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Abstract—Recovering class inheritance from C++ binaries has
several security benefits including problems such as decompila-
tion and program hardening. Thanks to the optimization guide-
lines prescribed by the C++ standard, commercial C++ binaries
tend to be optimized. While state-of-the-art class inheritance
inference solutions are effective in dealing with unoptimized
code, their efficacy is impeded by optimization. Particularly,
constructor inlining–or worse exclusion– due to optimization
render class inheritance recovery challenging. Further, while
modern solutions such as MARX can successfully group classes
within an inheritance sub-tree, they fail to establish direc-
tionality of inheritance, which is crucial for security-related
applications (e.g. decompilation). We implemented a prototype
of DeClassifier using Binary Analysis Platform (BAP) and
evaluated DeClassifier against 16 binaries compiled using
gcc under multiple optimization settings. We show that (1)
DeClassifier can recover 94.5% and 71.4% true positive
directed edges in the class hierarchy tree under O0 and O2
optimizations respectively, (2) a combination of ctor+dtor analysis
provides much better inference than ctor only analysis.

Index Terms—Class hierarchy recovery, software reverse en-
gineering

I. INTRODUCTION

Recovery of class inheritance of a C++ program is useful in
many ways, and often necessary. While extracting class hierar-
chy from source code is straightforward (e.g., class-hierarchy
analysis [2], [10], [11], [14], [17], [25], [27]), recovering
class hierarchy from a binary is hard [21], [23], but useful.
For example, any attempt at C++ program decompilation must
infer at least a partial class hierarchy from a binary [7], [8].
Similarly, defenses that enforce strict control-flow integrity
(CFI) policies on C++ binaries rely on class hierarchy analysis
(e.g., Marx [18], VCI [6]).

Although RunTime Type Information (RTTI), a per-class
type-revealing data structure may be present in certain C++
programs, it is often absent in COTS binaries. On the one
hand, RTTI structure contains information about the parents
of a given polymorphic class, which can be used to reliably
reconstruct the class hierarchy of a program. But on the
other hand, use of RTTI is discouraged in commercial code
due to the high runtime overhead imposed by operators (i.e.,
dynamic_cast and typeinfo) that use RTTI. In fact,
most commercial-off-the-shelf (COTS) are closed source and
do not contain RTTI in the binary. Without RTTI, inferring
class hierarchy (inferring high level semantics in general)
from COTS C++ software poses multiple challenges. First,

most solutions (e.g., VCI [6], SmartDec [7], [8], HexRays
Decompiler [23]) heavily rely on constructor analysis due
to the well-defined inheritance-revealing control flow during
construction of a C++ object.

Optimization is common in C++ code, yet poses a serious im-
pediment to class inheritance inference. First, as a fundamental
problem, constructor analysis suffers from low precision and
is often insufficient. This is because COTS C++ binaries are
often optimized and tend to have many inlined functions
including inlined constructors. In fact, per ISO C++ 7.1.2/3—
“A function defined within a class definition is an inlined
function”. Second, aggressive compiler optimization often
results in exclusion of key functions (e.g., constructors) and/or
entire classes from the binary, which makes inference hard.
For example, when a most derived class is not instantiated,
the compiler may conveniently exclude such class definitions
from the binary. In fact, we consistently found a significant
reduction in the number of constructors in the binary with
higher levels of optimizations (see Table IX in Appendix C).
Finally, it is hard to discern inherited relationship (e.g., class
A inherits from class B) from composed relationship (e.g.,
class A contains an object of class B)–specially in the case of
optimized code.

These challenges are evidenced in most relevant recent
works VCI [6] and Marx [18]. These efforts employ class
hierarchy analysis on C++ binaries without relying on RTTI.
On the one hand, VCI’s precision and accuracy are largely de-
pendent on constructor identification, which in turn is heavily
impeded by inlined or missing constructors. On the other hand,
Marx acknowledges the difficulty imposed by optimization and
inlining, and limits its scope to identifying class membership
to inheritance trees without actually recovering a directed class
inheritance tree. As a fundamental problem, aggressive com-
piler optimizations are common in COTS binaries, and pose
complex challenges that state-of-the-art C++ binary analysis
solutions are unable to handle.

In this paper, we present DeClassifier, a robust class
hierarchy inference engine for C++ binaries. DeClassifier
employs static analysis and is built on top of BAP [3]. Unlike
prior efforts, we support optimized code, which is common
in COTS C++ programs. As a key distinction, our inference
engine is based on code features that can not be optimized
away (i.e., eliminated) during compile time. As such, these
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features form robust inference points. DeClassifier incor-
porates multiple novel analysis techniques in order to handle
optimized code including inlined and missing constructors.
This makes DeClassifier apt for COTS binaries. First,
we take advantage of the fact that destructors tend to be
virtual in COTS code as they help avoid memory leaks.
Because calls to virtual functions can not be statically resolved,
compilers can not inline virtual functions during compile time,
and retain them in the binary without inlining their code at
the callsites. Therefore, in comparison with constructors that
are non-virtual, destructors in a binary tend to be more in
number. DeClassifier employs a constructor-destructor
combination approach to achieve optimal recovery. Second,
because virtual functions must be retained in the binary,
we employ inter-procedural object-layout analysis on virtual
functions to construct an object model for each class and
use it to recover inheritance relationship from functions with
inlined constructors or inlined destructor, also eliminating false
positives in inheritance relationship. We are the first to do this.
Finally, we identify precise points of completion of object
construction in order to distinguish between composed and
inherited objects. To the best of our knowledge, this the first
effort to effectively handle optimized C++ binaries commonly
found in COTS software.

Full CHT recovery is hard: In general, recovering
C++ semantics from optimized binaries is hard. Although
DeClassifier employs multiple novel techniques to han-
dle optimized code, C++ compilers eliminate entire classes
from the binary—if the classes are deemed to be unnecessary
(e.g., through dead code elimination) during compilation. In
such cases, DeClassifier misses classes that have no
remnants in the binary. Even so, to the best of our knowl-
edge, DeClassifier is the only practical solution that can
effectively infer directed class inheritance tree from optimized
code.

Our contributions can be summarized as follows:

• We present DeClassifier, an inference engine for
recovering class hierarchy information from optimized
C++ code.

• We employ multiple novel analysis techniques includ-
ing constructor-destructor analysis, inter-procedural ob-
ject layout analysis, and precise identification of object
completion. These techniques allow DeClassifier
to handle optimized code including inlined or missing
constructors, distinguish between constructors and non-
virtual destructors, and decipher between composed and
inherited objects. The idea of extracting class hierarchy
from both constructors and destructors have been con-
sidered previously [8], however, for optimized code, we
are the first to highlight the effectiveness of destructor
analysis over constructor analysis.

• We evaluate DeClassifier on 16 binaries. On average
we are able to recover significant part of the inheritance
graph correctly. Specifically, 94.5% (recall) of edges
under O0 and 71.4% (recall) of edges under O2.

The rest of the paper is organized as follows. In Section II,
we provide the technical background required to understand
the rest of the paper. In Section III we present the key chal-
lenges and an overview of our solution. Section IV presents
the technical details of DeClassifier. We evaluate in
Section V, discuss in Section VI, present related work in
Section VII, and finally conclude in Section VIII.

