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Abstract—This document represents the essence of a talk given
by the author of this paper as part of the requirements for
the Master Program in Computer Science at the University
of Applied Sciences in Frankfurt. The module ”Learning from
Data” was taught by Prof. Dr. Joerg Schaefer in the winter
semester 2022/23 and the assigned talk subject was ”’Transformer
Applications in NLP”. The talk was divided into three parts
and covered the following topics: An introduction to ”Word
Embeddings”, the description of the Transformer [1] architecture
on the example of BERT [2] and the application of a pretrained
and finetuned BERT model to predict the sentiment of Twitter
text messages.

Index Terms—transformers, BERT, word embedding, pretrained
language model, NLP

I. WORD EMBEDDINGS

Written human language consists of words which first must be
encoded into numbers before computers can understand them.
One way to encode words is to use so called one-hot encodings
where every unique word gets its own binary number vector
with one value therein equal to 1, and all others equal to 0.

(Fig.1).

horse | bear king | queen |banana| apple
horse 1 0] 0 0 0 0
bear 0 1 0 0 0 0
king 0 0 1 0 0 0
queen » 0 0 0 1 0 0
banana 0 0 0 0 1 0
apple 0 0 0 0 0 1

Fig. 1. Each unique word gets its own column in a tabular data structure. In
case the word is present, the number in that column is one, else zero. Each
table row then is converted into a vector representing the respective word.

The first disadvantage of this approach is the high consumption
of compute memory as each word in our simple example in
Fig.1 would require a sparse six-column vector with five 0’s
and only one 1. The second disadvantage is that this approach
does not encode syntactical or semantic word similarities
as similar words would have different and unrelated vector
representations.

A. Manually crafted features

To encode syntactical or semantic word commonalities, one
could think about word characteristics or attributes and manu-
ally encode the magnitude of those attributes for each word as
shown in Fig.2. The word “horse” for instance, would then be

FEATURES
animal can . KL rich tuo G peaceful food
it legs legs

horse 1 1 0 0 1 1 0.2
bear 1 1 0 0 1 0 0
king 0 0 1 1 0 0.2 0
queen 0 0] 1 1 0 0.8 0
banana 0 0 0 0 0 1 1
apple 0 [0] 0 [o] 0 1 1

Fig. 2. Each word is represented by manually crafted feature values. A horse,
for instance, is an animal, one can ride on it, it has four legs, is usually peaceful
and is sometimes processed to food (meat or sausage).

represented as a vector of values for each of these handcrafted
features (Fig.3).

vec_horse = [1, 1, 0, 0, 1, 1, 0.2]

Fig. 3. The vector for the word “horse” contains the values for each manually
crafted feature. See also Fig.2.

This approach ensures that related words are represented
similarly as their values in the respective vector position are
close to each other. Such similarities can also be calculated
numerically by applying the cosine similarity method which
is the standardized inner or dot product of the two word
vectors to be compared (Fig.4). The standardization ensures
that the calculated similarity value lies between zero and one
and thus makes comparisons between different word pairs
possible.

A.B

Cos (A4,B) = EZTTET

Fig. 4. Cosine similarity formula: standardized dot or inner product of two
vectors or matrices.

The cosine similarities between each pair of those words
previously shown is depicted in a matrix in Fig.5. The cosine
similarity for the word pair ’horse” and “apple”, for instance,
yields a value of 0.42. For the word pair "apple” and “banana”
however, this value is 1.0, owing to the fact that both are fruits



and in our simple example have the same feature values at each
index position of their word vector.

cos sim | horse | bear king queen |banana apple
horse 0.86 0.24 0.42 0.42
bear 0.86
king 0.10 0.10
queen 0.24 0.35 0.35
banana | 0.42 0.10 0.35
apple | 0.42 0.10 0.35

Fig. 5. Exemplary cosine similarity matrix of some word pairs calculated on
basis of the vectors provided in Fig.2.

B. Learned features

Manually crafting feature values for every word in a vocab-
ulary is cumbersome at best. It is also subject to ambiguity
and human misjudgement. Are all “queens” rich as the feature
value in Fig.2 suggests? And have you ever successfully ridden
a grizzly ”bear”? Is there no food in (burger) “king”? And isn’t
an “apple” rich in vitamin C?

Better than crafting features by hand is to have a machine
learning model to learn these features and feature values.
This is the “word2vec” approach Mikolov et al proposed
in their seminal papers in 2013 [3][4]. A shallow, two-
layer neural network (Fig.6) is trained with sentences that
contain a masked word (CBOW-approach. Alternative: Skip-
Gram-approach. See: [4]) to be predicted (target or dependent
variable) based on its non-masked adjacent words (input or
independent variables) in that sentence.
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Fig. 6. word2vec: Masked words are learned by a shallow, two-layer neural
network.

The number of learned features depends on the number of
neurons in the middle layer and the learned weights represent
the respective feature values. The learned features do not

have names as before (like ”animal”, “rich”, ”food”, etc.) and
thus cannot be interpreted semantically by humans (easily)
(Fig.7).

