Skip to content

HTTPS clone URL

Subversion checkout URL

You can clone with
or
.
Download ZIP
Fetching contributors…

Cannot retrieve contributors at this time

2552 lines (2297 sloc) 68.07 kB
/* auditsc.c -- System-call auditing support
* Handles all system-call specific auditing features.
*
* Copyright 2003-2004 Red Hat Inc., Durham, North Carolina.
* Copyright 2005 Hewlett-Packard Development Company, L.P.
* Copyright (C) 2005, 2006 IBM Corporation
* All Rights Reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*
* Written by Rickard E. (Rik) Faith <faith@redhat.com>
*
* Many of the ideas implemented here are from Stephen C. Tweedie,
* especially the idea of avoiding a copy by using getname.
*
* The method for actual interception of syscall entry and exit (not in
* this file -- see entry.S) is based on a GPL'd patch written by
* okir@suse.de and Copyright 2003 SuSE Linux AG.
*
* POSIX message queue support added by George Wilson <ltcgcw@us.ibm.com>,
* 2006.
*
* The support of additional filter rules compares (>, <, >=, <=) was
* added by Dustin Kirkland <dustin.kirkland@us.ibm.com>, 2005.
*
* Modified by Amy Griffis <amy.griffis@hp.com> to collect additional
* filesystem information.
*
* Subject and object context labeling support added by <danjones@us.ibm.com>
* and <dustin.kirkland@us.ibm.com> for LSPP certification compliance.
*/
#include <linux/init.h>
#include <asm/types.h>
#include <linux/atomic.h>
#include <linux/fs.h>
#include <linux/namei.h>
#include <linux/mm.h>
#include <linux/export.h>
#include <linux/slab.h>
#include <linux/mount.h>
#include <linux/socket.h>
#include <linux/mqueue.h>
#include <linux/audit.h>
#include <linux/personality.h>
#include <linux/time.h>
#include <linux/netlink.h>
#include <linux/compiler.h>
#include <asm/unistd.h>
#include <linux/security.h>
#include <linux/list.h>
#include <linux/tty.h>
#include <linux/binfmts.h>
#include <linux/highmem.h>
#include <linux/syscalls.h>
#include <linux/capability.h>
#include <linux/fs_struct.h>
#include "audit.h"
/* AUDIT_NAMES is the number of slots we reserve in the audit_context
* for saving names from getname(). */
#define AUDIT_NAMES 20
/* Indicates that audit should log the full pathname. */
#define AUDIT_NAME_FULL -1
/* no execve audit message should be longer than this (userspace limits) */
#define MAX_EXECVE_AUDIT_LEN 7500
/* number of audit rules */
int audit_n_rules;
/* determines whether we collect data for signals sent */
int audit_signals;
struct audit_cap_data {
kernel_cap_t permitted;
kernel_cap_t inheritable;
union {
unsigned int fE; /* effective bit of a file capability */
kernel_cap_t effective; /* effective set of a process */
};
};
/* When fs/namei.c:getname() is called, we store the pointer in name and
* we don't let putname() free it (instead we free all of the saved
* pointers at syscall exit time).
*
* Further, in fs/namei.c:path_lookup() we store the inode and device. */
struct audit_names {
const char *name;
int name_len; /* number of name's characters to log */
unsigned name_put; /* call __putname() for this name */
unsigned long ino;
dev_t dev;
umode_t mode;
uid_t uid;
gid_t gid;
dev_t rdev;
u32 osid;
struct audit_cap_data fcap;
unsigned int fcap_ver;
};
struct audit_aux_data {
struct audit_aux_data *next;
int type;
};
#define AUDIT_AUX_IPCPERM 0
/* Number of target pids per aux struct. */
#define AUDIT_AUX_PIDS 16
struct audit_aux_data_execve {
struct audit_aux_data d;
int argc;
int envc;
struct mm_struct *mm;
};
struct audit_aux_data_pids {
struct audit_aux_data d;
pid_t target_pid[AUDIT_AUX_PIDS];
uid_t target_auid[AUDIT_AUX_PIDS];
uid_t target_uid[AUDIT_AUX_PIDS];
unsigned int target_sessionid[AUDIT_AUX_PIDS];
u32 target_sid[AUDIT_AUX_PIDS];
char target_comm[AUDIT_AUX_PIDS][TASK_COMM_LEN];
int pid_count;
};
struct audit_aux_data_bprm_fcaps {
struct audit_aux_data d;
struct audit_cap_data fcap;
unsigned int fcap_ver;
struct audit_cap_data old_pcap;
struct audit_cap_data new_pcap;
};
struct audit_aux_data_capset {
struct audit_aux_data d;
pid_t pid;
struct audit_cap_data cap;
};
struct audit_tree_refs {
struct audit_tree_refs *next;
struct audit_chunk *c[31];
};
/* The per-task audit context. */
struct audit_context {
int dummy; /* must be the first element */
int in_syscall; /* 1 if task is in a syscall */
enum audit_state state, current_state;
unsigned int serial; /* serial number for record */
int major; /* syscall number */
struct timespec ctime; /* time of syscall entry */
unsigned long argv[4]; /* syscall arguments */
long return_code;/* syscall return code */
u64 prio;
int return_valid; /* return code is valid */
int name_count;
struct audit_names names[AUDIT_NAMES];
char * filterkey; /* key for rule that triggered record */
struct path pwd;
struct audit_context *previous; /* For nested syscalls */
struct audit_aux_data *aux;
struct audit_aux_data *aux_pids;
struct sockaddr_storage *sockaddr;
size_t sockaddr_len;
/* Save things to print about task_struct */
pid_t pid, ppid;
uid_t uid, euid, suid, fsuid;
gid_t gid, egid, sgid, fsgid;
unsigned long personality;
int arch;