II. TECHNICAL BACKGROUND

A. Implementation of Polymorphism and Inheritance in C++

In order to implement polymorphism, C++ compilers utilize
a per-class supplementary data structure called “VTable”.
The structure of the VTable is dictated by the C++ ABIs—
Itanium [1] and MSVC [20]. A VTable is allocated for each
polymorphic class (i.e., a class with virtual functions, or
inherits from class(es) with virtual function, or inherits a
class virtually). Each VTable contains an array of function
pointers representing the polymorphic functions that the object
of a given type can invoke at runtime. In order to prevent
corruption, the VTables are allocated in the read-only sections
of a binary. Each object of a polymorphic class contains
an implicit pointer to the VTable (vptr) as the first member
variable. Within the constructor of a polymorphic class, the
vptr is initialized to point to the VTable for the type of the
object being constructed. Among other fields, each VTable
contains 3 mandatory fields—OffsetToTop, pointer to TypeInfo
(also called RunTime Type Information or RTTI), and an
array of virtual function pointers or vfptrs. Although RTTI
is a mandatory field, a NULL value is used to signify its
exclusion during compilation. In the past, mandatory fields
have been used as a signature for identification of VTables in
the binary [19].

In case of multiple inheritance, wherein a class derives from
more than one polymorphic base class, the VTable for derived
class comprises of a group of 2 or more VTables—a primary
and one or more secondary VTables depending on the number
of secondary bases. The derived class and its primary base
class share the primary VTable, and each secondary base class
is allocated a secondary VTable. Further, the derived object
and the primary base sub-object share the same base address,
and each secondary base sub-object is found at an offset from
the derived object base address. The VTable group comprising
of the primary and secondary VTables is collectively called
“complete-object VTable”.

The OffsetToTop field indicates the displacement that must
be added to the sub-object within a derived object to reach
the base of the derived object. If the RTTI value is not null,
the RTTI pointers for all the VTables within a complete-
object VTable point to the same RTTI structure. For the
running example in Figure 1, the complete-object VTable for D
comprises of a primary VTable with 2 virtual function pointers,
and a secondary VTable with one virtual function pointer. The
secondary VTable contains an OffsetToTop value (-16) that
must be added to the sub-object B-in-D to reach the base
of D. For more information on each of the fields and other
optional fields in the VTable, we refer readers to the ABI [1].



; D::D(void)
…
1  mov rbx, rdi
2  mov qword ptr [rdi], offset off_401208 # vptr C
3  mov qword ptr [rdi+8], offset off_4011F0 #vptr B
..
4  mov qword ptr [rbx], offset off_401228 # pry vptr D
5  mov qword ptr [rbx+8], offset off_401250 #sec vptr D
6  mov qword ptr [rbx+20h], offset off_4011D8 # vptr A
...

#include <iostream>
class A{
  public:
    int a;
    A(){ cout << “A” << endl; }
    virtual void af(){...}
};
class B{
  public:
    int b;
    B(){cout << “B” << endl;}
    virtual void bf(){...}
};

class C{
  public:
    int c;
    C(){cout << “C” << endl;}
    virtual void cf(){...}
};
class D: public C, public B{
  public:
    int d;
    A a;
    D(){cout << “D” << endl;}
    virtual void df(){...}
};

Field VTable(A) VTable(B) VTable(C) VTable(D)

Offset to Top

RTTI

Vfptr[0]

Vfptr[1]

Offset to Top

RTTI

Vfptr[0]

Offset to Top

RTTI

Vfptr[0]

Vfptr[1]

Offset to Top

RTTI

Vfptr[0]

0

0

&A::af()

0

0

&B::bf()

0

0

&C::cf()

0

0

&C::cf()

&D::df()

-16

0

&B::bf()

0

0

&C::cf()

&D::df()

-16

0

&B::bf()

Offset to Top

RTTI

Vfptr[0]

Vfptr[1]

Offset to Top

RTTI

Vfptr[0]

0

0

&A::af()

0

0

&B::bf()

0

0

&C::cf()

0

0

&C::cf()

&D::df()

-16

0

&B::bf()

Field VTable(A) VTable(B) VTable(C) VTable(D)

Offset to Top

RTTI

Vfptr[0]

Vfptr[1]

Offset to Top

RTTI

Vfptr[0]

0

0

&A::af()

0

0

&B::bf()

0

0

&C::cf()

0

0

&C::cf()

&D::df()

-16

0

&B::bf()

void foo(){
  D *d = new D();
  d->df();
}

; foo()
…
1  call D::D(void)
...

C B

D
contains

A

C B

D
contains

A

a

b c

Fig. 1: Running example comprising classes A, B, C and D, and corresponding VTable layout when compiled using g++ with
flag -fno-rtti. Note: ‘pry’ means primary, and ‘sec’ means secondary.

B. Construction and Destruction

Constructor and destructor are called when an object of a
class is created and destroyed respectively. Each class may
contain one or more constructors and a single destructor. If no
constructor is defined by the developer, a default construc-
tor will be provided by the compiler. During construction,
constructors of base classes first get invoked, starting from
the primary base. The address of the subobject being con-
structed is passed as an argument. Then the vptr(s) of the
object being constructed is assigned into appropriate offset(s).
Finally, member variables including composed members are
constructed. Similarly, during object destruction, vptr of the
object gets assigned. Then member variables including com-
posed member objects are destroyed. Finally, destructors of
immediate bases are invoked, starting from the primary base.
Again, the address of the subobject being destroyed is passed
as an argument.

As a part of the construction and destruction of member
variables, constructors and destructors may themselves invoke
virtual functions. Therefore assignment of vptr occurs before
the respective initialization/finalization of member variables.
Note that the constructors and destructors of each base class
write their own set of vptrs in appropriate locations in the
object, which get overwritten by subsequent classes in the
inheritance chain. For example, in Figure 1, object D shares its

base with subobject C-in-D (because C is the primary base of
D). All the subobject constructors C() and B(), and composed
object constructor A() are inlined in derived object constructor
D(). Instruction 2 writes vptr of C-in-D with address of VTable
of C, which is then overwritten by instruction 4 that writes vptr
of D with address of VTable of D.

C. Virtual Destructors

Unlike constructors, destructors in C++ can be–and often
are–declared as virtual. It may sometimes be necessary to
delete a derived class object that is referenced through a
base class pointer. The C++ standard states that deleting an
object of derived class through a pointer to its base class
that has non-virtual destructor leads to undefined behavior
(see paragraph 3 in ISO/IEC 14882-2014). Therefore, it is
common practice to mark destructors as virtual, which forces
runtime resolution of the virtual call to the correct derived
class destructor. These destructors must therefore be retained
in the binary and destructor code can not be inlined at the
deletion site. As shown in Table IX (Appendix C), the binary
usually contains more destructors than constructor.

III. SOLUTION OVERVIEW

A. Key Challenges

a) C1: Constructor Inlining: Compilers inline functions
by replacing the callsite with the body of the called function.



Virtual function callsites cannot be inlined since the exact
function to call is only known at runtime depending on
the object type. However, because constructors can not be
virtual, their calls are statically resolved and inlined when
possible. In fact, we found this to be very common and
prescribed by the C++ standard (see ISO C++ 7.1.2/3). Any
function defined within a class definition will be inlined as a
default behavior. This is a challenge since state-of-the-art class
hierarchy recovery tools like VCI [6] depend primarily on the
identification of constructors. Constructor inlining gives rise
to two problems:

• Missed base class constructor calls: Consider the running
example in Figure 1 where the primary and secondary
base class constructors of D are inlined on lines 2
and 3 respectively. As detailed in section II-B, in a
constructor, the composed class’ constructor get called
after the vptrs of the owner class have been initialized.
Therefore, in order not to include composed classes in
a given class hierarchy, VCI looks at the first primary
vptr initialization to an object address which appears on
line 2 and concludes that the constructor belongs to the
class with primary vptr 0x401208 (i.e., C instead of D),
subsequent constructor calls are ignored. As such it fails
to identify any relationship between D and C or D and
B. Overwrite analysis adopted by Marx will be able to
group the primary vptr of D with the primary vptr of C
as well as the secondary vptr of D with the primary vptr
of C, however, it cannot differentiate the derived class
from the base class.

