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ABSTRACT: In this study, we propose using an analytical equation of
state for guiding molecular simulations in the grand canonical ensemble.
Molecular simulations in the grand canonical ensemble deliver phase
equilibrium properties with low statistical uncertainty. The entire phase
envelope can be obtained when histograms of several simulations along the
phase envelope are combined. In this study, we explore the use of an
analytical equation of state for defining chemical potentials, temperatures,
and intervals of molecule numbers for simulations in the grand canonical
ensemble, such that the phase envelope is traced. We limit particle numbers
to intervals and ensure even sampling of molecule numbers in each interval
by applying a bias potential determined from transition-matrix sampling.
The methodology is described for pure components and binary mixtures.
We apply the simulation method to develop parameters of the transferable
anisotropic Mie (TAMie) force field for ethers. We find that the partial
charges optimized individually for diethyl ether and for dipropyl ether differ substantially from the partial charges optimized
simultaneously to both substances. The concept of transferable partial charges is thus a significant assumption. For developing
the (TAMie) force field, we constrained the partial charge to a range, where individually optimized partial charges were found.

■ INTRODUCTION

Monte Carlo simulations in the grand canonical ensemble
(GCMC) are suitable for calculating phase equilibria of fluids.
Accurate data for the phase equilibrium properties in the
vicinity of critical points can be generated from a single
simulation run, provided suitable values of temperature T and
chemical potentials μi of all species are specified.1−4 During a
GCMC simulation, a histogram H(N, E) of finding the system
with N molecules and with the energy E is collected and the
phase equilibrium calculation occurs a posteriori using
histogram reweighting to determine the precise conditions at
which equality of pressure and chemical potentials of all
components occur in the coexisting phases. Histogram
reweighting allows for determining the probability distribution
(histogram) for other conditions T′ and μi′ sufficiently close to
the condition T and μi specified in the GCMC simulation. The
phase equilibrium can thus be traced for various temperatures
T′ (close to T) by determining a value of μi′ that satisfies equal
pressure in both phases. An elegant approach for obtaining the
entire phase envelope of a pure component is given by
combining the histograms of several GCMC simulations
conducted at {T, μi} conditions along the phase envelope.5−9

A key barrier to application of the multiple-histogram
approach is the lack of a priori knowledge of suitable {T, μi}
conditions to be specified along a phase envelope. This is often

circumvented by starting with simulations in the vicinity of the
critical point and determining {T, μi} estimates for successive
GCMC runs at lower temperature from preliminary phase
equilibrium calculations. Instead of this iterative approach, in
this study, we suggest using analytical equations of state for
estimating suitable {T, μi} conditions.
For a review of histogram reweighting techniques as well as

on other methods for determining phase equilibrium proper-
ties, such as the Gibbs ensemble, the NPT-test particle method,
and Gibbs−Duhem integration, we refer to articles by
Panagiotopoulos,10 de Pablo et al.,1 and Guevara-Carrion et
al.11

During Monte Carlo simulations, one collects data on visited
states along a Markov chain and calculates averages. Transition-
matrix sampling12−17 offers an alternative to visited-states
approaches. Transition-matrix collects data on attempted
transitions, which on the one hand leads to very precise
results. On the other hand, the approach is versatile for
problems where a regular importance-sampling scheme would
unlikely “by itself” visit certain states. In these cases, a system is
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given an incentive (bias) to move into certain states, or it is
simply constrained to visit a certain state.18

Errington19 developed a transition-matrix scheme for
calculating vapor−liquid phase equilibrium properties from
molecular simulations in the grand canonical ensemble. A bias
function is calculated on the fly that leads to a flat histogram
along the coordinate of molecule numbers N and permits
passing the large energy barrier between vapor and liquid phase.
The straightforward sampling of molecular insertions or

deletions in open ensembles or the sampling of trial insertions
for calculating chemical potentials suffers from poor statistics at
high densities and for larger molecules. Transition-matrix
sampling can be used to improve the statistical accuracy of
these moves. Fenwick and Escobedo20 showed the transition-
matrix sampling to be closely related to Bennett’s optimized
acceptance ratio method.21 Transition-matrix sampling is
particularly suited for extended ensemble simulations.22 Shi
and Maginn proposed a staged insertion and deletion scheme,
referred to as continuous fractional component MC, where not
only neighboring states in the stage-wise insertion of a molecule
are allowed.23 They achieved good sampling of molecule
transfer moves for mixtures involving ionic liquids.24

Shen and Errington also used transition-matrix sampling for
calculating phase equilibrium properties of binary and ternary
mixtures.25 They studied a number of model binary Lennard-
Jones systems to validate the methodology and showed that the
entire vapor−liquid phase diagram can be calculated from
results of a single simulation using histogram reweighting.
Furthermore, Errington and Shen26 presented an approach for
directly locating phase transitions in multicomponent systems
and showed promising results for mixtures with asymmetry of
both, size and energy parameters of the species.
In previous work of our group, Sanchez et al.27 used the PC-

SAFT equation of state28 to estimate a weight function, which
allows a system to overcome the energetic barrier between
vapor and liquid phase. The possibility of using an analytical
equation of state for supporting molecular simulations has
earlier and very generally been worked out by Gospodinov and
Escobedo.29 They very convincingly showed that probability
distributions in various ensembles can be estimated by
equations of state.29,30 The interplay between molecular
simulations and fluid theories is therefore not any more a
one-way relation, namely, that molecular simulations allow
systematic evaluation and parametrization of fluid theories.
Gospodinov and Escobedo29,30 showed that molecular
simulations can much benefit from applications of fluid
theories, for example, by providing weight functions for non-
Boltzmann simulations.
The utility of analytic fluid theories in obtaining force fields

to be used in molecular simulation studies is impressively
demonstrated by the group at Imperial College in London.
They use the SAFT-γ model31−33 for determining force field
parameters of coarse grained molecular models. The approach
was successfully shown for carbon dioxide,34 greenhouse gas
species, refrigerants and alkanes,35 as well as for aromatic
hydrocarbons.36 The coarse grained models allow for efficient
and accurate simulations of large-scale problems, such as
micellar structures, as Müller and Jackson show.37 The utility of
fluid theories for molecular simulations has also been
established in the group of Elliott, where transferable
intermolecular potentials for organic species were developed
on the basis of perturbation theory,38,39 and where fluid theory
was shown to predict results of molecular simulations of

homogeneous systems40 and interfaces.41 In other previous
work, van Westen et al. showed that the iteration of force-field
parameters becomes very efficient with the help of an analytic
equation of state.42 The analytic equation of state (PC-SAFT)
is first expressed in terms of the force-field parameters. It is
then adjusted to the outcome of molecular simulations. In a
next step, the model can be used for optimizing the force field
parameters toward experimental data. The predictions of the
equation of state are only approximate, which is why the
procedure is iterative. The convergence however is rapid; three
to five iteration steps are typically sufficient for the
simultaneous iteration of four van der Waals force-field
parameters.42,43 A modification of the algorithm was proposed
in our previous study. It was shown that a converged state
according to the analytic equation of state indeed minimizes the
true objective function; i.e., the approximations and errors
caused by the equation of state do not affect the objective
function at the minimum.43

