Skip to content

HTTPS clone URL

Subversion checkout URL

You can clone with HTTPS or Subversion.

Download ZIP
branch: master
Fetching contributors…

Cannot retrieve contributors at this time

7555 lines (6536 sloc) 250.274 kb
/* Window creation, deletion and examination for GNU Emacs.
Does not include redisplay.
Copyright (C) 1985-1987, 1993-1998, 2000-2015 Free Software
Foundation, Inc.
This file is part of GNU Emacs.
GNU Emacs is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
GNU Emacs is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
#include <config.h>
#include <stdio.h>
#include "lisp.h"
#include "character.h"
#include "buffer.h"
#include "keyboard.h"
#include "keymap.h"
#include "frame.h"
#include "window.h"
#include "commands.h"
#include "indent.h"
#include "termchar.h"
#include "disptab.h"
#include "dispextern.h"
#include "blockinput.h"
#include "intervals.h"
#include "termhooks.h" /* For FRAME_TERMINAL. */
#ifdef HAVE_WINDOW_SYSTEM
#include TERM_HEADER
#endif /* HAVE_WINDOW_SYSTEM */
#ifdef MSDOS
#include "msdos.h"
#endif
Lisp_Object Qwindowp, Qwindow_live_p;
static Lisp_Object Qwindow_valid_p;
static Lisp_Object Qwindow_configuration_p;
static Lisp_Object Qrecord_window_buffer;
static Lisp_Object Qwindow_deletable_p, Qdelete_window, Qdisplay_buffer;
static Lisp_Object Qreplace_buffer_in_windows, Qget_mru_window;
static Lisp_Object Qwindow_resize_root_window, Qwindow_resize_root_window_vertically;
static Lisp_Object Qwindow_pixel_to_total;
static Lisp_Object Qscroll_up, Qscroll_down, Qscroll_command;
static Lisp_Object Qsafe, Qabove, Qbelow, Qwindow_size, Qclone_of;
static Lisp_Object Qfloor, Qceiling;
static Lisp_Object Qwindow_point_insertion_type;
static int displayed_window_lines (struct window *);
static int count_windows (struct window *);
static int get_leaf_windows (struct window *, struct window **, int);
static void window_scroll (Lisp_Object, EMACS_INT, bool, int);
static void window_scroll_pixel_based (Lisp_Object, int, bool, int);
static void window_scroll_line_based (Lisp_Object, int, bool, int);
static int add_window_to_list (struct window *, void *);
static Lisp_Object next_window (Lisp_Object, Lisp_Object,
Lisp_Object, int);
static void decode_next_window_args (Lisp_Object *, Lisp_Object *,
Lisp_Object *);
static void foreach_window (struct frame *,
int (* fn) (struct window *, void *),
void *);
static int foreach_window_1 (struct window *,
int (* fn) (struct window *, void *),
void *);
static Lisp_Object window_list_1 (Lisp_Object, Lisp_Object, Lisp_Object);
static int window_resize_check (struct window *, bool);
static void window_resize_apply (struct window *, bool);
static void window_resize_apply_total (struct window *, bool);
static Lisp_Object select_window (Lisp_Object, Lisp_Object, int);
static void select_window_1 (Lisp_Object, bool);
static struct window *set_window_fringes (struct window *, Lisp_Object,
Lisp_Object, Lisp_Object);
static struct window *set_window_margins (struct window *, Lisp_Object,
Lisp_Object);
static struct window *set_window_scroll_bars (struct window *, Lisp_Object,
Lisp_Object, Lisp_Object);
static void apply_window_adjustment (struct window *);
/* This is the window in which the terminal's cursor should
be left when nothing is being done with it. This must
always be a leaf window, and its buffer is selected by
the top level editing loop at the end of each command.
This value is always the same as
FRAME_SELECTED_WINDOW (selected_frame). */
Lisp_Object selected_window;
/* A list of all windows for use by next_window and Fwindow_list.
Functions creating or deleting windows should invalidate this cache
by setting it to nil. */
Lisp_Object Vwindow_list;
/* The mini-buffer window of the selected frame.
Note that you cannot test for mini-bufferness of an arbitrary window
by comparing against this; but you can test for mini-bufferness of
the selected window. */
Lisp_Object minibuf_window;
/* Non-nil means it is the window whose mode line should be
shown as the selected window when the minibuffer is selected. */
Lisp_Object minibuf_selected_window;
/* Hook run at end of temp_output_buffer_show. */
static Lisp_Object Qtemp_buffer_show_hook;
/* Incremented for each window created. */
static int sequence_number;
/* Nonzero after init_window_once has finished. */
static int window_initialized;
/* Hook to run when window config changes. */
static Lisp_Object Qwindow_configuration_change_hook;
/* Used by the function window_scroll_pixel_based. */
static int window_scroll_pixel_based_preserve_x;
static int window_scroll_pixel_based_preserve_y;
/* Same for window_scroll_line_based. */
static EMACS_INT window_scroll_preserve_hpos;
static EMACS_INT window_scroll_preserve_vpos;
static void
CHECK_WINDOW_CONFIGURATION (Lisp_Object x)
{
CHECK_TYPE (WINDOW_CONFIGURATIONP (x), Qwindow_configuration_p, x);
}
/* These setters are used only in this file, so they can be private. */
static void
wset_combination_limit (struct window *w, Lisp_Object val)
{
w->combination_limit = val;
}
static void
wset_dedicated (struct window *w, Lisp_Object val)
{
w->dedicated = val;
}
static void
wset_display_table (struct window *w, Lisp_Object val)
{
w->display_table = val;
}
static void
wset_new_normal (struct window *w, Lisp_Object val)
{
w->new_normal = val;
}
static void
wset_new_total (struct window *w, Lisp_Object val)
{
w->new_total = val;
}
static void
wset_normal_cols (struct window *w, Lisp_Object val)
{
w->normal_cols = val;
}
static void
wset_normal_lines (struct window *w, Lisp_Object val)
{
w->normal_lines = val;
}
static void
wset_parent (struct window *w, Lisp_Object val)
{
w->parent = val;
}
static void
wset_pointm (struct window *w, Lisp_Object val)
{
w->pointm = val;
}
static void
wset_start (struct window *w, Lisp_Object val)
{
w->start = val;
}
static void
wset_temslot (struct window *w, Lisp_Object val)
{
w->temslot = val;
}
static void
wset_vertical_scroll_bar_type (struct window *w, Lisp_Object val)
{
w->vertical_scroll_bar_type = val;
}
static void
wset_window_parameters (struct window *w, Lisp_Object val)
{
w->window_parameters = val;
}
static void
wset_combination (struct window *w, bool horflag, Lisp_Object val)
{
/* Since leaf windows never becomes non-leaf, there should
be no buffer and markers in start and pointm fields of W. */
eassert (!BUFFERP (w->contents) && NILP (w->start) && NILP (w->pointm));
w->contents = val;
/* When an internal window is deleted and VAL is nil, HORFLAG
is meaningless. */
if (!NILP (val))
w->horizontal = horflag;
}
/* Nonzero if leaf window W doesn't reflect the actual state
of displayed buffer due to its text or overlays change. */
bool
window_outdated (struct window *w)
{
struct buffer *b = XBUFFER (w->contents);
return (w->last_modified < BUF_MODIFF (b)
|| w->last_overlay_modified < BUF_OVERLAY_MODIFF (b));
}
struct window *
decode_live_window (register Lisp_Object window)
{
if (NILP (window))
return XWINDOW (selected_window);
CHECK_LIVE_WINDOW (window);
return XWINDOW (window);
}
struct window *
decode_any_window (register Lisp_Object window)
{
struct window *w;
if (NILP (window))
return XWINDOW (selected_window);
CHECK_WINDOW (window);
w = XWINDOW (window);
return w;
}
static struct window *
decode_valid_window (register Lisp_Object window)
{
struct window *w;
if (NILP (window))
return XWINDOW (selected_window);
CHECK_VALID_WINDOW (window);
w = XWINDOW (window);
return w;
}
/* Called when W's buffer slot is changed. ARG -1 means that W is about to
cease its buffer, and 1 means that W is about to set up the new one. */
static void
adjust_window_count (struct window *w, int arg)
{
eassert (eabs (arg) == 1);
if (BUFFERP (w->contents))
{
struct buffer *b = XBUFFER (w->contents);
if (b->base_buffer)
b = b->base_buffer;
b->window_count += arg;
eassert (b->window_count >= 0);
/* These should be recalculated by redisplay code. */
w->window_end_valid = 0;
w->base_line_pos = 0;
}
}
/* Set W's buffer slot to VAL and recompute number
of windows showing VAL if it is a buffer. */
void
wset_buffer (struct window *w, Lisp_Object val)
{
adjust_window_count (w, -1);
if (BUFFERP (val))
/* Make sure that we do not assign the buffer
to an internal window. */
eassert (MARKERP (w->start) && MARKERP (w->pointm));
w->contents = val;
adjust_window_count (w, 1);
}
DEFUN ("windowp", Fwindowp, Swindowp, 1, 1, 0,
doc: /* Return t if OBJECT is a window and nil otherwise. */)
(Lisp_Object object)
{
return WINDOWP (object) ? Qt : Qnil;
}
DEFUN ("window-valid-p", Fwindow_valid_p, Swindow_valid_p, 1, 1, 0,
doc: /* Return t if OBJECT is a valid window and nil otherwise.
A valid window is either a window that displays a buffer or an internal
window. Windows that have been deleted are not valid. */)
(Lisp_Object object)
{
return WINDOW_VALID_P (object) ? Qt : Qnil;
}
DEFUN ("window-live-p", Fwindow_live_p, Swindow_live_p, 1, 1, 0,
doc: /* Return t if OBJECT is a live window and nil otherwise.
A live window is a window that displays a buffer.
Internal windows and deleted windows are not live. */)
(Lisp_Object object)
{
return WINDOW_LIVE_P (object) ? Qt : Qnil;
}
/* Frames and windows. */
DEFUN ("window-frame", Fwindow_frame, Swindow_frame, 0, 1, 0,
doc: /* Return the frame that window WINDOW is on.
WINDOW must be a valid window and defaults to the selected one. */)
(Lisp_Object window)
{
return decode_valid_window (window)->frame;
}
DEFUN ("frame-root-window", Fframe_root_window, Sframe_root_window, 0, 1, 0,
doc: /* Return the root window of FRAME-OR-WINDOW.
If omitted, FRAME-OR-WINDOW defaults to the currently selected frame.
With a frame argument, return that frame's root window.
With a window argument, return the root window of that window's frame. */)
(Lisp_Object frame_or_window)
{
Lisp_Object window;
if (NILP (frame_or_window))
window = SELECTED_FRAME ()->root_window;
else if (WINDOW_VALID_P (frame_or_window))
window = XFRAME (XWINDOW (frame_or_window)->frame)->root_window;
else
{
CHECK_LIVE_FRAME (frame_or_window);
window = XFRAME (frame_or_window)->root_window;
}
return window;
}
DEFUN ("minibuffer-window", Fminibuffer_window, Sminibuffer_window, 0, 1, 0,
doc: /* Return the minibuffer window for frame FRAME.
If FRAME is omitted or nil, it defaults to the selected frame. */)
(Lisp_Object frame)
{
return FRAME_MINIBUF_WINDOW (decode_live_frame (frame));
}
DEFUN ("window-minibuffer-p", Fwindow_minibuffer_p,
Swindow_minibuffer_p, 0, 1, 0,
doc: /* Return non-nil if WINDOW is a minibuffer window.
WINDOW must be a valid window and defaults to the selected one. */)
(Lisp_Object window)
{
return MINI_WINDOW_P (decode_valid_window (window)) ? Qt : Qnil;
}
/* Don't move this to window.el - this must be a safe routine. */
DEFUN ("frame-first-window", Fframe_first_window, Sframe_first_window, 0, 1, 0,
doc: /* Return the topmost, leftmost live window on FRAME-OR-WINDOW.
If omitted, FRAME-OR-WINDOW defaults to the currently selected frame.
Else if FRAME-OR-WINDOW denotes a valid window, return the first window
of that window's frame. If FRAME-OR-WINDOW denotes a live frame, return
the first window of that frame. */)
(Lisp_Object frame_or_window)
{
Lisp_Object window;
if (NILP (frame_or_window))
window = SELECTED_FRAME ()->root_window;
else if (WINDOW_VALID_P (frame_or_window))
window = XFRAME (WINDOW_FRAME (XWINDOW (frame_or_window)))->root_window;
else
{
CHECK_LIVE_FRAME (frame_or_window);
window = XFRAME (frame_or_window)->root_window;
}
while (WINDOWP (XWINDOW (window)->contents))
window = XWINDOW (window)->contents;
return window;
}
DEFUN ("frame-selected-window", Fframe_selected_window,
Sframe_selected_window, 0, 1, 0,
doc: /* Return the selected window of FRAME-OR-WINDOW.
If omitted, FRAME-OR-WINDOW defaults to the currently selected frame.
Else if FRAME-OR-WINDOW denotes a valid window, return the selected
window of that window's frame. If FRAME-OR-WINDOW denotes a live frame,
return the selected window of that frame. */)
(Lisp_Object frame_or_window)
{
Lisp_Object window;
if (NILP (frame_or_window))
window = SELECTED_FRAME ()->selected_window;
else if (WINDOW_VALID_P (frame_or_window))
window = XFRAME (WINDOW_FRAME (XWINDOW (frame_or_window)))->selected_window;
else
{
CHECK_LIVE_FRAME (frame_or_window);
window = XFRAME (frame_or_window)->selected_window;
}
return window;
}
DEFUN ("set-frame-selected-window", Fset_frame_selected_window,
Sset_frame_selected_window, 2, 3, 0,
doc: /* Set selected window of FRAME to WINDOW.
FRAME must be a live frame and defaults to the selected one. If FRAME
is the selected frame, this makes WINDOW the selected window. Optional
argument NORECORD non-nil means to neither change the order of recently
selected windows nor the buffer list. WINDOW must denote a live window.
Return WINDOW. */)
(Lisp_Object frame, Lisp_Object window, Lisp_Object norecord)
{
if (NILP (frame))
frame = selected_frame;
CHECK_LIVE_FRAME (frame);
CHECK_LIVE_WINDOW (window);
if (! EQ (frame, WINDOW_FRAME (XWINDOW (window))))
error ("In `set-frame-selected-window', WINDOW is not on FRAME");
if (EQ (frame, selected_frame))
return Fselect_window (window, norecord);
else
{
fset_selected_window (XFRAME (frame), window);
return window;
}
}
DEFUN ("selected-window", Fselected_window, Sselected_window, 0, 0, 0,
doc: /* Return the selected window.
The selected window is the window in which the standard cursor for
selected windows appears and to which many commands apply. */)
(void)
{
return selected_window;
}
int window_select_count;
/* If select_window is called with inhibit_point_swap non-zero it will
not store point of the old selected window's buffer back into that
window's pointm slot. This is needed by Fset_window_configuration to
avoid that the display routine is called with selected_window set to
Qnil causing a subsequent crash. */
static Lisp_Object
select_window (Lisp_Object window, Lisp_Object norecord, int inhibit_point_swap)
{
register struct window *w;
struct frame *sf;
CHECK_LIVE_WINDOW (window);
w = XWINDOW (window);
/* Make the selected window's buffer current. */
Fset_buffer (w->contents);
if (EQ (window, selected_window) && !inhibit_point_swap)
/* `switch-to-buffer' uses (select-window (selected-window)) as a "clever"
way to call record_buffer from Elisp, so it's important that we call
record_buffer before returning here. */
goto record_and_return;
if (NILP (norecord))
{ /* Mark the window for redisplay since the selected-window has
a different mode-line. */
wset_redisplay (XWINDOW (selected_window));
wset_redisplay (w);
}
else
redisplay_other_windows ();
sf = SELECTED_FRAME ();
if (XFRAME (WINDOW_FRAME (w)) != sf)
{
fset_selected_window (XFRAME (WINDOW_FRAME (w)), window);
/* Use this rather than Fhandle_switch_frame
so that FRAME_FOCUS_FRAME is moved appropriately as we
move around in the state where a minibuffer in a separate
frame is active. */
Fselect_frame (WINDOW_FRAME (w), norecord);
/* Fselect_frame called us back so we've done all the work already. */
eassert (EQ (window, selected_window));
return window;
}
else
fset_selected_window (sf, window);
select_window_1 (window, inhibit_point_swap);
bset_last_selected_window (XBUFFER (w->contents), window);
record_and_return:
/* record_buffer can run QUIT, so make sure it is run only after we have
re-established the invariant between selected_window and selected_frame,
otherwise the temporary broken invariant might "escape" (bug#14161). */
if (NILP (norecord))
{
w->use_time = ++window_select_count;
record_buffer (w->contents);
}
return window;
}
/* Select window with a minimum of fuss, i.e. don't record the change anywhere
(not even for redisplay's benefit), and assume that the window's frame is
already selected. */
static void
select_window_1 (Lisp_Object window, bool inhibit_point_swap)
{
/* Store the old selected window's buffer's point in pointm of the old
selected window. It belongs to that window, and when the window is
not selected, must be in the window. */
if (!inhibit_point_swap)
{
struct window *ow = XWINDOW (selected_window);
if (BUFFERP (ow->contents))
set_marker_both (ow->pointm, ow->contents,
BUF_PT (XBUFFER (ow->contents)),
BUF_PT_BYTE (XBUFFER (ow->contents)));
}
selected_window = window;
/* Go to the point recorded in the window.
