measure used to evaluate model similarity.
One can think of Dk as the cost of encoding messages
using an optimal code for a probability distribution P(B,,)
of messages w € W, but the messages actually arrive with
probabilities P(A,,). In this case, encoding each message
requires, on average, an additional Dk (A || B) nats (where
1 nat, the natural measure for entropy, correlates to 1 bit)
compared to the optimal encoding.

In our setting, the distance between behaviors of types
is measured as a weighted sum of the differences between

probabilities assigned to each behavior by the SLMs, such
that popular behaviors weigh more than rare ones.

Due to the the nature of type inheritance, the set of tracelets
for a parent type is usually contained in the set of a child
type, resulting in high overlap. SLMs trained on similar sets
of tracelets will output similar probabilities. Therefore, we
expect the distance between related types to be smaller than
between unrelated types.

Remark 4.1. Our approach is parametric in the criterion
used to measure distances between the behaviors of types.
Our algorithm only requires a ranking over the most prob-
able child-parent relations. It is not even required that the
criterion be a mathematical metric: the distances between
types need not satisfy the triangle inequality, for example.
Furthermore, given that criterion is used only as a relative
metric for ranking parents, we also do not require a pre-set
threshold to determine child-parent relations.

4.2.2 From Pairwise Similarity to the Most Likely
Hierarchy

We translate our problem of finding the most likely hierar-
chy to the problem of finding a minimum-weight spanning
arborescence in a directed graph.

The Minimum-Weight Spanning Arborescence Problem

Given a directed graph G, the spanning arborescence prob-
lem is the directed equivalent of the better-known spanning
tree problem. A solution to the spanning arborescence prob-
lem is E’, a subset of the edges set E of G, such that:

1. the edges in E’ form a tree;

2. there exists a root node r such that no edges in E’ are
directed towards it; and

3. all nodes in the graph are reachable from r via a di-
rected path consisting only of edges in E’.

Given a weight function w that assigns non-negative weights
to edges in the graph, the minimum-weight spanning ar-
borescence problem finds a spanning arborescence such that
w(E") =3 cpr w(e) is minimal.

We note that the problem of finding a subset of edges with
minimum weight can be trivially solved by returning the
empty set. In our setting such a solution means that each
type is a root residing in a separate hierarchy with no other
parent or child types. This outcome is clearly undesired. This
problem led us to the following design decision:

Heuristic 4.1. It is more plausible for a binary type to be a
derived type than a root type.

Specifically, we require that any node for which there is a
possible parent have a parent. This requirement resonates
with the spanning arborescence problem, which requires
all nodes in the graph to be part of the same arborescence,
meaning that the arborescence should only have a single
root.



Defining the Graph We define a weighted directed graph
Gp = (V,E,w) as follows:

e The nodes of Gp are the binary types of bin(P):
V =VT(P).

e An edge in the graph between vt; and vt; means that
vt, is a possible parent of vt;. We initialize the graph
to contain an edge between all pairs of distinct types:

E = {vt; > vty | vt;, vty € VT(P) A vty # Vi }.

e The weight of an edge (vt; > vt3) € E is defined as
the distance between the behavioral models of vt; and
Vig:

w(vt; = vty) = Dxp (SLM(vt1) || SLM(vtp)).

A minimum-weight spanning arborescence for Gp consti-
tutes a hierarchy tree that, according to Hypothesis 4.1, is
the most likely binary type hierarchy.

Simplifying the Graph For many type pairs we can de-
termine a priori that a parent-child relation cannot exist. In
this step we simplify the graph by eliminating impossible
pairs, and therefore impossible edges.

We use a structural analysis to partition the types in the
program into different type families. Types in the same family
might be related by inheritance. More importantly, types
in different families are determined to be not related. This
allows us to split the graph Gp into several sub-graphs, one
for each type family TF. We then find a minimum weighted
spanning arborescence for each sub-graph Grr separately.
The static analysis can also be used to eliminate specific
edges from the graph, thus eliminating infeasible hierarchies
from consideration. The specifics of this step are described
in Section 5.

Finding a Minimum-Weight Spanning Arborescence
To find a minimum-weight spanning arborescence we use
the well-known Edmonds algorithm [15].