This study has two objectives. It describes an implementation
of GCMC simulations with histogram reweighting that allows
determination of the entire vapor−liquid phase envelope from a
single run. The N-domain, where N denotes the number of
molecules, is divided into windows of widths ΔN that run in
parallel, leading to a time efficient simulation scheme. The
windows are defined at different temperatures and chemical
potentials, such that the phase equilibrium curve of the
considered system is traced. The PC-SAFT equation of state is
used to define suitable temperature and chemical potentials.
Second, this study extends the parametrization of the
transferable anisotropic Mie potential (TAMie) force field43

considering the functional group of ethers. These force field
parameters are adjusted to liquid densities and to vapor
pressures, and the results show good agreement with
experimental data.

■ SIMULATION METHOD: PURE COMPONENTS
Monte Carlo simulations are here conducted in the grand
canonical ensemble (GCMC), where the excess chemical
potentials μ, volume V, and temperature T are specified,
whereas the molecule number N and energy E fluctuate. The
excess chemical potential is defined as the total chemical
potential, where the de Broglie wavelength Λ(T) (that here
contains intramolecular degrees of freedom) is removed,
according to μ = μtot − kBT ln(Λ3), with kB as Boltzmann’s
constant. For brevity, we omit the word “excess” henceforth. All
static thermodynamic quantities can immediately be deter-
mined for the defined variables {μ, T}. Histogram reweighting,
however, also allows calculating thermodynamic quantities for
other temperatures and other chemical potentials in the vicinity
of the specified values. With histogram reweighting techniques,
one can determine the entire phase envelope, provided multiple
{μi, Ti} conditions are sampled, such that a probability
distribution for states around the phase envelope can be
constructed.6−9 Defining suitable {μi, Ti} conditions that
approximately trace the phase envelope is somewhat tedious,
since the chemical potential that approximately leads to phase
equilibrium conditions for a given T is not known a priori. We
propose to use an analytic equation of state, such as the PC-
SAFT equation of state,28 for providing suitable estimates for
{μi, Ti} conditions.
The procedure is as follows: We determine the critical

temperature Test
c of the pure component of interest according to

PC-SAFT. Then, 10 subcritical temperatures Ti are calculated
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such that a vapor−liquid equilibrium curve is traced as shown
schematically in Figure 1, with a lowest temperature of 0.55Test

c .
We use the terminology “condition” i for the specifications {μi,
Ti} that are visualized as a horizontal double arrow in Figure 1.
A condition is specified for a defined range of molecule
numbers, as Ni

min ≤ N ≤ Ni
max. The first two conditions i = 1, 2

sample the vapor phase, the third condition with temperature
T3 approximately spans the critical region, while all further
conditions sample the liquid phase. From PC-SAFT, we
determine the temperature conditions Ti, the chemical
potentials μi, and the range of molecule numbers. In order to
later connect the simulation results at one condition i to the
next condition i + 1, the upper bound of the molecule number
Ni

max is also sampled as a lower bound of the interval Ni+1
min =

Ni
max, as illustrated in Figure 1. The interval of molecule

numbers (Ni
min to Ni

max) is further subdivided into windows of,
say, ΔNk = 5, where k is an index counting the windows.44

Dividing the problem into small windows is advantageous,
because suitable simulation parameters, such as maximum
displacement or number of configurational bias steps, are
trivially defined for a narrow range of molecule numbers.
However, more importantly, the calculation time for each
window is low and all windows run in parallel.
Multiple Histogram Sampling Using Transition-Matrix

Sampling. GCMC simulations are executed for all conditions i
∈ [1, ..., 10] collecting histograms of the form Hi

bias(N, E). We
use transition-matrix sampling in order to more evenly and
more accurately sample the N-space in each GCMC simulation.
The transition-matrix method allows defining a bias potential,
which leads to even sampling along the N-coordinate. We
collect simple “visited state” histograms Hi

bias(N, E) and use the
probability distribution from the transition-matrix scheme in
order to obtain an unbiased probability distribution Hi(N, E).
Transition-matrix sampling gives very accurate distributions
along the N-coordinate, because it is based on transition
probabilities, and not on visited states. Using a bias potential

from transition-matrix sampling offers another advantage in the
postprocessing step, where the histogram Hi+1(N, E) will be
connected to the neighboring histogram Hi(N, E): In our
scheme, histograms are connected at a predefined switchover
point at Ni+1

min = Ni
max, which is well-sampled from both sides as a

result of the bias potential. As a postprocessing step, we apply a
histogram reweighting scheme, first, to connect all distributions
Hi(N, E) and, second, to calculate phase equilibrium properties.
GCMC simulations of all windows are initiated in parallel.

The windows in molecule number are chosen of width ΔNk =
10 and 5 for lower densities and for higher densities,
respectively. Any trial insertion of a molecule into the system
that would exceed the upper limit in molecule number of a
window, Nk

max, is trivially rejected. Analogously, any molecular
deletion move, when N = Nk

min is immediately rejected. Virnau
et al. showed that the statistical error of a combined probability
distribution does not depend on the choice of the window
width.44

Histograms Hk
bias(N, E) of all windows k are collected by

discretizing the energy into energy bins of width ΔE, ranging
from Eλ to Eλ+1 = Eλ + ΔE. The lowest and highest anticipated
energies Eλ=0 and Eλmax defined for an entire window k,
respectively, are determined in the equilibration phase of the
simulation. During the production phase of the GCMC
simulation, the histogram is updated after every Monte Carlo
(trial) move: for a certain state {N, E}, the appropriate bin λ of
the histogram into which E falls is augmented by unity, as
Hi

bias(N, Eλ) ≐ Hi
bias(N, Eλ) + 1. In order to simplify the

notation, we henceforth write Hi
bias(N, E), omitting the index λ.