pid_t target_pid;
uid_t target_auid;
uid_t target_uid;
unsigned int target_sessionid;
u32 target_sid;
char target_comm[TASK_COMM_LEN];
struct audit_tree_refs *trees, *first_trees;
struct list_head killed_trees;
int tree_count;
int type;
union {
struct {
int nargs;
long args[6];
} socketcall;
struct {
uid_t uid;
gid_t gid;
mode_t mode;
u32 osid;
int has_perm;
uid_t perm_uid;
gid_t perm_gid;
mode_t perm_mode;
unsigned long qbytes;
} ipc;
struct {
mqd_t mqdes;
struct mq_attr mqstat;
} mq_getsetattr;
struct {
mqd_t mqdes;
int sigev_signo;
} mq_notify;
struct {
mqd_t mqdes;
size_t msg_len;
unsigned int msg_prio;
struct timespec abs_timeout;
} mq_sendrecv;
struct {
int oflag;
mode_t mode;
struct mq_attr attr;
} mq_open;
struct {
pid_t pid;
struct audit_cap_data cap;
} capset;
struct {
int fd;
int flags;
} mmap;
};
int fds[2];
#if AUDIT_DEBUG
int put_count;
int ino_count;
#endif
};
static inline int open_arg(int flags, int mask)
{
int n = ACC_MODE(flags);
if (flags & (O_TRUNC | O_CREAT))
n |= AUDIT_PERM_WRITE;
return n & mask;
}
static int audit_match_perm(struct audit_context *ctx, int mask)
{
unsigned n;
if (unlikely(!ctx))
return 0;
n = ctx->major;
switch (audit_classify_syscall(ctx->arch, n)) {
case 0: /* native */
if ((mask & AUDIT_PERM_WRITE) &&
audit_match_class(AUDIT_CLASS_WRITE, n))
return 1;
if ((mask & AUDIT_PERM_READ) &&
audit_match_class(AUDIT_CLASS_READ, n))
return 1;
if ((mask & AUDIT_PERM_ATTR) &&
audit_match_class(AUDIT_CLASS_CHATTR, n))
return 1;
return 0;
case 1: /* 32bit on biarch */
if ((mask & AUDIT_PERM_WRITE) &&
audit_match_class(AUDIT_CLASS_WRITE_32, n))
return 1;
if ((mask & AUDIT_PERM_READ) &&
audit_match_class(AUDIT_CLASS_READ_32, n))
return 1;
if ((mask & AUDIT_PERM_ATTR) &&
audit_match_class(AUDIT_CLASS_CHATTR_32, n))
return 1;
return 0;
case 2: /* open */
return mask & ACC_MODE(ctx->argv[1]);
case 3: /* openat */
return mask & ACC_MODE(ctx->argv[2]);
case 4: /* socketcall */
return ((mask & AUDIT_PERM_WRITE) && ctx->argv[0] == SYS_BIND);
case 5: /* execve */
return mask & AUDIT_PERM_EXEC;
default:
return 0;
}
}
static int audit_match_filetype(struct audit_context *ctx, int which)
{
unsigned index = which & ~S_IFMT;
mode_t mode = which & S_IFMT;
if (unlikely(!ctx))
return 0;
if (index >= ctx->name_count)
return 0;
if (ctx->names[index].ino == -1)
return 0;
if ((ctx->names[index].mode ^ mode) & S_IFMT)
return 0;
return 1;
}
/*
* We keep a linked list of fixed-sized (31 pointer) arrays of audit_chunk *;
* ->first_trees points to its beginning, ->trees - to the current end of data.
* ->tree_count is the number of free entries in array pointed to by ->trees.
* Original condition is (NULL, NULL, 0); as soon as it grows we never revert to NULL,
* "empty" becomes (p, p, 31) afterwards. We don't shrink the list (and seriously,
* it's going to remain 1-element for almost any setup) until we free context itself.
* References in it _are_ dropped - at the same time we free/drop aux stuff.
*/
#ifdef CONFIG_AUDIT_TREE
static void audit_set_auditable(struct audit_context *ctx)
{
if (!ctx->prio) {
ctx->prio = 1;
ctx->current_state = AUDIT_RECORD_CONTEXT;
}
}
static int put_tree_ref(struct audit_context *ctx, struct audit_chunk *chunk)
{
struct audit_tree_refs *p = ctx->trees;
int left = ctx->tree_count;
if (likely(left)) {
p->c[--left] = chunk;
ctx->tree_count = left;
return 1;
}
if (!p)
return 0;
p = p->next;
if (p) {
p->c[30] = chunk;
ctx->trees = p;
ctx->tree_count = 30;
return 1;
}
return 0;
}
static int grow_tree_refs(struct audit_context *ctx)
{
struct audit_tree_refs *p = ctx->trees;
ctx->trees = kzalloc(sizeof(struct audit_tree_refs), GFP_KERNEL);
if (!ctx->trees) {
ctx->trees = p;
return 0;
}
if (p)
p->next = ctx->trees;
else
ctx->first_trees = ctx->trees;
ctx->tree_count = 31;
return 1;
}
#endif
static void unroll_tree_refs(struct audit_context *ctx,
struct audit_tree_refs *p, int count)
{
#ifdef CONFIG_AUDIT_TREE
struct audit_tree_refs *q;
int n;
if (!p) {
/* we started with empty chain */
p = ctx->first_trees;
count = 31;
/* if the very first allocation has failed, nothing to do */
if (!p)
return;
}
n = count;
for (q = p; q != ctx->trees; q = q->next, n = 31) {
while (n--) {
audit_put_chunk(q->c[n]);
q->c[n] = NULL;
}
}
while (n-- > ctx->tree_count) {
audit_put_chunk(q->c[n]);
q->c[n] = NULL;
}
ctx->trees = p;
ctx->tree_count = count;
#endif
}
static void free_tree_refs(struct audit_context *ctx)
{
struct audit_tree_refs *p, *q;
for (p = ctx->first_trees; p; p = q) {
q = p->next;
kfree(p);
}
}
static int match_tree_refs(struct audit_context *ctx, struct audit_tree *tree)
{
#ifdef CONFIG_AUDIT_TREE
struct audit_tree_refs *p;
int n;
if (!tree)
return 0;
/* full ones */
for (p = ctx->first_trees; p != ctx->trees; p = p->next) {
for (n = 0; n < 31; n++)
if (audit_tree_match(p->c[n], tree))
return 1;
}
/* partial */
if (p) {
for (n = ctx->tree_count; n < 31; n++)
if (audit_tree_match(p->c[n], tree))
return 1;
}
#endif
return 0;
}
/* Determine if any context name data matches a rule's watch data */
/* Compare a task_struct with an audit_rule. Return 1 on match, 0
* otherwise.