• False constructor identification: In higher levels of op-
timization, the compiler could inline entire constructor
D() in the instantiating function foo. Therefore, although
not a constructor, foo would contain the vptr initializa-
tion. In order to accommodate inlining, VCI identifies
constructors by simply looking for vptr initialization (not
requiring that the vptr is written into the first entry of an
object address) which would result in falses (see Section
4.2 in [6]). If foo calls other functions which also
contain inlined constructors, a false relationship is in-
ferred between the vptrs these non-constructor functions
initialize.

b) C2: Inheritance vs Composition: Failure to correctly
differentiate the base class constructors (or destructors) from
those of member classes will result in false inheritance infer-
ence between a class and its member classes. VCI partially
handles this by considering only constructor calls that happen
before initialization of the primary vptrs, however, this works
only for constructors but not destructors, this is because the
derived class vptrs get written first. A more general approach
is required to differentiate composed and inherited objects for
constructors or destructors irrespective of whether or not they
are inlined.

c) C3: Missing Constructors: Another outcome of com-
piler optimization is complete removal of constructors. Note
that this is a different problem from function inlining. A virtual

function is guaranteed to be in the binary as long as the VTable
it belongs to is present. In fact, we found that significant
number of constructors are optimized-out during compilation,
and their definitions are excluded from the binary (see Table IX
Appendix C).

B. Scope and Assumptions

Our primary goal is to leverage multiple binary-level fea-
tures to reconstruct polymorphic non-virtual class inheritance
tree from COTS binaries—even in an optimized setting. We
target COTS C++ binaries which might have been compiled
with high levels of optimization and with no debugging
information, symbol information, RTTI, etc. Also, we assume
that source code of such binaries are not available. Since our
VTable extraction and construction call order are based on
the ABI specification, we only target binaries compiled with
standard C++ compilers, e.g., Clang, GCC and MSVC.

C. Our approach

As a preliminary step, we recover all the VTables in the
binary and group them into complete-object VTables. We
utilize an already known scanning-based algorithm [19] to
extract VTables. These VTables include primary and secondary
VTables, which are then grouped to form complete-object
VTables. In a nutshell, we start with a primary VTable
(i.e., offsetToTop == 0), and group it with succeeding
secondary VTables (i.e., offsetToTop 6= 0) until we reach
the next primary VTable. Each unique group is a complete-
object VTable and provides a one-to-one mapping between
the complete-object VTable and the polymorphic classes in the
binary. In the remainder of this section, we outline the analyses
we undertake to infer inheritance relationships between the
complete-object VTables, i.e., polymorphic classes.

Key insight: Code features that require runtime decisions
(e.g., virtual function dispatch) can not be optimized away
(i.e., eliminated) by the compiler, and therefore provide a ro-
bust source for inheritance inference. Our inheritance inference
approach is based on identifying key inference points that can
not be optimized away during compilation (an exception being
removal of entire classes). Particularly, we leverage the virtual
functions including virtual destructors to infer inheritance
semantics. This way, we ensure meaningful inference even
under strong compiler optimization.

a) Combining constructors with destructors: We com-
bine constructor-destructor analysis to achieve optimal recov-
ery. State-of-the-art binary-level class inheritance extraction
tools have primarily focused on constructor analysis. However,
the number of constructors present in the binary decreases as
the level of optimization increases, thus leading to inaccurate
inference. Like constructors, destructors also provide insight
into a particular class inheritance. Typically, the number of
destructors in the binary tend to be larger than the number of
constructors (see Table IX in Appendix C).

In order to prevent memory leak, destructors are declared
virtual which ensures that specific objects are destructed as
expected.



Unlike constructors that can not be virtual, destructors are
commonly virtual and therefore, destruction calls are not
inlined during optimization.

Because virtual functions are not inlined by compilers, explicit
destructors are preserved in memory. This eliminates the
possibility of a virtual destructor not being present in the
binary. If we can also use destructors for our analysis, then we
will be able to address challenge C1, since we are no longer
completely reliant on constructors–which could be inlined. We
could also address C3, since we can augment destructors with
available constructors.

b) Identifying valid constructors and destructors: Inlin-
ing of constructors within other ‘host’ functions results in false
inference of the host function as a constructor. This is one of
the main reason for falses in analyzing optimized code. In
fact, vptrs initialized in one or more host functions that are
neither constructors nor destructors will result in likely false
relationship inference between such functions. Therefore, if we
can correctly eliminate such functions, we can safely analyze
constructors and destructors, and correctly identify explicit
calls to (or inlined) base constructors and destructors and also
correctly eliminate calls to composed class constructors and
destructors. This handles challenge C2. Only the constructors
assign vptr to the implicit this pointer. We employ static
analysis to detect whether the this pointer is initialized with a
vptr. If so, it is classified as a constructor, if not it is a host
function that contains inlined constructor.

We also perform additional analysis, explained in Sec-
tion IV-B to differentiate constructors from destructors. This
helps us to address ”false constructor identification” under C1.
In order to address ”missed base class constructor calls” for
constructors which inline their base constructors, we ensure
that the correct primary vptr associated to a constructor is
identified. We do the same for destructors with inlined base
destructors.

c) Object Layout Analysis (OLA): There are cases where
destructors are not virtual, in that case, they could also be in-
lined just like constructors. This creates the possibility of some
classes having neither constructor nor destructor present in the
binary. In cases where we can not find an explicit constructor
or destructor for a class, we employ intra-procedural static
analysis to model the object layout. Specifically, we start from
the explicit virtual functions in a class’ VTable (note that these
functions can not be optimized out). Next, we identify type-
revealing instructions within the functions. Starting from these
instructions, we obtain a backward slice and back-propagate
type information to obtain a mapping:

this + offset ->type

By extending the analysis across all the classes, and check-
ing different class objects for type congruence (i.e., member
types at a given offset across all polymorphic classes must be
the same), we can eliminate inconsistent inferences.

We further our analysis by using information regarding pure
virtual functions in the class VTables to improve recovery.
Specifically, if VTable for class A contains a pure virtual

function at offset off1, and VTable for class B does not
contain a pure virtual function at offset off1, then A can not
inherit from B.

d) Identifying Completion of main Object Initialization
(COI): Completion of initialization of a class’ main object
(a.k.a main object initalization) is the point during construction
where base class vptrs and class’ vptrs have all been com-
pletely written and overwritten in the object. Construction of
composed objects always take place after construction of main
object has completed. Irrespective of compiler optimization,
we can conclude that vptr initializations that occur before this
point belong to base classes while those that occur after it
belong to composed objects. We found overwrite analysis [18]
to be effective in identifying COI. This saves us from relying
on explicit base class constructor calls and also helps us to
correctly eliminate composed objects from our inheritance.
In a case where a standalone constructor does not exist for
a class, we depend only on the destructor. For classes with
neither constructors nor destructors, we rely on the inference
from OLA.

In addition, completion of main object initialization makes it
possible to correctly differentiate constructors and destructors
from other functions which contain vptr initialization as a
result of inlining. This subsequently helps to avoid false
positive inheritance inference thereby solving challenge C1.

Complexity of the problem: DeClassifier attempts to
solve a hard problem, directional class hierarchy recovery from
optimized binaries. For this reason, we employ standard tools
like BAP to lift binary to an intermediate representation. Cur-
rently, BAP is unable to analyze large binaries. Therefore, in
the current form of DeClassifier it inherits this limitation
of BAP, however, if BAP is replaced with a more effective
static analysis tool, we expect significant improvement in
recovery. Also, DeClassifier assigns direction of inheritance
when neither constructor nor destructor is available using
Object Layout Analysis(OLA), however, if there is not enough
information in the binary for OLA, no inheritance will be
assigned for the classes involved.

