
Fast parentheses matching on GPU
Raph Levien

Google
San Francisco, CA, USA

ABSTRACT
Parentheses matching is an important fundamental algorithm, with
applications including parsing and processing of tree-structured
data. Previous literature presents work-efficient parallel algorithms
targeting an abstract PRAM machine, but does not address modern
GPU hardware. This paper analyzes the parentheses matching
problem using two monoids, the bijective semigroup and a novel
“stack monoid,” and presents a practical, fast algorithm interleaving
these two monoids to map to the thread, workgroup, and dispatch
levels of the GPU hierarchy. This algorithm is implemented portably
using compute shaders, and performance results show that the
algorithm operates at a significant fraction of the raw memory
bandwidth of a typical GPU.

ACM Reference Format:
Raph Levien. 2022. Fast parentheses matching on GPU. In Proceedings of
High-Performance Parallel and Distributed Computing (HPDC’22).ACM, New
York, NY, USA, 5 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION
This paper presents an efficient parallel solution to the parentheses
matching problem, tuned for high throughput on GPU hardware.
Parentheses matching is an important subproblem of parsing, and
is a general building block for disparate other algorithms, including
bin packing[AMW89] and tree patternmatching[PJ20]. The immediate
motivation for the present work is calculating clipping rectangles
for each node in a tree representing a 2D rendering task.

1.1 Limitations of current state of the art
The literature on the parentheses matching problem goes back
decades (at least to [BOV85]), but until now there is no known
satisfactory solution running on actual GPUhardware. The literature
falls into several categories:
• Theoretical investigationswhich presentwork-efficient algorithms
analyzed in terms of an abstract Parallel Random Access
Machine model but no clear mapping to an efficient GPU
implementation ([BOV85], [LP92], [PDC94]).
• Practical algorithms which run on GPU but have a work
factor dependent on maximum nesting depth ([Hsu19]).
• More limited GPU-based parsing algorithms which cannot
handle arbitrary tree structure ([SJ19]). This category also

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
HPDC’22, June 2022, Minneapolis
© 2022 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

includes the use of standard generalized prefix sum algorithms
with a small fixed bound on nesting depth.

Thus, the prevailing wisdom remains that parsing of arbitrary
tree structured data is inherently a serial problem and must be done
on CPU rather than GPU.

1.2 Key insights and contributions
There are several key insights in this paper, culminating in presentation
and empirical performance measurement of an algorithm that is
fast and practical to implement on standard GPU hardware.

The first insight is that the parentheses matching problem can
be expressed in terms of two monoids, both of which can be used
to compute matches, but with different time/space tradeoffs. The
first of these is the well-known bicyclic semigroup which is cheap
to compute and can be queried by binary search, and the second
is a “stack monoid” which takes more space but can be queried in
𝑂 (1) time. Either by itself can be used to derive an algorithm which
is parallel but has 𝑂 (log𝑛) work factor.

The second insight is that interleaving these two approaches
yields a work-efficient algorithm. Further, the two approaches
map well to the hierarchical structure of actual GPU hardware.
We present a simple algorithm consisting of reduction of the stack
monoid (computing stack snapshots at partition granularity), followed
by binary search of the bicyclic semigroup to resolvematcheswithin
a partition. The second step can be done within a workgroup, using
efficient shared memory. It is reasonably fast but not truly work-
efficient.

A faster version of the algorithm adds a third level of hierarchy:
a sequence of 𝑘 elements processed per thread, instead of just
one as in the simpler algorithm. This technique is analogous to
that used for high performance prefix sum implementations, but
requires more sophistication. Stack monoid reduction is used for
the smallest granularity, then binary search for the workgroup
level, and then stack monoids again for finding matches across
workgroup boundaries.

1.3 Experimental methodology and artifact
availability

The primary empirical claim is that the proposed algorithm is fast
on standard GPU hardware. To demonstrate this claim, we run the
code on an AMD 5700 XT as Vulkan compute shaders. The test
consists of a random sequence of parenthesis. The GPU time is
measured with Vulkan timer queries.