*
* If task_creation is true, this is an explicit indication that we are
* filtering a task rule at task creation time. This and tsk == current are
* the only situations where tsk->cred may be accessed without an rcu read lock.
*/
static int audit_filter_rules(struct task_struct *tsk,
struct audit_krule *rule,
struct audit_context *ctx,
struct audit_names *name,
enum audit_state *state,
bool task_creation)
{
const struct cred *cred;
int i, j, need_sid = 1;
u32 sid;
cred = rcu_dereference_check(tsk->cred, tsk == current || task_creation);
for (i = 0; i < rule->field_count; i++) {
struct audit_field *f = &rule->fields[i];
int result = 0;
switch (f->type) {
case AUDIT_PID:
result = audit_comparator(tsk->pid, f->op, f->val);
break;
case AUDIT_PPID:
if (ctx) {
if (!ctx->ppid)
ctx->ppid = sys_getppid();
result = audit_comparator(ctx->ppid, f->op, f->val);
}
break;
case AUDIT_UID:
result = audit_comparator(cred->uid, f->op, f->val);
break;
case AUDIT_EUID:
result = audit_comparator(cred->euid, f->op, f->val);
break;
case AUDIT_SUID:
result = audit_comparator(cred->suid, f->op, f->val);
break;
case AUDIT_FSUID:
result = audit_comparator(cred->fsuid, f->op, f->val);
break;
case AUDIT_GID:
result = audit_comparator(cred->gid, f->op, f->val);
break;
case AUDIT_EGID:
result = audit_comparator(cred->egid, f->op, f->val);
break;
case AUDIT_SGID:
result = audit_comparator(cred->sgid, f->op, f->val);
break;
case AUDIT_FSGID:
result = audit_comparator(cred->fsgid, f->op, f->val);
break;
case AUDIT_PERS:
result = audit_comparator(tsk->personality, f->op, f->val);
break;
case AUDIT_ARCH:
if (ctx)
result = audit_comparator(ctx->arch, f->op, f->val);
break;
case AUDIT_EXIT:
if (ctx && ctx->return_valid)
result = audit_comparator(ctx->return_code, f->op, f->val);
break;
case AUDIT_SUCCESS:
if (ctx && ctx->return_valid) {
if (f->val)
result = audit_comparator(ctx->return_valid, f->op, AUDITSC_SUCCESS);
else
result = audit_comparator(ctx->return_valid, f->op, AUDITSC_FAILURE);
}
break;
case AUDIT_DEVMAJOR:
if (name)
result = audit_comparator(MAJOR(name->dev),
f->op, f->val);
else if (ctx) {
for (j = 0; j < ctx->name_count; j++) {
if (audit_comparator(MAJOR(ctx->names[j].dev), f->op, f->val)) {
++result;
break;
}
}
}
break;
case AUDIT_DEVMINOR:
if (name)
result = audit_comparator(MINOR(name->dev),
f->op, f->val);
else if (ctx) {
for (j = 0; j < ctx->name_count; j++) {
if (audit_comparator(MINOR(ctx->names[j].dev), f->op, f->val)) {
++result;
break;
}
}
}
break;
case AUDIT_INODE:
if (name)
result = (name->ino == f->val);
else if (ctx) {
for (j = 0; j < ctx->name_count; j++) {
if (audit_comparator(ctx->names[j].ino, f->op, f->val)) {
++result;
break;
}
}
}
break;
case AUDIT_WATCH:
if (name)
result = audit_watch_compare(rule->watch, name->ino, name->dev);
break;
case AUDIT_DIR:
if (ctx)
result = match_tree_refs(ctx, rule->tree);
break;
case AUDIT_LOGINUID:
result = 0;
if (ctx)
result = audit_comparator(tsk->loginuid, f->op, f->val);
break;
case AUDIT_SUBJ_USER:
case AUDIT_SUBJ_ROLE:
case AUDIT_SUBJ_TYPE:
case AUDIT_SUBJ_SEN:
case AUDIT_SUBJ_CLR:
/* NOTE: this may return negative values indicating
a temporary error. We simply treat this as a
match for now to avoid losing information that
may be wanted. An error message will also be
logged upon error */
if (f->lsm_rule) {
if (need_sid) {
security_task_getsecid(tsk, &sid);
need_sid = 0;
}
result = security_audit_rule_match(sid, f->type,
f->op,
f->lsm_rule,
ctx);
}
break;
case AUDIT_OBJ_USER:
case AUDIT_OBJ_ROLE:
case AUDIT_OBJ_TYPE:
case AUDIT_OBJ_LEV_LOW:
case AUDIT_OBJ_LEV_HIGH:
/* The above note for AUDIT_SUBJ_USER...AUDIT_SUBJ_CLR
also applies here */
if (f->lsm_rule) {
/* Find files that match */
if (name) {
result = security_audit_rule_match(
name->osid, f->type, f->op,
f->lsm_rule, ctx);
} else if (ctx) {
for (j = 0; j < ctx->name_count; j++) {
if (security_audit_rule_match(
ctx->names[j].osid,
f->type, f->op,
f->lsm_rule, ctx)) {
++result;
break;
}
}
}
/* Find ipc objects that match */
if (!ctx || ctx->type != AUDIT_IPC)
break;
if (security_audit_rule_match(ctx->ipc.osid,
f->type, f->op,
f->lsm_rule, ctx))
++result;
}
break;
case AUDIT_ARG0:
case AUDIT_ARG1:
case AUDIT_ARG2:
case AUDIT_ARG3:
if (ctx)
result = audit_comparator(ctx->argv[f->type-AUDIT_ARG0], f->op, f->val);
break;
case AUDIT_FILTERKEY:
/* ignore this field for filtering */
result = 1;
break;
case AUDIT_PERM:
result = audit_match_perm(ctx, f->val);
break;
case AUDIT_FILETYPE:
result = audit_match_filetype(ctx, f->val);
break;
}
if (!result)
return 0;
}
if (ctx) {
if (rule->prio <= ctx->prio)
return 0;
if (rule->filterkey) {
kfree(ctx->filterkey);
ctx->filterkey = kstrdup(rule->filterkey, GFP_ATOMIC);
}
ctx->prio = rule->prio;
}
switch (rule->action) {
case AUDIT_NEVER: *state = AUDIT_DISABLED; break;
case AUDIT_ALWAYS: *state = AUDIT_RECORD_CONTEXT; break;
}
return 1;
}
/* At process creation time, we can determine if system-call auditing is
* completely disabled for this task. Since we only have the task
* structure at this point, we can only check uid and gid.