Given a set of sub-graphs, one for each type family, we ap-
ply the algorithm to each Grp. The result is a set of minimum-
weight spanning arborescences, one for each type family,
which constitutes a NLD-Forest that is used as the most likely
binary type hierarchy.

Remark 4.2. The spanning arborescence algorithm may fail
to find a single arborescence. While in the general setting
this will be considered an error, we use this result as a hint
that a type family contains more than a single hierarchy
and needs to be further split to smaller families. We allow
the algorithm to finish its execution and regard any types
not part of the returned arborescence as part of a separate
hierarchy.

For each of our benchmarks, it takes only a few minutes
to construct the weighted graph and find an arborescence.

Handling Multiple Arborescences 1t is possible for the al-
gorithm to find several arborescences with the same minimal
weight. If that happens, we iteratively reduce the number of
arborescences using a majority-vote heuristic. Assume the
algorithm returns 3 arborescences such that 2 of them assign
type B to be the parent of type A and the third assigns C as the
parent of A. Using our heuristic, we will prefer hierarchies
in which A is a child of B. Thus, we will eliminate the third
arborescence. We note that the heuristic is not guaranteed
to leave only a single arborescence. In such cases, several
hierarchies will be returned to the user, and we will have
to choose between them. In our evaluation, whenever we
encountered this situation, we report the worst-case results:
those obtained by choosing the least precise hierarchy.

5 Pruning Infeasible Class Hierarchies via
Structural Analysis

In this section, we describe the preprocessing phase of our
analysis where we construct the possible parent relation,
possibleParent, ¢ VT(P) x VI(P), over the binary types
of bin(P). Recall that (vt;, vt;) ¢ possibleParent, indicates
that vt; is deemed not to be the parent of vt; in the type
hierarchy of bin(P). This information focuses the behav-
ioral analysis (see Section 4) towards computing the induced
binary type hierarchy of P by eliminating infeasible child-
parent relations, and thus infeasible hierarchies.

The elimination process is based on information gained
from a structural analysis of the binary code. As indicated by
its name, the structural analysis looks for structural artifacts
that come from the compilation process. These features are
mostly compiler independent. The structural analysis works
in two phases:

Phase I: Clustering of Types Families In this phase the
set of binary types VT (P) is partitioned into different
type families. Every family is composed of the types
coming from one or more binary inheritance trees.
Thus, they can be seen as a coarse clustering of related
types. This ensures that the behavioral analysis need
not consider child-parent relations between types from
different families.

Phase II: Elimination of Impossible Parents In this more
fine-grained phase, single child-parent relations are
deemed impossible, placing further restrictions on the
possible hierarchies that the behavioral analysis can
produce and directing it further towards the induced
type hierarchy.

Interestingly, in certain simple benchmarks, we found that
the structural analysis is precise enough to determine the
true parent of some derived classes, and sometimes was even
sufficient for reconstructing the true induced hierarchy.



5.1 Clustering Binary Types into Families

When a class A is derived from a superclass B, it inherits
the vtable of B in the following sense: unless A redefines a
function f of B, the binary type vt, will contain a pointer
to the same implementation of f in the same position in the
vtable as the binary type vt;. Thus, pointers to shared virtual
functions can be seen as a DNA fingerprint indicating that
two classes come from the same inheritance tree. Therefore,
we create an undirected graph GEN over VT(P) by placing
an (undirected) edge between vt; and vt; if the intersection
between their vtables is not empty.

We partition VT(P) into families of binary types, by plac-
ing two types in the same family if and only if they belong
to the same connected component in G54,

We note that when a subclass redefines all the functions
it inherits from its parent, the aforementioned heuristic will
split the nodes coming from one binary inheritance tree into
different families. However, in our benchmarks, originating
from real-world C++ programs, we found no case where
a child class redefined all functions inherited from a non-
virtual superclass (recall that a virtual source class would
not appear in VT(P) since it would not be instantiated as a
binary type). We believe that this is because inheritance from
a non-virtual superclass is often for the purpose of reusing
implementations it provided.