IV. DECLASSIFIER

We have developed DeClassifier a class inheritance
inference engine that employs static analysis for reconstruction
of class hierarchy from optimized C++ binaries. Figure 2
presents the overview of DeClassifier.

A. VTable Extraction and Grouping

Complete object VTables are made up of all the VTables
that belong to a class. They provide an unlabeled unique
representation for each polymorphic class in a given binary.
Like other solutions which recover class hierarchy from bina-
ries [6], [18], we treat complete object VTables as analogous
to polymorphic classes and they form nodes in the CHT of a
program generated by DeClassifier.

Much work has been done on extracting VTables from
the binary [9], [19], [28]. Vptrs are scattered throughout the
text region of the binary as immediate values. Typically, they
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Fig. 2: An overview of DeClassifier

get written into locations in an object by constructors and
destructors during object initialization. So we scan the text
section to recover all immediate values which point to read-
only sections of memory, since VTables are stored in the
read-only section to prevent VTable injection attacks. The
well defined nature of VTables, particularly the existence of
mandatory fields [1] provides us with a signature to filter out
recovered immediate values which point to read-only section
but are not VTables, for instance, jump tables.

The recovered list of VTables contain all primary and sec-
ondary VTables where one or more of them make the complete
object VTables for a single polymorphic class. Therefore, from
the current list of VTables, we need to construct another list
which comprises of only complete object VTables. To achieve
this we merge primary VTables with their corresponding set
of secondary VTables, with each item being represented by
the primary VTable address.

All VTables belonging to a class are laid out contiguously
starting from the primary VTable which has an offset-to-top
of 0. All the secondary VTables have a non-zero offset-to-
top. Given a set of VTables, we first sort them in increasing
order of addresses. Then, we merge a primary VTable with
all secondary VTables immediately following it. At the end of
this process we have a set of complete object VTables.

B. Correct identification of Constructors and Destructors

Correctly differentiating constructors and destructors from
other functions with inlined vptr initialization is crucial to
eliminating all false positives. Constructor and destructor
calls within actual constructors and destructors are those that
guarantee inheritance. Functions containing inlined vptr initial-
ization can contain multiple such initializations for different
unrelated classes, therefore using any information within them
will result in imprecise class hierarchy.

Constructors and destructors initialize the vptrs of the
classes they belong to, among other operations they perform.
The primary vptr of the class must be eventually written into
the first entry of the object, before or after vptr of base
classes are written, depending on whether a destructor or
constructor is being considered. To do this, the object address
gets passed to it, usually as the first argument. Therefore, we

scan functions for primary vptr write to zero offset from the
object address. We lift the binary to BAP IR and construct use-
def chains for each IR variable. Next, we recursively propagate
the defines into uses until all IR instructions are a combination
of defines corresponding to function inputs. At this point, if
the IR instruction corresponding to vptr initialization writes to
the memory location pointed to by the first argument (implicit
this pointer), we infer the function to be a constructor or
a destructor. The instruction that writes vptr is the point of
completion of object construction.

Our analysis will correctly distinguish constructors and
destructors from functions which inline a constructor or de-
structor since the object address must be adjusted in order to
write the primary vptr in the case of the latter. This gives us
the complete set of constructors and destructors. However, we
are still left with the task of correctly differentiating between
constructors and destructors so that we do not wrongly infer
the derived class as the base or vice versa or include composed
classes in the inheritance. As discussed in Section II-B, the
ordering of initialization of base and derived class vptrs are
in the reverse order for constructors and destructors. We infer
a function to be a destructor if one of the following is true:

1) Destructors are mostly virtual, so they have entries in
the VTables. We check if the function address exists in
a VTable.

2) Due to the use of destructors, for destructing objects,
they call the delete operator. We also check if the
function being verified calls the delete operator. A
constructor will not call the delete operator.

3) In cases where explicit calls are made to base class
constructor, we check if the calls are made before vptrs
are initialized.

All identified constructors and destructors are associated with
the primary vptr they belong to. In case of the constructor, it
is associated with the last primary vptr written to an object
address. This is because if base class constructors are inlined,
their vptrs are written first. For destructors, the destructor is
associated with the first primary vptr written to the object
address. Once we have the complete set of constructors and
destructors, we move on to perform constructor-destructor
analysis.

C. Constructor-Destructor Analysis

The constructor of a derived class calls the constructors
of its base classes (or initializes the base classes’ vptrs)
before initializing its own vptr(s). Since we have already
identified valid constructors in the previous step, we extract
all calls to valid constructors that take place before the last
write of primary vptr to zero offset of the object being
constructed. For inlined base class constructors as in the
running example, we extract all complete object VTables
(primary and secondary vptrs) initialized also before the last
write of primary vptr. Composed classes get initialized, either
through explicit constructor call or inlined vptr initialization,
only after the complete object VTable of the current class has



been initialized. Therefore, we are able to correctly exclude
composed classes from our class hierarchy.

In a destructor, the derived class’ complete object VTable is
first initialized, followed by calls to composed class destructors
(or composed class vptr initialization) and finally, calls to base
classes destructors. For a destructor, the last primary vptr write
to zero offset of the object does not demarcate between base
and composed objects destruction. However, the number of
secondary vptrs initialized gives us insight into where calls
to destructors of base classes begin. The number of VTables
(primary and secondary) a class has is equal to the total
number of direct base classes it has. To correctly eliminate
composed class destructors, we map each vptr initialized to
each destructor call starting from the last call( this is because
base class destructors are called last). Finally, we ignore other
calls which do not have a corresponding vptr initialization.
They are the composed class destructor calls which are in
between the derived class vptr initialization and base class
destructor calls.

For all base class constructor/destructor calls identified, we
locate their associated complete object VTable and map them
as the bases. In the case of inlined base class constructor/de-
structor, we directly map the inlined complete object VTable
as the base. For the sake of space, we have included the
algorithms used to analyze constructors and destructors in
Appendix A

D. Object Layout Analysis

We perform object layout analysis on virtual member func-
tions of a class. Particularly, we are interested in member
functions that operate on the this pointer. Virtual calls to these
functions are explicit and can not be inlined, as such, they are
available in the binary.

Specifically, we perform coarse type inferencing and label
the object with its member types. First, we convert the binary
to BAP IR to perform static analysis. Next, we identify
type-revealing instructions in the function (jmp *ebx, mov
rdi, rax; call printf, etc.) and their corresponding
IRs. We employ intra-procedural static analysis to identify
the offsets within this pointer that the types map to. This
approach is similar to the type inferencing performed by past
efforts such as REWARDS [16]. As an end result, we obtain
a type map for offsets within this pointer. In order for an
inheritance relationship between two classes to be correct,
types of member variables in the two classes at specific offsets
must be congruent (compatible) to each other.

Next, we use overwrite analysis. For construction, base
class vptrs are written followed by those of the derived class
and the reverse is done for destruction. However, since there
is no way to infer if an inlined vptr initialization belongs
to a constructor or destructor, the order of overwrite cannot
be used to infer direction of inheritance. Therefore, we use
the result of OLA to decide direction of inheritance for
relationships identified through overwrite analysis. We analyze
specific attributes of an object as well as its complete object

VTable. We consider presence of pure virtual functions, type
congruence and VTable size.

a) Pure Virtual Function: We perform pure virtual func-
tions validation to further filter inaccuracies in inheritance
inference. The presence or number of pure virtual functions
in two VTables provides unidirectionality of inheritance since
the VTable without pure virtual functions has to have derived
from the VTable with pure virtual functions. We considered
these two possible cases:

1) One VTable has pure virtual function entries while the
other has none

2) One VTable has more virtual function entries than the
other, with both having those entries at the same offsets.

b) Minimum Object Size Analysis: Analyzing the size
of an object can be done either dynamically or statically.
The dynamic analysis approach has two major challenges,
1) coverage and 2) how to compute size of stack and global
objects. Objects are created in three major locations at runtime,
heap, stack and global region of the memory. To create objects
on the heap, the new operator must be called which can be
hooked to get the size passed to malloc (that will be upper
bound for the object size). However, size of stack objects pose
a challenge in the sense that there is no difference between
the stack pointer movement when memory is allocated for a
local variable (e.g an integer variable) and for an object.