*/
static enum audit_state audit_filter_task(struct task_struct *tsk, char **key)
{
struct audit_entry *e;
enum audit_state state;
rcu_read_lock();
list_for_each_entry_rcu(e, &audit_filter_list[AUDIT_FILTER_TASK], list) {
if (audit_filter_rules(tsk, &e->rule, NULL, NULL,
&state, true)) {
if (state == AUDIT_RECORD_CONTEXT)
*key = kstrdup(e->rule.filterkey, GFP_ATOMIC);
rcu_read_unlock();
return state;
}
}
rcu_read_unlock();
return AUDIT_BUILD_CONTEXT;
}
/* At syscall entry and exit time, this filter is called if the
* audit_state is not low enough that auditing cannot take place, but is
* also not high enough that we already know we have to write an audit
* record (i.e., the state is AUDIT_SETUP_CONTEXT or AUDIT_BUILD_CONTEXT).
*/
static enum audit_state audit_filter_syscall(struct task_struct *tsk,
struct audit_context *ctx,
struct list_head *list)
{
struct audit_entry *e;
enum audit_state state;
if (audit_pid && tsk->tgid == audit_pid)
return AUDIT_DISABLED;
rcu_read_lock();
if (!list_empty(list)) {
int word = AUDIT_WORD(ctx->major);
int bit = AUDIT_BIT(ctx->major);
list_for_each_entry_rcu(e, list, list) {
if ((e->rule.mask[word] & bit) == bit &&
audit_filter_rules(tsk, &e->rule, ctx, NULL,
&state, false)) {
rcu_read_unlock();
ctx->current_state = state;
return state;
}
}
}
rcu_read_unlock();
return AUDIT_BUILD_CONTEXT;
}
/* At syscall exit time, this filter is called if any audit_names[] have been
* collected during syscall processing. We only check rules in sublists at hash
* buckets applicable to the inode numbers in audit_names[].
* Regarding audit_state, same rules apply as for audit_filter_syscall().
*/
void audit_filter_inodes(struct task_struct *tsk, struct audit_context *ctx)
{
int i;
struct audit_entry *e;
enum audit_state state;
if (audit_pid && tsk->tgid == audit_pid)
return;
rcu_read_lock();
for (i = 0; i < ctx->name_count; i++) {
int word = AUDIT_WORD(ctx->major);
int bit = AUDIT_BIT(ctx->major);
struct audit_names *n = &ctx->names[i];
int h = audit_hash_ino((u32)n->ino);
struct list_head *list = &audit_inode_hash[h];
if (list_empty(list))
continue;
list_for_each_entry_rcu(e, list, list) {
if ((e->rule.mask[word] & bit) == bit &&
audit_filter_rules(tsk, &e->rule, ctx, n,
&state, false)) {
rcu_read_unlock();
ctx->current_state = state;
return;
}
}
}
rcu_read_unlock();
}
static inline struct audit_context *audit_get_context(struct task_struct *tsk,
int return_valid,
long return_code)
{
struct audit_context *context = tsk->audit_context;
if (likely(!context))
return NULL;
context->return_valid = return_valid;
/*
* we need to fix up the return code in the audit logs if the actual
* return codes are later going to be fixed up by the arch specific
* signal handlers
*
* This is actually a test for:
* (rc == ERESTARTSYS ) || (rc == ERESTARTNOINTR) ||
* (rc == ERESTARTNOHAND) || (rc == ERESTART_RESTARTBLOCK)
*
* but is faster than a bunch of ||
*/
if (unlikely(return_code <= -ERESTARTSYS) &&
(return_code >= -ERESTART_RESTARTBLOCK) &&
(return_code != -ENOIOCTLCMD))
context->return_code = -EINTR;
else
context->return_code = return_code;
if (context->in_syscall && !context->dummy) {
audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_EXIT]);
audit_filter_inodes(tsk, context);
}
tsk->audit_context = NULL;
return context;
}
static inline void audit_free_names(struct audit_context *context)
{
int i;
#if AUDIT_DEBUG == 2
if (context->put_count + context->ino_count != context->name_count) {
printk(KERN_ERR "%s:%d(:%d): major=%d in_syscall=%d"
" name_count=%d put_count=%d"
" ino_count=%d [NOT freeing]\n",
__FILE__, __LINE__,
context->serial, context->major, context->in_syscall,
context->name_count, context->put_count,
context->ino_count);
for (i = 0; i < context->name_count; i++) {
printk(KERN_ERR "names[%d] = %p = %s\n", i,
context->names[i].name,
context->names[i].name ?: "(null)");
}
dump_stack();
return;
}
#endif
#if AUDIT_DEBUG
context->put_count = 0;
context->ino_count = 0;
#endif
for (i = 0; i < context->name_count; i++) {
if (context->names[i].name && context->names[i].name_put)
__putname(context->names[i].name);
}
context->name_count = 0;
path_put(&context->pwd);
context->pwd.dentry = NULL;
context->pwd.mnt = NULL;
}
static inline void audit_free_aux(struct audit_context *context)
{
struct audit_aux_data *aux;
while ((aux = context->aux)) {
context->aux = aux->next;
kfree(aux);
}
while ((aux = context->aux_pids)) {
context->aux_pids = aux->next;
kfree(aux);
}
}
static inline void audit_zero_context(struct audit_context *context,
enum audit_state state)
{
memset(context, 0, sizeof(*context));
context->state = state;
context->prio = state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
}
static inline struct audit_context *audit_alloc_context(enum audit_state state)
{
struct audit_context *context;
if (!(context = kmalloc(sizeof(*context), GFP_KERNEL)))
return NULL;
audit_zero_context(context, state);
INIT_LIST_HEAD(&context->killed_trees);
return context;
}
/**
* audit_alloc - allocate an audit context block for a task
* @tsk: task
*
* Filter on the task information and allocate a per-task audit context
* if necessary. Doing so turns on system call auditing for the
* specified task. This is called from copy_process, so no lock is
* needed.
