Skip to content
Branch: master
Find file History
Type Name Latest commit message Commit time
Failed to load latest commit information.
images adding images Jun 20, 2018 Update Jun 20, 2018 proper code indentation Sep 24, 2018 Adjusting comments on sample codes Nov 5, 2018

Sample 1

This sample was created to illustrate the usage of the classes BoundingBox and BoundingBoxes. Objects of the class BoundingBox are an abstraction of the detections or the ground truth boxes. The object of the class BoundingBoxes is used by evaluation methods and represents a collection of bounding boxes.

The full code can be accessed here.

If you just want to evaluate your detections dealing with a high level interface, just check the instructions here.

The code

The classes BoudingBox and BoundingBoxes are in the lib/ folder. The file imports these contents into our example. The file contains basically enumerators and useful functions. The code below shows how to import them:

import _init_paths
from utils import *
from BoundingBox import BoundingBox
from BoundingBoxes import BoundingBoxes

Don't forget to put the content of the folder \lib in the same folder of your code.

All bounding boxes (detected and ground truth) are represented by objects of the class BoundingBox. Each bounding box is created using the constructor. Use the parameter bbType to identify if the box is a ground truth or a detected one. The parameter imageName determines the image that the box belongs to. All the parameters used to create the object are:

  • imageName: String representing the image name.
  • classId: String value representing class id (e.g. 'house', 'dog', 'person')
  • x: Float value representing the X upper-left coordinate of the bounding box.
  • y: Float value representing the Y upper-left coordinate of the bounding box.
  • w: Float value representing the width bounding box. It can also be used to represent the X lower-right coordinate of the bounding box. For that, use the parameter format=BBFormat.XYX2Y2.
  • h: Float value representing the height bounding box. It can also be used to represent the Y lower-right coordinate of the bounding box. For that, use the parameter format=BBFormat.XYX2Y2.
  • typeCoordinates: (optional) Enum (CoordinatesType.Relative or CoordinatesType.Absolute) representing if the bounding box coordinates (x,y,w,h) are absolute or relative to size of the image. Default: 'Absolute'. Some projects like YOLO identifies the detected bounding boxes as being relative to the image size, it may be useful for cases like that. Note that if the coordinate type is relative, the imgSize parameter is required.
  • imgSize: (optional) 2D vector (width, height)=>(int, int) representing the size of the image of the bounding box. If typeCoordinates=CoordinatesType.Relative, the parameter imgSize is required.
  • bbType: (optional) Enum (bbType=BBType.Groundtruth or bbType=BBType.Detection) identifies if the bounding box represents a ground truth or a detection. Not that if it is a detection, the classConfidence has to be informed.
  • classConfidence: (optional) Float value representing the confidence of the detected class. If detectionType is Detection, classConfidence needs to be informed.
  • format: (optional) Enum (BBFormat.XYWH or BBFormat.XYX2Y2) indicating the format of the coordinates of the bounding boxes. If format=BBFormat.XYWH, the parameters x,y,w and h are: <left>, <top>, <width> and <height> respectively. If format=BBFormat.XYX2Y2, the parameters x,y,w and h are: <left>, <top>, <right> and <bottom> respectively.

Attention: The bounding boxes of the same image (detections or ground truth) must have have the same imageName.

The snippet below shows the creation of bounding boxes of 3 different images (000001.jpg, 000002.jpg and 000003.jpg) containing 2, 1 and 1 ground truth objects to be detected respectively. There are 3 detected bounding boxes, one at each image. The images are available in the folder sample_1/images/detections/ and sample_1/images/groundtruths/.

