Skip to content
netNMF-sc: A network regularization algorithm for dimensionality reduction and imputation of single-cell expression data
Jupyter Notebook Python
Branch: master
Clone or download
Fetching latest commit…
Cannot retrieve the latest commit at this time.
Permalink
Type Name Latest commit message Commit time
Failed to load latest commit information.
netNMFsc
LICENSE
README.md
netNMFsc_example.ipynb Add files via upload Mar 26, 2019
setup.py

README.md

netNMF-sc

netNMF-sc: Leveraging gene-gene interactions for imputation and dimensionality reduction in single-cell expression analysis.

Preprint is available at https://www.biorxiv.org/content/10.1101/544346v1

Instalation

netNMF-sc is installable through pip: pip3 install netNMFsc

Or by cloning this repository

Running netNMF-sc

See netNMFsc_example.ipynb for a jupyter notebook tutorial for importing and running netNMF-sc. netNMF-sc can also be run from the command line using the following command:

python3 -m netNMFsc.run_netNMF-sc -x <path_to_10X_directory> --network netNMFsc/refdata/coexpedia_network_human.mtx (or a network of your choice) --netgenes netNMFsc/refdata/coexpedia_gene_names_human.npy --dimensions --max_iters --direc <directory_to_save_output> --method GD

Command line arguments

-x,--tenXdir, data is from 10X. Only required to provide directory containing matrix.mtx, genes.tsv, barcodes.tsv files or .hdf5 file
-g,--gene_names, path to file containing gene names (.npy or .tsv)
-net,--network, path to network file (.npy or .mtx)
-netgenes,--netgenes, path to file containing gene names for network (.npy or .tsv)
-n,--normalize, normalize data? 1 = yes, 0 = no,default=1
-sparse,--sparsity, sparsity for network,default=0.75
-mi,--max_iters, max iters for netNMF,default=10000)
-t,--tol, tolerence for netNMF,default=1e-2
-d,--direc, directory to save files
-D,--dimensions, number of latent dimension, default = 10
-a,--alpha, lambda parameter from NMF,default = 10
You can’t perform that action at this time.