All software is available on GitHub with a permissive Apache 2
open source license1. The infrastructure for running and measuring
compute shader performance is cross-platform and runs on Metal
andDirect3D 12 aswell as Vulkan. Such cross-platform infrastructure

1https://github.com/linebender/piet-gpu

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

HPDC’22, June 2022, Minneapolis Raph Levien

stack = [-1]

for i in range(len(s)):

out[i] = stack[len(stack) - 1]

if inp[i] == '(':

stack.push(i)

elif inp[i] == ')':

stack.pop()

Figure 1: Sequential algorithm for parentheses matching

is unusual for compute-centric tasks, though it is relatively common
in game engines.

1.4 Limitations of the proposed approach
Themain limitation of the proposed algorithm is that the presentation
and implementation is a 2-dispatch pipeline and is limited to inputs
of𝑤2𝑘2, where𝑤 is workgroup size and𝑘 is the number of elements
processed per thread. In many cases it is possible to increase 𝑘 to
accommodate the problem size (as is the case for the motivating
2D graphics example), but as inputs scale up the algorithm would
need to be extended to 3 or more dispatches.

Parentheses matching in isolation is not an especially useful task.
To put this technique into practice will require integration with
other subsystems that can utilize parentheses matching as a subtask.
For example, parsing of textual tree-structured data formats such
as XML and JSON would also require lexical analysis.

2 THE PARENTHESES MATCHING PROBLEM
The classical version of the parentheses matching problem is, for
every index in the source string, find the index of the corresponding
matching parenthesis. This paper actually considers a stronger
version of the problem: for every closing parenthesis, find the
index of the matching open parenthesis. But for every opening
parenthesis, find the index of the immediately enclosing opening
parenthesis. It is straightforward to reconstruct the traditional
version, but the converse is not true.

One statement of the problem is as a simple sequential program
which uses a stack.

We will be concerned with snapshots of the stack at step 𝑖 . An
appealing quality of this specific formulation of the parentheses-
matching problem is that all stacks can be recovered from the
output, just by repeatedly following references until the root is
reached (here represented by a value of -1).

3 THE BICYCLIC SEMIGROUP
The theoretical derivation of the algorithm relies heavily on the
bicyclic semigroup, actually a monoid, which is well known to model
the balancing of parentheses. An element of the bicyclic semigroup
Bic can be represented as a pair of nonnegative integers, with (0, 0)
as an identity and the following associative operator:

(𝑎, 𝑏) ⊕ (𝑐, 𝑑) = (𝑎 + 𝑐 −min(𝑏, 𝑐), 𝑏 + 𝑑 −min(𝑏, 𝑐))
An open parenthesis maps to (0, 1) and a close parenthesis maps

to (1, 0). We will overload the function Bic(𝑠) over a string to result

in the ⊕-reduction of this mapping applied to the elements of the
string; thus Bic('))()(') = (2, 1). We will use slice notation on
strings; 𝑠 [𝑖 .. 𝑗] represents the substring beginning at index 𝑖 of
length 𝑗 − 𝑖 .

The bicyclic semigroup gives rise to an alternate definition of
the parentheses matching problem. In particular, parenmatch(s)[j]
is the maximum value of 𝑖 such that Bic(𝑠 [𝑖 .. 𝑗]).𝑏 = 1. This is one
less than the minimum value such that the 𝑏 field is 0. Note that
Bic(𝑠 [𝑖 .. 𝑗]).𝑏 is monotonically increasing as 𝑖 decreases.

4 THE STACK MONOID
Another related monoid is the stack monoid, which is a sort of
hybrid of the bicyclic semigroup and the free monoid. Essentially,
rather than just counting the number of stack pushes, it contains
the actual values pushed on the stack.

Like the bicyclic semigroup, the stack monoid can be represented
as a 2-tuple. The first element in the tuple is the number of unmatched
closing parentheses, the same as the bicyclic semigroup. The second
element is a sequence of values corresponding to unmatched open
parentheses, as opposed merely to their count as in the bicyclic
semigroup. In the context of this paper, those values are typically
the indices, though the monoid is free in that it can be defined over
any sequence element type.