Further, for a summation over all entries in the energy
distribution for a given N, we use the shorthand notation
∑E Hi

bias(N, E), rather than specifying the index over which the
summation runs.
The transition-matrix method allows generating a bias

function on the fly, ensuring uniform sampling of the N-
coordinate. Collecting entries in the transition matrix is

Figure 1. Tracing the vapor−liquid equilibrium with suitable {μi, Ti} conditions visualized as double arrows. A condition is defined for a range of
molecule numbers and is further subdivided into windows of ΔkN. Conditions overlap at the bonds with Ni

max = Ni+1
min.
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detached from the acceptance rules of the Markov chain, so
that all of the samples taken remain valid, regardless of whether
a bias potential is already applied in the simulation or not. In
the context of GCMC simulations, the transition-matrix scheme
was in detail described and analyzed by Errington.19 One sums
the probabilities of attempted transitions between states in a
collection matrix with elements CN→N+1, CN→N, and CN→N−1
which is updated after each Monte Carlo step. For a trial
addition of a molecule, two elements of the collection matrix
are augmented as

π≐ +→ + → + → +C CN N N N N N1 1 1
accept

(1)

π≐ + −→ → → +C C (1 )N N N N N N 1
accept

(2)

where πN→N+1
accept is the probability of an unbiased system to make

a transition from N molecules to a state with N + 1 molecules.
The dot above the equal sign in these equations indicates
algorithmic equations for updating a quantity, rather than a
strictly mathematical equality. The elements of the collection
matrix are augmented irrespective of whether the trial move is
accepted or not. For a trial deletion move, the above scheme is
analogous and is obtained by replacing the positive sign in all
subscripts of eqs 1 and 2 by a negative sign. The unbiased
acceptance probabilities for the insertion and deletion of a
molecule are

π β βμ=
+

− Δ +→ +
⎡
⎣⎢

⎤
⎦⎥

V
N

Emin 1,
1

exp( )N N 1
accept

(3)

π β βμ= − Δ −→ −
⎡
⎣⎢

⎤
⎦⎥

N
V

Emin 1, exp( )N N 1
accept

(4)

where β = (kBT)
−1 denotes the inverse temperature. For

thermal fluctuation moves, such as translation, rotation, and
reconfiguration moves, the only augmented element of the
collection matrix is

≐ +→ →C C 1N N N N (5)

The transition probability can then be calculated as

=
+ +δ

δ
→ +

→ +

→ + → → −
P

C
C C CN N

N N

N N N N N N1 1 (6)

where δ ∈ {+1, 0, −1} is used to indicate state changes with
increasing molecule number, constant molecule number, and
decreasing molecule number, respectively. Detailed balance
relates the probability P(N) to be in a state with N molecules to
the probability P(N + 1) of finding the unbiased system in a
state with N + 1 molecules, as

+ = → +

+ →
P N P N

P
P

( 1) ( ) N N

N N

1

1 (7)

We first set P(N = Nk
min) = 1, which leads to a non-normalized

probability distribution. Equation 7 is then used recursively to
obtain the probability P(N) for the entire range of N of the
considered window.
Bias Potential from Transition Matrix. The probability

distribution P(N) makes it possible to define a biasing function

= −w N P N( ) ln ( ) (8)

which enables even sampling of all molecule numbers in the
considered range of applicability.4,19,27 Probabilities for accept-
ing a trial insertion and a trial deletion of a molecule are

π β βμ=
+

− Δ + + Δ→ +
⎡
⎣⎢

⎤
⎦⎥

V
N

E wmin 1,
1

exp( )N N 1
accept,bias

(9)

π β βμ= − Δ − + Δ→ −
⎡
⎣⎢

⎤
⎦⎥

N
V

E wmin 1, exp( )N N 1
accept,bias

(10)

where the Δ-operator defines the difference of trial state minus
current state.

Postprocessing: Combining Histograms. After comple-
tion of the GCMC simulations of all windows, one can
combine the individual probability distributions to one single
probability distribution, which is used to calculate equilibrium
properties. Combining the probability distribution is done in
two steps: first, the histograms Hk

bias(N, E) of all windows k
within one {Ti, μi} condition i are scaled with the probability
Pi(N) from transition-matrix sampling, which removes the bias
and leads to histograms Hi(N, E) for the entire range of
condition i. Second, all histograms Hi(N, E) are combined to a
single distribution.
The N-coordinate of a condition i is in general subdivided

into windows of a certain range, from Nk
min to Nk

max (as shown in
Figure 1). Let us consider the case, where five windows {k1, ...,
k5} are present for condition i. We first set Pi(N = Nk1

min) = 1,
where Nk1

min is the left-most molecule number of condition i.
Equation 7 is then applied recursively to obtain Pi(N) for the
entire range of the condition. The molecule number thereby
runs from {Nk1

min, ..., (Nk1
max − 1), Nk2

min, ..., ... (Nk5
max − 1)}. Note

that Pi(N) is so far the non-normalized probability distribution.
The unbiased histogram is obtained by scaling the biased

histogram with the probability distribution from transition-
matrix sampling, according to

=
∑

H N E
H N E

H N E
P N( , )

( , )

( , )
( )i

i

E i
i

bias

bias
(11)

for all molecule numbers N and energies E within a {Ti, μi}
condition. The last remaining step is to combine the probability
distributions Hi(N, E) of all conditions to a unified probability
distribution. The basis for attaching various probability
distributions is histogram reweighting. The multiple histogram
method was established by Ferrenberg and Swendsen5 and
Panagiotopoulos et al.8 and is based on connecting histograms
from different conditions iteratively such that the predicted and
observed histograms are closest. In our application, the
probability distributions do not overlap for several values of
N. Rather, the switchover from one condition to the next
occurs at a single value of N. The use of a bias potential in the
acceptance rule ensures even sampling along the N-coordinate
within each condition. As a consequence, the switchover from
one condition to the next is well sampled and weight functions
proposed by Ferrenberg and Swendsen5 are not needed here.
In order to better discuss histogram reweighting, we extend

our notation from Hi(N, E) toward Hi(N, E; βi, μi). The basic
relation of histogram reweighting is

β μ β μ

β β βμ βμ

=

− − + −

H N E H N E C

E N

( , ; , ) ( , ; , )

exp( ( ) ( ))

i i i i

i i i
(12)

with C = Ξ(μi, V, βi)/Ξ(μ, V, β) as the ratio of the grand
canonical partition functions. If Hi is summed over all energy
bins, as ∑E Hi(N, E; β, μ), one gets the (non-normalized)
probability of finding a system with N molecules for any pair of
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{β, μ}, not too far from the sampled condition {βi, μi}. The
histograms of two neighboring conditions i and i + 1 are simply
attached by requiring this probability to be the same for an
average inverse temperature β = (βi + βi+1)/2 and at an average
chemical potential βμ = (βiμi + βi+1μi+1)/2, so that