This is important when the buffer is in more
than one window. It also matters when
redisplay_window has altered point after scrolling,
because it makes the change only in the window. */
set_point_from_marker (XWINDOW (window)->pointm);
}
DEFUN ("select-window", Fselect_window, Sselect_window, 1, 2, 0,
doc: /* Select WINDOW which must be a live window.
Also make WINDOW's frame the selected frame and WINDOW that frame's
selected window. In addition, make WINDOW's buffer current and set its
buffer's value of `point' to the value of WINDOW's `window-point'.
Return WINDOW.
Optional second arg NORECORD non-nil means do not put this buffer at the
front of the buffer list and do not make this window the most recently
selected one.
Run `buffer-list-update-hook' unless NORECORD is non-nil. Note that
applications and internal routines often select a window temporarily for
various purposes; mostly, to simplify coding. As a rule, such
selections should be not recorded and therefore will not pollute
`buffer-list-update-hook'. Selections that "really count" are those
causing a visible change in the next redisplay of WINDOW's frame and
should be always recorded. So if you think of running a function each
time a window gets selected put it on `buffer-list-update-hook'.
Also note that the main editor command loop sets the current buffer to
the buffer of the selected window before each command. */)
(register Lisp_Object window, Lisp_Object norecord)
{
return select_window (window, norecord, 0);
}
DEFUN ("window-buffer", Fwindow_buffer, Swindow_buffer, 0, 1, 0,
doc: /* Return the buffer displayed in window WINDOW.
If WINDOW is omitted or nil, it defaults to the selected window.
Return nil for an internal window or a deleted window. */)
(Lisp_Object window)
{
struct window *w = decode_any_window (window);
return WINDOW_LEAF_P (w) ? w->contents : Qnil;
}
DEFUN ("window-parent", Fwindow_parent, Swindow_parent, 0, 1, 0,
doc: /* Return the parent window of window WINDOW.
WINDOW must be a valid window and defaults to the selected one.
Return nil for a window with no parent (e.g. a root window). */)
(Lisp_Object window)
{
return decode_valid_window (window)->parent;
}
DEFUN ("window-top-child", Fwindow_top_child, Swindow_top_child, 0, 1, 0,
doc: /* Return the topmost child window of window WINDOW.
WINDOW must be a valid window and defaults to the selected one.
Return nil if WINDOW is a live window (live windows have no children).
Return nil if WINDOW is an internal window whose children form a
horizontal combination. */)
(Lisp_Object window)
{
struct window *w = decode_valid_window (window);
return WINDOW_VERTICAL_COMBINATION_P (w) ? w->contents : Qnil;
}
DEFUN ("window-left-child", Fwindow_left_child, Swindow_left_child, 0, 1, 0,
doc: /* Return the leftmost child window of window WINDOW.
WINDOW must be a valid window and defaults to the selected one.
Return nil if WINDOW is a live window (live windows have no children).
Return nil if WINDOW is an internal window whose children form a
vertical combination. */)
(Lisp_Object window)
{
struct window *w = decode_valid_window (window);
return WINDOW_HORIZONTAL_COMBINATION_P (w) ? w->contents : Qnil;
}
DEFUN ("window-next-sibling", Fwindow_next_sibling, Swindow_next_sibling, 0, 1, 0,
doc: /* Return the next sibling window of window WINDOW.
WINDOW must be a valid window and defaults to the selected one.
Return nil if WINDOW has no next sibling. */)
(Lisp_Object window)
{
return decode_valid_window (window)->next;
}
DEFUN ("window-prev-sibling", Fwindow_prev_sibling, Swindow_prev_sibling, 0, 1, 0,
doc: /* Return the previous sibling window of window WINDOW.
WINDOW must be a valid window and defaults to the selected one.
Return nil if WINDOW has no previous sibling. */)
(Lisp_Object window)
{
return decode_valid_window (window)->prev;
}
DEFUN ("window-combination-limit", Fwindow_combination_limit, Swindow_combination_limit, 1, 1, 0,
doc: /* Return combination limit of window WINDOW.
WINDOW must be a valid window used in horizontal or vertical combination.
If the return value is nil, child windows of WINDOW can be recombined with
WINDOW's siblings. A return value of t means that child windows of
WINDOW are never \(re-)combined with WINDOW's siblings. */)
(Lisp_Object window)
{
struct window *w;
CHECK_VALID_WINDOW (window);
w = XWINDOW (window);
if (WINDOW_LEAF_P (w))
error ("Combination limit is meaningful for internal windows only");
return w->combination_limit;
}
DEFUN ("set-window-combination-limit", Fset_window_combination_limit, Sset_window_combination_limit, 2, 2, 0,
doc: /* Set combination limit of window WINDOW to LIMIT; return LIMIT.
WINDOW must be a valid window used in horizontal or vertical combination.
If LIMIT is nil, child windows of WINDOW can be recombined with WINDOW's
siblings. LIMIT t means that child windows of WINDOW are never
\(re-)combined with WINDOW's siblings. Other values are reserved for
future use. */)
(Lisp_Object window, Lisp_Object limit)
{
struct window *w;
CHECK_VALID_WINDOW (window);
w = XWINDOW (window);
if (WINDOW_LEAF_P (w))
error ("Combination limit is meaningful for internal windows only");
wset_combination_limit (w, limit);
return limit;
}
DEFUN ("window-use-time", Fwindow_use_time, Swindow_use_time, 0, 1, 0,
doc: /* Return the use time of window WINDOW.
WINDOW must be a live window and defaults to the selected one.
The window with the highest use time is the most recently selected
one. The window with the lowest use time is the least recently
selected one. */)
(Lisp_Object window)
{
return make_number (decode_live_window (window)->use_time);
}
DEFUN ("window-pixel-width", Fwindow_pixel_width, Swindow_pixel_width, 0, 1, 0,
doc: /* Return the width of window WINDOW in pixels.
WINDOW must be a valid window and defaults to the selected one.
The return value includes the fringes and margins of WINDOW as well as
any vertical dividers or scroll bars belonging to WINDOW. If WINDOW is
an internal window, its pixel width is the width of the screen areas
spanned by its children. */)
(Lisp_Object window)
{
return make_number (decode_valid_window (window)->pixel_width);
}
DEFUN ("window-pixel-height", Fwindow_pixel_height, Swindow_pixel_height, 0, 1, 0,
doc: /* Return the height of window WINDOW in pixels.
WINDOW must be a valid window and defaults to the selected one.
The return value includes the mode line and header line and the bottom
divider, if any. If WINDOW is an internal window, its pixel height is
the height of the screen areas spanned by its children. */)
(Lisp_Object window)
{
return make_number (decode_valid_window (window)->pixel_height);
}
DEFUN ("window-total-height", Fwindow_total_height, Swindow_total_height, 0, 2, 0,
doc: /* Return the height of window WINDOW in lines.
WINDOW must be a valid window and defaults to the selected one.
The return value includes the heights of WINDOW's mode and header line
and its bottom divider, if any. If WINDOW is an internal window, the
total height is the height of the screen areas spanned by its children.
If WINDOW's pixel height is not an integral multiple of its frame's
character height, the number of lines occupied by WINDOW is rounded
internally. This is done in a way such that, if WINDOW is a parent
window, the sum of the total heights of all its children internally
equals the total height of WINDOW.
If the optional argument ROUND is `ceiling', return the smallest integer
larger than WINDOW's pixel height divided by the character height of
WINDOW's frame. ROUND `floor' means to return the largest integer
smaller than WINDOW's pixel height divided by the character height of
WINDOW's frame. Any other value of ROUND means to return the internal
total height of WINDOW. */)
(Lisp_Object window, Lisp_Object round)
{
struct window *w = decode_valid_window (window);
if (! EQ (round, Qfloor) && ! EQ (round, Qceiling))
return make_number (w->total_lines);
else
{
int unit = FRAME_LINE_HEIGHT (WINDOW_XFRAME (w));
return make_number (EQ (round, Qceiling)
? ((w->pixel_height + unit - 1) /unit)
: (w->pixel_height / unit));
}
}
DEFUN ("window-total-width", Fwindow_total_width, Swindow_total_width, 0, 2, 0,
doc: /* Return the total width of window WINDOW in columns.
WINDOW must be a valid window and defaults to the selected one.
The return value includes the widths of WINDOW's fringes, margins,
scroll bars and its right divider, if any. If WINDOW is an internal
window, the total width is the width of the screen areas spanned by its
children.
If WINDOW's pixel width is not an integral multiple of its frame's
character width, the number of lines occupied by WINDOW is rounded
internally. This is done in a way such that, if WINDOW is a parent
window, the sum of the total widths of all its children internally
equals the total width of WINDOW.
If the optional argument ROUND is `ceiling', return the smallest integer
larger than WINDOW's pixel width divided by the character width of
WINDOW's frame. ROUND `floor' means to return the largest integer
smaller than WINDOW's pixel width divided by the character width of
WINDOW's frame. Any other value of ROUND means to return the internal
total width of WINDOW. */)
(Lisp_Object window, Lisp_Object round)
{
struct window *w = decode_valid_window (window);
if (! EQ (round, Qfloor) && ! EQ (round, Qceiling))
return make_number (w->total_cols);
else
{
int unit = FRAME_COLUMN_WIDTH (WINDOW_XFRAME (w));
return make_number (EQ (round, Qceiling)
? ((w->pixel_width + unit - 1) /unit)
: (w->pixel_width / unit));
}
}
DEFUN ("window-new-total", Fwindow_new_total, Swindow_new_total, 0, 1, 0,
doc: /* Return the new total size of window WINDOW.
WINDOW must be a valid window and defaults to the selected one.
The new total size of WINDOW is the value set by the last call of
`set-window-new-total' for WINDOW. If it is valid, it will be shortly
installed as WINDOW's total height (see `window-total-height') or total
width (see `window-total-width'). */)
(Lisp_Object window)
{
return decode_valid_window (window)->new_total;
}
DEFUN ("window-normal-size", Fwindow_normal_size, Swindow_normal_size, 0, 2, 0,
doc: /* Return the normal height of window WINDOW.
WINDOW must be a valid window and defaults to the selected one.
If HORIZONTAL is non-nil, return the normal width of WINDOW.
The normal height of a frame's root window or a window that is
horizontally combined (a window that has a left or right sibling) is
1.0. The normal height of a window that is vertically combined (has a
sibling above or below) is the fraction of the window's height with
respect to its parent. The sum of the normal heights of all windows in a
vertical combination equals 1.0.
Similarly, the normal width of a frame's root window or a window that is
vertically combined equals 1.0. The normal width of a window that is
horizontally combined is the fraction of the window's width with respect
to its parent. The sum of the normal widths of all windows in a
horizontal combination equals 1.0.
The normal sizes of windows are used to restore the proportional sizes
of windows after they have been shrunk to their minimum sizes; for
example when a frame is temporarily made very small and afterwards gets
re-enlarged to its previous size. */)
(Lisp_Object window, Lisp_Object horizontal)
{
struct window *w = decode_valid_window (window);
return NILP (horizontal) ? w->normal_lines : w->normal_cols;
}
DEFUN ("window-new-normal", Fwindow_new_normal, Swindow_new_normal, 0, 1, 0,
doc: /* Return new normal size of window WINDOW.
WINDOW must be a valid window and defaults to the selected one.
The new normal size of WINDOW is the value set by the last call of
`set-window-new-normal' for WINDOW. If valid, it will be shortly
installed as WINDOW's normal size (see `window-normal-size'). */)
(Lisp_Object window)
{
return decode_valid_window (window)->new_normal;
}
DEFUN ("window-new-pixel", Fwindow_new_pixel, Swindow_new_pixel, 0, 1, 0,
doc: /* Return new pixel size of window WINDOW.
WINDOW must be a valid window and defaults to the selected one.
The new pixel size of WINDOW is the value set by the last call of
`set-window-new-pixel' for WINDOW. If it is valid, it will be shortly
installed as WINDOW's pixel height (see `window-pixel-height') or pixel
width (see `window-pixel-width'). */)
(Lisp_Object window)
{
return decode_valid_window (window)->new_pixel;
}
DEFUN ("window-pixel-left", Fwindow_pixel_left, Swindow_pixel_left, 0, 1, 0,
doc: /* Return left pixel edge of window WINDOW.
WINDOW must be a valid window and defaults to the selected one. */)
(Lisp_Object window)
{
return make_number (decode_valid_window (window)->pixel_left);
}
DEFUN ("window-pixel-top", Fwindow_pixel_top, Swindow_pixel_top, 0, 1, 0,
doc: /* Return top pixel edge of window WINDOW.
WINDOW must be a valid window and defaults to the selected one. */)
(Lisp_Object window)
{
return make_number (decode_valid_window (window)->pixel_top);
}
DEFUN ("window-left-column", Fwindow_left_column, Swindow_left_column, 0, 1, 0,
doc: /* Return left column of window WINDOW.
This is the distance, in columns, between the left edge of WINDOW and
the left edge of the frame's window area. For instance, the return
value is 0 if there is no window to the left of WINDOW.
WINDOW must be a valid window and defaults to the selected one. */)
(Lisp_Object window)
{
return make_number (decode_valid_window (window)->left_col);
}
DEFUN ("window-top-line", Fwindow_top_line, Swindow_top_line, 0, 1, 0,
doc: /* Return top line of window WINDOW.
This is the distance, in lines, between the top of WINDOW and the top
of the frame's window area. For instance, the return value is 0 if
there is no window above WINDOW.
WINDOW must be a valid window and defaults to the selected one. */)
(Lisp_Object window)
{
return make_number (decode_valid_window (window)->top_line);
}
/* Return the number of lines/pixels of W's body. Don't count any mode
or header line or horizontal divider of W. Rounds down to nearest
integer when not working pixelwise. */
static int
window_body_height (struct window *w, bool pixelwise)
{
int height = (w->pixel_height
- WINDOW_HEADER_LINE_HEIGHT (w)
- WINDOW_MODE_LINE_HEIGHT (w)
- WINDOW_BOTTOM_DIVIDER_WIDTH (w));
/* Don't return a negative value. */
return max (pixelwise
? height
: height / FRAME_LINE_HEIGHT (WINDOW_XFRAME (w)),
0);
}
/* Return the number of columns/pixels of W's body. Don't count columns
occupied by the scroll bar or the divider/vertical bar separating W
from its right sibling or margins. On window-systems don't count
fringes either. Round down to nearest integer when not working
pixelwise. */
int
window_body_width (struct window *w, bool pixelwise)
{
struct frame *f = XFRAME (WINDOW_FRAME (w));
int width = (w->pixel_width
- WINDOW_RIGHT_DIVIDER_WIDTH (w)
- (WINDOW_HAS_VERTICAL_SCROLL_BAR (w)
? WINDOW_SCROLL_BAR_AREA_WIDTH (w)
: ((!FRAME_WINDOW_P (f)
&& !WINDOW_RIGHTMOST_P (w)
&& !WINDOW_RIGHT_DIVIDER_WIDTH (w))
/* A vertical bar is either 1 or 0. */
? 1 : 0))
- WINDOW_MARGINS_WIDTH (w)
- (FRAME_WINDOW_P (f)
? WINDOW_FRINGES_WIDTH (w)
: 0));
/* Don't return a negative value. */
return max (pixelwise
? width
: width / FRAME_COLUMN_WIDTH (WINDOW_XFRAME (w)),
0);
}
DEFUN ("window-body-height", Fwindow_body_height, Swindow_body_height, 0, 2, 0,
doc: /* Return the height of WINDOW's text area.
WINDOW must be a live window and defaults to the selected one. Optional
argument PIXELWISE non-nil means return the height of WINDOW's text area
in pixels. The return value does not include the mode line or header
line or any horizontal divider.
If PIXELWISE is nil, return the largest integer smaller than WINDOW's
pixel height divided by the character height of WINDOW's frame. This
means that if a line at the bottom of the text area is only partially
visible, that line is not counted. */)
(Lisp_Object window, Lisp_Object pixelwise)
{
return make_number (window_body_height (decode_live_window (window),
NILP (pixelwise) ? 0 : 1));
}
DEFUN ("window-body-width", Fwindow_body_width, Swindow_body_width, 0, 2, 0,
doc: /* Return the width of WINDOW's text area.
WINDOW must be a live window and defaults to the selected one. Optional
argument PIXELWISE non-nil means return the width in pixels. The return
value does not include any vertical dividers, fringes or marginal areas,
or scroll bars.
If PIXELWISE is nil, return the largest integer smaller than WINDOW's
pixel width divided by the character width of WINDOW's frame. This
means that if a column at the right of the text area is only partially
visible, that column is not counted.
Note that the returned value includes the column reserved for the
continuation glyph. */)
(Lisp_Object window, Lisp_Object pixelwise)
{
return make_number (window_body_width (decode_live_window (window),
NILP (pixelwise) ? 0 : 1));
}
DEFUN ("window-mode-line-height", Fwindow_mode_line_height,
Swindow_mode_line_height, 0, 1, 0,
doc: /* Return the height in pixels of WINDOW's mode-line.
WINDOW must be a live window and defaults to the selected one. */)
(Lisp_Object window)
{
return (make_number (WINDOW_MODE_LINE_HEIGHT (decode_live_window (window))));
}
DEFUN ("window-header-line-height", Fwindow_header_line_height,
Swindow_header_line_height, 0, 1, 0,
doc: /* Return the height in pixels of WINDOW's header-line.
WINDOW must be a live window and defaults to the selected one. */)
(Lisp_Object window)
{
return (make_number (WINDOW_HEADER_LINE_HEIGHT (decode_live_window (window))));
}
DEFUN ("window-right-divider-width", Fwindow_right_divider_width,
Swindow_right_divider_width, 0, 1, 0,
doc: /* Return the width in pixels of WINDOW's right divider.