*/
int audit_alloc(struct task_struct *tsk)
{
struct audit_context *context;
enum audit_state state;
char *key = NULL;
if (likely(!audit_ever_enabled))
return 0; /* Return if not auditing. */
state = audit_filter_task(tsk, &key);
if (likely(state == AUDIT_DISABLED))
return 0;
if (!(context = audit_alloc_context(state))) {
kfree(key);
audit_log_lost("out of memory in audit_alloc");
return -ENOMEM;
}
context->filterkey = key;
tsk->audit_context = context;
set_tsk_thread_flag(tsk, TIF_SYSCALL_AUDIT);
return 0;
}
static inline void audit_free_context(struct audit_context *context)
{
struct audit_context *previous;
int count = 0;
do {
previous = context->previous;
if (previous || (count && count < 10)) {
++count;
printk(KERN_ERR "audit(:%d): major=%d name_count=%d:"
" freeing multiple contexts (%d)\n",
context->serial, context->major,
context->name_count, count);
}
audit_free_names(context);
unroll_tree_refs(context, NULL, 0);
free_tree_refs(context);
audit_free_aux(context);
kfree(context->filterkey);
kfree(context->sockaddr);
kfree(context);
context = previous;
} while (context);
if (count >= 10)
printk(KERN_ERR "audit: freed %d contexts\n", count);
}
void audit_log_task_context(struct audit_buffer *ab)
{
char *ctx = NULL;
unsigned len;
int error;
u32 sid;
security_task_getsecid(current, &sid);
if (!sid)
return;
error = security_secid_to_secctx(sid, &ctx, &len);
if (error) {
if (error != -EINVAL)
goto error_path;
return;
}
audit_log_format(ab, " subj=%s", ctx);
security_release_secctx(ctx, len);
return;
error_path:
audit_panic("error in audit_log_task_context");
return;
}
EXPORT_SYMBOL(audit_log_task_context);
static void audit_log_task_info(struct audit_buffer *ab, struct task_struct *tsk)
{
char name[sizeof(tsk->comm)];
struct mm_struct *mm = tsk->mm;
struct vm_area_struct *vma;
/* tsk == current */
get_task_comm(name, tsk);
audit_log_format(ab, " comm=");
audit_log_untrustedstring(ab, name);
if (mm) {
down_read(&mm->mmap_sem);
vma = mm->mmap;
while (vma) {
if ((vma->vm_flags & VM_EXECUTABLE) &&
vma->vm_file) {
audit_log_d_path(ab, "exe=",
&vma->vm_file->f_path);
break;
}
vma = vma->vm_next;
}
up_read(&mm->mmap_sem);
}
audit_log_task_context(ab);
}
static int audit_log_pid_context(struct audit_context *context, pid_t pid,
uid_t auid, uid_t uid, unsigned int sessionid,
u32 sid, char *comm)
{
struct audit_buffer *ab;
char *ctx = NULL;
u32 len;
int rc = 0;
ab = audit_log_start(context, GFP_KERNEL, AUDIT_OBJ_PID);
if (!ab)
return rc;
audit_log_format(ab, "opid=%d oauid=%d ouid=%d oses=%d", pid, auid,
uid, sessionid);
if (security_secid_to_secctx(sid, &ctx, &len)) {
audit_log_format(ab, " obj=(none)");
rc = 1;
} else {
audit_log_format(ab, " obj=%s", ctx);
security_release_secctx(ctx, len);
}
audit_log_format(ab, " ocomm=");
audit_log_untrustedstring(ab, comm);
audit_log_end(ab);
return rc;
}
/*
* to_send and len_sent accounting are very loose estimates. We aren't
* really worried about a hard cap to MAX_EXECVE_AUDIT_LEN so much as being
* within about 500 bytes (next page boundary)
*
* why snprintf? an int is up to 12 digits long. if we just assumed when
* logging that a[%d]= was going to be 16 characters long we would be wasting
* space in every audit message. In one 7500 byte message we can log up to
* about 1000 min size arguments. That comes down to about 50% waste of space
* if we didn't do the snprintf to find out how long arg_num_len was.
*/
static int audit_log_single_execve_arg(struct audit_context *context,
struct audit_buffer **ab,
int arg_num,
size_t *len_sent,
const char __user *p,
char *buf)
{
char arg_num_len_buf[12];
const char __user *tmp_p = p;
/* how many digits are in arg_num? 5 is the length of ' a=""' */
size_t arg_num_len = snprintf(arg_num_len_buf, 12, "%d", arg_num) + 5;
size_t len, len_left, to_send;
size_t max_execve_audit_len = MAX_EXECVE_AUDIT_LEN;
unsigned int i, has_cntl = 0, too_long = 0;
int ret;
/* strnlen_user includes the null we don't want to send */
len_left = len = strnlen_user(p, MAX_ARG_STRLEN) - 1;
/*
* We just created this mm, if we can't find the strings
* we just copied into it something is _very_ wrong. Similar
* for strings that are too long, we should not have created
* any.
*/
if (unlikely((len == -1) || len > MAX_ARG_STRLEN - 1)) {
WARN_ON(1);
send_sig(SIGKILL, current, 0);
return -1;
}
/* walk the whole argument looking for non-ascii chars */
do {
if (len_left > MAX_EXECVE_AUDIT_LEN)
to_send = MAX_EXECVE_AUDIT_LEN;
else
to_send = len_left;
ret = copy_from_user(buf, tmp_p, to_send);
/*
* There is no reason for this copy to be short. We just
* copied them here, and the mm hasn't been exposed to user-
* space yet.
