Skip to content
branch-22.02
Switch branches/tags
Code

Latest commit

Hi!

I noticed some functions weren't respecting the input type and thus returning double precision results.

This pull request proposes two changes:

1. Make `resample` return a buffer with the same `dtype` as input.
2. Add single-precision `hilbert` and `hilbert2` kernels.

I also benchmarked each change:

1. Upstream: **471 µs** vs. Proposed: **260 µs**
2. Upstream: **1.47 ms** vs. Proposed: **610 µs**

Authors:
  - Luigi Cruz (https://github.com/luigifcruz)
  - Ray Douglass (https://github.com/raydouglass)
  - gpuCI (https://github.com/GPUtester)
  - Adam Thompson (https://github.com/awthomp)
  - AJ Schmidt (https://github.com/ajschmidt8)
  - Mike Wendt (https://github.com/mike-wendt)

Approvers:
  - AJ Schmidt (https://github.com/ajschmidt8)
  - Adam Thompson (https://github.com/awthomp)
  - Matthew Nicely (https://github.com/mnicely)

URL: #447
80eadba

Git stats

Files

Permalink
Failed to load latest commit information.

 cuSignal

Build Status

cuSignal is a GPU-accelerated signal processing library that is both based on and extends the SciPy Signal API. Notably, cuSignal:

  • Delivers orders-of-magnitude speedups over CPU with a familiar API
  • Supports a zero-copy connection to popular Deep Learning frameworks like PyTorch, Tensorflow, and Jax
  • Runs on any CUDA-capable GPU of Maxwell architecture or newer, including the Jetson Nano
  • Optimizes streaming, real-time applications via zero-copy memory buffer between CPU and GPU
  • Is fully built within the GPU Python Ecosystem, where both core functionality and optimized kernels are dependent on the CuPy and Numba projects

Table of Contents

Quick Start

A polyphase resampler changes the sample rate of an incoming signal while using polyphase filter banks to preserve the overall shape of the original signal. The following example shows how cuSignal serves as a drop-in replacement for SciPy Signal's polyphase resampler and how cuSignal interacts with data generated on GPU with CuPy, a drop-in replacement for the numerical computing library NumPy.

Scipy Signal and NumPy (CPU)

import numpy as np
from scipy import signal

start = 0
stop = 10
num_samps = int(1e8)
resample_up = 2
resample_down = 3

cx = np.linspace(start, stop, num_samps, endpoint=False) 
cy = np.cos(-cx**2/6.0)

%%timeit
cf = signal.resample_poly(cy, resample_up, resample_down, window=('kaiser', 0.5))

This code executes on 2x Xeon E5-2600 in 2.36 sec.

cuSignal and CuPy (GPU)

import cupy as cp
import cusignal

start = 0
stop = 10
num_samps = int(1e8)
resample_up = 2
resample_down = 3

gx = cp.linspace(start, stop, num_samps, endpoint=False) 
gy = cp.cos(-gx**2/6.0)

%%timeit
gf = cusignal.resample_poly(gy, resample_up, resample_down, window=('kaiser', 0.5))

This code executes on an NVIDIA V100 in 13.8 ms, a 170x increase over SciPy Signal

Next, we'll show that cuSignal can be used to access data that isn't explicitly generated on GPU. In this case, we use cusignal.get_shared_mem to allocate a buffer of memory that's been addressed by both the GPU and CPU. This process allows cuSignal to process data online.

cuSignal with Data Generated on the CPU with Mapped, Pinned (zero-copy) Memory

import cupy as cp
import numpy as np
import cusignal

start = 0
stop = 10
num_samps = int(1e8)
resample_up = 2
resample_down = 3

# Generate Data on CPU with NumPy
cx = np.linspace(start, stop, num_samps, endpoint=False) 
cy = np.cos(-cx**2/6.0)

# Create shared memory between CPU and GPU and load with CPU signal (cy)
gpu_signal = cusignal.get_shared_mem(num_samps, dtype=np.float64)

%%time
# Move data to GPU/CPU shared buffer and run polyphase resampler
gpu_signal[:] = cy
gf = cusignal.resample_poly(gpu_signal, resample_up, resample_down, window=('kaiser', 0.5))

This code executes on an NVIDIA V100 in 174 ms.