In some scenarios, compiler-generated functions and the
compiler optimization passes might result in a pointer to
the same function appearing in the vtables of two unrelated
types. This unexpected behavior is an example of a problem
faced by structural-only analysis, where noisy information
due to arbitrary artifacts generated by the compiler must be
dealt with. Our behavioral analysis partially overcomes this
problem.

We initialize the possibleParent, relation to hold all pairs
of types that belong to the same family.

5.2 Eliminating Impossible Parents

The second phase of the structural analysis performs a fine-
grained inspection of the code of every pair of binary types
vty, vty € VT(P) that belong to the same family F. Th goal is
to look for incriminating evidence that would allow us to re-
move (vt;, vtz) or (vty, vt;) or both from the possibleParent,

relation. We remove (vt;, vt;) from the relation possibleParent

if at least one of the following structural features is identified:

1. vt; contains more functions than vt,. In this case, vty
cannot be a child of v#; because a child class may only
add functions to the vtable of its parent or replace
existing ones.

2. vt; contains a pointer to a virtual function (which
does not have an implementation) at position i in its
vtable, but the function pointed to by position i of
vt,’s vtable is not virtual. In this case, vt; cannot be
a child of vt, because then it would have inherited

the implementation of the ith function from vt,, or
defined its own.

3. vt;’s constructor calls the constructor of some other
type vts. This indicates a call to a superclass construc-
tor and should be distinguished from an initialization
of an object member. In this case it is determined that
vi3 is the parent of vt;. If vt; and vt3 are not part of
the same type family, their respective families will be
joined. The same logic applies to destructors as well.

5.3 Handling Multiple Inheritance

Under most ABIs, multiple inheritance is easy to detect from
object layout. For example, in the MSVC [27] ABI, a type
that has multiple inheritance will be instantiated in memory
as a concatenation of objects matching each of its parents.
Therefore, if a type inherits from X different parents, we will
observe assignments of X different vtable pointers in the ini-
tialization of its instances. These observations determine the
number of parents a type should have. Given that we observe
X assignments, we will choose the X most likely parents
as the type’s parents. Similar approaches and other struc-
tural hints are also applicable to other ABIs we examined.
Therefore, in this context, handling multiple inheritance is
orthogonal to the more fundamental problem of ranking the
most likely parents, and we thus focus our evaluation on the
latter.

6 Evaluation

We implemented a prototype of our approach in a tool called
Rock. This section describes the evaluation of Rock on a
number of real-world stripped binaries.

6.1 Benchmarks

We evaluated Rock over 19 stripped binaries built from open-
source projects. We used 19 out of the 20 benchmarks previ-
ously used by Katz et al. [21]. The 20th benchmark contained
only type families consisting of a single type (which either
has no parent type or the parent type was optimized away);
thus, there is no hierarchy to reconstruct and evaluate. While
these benchmarks are relatively small, they allowed us to
manually verify their results. We also successfully analyzed
the binary of Skype [26] (of size 21.6 Mb), but we do not
report these results as we had no groundtruth to compare
against. Furthermore, using these benchmarks also allowed
us to reuse the framework and foundations already laid out
by [21].

All benchmarks were built from source code as 32-bit
binaries on a Windows machine using Microsoft’s Visual
Studio compiler [27], optimized and stripped, leaving no
debug symbols in the binary.



Unlike [21], we filtered out compiler generated classes and
hierarchies containing a single type. In these cases the hier-
archy can be trivially reconstructed. Including these cases
would only improve our results.

6.2 Ground Truth

To obtain a ground truth for comparison, we relied on the
source code, debug symbols and RTTI records generated dur-
ing compilation of the benchmarks. We used RTTI records
mainly to determine the sequence of ancestors for each type
(as it exists in the binary), and we constructed the hierar-
chy from that sequence. When necessary, we correlated the
binary and the source code using debug symbols to obtain
missing information and complete the hierarchy. Alterna-
tively, source types can replace RTTI records as the basis of
the ground truth; doing so would not affect the numerical
metrics reported in Section 6.4.