β β βμ βμ
β β βμ β μ

≐
∑ − ̅ − + −

∑ − ̅ − + −

+

+
+ + + +

H

H
H E N

H E N

exp( ( ) ( ))

exp( ( ) ( ))

i

i
E i i i i

E i i i i

1

1
1 1 1 1

(13)

where Hi = Hi(N, E; βi, μi) and Hi+1 = Hi+1(N, E; βi+1, μi+1) and
N as the switchover point of the two conditions as illustrated in
Figure 1. Equation 13 is again an algorithmic equation for
updating Hi+1, as the dot over the equal sign indicates. This
equation factors the ratio of two a priori unknown “constants”
C of eq 12 into Hi+1 (along with another constant that is due to
the non-normalized scale of the probability distributions). Once
eq 13 is applied recursively for all conditions i, one has the
entirely connected non-normalized probability distribution
H(N, E; β, μ).
Phase Equilibrium Conditions from Histogram Re-

weighting. Histogram reweighting is now applied to obtain
vapor−liquid equilibrium properties, and a mixed field scaling
approach is used to estimate the critical properties. The
probability distribution of finding N molecules (regardless of
the energy) given a chemical potential μ and inverse
temperature β is obtained by summing eq 12 over all energy
states and by normalizing, according to

μ
β μ β β βμ βμ

β μ β β βμ βμ
=

∑ − − + −

∑ ∑ − − + −

P N T
H N E E N

H N E E N

( ; , )
( , ; , ) exp( ( ) ( ))

( , ; , ) exp( ( ) ( ))
E j j j j j

N E j j j j j

(14)

here, j is a generic index for the condition into which a given N
falls. For the phase equilibrium calculations, we specify a
temperature T and determine the corresponding chemical
potential μcoex(T) by requiring equal pressure in the vapor and
liquid phase. For a phase equilibrium condition, the probability
distribution P(N; T, μcoex(T)) is bimodal with a vapor peak for
molecule numbers corresponding to a vapor phase and a liquid
peak at higher number of molecules. The same pressure is

ensured when the sum Ivap = ∑N=0
Ndiv

P(N; T, μcoex(T)) under the
vapor peak is equal to the corresponding sum, Iliq, for the liquid
peak. The local minimum in the probability distribution P(Ndiv;
T, μcoex(T)) between the two peaks at molecule number Ndiv

defines the upper and lower summation limits for the vapor and
the liquid phase, respectively. We use a Newton scheme for
finding the root f(μcoex) = 0 of the function f(μcoex) = ln(Ivap/
Iliq) using finite differences with eq 14. The logarithmic
definition of the target function leads to robust convergence in
a few steps only. For the converged distribution Pcoex(N; T) =
P(N; T, μcoex(T)), we can calculate thermodynamic averages of
a static property A, as

∑⟨ ⟩ =
=

A P N T A N2 ( ; ) ( )
N

N
vap

0

coex
div

(15)

∑⟨ ⟩ =
=

A P N T A N2 ( ; ) ( )
N N

N
liq coex

div

max

(16)

The factor 2 in these equations appears because the probability
distribution is normalized for two coexisting phases. The vapor
pressure is obtained from formulating the probability density of
a grand canonical ensemble for the ideal gas limit at N = 0,
according to

= − =p T
k T
V

P N T( ) ln(2 ( 0; ))sat B coex
(17)

For determining the pure components’ critical point, we
apply the mixed-field scaling approach. One uses the universal
scaling laws characterizing the critical point as a second-order
phase transition to relate the critical behavior of a molecular
fluid to the critical behavior of the 3D-Ising model.45 The
approach is well documented, and we refer to the review of
Wilding46 and the review of Panagiotopoulos.2

Mixed-field scaling is here realized by defining an order
parameter

α α α= − ⟨ ⟩ −M N E( )N1 2 3 (18)

The regression of the unknown parameters is done using a
Levenberg−Marquardt algorithm by minimizing the sum
∑N τ(N)

2 of squared deviations, defined as

τ
α

ω=
·

⎛
⎝⎜

⎞
⎠⎟N

P M
P N

M( ) ln
( )

( )
( )

Ising

4
coex

(19)

with the empirical weight function ω(M) emphasizing the
range of the order parameter of importance to the critical
scaling

ω =
− >

≤

−

−⎪

⎪⎧⎨
⎩

M
P M P M

P M
( )

10/( ln( ( ))) for ( ) 10

0 for ( ) 10

Ising 2 Ising 5

Ising 5

Six degrees of freedom are determined by the minimization,
namely, α1 to α4, the critical temperature Tcrit, and the
corresponding chemical potential μcrit. Good starting values can
be defined ensuring a robust convergence of the mixed field
scaling regression, provided an initial guess for Tcrit and μcrit is
available. We obtain these initial values by increasing the
temperature in steps of 1 K, each time adjusting μ such that the
two characteristic peaks in P(N) at (Npeak)

low and (Npeak)
high, at

low and high molecule numbers, respectively, are of equal
height. We end this temperature scan when the probability
distribution roughly resembles the appropriate critical distribu-
tion of the 3D-Ising model; i.e., we stop once the local
minimum (occurring at Ndiv) between the two peaks is roughly
0.43 times the peak height. The starting values for the four
parameters α1−α4 are then chosen as

α = − −N N2.2(( ) ( ) )1 peak
high

peak
low 1

(20)

α = 02 (21)

α = N3
div

(22)

α = N0.3( )4 peak
high

(23)

The iteration of the critical point for pure components
converged reliably to average square deviations (eq 19) of order
<10−4 for all cases considered here.
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■ SIMULATION METHOD: BINARY MIXTURES

For mixtures, we also apply a transition-matrix sampling
scheme and use histogram reweighting to determine vapor−
liquid (and liquid−liquid) equilibria. Suitable simulation
conditions of molecule numbers N = (N1, N2) and excess
chemical potentials μ = (μ1, μ2) are estimated with the PC-
SAFT equation of state.28 The chemical potentials should be
estimates of the chemical potentials at a representative
equilibrium point. In practice, we choose a pressure condition
somewhere in the middle of the anticipated phase diagram of
interest and determine the chemical potentials from the PC-
SAFT model. The exact value is not important, but the values
of μ scale the weights in transition-matrix sampling, as will be
shown below. An example for the N-space as calculated from
PC-SAFT and as obtained from molecular simulations is
illustrated in Figure 2 for a given volume V and temperature T.