WINDOW must be a live window and defaults to the selected one. */)
(Lisp_Object window)
{
return (make_number (WINDOW_RIGHT_DIVIDER_WIDTH (decode_live_window (window))));
}
DEFUN ("window-bottom-divider-width", Fwindow_bottom_divider_width,
Swindow_bottom_divider_width, 0, 1, 0,
doc: /* Return the width in pixels of WINDOW's bottom divider.
WINDOW must be a live window and defaults to the selected one. */)
(Lisp_Object window)
{
return (make_number (WINDOW_BOTTOM_DIVIDER_WIDTH (decode_live_window (window))));
}
DEFUN ("window-scroll-bar-width", Fwindow_scroll_bar_width,
Swindow_scroll_bar_width, 0, 1, 0,
doc: /* Return the width in pixels of WINDOW's vertical scrollbar.
WINDOW must be a live window and defaults to the selected one. */)
(Lisp_Object window)
{
return (make_number (WINDOW_SCROLL_BAR_AREA_WIDTH (decode_live_window (window))));
}
DEFUN ("window-hscroll", Fwindow_hscroll, Swindow_hscroll, 0, 1, 0,
doc: /* Return the number of columns by which WINDOW is scrolled from left margin.
WINDOW must be a live window and defaults to the selected one. */)
(Lisp_Object window)
{
return make_number (decode_live_window (window)->hscroll);
}
/* Set W's horizontal scroll amount to HSCROLL clipped to a reasonable
range, returning the new amount as a fixnum. */
static Lisp_Object
set_window_hscroll (struct window *w, EMACS_INT hscroll)
{
/* Horizontal scrolling has problems with large scroll amounts.
It's too slow with long lines, and even with small lines the
display can be messed up. For now, though, impose only the limits
required by the internal representation: horizontal scrolling must
fit in fixnum (since it's visible to Elisp) and into ptrdiff_t
(since it's stored in a ptrdiff_t). */
ptrdiff_t hscroll_max = min (MOST_POSITIVE_FIXNUM, PTRDIFF_MAX);
ptrdiff_t new_hscroll = clip_to_bounds (0, hscroll, hscroll_max);
/* Prevent redisplay shortcuts when changing the hscroll. */
if (w->hscroll != new_hscroll)
XBUFFER (w->contents)->prevent_redisplay_optimizations_p = 1;
w->hscroll = new_hscroll;
return make_number (new_hscroll);
}
DEFUN ("set-window-hscroll", Fset_window_hscroll, Sset_window_hscroll, 2, 2, 0,
doc: /* Set number of columns WINDOW is scrolled from left margin to NCOL.
WINDOW must be a live window and defaults to the selected one.
Clip the number to a reasonable value if out of range.
Return the new number. NCOL should be zero or positive.
Note that if `automatic-hscrolling' is non-nil, you cannot scroll the
window so that the location of point moves off-window. */)
(Lisp_Object window, Lisp_Object ncol)
{
CHECK_NUMBER (ncol);
return set_window_hscroll (decode_live_window (window), XINT (ncol));
}
DEFUN ("window-redisplay-end-trigger", Fwindow_redisplay_end_trigger,
Swindow_redisplay_end_trigger, 0, 1, 0,
doc: /* Return WINDOW's redisplay end trigger value.
WINDOW must be a live window and defaults to the selected one.
See `set-window-redisplay-end-trigger' for more information. */)
(Lisp_Object window)
{
return decode_live_window (window)->redisplay_end_trigger;
}
DEFUN ("set-window-redisplay-end-trigger", Fset_window_redisplay_end_trigger,
Sset_window_redisplay_end_trigger, 2, 2, 0,
doc: /* Set WINDOW's redisplay end trigger value to VALUE.
WINDOW must be a live window and defaults to the selected one. VALUE
should be a buffer position (typically a marker) or nil. If it is a
buffer position, then if redisplay in WINDOW reaches a position beyond
VALUE, the functions in `redisplay-end-trigger-functions' are called
with two arguments: WINDOW, and the end trigger value. Afterwards the
end-trigger value is reset to nil. */)
(register Lisp_Object window, Lisp_Object value)
{
wset_redisplay_end_trigger (decode_live_window (window), value);
return value;
}
DEFUN ("window-edges", Fwindow_edges, Swindow_edges, 0, 1, 0,
doc: /* Return a list of the edge coordinates of WINDOW.
WINDOW must be a valid window and defaults to the selected one.
The returned list has the form (LEFT TOP RIGHT BOTTOM). TOP and BOTTOM
count by lines, and LEFT and RIGHT count by columns, all relative to 0,
0 at top left corner of frame.
RIGHT is one more than the rightmost column occupied by WINDOW. BOTTOM
is one more than the bottommost row occupied by WINDOW. The edges
include the space used by WINDOW's scroll bar, display margins, fringes,
header line, and/or mode line. For the edges of just the text area, use
`window-inside-edges'. */)
(Lisp_Object window)
{
register struct window *w = decode_valid_window (window);
return list4i (WINDOW_LEFT_EDGE_COL (w), WINDOW_TOP_EDGE_LINE (w),
WINDOW_RIGHT_EDGE_COL (w), WINDOW_BOTTOM_EDGE_LINE (w));
}
DEFUN ("window-pixel-edges", Fwindow_pixel_edges, Swindow_pixel_edges, 0, 1, 0,
doc: /* Return a list of the edge pixel coordinates of WINDOW.
WINDOW must be a valid window and defaults to the selected one.
The returned list has the form (LEFT TOP RIGHT BOTTOM), all relative to
0, 0 at the top left corner of the frame.
RIGHT is one more than the rightmost x position occupied by WINDOW.
BOTTOM is one more than the bottommost y position occupied by WINDOW.
The pixel edges include the space used by WINDOW's scroll bar, display
margins, fringes, header line, and/or mode line. For the pixel edges
of just the text area, use `window-inside-pixel-edges'. */)
(Lisp_Object window)
{
register struct window *w = decode_valid_window (window);
return list4i (WINDOW_LEFT_EDGE_X (w), WINDOW_TOP_EDGE_Y (w),
WINDOW_RIGHT_EDGE_X (w), WINDOW_BOTTOM_EDGE_Y (w));
}
static void
calc_absolute_offset (struct window *w, int *add_x, int *add_y)
{
struct frame *f = XFRAME (w->frame);
*add_y = f->top_pos;
#ifdef FRAME_MENUBAR_HEIGHT
*add_y += FRAME_MENUBAR_HEIGHT (f);
#endif
#ifdef FRAME_TOOLBAR_TOP_HEIGHT
*add_y += FRAME_TOOLBAR_TOP_HEIGHT (f);
#elif defined (FRAME_TOOLBAR_HEIGHT)
*add_y += FRAME_TOOLBAR_HEIGHT (f);
#endif
#ifdef FRAME_NS_TITLEBAR_HEIGHT
*add_y += FRAME_NS_TITLEBAR_HEIGHT (f);
#endif
*add_x = f->left_pos;
#ifdef FRAME_TOOLBAR_LEFT_WIDTH
*add_x += FRAME_TOOLBAR_LEFT_WIDTH (f);
#endif
}
DEFUN ("window-absolute-pixel-edges", Fwindow_absolute_pixel_edges,
Swindow_absolute_pixel_edges, 0, 1, 0,
doc: /* Return a list of the edge pixel coordinates of WINDOW.
WINDOW must be a valid window and defaults to the selected one.
The returned list has the form (LEFT TOP RIGHT BOTTOM), all relative to
0, 0 at the top left corner of the display.
RIGHT is one more than the rightmost x position occupied by WINDOW.
BOTTOM is one more than the bottommost y position occupied by WINDOW.
The pixel edges include the space used by WINDOW's scroll bar, display
margins, fringes, header line, and/or mode line. For the pixel edges
of just the text area, use `window-inside-absolute-pixel-edges'. */)
(Lisp_Object window)
{
register struct window *w = decode_valid_window (window);
int add_x, add_y;
calc_absolute_offset (w, &add_x, &add_y);
return list4i (WINDOW_LEFT_EDGE_X (w) + add_x,
WINDOW_TOP_EDGE_Y (w) + add_y,
WINDOW_RIGHT_EDGE_X (w) + add_x,
WINDOW_BOTTOM_EDGE_Y (w) + add_y);
}
DEFUN ("window-inside-edges", Fwindow_inside_edges, Swindow_inside_edges, 0, 1, 0,
doc: /* Return a list of the edge coordinates of WINDOW.
WINDOW must be a live window and defaults to the selected one.
The returned list has the form (LEFT TOP RIGHT BOTTOM). TOP and BOTTOM
count by lines, and LEFT and RIGHT count by columns, all relative to 0,
0 at top left corner of frame.
RIGHT is one more than the rightmost column of WINDOW's text area.
BOTTOM is one more than the bottommost row of WINDOW's text area. The
inside edges do not include the space used by the WINDOW's scroll bar,
display margins, fringes, header line, and/or mode line. */)
(Lisp_Object window)
{
register struct window *w = decode_live_window (window);
return list4i ((WINDOW_BOX_LEFT_EDGE_COL (w)
+ WINDOW_LEFT_MARGIN_COLS (w)
+ WINDOW_LEFT_FRINGE_COLS (w)),
(WINDOW_TOP_EDGE_LINE (w)
+ WINDOW_HEADER_LINE_LINES (w)),
(WINDOW_BOX_RIGHT_EDGE_COL (w)
- WINDOW_RIGHT_MARGIN_COLS (w)
- WINDOW_RIGHT_FRINGE_COLS (w)),
(WINDOW_BOTTOM_EDGE_LINE (w)
- WINDOW_MODE_LINE_LINES (w)));
}
DEFUN ("window-inside-pixel-edges", Fwindow_inside_pixel_edges, Swindow_inside_pixel_edges, 0, 1, 0,
doc: /* Return a list of the edge pixel coordinates of WINDOW's text area.
WINDOW must be a live window and defaults to the selected one.
The returned list has the form (LEFT TOP RIGHT BOTTOM), all relative to
(0,0) at the top left corner of the frame's window area.
RIGHT is one more than the rightmost x position of WINDOW's text area.
BOTTOM is one more than the bottommost y position of WINDOW's text area.
The inside edges do not include the space used by WINDOW's scroll bar,
display margins, fringes, header line, and/or mode line. */)
(Lisp_Object window)
{
register struct window *w = decode_live_window (window);
return list4i ((WINDOW_BOX_LEFT_EDGE_X (w)
+ WINDOW_LEFT_MARGIN_WIDTH (w)
+ WINDOW_LEFT_FRINGE_WIDTH (w)),
(WINDOW_TOP_EDGE_Y (w)
+ WINDOW_HEADER_LINE_HEIGHT (w)),
(WINDOW_BOX_RIGHT_EDGE_X (w)
- WINDOW_RIGHT_MARGIN_WIDTH (w)
- WINDOW_RIGHT_FRINGE_WIDTH (w)),
(WINDOW_BOTTOM_EDGE_Y (w)
- WINDOW_MODE_LINE_HEIGHT (w)));
}
DEFUN ("window-inside-absolute-pixel-edges",
Fwindow_inside_absolute_pixel_edges,
Swindow_inside_absolute_pixel_edges, 0, 1, 0,
doc: /* Return a list of the edge pixel coordinates of WINDOW's text area.
WINDOW must be a live window and defaults to the selected one.
The returned list has the form (LEFT TOP RIGHT BOTTOM), all relative to
(0,0) at the top left corner of the frame's window area.
RIGHT is one more than the rightmost x position of WINDOW's text area.
BOTTOM is one more than the bottommost y position of WINDOW's text area.
The inside edges do not include the space used by WINDOW's scroll bar,
display margins, fringes, header line, and/or mode line. */)
(Lisp_Object window)
{
register struct window *w = decode_live_window (window);
int add_x, add_y;
calc_absolute_offset (w, &add_x, &add_y);
return list4i ((WINDOW_BOX_LEFT_EDGE_X (w)
+ WINDOW_LEFT_MARGIN_WIDTH (w)
+ WINDOW_LEFT_FRINGE_WIDTH (w) + add_x),
(WINDOW_TOP_EDGE_Y (w)
+ WINDOW_HEADER_LINE_HEIGHT (w) + add_y),
(WINDOW_BOX_RIGHT_EDGE_X (w)
- WINDOW_RIGHT_MARGIN_WIDTH (w)
- WINDOW_RIGHT_FRINGE_WIDTH (w) + add_x),
(WINDOW_BOTTOM_EDGE_Y (w)
- WINDOW_MODE_LINE_HEIGHT (w) + add_y));
}
/* Test if the character at column X, row Y is within window W.
If it is not, return ON_NOTHING;
if it is on the window's vertical divider, return
ON_RIGHT_DIVIDER;
if it is on the window's horizontal divider, return
ON_BOTTOM_DIVIDER;
if it is in the window's text area, return ON_TEXT;
if it is on the window's modeline, return ON_MODE_LINE;
if it is on the border between the window and its right sibling,
return ON_VERTICAL_BORDER;
if it is on a scroll bar, return ON_SCROLL_BAR;
if it is on the window's top line, return ON_HEADER_LINE;
if it is in left or right fringe of the window,
return ON_LEFT_FRINGE or ON_RIGHT_FRINGE;
if it is in the marginal area to the left/right of the window,
return ON_LEFT_MARGIN or ON_RIGHT_MARGIN.
X and Y are frame relative pixel coordinates. */
static enum window_part
coordinates_in_window (register struct window *w, int x, int y)
{
struct frame *f = XFRAME (WINDOW_FRAME (w));
enum window_part part;
int ux = FRAME_COLUMN_WIDTH (f);
int left_x = WINDOW_LEFT_EDGE_X (w);
int right_x = WINDOW_RIGHT_EDGE_X (w);
int top_y = WINDOW_TOP_EDGE_Y (w);
int bottom_y = WINDOW_BOTTOM_EDGE_Y (w);
/* The width of the area where the vertical line can be dragged.
(Between mode lines for instance. */
int grabbable_width = ux;
int lmargin_width, rmargin_width, text_left, text_right;
/* Outside any interesting row or column? */
if (y < top_y || y >= bottom_y || x < left_x || x >= right_x)
return ON_NOTHING;
/* On the horizontal window divider (which prevails the vertical
divider)? */
if (WINDOW_BOTTOM_DIVIDER_WIDTH (w) > 0
&& y >= (bottom_y - WINDOW_BOTTOM_DIVIDER_WIDTH (w))
&& y <= bottom_y)
return ON_BOTTOM_DIVIDER;
/* On vertical window divider? */
else if (!WINDOW_RIGHTMOST_P (w)
&& WINDOW_RIGHT_DIVIDER_WIDTH (w) > 0
&& x >= right_x - WINDOW_RIGHT_DIVIDER_WIDTH (w)
&& x <= right_x)
return ON_RIGHT_DIVIDER;
/* On the mode or header line? */
else if ((WINDOW_WANTS_MODELINE_P (w)
&& y >= (bottom_y
- CURRENT_MODE_LINE_HEIGHT (w)
- WINDOW_BOTTOM_DIVIDER_WIDTH (w))
&& y <= bottom_y - WINDOW_BOTTOM_DIVIDER_WIDTH (w)
&& (part = ON_MODE_LINE))
|| (WINDOW_WANTS_HEADER_LINE_P (w)
&& y < top_y + CURRENT_HEADER_LINE_HEIGHT (w)
&& (part = ON_HEADER_LINE)))
{
/* If it's under/over the scroll bar portion of the mode/header
line, say it's on the vertical line. That's to be able to
resize windows horizontally in case we're using toolkit scroll
bars. Note: If scrollbars are on the left, the window that
must be eventually resized is that on the left of WINDOW. */
if ((WINDOW_RIGHT_DIVIDER_WIDTH (w) == 0)
&& ((WINDOW_HAS_VERTICAL_SCROLL_BAR_ON_LEFT (w)
&& !WINDOW_LEFTMOST_P (w)
&& eabs (x - left_x) < grabbable_width)
|| (!WINDOW_HAS_VERTICAL_SCROLL_BAR_ON_LEFT (w)
&& !WINDOW_RIGHTMOST_P (w)
&& eabs (x - right_x) < grabbable_width)))
return ON_VERTICAL_BORDER;
else
return part;
}
/* In what's below, we subtract 1 when computing right_x because we
want the rightmost pixel, which is given by left_pixel+width-1. */
if (w->pseudo_window_p)
{
left_x = 0;
right_x = WINDOW_PIXEL_WIDTH (w) - 1;
}
else
{
left_x = WINDOW_BOX_LEFT_EDGE_X (w);
right_x = WINDOW_BOX_RIGHT_EDGE_X (w) - 1;
}
/* Outside any interesting column? */
if (x < left_x || x > right_x)
return ON_SCROLL_BAR;
lmargin_width = window_box_width (w, LEFT_MARGIN_AREA);
rmargin_width = window_box_width (w, RIGHT_MARGIN_AREA);
text_left = window_box_left (w, TEXT_AREA);
text_right = text_left + window_box_width (w, TEXT_AREA);
if (FRAME_WINDOW_P (f))
{
if (!w->pseudo_window_p
&& WINDOW_RIGHT_DIVIDER_WIDTH (w) == 0
&& !WINDOW_HAS_VERTICAL_SCROLL_BAR (w)
&& !WINDOW_RIGHTMOST_P (w)
&& (eabs (x - right_x) < grabbable_width))
return ON_VERTICAL_BORDER;
}
/* Need to say "x > right_x" rather than >=, since on character
terminals, the vertical line's x coordinate is right_x. */
else if (!w->pseudo_window_p
&& WINDOW_RIGHT_DIVIDER_WIDTH (w) == 0
&& !WINDOW_RIGHTMOST_P (w)
/* Why check ux if we are not the rightmost window? Also
shouldn't a pseudo window always be rightmost? */
&& x > right_x - ux)
return ON_VERTICAL_BORDER;
if (x < text_left)
{
if (lmargin_width > 0
&& (WINDOW_HAS_FRINGES_OUTSIDE_MARGINS (w)
? (x >= left_x + WINDOW_LEFT_FRINGE_WIDTH (w))
: (x < left_x + lmargin_width)))
return ON_LEFT_MARGIN;
else
return ON_LEFT_FRINGE;
}
if (x >= text_right)
{
if (rmargin_width > 0
&& (WINDOW_HAS_FRINGES_OUTSIDE_MARGINS (w)
? (x < right_x - WINDOW_RIGHT_FRINGE_WIDTH (w))
: (x >= right_x - rmargin_width)))
return ON_RIGHT_MARGIN;
else
return ON_RIGHT_FRINGE;
}
/* Everything special ruled out - must be on text area */
return ON_TEXT;
}
/* Take X is the frame-relative pixel x-coordinate, and return the
x-coordinate relative to part PART of window W. */
int
window_relative_x_coord (struct window *w, enum window_part part, int x)
{
int left_x = (w->pseudo_window_p) ? 0 : WINDOW_BOX_LEFT_EDGE_X (w);
switch (part)
{
case ON_TEXT:
return x - window_box_left (w, TEXT_AREA);
case ON_HEADER_LINE:
case ON_MODE_LINE:
case ON_LEFT_FRINGE:
return x - left_x;
case ON_RIGHT_FRINGE:
return x - left_x - WINDOW_LEFT_FRINGE_WIDTH (w);
case ON_LEFT_MARGIN:
return (x - left_x
- ((WINDOW_HAS_FRINGES_OUTSIDE_MARGINS (w))
? WINDOW_LEFT_FRINGE_WIDTH (w) : 0));
case ON_RIGHT_MARGIN:
return (x + 1
- ((w->pseudo_window_p)
? WINDOW_PIXEL_WIDTH (w)
: WINDOW_BOX_RIGHT_EDGE_X (w))
+ window_box_width (w, RIGHT_MARGIN_AREA)
+ ((WINDOW_HAS_FRINGES_OUTSIDE_MARGINS (w))
? WINDOW_RIGHT_FRINGE_WIDTH (w) : 0));
}
/* ON_SCROLL_BAR, ON_NOTHING, and ON_VERTICAL_BORDER: */
return 0;
}
DEFUN ("coordinates-in-window-p", Fcoordinates_in_window_p,
Scoordinates_in_window_p, 2, 2, 0,
doc: /* Return non-nil if COORDINATES are in WINDOW.