6.3 Application Distance

Consider the example from Section 1 and the application
presented in [21]: A reverse engineer trying to resolve the
control flow graph of a program encounters a virtual call
and needs to determine its possible targets. As the target
of a virtual call is determined by the runtime type of the
object used in the call, the reverse engineer can use the tool
from [21] to deduce the most likely type of that object and
infer from that the relevant target of the call. But this gives
the reverse engineer only a partial answer. Given that an
object o is an instance of type ¢, it can also be an instance of
any type t’ derived from t. Therefore, to identify all possible
targets, the reverse engineer also requires some knowledge
of the type hierarchy. In practice, the exact hierarchy is not
important but only the set of types derived from each type.

We define our application distance to address this sce-
nario so that it represents the usefulness of our technique
in a real world setting. For each type t we compute the
set of types derived from it according to the ground-truth,
denoted as successorsgT(t). This is the optimal answer we
could provide the reverse engineer given the question, Which
types are derived from t? We compute a similar set of de-
rived types using the type hierarchy h constructed by our
technique, successorsy(t). To evaluate the constructed hier-
archy, we measure for each type t how many types from
successorsgr(t) are missing from successorsy(t) and vice-
versa (denoted as added types). The measures of missing and
added types are essentially the precision and recall, respec-
tively, of our answer.

For every missing type, a possible target is “lost” to the
reverse engineer, and for every added type a redundant target
must be analyzed. Therefore, the missing types affect the
validity of the results while the added types affect the payload
(which is usually already very large).

Without SLMs With SLMs
Missing Added Missing Added

size num of
Benchmark (Kb)  types

AntispyComplete 247 3 0.0 0.33 0.0 0.33
bafprp 529 23 0.3 0.0 0.3 0.0
cppcheck 97 6 0.0 0.0 0.0 0.0
MidiLib 400 20 0.0 0.0 0.0 0.0

patl  36.5 4 0.0 0.0 0.0 0.0

pop3 24 2 0.0 0.0 0.0 0.0

smtp 26 2 0.0 0.0 0.0 0.0

tinyxml 60 9 0.89 0.0 0.89 0.0
tinyxmISTL 88 15 0.6 0.27 0.6 0.27
yafe 68 15 0.0 0.2 0.0 0.2

Analyzer 419 24 0.21 6.79 0.25 1.38
CGridListCtrlEx 151 28 0.0 0.46 0.07 0.07
echoparams 58 4 0.0 2.25 0.0 0.0
gperf 84 10 0.0 3.8 0.0 0.5
libctemplate 1233 36 0.25 0.33 0.25 0.11
ShowTraf 137 25 0.04 0.4 0.04 0.08
Smoothing 453 31 0.19 7.9 0.23 1.1
td_unittest 101 2 0.0 1.0 0.0 0.5
tinyserver 46 4 0.0 2.25 0.0 0.25

Table 2. Application Distance from Hp. Structurally resolv-
able benchmarks are above the line and below it are unre-
solvable benchmarks.

6.4 Experimental Results

We ran Rock on all 19 benchmarks.

We soon learned that our statistical approach is not al-
ways necessary. In some of our smaller benchmarks, with a
relatively small number of types, the structural analysis is
sufficient to eliminate all but 1 possible hierarchy. Note that
these benchmarks are not necessarily free from error orig-
inating from the partition to type families. However, since
our current implementation does not attempt to repartition
based on usage, our technique will not be beneficial in these
cases.

Out of our 19 benchmarks, we found only 9 for which
there was more than a single possible hierarchy after the
structural analysis. We believe that this number will increase
significantly as we scale up our technique to deal with in-
creasingly larger benchmarks. To give a complete picture,
the statistics of the 10 structurally solvable benchmarks are
also included in Table 2. For the remainder of this section we
will focus on the 9 benchmarks that were not structurally
resolved.

Table 2 presents the results of our evaluation using the
application distance from Section 6.3. We measure the ap-
plication distance in two settings: (i) relying solely on the
structural analysis, and (ii) using SLMs and DKL in addition
to the structural analysis. For the case without SLMs, since
we have no way to prioritize possible parents, we have to



consider a type as a successor of each of its possible parents.
A type might thus be counted as a derived type of several
parent types.