FEATURES

&) & | €| E | @ |E
weights | weights | weights | weights | weights | weights | weights
horse 0.57 0.23 0.73 0.73 0.66 0.33
bear 0.55 0.30 0.11 0.85 0.79
king 0.19 0.17 0.37 0.14 0.64
queen 0.12 0.05 0.67 0.30 0.05
banana 0.70 0.42 0.55 0.12 0.57 0.86
apple | ©0.60 | 0.80 0.80 0.19 0.52 0.48
vec_horse = [0.57, 0.99, 0.23, 0.73, ..., 0.73, 0.66, 0.33]
vec_bear = [0.55, 6.3, 0.11, 0.92, .. , 0.85, 0.93, 0.79]
vec_king = [0.19, 6.17, 0.37, 0.99, ., 0.14, 0.96, 0.64]
vec_queen = [0.91, 0.12, 0.05, 0.67, ., 0.3, 0.36, 0.05]
vec_banana = [0.7, 0.42, 0.55, 0.12, ., 8.57, 0.97, 0.86]
vec_apple = [0.6, 6.8, 0.8, 0.19, ., 0.52, 0.41, 0.48]

Fig. 7. The learned parameters/weights represent the feature values.

The learned word vectors can also be used to perform math-
ematical operations. An element-wise addition of the vectors
representing the word “king” and “man” and the subsequent
subtraction of “woman” yields a vector that is very similar to
the vector of the word “queen” (Fig.8).
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Fig. 8. Add and subtract word vectors: the infamous “’king + man - woman
= queen” example. Image taken from: [5]

C. The problem with static word embeddings

The learned word vectors are also known as word embeddings
and work well for tasks such as measuring similarities between
individual words. But they often fail when the scope goes
beyond just words towards the semantic meaning of whole
sentences. A sentence is simply not just a chain of individ-
ual and independent words but a construct containing inter-
dependencies.

One of these word-wise inter-dependencies are homophones,
i.e. words that are spelt the same but have different meanings.
The word “flies”, for instance, in the sentence “time flies like
an arrow” refers to a verb, i.e. an activity, whereas the same
word in the sentence “fruit flies like a banana” refers to a noun
and an insect species. The meaning of the word “bank” in
the sentence “he withdraws money from his bank” is strongly



affected by the surrounding words “withdraws” and “money”
as they clearly suggest that “bank” in that sentence refers
to a financial institution. In contrast, the meaning of the same
word “bank” in the sentence “he was fishing in the river from
a sand bank” is strongly affected by the words “river” and

“sand” (Fig.9).

money from his bank.

He

He was fishing in the froma bank.

Fig. 9. Homophone “bank” is dependent on its context

When humans read these sentences, they derive the meaning
of the word “bank” by paying attention” to these adjacent
words [6].

There are more inter-dependencies in sentences than homo-
phones, but in general it can be said that the meaning of a
word depends on its respective context.

English linguist John Rupert Firth [7] in that respect famously
stated that:

“You shall know a word by the company it keeps!“

Word embeddings such as word2vec [3][4] are static in the
sense that they treat equal words alike without taking their
context into account. For the example above, static approaches
encode the word “flies” with the same vector independent
of whether the word appears in the sentence “time flies like
an arrow” or “fruit flies like a banana”. This is one of
the reasons why static word embeddings such as word2vec
often fail to understand the meaning of sentences. What is
needed are dynamic word embeddings that are able to take this
context into account. Such a dynamic or contextualized word
embedding would represent the word “flies” in our example
with different vectors dependent on the sentence and context
the word appears in.

II. BERT

Here, transformers [1] came to the rescue. Viswani et al
in 2017 in their seminal paper “Attention is all you need”
("AIAYN”) proposed a new neural network architecture for
the domain of Natural Language Processing ("NLP”) and
dubbed it “transformers”. Transformers embrace the human
“attention” principle discussed above, i.e. the ability to infer
the meaning of a word by paying “attention” to its adjacent
words in that sentence.

The importance of the “attention” principle had already been

discovered earlier [8]. In 2018, ULMFiT [9] and ELMO [10]
implemented it in a bi-directional LSTM [11] recurrent neural
network ("RNN”). These LSTM-based models performed well
on specific tasks but suffered from long training times and
fading context memory if sentences were longer than just a
few words. BERT (”Bidirectional Encoder Architecture from
Transformers”) was released in 2018 by Google researchers
[2] and is the first neural network model (partly) based on
the architecture proposed in the AIAYN paper. Unlike ELMO
and ULMFIiT, transformer-based architectures such as BERT,
do not rely on recurrence, but on self-attention”, a concept
explained in later chapters. This results in much shorter
training times and, more importantly, in the preservation of
context memory even if sentences are very long.

A. The general architecture of BERT

The transformer architecture consists of Encoder and De-
coder stacks. As its name implies, BERT (’Bidirectional
Encoder ..”) only uses the Encoder part of the transformer
(Fig.10).
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Fig. 10. Transformer architecture: Encoder and Decoder stacks with N layers.
BERT only uses the Encoder stack. The “bert-base-uncased” model has 12
layers (N=12).

There are multiple versions of BERT, among them “bert-base-
uncased”. “Uncased” in this context means that upper case
letters in the text are ignored and converted to lower case,
loosing some information in the process. "Base” refers to the
model size in terms of vector dimension and the number of
layers and heads. The “base” model has 12 layers with 12
heads each.