In this work, we analyze object size statically to obtain a
lower bound object size. With this approach, coverage is not a
challenge and neither is the location of an object a challenge.
Just like constructors and destructors, the first argument passed
to member function of a class is the object address. To access a
member variable, a literal value is added to the object address
(i.e. this pointer) to reach that variable. The maximum offset
that can be added to the this pointer will always be less than
the size of the object itself, which gives a lower bound for
the object size. Identifying non virtual functions of a class is
challenging, however, pointers to all virtual functions of a class
reside in the complete object VTable for that class. For every
complete object VTable identified, we analyze each virtual
function it contains to obtain the maximum offset accessed
from the this pointer. We associate this value to the complete
object VTable as the lower bound for its object size.

c) VTable Offset to top: Considering the case of multiple
inheritance, the derived object consists of sub-objects of its
base classes. Offset-to-top refers to the offset of a given base-
in-derived object from the top of the derived object. The offset-
top-top value for each base class is stored in the offset-to-
top field of the vtable corresponding to that base class. As
already mentioned, one of the operations performed within a
constructor is calling the constructor of base classes. Before
this call is made, the constructor adds the offset-to-top value
for the given base class to the thisptr in order to reach the
base class sub-object. Hence, we compare the offset-to-top
value with the offset at the constructor call site for equality to
conclude on inheritance between the two classes.

d) VTable Size: We compute the VTable size of a class
as the total number of virtual functions pointer, pure virtual



functions and zero destructor entries (this exists only in the
VTables of abstract classes) that it contain. We do not consider
the complete object VTable in this case because, relationships
can be identified between a secondary VTable and a primary
VTable. Therefore we ensure that only the associated VTable
sizes are considered.

VTable sizes increase or remain steady down a particular
inheritance chain, the VTable size of a derived class is always
greater than or equal to that of its base class. Hence, the
sizes of two VTables found to be related provide indication of
direction of inheritance.

E. Performing overwrite analysis

We analyze each function identified to contain inlined
constructor or destructor, examining every VTable writes (both
primary and secondary) that they perform. VTable pointers
written to the same memory locations are grouped together
as being related. In Marx, if overwrite analysis identifies two
vptrs A and B to be related and also finds B and C to be
related, the three vptrs A, B and C are grouped to be in the
same set even though A and C might not be related. In this
work, once we identify a relationship between A and B, we
immediately use the result from OLA to decide the direction of
inheritance and then continue building up the class hierarchy
with subsequent relationships.

We locate vptr overwrites in two ways, 1. if the object
address passed to a known constructor or destructor is the same
location where a primary or secondary vptr is written, and 2. if
multiple vptrs are written in the same memory location. Note
that these overwrites are considered on a function by function
basis. For the first case, we locate the primary vptr associated
with the constructor or destruction that is being called.

Object sizes are associated with the primary vptr of a com-
plete object VTable. With multiple inheritance, a secondary
vptr will overwrite a primary VTable or vice verse. Therefore,
we also locate the corresponding primary VTable of every
secondary VTable in any identified group of related vptrs. We
are able to locate corresponding primary VTable with VTable
grouping explained in Section IV-A.

F. CHT Generation

In this phase, we build the complete Class Hierarchy Tree
for the binary being analyzed by combining the relationships
identified during constructor-destructor analysis phase with
those identified by overwrite analysis. Constructor-destructor
analysis directly assigns direction to any relationship it recov-
ers using the order of calls or vptr initialization. For relation-
ships recovered through overwrite analysis, we use attributes
obtained from OLA to assign direction of inheritance.

We apply the following rules to infer inheritance:
• If constructor of class A calls constructor B before

completion of object construction, A inherits from B.
Converse holds true for destructors.

• Class A inherits from Class B only if size of object A ≥
size of object B.

• Class A inherits from Class B only if size of VTable of
class A ≥ size of VTable of class B.

• Class A inherits from Class B only if type of each
member in B given by thisB + offset (from OLA)
is compatible with the type of corresponding member
thisA + offset in A.

• Class A inherits from Class B only if for each pure
virtual function in VTable of A, the corresponding virtual
function in VTable of B is also pure virtual.

• Class C is a secondary base of class A only if the
offsetToTop value in secondary VTable of A is equal
to the displacement that must be added to an object of A
to reach the C sub-object in A (obtained through OLA).
For example, in the running example, the C sub-object in
D can be obtained by adding 16 to the base address of
D, which is nothing but the offsetToTop value (-16)
in secondary VTable of D.

Once all decisions about direction of inheritance is made, we
combine all edges to build the CHT of the binary.

V. EVALUATION

Our evaluation aims to answer the following questions:
• What fraction of the entire class hierarchy of a program

can DeClassifier recover?
• How precise is the recovered class hierarchy?
• How effective is our direction of inheritance assignment

using OLA?
• How does DeClassifier outperform constructor only

analysis for recovering class hierarchy.
All binaries were compiled using gcc with O0 and O2 op-
timization. We do not consider O3 optimization in the main
evaluation because in terms of inlining, similar binaries are
produced with O2 and O3. However, we have included results
for SPEC2006 binaries compiled with O3 optimization in
the Appendix (see Appendix D). All analysis experiments
were performed on Ubuntu 16.04 LTS running on Intel core
i7 3.60GHz with 32GB RAM. We did not evaluate Node
and Mongodb because BAP was unable to analyze them.
Mongodb is too large for it and there was a runtime error while
analyzing Node. We reported this error to BAP team and they
acknowledged it is a bug in BAP which would be worked on.
All SPEC2006 benchmark programs with polymorphic classes
were considered except for Astar and Namd. Astar has just one
polymorphic class, there is no edge for comparison. Namd has
3 polymorphic classes, where two of the classes inherit from
the third. However, when compiled with O2 optimization, the
VTable of the third gets optimized out.

A. Ground Truth

We obtained the ground truth for standalone programs
by compiling them with the -fdump-class-hierarchy
option on GCC. This generates a .class file for each .cpp file
with at least one polymorphic class which contains VTables
as well as the inheritance of those classes. However, since
the 7 WX Widget programs in our test set are together in
a single package, there is no way we could distinguish the



TABLE I: CHT recovery results for binaries compiled with gcc -O0. Column with “inh = 0” contains # of classes that do not
inherit from any class, “inh = 1” contains # of classes that inherit from exactly 1 immediate base class, and “inh >1” contains
# of classes that inherit from more than 1 immediate base classes.

Programs
Ground Truth Analysis

#Classes inh=0 inh=1 inh>1 #Classes Ctor only Ctor+Dtor
inh = 0 inh = 1 inh >1 inh = 0 inh = 1 inher >1

libebml 27 5 22 0 26 14 12 0 7 19 0
libflac 18 8 10 0 18 12 6 0 8 10 0
libzmq 76 17 47 12 76 39 29 8 17 47 12
libwx baseu 285 24 258 3 287 157 128 2 49 235 3
libwx baseu net 44 27 15 2 44 35 8 1 27 15 2
libwx gtk2u adv 266 150 114 2 266 199 67 0 146 117 3
libwx gtk2u aui 62 51 11 0 62 58 4 0 52 9 1
libwx gtk2 core 683 220 445 18 683 408 263 12 242 419 22
libwx gtk2u html 138 66 70 2 138 104 34 0 65 71 2
libwx gtk2u xrc 122 110 12 0 122 116 6 0 111 11 0
Doxygen 974 208 670 96 944 462 417 65 222 629 93
Xalanc 975 317 643 15 968 472 486 10 308 646 14
DealII 884 34 846 4 689 431 256 2 47 639 3
Omnetpp 112 10 102 0 109 50 59 0 11 98 0
Soplex 29 8 20 1 29 18 11 0 8 20 1
Povray 32 11 21 0 29 16 13 0 12 17 0

TABLE II: CHT recovery results for binaries compiled with gcc -O2. Column with “inh = 0” contains # of classes that do not
inherit from any class, “inh = 1” contains # of classes that inherit from exactly 1 immediate base class, and “inh >1” contains
# of classes that inherit from more than 1 immediate base classes.

