Permalink
Switch branches/tags
Nothing to show
Find file Copy path
Fetching contributors…
Cannot retrieve contributors at this time
138 lines (102 sloc) 3.98 KB

迭代器与生成器

迭代器(iterator)与生成器(generator)是 Python 中比较常用又很容易混淆的两个概念,今天就把它们梳理一遍,并举一些常用的例子。

for 语句与可迭代对象(iterable object):

for i in [1, 2, 3]:
    print(i)
1
2
3
obj = {"a": 123, "b": 456}
for k in obj:
    print(k)
b
a

这些可以用在 for 语句进行循环的对象就是可迭代对象。除了内置的数据类型(列表、元组、字符串、字典等)可以通过 for 语句进行迭代,我们也可以自己创建一个容器,包含一系列元素,可以通过 for 语句依次循环取出每一个元素,这种容器就是迭代器(iterator)。除了用 for 遍历,迭代器还可以通过 next() 方法逐一读取下一个元素。要创建一个迭代器有3种方法,其中前两种分别是:

  1. 为容器对象添加 __iter__()__next__() 方法(Python 2.7 中是 next());__iter__() 返回迭代器对象本身 self__next__() 则返回每次调用 next() 或迭代时的元素;
  2. 内置函数 iter() 将可迭代对象转化为迭代器
# iter(IterableObject)
ita = iter([1, 2, 3])
print(type(ita))

print(next(ita))
print(next(ita))
print(next(ita))

# Create iterator Object
class Container:
    def __init__(self, start = 0, end = 0):
        self.start = start
        self.end = end
    def __iter__(self):
        print("[LOG] I made this iterator!")
        return self
    def __next__(self):
        print("[LOG] Calling __next__ method!")
        if self.start < self.end:
            i = self.start
            self.start += 1
            return i
        else:
            raise StopIteration()
c = Container(0, 5)
for i in c:
    print(i)
        
<class 'list_iterator'>
1
2
3
[LOG] I made this iterator!
[LOG] Calling __next__ method!
0
[LOG] Calling __next__ method!
1
[LOG] Calling __next__ method!
2
[LOG] Calling __next__ method!
3
[LOG] Calling __next__ method!
4
[LOG] Calling __next__ method!

创建迭代器对象的好处是当序列长度很大时,可以减少内存消耗,因为每次只需要记录一个值即刻(经常看到人们介绍 Python 2.7 的 range 函数时,建议当长度太大时用 xrange 更快,在 Python 3.5 中已经去除了 xrange 只有一个类似迭代器一样的 range)。

生成器

前面说到创建迭代器有3种方法,其中第三种就是生成器(generator)。生成器通过 yield 语句快速生成迭代器,省略了复杂的 __iter__() & __next__() 方式:

def container(start, end):
    while start < end:
        yield start
        start += 1
c = container(0, 5)
print(type(c))
print(next(c))
next(c)
for i in c:
    print(i)
<class 'generator'>
0
2
3
4

简单来说,yield 语句可以让普通函数变成一个生成器,并且相应的 __next__() 方法返回的是 yield 后面的值。一种更直观的解释是:程序执行到 yield 会返回值并暂停,再次调用 next() 时会从上次暂停的地方继续开始执行:

def gen():
    yield 5
    yield "Hello"
    yield "World"
    yield 4
for i in gen():
    print(i)
5
Hello
World
4

Python 3.5 (准确地说应该是 3.3 以后)中为生成器添加了更多特性,包括 yield from 以及在暂停的地方传值回生成器的 send()等,为了保持简洁这里就不深入介绍了,有兴趣可以阅读官方文档说明以及参考链接2。

参考

  1. Iterators & Generators
  2. How the heck does async/await work in Python 3.5?
  3. Python's yield from