A layer refers to an Encoder or Decoder block as shown in
Fig.10 to be stacked vertically. A head is also known as a



Hidden State and refers to the dynamic word embeddings in
each layer.

BERT uses a sub-word tokenization method called ~Word-
Piece” [12] that splits some but not all words into multiple
tokens. Among the three most common tokenization methods
(letter tokenization, sub-word tokenization, word tokeniza-
tion), the sub-word tokenization method has been found su-
perior [12][13]. Each token vector in the “’bert-base-uncased”
model has a length of 768 and each sentence can contain up
to 512 tokens. The “’base” version contains 110 Mio. learnable
parameters/weights.

If BERT is mentioned within the next few chapters, it refers to
the pretrained PyTorch [14] version of the “bert-base-uncased”
model downloaded from the Hugging Face website [15]. All
learnable parameters were already trained and thus frozen for
the purpose of the subsequent analysis. The pretrained model
contains 30,522 word tokens.

Raw text for both, upstream (training) and downstream (pre-
diction) tasks, must first be preprocessed and tokenized. As
this was not subject of the talk, it is assumed that this
transformation has already been done.

B. The BERT architecture in greater detail

In the next sections, the following sentences (”sample sen-
tences”) are used to go through each step of BERT’s Encoder
block (Idea from: [13]):

“time flies like an arrow
“fruit flies like a banana““

Each word in these two sentences only consists of one token.
This makes comparisons in the next sections easier than if
words were split into multiple tokens. The expressions “word”
and “token” in the next chapters are used interchangeably
as they mean the same in this example. Both sentences also
have the same length (n=5) which avoids padding issues, i.e.
the need to add “empty” tokens in the shorter sentence. If
only the first sentence is shown, it will subsequently just be
referred to as the Sample Sentence.

1) Embedding layers: BERT has three different kinds of
initial embeddings, i.e. embeddings in the first layer:

o Token Embeddings
o Position Embeddings
o Segment Embeddings

All three embedding layers in BERT are matrices (PyTorch
tensors) of learnable parameters.

a) Token Embeddings: The Token Embedding matrix in
BERT has 30,522 rows and 768 columns representing 30,522
tokens, each with a feature vector of length 768. Each feature
vector is randomly initialized before training and thereafter
contains learned feature values for each of the 30,522 word
tokens. Although the Token Embedding layer is only the

first part of BERT’s architecture, it per se already can be
interpreted as a 2-layer shallow neural network comparable to
the architecture of word2vec [4]. Like the values in the word
vectors of word2vec, the learned values of a given token
vector already represent feature values of a token but these
are still static at this stage, i.e. same words are represented
by the same token vectors in all sentences, independent of
their context.

Once learned, the Token Embedding matrix serves as a lookup
table for each token. The Token Embeddings for the tokens
in our sample sentences can be retrieved by their token
identification numbers (’token ids”).

PyTorch tensor objects in BERT in general have a dimension
of: [number of batches, number of tokens per batch, number
of feature values per token]. As we pack our two sample
sentences into two different batches, the two sentences are
concretely represented as a PyTorch tensor with a dimension
of: [2, 5, 768]. For simplification and demonstration purposes,
special tokens such as [CLS] or [SEP] are left out.

b) Position Embeddings: In LSTM-based models such as
ULMFiT [9] and ELMO [10], there is no need to encode
token positions as these kinds of RNNs by design process
tokens sequentially. In contrast and as shown in later chapters,
BERT does not make use of recurrence but relies on the
“self-attention” mechanism which processes information
parallelly. As the order of words in sentences syntactically
and semantically play an important role, the positions of
these words in each sentence must be encoded. Each batch
(or sentence in the given example) in BERT can have up to
512 tokens. To be able to later combine Token and Position
Embeddings, each token position is also encoded with a
vector of length 768. Once learned, the Position Embedding
matrix also serves as a lookup table for each position, but
there is no need to enter token position numbers or ids
because the position of a word within a sentence is known
from their tensor position and handled internally.

c) Segment Embeddings: As stated previously, the two
sample sentences are packed into two different batches. It
would also be possible to pack them into just one batch
so that our PyTorch tensor would have a dimension of [/,
10, 768] instead of [2, 5, 768]. But then an encoding of
which token belongs to which sentence would be required'.
This is the purpose of Segment Embeddings. The Segement
Embeddings matrix has a dimension of [2, 768]. The first of
the two row vectors in that matrix is applied for tokens that
are in the first sentence, the second vector for tokens that
are in the second sentence. Segment Embeddings are required
in the training phase for the task of “next sentence prediction”.

!Segment Embeddings are already dealt with in the tokenization phase. The
Hugging Face AutoTokenizer object, for instance, receives as input either a
list of sentence strings or a list of tuples of sentence strings. In the first case,
sentences are packed into different batches whereas in the second case, two
sentences in a tuple are packed into only one batch. BERT only allows for
up to two sentences per batch.



d) Input Embeddings: Sum of all Embeddings: The final Input
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Embeddings tensor is an element-wise sum of the values in the
Token Embeddings, Position Embeddings and Segment Embed-
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Fig. 11. Input Embeddings: Element-wise sum of Token Embeddings, Position
Embeddings and Segment Embeddings. In addition, “Normalization” and
”Droput Regularization” is applied.