WINDOW must be a live window and defaults to the selected one.
COORDINATES is a cons of the form (X . Y), X and Y being distances
measured in characters from the upper-left corner of the frame.
\(0 . 0) denotes the character in the upper left corner of the
frame.
If COORDINATES are in the text portion of WINDOW,
the coordinates relative to the window are returned.
If they are in the bottom divider of WINDOW, `bottom-divider' is returned.
If they are in the right divider of WINDOW, `right-divider' is returned.
If they are in the mode line of WINDOW, `mode-line' is returned.
If they are in the header line of WINDOW, `header-line' is returned.
If they are in the left fringe of WINDOW, `left-fringe' is returned.
If they are in the right fringe of WINDOW, `right-fringe' is returned.
If they are on the border between WINDOW and its right sibling,
`vertical-line' is returned.
If they are in the windows's left or right marginal areas, `left-margin'\n\
or `right-margin' is returned. */)
(register Lisp_Object coordinates, Lisp_Object window)
{
struct window *w;
struct frame *f;
int x, y;
Lisp_Object lx, ly;
w = decode_live_window (window);
f = XFRAME (w->frame);
CHECK_CONS (coordinates);
lx = Fcar (coordinates);
ly = Fcdr (coordinates);
CHECK_NUMBER_OR_FLOAT (lx);
CHECK_NUMBER_OR_FLOAT (ly);
x = FRAME_PIXEL_X_FROM_CANON_X (f, lx) + FRAME_INTERNAL_BORDER_WIDTH (f);
y = FRAME_PIXEL_Y_FROM_CANON_Y (f, ly) + FRAME_INTERNAL_BORDER_WIDTH (f);
switch (coordinates_in_window (w, x, y))
{
case ON_NOTHING:
return Qnil;
case ON_TEXT:
/* Convert X and Y to window relative pixel coordinates, and
return the canonical char units. */
x -= window_box_left (w, TEXT_AREA);
y -= WINDOW_TOP_EDGE_Y (w);
return Fcons (FRAME_CANON_X_FROM_PIXEL_X (f, x),
FRAME_CANON_Y_FROM_PIXEL_Y (f, y));
case ON_MODE_LINE:
return Qmode_line;
case ON_VERTICAL_BORDER:
return Qvertical_line;
case ON_HEADER_LINE:
return Qheader_line;
case ON_LEFT_FRINGE:
return Qleft_fringe;
case ON_RIGHT_FRINGE:
return Qright_fringe;
case ON_LEFT_MARGIN:
return Qleft_margin;
case ON_RIGHT_MARGIN:
return Qright_margin;
case ON_SCROLL_BAR:
/* Historically we are supposed to return nil in this case. */
return Qnil;
case ON_RIGHT_DIVIDER:
return Qright_divider;
case ON_BOTTOM_DIVIDER:
return Qbottom_divider;
default:
emacs_abort ();
}
}
/* Callback for foreach_window, used in window_from_coordinates.
Check if window W contains coordinates specified by USER_DATA which
is actually a pointer to a struct check_window_data CW.
Check if window W contains coordinates *CW->x and *CW->y. If it
does, return W in *CW->window, as Lisp_Object, and return in
*CW->part the part of the window under coordinates *X,*Y. Return
zero from this function to stop iterating over windows. */
struct check_window_data
{
Lisp_Object *window;
int x, y;
enum window_part *part;
};
static int
check_window_containing (struct window *w, void *user_data)
{
struct check_window_data *cw = user_data;
enum window_part found;
int continue_p = 1;
found = coordinates_in_window (w, cw->x, cw->y);
if (found != ON_NOTHING)
{
*cw->part = found;
XSETWINDOW (*cw->window, w);
continue_p = 0;
}
return continue_p;
}
/* Find the window containing frame-relative pixel position X/Y and
return it as a Lisp_Object.
If X, Y is on one of the window's special `window_part' elements,
set *PART to the id of that element.
If there is no window under X, Y return nil and leave *PART
unmodified. TOOL_BAR_P non-zero means detect tool-bar windows.
This function was previously implemented with a loop cycling over
windows with Fnext_window, and starting with the frame's selected
window. It turned out that this doesn't work with an
implementation of next_window using Vwindow_list, because
FRAME_SELECTED_WINDOW (F) is not always contained in the window
tree of F when this function is called asynchronously from
note_mouse_highlight. The original loop didn't terminate in this
case. */
Lisp_Object
window_from_coordinates (struct frame *f, int x, int y,
enum window_part *part, bool tool_bar_p)
{
Lisp_Object window;
struct check_window_data cw;
enum window_part dummy;
if (part == 0)
part = &dummy;
window = Qnil;
cw.window = &window, cw.x = x, cw.y = y; cw.part = part;
foreach_window (f, check_window_containing, &cw);
#if defined (HAVE_WINDOW_SYSTEM) && ! defined (USE_GTK) && ! defined (HAVE_NS)
/* If not found above, see if it's in the tool bar window, if a tool
bar exists. */
if (NILP (window)
&& tool_bar_p
&& WINDOWP (f->tool_bar_window)
&& WINDOW_TOTAL_LINES (XWINDOW (f->tool_bar_window)) > 0
&& (coordinates_in_window (XWINDOW (f->tool_bar_window), x, y)
!= ON_NOTHING))
{
*part = ON_TEXT;
window = f->tool_bar_window;
}
#endif
return window;
}
DEFUN ("window-at", Fwindow_at, Swindow_at, 2, 3, 0,
doc: /* Return window containing coordinates X and Y on FRAME.
FRAME must be a live frame and defaults to the selected one.
The top left corner of the frame is considered to be row 0,
column 0. */)
(Lisp_Object x, Lisp_Object y, Lisp_Object frame)
{
struct frame *f = decode_live_frame (frame);
/* Check that arguments are integers or floats. */
CHECK_NUMBER_OR_FLOAT (x);
CHECK_NUMBER_OR_FLOAT (y);
return window_from_coordinates (f,
(FRAME_PIXEL_X_FROM_CANON_X (f, x)
+ FRAME_INTERNAL_BORDER_WIDTH (f)),
(FRAME_PIXEL_Y_FROM_CANON_Y (f, y)
+ FRAME_INTERNAL_BORDER_WIDTH (f)),
0, 0);
}
DEFUN ("window-point", Fwindow_point, Swindow_point, 0, 1, 0,
doc: /* Return current value of point in WINDOW.
WINDOW must be a live window and defaults to the selected one.
For a nonselected window, this is the value point would have if that
window were selected.
Note that, when WINDOW is selected, the value returned is the same as
that returned by `point' for WINDOW's buffer. It would be more strictly
correct to return the top-level value of `point', outside of any
`save-excursion' forms. But that is hard to define. */)
(Lisp_Object window)
{
register struct window *w = decode_live_window (window);
if (w == XWINDOW (selected_window))
return make_number (BUF_PT (XBUFFER (w->contents)));
else
return Fmarker_position (w->pointm);
}
DEFUN ("window-start", Fwindow_start, Swindow_start, 0, 1, 0,
doc: /* Return position at which display currently starts in WINDOW.
WINDOW must be a live window and defaults to the selected one.
This is updated by redisplay or by calling `set-window-start'. */)
(Lisp_Object window)
{
return Fmarker_position (decode_live_window (window)->start);
}
/* This is text temporarily removed from the doc string below.
This function returns nil if the position is not currently known.
That happens when redisplay is preempted and doesn't finish.
If in that case you want to compute where the end of the window would
have been if redisplay had finished, do this:
(save-excursion
(goto-char (window-start window))
(vertical-motion (1- (window-height window)) window)
(point))") */
DEFUN ("window-end", Fwindow_end, Swindow_end, 0, 2, 0,
doc: /* Return position at which display currently ends in WINDOW.
WINDOW must be a live window and defaults to the selected one.
This is updated by redisplay, when it runs to completion.
Simply changing the buffer text or setting `window-start'
does not update this value.
Return nil if there is no recorded value. (This can happen if the
last redisplay of WINDOW was preempted, and did not finish.)
If UPDATE is non-nil, compute the up-to-date position
if it isn't already recorded. */)
(Lisp_Object window, Lisp_Object update)
{
Lisp_Object value;
struct window *w = decode_live_window (window);
Lisp_Object buf;
struct buffer *b;
buf = w->contents;
CHECK_BUFFER (buf);
b = XBUFFER (buf);
if (! NILP (update)
&& (windows_or_buffers_changed
|| !w->window_end_valid
|| b->clip_changed
|| b->prevent_redisplay_optimizations_p
|| window_outdated (w))
&& !noninteractive)
{
struct text_pos startp;
struct it it;
struct buffer *old_buffer = NULL;
void *itdata = NULL;
/* Cannot use Fvertical_motion because that function doesn't
cope with variable-height lines. */
if (b != current_buffer)
{
old_buffer = current_buffer;
set_buffer_internal (b);
}
/* In case W->start is out of the range, use something
reasonable. This situation occurred when loading a file with
`-l' containing a call to `rmail' with subsequent other
commands. At the end, W->start happened to be BEG, while
rmail had already narrowed the buffer. */
CLIP_TEXT_POS_FROM_MARKER (startp, w->start);
itdata = bidi_shelve_cache ();
start_display (&it, w, startp);
move_it_vertically (&it, window_box_height (w));
if (it.current_y < it.last_visible_y)
move_it_past_eol (&it);
value = make_number (IT_CHARPOS (it));
bidi_unshelve_cache (itdata, 0);
if (old_buffer)
set_buffer_internal (old_buffer);
}
else
XSETINT (value, BUF_Z (b) - w->window_end_pos);
return value;
}
DEFUN ("set-window-point", Fset_window_point, Sset_window_point, 2, 2, 0,
doc: /* Make point value in WINDOW be at position POS in WINDOW's buffer.
WINDOW must be a live window and defaults to the selected one.
Return POS. */)
(Lisp_Object window, Lisp_Object pos)
{
register struct window *w = decode_live_window (window);
/* Type of POS is checked by Fgoto_char or set_marker_restricted ... */
if (w == XWINDOW (selected_window))
{
if (XBUFFER (w->contents) == current_buffer)
Fgoto_char (pos);
else
{
struct buffer *old_buffer = current_buffer;
/* ... but here we want to catch type error before buffer change. */
CHECK_NUMBER_COERCE_MARKER (pos);
set_buffer_internal (XBUFFER (w->contents));
Fgoto_char (pos);
set_buffer_internal (old_buffer);
}
}
else
{
set_marker_restricted (w->pointm, pos, w->contents);
/* We have to make sure that redisplay updates the window to show
the new value of point. */
wset_redisplay (w);
}
return pos;
}
DEFUN ("set-window-start", Fset_window_start, Sset_window_start, 2, 3, 0,
doc: /* Make display in WINDOW start at position POS in WINDOW's buffer.
WINDOW must be a live window and defaults to the selected one. Return
POS. Optional third arg NOFORCE non-nil inhibits next redisplay from
overriding motion of point in order to display at this exact start. */)
(Lisp_Object window, Lisp_Object pos, Lisp_Object noforce)
{
register struct window *w = decode_live_window (window);
set_marker_restricted (w->start, pos, w->contents);
/* This is not right, but much easier than doing what is right. */
w->start_at_line_beg = 0;
if (NILP (noforce))
w->force_start = 1;
w->update_mode_line = 1;
/* Bug#15957. */
w->window_end_valid = 0;
wset_redisplay (w);
return pos;
}
DEFUN ("pos-visible-in-window-p", Fpos_visible_in_window_p,
Spos_visible_in_window_p, 0, 3, 0,
doc: /* Return non-nil if position POS is currently on the frame in WINDOW.
WINDOW must be a live window and defaults to the selected one.
Return nil if that position is scrolled vertically out of view. If a
character is only partially visible, nil is returned, unless the
optional argument PARTIALLY is non-nil. If POS is only out of view
because of horizontal scrolling, return non-nil. If POS is t, it
specifies the position of the last visible glyph in WINDOW. POS
defaults to point in WINDOW; WINDOW defaults to the selected window.
If POS is visible, return t if PARTIALLY is nil; if PARTIALLY is non-nil,
the return value is a list of 2 or 6 elements (X Y [RTOP RBOT ROWH VPOS]),
where X and Y are the pixel coordinates relative to the top left corner
of the window. The remaining elements are omitted if the character after
POS is fully visible; otherwise, RTOP and RBOT are the number of pixels
off-window at the top and bottom of the screen line ("row") containing
POS, ROWH is the visible height of that row, and VPOS is the row number
\(zero-based). */)
(Lisp_Object pos, Lisp_Object window, Lisp_Object partially)
{
register struct window *w;
register EMACS_INT posint;
register struct buffer *buf;
struct text_pos top;
Lisp_Object in_window = Qnil;
int rtop, rbot, rowh, vpos, fully_p = 1;
int x, y;
w = decode_live_window (window);
buf = XBUFFER (w->contents);
SET_TEXT_POS_FROM_MARKER (top, w->start);
if (EQ (pos, Qt))
posint = -1;
else if (!NILP (pos))
{
CHECK_NUMBER_COERCE_MARKER (pos);
posint = XINT (pos);
}
else if (w == XWINDOW (selected_window))
posint = PT;
else
posint = marker_position (w->pointm);
/* If position is above window start or outside buffer boundaries,
or if window start is out of range, position is not visible. */
if ((EQ (pos, Qt)
|| (posint >= CHARPOS (top) && posint <= BUF_ZV (buf)))
&& CHARPOS (top) >= BUF_BEGV (buf)
&& CHARPOS (top) <= BUF_ZV (buf)
&& pos_visible_p (w, posint, &x, &y, &rtop, &rbot, &rowh, &vpos)
&& (fully_p = !rtop && !rbot, (!NILP (partially) || fully_p)))
in_window = Qt;
if (!NILP (in_window) && !NILP (partially))
{
Lisp_Object part = Qnil;
if (!fully_p)
part = list4i (rtop, rbot, rowh, vpos);
in_window = Fcons (make_number (x),
Fcons (make_number (y), part));
}
return in_window;
}
DEFUN ("window-line-height", Fwindow_line_height,
Swindow_line_height, 0, 2, 0,
doc: /* Return height in pixels of text line LINE in window WINDOW.
WINDOW must be a live window and defaults to the selected one.
Return height of current line if LINE is omitted or nil. Return height of
header or mode line if LINE is `header-line' or `mode-line'.
Otherwise, LINE is a text line number starting from 0. A negative number
counts from the end of the window.
Value is a list (HEIGHT VPOS YPOS OFFBOT), where HEIGHT is the height
in pixels of the visible part of the line, VPOS and YPOS are the
vertical position in lines and pixels of the line, relative to the top
of the first text line, and OFFBOT is the number of off-window pixels at
the bottom of the text line. If there are off-window pixels at the top
of the (first) text line, YPOS is negative.