The empty stack monoid is (0, []). The value corresponding to an
open parenthesis with associated value 𝑥 is (0, [𝑥]), and the value
corresponding to a close parenthesis is (1, []). The combination
rule is as below:

(𝑎0, 𝑙0)⊕ (𝑎1, 𝑙1) = (𝑎0+𝑎1−min(|𝑙0 |, 𝑎1), 𝑙0 [..max(0, |𝑙0 |−𝑎1)]+𝑙1)

Like the bicyclic semigroup, the stack monoid lends itself to a
straightforward definition of the parenthesis matching problem. A
reduction of the stack monoid over a prefix of the input represents
a snapshot of the stack, as computed by the sequential algorithm,
up to the end of that slice. The result of the parentheses matching
algorithm is then the top of the stack at each step.

The parenthesis match value at 𝑗 is the topmost value of stack
snapshot taken at position 𝑗 . Here we use 𝑒𝑛𝑢𝑚(𝑠) to represent
the enumeration of the indices of the sequence 𝑠 , for example,
𝑒𝑛𝑢𝑚('))(') is the sequence [(0, ')'), (1, ')'), (2, '(')].

𝑝𝑎𝑟𝑒𝑛𝑚𝑎𝑡𝑐ℎ(𝑠) [𝑗] = 𝑙𝑎𝑠𝑡 (Stk(𝑒𝑛𝑢𝑚(𝑠) [.. 𝑗]))
The 𝑘-suffix of the stack monoid is simply the last 𝑘 values.
The storage required by a single stackmonoid value is unbounded,

but that does not preclude efficient implementations. In particular,
the combination of two values of size 𝑘 can be done in-place by 2𝑘
processors in one step. This result generalizes to combination of a
vector of values, which can be represented as a stream compaction.

𝑟𝑒𝑣 (Stk(𝑒𝑛𝑢𝑚(𝑠) [𝑖0 ..𝑖2]) [𝑘] = 𝑟𝑒𝑣 (Stk(𝑒𝑛𝑢𝑚(𝑠) [𝑖0 ..𝑖1])) [𝑘 + 𝑗]
where Bic(𝑠 [𝑖1 ..𝑖2]) = (𝑗, 0) (1)

The significance of this relation is that, given the value of the
Bic monoid and a materialized stack slice, it is possible to resolve
queries in O(1) time. In cases where Bic has a nonzero .𝑏, the match
is found within the slice 𝑠 [𝑖1 ..𝑖2]; a general matching algorithm will

Fast parentheses matching on GPU HPDC’22, June 2022, Minneapolis

𝑖 ← 𝑖1
𝑏 ← (0, 0)
𝑗 ← 0
while 𝑗 < lg𝑤 do

if 𝑖 𝑏𝑖𝑡𝑎𝑛𝑑 2𝑗 ≠ 0 then
𝑞 ← 𝑡𝑟𝑒𝑒 [𝑗] [⌊𝑖/2𝑗 ⌋ − 1] ⊕ 𝑏
if 𝑞.𝑏 = 0 then

𝑏 ← 𝑞

𝑖 ← 𝑖 − 2𝑗
else

break
end if

end if
𝑗 ← 𝑗 + 1

end while
if 𝑖 > 0 then

while 𝑗 > 0 do
𝑗 ← 𝑗 − 1
𝑞 ← 𝑡𝑟𝑒𝑒 [𝑗] [⌊𝑖/2𝑗 ⌋ − 1] ⊕ 𝑏
if 𝑞.𝑏 = 0 then

𝑏 ← 𝑞

𝑖 ← 𝑖 − 2𝑗
end if

end while
end if

Figure 2: Core parallel matching algorithm

resolve the match inside the slice if .𝑏 ≠ 0, and use .𝑎 to index into
a stack monoid value when .𝑏 = 0.

5 CORE PARALLEL ALGORITHM
The core parallel algorithm is a binary search over the bicyclic
semigroup. That algorithm by itself is fully parallel and reasonably
efficient; it has a work factor of 𝑂 (log𝑛) for the binary search.