Programs #Classes Ctor only Ctor+Dtor Ctor+Dtor +
Object Layout Analysis (OLA)

inh = 0 inh = 1 inh >1 inh = 0 inh = 1 inher >1 inh = 0 inh = 1 inher >1
libebml 26 14 12 0 7 19 0 7 19 0
libflac 18 15 3 0 8 10 0 8 10 0
libzmq 63 35 24 4 23 37 4 22 40 2
libwx baseu 262 233 29 0 171 91 0 153 108 1
libwx baseu net 43 37 6 0 29 14 0 29 14 0
libwx gtk2u adv 229 214 15 0 197 18 0 193 35 1
libwx gtk2u aui 59 57 2 0 57 2 0 54 5 0
libwx gtk2 core 621 566 55 0 486 135 0 364 240 17
libwx gtk2u html 123 118 5 0 104 19 0 104 19 0
libwx gtk2u xrc 93 93 0 0 93 0 0 93 0 0
Doxygen 870 845 23 0 458 400 12 483 446 5
Xalanc 875 615 258 2 396 479 0 410 457 8
DealII 687 544 140 3 123 561 3 96 579 11
Omnetpp 105 69 36 0 36 69 0 8 91 5
Soplex 25 23 2 0 21 3 1 19 6 0
Povray 24 21 3 0 17 7 0 17 7 0

classes that belong to each of the program using the output of
-fdump-class-hierarchy. Therefore, we compiled the
program with the -frtti option with no optimization and
then analyzed the RTTI structures in each of the binaries to
obtain the ground truth inheritance.

B. Precision and Recall

In order to measure the performance of DeClassifier
we evaluated precision P and Recall R of the class hierarchy
recovered from each of the 16 binaries considered. Precision
answers the question of what fraction of the class hierarchy
recovered is correct and what fraction is wrong, while recall
answers the question of what fraction of the ground truth
class hierarchy has been recovered and what fraction is not
recovered (see Appendix B for formulas).

Table I and Table II show the breakdown of classes based
on the number of classes they inherit from for O0 and O2 op-
timization levels respectively. Table III and Table IV show the

precision and recall of Ctor only analysis, Ctor+Dtor analysis
as well as Ctor+Dtor+OLA for O0 and O2 optmization levels
respectively.

Recall for O0 binaries was computed using all found edges
in the ground truth. However, this is done differently for
O2 binaries. Due to optimization, some classes (VTables) get
removed by the compiler and the fact that our tool does not
recover such classes does not make it less effective since they
are in fact not available in the binary. To ensure these classes
do not influence the recall recorded, we identified them and
removed edges which have them as either derived or base from
the ground truth to compare with. Basically, for O2 binaries,
we computed recall by comparing with a subset ground truth
which is based on the available classes(VTable) found in the
binary. Columns labeled ”GT” and ”Used” under ”#Edges” in
Table IV show the number of edges in the overall ground truth
and the number of edges remaining after removing edges with



TABLE III: Precision and Recall of CHT generated by DeClassifier for O0 Optimization with GCC. Comparison was
done with the overall ground truth

Programs #Classes
in GT

#Classes
in Binary

Ctor only Ctor+Dtor
Precision(%) Recall(%) Precision(%) Recall(%)

libebml 27 26 100 54.5 100 86.4
libflac 18 18 100 60 100 100
libzmq 76 76 95.7 59.2 97.3 96.1
libwx baseu 285 287 99.2 49 98.3 89.8
libwx baseu net 44 44 100 52.6 100 100
libwx gtk2u adv 266 266 94.0 50 91.9 95.8
libwx gtk2u aui 62 62 100 44.4 90.9 90.9
libwx gtk2 core 683 683 98.6 58 97.2 93.8
libwx gtk2u html 138 138 100 48.6 98.7 100
libwx gtk2u xrc 122 122 100 45.5 100 91.7
Average 98.8 52.2 97.4 94.5
Doxygen 974 944 99.8 63.4 98.9 93.5
Xalanc 975 968 100 70.4 100 97.5
DealII 874 689 95 28.9 99.8 75.3
Omnetpp 112 109 100 57.8 100 96.1
Soplex 29 29 100 50 100 100
Povray 32 29 100 61.9 100 81.0
Average 99.13 55.4 99.8 90.6

TABLE IV: Precision and Recall of CHT generated by DeClassifier for O2 Optimization with GCC. Comparison was
done with those edges in ground truth whose corresponding VTables were found in the binary

Program #Classes #Edges Ctor only Ctor + Dtor Ctor + Dtor + OLA
GT Binary GT Used Precision(%) Recall(%) Precision(%) Recall(%) Precision(%) Recall(%)

libebml 27 26 22 22 100.0 54.6 100.0 86.4 100.0 86.4
libflac 18 18 10 10 100.0 30.0 100.0 100.0 100.0 100.0
libzmq 76 64 76 53 100.0 60.4 97.8 75.5 100.0 79.3
libwx baseu 285 262 264 198 100.0 14.1 100.0 43.9 100.0 47.5
libwx baseu net 44 43 19 17 100.0 35.3 92.9 76.5 100.0 82.4
libwx gtk2u adv 266 229 118 83 100.0 18.1 88.2 18.1 91.4 38.6
libwx gtk2u aui 62 59 11 11 50.0 11.1 50.0 11.1 80.0 44.4
libwx gtk2 core 683 621 481 293 95.1 13.3 94.7 30.4 93.8 61.4
libwx gtk2u html 138 123 74 36 100.0 13.9 88.9 44.4 89.5 47.2
libwx gtk2u xrc 122 102 12 - 0.0 0.0 0.0 0.0 0.0 0.0
Average 84.5 25.1 81.3 48.6 85.4 58.4
Doxygen 974 870 866 469 100.0 3.0 68.2 57.6 94.7 80.2
Xalanc 975 875 710 577 100.0 45.4 78.7 65.3 98.3 79.4
DealII 874 687 854 678 98.4 18.6 99.1 80.1 98.4 81.9
Omnetpp 112 105 102 97 100.0 22.7 100.0 58.8 98.7 78.4
Soplex 29 25 22 12 100.0 8.3 66.7 16.7 100.0 50.0
Povray 32 24 21 12 100.0 23.1 100.0 58.3 100.0 58.3
Average 99.7 20.2 85.5 56.1 98.4 71.4

TABLE V: Number of direction of inheritance “correctly
assigned”, “wrongly assigned” and not “assigned” by OLA

Programs Correctly
assigned

Wrongly
assigned Not assigned

libebml 19 0 0
libflac 10 0 0
libzmq 42 0 2
libwx baseu 94 0 0
libwx baseu net 14 0 0
libwx gtk2u adv 32 0 8
libwx gtk2u aui 4 0 0
libwx gtk2 core 171 2 20
libwx gtk2u html 17 0 1
Doxygen 373 2 49
Xalanc 459 0 17
DealII 555 11 10
Omnetpp 73 4 0
Soplex 6 0 1
Povray 7 2 0

classes not found in the binary.
The average precision and recall of class hierarchy re-

covered by DeClassifier on O0 binaries are 97.4% and
94.5% for libraries and 99.8% and 90.6% for executables
respectively. And on O2 binaries, it has an average precision
and recall of 85.4% and 58.4% for libraries and 98.4% and

71.4% for executables respectively. DeClassifier was
unable to recover any hierarchy for libwx gtk2u xrc.