For each benchmark we report (i) the number of types
in the benchmark, (ii) the average number of missing types
across all types, and (iii) the average number of added types
across all types (for both settings).

The results show that most types in each benchmark do
not suffer any missing or added types. Only a small number
of types in each benchmark actually had an error in their
results. This can be observed from the very small values for
the average amounts of missing/added types.

To better understand the meaning of these results, con-
sider the benchmark tinyxml, which had the highest aver-
age of missing types. This benchmark consists of 9 types. The
ground-truth hierarchy contained a single root, such that all
other 8 types are derived from it. The constructed hierarchy
obtained from our technique had a single error originating
from the structural analysis. The structural analysis found
no evidence that the root was related to any of the other
types and therefore placed it in a separate type family. As a
result, the root type “lost” all of its children, 8 in total, while
the other types had no missing types, resulting in an average
of 0.89. We note, for 8 out of 9 types in the benchmark, there
were no missing types, which we consider a good result in
practice.

Similarly, consider the benchmark Analyzer. The con-
structed hierarchy contained a few deviations from the ground-
truth, which manifested in a relatively high number of added
types. However, for 19 out of 24 types in the benchmark there
were no added types, and the additions occurred for only 5
types.

Additionally, a comparison of the results with and without
using our technique shows a drastic decrease in the number
of added types when using our model to build the most
likely hierarchy. (This decrease comes at the cost of a slight
increase in the number of missing types.) This means that a
reverse engineer using our approach would have far fewer
types to consider, thus drastically reducing time and cost.

We now examine some of the more interesting hierarchies
in depth.

Consider the benchmarks CGridListCtr1Ex and Show-
Traf. In both benchmarks the structural analysis was suf-
ficient to determine a parent for most types, leaving only
3 types with more than one possible parent. Additionally,
in both benchmarks, our technique successfully ranked the
correct parent, if one exists, as the most likely. However, our
structural heuristics still resulted in some errors.

Fig. 9 shows partial type hierarchies, ground-truth and
outputted by our technique, for CGridListCtr1Ex. The
errors were due to CAboutD1g and CGridListCtrlExDlg
being incorrectly placed in the same type family, as were
CGridEditorComboBoxEdit and CGridEditorText.The

CAboutDlg CGridListCtrlExDlg

(CGridEditorComboBoxEdit)
(2)

CGridEditorText

CAboutDlg

(CGridEditorComboBoxEdit]

CGridListCtrlExDlg CGridEditorText

(b)

Figure 9. Class hierarchies for CGridListCtrlEx.exe: (a)
ground truth, and (b) reconstructed hierarchy.

ground-truth tells us that each of these types should re-
side in a separate family, and therefore in its own hier-
archy. From the source code we learn that these 2 pairs
of types indeed each share a common parent. The types
CGridEditorComboBoxEdit and CGridEditorText both
inherit from a type called CEdit, and CAboutDlgand CGri-
dListCtrlExDlg inherit from CDialog. Both these parent
types are virtual types which cannot be instantiated and are
therefore optimized out of the binary. As a result, they are not
part of the ground-truth hierarchy as it exists in the binary.
In essence, using our models and analysis, we have success-
fully deduced the relation between these pairs of types, even
though no information about these relations exists in the bi-
nary. This result demonstrates the strength of our technique:
the ability to learn relations between types even when those
relations were eliminated during compilation. Similar results
were obtained for ShowTraf.

The echoparams benchmark is another interesting case.
This relatively small benchmark contains only 4 types, all
part of the same type hierarchy. We expected this case to
be easily solved using structural tools alone. However, we
found that the structural analysis for this benchmark was
incapable of eliminating any possible parents for any of the
types since they are structurally equivalent. Thus, structural
analysis alone resulted in 3 possible parents for each type, re-
sulting in 64 equally likely possible hierarchies, whereas our
technique correctly identified the parents, thus accurately re-
constructing the correct type hierarchy. These results show
that, in our context, benchmark size is not a good indicator
of the ease or difficulty of constructing the correct hierar-
chy. Relatively small benchmarks can still pose a significant
challenge to purely structural techniques.