This Input Embeddings tensor is then passed to the next layer
of the BERT architecture (Fig.12).
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Fig. 12. Red Arrow: Input Embeddings get passed to the first Encoder layer
("grey box”) of the BERT Encoder stack.

2) Multi-Head Attention: The first element of BERT’s first
Encoder layer (“grey box” in Fig.13) is the “Multi-Head
Attention” module. It consists of several sub-layers depicted
in the orange box on the right of Fig.13.

For demonstration purposes, the focus in the following
analysis will only be laid on the Sample Sentence time flies
like an arrow”. The batch dimension thus will be ignored and
the dimension of the Sample Sentence will be assumed to be

[number of tokens per sentence, number of feature values per
token] or [5, 768].

a) Three Linear Layers: The Input Embeddings tensor gets
passed to three different, learnable Linear Layers, i.e. ANN

64] each. The Input Embeddings matrix gets multiplied by
these learned parameters to produce three more matrices that
are given very peculiar names [2]: Query, Key and Value
(Fig.14).
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Fig. 14. Each weight/parameter matrix of the Three Linear Layers has a
dimension of [768, 64]. The matrix multiplication of the Input Embeddings
matrix with these three weight/parameter matrices “produce” the Query, Key
and Value tensors. Each of them has a dimension of [5, 64].

The three Linear Layers convert the Input Embeddings
dimension of [5, 768] to the Query-, Key- and Value-
dimension of [5, 64]. It can be assumed that the Query,
Key and Value matrices still contain the encoded feature,
position and segment information for the tokens in the Sample
Sentence, but in a condensed form. One task of the three
Linear Layers thus is the dimension reduction of the Input
Embeddings.

An important aspect of this transformation is that the three
Query, Key and Value matrices are different from each
other as each Linear Layer (hopefully) has learned different
parameters. This will be further elaborated on in a later
chapter.



b) Attention Filter: The next step in the Multi-Head Attention
module is the matrix multiplication depicted in Fig.15. The /5,

Attention
Filter

flies

time

i |arrow

°
£
Query R
time| om [wae | [ex] e HEIEEERE time| «» 7 | e
flies| o | on H HIE flies "
n : like| on | o = . . . —_— ik -
§otike (o) 2 8 o | e
an| w» | on = - o - an| .
arrow| o | w d|3)5)¢8 arrow 3
e 9 e 5 3 Dimension:
o £ [5 51
jd 5
Attention
SCALE Softmax Filter
o =
= 2 9 e H - o 8 o H - e g g H
a0 A e € A oA e € 2 ¢80 5 §
R P82 & & T &S & s
time| ser | o | s | e | ose time| oo | v | s o s 0 time s | e Ry
flies| s | 1o | se flies| om | om | oo flies
Like| o3 | 18 | 0 Like| o | o | o Like

an| 2 | 2n | ow an| s | oo

arrow| s | s | s | e | o arrow| s | es | s s | e

attn_filter =
Softmax(attn_filter)

\/dk = \/54

Fig. 15. Attention Filter: Matrix multiplication of Query and Key matrices
plus applying Scaling and Softmax operations.

64 ]-dimensional Query matrix is multiplied by the transposed
[5, 64]-dimensional Key matrix so that the resulting matrix
is of dimension [5, 5], equivalent to the number of words
in the Sample Sentence. Thereafter, all values get divided
by the square root of the column dimension of the Query
and Key matrices, which is sqrt(64) or 8. Lastly, the values
row-wise undergo a softmax operation, i.e. get scaled to
values in between zero and one that row-wise all add up to
one. The resulting matrix here (Fig.15) named ”Attention
Filter” became also known as ”Scaled Dot-Product Attention”.

c) Analysis of the Attention Filter: A matrix multiplication of
two matrices in general is the inner or dot product of every
row vector of the first matrix with every column vector of
the second matrix. The scalar value in the “Attention Filter”
matrix at row index i and column index j is the result of
the dot product of the i-th row vector in the Query matrix
with the j-th column vector of the Key matrix. For instance, in
Fig.16, the 2nd row vector of the Query matrix (representing
the word “flies””) and the S5th column vector of the Key matrix
(representing the word “arrow”) after a dot product operation
yield a scalar value in the 2nd row and 5th column of the
Attention Filter.
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Fig. 16. Matrix multiplication: Calculation of values in the "flies” row of

the “Attention Filter”.

In the section Word Embeddings, it was shown, that the
normalized dot product of two vectors express the cosine
similarity between the words representing these vectors. The
dot product of the vectors in Fig.16 representing the “flies”
and “arrow” tokens thus can be interpreted as the not-yet-
normalized cosine similarity between the “flies” and “arrow”
tokens in the Sample Sentence. After the matrix multiplication,
the values are scaled and row-wise undergo a softmax
operation. This can be interpreted as a form of normalization.
The Attention Filter matrix is asymmetric as the softmax
function is only applied row-wise but not column-wise. The
values in the Attention Filter matrix thus represent some form
of similarity that should only be read row-wise or horizontally.
The similarity value between the word “flies” and the word
“arrow” in the Attention Filter matrix thus can only be found
at the coordinates of the 2nd row and the 5th column but not
at the coordinates of the 5th row and the 2nd column (Fig.16).

d) Analysis of the Matrix Multiplication: If the three Linear
Layers in the Multi-Head Attention module were to produce
equal Query, Key and Value matrices, the (upper left to lower
right) diagonal values in the Attention Filter matrix would be
one or close to one (Fig.17).
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Fig. 17. Matrix multiplication: The diagonal values in the Attention Filter
matrix would be close to one if the Query and Key matrices were alike.