Return nil if window display is not up-to-date. In that case, use
`pos-visible-in-window-p' to obtain the information. */)
(Lisp_Object line, Lisp_Object window)
{
register struct window *w;
register struct buffer *b;
struct glyph_row *row, *end_row;
int max_y, crop, i;
EMACS_INT n;
w = decode_live_window (window);
if (noninteractive || w->pseudo_window_p)
return Qnil;
CHECK_BUFFER (w->contents);
b = XBUFFER (w->contents);
/* Fail if current matrix is not up-to-date. */
if (!w->window_end_valid
|| windows_or_buffers_changed
|| b->clip_changed
|| b->prevent_redisplay_optimizations_p
|| window_outdated (w))
return Qnil;
if (NILP (line))
{
i = w->cursor.vpos;
if (i < 0 || i >= w->current_matrix->nrows
|| (row = MATRIX_ROW (w->current_matrix, i), !row->enabled_p))
return Qnil;
max_y = window_text_bottom_y (w);
goto found_row;
}
if (EQ (line, Qheader_line))
{
if (!WINDOW_WANTS_HEADER_LINE_P (w))
return Qnil;
row = MATRIX_HEADER_LINE_ROW (w->current_matrix);
return row->enabled_p ? list4i (row->height, 0, 0, 0) : Qnil;
}
if (EQ (line, Qmode_line))
{
row = MATRIX_MODE_LINE_ROW (w->current_matrix);
return (row->enabled_p ?
list4i (row->height,
0, /* not accurate */
(WINDOW_HEADER_LINE_HEIGHT (w)
+ window_text_bottom_y (w)),
0)
: Qnil);
}
CHECK_NUMBER (line);
n = XINT (line);
row = MATRIX_FIRST_TEXT_ROW (w->current_matrix);
end_row = MATRIX_BOTTOM_TEXT_ROW (w->current_matrix, w);
max_y = window_text_bottom_y (w);
i = 0;
while ((n < 0 || i < n)
&& row <= end_row && row->enabled_p
&& row->y + row->height < max_y)
row++, i++;
if (row > end_row || !row->enabled_p)
return Qnil;
if (++n < 0)
{
if (-n > i)
return Qnil;
row += n;
i += n;
}
found_row:
crop = max (0, (row->y + row->height) - max_y);
return list4i (row->height + min (0, row->y) - crop, i, row->y, crop);
}
DEFUN ("window-dedicated-p", Fwindow_dedicated_p, Swindow_dedicated_p,
0, 1, 0,
doc: /* Return non-nil when WINDOW is dedicated to its buffer.
More precisely, return the value assigned by the last call of
`set-window-dedicated-p' for WINDOW. Return nil if that function was
never called with WINDOW as its argument, or the value set by that
function was internally reset since its last call. WINDOW must be a
live window and defaults to the selected one.
When a window is dedicated to its buffer, `display-buffer' will refrain
from displaying another buffer in it. `get-lru-window' and
`get-largest-window' treat dedicated windows specially.
`delete-windows-on', `replace-buffer-in-windows', `quit-window' and
`kill-buffer' can delete a dedicated window and the containing frame.
Functions like `set-window-buffer' may change the buffer displayed by a
window, unless that window is "strongly" dedicated to its buffer, that
is the value returned by `window-dedicated-p' is t. */)
(Lisp_Object window)
{
return decode_live_window (window)->dedicated;
}
DEFUN ("set-window-dedicated-p", Fset_window_dedicated_p,
Sset_window_dedicated_p, 2, 2, 0,
doc: /* Mark WINDOW as dedicated according to FLAG.
WINDOW must be a live window and defaults to the selected one. FLAG
non-nil means mark WINDOW as dedicated to its buffer. FLAG nil means
mark WINDOW as non-dedicated. Return FLAG.
When a window is dedicated to its buffer, `display-buffer' will refrain
from displaying another buffer in it. `get-lru-window' and
`get-largest-window' treat dedicated windows specially.
`delete-windows-on', `replace-buffer-in-windows', `quit-window',
`quit-restore-window' and `kill-buffer' can delete a dedicated window
and the containing frame.
As a special case, if FLAG is t, mark WINDOW as "strongly" dedicated to
its buffer. Functions like `set-window-buffer' may change the buffer
displayed by a window, unless that window is strongly dedicated to its
buffer. If and when `set-window-buffer' displays another buffer in a
window, it also makes sure that the window is no more dedicated. */)
(Lisp_Object window, Lisp_Object flag)
{
wset_dedicated (decode_live_window (window), flag);
return flag;
}
DEFUN ("window-prev-buffers", Fwindow_prev_buffers, Swindow_prev_buffers,
0, 1, 0,
doc: /* Return buffers previously shown in WINDOW.
WINDOW must be a live window and defaults to the selected one.
The return value is a list of elements (BUFFER WINDOW-START POS),
where BUFFER is a buffer, WINDOW-START is the start position of the
window for that buffer, and POS is a window-specific point value. */)
(Lisp_Object window)
{
return decode_live_window (window)->prev_buffers;
}
DEFUN ("set-window-prev-buffers", Fset_window_prev_buffers,
Sset_window_prev_buffers, 2, 2, 0,
doc: /* Set WINDOW's previous buffers to PREV-BUFFERS.
WINDOW must be a live window and defaults to the selected one.
PREV-BUFFERS should be a list of elements (BUFFER WINDOW-START POS),
where BUFFER is a buffer, WINDOW-START is the start position of the
window for that buffer, and POS is a window-specific point value. */)
(Lisp_Object window, Lisp_Object prev_buffers)
{
wset_prev_buffers (decode_live_window (window), prev_buffers);
return prev_buffers;
}
DEFUN ("window-next-buffers", Fwindow_next_buffers, Swindow_next_buffers,
0, 1, 0,
doc: /* Return list of buffers recently re-shown in WINDOW.
WINDOW must be a live window and defaults to the selected one. */)
(Lisp_Object window)
{
return decode_live_window (window)->next_buffers;
}
DEFUN ("set-window-next-buffers", Fset_window_next_buffers,
Sset_window_next_buffers, 2, 2, 0,
doc: /* Set WINDOW's next buffers to NEXT-BUFFERS.
WINDOW must be a live window and defaults to the selected one.
NEXT-BUFFERS should be a list of buffers. */)
(Lisp_Object window, Lisp_Object next_buffers)
{
wset_next_buffers (decode_live_window (window), next_buffers);
return next_buffers;
}
DEFUN ("window-parameters", Fwindow_parameters, Swindow_parameters,
0, 1, 0,
doc: /* Return the parameters of WINDOW and their values.
WINDOW must be a valid window and defaults to the selected one. The
return value is a list of elements of the form (PARAMETER . VALUE). */)
(Lisp_Object window)
{
return Fcopy_alist (decode_valid_window (window)->window_parameters);
}
DEFUN ("window-parameter", Fwindow_parameter, Swindow_parameter,
2, 2, 0,
doc: /* Return WINDOW's value for PARAMETER.
WINDOW can be any window and defaults to the selected one. */)
(Lisp_Object window, Lisp_Object parameter)
{
Lisp_Object result;
result = Fassq (parameter, decode_any_window (window)->window_parameters);
return CDR_SAFE (result);
}
DEFUN ("set-window-parameter", Fset_window_parameter,
Sset_window_parameter, 3, 3, 0,
doc: /* Set WINDOW's value of PARAMETER to VALUE.
WINDOW can be any window and defaults to the selected one.
Return VALUE. */)
(Lisp_Object window, Lisp_Object parameter, Lisp_Object value)
{
register struct window *w = decode_any_window (window);
Lisp_Object old_alist_elt;
old_alist_elt = Fassq (parameter, w->window_parameters);
if (NILP (old_alist_elt))
wset_window_parameters
(w, Fcons (Fcons (parameter, value), w->window_parameters));
else
Fsetcdr (old_alist_elt, value);
return value;
}
DEFUN ("window-display-table", Fwindow_display_table, Swindow_display_table,
0, 1, 0,
doc: /* Return the display-table that WINDOW is using.
WINDOW must be a live window and defaults to the selected one. */)
(Lisp_Object window)
{
return decode_live_window (window)->display_table;
}
/* Get the display table for use on window W. This is either W's
display table or W's buffer's display table. Ignore the specified
tables if they are not valid; if no valid table is specified,
return 0. */
struct Lisp_Char_Table *
window_display_table (struct window *w)
{
struct Lisp_Char_Table *dp = NULL;
if (DISP_TABLE_P (w->display_table))
dp = XCHAR_TABLE (w->display_table);
else if (BUFFERP (w->contents))
{
struct buffer *b = XBUFFER (w->contents);
if (DISP_TABLE_P (BVAR (b, display_table)))
dp = XCHAR_TABLE (BVAR (b, display_table));
else if (DISP_TABLE_P (Vstandard_display_table))
dp = XCHAR_TABLE (Vstandard_display_table);
}
return dp;
}
DEFUN ("set-window-display-table", Fset_window_display_table, Sset_window_display_table, 2, 2, 0,
doc: /* Set WINDOW's display-table to TABLE.
WINDOW must be a live window and defaults to the selected one. */)
(register Lisp_Object window, Lisp_Object table)
{
wset_display_table (decode_live_window (window), table);
return table;
}
/* Record info on buffer window W is displaying
when it is about to cease to display that buffer. */
static void
unshow_buffer (register struct window *w)
{
Lisp_Object buf = w->contents;
struct buffer *b = XBUFFER (buf);
eassert (b == XMARKER (w->pointm)->buffer);
#if 0
if (w == XWINDOW (selected_window)
|| ! EQ (buf, XWINDOW (selected_window)->contents))
/* Do this except when the selected window's buffer
is being removed from some other window. */
#endif
/* last_window_start records the start position that this buffer
had in the last window to be disconnected from it.
Now that this statement is unconditional,
it is possible for the buffer to be displayed in the
selected window, while last_window_start reflects another
window which was recently showing the same buffer.
Some people might say that might be a good thing. Let's see. */
b->last_window_start = marker_position (w->start);
/* Point in the selected window's buffer
is actually stored in that buffer, and the window's pointm isn't used.
So don't clobber point in that buffer. */
if (! EQ (buf, XWINDOW (selected_window)->contents)
/* Don't clobber point in current buffer either (this could be
useful in connection with bug#12208).
&& XBUFFER (buf) != current_buffer */
/* This line helps to fix Horsley's testbug.el bug. */
&& !(WINDOWP (BVAR (b, last_selected_window))
&& w != XWINDOW (BVAR (b, last_selected_window))
&& EQ (buf, XWINDOW (BVAR (b, last_selected_window))->contents)))
temp_set_point_both (b,
clip_to_bounds (BUF_BEGV (b),
marker_position (w->pointm),
BUF_ZV (b)),
clip_to_bounds (BUF_BEGV_BYTE (b),
marker_byte_position (w->pointm),
BUF_ZV_BYTE (b)));
if (WINDOWP (BVAR (b, last_selected_window))
&& w == XWINDOW (BVAR (b, last_selected_window)))
bset_last_selected_window (b, Qnil);
}
/* Put NEW into the window structure in place of OLD. SETFLAG zero
means change window structure only. Otherwise store geometry and
other settings as well. */
static void
replace_window (Lisp_Object old, Lisp_Object new, int setflag)
{
register Lisp_Object tem;
register struct window *o = XWINDOW (old), *n = XWINDOW (new);
/* If OLD is its frame's root window, then NEW is the new
root window for that frame. */
if (EQ (old, FRAME_ROOT_WINDOW (XFRAME (o->frame))))
fset_root_window (XFRAME (o->frame), new);
if (setflag)
{
n->pixel_left = o->pixel_left;
n->pixel_top = o->pixel_top;
n->pixel_width = o->pixel_width;
n->pixel_height = o->pixel_height;
n->left_col = o->left_col;
n->top_line = o->top_line;
n->total_cols = o->total_cols;
n->total_lines = o->total_lines;
wset_normal_cols (n, o->normal_cols);
wset_normal_cols (o, make_float (1.0));
wset_normal_lines (n, o->normal_lines);
wset_normal_lines (o, make_float (1.0));
n->desired_matrix = n->current_matrix = 0;
n->vscroll = 0;
memset (&n->cursor, 0, sizeof (n->cursor));
memset (&n->phys_cursor, 0, sizeof (n->phys_cursor));
n->last_cursor_vpos = 0;
#ifdef HAVE_WINDOW_SYSTEM
n->phys_cursor_type = NO_CURSOR;
n->phys_cursor_width = -1;
#endif
n->must_be_updated_p = 0;
n->pseudo_window_p = 0;
n->window_end_vpos = 0;
n->window_end_pos = 0;
n->window_end_valid = 0;
}
tem = o->next;
wset_next (n, tem);
if (!NILP (tem))
wset_prev (XWINDOW (tem), new);
tem = o->prev;
wset_prev (n, tem);
if (!NILP (tem))
wset_next (XWINDOW (tem), new);
tem = o->parent;
wset_parent (n, tem);
if (!NILP (tem) && EQ (XWINDOW (tem)->contents, old))
wset_combination (XWINDOW (tem), XWINDOW (tem)->horizontal, new);
}
/* If window WINDOW and its parent window are iso-combined, merge
WINDOW's children into those of its parent window and mark WINDOW as
deleted. */
static void
recombine_windows (Lisp_Object window)
{
struct window *w, *p, *c;
Lisp_Object parent, child;
bool horflag;
w = XWINDOW (window);
parent = w->parent;
if (!NILP (parent) && NILP (w->combination_limit))
{
p = XWINDOW (parent);
if (WINDOWP (p->contents) && WINDOWP (w->contents)
&& p->horizontal == w->horizontal)
/* WINDOW and PARENT are both either a vertical or a horizontal
combination. */
{
horflag = WINDOW_HORIZONTAL_COMBINATION_P (w);
child = w->contents;
c = XWINDOW (child);
/* Splice WINDOW's children into its parent's children and
assign new normal sizes. */
if (NILP (w->prev))
wset_combination (p, horflag, child);
else
{
wset_prev (c, w->prev);
wset_next (XWINDOW (w->prev), child);
}
while (c)
{
wset_parent (c, parent);
if (horflag)
wset_normal_cols
(c, make_float ((double) c->pixel_width
/ (double) p->pixel_width));
else
wset_normal_lines
(c, make_float ((double) c->pixel_height
/ (double) p->pixel_height));
if (NILP (c->next))
{
if (!NILP (w->next))
{
wset_next (c, w->next);
wset_prev (XWINDOW (c->next), child);
}
c = 0;
}
else
{
child = c->next;
c = XWINDOW (child);
}
}
/* WINDOW can be deleted now. */
wset_combination (w, 0, Qnil);
}
}
}
/* If WINDOW can be deleted, delete it. */
static void
delete_deletable_window (Lisp_Object window)
{
if (!NILP (call1 (Qwindow_deletable_p, window)))
call1 (Qdelete_window, window);
}
/***********************************************************************
Window List
***********************************************************************/
/* Add window W to *USER_DATA. USER_DATA is actually a Lisp_Object
pointer. This is a callback function for foreach_window, used in
the window_list function. */
static int
add_window_to_list (struct window *w, void *user_data)
{
Lisp_Object *list = user_data;
Lisp_Object window;
XSETWINDOW (window, w);
*list = Fcons (window, *list);
return 1;
}
/* Return a list of all windows, for use by next_window. If
Vwindow_list is a list, return that list. Otherwise, build a new
list, cache it in Vwindow_list, and return that. */
Lisp_Object
window_list (void)
{
if (!CONSP (Vwindow_list))
{
Lisp_Object tail, frame;
Vwindow_list = Qnil;
FOR_EACH_FRAME (tail, frame)
{
Lisp_Object args[2];
/* We are visiting windows in canonical order, and add
new windows at the front of args[1], which means we
have to reverse this list at the end. */
args[1] = Qnil;
foreach_window (XFRAME (frame), add_window_to_list, &args[1]);
args[0] = Vwindow_list;
args[1] = Fnreverse (args[1]);
Vwindow_list = Fnconc (2, args);
}
}
return Vwindow_list;
}
/* Value is non-zero if WINDOW satisfies the constraints given by
OWINDOW, MINIBUF and ALL_FRAMES.
MINIBUF t means WINDOW may be minibuffer windows.
`lambda' means WINDOW may not be a minibuffer window.
a window means a specific minibuffer window
ALL_FRAMES t means search all frames,
nil means search just current frame,
`visible' means search just visible frames on the
current terminal,
0 means search visible and iconified frames on the
current terminal,
a window means search the frame that window belongs to,
a frame means consider windows on that frame, only. */
static bool
candidate_window_p (Lisp_Object window, Lisp_Object owindow,
Lisp_Object minibuf, Lisp_Object all_frames)
{
struct window *w = XWINDOW (window);
struct frame *f = XFRAME (w->frame);
bool candidate_p = 1;
if (!BUFFERP (w->contents))
candidate_p = 0;
else if (MINI_WINDOW_P (w)
&& (EQ (minibuf, Qlambda)
|| (WINDOWP (minibuf) && !EQ (minibuf, window))))
{
/* If MINIBUF is `lambda' don't consider any mini-windows.