For mixtures, we construct the result of a GCMC simulation
by performing individual MC simulations, where the molecule
numbers N1 and N2 of both species are not allowed to freely
fluctuate. Rather, we consider mixtures in multiple canonical
ensembles for each relevant point in (N1, N2) space and
construct a probability surface, as would be obtained from a
GCMC simulation. This could be realized by performing
individual simulations for all (N1, N2) points. In our case, we
define rectangular windows of (ΔN1, ΔN2) (as indicated in
Figure 2), where all (N1, N2) points are successively visited for
an exactly defined number of Monte Carlo cycles. The Monte
Carlo cycles for an (N1, N2) point comprise thermal fluctuation
moves (translation, rotation, reconfiguration) as well as never
accepted “trial insertions” and never accepted “trial deletions”.
Only after completion of all MC cycles, the (N1, N2) point is
left toward a neighboring, say, (N1 + 1, N2) point. This way, the
system moves stepwise meandering through the simulation
window and samples each (N1, N2) combination with a defined
number of Monte Carlo steps. This procedure represents a by-
definition flat-histogram method. Each window (ΔN1, ΔN2) is
calculated on a compute node and all windows run in parallel,
leading to short calculation times.
Transition-Matrix Sampling. Like for pure components,

the probabilities of attempted transitions are summed in a
collection matrix with elements such as CN1,N2→N1+1,N2

, for
example.25,26 The transition probabilities are calculated

analogous to eq 6. Note that the estimated chemical potentials
enter into the sampling results via eqs 3 and 4 (only now
formulated for mixtures). We observe that a rough estimate of
the chemical potentials for mixtures as obtained from PC-SAFT
is sufficient to produce reliable results. The probability P(N1,
N2) of finding a system in a state with N1 and N2 molecules is
again obtained from detailed balance. We use a two-step
procedure. First, probabilities for the molecule range along the
lower and left edge of a particle window are determined as
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which corresponds to the x- and y-axis of Figure 2. Ni,min and
Ni,max are the minimum and maximum particle numbers for
species i. For all remaining molecule numbers, the probability is
calculated from
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Phase Equilibrium Conditions from Histogram Re-
weighting. Histogram reweighting5 is applied to obtain
vapor−liquid equilibrium or liquid−liquid equilibrium proper-
ties. We now extend the notation again from P(N1, N2) to P(N;
β, μ), in order to indicate that the probability was determined
for estimated chemical potentials μ and for inverse temperature
β. A rescaling of inverse temperature β is here not considered,
so that from eq 12 applied to mixtures, we simply get

μ μ μ μβ β β β= −P PN N N( ; , ) ( ; , ) exp[ ( )]coex coex
(27)

where a scalar product is taken in the argument of the
exponent. We note that the probability distribution needs to be
normalized. For a phase equilibrium condition, we iterate the
chemical potential μcoex requiring equal pressure in vapor and
liquid phase. More specifically, we define one value of μcoex, say,
μ1
coex, and iterate the other value, μ2

coex, to give phase equilibrium
properties. A different definition of μ1

coex along with an iteration
of μ2

coex leads to a next equilibrium condition. The iteration
requires the same pressure of both phases, so that the sum
under the vapor peak Ivap = ∑N1,N2

vap P(N; β, μcoex) must be equal
to the corresponding sum Iliq under the liquid peak. As for the
pure components, we use a Newton scheme to find the root of
the function f(μ) = ln(Ivap/Iliq). For the converged values μcoex,
we calculate thermodynamic properties, such as the equilibrium
mole fraction of species i in phase ϕ with

=
⟨ ⟩

⟨ ⟩ + ⟨ ⟩
ϕ

ϕ

ϕ ϕx
N

N Ni
1

1 2 (28)

Figure 2. N1−N2 sampling area of the methane−butane mixture at T =
394.26 K. The compositions of vapor and liquid phase at different
pressures are calculated with PC-SAFT (diamonds) and GCMC
simulation (line).
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The equilibrium pressure is determined from the ideal gas limit
(eq 17) at N1 = 0 and N2 = 0.
For the determination of the critical point, we apply the

Binder cummulant47 intersection method and extrapolate the
results of four different simulation volumes with finite size
scaling rules to the limit of infinite volume.48 For the critical
parameters pressure p and mole fraction xi, we use the relation
⟨pc⟩(L) − ⟨pc⟩(∞) ∼ L−(3−1/ν) and ⟨xi

c⟩(L) − ⟨xi
c⟩(∞) ∼

L−(3−1/ν) with the universal scaling constant ν = 0.6289.49 The
Binder parameter BL is determined as

= ⟨ ⟩
⟨ ⟩

BL

4

2 2
(30)

ρ ρ= − ⟨ ⟩ (31)

For simulations with constant volume V, order parameter
can be expressed with molecule number N. The Binder
parameter for a binary mixture is determined as
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∑ μβ̅ = +N N N P N( ) ( ; , )
N N,

1 2
coex

1 2 (33)

with an average molecule number N̅ of a system in phase
equilibrium. The system size dependent Binder parameter BL is
determined for all iterated phase equilibrium conditions and
plotted over system pressure and concentration. The
intersection of the Binder parameter is determined with the
universal value at critical point BL = 1.6035 for the Ising
universality class.50 The size dependent critical values are
extrapolated with finite size scaling laws to obtain the critical
properties.48

■ TAMIE FORCE FIELD FOR ETHER COMPONENTS
A united-atom approach is used in which carbon atoms and
their adjacent hydrogen atoms are defined as a single
interaction site. Similar to previous work of Toxvaerd,51

Errington and Panagiotopoulos,52 and Ungerer et al.,53 the
center of interaction for a CH3 group is moved outward to
better account for the effect of the hydrogen atoms. For a
CH3(sp

3) group bonded to a CHx(sp
3) group, the bond length

is extended by 0.2 Å to give a bond length of r0 = 1.54 + 0.2 Å
(see Table 1).
The total interaction potential of an interaction site is the

sum of bonded and nonbonded contributions. The nonbonded
potential is the sum of van der Waals pair interactions and of
Coulombic potentials, as

σ σ

π
= ϵ − +

ϵ

⎡
⎣
⎢⎢
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎤
⎦
⎥⎥u r c

r r

q q

r
( )

4ij ij ij
ij

ij

n
ij

ij

m
i j

ij0

ij

(34)

where the van der Waals interactions are described with a Mie
potential, a generalized Lennard-Jones (n − m) potential.
Throughout this work, the attractive exponent is fixed to m = 6,
as for the leading term in the expansion of dispersive energy.
Excellent results for transferable force fields with a Mie
potential were reported by Potoff together with Bernard-

Brunel54 and with Kamath.55 The prefactor cij ensures a
minimum value of −ϵij for the attractive well, with

=
−

−
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(35)

where rij denotes the distance between two interaction sites i
and j and ϵij and σij are the well depth and diameter parameter,
respectively. Further, qi and ϵ0 denote the partial charge and the
dielectric constant, respectively. The intermolecular potential
u(rij) governs the interactions between united-atom groups that
belong to two different molecules and between united-atom
groups within one molecule that are separated by more than
three bonds. Parameters for interactions between unlike types
of interaction sites are determined using Lorentz−Berthelot
combining rules,56,57 as