C. Effectiveness of Direction Assignment using OLA

In this subsection, we discuss the effectiveness of direction
of inheritance assignment using OLA. As discussed in sec-
tion IV-F, after identifying a relationship between two classes
using overwrite analysis, we use OLA to assign the direction of
inheritance. Table V shows the number of directions correctly
assigned, the number wrongly assigned (i.e. assigning the
derived as the base) and the number not assigned at all. We
do not assign direction of inheritance between two classes
whenever there is no enough information from OLA about
those classes. On the average, directions of inheritance were
correctly assigned to 93.6% of relationships identified, 1%
were wrongly assigned and 5.4% were not assigned at all.

D. Comparison with Constructor only Analysis

Table III and Table IV show how recall significantly in-
creases from Ctor only analysis, to Ctor-Dtor + OLA. Pre-
cision decreases slightly from Ctor only to Ctor-Dtor, but
increases again for Ctor-Dtor + OLA analysis. Such decrease
in precision is recorded because, for destructor analysis, vptrs
are mapped to base class destructors starting from the last call.



As a result, if a class has no base class, but has a template
class, the template class will be wrongly identified as its base
class. However, with overwrite analysis, we are able to see that
no overwrite actually happens between the two vptrs involved.
First, the combination of destructor and constructor signifi-
cantly increased the recovery compared to using constructors
alone. Secondly, combining these with OLA helped to recover
all other details in the binary that are unavailable from either
constructor or destructor analysis as a result of optimization.
For O0 binaries, the average recall increased from 52.2% to
94.5% for libraries and from 55.4% to 90.6% for executables
for Ctor only and Ctor-Dtor analysis respectively. Since no
optimization is performed on O0 binaries, overwrite analysis
improved neither precision nor recall, for this reason, we did
not include a different column for overwrite analysis. For O2
binaries, the tables show that recall increased from 25.1% to
48.6% to 58.4% for libraries and from 20.2% to 56.1% to
71.4% for executables for Ctor only, Ctor-Dtor and Ctor-Dtor
+ OLA respectively.

E. Comparing DeClassifier with other Class Hierarchy
Recovery Solutions

Table VI summarizes existing class hierarchy recovery
solutions based on capabilities and techniques. We considered
the following:

1) HandleInlining: Can correctly identify relationships
when constructors or destructors are inlined either in
derived class constructors or destructors or in other
functions.

2) InhVsComp: Can differentiate inheritance from compo-
sition.

3) DtorAnalysis: Uses destructor analysis.
4) CHTRecovery: The format in which inheritance tree is

recovered. The edges can either be directed or undi-
rected. All related classes can also be grouped together
or not.

We ran Marx on some binaries. We found out that it can
handle 1 and 2 however, the class hierarchy recovered are
grouped into sub trees. The approach proposed by Katz et
al [13] is similar to Marx based on the features we consider
here. We contacted the authors of VCI for the source code
but they did not release it to us. From the description in the
literatures for VCI, SmartDec and Hex Rays, we see that they
canot handle 1 and they can handle 2 only when there is no
optimization. Also, they do not consider 3 and all hierarchy
recovered are directed. ObjDigger does not handle any of the
capabilities we considered. Lego handles inlined constructors,
but does not handle 2 and does not consider 3. CHT are
directed.

VI. DISCUSSION

A. Falses—Root Cause Analysis

a) Inaccuracies in static disassembly: We did not expect
to find any false relationship from overwrite analysis, however,
this is as a result of inaccuracies in static disassembly. In
the disassembly produced by BAP for the snippet below,

TABLE VI: Solutions that extract at least partial Class Hier-
archy Tree (CHT) from C++ binaries, their key techniques
and limitations. Entry p implies recovery only when ctors not
inlined.

Solution Key
Technique

Handle-
Inlining

InhVs-
Comp

Dtor-
Analysis

CHT-
Recovery

VCI [6] Static ctor
analysis 7 p 7 Directed

Marx [18] Static overwrite
analysis 3 3 7

Undirected
Sub-Tree Grouping

Katz et al. [13] Object tracelet,
predictive modeling 3 3 7

Undirected
Sub-Tree Grouping

SmartDec [7], [8] Static ctor
analysis 7 p 7 Directed

ObjDigger [12] Symbolic execution,
data flow analysis 7 7 7 Not applicable

Lego [24] Dynamic overwrite
analysis 3 7 7 Directed

Hex Rays [23] Static ctor
analysis 7 p 7 Directed

DeClassifier Static ctor-dtor,
overwrite analysis 3 3 3 Directed

the sequence of instructions after 4 is 6, 7, 5. But there is
no actual branch instruction to go back to 5 if the jump
is executed. At 7, the content of rbx is stored back in
rdi, which is the same location where 0xEDFDA8 is stored
at 2. As a result, the rdi value passed to the destructor
of InheritedMemberInfoContext::Private is the same as the
location where 0xEDFDA8 is written. Therefore our overwrite
analysis identifies 0xEDFDA8 and the primary vptr of Inherit-
edMemberInfoContext::Private as being related whereas they
are not. If this were dynamic analysis, instruction 5 will not
be executed if the jump is executed.

1 mov rbx , r d i . . .
2 mov qword p t r [ r d i ] , o f f s e t off EDFDA8 . . .
3 mov r d i , rpb
4 j n z s h o r t l o c 6
5 c a l l I n h e r i t e d M e m b e r I n f o C o n t e x t : : P r i v a t e : : ˜ P r i v a t e ( ) . . .
6 . . .
7 mov r d i , rbx . . .

b) Missing VTables: With higher levels of optimization,
the compiler removes the entire VTable of any class whose
instance is not created irrespective of whether an instance
of its base class is created. In Table VII, we counted the
total number of classes which constitute the edges not recov-
ered by DeClassifier for both libraries and executables.
Constructor-destructor as well as a OLA ensure that every
information present in the binary is recovered, however, if
information is not present in the binary, there is nothing to
work with.

c) Optimized vptr Initialization: We found two cases of
optimized vptr initialization that the compiler performs. These
initializations violate the typical construction/destruction be-
havior assumed by prior efforts.
a. Missing intermediate class initialization: The below code
snippet shows the destructor of class SList<MemberList>in
doxygen.

S l i s t <MemberList > : : ˜ S l i s t ( ) . . .
mov rbx , r d i
# I n i t v p t r o f S l i s t <MemberList>
mov [ r d i ] , 0 xb49d90 . . .
mov r d i , rbx . . .
# C a l l d t o r o f most ba se c l a s s



TABLE VII: Column 2 shows the total number of classes that
make up the missing edges for O2 optimization, column 3
shows the number of those classes whose VTables were not
found in the binary

Programs
#Polymorphic

Classes
missing edges (Col A)

#Classes in Col A
without VTables

in Bin
libzmq 20 13
libwx baseu 88 27
libwx baseu net 6 3
libwx gtk2u adv 63 22
libwx gtk2u aui 5 5
libwx gtk2u core 198 68
libwx gtk2u html 13 7
Doxygen 178 100
Xalanc 158 84
Omnetpp 13 5
DealII 257 169
Soplex 3 2
Povray 16 4

c a l l QGList : : ˜ QGList ( ) . . .