Another interesting case is Smoothing, where applying
our technique resulted in a significant reduction in added
types, from an average of 7.9 to 1.1, at the cost of only 0.04



missing types. This increase translates to only 1 additional
missing type for only 1 of the 31 types in the benchmark.

Sources of Errors Our manual examination of the results
identified 3 possible sources for the errors we encountered:

1. Due to optimizations, the compiler sometimes placed
pointers to the same virtual function implementation
in the virtual table of unrelated types, causing these
types to be placed in the same family.

2. As another optimization, the compiler might omit
entire classes and/or structural cues, causing related
types to appear unrelated, thus causing the false split-
ting of a type family to subfamilies.

3. Our algorithm might choose a wrong parent for a type.

Generally, error 1 would result in added types and errors 2
and 3 would result in missing types. Note that purely struc-
tural techniques are just as susceptible to errors 1 and 2.

Other Metrics We experimented with other metrics for
computing the pairwise similarity between types, such as JS-
divergence (a symmetric extension of DKL) and JS-distance
(a distance function based on JS-divergence). These other
metrics performed poorly compared to the DKL metric we
used. This is most likely because these are symmetric meth-
ods while our problem is inherently asymmetric.

Applying Control Flow Integrity Our results can be di-
rectly utilized for the strengthening of CFI policies by nar-
rowing the set of legal targets based on the constructed hier-
archy. We note that errors in the constructed hierarchy can
lead to false negatives. However, we can trade off false nega-
tives for false positives by assigning several parents to each
type. Our algorithm supports this at the cost of increased
computational complexity (while still polynomial).

7 Related Work

Much work has been devoted to reverse engineering and
binary analysis. In this section we briefly survey closely
related work.

Reconstructing Class Hierarchies. Srinivasan and Reps [44,
45] present a tool called Lego that uses dynamic analysis for
reconstructing the class hierarchy of a stripped binary. Lego
dynamically records execution traces, which it uses to iden-
tify classes and reconstruct the hierarchy. Lego relies heavily
on the existence of calls to methods of the parent-class, specif-
ically destructors (finalizers). As we explained, this kind of
information is not guaranteed to exist in the binary. Unlike
LEGO, Rocx is able to reconstruct a hierarchy even when
all destructors have been inlined. Like the authors of LEGO,
we acknowledge the importance of tracking object behav-
ior. However, our technique is purely static and does not
require running the program or dealing with challenges of
partial coverage typical in dynamic techniques. Furthermore,
interactive (GUI) applications (such as CGridListCtrlEx)

pose a significant challenge to dynamic approaches, as actual
user interactions are needed to drive the program. We were
unable to obtain an instance of Lego for comparative testing.

Fokin et al. [17] discuss existing non-statistical techniques
for obtaining the class hierarchy of a binary as part of their
work on decompilation. Like us, they concluded that existing
techniques, such as the use of Real Time Type Information
(RTTI) records and others, are unreliable and prone to errors.

Pawlowski et al. [30] presented Marx, a state of the art tool
for static hierarchy reconstruction. However, Marx arranges
related types into type families rather than build an actual
hierarchy. We go a (significant) step further by arranging
the types in each family to form an hierarchy.

Analysis of Executables. Reps et al. [37, 38] explored many
aspects of the analysis of stripped binaries, and obtained
impressive results during years of work on the problem.
Their analyses (e.g.,[3, 35, 36]) can recover a lot of informa-
tion from a stripped binary and statically verify challenging
safety properties. The tracelet extraction part of our work
relies on points-to and aliasing analyses, which have been
previously discussed and used on binaries and assembly code
in several works, such as [2, 5, 7, 14, 21, 37].

Balakrishnan et al. [4] and Reps et al. [36] presented tools
that assist reverse engineering; however, neither tackled the
problem of recovering C++ class hierarchies.

Brumley et al. [8] presented a flexible platform for the
static analysis of binaries and investigated a wide range
of interesting problems, including decompilation [43] and
identifying functions in binaries [6].

Bao et al. [6] use machine learning to identify function
boundaries. The authors recognize as we do that a statis-
tical approach is more useful and accurate than standard
approaches in certain settings.