*/
if (ret) {
WARN_ON(1);
send_sig(SIGKILL, current, 0);
return -1;
}
buf[to_send] = '\0';
has_cntl = audit_string_contains_control(buf, to_send);
if (has_cntl) {
/*
* hex messages get logged as 2 bytes, so we can only
* send half as much in each message
*/
max_execve_audit_len = MAX_EXECVE_AUDIT_LEN / 2;
break;
}
len_left -= to_send;
tmp_p += to_send;
} while (len_left > 0);
len_left = len;
if (len > max_execve_audit_len)
too_long = 1;
/* rewalk the argument actually logging the message */
for (i = 0; len_left > 0; i++) {
int room_left;
if (len_left > max_execve_audit_len)
to_send = max_execve_audit_len;
else
to_send = len_left;
/* do we have space left to send this argument in this ab? */
room_left = MAX_EXECVE_AUDIT_LEN - arg_num_len - *len_sent;
if (has_cntl)
room_left -= (to_send * 2);
else
room_left -= to_send;
if (room_left < 0) {
*len_sent = 0;
audit_log_end(*ab);
*ab = audit_log_start(context, GFP_KERNEL, AUDIT_EXECVE);
if (!*ab)
return 0;
}
/*
* first record needs to say how long the original string was
* so we can be sure nothing was lost.
*/
if ((i == 0) && (too_long))
audit_log_format(*ab, " a%d_len=%zu", arg_num,
has_cntl ? 2*len : len);
/*
* normally arguments are small enough to fit and we already
* filled buf above when we checked for control characters
* so don't bother with another copy_from_user
*/
if (len >= max_execve_audit_len)
ret = copy_from_user(buf, p, to_send);
else
ret = 0;
if (ret) {
WARN_ON(1);
send_sig(SIGKILL, current, 0);
return -1;
}
buf[to_send] = '\0';
/* actually log it */
audit_log_format(*ab, " a%d", arg_num);
if (too_long)
audit_log_format(*ab, "[%d]", i);
audit_log_format(*ab, "=");
if (has_cntl)
audit_log_n_hex(*ab, buf, to_send);
else
audit_log_string(*ab, buf);
p += to_send;
len_left -= to_send;
*len_sent += arg_num_len;
if (has_cntl)
*len_sent += to_send * 2;
else
*len_sent += to_send;
}
/* include the null we didn't log */
return len + 1;
}
static void audit_log_execve_info(struct audit_context *context,
struct audit_buffer **ab,
struct audit_aux_data_execve *axi)
{
int i;
size_t len, len_sent = 0;
const char __user *p;
char *buf;
if (axi->mm != current->mm)
return; /* execve failed, no additional info */
p = (const char __user *)axi->mm->arg_start;
audit_log_format(*ab, "argc=%d", axi->argc);
/*
* we need some kernel buffer to hold the userspace args. Just
* allocate one big one rather than allocating one of the right size
* for every single argument inside audit_log_single_execve_arg()
* should be <8k allocation so should be pretty safe.
*/
buf = kmalloc(MAX_EXECVE_AUDIT_LEN + 1, GFP_KERNEL);
if (!buf) {
audit_panic("out of memory for argv string\n");
return;
}
for (i = 0; i < axi->argc; i++) {
len = audit_log_single_execve_arg(context, ab, i,
&len_sent, p, buf);
if (len <= 0)
break;
p += len;
}
kfree(buf);
}
static void audit_log_cap(struct audit_buffer *ab, char *prefix, kernel_cap_t *cap)
{
int i;
audit_log_format(ab, " %s=", prefix);
CAP_FOR_EACH_U32(i) {
audit_log_format(ab, "%08x", cap->cap[(_KERNEL_CAPABILITY_U32S-1) - i]);
}
}
static void audit_log_fcaps(struct audit_buffer *ab, struct audit_names *name)
{
kernel_cap_t *perm = &name->fcap.permitted;
kernel_cap_t *inh = &name->fcap.inheritable;
int log = 0;
if (!cap_isclear(*perm)) {
audit_log_cap(ab, "cap_fp", perm);
log = 1;
}
if (!cap_isclear(*inh)) {
audit_log_cap(ab, "cap_fi", inh);
log = 1;
}
if (log)
audit_log_format(ab, " cap_fe=%d cap_fver=%x", name->fcap.fE, name->fcap_ver);
}
static void show_special(struct audit_context *context, int *call_panic)
{
struct audit_buffer *ab;
int i;
ab = audit_log_start(context, GFP_KERNEL, context->type);
if (!ab)
return;
switch (context->type) {
case AUDIT_SOCKETCALL: {
int nargs = context->socketcall.nargs;
audit_log_format(ab, "nargs=%d", nargs);
for (i = 0; i < nargs; i++)
audit_log_format(ab, " a%d=%lx", i,
context->socketcall.args[i]);
break; }
case AUDIT_IPC: {
u32 osid = context->ipc.osid;
audit_log_format(ab, "ouid=%u ogid=%u mode=%#o",
context->ipc.uid, context->ipc.gid, context->ipc.mode);
if (osid) {
char *ctx = NULL;
u32 len;
if (security_secid_to_secctx(osid, &ctx, &len)) {
audit_log_format(ab, " osid=%u", osid);
*call_panic = 1;
} else {
audit_log_format(ab, " obj=%s", ctx);
security_release_secctx(ctx, len);
}
}
if (context->ipc.has_perm) {
audit_log_end(ab);
ab = audit_log_start(context, GFP_KERNEL,
AUDIT_IPC_SET_PERM);
audit_log_format(ab,
"qbytes=%lx ouid=%u ogid=%u mode=%#o",
context->ipc.qbytes,
context->ipc.perm_uid,
context->ipc.perm_gid,
context->ipc.perm_mode);
if (!ab)
return;
}
break; }
case AUDIT_MQ_OPEN: {
audit_log_format(ab,
"oflag=0x%x mode=%#o mq_flags=0x%lx mq_maxmsg=%ld "
"mq_msgsize=%ld mq_curmsgs=%ld",
context->mq_open.oflag, context->mq_open.mode,
context->mq_open.attr.mq_flags,
context->mq_open.attr.mq_maxmsg,
context->mq_open.attr.mq_msgsize,
context->mq_open.attr.mq_curmsgs);
break; }
case AUDIT_MQ_SENDRECV: {
audit_log_format(ab,
"mqdes=%d msg_len=%zd msg_prio=%u "
"abs_timeout_sec=%ld abs_timeout_nsec=%ld",