Before running this algorithm, a binary tree of bicyclic semigroup
values is constructed; this is the same as the up-sweep phase of a
standard parallel prefix sum implementation. Specifically, the leaf
nodes of the tree are defined by 𝑡𝑟𝑒𝑒 [0] [𝑖] = Bic(𝑠 [𝑖]), and parent
nodes by the relation 𝑡𝑟𝑒𝑒 [𝑗 + 1] [𝑖] = 𝑡𝑟𝑒𝑒 [𝑗] [2𝑖] ⊕ 𝑡𝑟𝑒𝑒 [𝑗] [2𝑖 + 1].
Construction of this tree takes lg𝑛 steps, and the tree itself requires
storage of 2𝑛 − 2 bicyclic semigroup elements.

Then, for each index 𝑖 , the following algorithm searches the tree
for a parentheses match.

On termination, 𝑖 contains the smallest value such that Bic(𝑠 [𝑖 ..𝑖1]) .𝑏 =

0, thus 𝑖 − 1 is the solution to the parentheses matching problem.
Operation of the algorithm is illustrated in the figure below.

Here, 𝑖1 is 14 (of a 16 element sequence), and the final value of 𝑖 is 4,
indicating that Bic(𝑠 [4..14]).𝑏 = 0 but Bic(𝑠 [3..14]).𝑏 = 1. There is
an upward scanning pass followed by a downward scanning pass.
At each level, one node from the tree is examined. If combining
that node with 𝑏 would preserve .𝑏 = 0, it is incorporated (and
𝑖 adjusted to point to the beginning of the range covered by the
node), otherwise it is rejected. Nodes incorporated are marked with
a circle, nodes rejected by an X.

This binary search takes 2 lg𝑛 steps in the worst case. Thus,
while the algorithm is highly parallel, it cannot be considered work-
efficient.

6 SIMPLE ALGORITHM
In this section, we describe a simple algorithm which is not strictly
work-efficient, but may be practical, especially if the problem is
small or if the costs associated with code complexity are significant.
For simplicity, it is presented as two dispatches, effective up to a
problem size of𝑤2, where𝑤 is the size of a workgroup.

6.1 Stack slices
The first dispatch computes slices of the stack, with each workgroup
computing a partition of𝑤 values. More precisely, each workgroup
computes Stk(𝑒𝑛𝑢𝑚(𝑠) [𝑝..𝑝+𝑤]), where 𝑝 is the start of the partition,
in this case𝑤 · 𝑖 .

This dispatch is very simple. We do a partition-wide reverse scan
of the bicyclic semigroup on the mapping of the input elements,
followed by a simple stream compaction step: the index is written if
the .𝑎 of the scan of all following elements is zero, and the memory
location to write is derived from the .𝑏 value of that scan.

In more detail, for each index 𝑖 covering the input, index 𝑝 + 𝑖
is written to the output at location Bic(𝑠 [𝑝..𝑝 +𝑤]).𝑏 − Bic(𝑠 [𝑝 +
𝑖 ..𝑝 +𝑤]).𝑏 if the element is an open parenthesis and Bic(𝑠 [𝑝 + 𝑖 +
1..𝑝 +𝑤]).𝑎 = 0. ***Give example.

In this simpler variant, each thread handles one element, and a
simple Hillis-Steele scan[HS86].

6.2 Main matching pass
The second dispatch performs the main parentheses-matching
task, resolving all matches within the partition, and also using
the stack slices generated by the previous dispatch for the rest.
Each workgroup handles one partition independently, performing
the following steps sequentially (separated by workgroup barriers).