Many past works have tackled the problem of type re-
construction (see [9] for a recent survey). This problem is
conceptually similar to our problem. However, we do not
try to recreate type structures. Instead our goal is to identify
type hierarchies without referring to the type structure.

Behavioral Patterns. Preda et al. [32], Warrender et al. [47]
and Mazeroff et al. [25] have all proposed using behavioral
signatures to detect malware. They based their approaches
on dynamically tracking events, mainly API and system calls.
They show that behavioral patterns can identify intent in
binaries. Fredrikson et al. [18] broaden this notion beyond
malware classification and discuss matching binaries with
behavior specifications. In our work, we use statistical lan-
guage models that capture type behaviors as a basis for type
similarity and class hierarchy reconstruction.

David et al. [13] use control tracelets to find similar code
fragments across stripped binaries. Their tracelets track in-
structions and are not suited to tracking the behavior of
types. Katz et al. [21] present the notion of object tracelets
that track method calls and field access events for objects



and types. We borrow their notion of object tracelets and the
representation of types using statistical language models.

Polino et al. [31] have recognized the importance of be-
havioral patterns for reverse engineering. Their dynamic
approach was aimed at providing the reverse engineer with
useful patterns. We extract similar behavioral patterns using
a static approach. Additionally, instead of providing them
to the reverse engineer as is, we elevate these patterns to
statistical models and use these models to match the patterns
to other sequences in the binary.

Mishne et al. [28] used static analysis to extract temporal
specifications from a large corpus of code snippets. Their ab-
stract histories are similar to our object tracelets. Raychev et
al. [34] construct a statistical language model for sequences
of API calls in Java. The language model is based on object
histories, similar to our object tracelets.

Structural Similarity. Several techniques have used struc-
tural similarity to estimate types. Madsen et al. [24] sug-
gested a technique based on “structural similarity” of types
and objects. Their technique relies on object structure and
the existence of names of fields and functions in the binary
to find a matching type. While Madsen et al. [24] dealt with
JavaScript programs, Tu [46] suggests a similar technique
for Python programs in a tool called Mino. Unfortunately,
in a stripped binaries setting, the binaries contain no names
that can be used as a basis for matching. Instead we use “be-
havioral similarity”, which takes into consideration how the
object is used rather than which fields and functions it has.
Without the explicit names utilized by tools like Mino, recon-
struction of a single type hierarchy is not reliable enough,
as we demonstrated.

Statistical Techniques. Jha et al. [20] use Markov models
for intrusion detection. They rely on identifying sequences
of actions that would be improbable in other settings. We
extend this notion and rely on differences between sequence
probabilities across contexts to employ Markov models for
class hierarchy reconstruction.

Raychev et al. [33] presented a statistical approach to
predicting program properties using CRFs. Their technique
leverages program structure to create dependencies and
constraints used for probabilistic reasoning. Unfortunately,
when dealing with stripped binaries, this approach is not ap-
plicable since there is much less program structure to work
with. Our approach works without the need to recover a lot
of structure.

Schiitze and Singer [42] used variable-order Markov Mod-
els to disambiguate words in a text depending on context.
Given a word with several possible meanings, the proposed
technique selects the correct one based on the surrounding
text. Their scenario shares some characteristics with ours,
potentially supporting the suitability of VMMs to our prob-
lems.

8 Conclusion

We address the problem of reconstructing type hierarchies of
stripped binaries, a fundamental problem of reverse engi-
neering. Given a standard stripped binary b, compiled from
object oriented code, we find the most likely type hierarchy
for b.

We present a technique that relies on behavioral similarity
to measure the likelihood that type t; is derived from type t,
and derive a type hierarchy based on that likelihood. We use
SLMs that summarize type usages and we use the Kullback-
Leibler divergence to measure distance between these SLMs.
We base our technique on the hypothesis that, since related
types are often used in similar ways, the distance between
SLMs of related types will be smaller than that of unrelated

types.
We show that our technique is capable of recreating the

likely type hierarchy of a real-world stripped binary even
when existing techniques cannot do so. We implemented our
approach in a tool called Rock. We show that the hierarchies
created by our tool can be used to provide practical, useful
answers to key questions of reverse engineers.
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