This is because the vector representation of any token in both,
the Key and Value matrices, then would be equal and the
(somehow) normalized dot product of the two equal vectors
would yield values close to one. The similarity of a word in
a sentence would be highest with itself and the similarity to
other words would be negligibly small.

But this is not what the Attention Filter is supposed to do.



The task of the Attention Filter is not to identify semantically
or syntactically similar words, but to identify those adjacent
words in a sentence that help determine the context for and
the meaning of a given word. In the Sample Sentence, a
human reader would probably pay attention to the words
“arrow” and “time” to determine the context and the meaning
of the word flies”. Given the Sample Sentence, an ideal
Attention Filter would probably have higher values at the
coordinates of the 2nd row and both, the 1st and 5th column.
The higher values at these coordinates would reflect the
“attention” paid to the words “time” and “arrow” that is
needed to determine the semantic or syntactic meaning of the
word “flies”. And an ideal Attention Filter would probably
also have lower values in the diagonal (i-index=j-index) to
lower the attention that a word pays to itself.

So what is needed to have the algorithm produce these
identified higher and lower values in the Attention Filter at
these coordinates respectively? The 1st and 5th row vector
(representing the words “time” and “arrow”) of the Key
matrix would need to become more similar to the 2nd row
vector (representing the word “flies”) of the Query matrix.
Because only then the relevant similarity values in the
Attention Filter would increase. The values in the 2nd row
vector of the Key and Query matrix would need to diverge
from each other as both represent the word “flies”. Because
only then the attention values in the Attention Filter diagonal,
which represents the attention magnitude that words pay to
themselves, would decrease.

e) The importance of the Three Linear Layers: The task
of the three Linear Layers thus is not just the dimension
reduction of the Input Embeddings as stated above, but more
importantly, to “construct” the Query, Key and Value matrices
so that they incorporate the above outlined properties. This
construction process hinges on the [768, 64]-dimensional
weight/parameter matrices of the Three Linear Layers.

In the Sample Sentence, these weight/parameter matrices must
shape the 1st and 5th row vector (representing the words
“time” and “arrow”) of the Key matrix in a way so that they
are more similar to the 2nd row vector (representing the word
“flies”) of the Query matrix. And they must also shape the
values in the 2nd row vector of the Key and Query matrix
so that they diverge from each other in order to decrease the
attention (magnitude) that words pay to themselves.

There is probably a third requirement that becomes obvious
only in the next chapter: the Value matrix, that is produced”
by the weight/parameter matrix of the Linear Layer, must
somehow conserve the encoded feature, position and segment
information from the Input Embeddings. This is because the
Attention Filter matrix later gets multiplied by the Value
matrix to theoretically highlight and emphasize the most
important features, positions and segments there. If the
Value matrix would not represent the (condensed) feature,
position and segment information, then the simple narrative
of human-like “attention” fell apart. Because if the Attention
Filter in the later multiplication process does not highlight the

most important features, positions and segments of tokens,
what does it highlight then?

So the main task of the weight/parameter matrix of the Linear
Layer that ’produces” the Value matrix is probably to “only”
reduce the dimension of the Input Embeddings from [5, 768]
to [5, 64].

The conclusion here is that there must be some important
pattern and logic in the transformation from the Input
Embeddings to the Query, Key and Value matrices. But
such an analysis goes beyond the scope of the talk and
this paper and will thus not be discussed further. It can be
stated however, that the general requirement for the attention
mechanism to work is that the Query and Key matrices at
least must be different from each other (Fig.18) and that
the weight/parameter matrices of the Three Linear Layers
produce the Query, Key and Value matrices with the properties
outlined above.
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Fig. 18. Matrix multiplication: The diagonal values in the Attention Filter
matrix would be very different from one if the Query and Key matrices are
different.

f) Bidirectional Self-Attention: The multiplication of each row
vector of the Query matrix with each column vector of the
Key matrix is not done sequentially but in parallel as a matrix
operation. This parallel processing is much faster than the
usual sequential processing in LSTMs. In addition, it is also
bi-directional as each Query matrix row vector is multiplied by
each Key matrix column vector independent of the position of
the word within a sentence that this column vector represents.
The value in the 2nd row and 1st column of the Attention
Filter matrix in Fig.19, for instance, is the “attention value”
paid to the word ”time”, a word that comes before the word
“flies” in the sentence.



(7] =

(3] [13) [1b] (=)

1= o X [

= R | e

£ 4| ~ © ®©
time

flies| ez | o.56 | 6o | 604 | 628
like
an
arrow

Fig. 19. Bidirectional Self-Attention: The dot products of the row and column
vectors are bi-directional, i.e. towards previous as well as subsequent words in
a sentence. To understand the context of a given word in a sentence, attention
is paid to adjacent and relevant words within that sentence itself.