If it is a window, consider only that one. */
candidate_p = 0;
}
else if (EQ (all_frames, Qt))
candidate_p = 1;
else if (NILP (all_frames))
{
eassert (WINDOWP (owindow));
candidate_p = EQ (w->frame, XWINDOW (owindow)->frame);
}
else if (EQ (all_frames, Qvisible))
{
candidate_p = FRAME_VISIBLE_P (f)
&& (FRAME_TERMINAL (XFRAME (w->frame))
== FRAME_TERMINAL (XFRAME (selected_frame)));
}
else if (INTEGERP (all_frames) && XINT (all_frames) == 0)
{
candidate_p = (FRAME_VISIBLE_P (f) || FRAME_ICONIFIED_P (f)
#ifdef HAVE_X_WINDOWS
/* Yuck!! If we've just created the frame and the
window-manager requested the user to place it
manually, the window may still not be considered
`visible'. I'd argue it should be at least
something like `iconified', but don't know how to do
that yet. --Stef */
|| (FRAME_X_P (f) && f->output_data.x->asked_for_visible
&& !f->output_data.x->has_been_visible)
#endif
)
&& (FRAME_TERMINAL (XFRAME (w->frame))
== FRAME_TERMINAL (XFRAME (selected_frame)));
}
else if (WINDOWP (all_frames))
candidate_p = (EQ (FRAME_MINIBUF_WINDOW (f), all_frames)
|| EQ (XWINDOW (all_frames)->frame, w->frame)
|| EQ (XWINDOW (all_frames)->frame, FRAME_FOCUS_FRAME (f)));
else if (FRAMEP (all_frames))
candidate_p = EQ (all_frames, w->frame);
return candidate_p;
}
/* Decode arguments as allowed by Fnext_window, Fprevious_window, and
Fwindow_list. See candidate_window_p for the meaning of WINDOW,
MINIBUF, and ALL_FRAMES. */
static void
decode_next_window_args (Lisp_Object *window, Lisp_Object *minibuf, Lisp_Object *all_frames)
{
struct window *w = decode_live_window (*window);
XSETWINDOW (*window, w);
/* MINIBUF nil may or may not include minibuffers. Decide if it
does. */
if (NILP (*minibuf))
*minibuf = minibuf_level ? minibuf_window : Qlambda;
else if (!EQ (*minibuf, Qt))
*minibuf = Qlambda;
/* Now *MINIBUF can be t => count all minibuffer windows, `lambda'
=> count none of them, or a specific minibuffer window (the
active one) to count. */
/* ALL_FRAMES nil doesn't specify which frames to include. */
if (NILP (*all_frames))
*all_frames
= (!EQ (*minibuf, Qlambda)
? FRAME_MINIBUF_WINDOW (XFRAME (w->frame))
: Qnil);
else if (EQ (*all_frames, Qvisible))
;
else if (EQ (*all_frames, make_number (0)))
;
else if (FRAMEP (*all_frames))
;
else if (!EQ (*all_frames, Qt))
*all_frames = Qnil;
}
/* Return the next or previous window of WINDOW in cyclic ordering
of windows. NEXT_P non-zero means return the next window. See the
documentation string of next-window for the meaning of MINIBUF and
ALL_FRAMES. */
static Lisp_Object
next_window (Lisp_Object window, Lisp_Object minibuf, Lisp_Object all_frames, int next_p)
{
decode_next_window_args (&window, &minibuf, &all_frames);
/* If ALL_FRAMES is a frame, and WINDOW isn't on that frame, just
return the first window on the frame. */
if (FRAMEP (all_frames)
&& !EQ (all_frames, XWINDOW (window)->frame))
return Fframe_first_window (all_frames);
if (next_p)
{
Lisp_Object list;
/* Find WINDOW in the list of all windows. */
list = Fmemq (window, window_list ());
/* Scan forward from WINDOW to the end of the window list. */
if (CONSP (list))
for (list = XCDR (list); CONSP (list); list = XCDR (list))
if (candidate_window_p (XCAR (list), window, minibuf, all_frames))
break;
/* Scan from the start of the window list up to WINDOW. */
if (!CONSP (list))
for (list = Vwindow_list;
CONSP (list) && !EQ (XCAR (list), window);
list = XCDR (list))
if (candidate_window_p (XCAR (list), window, minibuf, all_frames))
break;
if (CONSP (list))
window = XCAR (list);
}
else
{
Lisp_Object candidate, list;
/* Scan through the list of windows for candidates. If there are
candidate windows in front of WINDOW, the last one of these
is the one we want. If there are candidates following WINDOW
in the list, again the last one of these is the one we want. */
candidate = Qnil;
for (list = window_list (); CONSP (list); list = XCDR (list))
{
if (EQ (XCAR (list), window))
{
if (WINDOWP (candidate))
break;
}
else if (candidate_window_p (XCAR (list), window, minibuf,
all_frames))
candidate = XCAR (list);
}
if (WINDOWP (candidate))
window = candidate;
}
return window;
}
DEFUN ("next-window", Fnext_window, Snext_window, 0, 3, 0,
doc: /* Return live window after WINDOW in the cyclic ordering of windows.
WINDOW must be a live window and defaults to the selected one. The
optional arguments MINIBUF and ALL-FRAMES specify the set of windows to
consider.
MINIBUF nil or omitted means consider the minibuffer window only if the
minibuffer is active. MINIBUF t means consider the minibuffer window
even if the minibuffer is not active. Any other value means do not
consider the minibuffer window even if the minibuffer is active.
ALL-FRAMES nil or omitted means consider all windows on WINDOW's frame,
plus the minibuffer window if specified by the MINIBUF argument. If the
minibuffer counts, consider all windows on all frames that share that
minibuffer too. The following non-nil values of ALL-FRAMES have special
meanings:
- t means consider all windows on all existing frames.
- `visible' means consider all windows on all visible frames.
- 0 (the number zero) means consider all windows on all visible and
iconified frames.
- A frame means consider all windows on that frame only.
Anything else means consider all windows on WINDOW's frame and no
others.
If you use consistent values for MINIBUF and ALL-FRAMES, you can use
`next-window' to iterate through the entire cycle of acceptable
windows, eventually ending up back at the window you started with.
`previous-window' traverses the same cycle, in the reverse order. */)
(Lisp_Object window, Lisp_Object minibuf, Lisp_Object all_frames)
{
return next_window (window, minibuf, all_frames, 1);
}
DEFUN ("previous-window", Fprevious_window, Sprevious_window, 0, 3, 0,
doc: /* Return live window before WINDOW in the cyclic ordering of windows.
WINDOW must be a live window and defaults to the selected one. The
optional arguments MINIBUF and ALL-FRAMES specify the set of windows to
consider.
MINIBUF nil or omitted means consider the minibuffer window only if the
minibuffer is active. MINIBUF t means consider the minibuffer window
even if the minibuffer is not active. Any other value means do not
consider the minibuffer window even if the minibuffer is active.
ALL-FRAMES nil or omitted means consider all windows on WINDOW's frame,
plus the minibuffer window if specified by the MINIBUF argument. If the
minibuffer counts, consider all windows on all frames that share that
minibuffer too. The following non-nil values of ALL-FRAMES have special
meanings:
- t means consider all windows on all existing frames.
- `visible' means consider all windows on all visible frames.
- 0 (the number zero) means consider all windows on all visible and
iconified frames.
- A frame means consider all windows on that frame only.
Anything else means consider all windows on WINDOW's frame and no
others.
If you use consistent values for MINIBUF and ALL-FRAMES, you can
use `previous-window' to iterate through the entire cycle of
acceptable windows, eventually ending up back at the window you
started with. `next-window' traverses the same cycle, in the
reverse order. */)
(Lisp_Object window, Lisp_Object minibuf, Lisp_Object all_frames)
{
return next_window (window, minibuf, all_frames, 0);
}
/* Return a list of windows in cyclic ordering. Arguments are like
for `next-window'. */
static Lisp_Object
window_list_1 (Lisp_Object window, Lisp_Object minibuf, Lisp_Object all_frames)
{
Lisp_Object tail, list, rest;
decode_next_window_args (&window, &minibuf, &all_frames);
list = Qnil;
for (tail = window_list (); CONSP (tail); tail = XCDR (tail))
if (candidate_window_p (XCAR (tail), window, minibuf, all_frames))
list = Fcons (XCAR (tail), list);
/* Rotate the list to start with WINDOW. */
list = Fnreverse (list);
rest = Fmemq (window, list);
if (!NILP (rest) && !EQ (rest, list))
{
for (tail = list; !EQ (XCDR (tail), rest); tail = XCDR (tail))
;
XSETCDR (tail, Qnil);
list = nconc2 (rest, list);
}
return list;
}
DEFUN ("window-list", Fwindow_list, Swindow_list, 0, 3, 0,
doc: /* Return a list of windows on FRAME, starting with WINDOW.
FRAME nil or omitted means use the selected frame.
WINDOW nil or omitted means use the window selected within FRAME.
MINIBUF t means include the minibuffer window, even if it isn't active.
MINIBUF nil or omitted means include the minibuffer window only
if it's active.
MINIBUF neither nil nor t means never include the minibuffer window. */)
(Lisp_Object frame, Lisp_Object minibuf, Lisp_Object window)
{
if (NILP (window))
window = FRAMEP (frame) ? XFRAME (frame)->selected_window : selected_window;
CHECK_WINDOW (window);
if (NILP (frame))
frame = selected_frame;
if (!EQ (frame, XWINDOW (window)->frame))
error ("Window is on a different frame");
return window_list_1 (window, minibuf, frame);
}
DEFUN ("window-list-1", Fwindow_list_1, Swindow_list_1, 0, 3, 0,
doc: /* Return a list of all live windows.
WINDOW specifies the first window to list and defaults to the selected
window.
Optional argument MINIBUF nil or omitted means consider the minibuffer
window only if the minibuffer is active. MINIBUF t means consider the
minibuffer window even if the minibuffer is not active. Any other value
means do not consider the minibuffer window even if the minibuffer is
active.
Optional argument ALL-FRAMES nil or omitted means consider all windows
on WINDOW's frame, plus the minibuffer window if specified by the
MINIBUF argument. If the minibuffer counts, consider all windows on all
frames that share that minibuffer too. The following non-nil values of
ALL-FRAMES have special meanings:
- t means consider all windows on all existing frames.
- `visible' means consider all windows on all visible frames.
- 0 (the number zero) means consider all windows on all visible and
iconified frames.
- A frame means consider all windows on that frame only.
Anything else means consider all windows on WINDOW's frame and no
others.
If WINDOW is not on the list of windows returned, some other window will
be listed first but no error is signaled. */)
(Lisp_Object window, Lisp_Object minibuf, Lisp_Object all_frames)
{
return window_list_1 (window, minibuf, all_frames);
}
/* Look at all windows, performing an operation specified by TYPE
with argument OBJ.
If FRAMES is Qt, look at all frames;
Qnil, look at just the selected frame;
Qvisible, look at visible frames;
a frame, just look at windows on that frame.
If MINI is non-zero, perform the operation on minibuffer windows too. */
enum window_loop
{
WINDOW_LOOP_UNUSED,
GET_BUFFER_WINDOW, /* Arg is buffer */
REPLACE_BUFFER_IN_WINDOWS_SAFELY, /* Arg is buffer */
REDISPLAY_BUFFER_WINDOWS, /* Arg is buffer */
CHECK_ALL_WINDOWS /* Arg is ignored */
};
static Lisp_Object
window_loop (enum window_loop type, Lisp_Object obj, int mini, Lisp_Object frames)
{
Lisp_Object window, windows, best_window, frame_arg;
int frame_best_window_flag = 0;
struct frame *f;
struct gcpro gcpro1;
/* If we're only looping through windows on a particular frame,
frame points to that frame. If we're looping through windows
on all frames, frame is 0. */
if (FRAMEP (frames))
f = XFRAME (frames);
else if (NILP (frames))
f = SELECTED_FRAME ();
else
f = NULL;
if (f)
frame_arg = Qlambda;
else if (EQ (frames, make_number (0)))
frame_arg = frames;
else if (EQ (frames, Qvisible))
frame_arg = frames;
else
frame_arg = Qt;
/* frame_arg is Qlambda to stick to one frame,
Qvisible to consider all visible frames,
or Qt otherwise. */
/* Pick a window to start with. */
if (WINDOWP (obj))
window = obj;
else if (f)
window = FRAME_SELECTED_WINDOW (f);
else
window = FRAME_SELECTED_WINDOW (SELECTED_FRAME ());
windows = window_list_1 (window, mini ? Qt : Qnil, frame_arg);
GCPRO1 (windows);
best_window = Qnil;
for (; CONSP (windows); windows = XCDR (windows))
{
struct window *w;
window = XCAR (windows);
w = XWINDOW (window);
/* Note that we do not pay attention here to whether the frame
is visible, since Fwindow_list skips non-visible frames if
that is desired, under the control of frame_arg. */
if (!MINI_WINDOW_P (w)
/* For REPLACE_BUFFER_IN_WINDOWS_SAFELY, we must always
consider all windows. */
|| type == REPLACE_BUFFER_IN_WINDOWS_SAFELY
|| (mini && minibuf_level > 0))
switch (type)
{
case GET_BUFFER_WINDOW:
if (EQ (w->contents, obj)
/* Don't find any minibuffer window except the one that
is currently in use. */
&& (MINI_WINDOW_P (w) ? EQ (window, minibuf_window) : 1))
{
if (EQ (window, selected_window))
/* Preferably return the selected window. */
RETURN_UNGCPRO (window);
else if (EQ (XWINDOW (window)->frame, selected_frame)
&& !frame_best_window_flag)
/* Prefer windows on the current frame (but don't
choose another one if we have one already). */
{
best_window = window;
frame_best_window_flag = 1;
}
else if (NILP (best_window))
best_window = window;
}
break;
case REPLACE_BUFFER_IN_WINDOWS_SAFELY:
/* We could simply check whether the buffer shown by window
is live, and show another buffer in case it isn't. */
if (EQ (w->contents, obj))
{
/* Undedicate WINDOW. */
wset_dedicated (w, Qnil);
/* Make WINDOW show the buffer returned by
other_buffer_safely, don't run any hooks. */
set_window_buffer
(window, other_buffer_safely (w->contents), 0, 0);
/* If WINDOW is the selected window, make its buffer
current. But do so only if the window shows the
current buffer (Bug#6454). */
if (EQ (window, selected_window)
&& XBUFFER (w->contents) == current_buffer)
Fset_buffer (w->contents);
}
break;
case REDISPLAY_BUFFER_WINDOWS:
if (EQ (w->contents, obj))
{
mark_window_display_accurate (window, 0);
w->update_mode_line = 1;
XBUFFER (obj)->prevent_redisplay_optimizations_p = 1;
update_mode_lines = 27;
best_window = window;
}
break;
/* Check for a leaf window that has a killed buffer
or broken markers. */
case CHECK_ALL_WINDOWS:
if (BUFFERP (w->contents))
{
struct buffer *b = XBUFFER (w->contents);
if (!BUFFER_LIVE_P (b))
emacs_abort ();
if (!MARKERP (w->start) || XMARKER (w->start)->buffer != b)
emacs_abort ();
if (!MARKERP (w->pointm) || XMARKER (w->pointm)->buffer != b)
emacs_abort ();
}
break;
case WINDOW_LOOP_UNUSED:
break;
}
}
UNGCPRO;
return best_window;
}
/* Used for debugging. Abort if any window has a dead buffer. */
extern void check_all_windows (void) EXTERNALLY_VISIBLE;
void
check_all_windows (void)
{
window_loop (CHECK_ALL_WINDOWS, Qnil, 1, Qt);
}
DEFUN ("get-buffer-window", Fget_buffer_window, Sget_buffer_window, 0, 2, 0,
doc: /* Return a window currently displaying BUFFER-OR-NAME, or nil if none.
BUFFER-OR-NAME may be a buffer or a buffer name and defaults to
the current buffer.
The optional argument ALL-FRAMES specifies the frames to consider:
- t means consider all windows on all existing frames.
- `visible' means consider all windows on all visible frames.
- 0 (the number zero) means consider all windows on all visible
and iconified frames.
- A frame means consider all windows on that frame only.
Any other value of ALL-FRAMES means consider all windows on the
selected frame and no others. */)
(Lisp_Object buffer_or_name, Lisp_Object all_frames)
{
Lisp_Object buffer;
if (NILP (buffer_or_name))
buffer = Fcurrent_buffer ();
else
buffer = Fget_buffer (buffer_or_name);
if (BUFFERP (buffer))
return window_loop (GET_BUFFER_WINDOW, buffer, 1, all_frames);
else
return Qnil;
}
static Lisp_Object
resize_root_window (Lisp_Object window, Lisp_Object delta, Lisp_Object horizontal, Lisp_Object ignore, Lisp_Object pixelwise)
{
return call5 (Qwindow_resize_root_window, window, delta, horizontal, ignore, pixelwise);
}
static Lisp_Object
window_pixel_to_total (Lisp_Object frame, Lisp_Object horizontal)
{
return call2(Qwindow_pixel_to_total, frame, horizontal);
}
DEFUN ("delete-other-windows-internal", Fdelete_other_windows_internal,
Sdelete_other_windows_internal, 0, 2, "",
doc: /* Make WINDOW fill its frame.
Only the frame WINDOW is on is affected. WINDOW must be a valid window
and defaults to the selected one.
Optional argument ROOT, if non-nil, must specify an internal window such
that WINDOW is in its window subtree. If this is the case, replace ROOT
by WINDOW and leave alone any windows not part of ROOT's subtree.