• Materialize the stack for the prefix of the input up to the
current partition. This results in the𝑤-suffix of Stk(𝑒𝑛𝑢𝑚(𝑠) [..𝑝])
in workgroup-shared memory. It consists of a reverse Hillis-
Steele scan of the bicyclic semigroups produced in the previous
step (up to 𝑖), followed by stream compaction which is a per-
element binary search of the .𝑏 values for the stack value.
• Compute a binary tree of the bicyclic semigroup from the
elements in the partition. This is a simple up-sweep as described
by [Ble90]. This binary tree requires storage of 2𝑤−1 bicyclic
semigroup elements in shared memory storage, and lg𝑤
steps.
• For each element 𝑗 , find the least value 𝑗 such that Bic(𝑠 [𝑝 +
𝑖 ..𝑝 + 𝑗]) .𝑏 = 0, searching the binary tree in an upwards
then a downwards pass. The algorithm is very similar to that
given in [BOV85].
• If 𝑖 > 0 then the match is found within the partition, and
𝑝 + 𝑖 − 1 is written to the output. If 𝑖 = 0 then the match is
in outside the partition, and the Bic(𝑠 [𝑝..𝑝 + 𝑗]) .𝑎 is used to
index into the stack as materialized in the first step.

HPDC’22, June 2022, Minneapolis Raph Levien

)

(1,0)

(

(0,1)

(

(0,1)

(

(0,1)

(

(0,1)

)

(1,0)

(

(0,1)

)

(1,0)

(

(0,1)

(

(0,1)

(

(0,1)

)

(1,0)

)

(1,0)

)

(1,0)

)

(1,0)

)

(1,0)

(1,1) (0,2) (0,0) (0,0) (0,2) (0,0) (2,0) (2,0)

(1,3) (0,0) (0,2) (4,0)

(1,3) (2,0)

(1,1)

Figure 3: Binary tree search for matching parentheses

7 WORK-EFFICIENT ALGORITHM
In a PRAM model, a simple Hillis-Steele scan over 𝑛 elements
consists of 𝑛 processors running ⌈lg𝑛⌉ steps. Thus, it has a work
factor of ⌈lg𝑛⌉ compared to the sequential algorithm running in
𝑂 (𝑛) steps on one processor.

There are a number ofwork-efficient variations. Themost straightforward
to implement on GPU is for each thread to process 𝑘 elements
sequentially, amortizing the logarithmic cost over these 𝑘 elements.
In a PRAMmodel,𝑛/𝑘 processors each take𝑂 (lg(𝑛/𝑘)) steps, which
is work-efficient when 𝑘 ≥ 𝑙𝑜𝑔𝑛. See [HSO07] for more discussion
of efficient GPU implementation of scan.

7.1 Work-efficient stack slices
The work-efficient version of the algorithm for producing stack
slices is straightforward, and based on standard techniques. We will
present it in a bit of detail, as other parts of the algorithm will use
similar techniques.

Recall that production of a stack slice is a stream compaction
based on a reverse scan of the bicyclic semigroup. The standard
work-efficient algorithm for scan is for each thread to process 𝑘
elements; this way the cost of the Hillis-Steele scan is amortized
over 𝑘 . On an actual GPU, each workgroup will have𝑤 threads, so
will end up processing𝑤𝑘 elements. An argument for the optimality
of that approach on an EREW PRAM is given at the end of section
1.2 of [Ble90].

Applying that technique, the first step is for each thread to do
a sequential reduction of the bicyclic semigroup for 𝑘 elements.
Then a standard (reverse) Hillis-Steele reduction over the resulting
𝑤 elements, which takes lg𝑤 steps. Lastly, each thread does a
sequential walk (also in reverse), starting with the exclusive scan
value. At each step, the value is written if the .𝑎 field of the bicyclic
semigroup is 0, and the location is determined from the .𝑏 field.

The actual shader code is straightforward, and the speedup
significant. (TODO: probably refer to quantitative measurements
later)

7.2 Work-efficient matching
This section needs to be expanded to be clearer, but the basic ideas
are presented in bullet form:

• Stream compaction of stack. Breaks down into work-efficient
reverse scan of bicyclic semigroup; create bitmaps of size
𝑘 to identify non-empty segments; create linked list data
structure (scan of max operation) of non-empty segments;
finally generate output, where each step either consumes
one element from a segment, steps to the next bit in the
bitmap, or follows the linked list (all O(1)). Result is the same
stack slice as before.
• Build binary tree of bicyclic semigroup. This is the same as
before, except that we start by a sequential reduction of the
monoid for 𝑘 elements. Also build bitmap representing stack
monoid reduction (𝑘 bits per thread).
• Do two searches of tree. One for the first element in the 𝑘-
chunk, the second for the first unclosed open parenthesis in
the 𝑘-chunk. The second induces a linked list data structure
to reconstruct all stack snapshots at 𝑘 granularity.
• Sequentially walk input elements. Start with search based
on the first element of the chunk. Maintain a local stack.
For each element, push and pop local stack as in sequential
algorithm.When local stack is empty, use hierarchy to resolve:
next bit in bitmap, follow linked list induced by second
search, and, when it steps out of the partition, resolve in
prefix stack.

8 PORTABLE COMPUTE SHADERS
A goal of this work was to develop an algorithm that could be run
efficiently and reliably on a wide range of GPU hardware. To this
end, we avoided constructs that would pose problems, such as inter-
workgroup communication. We also implemented the algorithm
on the piet-gpu-hal infrastructure, which runs compute shaders on
multiple back-ends, currently Vulkan, Metal, and DX12.

Fast parentheses matching on GPU HPDC’22, June 2022, Minneapolis

9 PERFORMANCE RESULTS
This section will need to be filled in with detailed performance
results, especially graphs of throughput over problem size.

Preliminary numbers: For the 𝑘 = 1 case, with 𝑤 = 512 so the
problem size is limited to 218, we see 3.9G elements/s on AMD 5700
XT. For 𝑘 = 8, on same problem size, throughput increases to 8.5G
for that problem size, and 12.9G as the problem size reaches the
maximum of 224. This latter number is approximately 40% of the
“speed of light” on that hardware, meaning the amount of time it
takes to read the input twice and write the output.

10 RELATEDWORK
There is an extensive literature of algorithms for parenthesesmatching
described in terms of the PRAMmodel. We will briefly survey those.
Generally, an algorithm that runs on 𝑛 processors in 𝑂 (log𝑛) time
is straightforward, but adaptations to make it work-efficient add
significant complexity.

The first work-efficient algorithm in the literature is [BOV85].
The core of this algorithm is essentially equivalent to the up-sweep
of the bicyclic semigroup followed by efficient binary search; they
don’t describe it in terms of a single semigroup, but rather do two
passes, one a simple prefix sum for nesting depth, the second an
up-sweep using a minimum operation. Certainly on modern GPUs
the bicyclic semigroup formulation is superior, as a single pass is
more efficient than two, and the calculation of the semigroup itself
compiles to a small number of inexpensive machine operations.
The work-efficient adaptation depends on scans in both directions.

Much of the following literature is concerned with efficient
execution on weaker PRAM variants, in particular EREW rather
than CREW. These concerns don’t mapwell to actual GPU hardware.
Indeed, after a dispatch boundary, having many threads read from
the same location is a potentially good for performance, due to
caching.

The parenthesesmatching problem is very similar that of deriving
parent and left sibling vectors from a depth vector. The depth
vector is a representation of tree structure popular in the APL
world, and it can readily be derived as a prefix sum of +1/-1 values
corresponding to open and close parentheses in the input sequence,
respectively. A highly parallel algorithm is given in Section 3.3 of
[Hsu19]. This algorithm, however, is not work-efficient, but rather
has an additional work factor proportional to the maximum depth
of the tree. The present work has no such limitation, and tree depth
is unbounded with no impact on performance.

The parentheses matching is related to prefix sum [Ble90]. The
latter has both a solid theoretical foundation and a host of practical
implementations on actual GPUs. A state of the art implementation
is decoupled look-back [MG16].

11 DISCUSSION AND FUTUREWORK
The parentheses matching problem is similar inmanyways to prefix
sum, for which there is much work on efficient implementations.
In particular, both can be represented as monoids, though the
monoidal structure of parentheses matching is trickier than pure
sums. In particular, for parentheses matching there are twomonoids
with different time/space tradeoffs, and only through their interleaving
is a work-efficient algorithm possible. This algorithm is not merely

theoretically work-efficient in a PRAM model, but maps well to
efficient implementation onGPUusing techniques similar to existing
prefix sum implementations.