context->mq_sendrecv.mqdes,
context->mq_sendrecv.msg_len,
context->mq_sendrecv.msg_prio,
context->mq_sendrecv.abs_timeout.tv_sec,
context->mq_sendrecv.abs_timeout.tv_nsec);
break; }
case AUDIT_MQ_NOTIFY: {
audit_log_format(ab, "mqdes=%d sigev_signo=%d",
context->mq_notify.mqdes,
context->mq_notify.sigev_signo);
break; }
case AUDIT_MQ_GETSETATTR: {
struct mq_attr *attr = &context->mq_getsetattr.mqstat;
audit_log_format(ab,
"mqdes=%d mq_flags=0x%lx mq_maxmsg=%ld mq_msgsize=%ld "
"mq_curmsgs=%ld ",
context->mq_getsetattr.mqdes,
attr->mq_flags, attr->mq_maxmsg,
attr->mq_msgsize, attr->mq_curmsgs);
break; }
case AUDIT_CAPSET: {
audit_log_format(ab, "pid=%d", context->capset.pid);
audit_log_cap(ab, "cap_pi", &context->capset.cap.inheritable);
audit_log_cap(ab, "cap_pp", &context->capset.cap.permitted);
audit_log_cap(ab, "cap_pe", &context->capset.cap.effective);
break; }
case AUDIT_MMAP: {
audit_log_format(ab, "fd=%d flags=0x%x", context->mmap.fd,
context->mmap.flags);
break; }
}
audit_log_end(ab);
}
static void audit_log_exit(struct audit_context *context, struct task_struct *tsk)
{
const struct cred *cred;
int i, call_panic = 0;
struct audit_buffer *ab;
struct audit_aux_data *aux;
const char *tty;
/* tsk == current */
context->pid = tsk->pid;
if (!context->ppid)
context->ppid = sys_getppid();
cred = current_cred();
context->uid = cred->uid;
context->gid = cred->gid;
context->euid = cred->euid;
context->suid = cred->suid;
context->fsuid = cred->fsuid;
context->egid = cred->egid;
context->sgid = cred->sgid;
context->fsgid = cred->fsgid;
context->personality = tsk->personality;
ab = audit_log_start(context, GFP_KERNEL, AUDIT_SYSCALL);
if (!ab)
return; /* audit_panic has been called */
audit_log_format(ab, "arch=%x syscall=%d",
context->arch, context->major);
if (context->personality != PER_LINUX)
audit_log_format(ab, " per=%lx", context->personality);
if (context->return_valid)
audit_log_format(ab, " success=%s exit=%ld",
(context->return_valid==AUDITSC_SUCCESS)?"yes":"no",
context->return_code);
spin_lock_irq(&tsk->sighand->siglock);
if (tsk->signal && tsk->signal->tty && tsk->signal->tty->name)
tty = tsk->signal->tty->name;
else
tty = "(none)";
spin_unlock_irq(&tsk->sighand->siglock);
audit_log_format(ab,
" a0=%lx a1=%lx a2=%lx a3=%lx items=%d"
" ppid=%d pid=%d auid=%u uid=%u gid=%u"
" euid=%u suid=%u fsuid=%u"
" egid=%u sgid=%u fsgid=%u tty=%s ses=%u",
context->argv[0],
context->argv[1],
context->argv[2],
context->argv[3],
context->name_count,
context->ppid,
context->pid,
tsk->loginuid,
context->uid,
context->gid,
context->euid, context->suid, context->fsuid,
context->egid, context->sgid, context->fsgid, tty,
tsk->sessionid);
audit_log_task_info(ab, tsk);
audit_log_key(ab, context->filterkey);
audit_log_end(ab);
for (aux = context->aux; aux; aux = aux->next) {
ab = audit_log_start(context, GFP_KERNEL, aux->type);
if (!ab)
continue; /* audit_panic has been called */
switch (aux->type) {
case AUDIT_EXECVE: {
struct audit_aux_data_execve *axi = (void *)aux;
audit_log_execve_info(context, &ab, axi);
break; }
case AUDIT_BPRM_FCAPS: {
struct audit_aux_data_bprm_fcaps *axs = (void *)aux;
audit_log_format(ab, "fver=%x", axs->fcap_ver);
audit_log_cap(ab, "fp", &axs->fcap.permitted);
audit_log_cap(ab, "fi", &axs->fcap.inheritable);
audit_log_format(ab, " fe=%d", axs->fcap.fE);
audit_log_cap(ab, "old_pp", &axs->old_pcap.permitted);
audit_log_cap(ab, "old_pi", &axs->old_pcap.inheritable);
audit_log_cap(ab, "old_pe", &axs->old_pcap.effective);
audit_log_cap(ab, "new_pp", &axs->new_pcap.permitted);
audit_log_cap(ab, "new_pi", &axs->new_pcap.inheritable);
audit_log_cap(ab, "new_pe", &axs->new_pcap.effective);
break; }
}
audit_log_end(ab);
}
if (context->type)
show_special(context, &call_panic);
if (context->fds[0] >= 0) {
ab = audit_log_start(context, GFP_KERNEL, AUDIT_FD_PAIR);
if (ab) {
audit_log_format(ab, "fd0=%d fd1=%d",
context->fds[0], context->fds[1]);
audit_log_end(ab);
}
}
if (context->sockaddr_len) {
ab = audit_log_start(context, GFP_KERNEL, AUDIT_SOCKADDR);
if (ab) {
audit_log_format(ab, "saddr=");
audit_log_n_hex(ab, (void *)context->sockaddr,
context->sockaddr_len);
audit_log_end(ab);
}
}
for (aux = context->aux_pids; aux; aux = aux->next) {
struct audit_aux_data_pids *axs = (void *)aux;
for (i = 0; i < axs->pid_count; i++)
if (audit_log_pid_context(context, axs->target_pid[i],
axs->target_auid[i],
axs->target_uid[i],
axs->target_sessionid[i],
axs->target_sid[i],
axs->target_comm[i]))
call_panic = 1;
}
if (context->target_pid &&
audit_log_pid_context(context, context->target_pid,
context->target_auid, context->target_uid,
context->target_sessionid,
context->target_sid, context->target_comm))
call_panic = 1;
if (context->pwd.dentry && context->pwd.mnt) {
ab = audit_log_start(context, GFP_KERNEL, AUDIT_CWD);
if (ab) {
audit_log_d_path(ab, "cwd=", &context->pwd);
audit_log_end(ab);
}
}
for (i = 0; i < context->name_count; i++) {
struct audit_names *n = &context->names[i];
ab = audit_log_start(context, GFP_KERNEL, AUDIT_PATH);