When WINDOW is live try to reduce display jumps by keeping the text
previously visible in WINDOW in the same place on the frame. Doing this
depends on the value of (window-start WINDOW), so if calling this
function in a program gives strange scrolling, make sure the
window-start value is reasonable when this function is called. */)
(Lisp_Object window, Lisp_Object root)
{
struct window *w, *r, *s;
struct frame *f;
Lisp_Object sibling, pwindow, swindow IF_LINT (= Qnil), delta;
ptrdiff_t startpos IF_LINT (= 0), startbyte IF_LINT (= 0);
int top IF_LINT (= 0), new_top, resize_failed;
w = decode_valid_window (window);
XSETWINDOW (window, w);
f = XFRAME (w->frame);
if (NILP (root))
/* ROOT is the frame's root window. */
{
root = FRAME_ROOT_WINDOW (f);
r = XWINDOW (root);
}
else
/* ROOT must be an ancestor of WINDOW. */
{
r = decode_valid_window (root);
pwindow = XWINDOW (window)->parent;
while (!NILP (pwindow))
if (EQ (pwindow, root))
break;
else
pwindow = XWINDOW (pwindow)->parent;
if (!EQ (pwindow, root))
error ("Specified root is not an ancestor of specified window");
}
if (EQ (window, root))
/* A noop. */
return Qnil;
/* I don't understand the "top > 0" part below. If we deal with a
standalone minibuffer it would have been caught by the preceding
test. */
else if (MINI_WINDOW_P (w)) /* && top > 0) */
error ("Can't expand minibuffer to full frame");
if (BUFFERP (w->contents))
{
startpos = marker_position (w->start);
startbyte = marker_byte_position (w->start);
top = (WINDOW_TOP_EDGE_LINE (w)
- FRAME_TOP_MARGIN (XFRAME (WINDOW_FRAME (w))));
/* Make sure WINDOW is the frame's selected window. */
if (!EQ (window, FRAME_SELECTED_WINDOW (f)))
{
if (EQ (selected_frame, w->frame))
Fselect_window (window, Qnil);
else
fset_selected_window (f, window);
}
}
else
{
/* See if the frame's selected window is a part of the window
subtree rooted at WINDOW, by finding all the selected window's
parents and comparing each one with WINDOW. If it isn't we
need a new selected window for this frame. */
swindow = FRAME_SELECTED_WINDOW (f);
while (1)
{
pwindow = swindow;
while (!NILP (pwindow) && !EQ (window, pwindow))
pwindow = XWINDOW (pwindow)->parent;
if (EQ (window, pwindow))
/* If WINDOW is an ancestor of SWINDOW, then SWINDOW is ok
as the new selected window. */
break;
else
/* Else try the previous window of SWINDOW. */
swindow = Fprevious_window (swindow, Qlambda, Qnil);
}
if (!EQ (swindow, FRAME_SELECTED_WINDOW (f)))
{
if (EQ (selected_frame, w->frame))
Fselect_window (swindow, Qnil);
else
fset_selected_window (f, swindow);
}
}
block_input ();
if (!FRAME_INITIAL_P (f))
{
Mouse_HLInfo *hlinfo = MOUSE_HL_INFO (f);
/* We are going to free the glyph matrices of WINDOW, and with
that we might lose any information about glyph rows that have
some of their glyphs highlighted in mouse face. (These rows
are marked with a non-zero mouse_face_p flag.) If WINDOW
indeed has some glyphs highlighted in mouse face, signal to
frame's up-to-date hook that mouse highlight was overwritten,
so that it will arrange for redisplaying the highlight. */
if (EQ (hlinfo->mouse_face_window, window))
reset_mouse_highlight (hlinfo);
}
free_window_matrices (r);
fset_redisplay (f);
Vwindow_list = Qnil;
FRAME_WINDOW_SIZES_CHANGED (f) = 1;
resize_failed = 0;
if (!WINDOW_LEAF_P (w))
{
/* Resize child windows vertically. */
XSETINT (delta, r->pixel_height - w->pixel_height);
w->pixel_top = r->pixel_top;
w->top_line = r->top_line;
resize_root_window (window, delta, Qnil, Qnil, Qt);
if (window_resize_check (w, 0))
{
window_resize_apply (w, 0);
window_pixel_to_total (w->frame, Qnil);
}
else
{
resize_root_window (window, delta, Qnil, Qt, Qt);
if (window_resize_check (w, 0))
{
window_resize_apply (w, 0);
window_pixel_to_total (w->frame, Qnil);
}
else
resize_failed = 1;
}
/* Resize child windows horizontally. */
if (!resize_failed)
{
w->left_col = r->left_col;
w->pixel_left = r->pixel_left;
XSETINT (delta, r->pixel_width - w->pixel_width);
resize_root_window (window, delta, Qt, Qnil, Qt);
if (window_resize_check (w, 1))
{
window_resize_apply (w, 1);
window_pixel_to_total (w->frame, Qt);
}
else
{
resize_root_window (window, delta, Qt, Qt, Qt);
if (window_resize_check (w, 1))
{
window_resize_apply (w, 1);
window_pixel_to_total (w->frame, Qt);
}
else
resize_failed = 1;
}
}
if (resize_failed)
/* Play safe, if we still can ... */
{
window = swindow;
w = XWINDOW (window);
}
}
/* Cleanly unlink WINDOW from window-tree. */
if (!NILP (w->prev))
/* Get SIBLING above (on the left of) WINDOW. */
{
sibling = w->prev;
s = XWINDOW (sibling);
wset_next (s, w->next);
if (!NILP (s->next))
wset_prev (XWINDOW (s->next), sibling);
}
else
/* Get SIBLING below (on the right of) WINDOW. */
{
sibling = w->next;
s = XWINDOW (sibling);
wset_prev (s, Qnil);
wset_combination (XWINDOW (w->parent),
XWINDOW (w->parent)->horizontal, sibling);
}
/* Delete ROOT and all child windows of ROOT. */
if (WINDOWP (r->contents))
{
delete_all_child_windows (r->contents);
wset_combination (r, 0, Qnil);
}
replace_window (root, window, 1);
/* This must become SWINDOW anyway ....... */
if (BUFFERP (w->contents) && !resize_failed)
{
/* Try to minimize scrolling, by setting the window start to the
point will cause the text at the old window start to be at the
same place on the frame. But don't try to do this if the
window start is outside the visible portion (as might happen
when the display is not current, due to typeahead). */
new_top = WINDOW_TOP_EDGE_LINE (w) - FRAME_TOP_MARGIN (XFRAME (WINDOW_FRAME (w)));
if (new_top != top
&& startpos >= BUF_BEGV (XBUFFER (w->contents))
&& startpos <= BUF_ZV (XBUFFER (w->contents)))
{
struct position pos;
struct buffer *obuf = current_buffer;
Fset_buffer (w->contents);
/* This computation used to temporarily move point, but that
can have unwanted side effects due to text properties. */
pos = *vmotion (startpos, startbyte, -top, w);
set_marker_both (w->start, w->contents, pos.bufpos, pos.bytepos);
w->window_end_valid = 0;
w->start_at_line_beg = (pos.bytepos == BEGV_BYTE
|| FETCH_BYTE (pos.bytepos - 1) == '\n');
/* We need to do this, so that the window-scroll-functions
get called. */
w->optional_new_start = 1;
set_buffer_internal (obuf);
}
}
adjust_frame_glyphs (f);
unblock_input ();
run_window_configuration_change_hook (f);
return Qnil;
}
void
replace_buffer_in_windows (Lisp_Object buffer)
{
call1 (Qreplace_buffer_in_windows, buffer);
}
/* If BUFFER is shown in a window, safely replace it with some other
buffer in all windows of all frames, even those on other keyboards. */
void
replace_buffer_in_windows_safely (Lisp_Object buffer)
{
if (buffer_window_count (XBUFFER (buffer)))
{
Lisp_Object tail, frame;
/* A single call to window_loop won't do the job because it only
considers frames on the current keyboard. So loop manually over
frames, and handle each one. */
FOR_EACH_FRAME (tail, frame)
window_loop (REPLACE_BUFFER_IN_WINDOWS_SAFELY, buffer, 1, frame);
}
}
/* If *HEIGHT or *WIDTH are too small a size for FRAME, set them to the
minimum allowable size. PIXELWISE means interpret these as pixel
sizes. */
void
check_frame_size (struct frame *frame, int *width, int *height, bool pixelwise)
{
/* For height, we have to see:
how many windows the frame has at minimum (one or two),
and whether it has a menu bar or other special stuff at the top. */
if (pixelwise)
{
int min_height = MIN_SAFE_WINDOW_HEIGHT * FRAME_LINE_HEIGHT (frame);
int min_width = MIN_SAFE_WINDOW_WIDTH * FRAME_COLUMN_WIDTH (frame);
if (!FRAME_MINIBUF_ONLY_P (frame) && FRAME_HAS_MINIBUF_P (frame))
min_height = 2 * min_height;
min_height += FRAME_TOP_MARGIN_HEIGHT (frame);
min_height += FRAME_INTERNAL_BORDER_WIDTH (frame);
if (*height < min_height)
*height = min_height;
if (*width < min_width)
*width = min_width;
}
else
{
int min_height
= ((FRAME_MINIBUF_ONLY_P (frame) || ! FRAME_HAS_MINIBUF_P (frame))
? MIN_SAFE_WINDOW_HEIGHT
: 2 * MIN_SAFE_WINDOW_HEIGHT);
if (FRAME_TOP_MARGIN (frame) > 0)
min_height += FRAME_TOP_MARGIN (frame);
if (*height < min_height)
*height = min_height;
if (*width < MIN_SAFE_WINDOW_WIDTH)
*width = MIN_SAFE_WINDOW_WIDTH;
}
}
/* Adjust the margins of window W if text area is too small.
Return 1 if window width is ok after adjustment; 0 if window
is still too narrow. */
static int
adjust_window_margins (struct window *w)
{
int box_width = (WINDOW_PIXEL_WIDTH (w)
- WINDOW_FRINGES_WIDTH (w)
- WINDOW_SCROLL_BAR_AREA_WIDTH (w));
int margin_width = WINDOW_MARGINS_WIDTH (w);
if (box_width - margin_width >= MIN_SAFE_WINDOW_PIXEL_WIDTH (w))
return 1;
if (margin_width < 0 || box_width < MIN_SAFE_WINDOW_PIXEL_WIDTH (w))
return 0;
else
/* Window's text area is too narrow, but reducing the window
margins will fix that. */
{
int unit = WINDOW_FRAME_COLUMN_WIDTH (w);
margin_width = box_width - MIN_SAFE_WINDOW_PIXEL_WIDTH (w);
if (WINDOW_RIGHT_MARGIN_WIDTH (w) > 0)
{
if (WINDOW_LEFT_MARGIN_WIDTH (w) > 0)
w->left_margin_cols = w->right_margin_cols =
margin_width / (2 * unit);
else
w->right_margin_cols = margin_width / unit;
}
else
w->left_margin_cols = margin_width / unit;
return 1;
}
}
/* The following three routines are needed for running a window's
configuration change hook. */
static void
run_funs (Lisp_Object funs)
{
for (; CONSP (funs); funs = XCDR (funs))
if (!EQ (XCAR (funs), Qt))
call0 (XCAR (funs));
}
static void
select_window_norecord (Lisp_Object window)
{
if (WINDOW_LIVE_P (window))
Fselect_window (window, Qt);
}
static void
select_frame_norecord (Lisp_Object frame)
{
if (FRAME_LIVE_P (XFRAME (frame)))
Fselect_frame (frame, Qt);
}
void
run_window_configuration_change_hook (struct frame *f)
{
ptrdiff_t count = SPECPDL_INDEX ();
Lisp_Object frame, global_wcch
= Fdefault_value (Qwindow_configuration_change_hook);
XSETFRAME (frame, f);
if (NILP (Vrun_hooks) || !NILP (inhibit_lisp_code))
return;
/* Use the right buffer. Matters when running the local hooks. */
if (current_buffer != XBUFFER (Fwindow_buffer (Qnil)))
{
record_unwind_current_buffer ();
Fset_buffer (Fwindow_buffer (Qnil));
}
if (SELECTED_FRAME () != f)
{
record_unwind_protect (select_frame_norecord, selected_frame);
select_frame_norecord (frame);
}
/* Look for buffer-local values. */
{
Lisp_Object windows = Fwindow_list (frame, Qlambda, Qnil);
for (; CONSP (windows); windows = XCDR (windows))
{
Lisp_Object window = XCAR (windows);
Lisp_Object buffer = Fwindow_buffer (window);
if (!NILP (Flocal_variable_p (Qwindow_configuration_change_hook,
buffer)))
{
ptrdiff_t inner_count = SPECPDL_INDEX ();
record_unwind_protect (select_window_norecord, selected_window);
select_window_norecord (window);
run_funs (Fbuffer_local_value (Qwindow_configuration_change_hook,
buffer));
unbind_to (inner_count, Qnil);
}
}
}
run_funs (global_wcch);
unbind_to (count, Qnil);
}
DEFUN ("run-window-configuration-change-hook", Frun_window_configuration_change_hook,
Srun_window_configuration_change_hook, 0, 1, 0,
doc: /* Run `window-configuration-change-hook' for FRAME.
If FRAME is omitted or nil, it defaults to the selected frame. */)
(Lisp_Object frame)
{
run_window_configuration_change_hook (decode_live_frame (frame));
return Qnil;
}
DEFUN ("run-window-scroll-functions", Frun_window_scroll_functions,
Srun_window_scroll_functions, 0, 1, 0,
doc: /* Run `window-scroll-functions' for WINDOW.
If WINDOW is omitted or nil, it defaults to the selected window. */)
(Lisp_Object window)
{
if (! NILP (Vwindow_scroll_functions))
run_hook_with_args_2 (Qwindow_scroll_functions, window,
Fmarker_position (decode_live_window (window)->start));
return Qnil;
}
/* Make WINDOW display BUFFER. RUN_HOOKS_P non-zero means it's allowed
to run hooks. See make_frame for a case where it's not allowed.
KEEP_MARGINS_P non-zero means that the current margins, fringes, and
scroll-bar settings of the window are not reset from the buffer's
local settings. */
void
set_window_buffer (Lisp_Object window, Lisp_Object buffer,
bool run_hooks_p, bool keep_margins_p)
{
struct window *w = XWINDOW (window);
struct buffer *b = XBUFFER (buffer);
ptrdiff_t count = SPECPDL_INDEX ();
bool samebuf = EQ (buffer, w->contents);
wset_buffer (w, buffer);
if (EQ (window, selected_window))
bset_last_selected_window (b, window);
/* Let redisplay errors through. */
b->display_error_modiff = 0;
/* Update time stamps of buffer display. */
if (INTEGERP (BVAR (b, display_count)))
bset_display_count (b, make_number (XINT (BVAR (b, display_count)) + 1));
bset_display_time (b, Fcurrent_time ());
w->window_end_pos = 0;
w->window_end_vpos = 0;
w->last_cursor_vpos = 0;
if (!(keep_margins_p && samebuf))
{ /* If we're not actually changing the buffer, don't reset hscroll and
vscroll. This case happens for example when called from
change_frame_size_1, where we use a dummy call to
Fset_window_buffer on the frame's selected window (and no other)
just in order to run window-configuration-change-hook.
Resetting hscroll and vscroll here is problematic for things like
image-mode and doc-view-mode since it resets the image's position
whenever we resize the frame. */
w->hscroll = w->min_hscroll = 0;
w->vscroll = 0;
set_marker_both (w->pointm, buffer, BUF_PT (b), BUF_PT_BYTE (b));
set_marker_restricted (w->start,
make_number (b->last_window_start),
buffer);
w->start_at_line_beg = 0;
w->force_start = 0;
}
/* Maybe we could move this into the `if' but it's not obviously safe and
I doubt it's worth the trouble. */
wset_redisplay (w);
w->update_mode_line = true;
/* We must select BUFFER for running the window-scroll-functions. */
/* We can't check ! NILP (Vwindow_scroll_functions) here
because that might itself be a local variable. */
if (window_initialized)
{
record_unwind_current_buffer ();
Fset_buffer (buffer);
}
XMARKER (w->pointm)->insertion_type = !NILP (Vwindow_point_insertion_type);
if (!keep_margins_p)
{
/* Set left and right marginal area width etc. from buffer. */
set_window_fringes (w, BVAR (b, left_fringe_width),
BVAR (b, right_fringe_width),
BVAR (b, fringes_outside_margins));
set_window_scroll_bars (w, BVAR (b, scroll_bar_width),
BVAR (b, vertical_scroll_bar_type), Qnil);
set_window_margins (w, BVAR (b, left_margin_cols),
BVAR (b, right_margin_cols));
apply_window_adjustment (w);
}
if (run_hooks_p)
{
if (! NILP (Vwindow_scroll_functions))
run_hook_with_args_2 (Qwindow_scroll_functions, window,
Fmarker_position (w->start));
if (!samebuf)
run_window_configuration_change_hook (XFRAME (WINDOW_FRAME (w)));
}
unbind_to (count, Qnil);
}
DEFUN ("set-window-buffer", Fset_window_buffer, Sset_window_buffer, 2, 3, 0,
doc: /* Make WINDOW display BUFFER-OR-NAME.
WINDOW must be a live window and defaults to the selected one.
BUFFER-OR-NAME must be a buffer or the name of an existing buffer.
Optional third argument KEEP-MARGINS non-nil means that WINDOW's current
display margins, fringe widths, and scroll bar settings are preserved;
the default is to reset these from the local settings for BUFFER-OR-NAME
or the frame defaults. Return nil.
This function throws an error when WINDOW is strongly dedicated to its
buffer (that is `window-dedicated-p' returns t for WINDOW) and does not
already display BUFFER-OR-NAME.
This function runs `window-scroll-functions' before running
`window-configuration-change-hook'. */)
(register Lisp_Object window, Lisp_Object buffer_or_name, Lisp_Object keep_margins)
{
register Lisp_Object tem, buffer;
register struct window *w = decode_live_window (window);
XSETWINDOW (window, w);
buffer = Fget_buffer (buffer_or_name);
CHECK_BUFFER (buffer);
if (!BUFFER_LIVE_P (XBUFFER (buffer)))
error ("Attempt to display deleted buffer");
tem = w->contents;
if (NILP (tem))
error ("Window is deleted");
else
{
if (!EQ (tem, buffer))
{
if (EQ (w->dedicated, Qt))
/* WINDOW is strongly dedicated to its buffer, signal an
error. */
error ("Window is dedicated to `%s'", SDATA (BVAR (XBUFFER (tem), name)));
else
/* WINDOW is weakly dedicated to its buffer, reset
dedication. */
wset_dedicated (w, Qnil);
call1 (Qrecord_window_buffer, window);
}
unshow_buffer (w);
}
set_window_buffer (window, buffer, 1, !NILP (keep_margins));
return Qnil;
}
static Lisp_Object
display_buffer (Lisp_Object buffer, Lisp_Object not_this_window_p, Lisp_Object override_frame)
{
return call3 (Qdisplay_buffer, buffer, not_this_window_p, override_frame);
}
DEFUN ("force-window-update", Fforce_window_update, Sforce_window_update,
0, 1, 0,
doc: /* Force all windows to be updated on next redisplay.
