diff --git a/pandas/core/series.py b/pandas/core/series.py index a8b0bf1cd07a1..de426184cca70 100644 --- a/pandas/core/series.py +++ b/pandas/core/series.py @@ -1890,21 +1890,24 @@ def sort_values(self, axis=0, ascending=True, inplace=False, """ Sort by the Series values. - Sort (or order) a Series into ascending or descending order by some criterion. + Sort (or order) a Series in ascending or descending order by some + criterion. Parameters ---------- axis : {0 or ‘index’}, default 0 - Axis to direct sorting. + Axis to direct sorting. The value `index` is accepted for + compatibility with DataFrame.sort_values. ascending : bool, default True - If `True` sort values into ascending order, otherwise descending. + If `True` sort values in ascending order, otherwise descending. inplace : bool, default False If True, perform operation in-place. kind : {‘quicksort’, ‘mergesort’ or ‘heapsort’}, default ‘quicksort’ - Choice of sorting algorithm. See also ndarray.np.sort [1]_ for more information. `mergesort` is the only stable - algorithm. + Choice of sorting algorithm. See also :func:`np.sort` for more + information. `mergesort` is the only stable algorithm. na_position : {'first' or 'last'}, default 'last' - Argument `first` puts NaNs at the beginning, `last` puts NaNs at the end. + Argument `first` puts NaNs at the beginning, `last` puts NaNs at + the end. Returns ------- @@ -1917,76 +1920,76 @@ def sort_values(self, axis=0, ascending=True, inplace=False, DataFrame.sort_index : Sort DataFrame by indices. DataFrame.sort_values : Sort by the values along either axis. - References - ---------- - .. [1] https://docs.scipy.org/doc/numpy/reference/generated/numpy.sort.html - Examples -------- - >>> s = pd.Series([np.nan, 1, 232, 323, 1, 2, 3, 45]) + >>> s = pd.Series([np.nan, 1, 3, 5, 10]) >>> s - 0 NaN - 1 1.0 - 2 232.0 - 3 323.0 - 4 1.0 - 5 2.0 - 6 3.0 - 7 45.0 + 0 NaN + 1 1.0 + 2 3.0 + 3 5.0 + 4 10.0 dtype: float64 - Sort values ascending order + Sort values ascending order (default behaviour) >>> s.sort_values(ascending=True) - 1 1.0 - 4 1.0 - 5 2.0 - 6 3.0 - 7 45.0 - 2 232.0 - 3 323.0 - 0 NaN + 1 1.0 + 2 3.0 + 3 5.0 + 4 10.0 + 0 NaN dtype: float64 Sort values descending order >>> s.sort_values(ascending=False) - 3 323.0 - 2 232.0 - 7 45.0 - 6 3.0 - 5 2.0 - 4 1.0 - 1 1.0 - 0 NaN + 4 10.0 + 3 5.0 + 2 3.0 + 1 1.0 + 0 NaN dtype: float64 Sort values inplace >>> s.sort_values(ascending=False, inplace=True) >>> s - 3 323.0 - 2 232.0 - 7 45.0 - 6 3.0 - 5 2.0 - 4 1.0 - 1 1.0 - 0 NaN + 4 10.0 + 3 5.0 + 2 3.0 + 1 1.0 + 0 NaN dtype: float64 Sort values putting NAs first >>> s.sort_values(na_position='first') - 0 NaN - 4 1.0 - 1 1.0 - 5 2.0 - 6 3.0 - 7 45.0 - 2 232.0 - 3 323.0 + 0 NaN + 1 1.0 + 2 3.0 + 3 5.0 + 4 10.0 dtype: float64 + + Sort a series of strings + + >>> s = pd.Series(['z', 'b', 'd', 'a', 'c']) + >>> s + 0 z + 1 b + 2 d + 3 a + 4 c + dtype: object + + >>> s.sort_values() + 3 a + 1 b + 4 c + 2 d + 0 z + dtype: object """ inplace = validate_bool_kwarg(inplace, 'inplace') axis = self._get_axis_number(axis)