From the ground truth, the direct base class of
SList<MemberList>is QList<MemberList>, which inherits
from QGList. However, the snippet shows that call to the
destructor of QList<MemberList>has been optimized and
replaced with that of the most base class. In cases like this,
we are unable to identify the direct base class. Table VIII
shows the number of edges with missing intermediate base
class. Note that for our evaluation, we neither consider this
edges as false positives nor true positives.
b. Missing all bases: The below code snippet shows the only
instance of construction of class SPxHarrisRT in Soplex which
inherits from SPxRatioTester.

i n t c d e c l main ( ) : . . .
c a l l o p e r a t o r new ( u n s i g n e d long ) . . .
# I n i t v p t r o f s o p l e x : : SPxHarr isRT
mov [ r a x ] , 0 x457b50

However in the binary, only the vptr of SPxHarrisRT gets
written into the object address, without initialization of the vptr
of SPxRatioTester. Other derived classes of SPxRatioTester
were initialized similarly. We found such cases to be common,
and leads to inference inaccuracy.

VII. RELATED WORK

Multiple prior C++ binary-level solutions have recovered
semantic information from a binary [5], [6], [9], [18], [19],
[26], [28]. However, VCI [6] and Marx [18] are the most recent
and relevant tools closest to our work. VCI uses constructor
only analysis to reconstruct the class inheritance of a program.
They handle constructor inlining by relaxing the requirement
that the vptr is written into the first argument (implicit this
pointer) passed to the function being analyzed. This results
in wrong identification of functions as constructors which
subsequently result in false inheritance inference.

Andre et al. [18] presented Marx which reconstructs class
inheritance from binary using certain heuristics. It uses over-
write analysis and groups vptrs written into the same memory
location into a single set, only related vptrs get overwritten
in the same memory location. Even though Marx is able to
correctly group related classes into sets, it does not reason

about the direction of inheritance which significantly limits
its application.

OBJDigger, presented by Jin et al. [12], uses symbolic
execution and inter-procedural data flow analysis to recover
object instances, data members and methods of the same class.
This is achieved by tracking the usage and propagation of the
this pointer within and between functions. While the authors
did not attempt to recover class inheritance, a method to
achieve that was described. However, this can only identify
primary base class since they assume that a base class will
write its vptr only in the zero offset from the object address.
A secondary base class will write to a positive non-zero offset
from the object address but that was not accounted for.

Fokin et al. [8] presented SmartDec which partially recovers
certain C++ specific language constructs statically. It attempts
to recover classes and their inheritance, virtual and non-virtual
member functions, calls to virtual functions, exception raising
and handling statements. Its main limitation is the inability
to differentiate between between inheritance and composition
which results in wrong relationship inference.

Rewards [16] is one of many (e.g., TIE [15], Laika [4]) data
structure reverse engineering tools to infer type information
from binaries. It uses dynamic analysis to recover syntax
and semantics of data structures observed during execution.
Rewards only attempts to infer primitive data types of variables
and their semantics.

OOAnalyzer [22] mainly groups methods into classes by
combining traditional binary analysis, symbolic analysis and
Prolog-based reasoning. The paper explained that class size
and VTable size can be considered to decide inheritance.
Since OOAnalyzer also considers non-polymorphic classes,
one would assume that class size will be relied upon more
for this. However, this was not evaluated, therefore, there is
no way to confirm the claim that OOAnalyzer can decide
inheritance.

VIII. CONCLUSION

Extracting class inheritance tree from optimized C++ code
is hard, yet useful. We present DeClassifier, a static-
analysis based inference engine that employs multiple novel
techniques and infers significant amount of directed class
inheritance tree from 15 C++ binaries compiled with gcc O0
and O2 options.
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APPENDIX

A. Algorithms for Constructor-Destructor Analysis

Below are the algorithms used for constructor-destructor
analysis

Algorithm 1 CtorAnalysis analyzes constructors in C to
identify the base classes of a class whose constructor is being
analyzed.

1: procedure CTORANALYSIS(C)
2: for each c in C do
3: ownerPryV T ← getPrimaryV T (c)
4: coi ← getCOI(c)
5: for each instr in c do
6: if isCall(instr)&&addressOf(instr) <= coi then
7: target ← getTarget(instr)
8: if targetinC then
9: basePryV T ← getPrimaryV T (target)

10: Base{ownerPryV T}.append(basePryV T )
11: end if
12: end if
13: end for
14: end for

return Base
15: end procedure

Algorithm 2 DtorAnalysis analyzes destructors in D to iden-
tify the base classes of a class whose destructor is being
analyzed.

1: procedure DTORANALYSIS(D)
2: for each d in D do
3: ownerPryV T ← getPrimaryV T (d)
4: coi ← getCOI(d)
5: noV Ts← getNoOfV Ts(d)
6: for each instr in d do
7: if isCall(instr)&&addressOf(instr) <= coi then
8: target ← getTarget(instr)
9: if targetinD then

10: allCalls.append(basePryV T )
11: end if
12: end if
13: end for
14: for i = lenghtOf(allCalls)− 1 to 0 do
15: basePryV T ← getPrimaryV T (allCalls[i])
16: BaseownerPryV T .append(basePryV T )
17: noV Ts = noV Ts− getNoOfV Ts(allCalls[i])
18: if !(noV Ts > 0) then
19: break
20: end if
21: end for
22: end for

return Base
23: end procedure

B. Formulas for Precision and Recall

Precision is defined as follows:

P =
TP

TP + FP
(1)

Recall is defined as follows:

R =
TP

TP + FN
(2)

where TP, FP and FN refer to the number of derived-to-
base edges recovered which match edges in the ground truth,

number of edges which do not match any in the ground truth
and number of edges in the ground truth not recovered.

C. Effect of Optimization on function inlining

Results of the number of constructors and destructors
remaining in the binary when compiled with O0 and O2
optimizations.

TABLE IX: Table showing the number of constructors and
destructors present in O0 and O2 binaries. It also shows
functions with inlined constructors which other solutions could
wrongly identify as constructors.

Programs O0 O2

Ctor Dtor
Fns with
inlined

ctor/dtor
Ctor Dtor

Fns with
inlined

ctor/dtor
Mongodb 3544 2063 40 725 1046 2638
Node 2930 2546 75 290 447 2520
Doxygen 1010 940 16 245 751 744
Soplex 29 25 4 10 12 3
Povray 47 24 9 40 19 20
Namd 4 4 0 0 1 2
Omnetpp 175 108 3 113 98 104
DealII 582 702 48 390 677 497
Xalanc 1391 958 309 954 771 1989
libebml 41 18 26 42 18 25
libflac++ 45 18 0 29 18 5
libzmq 82 76 0 58 38 11
libwx baseu net 47 44 2 22 35 33
libwx baseu 371 287 0 158 257 209
libwx gtk2u adv 310 259 12 48 155 240
libwx gtk2u aui 74 59 0 18 46 55
libwx gtk2u core 929 679 3 357 428 857
libwx gtk2u html 140 136 0 26 66 91
libwx gtk2u xrc 120 116 2 71 12 41

D. Results for SPEC 2006 binaries compiled with O3 opti-
mization

The average precision and recall of class hierarchy recov-
ered by DeClassifier for SPEC2006 benchmark programs
compiled with O3 optimization are 91.27% and 67.02% re-
spectively

TABLE X: Precision and Recall of CHT generated by
DeClassifier for O3 Optimization with GCC. Compar-
ison was done with those edges in ground truth whose corre-
sponding VTables were found in the binary

Programs #Classes #Edges Ctor + Dtor + OLA
GT Binary GT Used inh = 0 inh = 1 inh >1 precision recall

Soplex 29 25 22 8 19 5 1 83.3 62.5
Povray 32 26 21 12 18 7 0 85.7 50.0
Omnetpp 112 105 102 97 8 96 1 98.4 63.9
Xalanc 975 876 710 570 410 449 13 93.5 77.9
DealII 874 722 854 652 117 572 12 95.5 80.8
Average 91.3 67.0
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