If optional arg OBJECT is a window, force redisplay of that window only.
If OBJECT is a buffer or buffer name, force redisplay of all windows
displaying that buffer. */)
(Lisp_Object object)
{
if (NILP (object))
{
windows_or_buffers_changed = 29;
update_mode_lines = 28;
return Qt;
}
if (WINDOWP (object))
{
struct window *w = XWINDOW (object);
mark_window_display_accurate (object, 0);
w->update_mode_line = 1;
if (BUFFERP (w->contents))
XBUFFER (w->contents)->prevent_redisplay_optimizations_p = 1;
update_mode_lines = 29;
return Qt;
}
if (STRINGP (object))
object = Fget_buffer (object);
if (BUFFERP (object) && BUFFER_LIVE_P (XBUFFER (object))
&& buffer_window_count (XBUFFER (object)))
{
/* If buffer is live and shown in at least one window, find
all windows showing this buffer and force update of them. */
object = window_loop (REDISPLAY_BUFFER_WINDOWS, object, 0, Qvisible);
return NILP (object) ? Qnil : Qt;
}
/* If nothing suitable was found, just return.
We could signal an error, but this feature will typically be used
asynchronously in timers or process sentinels, so we don't. */
return Qnil;
}
/* Obsolete since 24.3. */
void
temp_output_buffer_show (register Lisp_Object buf)
{
register struct buffer *old = current_buffer;
register Lisp_Object window;
register struct window *w;
bset_directory (XBUFFER (buf), BVAR (current_buffer, directory));
Fset_buffer (buf);
BUF_SAVE_MODIFF (XBUFFER (buf)) = MODIFF;
BEGV = BEG;
ZV = Z;
SET_PT (BEG);
set_buffer_internal (old);
if (!NILP (Vtemp_buffer_show_function))
call1 (Vtemp_buffer_show_function, buf);
else if (WINDOW_LIVE_P (window = display_buffer (buf, Qnil, Qnil)))
{
if (!EQ (XWINDOW (window)->frame, selected_frame))
Fmake_frame_visible (WINDOW_FRAME (XWINDOW (window)));
Vminibuf_scroll_window = window;
w = XWINDOW (window);
w->hscroll = 0;
w->min_hscroll = 0;
set_marker_restricted_both (w->start, buf, BEG, BEG);
set_marker_restricted_both (w->pointm, buf, BEG, BEG);
/* Run temp-buffer-show-hook, with the chosen window selected
and its buffer current. */
{
ptrdiff_t count = SPECPDL_INDEX ();
Lisp_Object prev_window, prev_buffer;
prev_window = selected_window;
XSETBUFFER (prev_buffer, old);
/* Select the window that was chosen, for running the hook.
Note: Both Fselect_window and select_window_norecord may
set-buffer to the buffer displayed in the window,
so we need to save the current buffer. --stef */
record_unwind_protect (restore_buffer, prev_buffer);
record_unwind_protect (select_window_norecord, prev_window);
Fselect_window (window, Qt);
Fset_buffer (w->contents);
Frun_hooks (1, &Qtemp_buffer_show_hook);
unbind_to (count, Qnil);
}
}
}
/* Make new window, have it replace WINDOW in window-tree, and make
WINDOW its only vertical child (HORFLAG 1 means make WINDOW its only
horizontal child). */
static void
make_parent_window (Lisp_Object window, bool horflag)
{
Lisp_Object parent;
register struct window *o, *p;
o = XWINDOW (window);
p = allocate_window ();
memcpy ((char *) p + sizeof (struct vectorlike_header),
(char *) o + sizeof (struct vectorlike_header),
word_size * VECSIZE (struct window));
/* P's buffer slot may change from nil to a buffer... */
adjust_window_count (p, 1);
XSETWINDOW (parent, p);
p->sequence_number = ++sequence_number;
replace_window (window, parent, 1);
wset_next (o, Qnil);
wset_prev (o, Qnil);
wset_parent (o, parent);
/* ...but now P becomes an internal window. */
wset_start (p, Qnil);
wset_pointm (p, Qnil);
wset_buffer (p, Qnil);
wset_combination (p, horflag, window);
wset_combination_limit (p, Qnil);
wset_window_parameters (p, Qnil);
}
/* Make new window from scratch. */
Lisp_Object
make_window (void)
{
Lisp_Object window;
register struct window *w;
w = allocate_window ();
/* Initialize Lisp data. Note that allocate_window initializes all
Lisp data to nil, so do it only for slots which should not be nil. */
wset_normal_lines (w, make_float (1.0));
wset_normal_cols (w, make_float (1.0));
wset_new_total (w, make_number (0));
wset_new_normal (w, make_number (0));
wset_new_pixel (w, make_number (0));
wset_start (w, Fmake_marker ());
wset_pointm (w, Fmake_marker ());
wset_vertical_scroll_bar_type (w, Qt);
/* These Lisp fields are marked specially so they're not set to nil by
allocate_window. */
wset_prev_buffers (w, Qnil);
wset_next_buffers (w, Qnil);
/* Initialize non-Lisp data. Note that allocate_window zeroes out all
non-Lisp data, so do it only for slots which should not be zero. */
w->nrows_scale_factor = w->ncols_scale_factor = 1;
w->left_fringe_width = w->right_fringe_width = -1;
w->mode_line_height = w->header_line_height = -1;
#ifdef HAVE_WINDOW_SYSTEM
w->phys_cursor_type = NO_CURSOR;
w->phys_cursor_width = -1;
#endif
w->sequence_number = ++sequence_number;
w->scroll_bar_width = -1;
w->column_number_displayed = -1;
/* Reset window_list. */
Vwindow_list = Qnil;
/* Return window. */
XSETWINDOW (window, w);
return window;
}
DEFUN ("set-window-new-pixel", Fset_window_new_pixel, Sset_window_new_pixel, 2, 3, 0,
doc: /* Set new pixel size of WINDOW to SIZE.
WINDOW must be a valid window and defaults to the selected one.
Return SIZE.
Optional argument ADD non-nil means add SIZE to the new pixel size of
WINDOW and return the sum.
The new pixel size of WINDOW, if valid, will be shortly installed as
WINDOW's pixel height (see `window-pixel-height') or pixel width (see
`window-pixel-width').
Note: This function does not operate on any child windows of WINDOW. */)
(Lisp_Object window, Lisp_Object size, Lisp_Object add)
{
struct window *w = decode_valid_window (window);
EMACS_INT size_min = NILP (add) ? 0 : - XINT (w->new_pixel);
EMACS_INT size_max = size_min + min (INT_MAX, MOST_POSITIVE_FIXNUM);
CHECK_RANGED_INTEGER (size, size_min, size_max);
if (NILP (add))
wset_new_pixel (w, size);
else
wset_new_pixel (w, make_number (XINT (w->new_pixel) + XINT (size)));
return w->new_pixel;
}
DEFUN ("set-window-new-total", Fset_window_new_total, Sset_window_new_total, 2, 3, 0,
doc: /* Set new total size of WINDOW to SIZE.
WINDOW must be a valid window and defaults to the selected one.
Return SIZE.
Optional argument ADD non-nil means add SIZE to the new total size of
WINDOW and return the sum.
The new total size of WINDOW, if valid, will be shortly installed as
WINDOW's total height (see `window-total-height') or total width (see
`window-total-width').
Note: This function does not operate on any child windows of WINDOW. */)
(Lisp_Object window, Lisp_Object size, Lisp_Object add)
{
struct window *w = decode_valid_window (window);
CHECK_NUMBER (size);
if (NILP (add))
wset_new_total (w, size);
else
wset_new_total (w, make_number (XINT (w->new_total) + XINT (size)));
return w->new_total;
}
DEFUN ("set-window-new-normal", Fset_window_new_normal, Sset_window_new_normal, 1, 2, 0,
doc: /* Set new normal size of WINDOW to SIZE.
WINDOW must be a valid window and defaults to the selected one.
Return SIZE.
The new normal size of WINDOW, if valid, will be shortly installed as
WINDOW's normal size (see `window-normal-size').
Note: This function does not operate on any child windows of WINDOW. */)
(Lisp_Object window, Lisp_Object size)
{
wset_new_normal (decode_valid_window (window), size);
return size;
}
/* Return 1 if setting w->pixel_height (w->pixel_width if HORFLAG is
non-zero) to w->new_pixel would result in correct heights (widths)
for window W and recursively all child windows of W.
Note: This function does not check any of `window-fixed-size-p',
`window-min-height' or `window-min-width'. It does check that window
sizes do not drop below one line (two columns). */
static int
window_resize_check (struct window *w, bool horflag)
{
struct frame *f = XFRAME (w->frame);
struct window *c;
if (WINDOW_VERTICAL_COMBINATION_P (w))
/* W is a vertical combination. */
{
c = XWINDOW (w->contents);
if (horflag)
/* All child windows of W must have the same width as W. */
{
while (c)
{
if (XINT (c->new_pixel) != XINT (w->new_pixel)
|| !window_resize_check (c, horflag))
return 0;
c = NILP (c->next) ? 0 : XWINDOW (c->next);
}
return 1;
}
else
/* The sum of the heights of the child windows of W must equal
W's height. */
{
int remaining_pixels = XINT (w->new_pixel);
while (c)
{
if (!window_resize_check (c, horflag))
return 0;
remaining_pixels -= XINT (c->new_pixel);
if (remaining_pixels < 0)
return 0;
c = NILP (c->next) ? 0 : XWINDOW (c->next);
}
return remaining_pixels == 0;
}
}
else if (WINDOW_HORIZONTAL_COMBINATION_P (w))
/* W is a horizontal combination. */
{
c = XWINDOW (w->contents);
if (horflag)
/* The sum of the widths of the child windows of W must equal W's
width. */
{
int remaining_pixels = XINT (w->new_pixel);
while (c)
{
if (!window_resize_check (c, horflag))
return 0;
remaining_pixels -= XINT (c->new_pixel);
if (remaining_pixels < 0)
return 0;
c = NILP (c->next) ? 0 : XWINDOW (c->next);
}
return remaining_pixels == 0;
}
else
/* All child windows of W must have the same height as W. */
{
while (c)
{
if (XINT (c->new_pixel) != XINT (w->new_pixel)
|| !window_resize_check (c, horflag))
return 0;
c = NILP (c->next) ? 0 : XWINDOW (c->next);
}
return 1;
}
}
else
/* A leaf window. Make sure it's not too small. The following
hardcodes the values of `window-safe-min-width' (2) and
`window-safe-min-height' (1) which are defined in window.el. */
return (XINT (w->new_pixel) >= (horflag
? (2 * FRAME_COLUMN_WIDTH (f))
: FRAME_LINE_HEIGHT (f)));
}
/* Set w->pixel_height (w->pixel_width if HORFLAG is non-zero) to
w->new_pixel for window W and recursively all child windows of W.
Also calculate and assign the new vertical (horizontal) pixel start
positions of each of these windows.
This function does not perform any error checks. Make sure you have
run window_resize_check on W before applying this function. */
static void
window_resize_apply (struct window *w, bool horflag)
{
struct window *c;
int edge;
int unit = (horflag
? FRAME_COLUMN_WIDTH (WINDOW_XFRAME (w))
: FRAME_LINE_HEIGHT (WINDOW_XFRAME (w)));
/* Note: Assigning new_normal requires that the new total size of the
parent window has been set *before*. */
if (horflag)
{
w->pixel_width = XFASTINT (w->new_pixel);
w->total_cols = w->pixel_width / unit;
if (NUMBERP (w->new_normal))
wset_normal_cols (w, w->new_normal);
edge = w->pixel_left;
}
else
{
w->pixel_height = XFASTINT (w->new_pixel);
w->total_lines = w->pixel_height / unit;
if (NUMBERP (w->new_normal))
wset_normal_lines (w, w->new_normal);
edge = w->pixel_top;
}
if (WINDOW_VERTICAL_COMBINATION_P (w))
/* W is a vertical combination. */
{
c = XWINDOW (w->contents);
while (c)
{
if (horflag)
{
c->pixel_left = edge;
c->left_col = edge / unit;
}
else
{
c->pixel_top = edge;
c->top_line = edge / unit;
}
window_resize_apply (c, horflag);
if (!horflag)
edge = edge + c->pixel_height;
c = NILP (c->next) ? 0 : XWINDOW (c->next);
}
}
else if (WINDOW_HORIZONTAL_COMBINATION_P (w))
/* W is a horizontal combination. */
{
c = XWINDOW (w->contents);
while (c)
{
if (horflag)
{
c->pixel_left = edge;
c->left_col = edge / unit;
}
else
{
c->pixel_top = edge;
c->top_line = edge / unit;
}
window_resize_apply (c, horflag);
if (horflag)
edge = edge + c->pixel_width;
c = NILP (c->next) ? 0 : XWINDOW (c->next);
}
}
else
{
adjust_window_margins (w);
/* Bug#15957. */
w->window_end_valid = 0;
}
}
/* Set w->total_lines (w->total_cols if HORFLAG is non-zero) to
w->new_total for window W and recursively all child windows of W.
Also calculate and assign the new vertical (horizontal) start
positions of each of these windows. */
static void
window_resize_apply_total (struct window *w, bool horflag)
{
struct window *c;
int edge;
/* Note: Assigning new_normal requires that the new total size of the
parent window has been set *before*. */
if (horflag)
{
w->total_cols = XFASTINT (w->new_total);
edge = w->left_col;
}
else
{
w->total_lines = XFASTINT (w->new_total);
edge = w->top_line;
}
if (WINDOW_VERTICAL_COMBINATION_P (w))
/* W is a vertical combination. */
{
c = XWINDOW (w->contents);
while (c)
{
if (horflag)
c->left_col = edge;
else
c->top_line = edge;
window_resize_apply_total (c, horflag);
if (!horflag)
edge = edge + c->total_lines;
c = NILP (c->next) ? 0 : XWINDOW (c->next);
}
}
else if (WINDOW_HORIZONTAL_COMBINATION_P (w))
/* W is a horizontal combination. */
{
c = XWINDOW (w->contents);
while (c)
{
if (horflag)
c->left_col = edge;
else
c->top_line = edge;
window_resize_apply_total (c, horflag);
if (horflag)
edge = edge + c->total_cols;
c = NILP (c->next) ? 0 : XWINDOW (c->next);
}
}
}
DEFUN ("window-resize-apply", Fwindow_resize_apply, Swindow_resize_apply, 0, 2, 0,
doc: /* Apply requested size values for window-tree of FRAME.
If FRAME is omitted or nil, it defaults to the selected frame.
Optional argument HORIZONTAL omitted or nil means apply requested
height values. HORIZONTAL non-nil means apply requested width values.
The requested size values are those set by `set-window-new-pixel' and
`set-window-new-normal'. This function checks whether the requested
values sum up to a valid window layout, recursively assigns the new
sizes of all child windows and calculates and assigns the new start
positions of these windows.
Return t if the requested values have been applied correctly, nil
otherwise.
Note: This function does not check any of `window-fixed-size-p',
`window-min-height' or `window-min-width'. All these checks have to
be applied on the Elisp level. */)
(Lisp_Object frame, Lisp_Object horizontal)
{
struct frame *f = decode_live_frame (frame);
struct window *r = XWINDOW (FRAME_ROOT_WINDOW (f));
bool horflag = !NILP (horizontal);
if (!window_resize_check (r, horflag)
|| (XINT (r->new_pixel)
!= (horflag ? r->pixel_width : r->pixel_height)))
return Qnil;
block_input ();
window_resize_apply (r, horflag);
fset_redisplay (f);
FRAME_WINDOW_SIZES_CHANGED (f) = 1;
adjust_frame_glyphs (f);
unblock_input ();
return Qt;
}
DEFUN ("window-resize-apply-total", Fwindow_resize_apply_total, Swindow_resize_apply_total, 0, 2, 0,
doc: /* Apply requested total size values for window-tree of FRAME.
If FRAME is omitted or nil, it defaults to the selected frame.
This function does not assign pixel or normal size values. You should
have run `window-resize-apply' before running this.
Optional argument HORIZONTAL omitted or nil means apply requested
height values. HORIZONTAL non-nil means apply requested width
values. */)
(Lisp_Object frame, Lisp_Object horizontal)
{
struct frame *f = decode_live_frame (frame);
struct window *r = XWINDOW (FRAME_ROOT_WINDOW (f));
block_input ();
/* Necessary when deleting the top-/or leftmost window. */
r->left_col = 0;
r->top_line = FRAME_TOP_MARGIN (f);
window_resize_apply_total (r, !NILP (horizontal));
/* Handle the mini window. */
if (FRAME_HAS_MINIBUF_P (f) && !FRAME_MINIBUF_ONLY_P (f))
{
struct window *m = XWINDOW (f->minibuffer_window);
if (NILP (horizontal))
{
m->top_line = r->top_line + r->total_lines;
m->total_lines = XFASTINT (m->new_total);
}
else
m->total_cols = XFASTINT (m->new_total);
}
unblock_input ();
return Qt;
}