σ σ σ= +( )/2ij ii jj (36)

ϵ = ϵ ϵij ii jj (37)

Mie potentials with different repulsive exponents are
combined54 according to

= +n n n( )/2ij ii jj (38)

These sets of combining rules uniquely define cross-interaction
potentials. We note, however, that alternative combinations of
potential functions were recently investigated by Stiegler and
Sadus.58 For the bonded force field within each molecule, we
adopt a parametrization available in the literature.59−61 We
consider fixed bond lengths between the interaction sites, since
bond vibrations are of high frequency and of low amplitude and
their effect is unimportant for many fluid properties.62 Bending
angles between united-atom groups are generated according to
the harmonic bending potential63

θ θ θ= −θu k( ) /2( )bend 0
2

(39)

with kθ, θ, and θ0 as the force constant, bending angle, and zero-
Kelvin angle, respectively. For the torsional potential between
four neighboring interaction sites, we use the OPLS-UA
model,60 according to

Table 1. Parameters of Intramolecular Potential for the
TAMie Force Field, Taken from the Literature

Bond Length59,61

bond type r0 (Å)

CHx(sp
3)−CHy(sp

3) x, y ∈ [0, 1, 2] 1.54
CH3(sp

3)−CHx(sp
3) x ∈ [0, 1, 2] 1.54 + 0.2

CH3(sp
3)−O(ether) 1.41 + 0.2

CH2(sp
3)−O(ether) 1.41

Bond Angle59,61

x, y ∈ [2, 3]

bond type Θ0 (deg) kΘ/kB (K)

CHx−CH2(sp
3)−CHy 114 62500

CHx(sp
3)−CH2−O(ether) 112 50300

CHx(sp
3)−O(ether)−CHy 112 60400

Torsional Potential59−61

torsion type c0/kB (K) c1/kB (K) c2/kB (K) c3/kB (K)

CHx−CH2−CH2−CHy 0 355.03 −68.19 791.32
CHx−CH2−O−CHy 0 725.35 −163.75 558.2
CHx−CH2−CH2−O 0 176.62 −53.34 769.93
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Parameters of the TAMie force field are summarized in Tables
1 and 2. Parameters of the CH3(sp

3) and CH2(sp
3) groups are

taken from Hemmen and Gross,43 and parameters of the ether
oxygen were adjusted here. The optimization algorithm is
described in detail by van Westen.42 In a recent study, we
modified the algorithm and showed that, for a converged state,
the equation of state does not act on the objective function.43

The segment diameter σi, energy parameter ϵi, and point charge
qi are the three degrees of freedom for the optimization of the
ether interaction site (i = Oether). We assume the methylene
groups CH2 adjacent to the ether group to each carry a partial
charge of −qi/2.

■ SIMULATION DETAILS
Monte Carlo simulations were conducted with insertion and
deletion moves, as well as translation, rotation, and partial
regrow moves of molecules. A configurational bias scheme was
applied, where the number of trial steps was chosen larger for
N-windows at higher densities. The Mie potential is evaluated
up to a radial cutoff of 14 Å with analytical long-range
corrections62,64 assuming a radial distribution function of g(r) =
1 beyond the cutoff distance. The electrostatic potential was
evaluated with an Ewald sum, with κ = 7.59L according to the
definition given in ref 62 for a cubic box of length L and with
kmax = 9 as the maximum index of the Fourier series expansion.
The surface term of the Ewald sum was omitted, leading to a
favorable size scaling behavior. The width of N-windows is
chosen as ΔN = 10 for lower densities and ΔN = 5 at higher
densities (i.e., for the highest 25% of molecule numbers). A
total of 40 million or more MC trial steps were done for
windows of ΔN = 10 and 20 million trial steps or more for
windows of ΔN = 5. The volume of the simulation box is 40000
Å3. No significant finite size effect was found away from the
critical point for this volume.
A typical run time for a single window in the high-density

region is 25 h for pure components (with partial charges) on a
single core of a octa-core Intel Xeon E5−2670 processor of 2.6
GHz. About 50 parallel simulations, one for each window of
molecule number, are needed to determine the complete phase
envelope, whereby the windows of this high-density region
limit the overall simulation time. A typical run time for a single
window of the dimethyl ether/n-butane mixture in the high-
density region is 13 h.

■ RESULTS
Pure Substances. Despite the lengthy analysis given in the

previous section, the implementation of the proposed
simulation method for phase equilibria of pure components
and mixtures is simple in practice. A summary of the calculation
steps with references to the equations of this article is given as

Supporting Information. Our implementation is largely
automated: the PC-SAFT equation of state is used to generate
the simulation conditions in {Ti, μi}, as shown in Figure 1. The
output can be read by the Monte Carlo code. The Monte Carlo
program processes all N-windows in a trivial parallelization
using MPI. The output of the Monte Carlo simulation is a
collection of histograms Hi

bias(N, E) and the probability Pi(N)
from eqs 6 and 7. Both Hi

bias(N, E) and Pi(N) enter eq 11. Our
implementation of the postprocessing calculation determines
both the phase equilibrium points and subsequently the critical
point of the fluid.
In the Supporting Information, we demonstrate that phase

equilibrium properties determined from the simulation method
outlined above are rather robust toward {μi, Ti} estimates from
an analytic equation of state. The phase equilibrium calculations
are applied in the following subsections to optimize force field
parameters for ethers. The objective function for the
optimization is defined in all cases as the sum of squared
deviations (RMS: root-mean-square deviation) for simulated
vapor pressure and liquid density data toward experimental
data. Vapor pressure data and liquid density data are thereby
considered with equal weight. In the following discussion and
diagrams, we present absolute average deviations (AADs),
because the AAD values are in our view more intuitively
assessed than RMS values. The discussion and conclusions are
not altered by this choice.