# Ground truth bounding boxes of 000001.jpg
gt_boundingBox_1 = BoundingBox(imageName='000001', classId='dog', x=0.34419263456090654, y=0.611, 
                               w=0.4164305949008499, h=0.262, typeCoordinates=CoordinatesType.Relative,
                               bbType=BBType.GroundTruth, format=BBFormat.XYWH, imgSize=(353,500))
gt_boundingBox_2 = BoundingBox(imageName='000001', classId='person', x=0.509915014164306, y=0.51, 
                               w=0.9745042492917847, h=0.972, typeCoordinates=CoordinatesType.Relative,
                               bbType=BBType.GroundTruth, format=BBFormat.XYWH, imgSize=(353,500))
# Ground truth bounding boxes of 000002.jpg
gt_boundingBox_3 = BoundingBox(imageName='000002', classId='train', x=0.5164179104477612, y=0.501, 
                               w=0.20298507462686569, h=0.202, typeCoordinates=CoordinatesType.Relative,
                               bbType=BBType.GroundTruth, format=BBFormat.XYWH, imgSize=(335,500))
# Ground truth bounding boxes of 000003.jpg
gt_boundingBox_4 = BoundingBox(imageName='000003', classId='bench', x=0.338, y=0.4666666666666667, 
                               w=0.184, h=0.10666666666666666, typeCoordinates=CoordinatesType.Relative, 
                               bbType=BBType.GroundTruth, format=BBFormat.XYWH, imgSize=(500,375))
gt_boundingBox_5 = BoundingBox(imageName='000003', classId='bench', x=0.546, y=0.48133333333333334,
                               w=0.136, h=0.13066666666666665, typeCoordinates=CoordinatesType.Relative,
                               bbType=BBType.GroundTruth, format=BBFormat.XYWH, imgSize=(500,375))
# Detected bounding boxes of 000001.jpg
detected_boundingBox_1 = BoundingBox(imageName='000001', classId='person', classConfidence= 0.893202, 
                                     x=52, y=4, w=352, h=442, typeCoordinates=CoordinatesType.Absolute, 
                                     bbType=BBType.Detected, format=BBFormat.XYX2Y2, imgSize=(353,500))
# Detected bounding boxes of 000002.jpg
detected_boundingBox_2 = BoundingBox(imageName='000002', classId='train', classConfidence=0.863700, 
                                     x=140, y=195, w=209, h=293, typeCoordinates=CoordinatesType.Absolute,
                                     bbType=BBType.Detected, format=BBFormat.XYX2Y2, imgSize=(335,500))
# Detected bounding boxes of 000003.jpg
detected_boundingBox_3 = BoundingBox(imageName='000003', classId='bench', classConfidence=0.278000, 
                                     x=388, y=288, w=493, h=331, typeCoordinates=CoordinatesType.Absolute,
                                     bbType=BBType.Detected, format=BBFormat.XYX2Y2, imgSize=(500,375))

The object BoundingBoxes represents a collection of the bounding boxes (ground truth and detected). Evaluation methods of the class Evaluator use the BoundingBoxes object to apply the metrics. The following code shows how to add the bounding boxes to the collection:

# Creating the object of the class BoundingBoxes 
myBoundingBoxes = BoundingBoxes()
# Add all bounding boxes to the BoundingBoxes object:

You can use the method drawAllBoundingBoxes(image, imageName) to add ground truth bounding boxes (in green) and detected bounding boxes (in red) into your images:

import cv2
import numpy as np
import os
currentPath = os.path.dirname(os.path.realpath(__file__))
gtImages = ['000001', '000002', '000003']
for imageName in gtImages:
    im = cv2.imread(os.path.join(currentPath,'images','groundtruths',imageName)+'.jpg')
    # Add bounding boxes
    im = myBoundingBoxes.drawAllBoundingBoxes(im, imageName)
    # Uncomment the lines below if you want to show the images
    #cv2.imshow(imageName+'.jpg', im)
    print('Image %s created successfully!' % imageName)


/> /> />

Of course you won't build your bounding boxes one by one as done in this example. You should read your detections within a loop and create your bounding boxes inside of it. Sample_2 demonstrates how to read detections from folders containing .txt files.

You can’t perform that action at this time.