The value in the 2nd row and 5th column is the attention
value” paid to the word “arrow”, a word that comes after the
word “flies” in that sentence.

The attribute “self” in Self-Attention is owed to the fact that
the attention is paid within the sentence itself.

For longer sentences with many words in it, the context
information is also not fading like in LSTMs. Even if context
words are many words away from the word they are supposed
to pay the most attention to, these context words nevertheless
can have high values in the Attention Filter matrix. The
mechanism and the result of a vector multiplication in general
is unaffected by how far these vectors are away in a sentence.

g) Filtered Values: As indicated above, the Attention Filter
matrix in the next step gets multiplied by the Value matrix
(Fig.20), which was “produced” earlier together with the
Query and Key matrices.
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Fig. 20. Filtered Values: Matrix-Multiplication of the Attention Filter with the
Value matrix supposedly highlights important features, positions and segments
of the Value matrix.

Assuming that the Value matrix somehow conserves the
feature, position and segment information from the Input
Embeddings, the resulting Filtered Value matrix (dark brown

matrix on the right of Fig.20) accentuates the relevant feature
values in the Sample Sentence.

After the Attention Filter has identified the most important
context words in a sentence, the multiplication of the Attention
Filter matrix with the Value matrix carries over the most
important feature values of the latter to the Filtered Value
matrix. For a particular word in a sentence, important context
words carry over higher values to the Filtered Value matrix,
less important context words carry over lower or no values to
it. Most importantly: for a particular word, this contribution
from the Value matrix not only comes from the vector of the
word itself, but also from vectors of other words within that
sentence.

To stress this point, an example will be given that focuses on
just one coordinate of the Filtered Value matrix: the 2nd row
and the 1st column as shown in Fig.21.
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Fig. 21. Filtered Values: "time flies like an arrow”.

It is assumed that the Attention Filter has identified the words
“time” and “arrow” to be important context words for the word
"flies” in the Sample Sentence. The Attention Filter thus shows
exemplary values of 1/3 for each of these context words and
the word “flies” itself, and a value of O for the remaining words
“like” and an”. It is further assumed that the first column of
the Value matrix represents a semantically interpretable feature
that humans would describe as “food-like” (like the column
”food” in the handcrafted feature table in the first chapter).
If a given word in a wider sense has something to do with
”food”, it is assumed that the values in the first column of
the Value matrix are positive, else zero or negative. In Fig.21,
the exemplary “food” feature values for the word “time” and
“arrow” are -2.0 as both words are assumed to have nothing
to do with “food”. The exemplary “food” feature value for
the word “flies” itself is assumed to be 0 (as some flies”
might be edible insects [17] and to make the point clearer).
The dot product of the 2nd row of the Attention Filter with
the 1st column of the Value matrix so yields a value of -1.3 at
the 2nd row and 1st column of the Filtered Value matrix (see
Fig.21).

The 2nd row of the Filtered Value matrix already represents the
contextualized or dynamic word embedding vector of the word
“flies” in the Sample Sentence. Whereas the “food” feature
value in the Value matrix for the word “flies” was 0.0, this
value at the same coordinate in the Filtered Value matrix has
changed to -1.3. This change in the vector representation of the
word “flies” can be entirely attributed to the negative “food”



feature value contributions coming from the words “time” and
“arrow” in the Value matrix.

The same analysis is now done for the second of the sample
sentences: “fruit flies like a banana” (shown in Fig.22).
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Fig. 22. Filtered Values: “fruit flies like a banana”.

Here, the assumption is that the Attention Filter has identified
the words “fruit” and “banana” to be important context words
for the word “flies”, assigning the same exemplary values of
1/3 to them, like before. The exemplary “food” feature values
for the word fruit” and ”banana” are now assumed to be +2.0
as both words are strongly related to the idea of “food”. The
exemplary “food” feature value for the word “flies” itself has
not changed as it is indirectly coming from the static Input
Embeddings. Every unique word (representation) in the Value
matrix is the same for all sentences. The dot product of the 2nd
row of the Attention Filter with the 1st column of the Value
matrix now yields a positive value of +1.3 (see Fig.22), again
coming from a value of 0.0 in the Value matrix. This change
in the vector representation of the word "flies” in the Filtered
Value matrix can be entirely attributed to the positive “food”
feature value contributions coming from the words “fruit” and
”banana” in the Value matrix.

The application of this principle to not only one column (here
the ”food” feature column), but to all 64 columns of the Value
and Filtered Value matrices ensures that different semantic and
syntactic aspects of word inter-dependencies are accounted for.
The Filtered Value matrix is where all the attention magic
plays out. Whereas the Value matrix can be considered a static
word embedding, the Filtered Value matrix truly is a dynamic
representation of words as it depends on the context words
that are identified by the Attention Filter and that are different
for every sentence. The embedding vector of the word “flies”
in the Filtered Value matrix is different for the two sample
sentences depending on their context.