Dimethyl Ether. We first investigate dimethyl ether, because
a detailed study on a force field parametrization of dimethyl
ether for phase equilibrium properties and radial distribution
functions has been performed by Ketko and Potoff.65 Their
work revealed some degeneracy in the force field para-
metrization, such that several combinations of the Lennard-
Jones parameters {ϵO, σO} and partial charge qO for the oxygen
atom (index “O”) of dimethyl ether all gave good results for
critical points and phase equilibrium properties. The parame-
ters for the CH3 group were in their work taken from the
TraPPE force field, with (positive) charges qCH3

= −0.5qO
placed at the center of both CH3 groups.
It is interesting to examine whether the TAMie force field for

the CH3 group together with our definition of the objective
function also leads to degeneracy of force field parameters, so
that several parameter combinations give good results. We have
therefore defined some fixed sets of partial charge values and
simultaneously optimized the remaining Mie potential
parameters {ϵO, σO}. In one series of calculations, the repulsive
exponent nO of the Mie potential was set to a value of nO = 12,
corresponding to a Lennard-Jones (plus point charge) site for
ether oxygen. A second series was conducted for nO = 14 for
ether oxygen, because this value was shown to best reproduce
alkanes.
Figure 3 shows average deviations of simulated vapor

pressure and liquid density data to experimental data66 after
optimizing the two parameters ϵO and σO. The minimum is
somewhat shallow, indicating strong correlation of the three

Table 2. Parameters of the Proposed TAMie Force Field: Energy Parameter ϵ, Size Parameter σ, Repulsive Exponent n, and
Point Charge q in Units of Electron Charge

pseudoatom ϵ/kB (K) σ (Å) n q (e)

−CH3− (sp3) all 136.318 3.6034 14 −qO/2 (next to ether O)
−CH2− (sp3) all 52.913 4.0400 14 −qO/2 (next to ether O)
−O− dimethyl ether 54.36 3.213 12 qO = −0.35
−O− ether 86.7 2.84 12 qO = −0.3
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parameters. The minima, however, are nonetheless clearly
identifiable. With nO = 12 as the repulsive Mie exponent of the
oxygen, we get an optimal value of qO = −0.35; for nO = 14, the
best agreement is found for qO = −0.335. On the basis of the
results of Figure 3, we propose a parametrization with nO = 12
(i.e., a Lennard-Jones site plus charge) for the ether oxygen for
two reasons: First, the case of nO = 12 gives lower deviations to
experimental data, as Figure 3 shows. Second, the value of qO =
−0.35 meets the vacuum value for dimethyl ether, which is qO =
−0.35. An absolute effective partial charge can be somewhat
higher than a vacuum value due to the static polarizability of
fluids, but an effective absolute value considerably below the
vacuum value, as the parametrization for the case of nO = 14
suggests, is not expected.
A further analysis of the results presented in Figure 3 shows

that the slope of the vapor pressure line significantly changes
with varying partial charge qO. Figure 4 illustrates the deviations
of calculated to experimental values. The errors in liquid
density are less strongly changing (not shown), with a trend to

lower errors for increasing partial charge qO. The minimum in
the objective function is therefore explained by an accurate
representation of the vapor pressure line.

Other Alkyl Ethers. Diethyl ether and dipropyl ether are
considered in this section. We strive to develop a transferable
force field of the ether oxygen for these substances and for
higher members of the homologous series. The concept of
transferability is well established for Lennard-Jones parameters
(or Mie parameters). For partial charges, the transferability has
been assumed for some force fields, but this approximation is
rather critical, as quantum chemical calculations suggest. We
determined partial charges from the intrinsic atomic orbitals
(IAO) approach67 using a B3LYP functional with a def2-
TZVPP basis set. The IAO partial charges are qO

(IAO) = −0.42
and −0.42 for diethyl ether and dipropyl ether, respectively.
The IAO charges resemble a chemical charge distribution
rather than representing a molecules electrostatic field. We have
seen the IAO charges to be weakly changing with molecule
conformation. Further, as already pointed out in the work of
Knizia,67 the IAO charges are weakly dependent on the choice
of the quantum mechanical approach. The electrostatic
potential according to Besler et al. on the other hand more
closely reflects an isolated molecules electrostatic field.68 These
charges are more dependent on the molecule conformation.
From an automated force field topology builder,69 we
determined values of qO

(ESP) = −0.48 and −0.52 for diethyl
ether and dipropyl ether, respectively.
As the quantum chemical calculations suggest different

partial charges for diethyl ether and for dipropyl ether, it is
interesting to treat the charge as an adjustable parameter of the
Mie force field. We expect that the parameter regression then
also identifies different partial charges. Because static polar-
izability is not expected to have an exceedingly high
contribution to the overall interactions of these two pure
substances,70 one would expect optimized partial charges close
to the quantum mechanical values. In a first series of
calculations, we varied the charges and optimized the two
Mie potential parameters ϵO and σO separately for diethyl ether
and dipropyl ether. Figures 5 and 6 show average deviations of
the simulation results to the experimental values for vapor
pressure and liquid densities for diethyl ether and dipropyl

Figure 3. Dimethyl ether: Absolute average deviations (%) of
simulated vapor pressure and liquid density data to experimental
data for varying partial charge qO of the oxygen. The temperature
range corresponds to 0.56 ≤ T/Tcrit

exp ≤ 0.96. The symbols are for the
case of nO = 12 (spheres) and nO = 14 (squares) as the repulsive Mie
exponent after optimizing the two parameters ϵO and σO.

Figure 4. Dimethyl ether: Relative deviations (%) of simulated vapor
pressure in comparison to experimental data. The temperature range
corresponds to 0.56 ≤ T/Tcrit

exp ≤ 0.96. The symbols are for the case of
nO = 12 with a partial charge at the oxygen atom of qO = −0.32
(squares), qO = −0.35 (solid spheres), and qO = −0.36 (triangles) all
for optimized values of ϵO and σO.

Figure 5. Diethyl ether: Absolute average deviations (%) of simulated
vapor pressure and liquid density data to experimental data for varying
partial charge qO of the oxygen. The temperature range corresponds to
0.56 ≤ T/Tcrit

exp ≤ 0.96. For each symbol, the two parameters ϵO and σO
(with nO = 12) were optimized for diethyl ether only.
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ether, respectively. The Mie parameters ϵO and σO are
optimized for each symbol in Figures 5 and 6. The rightmost
value in both diagrams represents the partial charge suggested
by quantum chemical calculations. The minima in Figures 5
and 6 of qO = −0.3 for diethyl ether and qO = −0.43 for
dipropyl ether represent the optimal effective charge according
to our parametrization. For these optimal effective partial
charges, we find good agreement of the simulated vapor
pressure curve and the liquid density curve to the experimental
data, in the range of about 1% AAD, as the minima in Figures 5
and 6 indicate. We see, however, that the individually optimized
value for diethyl ether is lower than the ones predicted for a
vacuum from quantum mechanical calculations (qO

(IAO) =
−0.42), whereas the partial charge for dipropyl ether is in
close agreement with the value from quantum mechanical
estimates (also qO