Finally, the example below shows that cuSignal can access data that's been generated elsewhere and moved to the GPU via cp.asarray. While this approach is fine for prototyping and algorithm development, it should be avoided for online signal processing.

cuSignal with Data Generated on the CPU and Copied to GPU

import cupy as cp
import numpy as np
import cusignal

start = 0
stop = 10
num_samps = int(1e8)
resample_up = 2
resample_down = 3

# Generate Data on CPU
cx = np.linspace(start, stop, num_samps, endpoint=False) 
cy = np.cos(-cx**2/6.0)

%%time
gf = cusignal.resample_poly(cp.asarray(cy), resample_up, resample_down, window=('kaiser', 0.5))

This code executes on an NVIDIA V100 in 637 ms.

Installation

cuSignal has been tested on and supports all modern GPUs - from Maxwell to Ampere. While Anaconda is the preferred installation mechanism for cuSignal, developers and Jetson users should follow the source build instructions below; there isn't presently a conda aarch64 package for cuSignal.

Conda, Linux OS (Preferred)

cuSignal can be installed with (Miniconda or the full Anaconda distribution) from the rapidsai channel. If you're using a Jetson GPU, please follow the build instructions below

For cusignal version == 21.08:

For CUDA 11.0 and Python 3.8
conda install -c rapidsai -c nvidia -c conda-forge \
    cusignal=21.08 python=3.8 cudatoolkit=11.0

# or, for CUDA 11.2 and Python 3.8
conda install -c rapidsai -c nvidia -c conda-forge \
    cusignal=21.08 python=3.8 cudatoolkit=11.2

For the nightly verison of cusignal, currently 21.10a:

For CUDA 11.0 and Python 3.8
conda install -c rapidsai-nightly -c nvidia -c conda-forge \
    cusignal=21.08 python=3.8 cudatoolkit=11.0

For CUDA 11.0 and Python 3.8
conda install -c rapidsai-nightly -c nvidia -c conda-forge \
    cusignal=21.08 python=3.8 cudatoolkit=11.2

While only CUDA 11.0 and 11.2 are officially supported, cuSignal has been confirmed to work with CUDA version 10.2 and above. If you run into any issues with the conda install, please follow the source installation instructions, below.

For more OS and version information, please visit the RAPIDS version picker.

Source, aarch64 (Jetson Nano, TK1, TX2, Xavier), Linux OS

Since the Jetson platform is based on the arm chipset, we need to use an aarch64 supported Anaconda environment. While there are multiple options here, we recommend miniforge. Further, it's assumed that your Jetson device is running a current (>= 4.3) edition of JetPack and contains the CUDA Toolkit.

  1. Clone the cuSignal repository

    # Set the location to cuSignal in an environment variable CUSIGNAL_HOME
    export CUSIGNAL_HOME=$(pwd)/cusignal
    
    # Download the cuSignal repo
    git clone https://github.com/rapidsai/cusignal.git $CUSIGNAL_HOME
  2. Install miniforge and create the cuSignal conda environment:

    cd $CUSIGNAL_HOME
    conda env create -f conda/environments/cusignal_jetson_base.yml

    Note: Compilation and installation of CuPy can be quite lengthy (~30+ mins), particularly on the Jetson Nano. Please consider setting the CUPY_NVCC_GENERATE_CODE environment variable to decrease the CuPy dependency install time:

    export CUPY_NVCC_GENERATE_CODE="arch=compute_XX,code=sm_XX"

    where XX is your GPU's compute capability. If you'd like to compile to multiple architectures (e.g Nano and Xavier), concatenate the arch=... string with semicolins.

  3. Activate created conda environment

    conda activate cusignal-dev

  4. Install cuSignal module

    cd $CUSIGNAL_HOME
    ./build.sh  # install cuSignal to $PREFIX if set, otherwise $CONDA_PREFIX
                # run ./build.sh -h to print the supported command line options.
  5. Once installed, periodically update environment

    cd $CUSIGNAL_HOME
    conda env update -f conda/environments/cusignal_jetson_base.yml
  6. Optional: Confirm unit testing via PyTest

    cd $CUSIGNAL_HOME/python
    pytest -v  # for verbose mode
    pytest -v -k <function name>  # for more select testing

Source, Linux OS

  1. Clone the cuSignal repository

    # Set the location to cuSignal in an environment variable CUSIGNAL_HOME
    export CUSIGNAL_HOME=$(pwd)/cusignal
    
    # Download the cuSignal repo
    git clone https://github.com/rapidsai/cusignal.git $CUSIGNAL_HOME
  2. Download and install Anaconda or Miniconda then create the cuSignal conda environment:

    Base environment (core dependencies for cuSignal)

    cd $CUSIGNAL_HOME
    conda env create -f conda/environments/cusignal_base.yml

    Full environment (including RAPIDS's cuDF, cuML, cuGraph, and PyTorch)

    cd $CUSIGNAL_HOME
    conda env create -f conda/environments/cusignal_full.yml
  3. Activate created conda environment

    conda activate cusignal-dev

  4. Install cuSignal module

    cd $CUSIGNAL_HOME
    ./build.sh  # install cuSignal to $PREFIX if set, otherwise $CONDA_PREFIX
                # run ./build.sh -h to print the supported command line options.
  5. Once installed, periodically update environment

    cd $CUSIGNAL_HOME
    conda env update -f conda/environments/cusignal_base.yml
  6. Optional: Confirm unit testing via PyTest

    cd $CUSIGNAL_HOME/python
    pytest -v  # for verbose mode
    pytest -v -k <function name>  # for more select testing

Source, Windows OS

We have confirmed that cuSignal successfully builds and runs on Windows by using CUDA on WSL. Please follow the instructions in the link to install WSL 2 and the associated CUDA drivers. You can then proceed to follow the cuSignal source build instructions, below.

  1. Download and install Andaconda for Windows. In an Anaconda Prompt, navigate to your checkout of cuSignal.

  2. Create cuSignal conda environment

    conda create --name cusignal-dev

  3. Activate conda environment

    conda activate cusignal-dev

  4. Install cuSignal Core Dependencies

    conda install numpy numba scipy cudatoolkit pip
    pip install cupy-cudaXXX
    

    Where XXX is the version of the CUDA toolkit you have installed. 10.1, for example is cupy-cuda101. See the CuPy Documentation for information on getting Windows wheels for other versions of CUDA.

  5. Install cuSignal module

    ./build.sh
    
  6. Optional: Confirm unit testing via PyTest In the cuSignal top level directory:

    pip install pytest
    pytest
    

Docker - All RAPIDS Libraries, including cuSignal

cuSignal is part of the general RAPIDS docker container but can also be built using the included Dockerfile and the below instructions to build and run the container. Please note, <image> and <tag> are user specified, for example docker build -t cusignal:cusignal-0.19 docker/..

docker build -t <image>:<tag> docker/.
docker run --gpus all --rm -it <image>:<tag> /bin/bash

To For cusignal version == 21.08:

# For CUDA 11.2
docker pull rapidsai/rapidsai-dev:21.08-cuda11.2-devel-ubuntu18.04-py3.8
docker run --gpus all --rm -it -p 8888:8888 -p 8787:8787 -p 8786:8786 \
    rapidsai/rapidsai-dev:21.08-cuda11.2-devel-ubuntu18.04-py3.8

For the nightly version of cusignal

docker pull rapidsai/rapidsai-dev-nightly:21.10-cuda11.2-devel-ubuntu18.04-py3.8
docker run --gpus all --rm -it -p 8888:8888 -p 8787:8787 -p 8786:8786 \
    rapidsai/rapidsai-dev-nightly:21.10-cuda11.2-devel-ubuntu18.04-py3.8

Please see the RAPIDS Release Selector for more information on supported Python, Linux, and CUDA versions.

Documentation

The complete cuSignal API documentation including a complete list of functionality and examples can be found for both the Stable and Nightly (Experimental) releases. cuSignal has about 75% coverage of the SciPy Signal API and includes added functionality, particularly for phased array systems and speech analysis. Please search the documentation for your function of interest and file an issue if you see a gap.

cuSignal (Stable) | cuSignal (Nightly)

Notebooks and Examples

cuSignal strives for 100% coverage between features and notebook examples. While we stress GPU performance, our guiding phisolophy is based on user productivity, and it's always such a bummer when you can't quickly figure out how to use exciting new features.

Core API examples are shown in the api_guide of our Notebooks folder.

In addition to learning about how the API works, these notebooks provide rough benchmarking metrics for user-defined parameters like window length, signal size, and datatype.

SDR Integration

SoapySDR is a "vendor neutral and platform independent" library for software-defined radio usage. When used in conjunction with device (SDR) specific modules, SoapySDR allows for easy command-and-control of radios from Python or C++. To install SoapySDR into an existing cuSignal Conda environment, run:

conda install -c conda-forge soapysdr

A full list of subsequent modules, specific to your SDR are listed here, but some common ones:

  • rtlsdr: conda install -c conda-forge soapysdr-module-rtlsdr
  • Pluto SDR: conda install -c conda-forge soapysdr-module-plutosdr
  • UHD: conda install -c conda-forge soapysdr-module-uhd

Another popular SDR library, specific to the rtl-sdr, is pyrtlsdr.