The Attention Filter so extracts or accentuates the most
relevant feature values in the sample sentences. It can be
compared to a Convolution Kernel in a Convolutional Neural
Network ("CNN”) that does a similar job (see Fig.23).

h) Multiple Heads: The Filtered Value matrix is also known
as “head”. BERT, as previously stated, has 12 stacked layers
with 12 heads each, which sums up to a total of 144 heads.
The procedure described above thus is carried out 12 times
in parallel to get 12 heads per layer. Each Filtered Value

Original Image

Attention Filter

Filtered Image

Fig. 23. Filtered Values: An Attention Filter is comparable to a Convolution
Kernel in a Convolutional Neural Network ("CNN”). Where the latter high-
lights some important features in a given image, the former is supposed to
highlight some important features of words in a sentence. Image from: [16]

matrix or head in our example has a dimension of [5, 64].
The 12 heads in each layer are horizontally concatenated
to arrive at the layer-wise Output Embedding matrix with a
dimension of [5, 768] (see Fig.24). The Output Embedding
matrix is often referred to as the “Hidden State”. It has the
same dimension as the Input Embeddings matrix, and for a
good reason: The output of each Encoder layer, i.e. the Output
Embedding matrix, is the input to the next Encoder layer in
the 12-layer Encoder stack.

12 sets
@, K, V):
produce
12 heads:  HESSEN HESEE 2 EEEEN @200 e
Dimension: Dimension: Dimensxun: Dimension:
[5, 641 [5, 641 [5 641 [5, 641
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arrowEss
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Fig. 24. Filtered Values: A Filtered Value matrix is also know as “head”.
Within one layer, the 12 heads are concatenated horizontally to arrive at the
input and output dimension of [5, 768]

This gives BERT (in the training phase) the chance to learn
not only 64 different features per token (or per word in our
example) as discussed above, but 144 times that amount (144
heads x 64 features per head = 9,216 features). It is assumed
though, that the horizontal concatenation of heads leaves
these features somehow grouped and separated head-wise
within each Output Embedding matrix.

i) Linear Layer in the Multi-Head Attention Module: To
activate these respective feature groups for each sentence, the
next step in the BERT architecture is a Linear Layer, see
Fig.25.

The task of the Linear Layer probably is to learn common
features across the feature groups and to transfer this aggre-
gated knowledge to the final output of each Encoder layer, the
Output Embedding matrix (on the right in Fig.25). The Linear
Layer is the last part of the Multi-Head Attention module as



shown in Fig.13.
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Fig. 25. Linear Layer: The Linear Layer probably activates those “feature
groups” that are still separated in the left Output Embedding matrix. The
12 head matrices therein were concatenated horizontally, but not logically
combined. The task of the Linear Layer probably is to learn common features
across these feature groups resulting in the Output Embedding matrix on the
right of this figure. The dimension of [5, 768] remains unchanged.

3) Add & Norm 1: The next module in BERT’s Encoder
block is called "Add & Norm”. This module has the goal
to preserve the knowledge learned so far and to avoid the
vanishing gradient problem. The sequential transformation of
the Input Embeddings in each step of the layers and modules
discussed so far bears the risk that the initial feature, position
and segment information goes lost on the way to some extent.
To preserve the initial knowledge of the input information,
the initial Input Embeddings matrix is added element-wise to
the the Output Embeddings matrix spit out by the Multi-Head
Attention module (see Fig.26). This ”add & norm”-procedure
not only applies to the first of the 12 layers in BERT, but
to all input embeddings in the 12-layer stack coming in from
previous layers.

[batcn_size, tokens per batch,
enbedtings per token]

Input Embeddings )
before Multihead-Attention | " (2, 5, 768]
+ +
Multihead-Attention
Output Embeddings Tensor: | [2, 5, 768]
= Sum of Embeddings [Tensor: | [2, 5, 768] |
+
+
Dropout Regularization
= Qutput Embeddings |remser:| [2, 5, 768] |

Fig. 26. Add & Norm I: Preserve knowledge and avoid vanishing or exploding
gradient problem.

In addition, the resulting matrix is also normalized and
“dropout”-regularized to avoid vanishing or exploding
gradients in the backward path during the training phase.

4) Feed-Forward Layer: The next big puzzle piece in BERT’s
Encoder block is the Feed-Forward Layer, which is a 2-

layer ANN (Fig.27). Except for the “dropout’-regularization
in previous steps, it is the first component in BERT’s Encoder
block that does a non-linear transformation as for the first
time an activation function (GELU [2]) is applied after the
first ANN layer.

RELU

&

3072

Fig. 27. Feed-Forward Layer

This first of the two ANN layers has a dimension of [768,
3072] of learnable parameters. It thus transforms the [5, 768]-
dimensional Output Embeddings matrix from before to a [5,
3072]-dimensional Intermediate Embeddings matrix shown in
Fig.28 at the bottom. It so “expands” the number of feature
columns of the Output Embeddings matrix by a factor of
4. This can be interpreted as an auto-decoder-like operation
to extract even more features out of the Output Embeddings
matrix.
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Fig. 28. Feed-Forward Layer: Human-interpretable key-value store?