The decomposition into monoids has the advantage that the
pure parentheses matching problem can readily be fused with other
monoid operations. The main motivating example for this work is
computing bounding boxes for clipping, which can be modeled as
the intersection of rectangles on all paths from the root of a tree
to the leaves. Reduction of the stack monoid generalizes easily as
it is free and can be extended to include some other monoid such
as rectangle intersection in addition to indices. Other related tasks
such as parsing likely can be expressed in terms of monoids as well.

One possible extension of the algorithm presented in this paper
is scaling up to larger problem sizes than can fit in𝑤2𝑘2. There are a
few different approaches, depending on the exact application. If the
nesting depth can be bounded by𝑤𝑘 , then the most straightfoward
approach is a standard tree reduction applied at the workgroup
granularity approach; this is work-efficient and straightforward to
implement. If unbounded nesting depth is required, other tradeoffs
exist.

This work should help make parsing and other manipulation of
tree-structured data practical for implementation on GPU, pushing
past the common misconception that this work is inherently serial
and must be run on CPU.

REFERENCES
[AMW89] Richard J. Anderson, Ernst W. Mayr, and Manfred K. Warmuth. Parallel

approximation algorithms for bin packing. Information and Computation,
82(3):262–277, 1989.

[Ble90] Guy E Blelloch. Prefix sums and their applications. In Synthesis of parallel
algorithms, pages 35–60. Morgan Kaufmann Publishers Inc., 1990.

[BOV85] Ilan Bar-On and Uzi Vishkin. Optimal parallel generation of a computation
tree form. ACM Trans. Program. Lang. Syst., 7(2):348–357, apr 1985.

[HS86] W. Daniel Hillis and Guy L. Steele. Data parallel algorithms. Commun.
ACM, 29(12):1170–1183, December 1986.

[HSO07] Mark Harris, Shubhabrata Sengupta, and John D. Owens. Parallel prefix
sum (scan) with CUDA. In Hubert Nguyen, editor, GPU Gems 3, chapter 39,
pages 851–876. Addison Wesley, August 2007.

[Hsu19] Aaron W. Hsu. A data parallel compiler hosted on the GPU. PhD thesis,
Indiana University, 2019.

[LP92] Christos Levcopoulos and Ola Petersson. Matching parentheses in parallel.
Discrete Applied Mathematics, 40(3):423–431, 1992.

[MG16] Duane Merrill and Michael Garland. Single-pass parallel prefix scan with
decoupled lookback. Technical Report NVR-2016-002, Nvidia, March 2016.

[PDC94] S.K. Prasad, S.K. Das, and C.C.-Y. Chen. Efficient EREW PRAM algorithms
for parentheses-matching. IEEE Transactions on Parallel and Distributed
Systems, 5(9):995–1008, 1994.

[PJ20] Štěpán Plachý and Jan Janoušek. On synchronizing tree automata and
their work–optimal parallel run, usable for parallel tree pattern matching.
In SOFSEM 2020: Theory and Practice of Computer Science, pages 576–586,
Cham, 2020. Springer International Publishing.

[SJ19] Elias Stehle and Hans-Arno Jacobsen. Parparaw: Massively parallel parsing
of delimiter-separated raw data. CoRR, abs/1905.13415, 2019.

	Abstract
	1 Introduction
	1.1 Limitations of current state of the art
	1.2 Key insights and contributions
	1.3 Experimental methodology and artifact availability
	1.4 Limitations of the proposed approach

	2 The parentheses matching problem
	3 The bicyclic semigroup
	4 The stack monoid
	5 Core parallel algorithm
	6 Simple algorithm
	6.1 Stack slices
	6.2 Main matching pass

	7 Work-efficient algorithm
	7.1 Work-efficient stack slices
	7.2 Work-efficient matching

	8 Portable compute shaders
	9 Performance results
	10 Related Work
	11 Discussion and future work
	References