(IAO) = −0.42). The individual parameter
regression has an important outcome: we obtained significantly
different partial charges between the two members of the
homologous series. That finding reveals limits for the concept
of transferable partial charges.
Despite the critical assessment of the concept of transferable

partial charges in our previous paragraph, we maintain the
objective of developing transferable force fields. In a second
series of simulations, we therefore optimized the two Mie
potential parameters ϵO and σO simultaneously for diethyl ether
and dipropyl ether. Figure 7 presents the deviations between
molecular simulations and experimental data for varying partial
charges. On the basis of the partial charges optimized
individually to diethyl ether and dipropyl ether, we limited
the range of partial charges to qO = −0.3 and −0.43. These
bounds were the optimal partial charge of diethyl ether and of
dipropyl ether, respectively. Figure 7 shows that the best partial
charge for a simultaneous parameter regression assuming
transferable partial charges ends at the left bound. An
unconstrained parameter regression would reveal partial
charges lower than |qO| = 0.3, i.e., lower than the value of
either of the individually optimized values. We see no apposite
argument for partial charges outside the range, constrained by
the values found for individual optimizations. Lower partial
charges would obviously lead to a better representation of pure
components (Figure 7), but at the same time, it is likely that

the predictive power for mixtures would then be sacrificed. We
therefore adopt the partial charge of qO = −0.3 for the TAMie
force field. The parameters are summarized in Table 2.
Molecular simulations with the TAMie force field lead to

satisfying agreement with the experimental data for diethyl
ether and dipropyl ether, as Figures 8 and 9 show. These

diagrams also give a comparison to results of the TraPPE force
field. Calculations using the TAMie parametrization sacrifice
agreement with the liquid density data to a small extent but lead
to a much better agreement with vapor pressure data compared
with the TraPPE force field. The results in Figure 9 illustrate
the observations discussed above: the partial charges of
dipropyl ether are higher than diethyl ether, when the partial
charge is individually optimized. Figure 9 shows that the vapor
pressure for diethyl ether is calculated at too low values,
whereas for diproyl ether the vapor pressure is overestimated. A
single set of parameters (especially partial charges) for the ether
oxygen is not sufficient to further reduce deviations to the
experimental values.

Mixture. An important perspective for transferable force
fields is the prediction of mixture properties. We investigate
here the vapor−liquid equilibrium for a mixture of n-butane
with dimethyl ether at T = 405.16 K. We first apply the TAMie

Figure 6. Dipropyl ether: Absolute average deviations (%) of
simulated vapor pressure and liquid density data to experimental
data for varying partial charge qO of the oxygen. The temperature
range corresponds to 0.53 ≤ T/Tcrit

exp ≤ 0.96. For each symbol, the two
parameters ϵO and σO (with nO = 12) were optimized for dipropyl
ether only.

Figure 7. Simultaneous force field optimization for diethyl ether and
dipropyl ether: Absolute average deviations (%) of simulated vapor
pressure and liquid density data to experimental data for varying partial
charge qO of the oxygen. For each symbol, the two parameters ϵO and
σO (with nO = 12) were optimized.

Figure 8. Vapor−liquid coexistence curve for short symmetric ether.
Symbols are simulation results for the TAMie force field (blue
spheres) and for the TraPPE model (red diamonds); solid lines are
quasi-experimental data.66
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force field without correction parameters to the Berthelot−
Lorentz combining rules, so that we can speak of a prediction.
The comparison of the TAMie model (gray solid line) with
experimental data is given in Figure 10. The TAMie force field

reproduces the vapor pressure of pure n-butane with good
accuracy. The slope of the bubble point line (and of the dew
point line) as predicted from TAMie is somewhat too low. In
view of the fact that no binary interaction parameter was
adjusted, however, we consider the result of Figure 10 as a good
overall agreement. The result suggests that the TAMie
parameters are reasonably balanced.
The binary phase diagram can be improved when

introducing a correction to the Berthelot rule, according to ϵij
= (ϵiiϵjj)

1/2(1 − κij). For like functional groups i = j, the
correction parameter is κij = 0. For the CH3 groups and CH2
groups of n-alkanes, we have seen no need for corrections, so
that κCH2,CH3

= 0. We have adjusted a symmetric intermolecular

correction of the ether oxygen group κO,CHx
= 0.05, with x ∈ {2,

3}. Using this parameter, the simulation results are in excellent

agreement with the experimental vapor−liquid equilibrium
data, as the blue line in Figure 10 shows.
In Figure 10, we also added predictions of the TraPPE force

field59,61 for comparison. The TraPPE force field has its
strength in the temperature−composition projections and
reveals stronger deviations in the pressure−composition
projection. From the comparison of the TAMie results to the
TraPPE calculations, we wish to confirm that the TAMie model
is in good agreement with the experimental data.

■ CONCLUSION
An analytical equation of state is used for defining conditions
(chemical potentials, temperatures, and intervals of molecule
number) of molecular simulations in the grand canonical
ensemble in such a way that the phase envelopes of pure fluids
are traced. Knowing these simulation conditions (approx-
imately) prior to a molecular simulation in the grand canonical
ensemble allows for a series of independent GCMC simulations
conducted in parallel, leading to efficient parallel simulations
that can be performed in a relatively short time using
automated scripts.
We optimized parameters of the TAMie force field for

describing phase equilibrium properties of ethers. We
investigated whether the partial charge parameters representing
the ether group and adjacent carbon (united-atom) groups are
transferable for diethyl ether and dipropyl ether. We find that
the individually optimized partial charges are quite different for
these two ethers. It was seen that an unconstrained parameter
optimization of a transferable force field adjusted simulta-
neously to both substances identifies partial charges smaller
than each of the individually optimized partial charges. Our
study suggests that partial charges should be constrained either
to a range where individually optimized values lay or to a range
obtained from quantum mechanical calculations.
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of Baden-Württemberg, Germany, within the framework
program bwHPC. At Princeton, this work was supported by
the Department of Energy, Office of Basic Energy Sciences,

Figure 9. Vapor pressure curve for short symmetric ether. Symbols are
simulation results for the TAMie force field (blue spheres) and for the
TraPPE model (red diamonds); solid lines are quasi-experimental
data.66

Figure 10. Vapor−liquid equilibrium for a mixture of n-butane/
dimethyl ether (DME) at T = 405.16 K. Predictions from molecular
simulation using the TAMie force field (solid line, gray) are compared
to experimental data (symbols).71 Results of the TAMie force field
with binary interaction correction, κO,CHx = 0.05 (solid line, blue).
Predictions of the TraPPE model are also shown for comparison
(dashed line). Estimates of the mixture critical points of the TAMie
and the TraPPE force field are given as cross symbols.

The Journal of Physical Chemistry B Article

DOI: 10.1021/acs.jpcb.5b01806
J. Phys. Chem. B 2015, 119, 7087−7099

7097

http://pubs.acs.org
http://pubs.acs.org/doi/abs/10.1021/acs.jpcb.5b01806
mailto:gross@itt.uni-stuttgart.de
http://dx.doi.org/10.1021/acs.jpcb.5b01806
Richard

Richard



under award DE-SC0002128. We much appreciate the help and
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