For examples using SoapySDR, pyrtlsdr, and cuSignal, please see the notebooks/sdr directory.

Please note, for most rtlsdr devices, you'll need to blacklist the libdvb driver in Linux. To do this, run sudo vi /etc/modprobe.d/blacklist.conf and add blacklist dvb_usb_rtl28xxu to the end of the file. Restart your computer upon completion.

If you have a SDR that isn't listed above (like the LimeSDR), don't worry! You can symbolically link the system-wide Python bindings installed via apt-get to the local conda environment. Further, check conda-forge for any packages before installing something from source. Please file an issue if you run into any problems.

Benchmarking

cuSignal uses pytest-benchmark to compare performance between CPU and GPU signal processing implementations. To run cuSignal's benchmark suite, navigate to the topmost python directory ($CUSIGNAL_HOME/python) and run:

pytest --benchmark-enable --benchmark-gpu-disable

Benchmarks are disabled by default in setup.cfg providing only test correctness checks.

As with the standard pytest tool, the user can use the -v and -k flags for verbose mode and to select a specific benchmark to run. When intrepreting the output, we recommend comparing the mean execution time reported.

To reduce columns in benchmark result's table, add --benchmark-columns=LABELS, like --benchmark-columns=min,max,mean. For more information on pytest-benchmark please visit the Usage Guide.

Parameter --benchmark-gpu-disable is to disable memory checks from Rapids GPU benchmark tool. Doing so speeds up benchmarking.

If you wish to skip benchmarks of SciPy functions add -m "not cpu"

Lastly, benchmarks will be executed on local files. Therefore to test recent changes made to source, rebuild cuSignal.

Example

pytest -k upfirdn2d -m "not cpu" --benchmark-enable --benchmark-gpu-disable --benchmark-columns=mean

Output

cusignal/test/test_filtering.py ..................                                                                                                                                                                                                                                   [100%]


---------- benchmark 'UpFirDn2d': 18 tests -----------
Name (time in us, mem in bytes)         Mean          
------------------------------------------------------
test_upfirdn2d_gpu[-1-1-3-256]      195.2299 (1.0)    
test_upfirdn2d_gpu[-1-9-3-256]      196.1766 (1.00)   
test_upfirdn2d_gpu[-1-1-7-256]      196.2881 (1.01)   
test_upfirdn2d_gpu[0-2-3-256]       196.9984 (1.01)   
test_upfirdn2d_gpu[0-9-3-256]       197.5675 (1.01)   
test_upfirdn2d_gpu[0-1-7-256]       197.9015 (1.01)   
test_upfirdn2d_gpu[-1-9-7-256]      198.0923 (1.01)   
test_upfirdn2d_gpu[-1-2-7-256]      198.3325 (1.02)   
test_upfirdn2d_gpu[0-2-7-256]       198.4676 (1.02)   
test_upfirdn2d_gpu[0-9-7-256]       198.6437 (1.02)   
test_upfirdn2d_gpu[0-1-3-256]       198.7477 (1.02)   
test_upfirdn2d_gpu[-1-2-3-256]      200.1589 (1.03)   
test_upfirdn2d_gpu[-1-2-2-256]      213.0316 (1.09)   
test_upfirdn2d_gpu[0-1-2-256]       213.0944 (1.09)   
test_upfirdn2d_gpu[-1-9-2-256]      214.6168 (1.10)   
test_upfirdn2d_gpu[0-2-2-256]       214.6975 (1.10)   
test_upfirdn2d_gpu[-1-1-2-256]      216.4033 (1.11)   
test_upfirdn2d_gpu[0-9-2-256]       217.1675 (1.11)   
------------------------------------------------------

Contributing Guide

Review the CONTRIBUTING.md file for information on how to contribute code and issues to the project. The TL;DR, as applicable to cuSignal, is to fork our repository to your own project space, implement a feature, and submit a PR against cuSignal's main branch from your fork.

If you notice something broken with cuSignal or have a feature request -- whether for a new function to be added or for additional performance, please file an issue. We love to hear feedback, whether positive or negative.

cuSignal Blogs and Talks