The second of the two ANN layers has a dimension of [3072,
768] of learnable parameters. One of its tasks is to reduce the
dimension of the Intermediate Embeddings matrix back to the
desired dimension of [5, 768] as depicted in Fig.27. Geva et
al [18] in this two-layered ANN see a “Key-Value-Memory”
function, where the first ANN layer in a dictionary-like data
structure represents the “Keys”, and the second ANN layer
the corresponding weighted sum of “Values”. They show
that the patterns in this ANN are even human-interpretable,
where lower layers tend to capture shallow patterns, while
upper layers learn more semantic ones. The Feed-Forward
Layers constitute around two-thirds of a transformer model’s
learnable parameters/weights [18] and thus could indeed
serve as some kind of memory cells or even as the numerical
representation of human language if applied to the domain of
NLP. As this complex topic was not subject in the talk and
this paper, it will not be discussed further.



5) Add & Norm 2: The last piece in BERT’s Encoder block
is another "Add & Norm” module. This module again has the
goal to preserve the knowledge learned so far and to avoid
the vanishing gradient problem. But instead of preserving the
knowledge of the initial Input Embeddings matrix, at this
level it tries to preserve the information from the Output
Embeddings spit out by the first ”’Add & Norm” module ("Add
& Norm 17, see above). This “add & norm”-procedure again
not only applies to the first of the 12 layers in BERT, but to
all of them.

Dimension:
[batch_size, tokens per batch,
embeddings per token]

Output Embeddings )
after Add & Norm 1 rener: | [2, 5, 768]
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Feed-Forward Layer .
Output Embeddings Tensor: | [2, 5, 768]
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= Tensor‘:‘ [2, 5, 768] ‘

Fig. 29. Add & Norm 2: Again: Preserve knowledge and avoid vanishing or
exploding gradient problem like in Add & Norm 1.

6) 12 Encoder Blocks: So far, this paper discussed how just
one Encoder block of BERT works. As previously stated,
BERT has 12 such Encoder blocks that are stacked vertically
as shown in Fig.30. The output of one Encoder block, i.e.
an Output Embeddings matrix, serves as the input to the next
higher Encoder block in the stack. Each Output Embedding
matrix in each of the 12 layers has (hopefully) learned different
features of human language in general in an upstream task
(training). BERT thus can be applied to any general language-
related Machine Learning ("ML”) downstream task (predic-
tion).

If the language of the task or the task itself is domain-specific,
additional steps might be helpful. Such a task is to classify the
sentiment of Twitter text messages, as there the sentences are
shorter and the language contextually different from the text
corpus BERT was trained on [2].

C. Sentiment Classification of Twitter messages

In such a case, it is common to use a pre-trained BERT model,
freeze the learned weights/parameters there and only train
an added ANN-layer with task-specific settings and domain-
specific training data.

The training data used was the “emotion” data set downloaded
from the Hugging Face [15] “datasets” package . The data set

Fig. 30. BERT: 12 Encoder blocks: The output of one Encoder block serves
as the input to the next higher Encoder block in the stack.
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[SEP] >
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Fig. 31. Fine-tuning a pre-trained BERT model: Freeze all weights/parameters
of BERT and only train an added Linear Layer with a domain-specific data
set.
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contains “train”, “’test” and “validation” batches. The “train”
batch contains 2,000 Twitter short messages that are labeled
with one of the six sentiment classes: ”sadness”, ’joy”, "love”,
“anger”, “fear” and “surprise”. The added ANN-layer thus

has a dimension of [768, 6] with the number of columns



there representing the number of classes, see Fig.31. To
extract the embedding of an entire sentence and not just a
single word/token, the classification is done on the special
[CLS] token. In our exemplary sample sentences, there were
no such special tokens, but in actual applications, they are
usually added. The abbreviation "CLS” stands for “Class”
and this [CLS] token, if added, stands at the first position
just before the first word/token in a sentence. As the [CLS]
token also goes through the attention mechanism explained
earlier, it contains the contextual embedding for the entire
sentence. The other token embeddings cannot be used for the
sentence classification task as they represent the contextualized
embeddings for the token itself, but not for the whole sentence.
The PyTorch [14] version of the model was downloaded from
Hugging Face [15] and trained on a GPU with the help of
the PyTorch “Trainer” and “TrainingArguments” classes. The
prediction task was done on the test” batch of the “emotion”
data set and achieved an accuracy of around 95%. The training
code and the prediction process was shown and executed in
the talk and the code was handed in as part of the project
submission.

III. CONCLUSION

This paper documents the essence of a talk with the subject:
“Transformer applications in NLP”. It consists of three parts,
but mainly focuses on the inner workings of the transformer-
based BERT model. It particularly highlights the importance
of the attention mechanism and shows how this mechanism
solves the problem of static word embeddings found in earlier
NLP models such as word2vec. The paper uses concrete
exemplary words, sentences and numbers to clarify every
transformation step gone on the way through a BERT Encoder
module.

Transformer-based models, with the attention mechanism at
the core of it, have revolutionized the NLP world and con-
tributed to the current hype of large language models (LLMs)
such as ChatGPT. Although some of the inner workings of
such models are known, many questions remain. This not
only applies to specific aspects such as whether the Feed-
Forward layers in BERT are really key-value stores of seman-
tic features, but also to more general and philosophic questions
such as how exactly the knowledge of human language is
represented by such models. I conclude with the notion that
this is an exiting and fascinating field that probably still has
a lot of surprises and wonders to reveal.
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