if (!ab)
continue; /* audit_panic has been called */
audit_log_format(ab, "item=%d", i);
if (n->name) {
switch(n->name_len) {
case AUDIT_NAME_FULL:
/* log the full path */
audit_log_format(ab, " name=");
audit_log_untrustedstring(ab, n->name);
break;
case 0:
/* name was specified as a relative path and the
* directory component is the cwd */
audit_log_d_path(ab, "name=", &context->pwd);
break;
default:
/* log the name's directory component */
audit_log_format(ab, " name=");
audit_log_n_untrustedstring(ab, n->name,
n->name_len);
}
} else
audit_log_format(ab, " name=(null)");
if (n->ino != (unsigned long)-1) {
audit_log_format(ab, " inode=%lu"
" dev=%02x:%02x mode=%#o"
" ouid=%u ogid=%u rdev=%02x:%02x",
n->ino,
MAJOR(n->dev),
MINOR(n->dev),
n->mode,
n->uid,
n->gid,
MAJOR(n->rdev),
MINOR(n->rdev));
}
if (n->osid != 0) {
char *ctx = NULL;
u32 len;
if (security_secid_to_secctx(
n->osid, &ctx, &len)) {
audit_log_format(ab, " osid=%u", n->osid);
call_panic = 2;
} else {
audit_log_format(ab, " obj=%s", ctx);
security_release_secctx(ctx, len);
}
}
audit_log_fcaps(ab, n);
audit_log_end(ab);
}
/* Send end of event record to help user space know we are finished */
ab = audit_log_start(context, GFP_KERNEL, AUDIT_EOE);
if (ab)
audit_log_end(ab);
if (call_panic)
audit_panic("error converting sid to string");
}
/**
* audit_free - free a per-task audit context
* @tsk: task whose audit context block to free
*
* Called from copy_process and do_exit
*/
void audit_free(struct task_struct *tsk)
{
struct audit_context *context;
context = audit_get_context(tsk, 0, 0);
if (likely(!context))
return;
/* Check for system calls that do not go through the exit
* function (e.g., exit_group), then free context block.
* We use GFP_ATOMIC here because we might be doing this
* in the context of the idle thread */
/* that can happen only if we are called from do_exit() */
if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
audit_log_exit(context, tsk);
if (!list_empty(&context->killed_trees))
audit_kill_trees(&context->killed_trees);
audit_free_context(context);
}
/**
* audit_syscall_entry - fill in an audit record at syscall entry
* @arch: architecture type
* @major: major syscall type (function)
* @a1: additional syscall register 1
* @a2: additional syscall register 2
* @a3: additional syscall register 3
* @a4: additional syscall register 4
*
* Fill in audit context at syscall entry. This only happens if the
* audit context was created when the task was created and the state or
* filters demand the audit context be built. If the state from the
* per-task filter or from the per-syscall filter is AUDIT_RECORD_CONTEXT,
* then the record will be written at syscall exit time (otherwise, it
* will only be written if another part of the kernel requests that it
* be written).
*/
void audit_syscall_entry(int arch, int major,
unsigned long a1, unsigned long a2,
unsigned long a3, unsigned long a4)
{
struct task_struct *tsk = current;
struct audit_context *context = tsk->audit_context;
enum audit_state state;
if (unlikely(!context))
return;
/*
* This happens only on certain architectures that make system
* calls in kernel_thread via the entry.S interface, instead of
* with direct calls. (If you are porting to a new
* architecture, hitting this condition can indicate that you
* got the _exit/_leave calls backward in entry.S.)
*
* i386 no
* x86_64 no
* ppc64 yes (see arch/powerpc/platforms/iseries/misc.S)
*
* This also happens with vm86 emulation in a non-nested manner
* (entries without exits), so this case must be caught.
*/
if (context->in_syscall) {
struct audit_context *newctx;
#if AUDIT_DEBUG
printk(KERN_ERR
"audit(:%d) pid=%d in syscall=%d;"
" entering syscall=%d\n",
context->serial, tsk->pid, context->major, major);
#endif
newctx = audit_alloc_context(context->state);
if (newctx) {
newctx->previous = context;
context = newctx;
tsk->audit_context = newctx;
} else {
/* If we can't alloc a new context, the best we
* can do is to leak memory (any pending putname
* will be lost). The only other alternative is
* to abandon auditing. */
audit_zero_context(context, context->state);
}
}
BUG_ON(context->in_syscall || context->name_count);
if (!audit_enabled)
return;
context->arch = arch;
context->major = major;
context->argv[0] = a1;
context->argv[1] = a2;
context->argv[2] = a3;
context->argv[3] = a4;
state = context->state;
context->dummy = !audit_n_rules;
if (!context->dummy && state == AUDIT_BUILD_CONTEXT) {
context->prio = 0;
state = audit_filter_syscall(tsk, context, &audit_filter_list[AUDIT_FILTER_ENTRY]);
}
if (likely(state == AUDIT_DISABLED))
return;
context->serial = 0;
context->ctime = CURRENT_TIME;
context->in_syscall = 1;
context->current_state = state;
context->ppid = 0;
}
void audit_finish_fork(struct task_struct *child)
{
struct audit_context *ctx = current->audit_context;
struct audit_context *p = child->audit_context;
if (!p || !ctx)
return;
if (!ctx->in_syscall || ctx->current_state != AUDIT_RECORD_CONTEXT)
return;
p->arch = ctx->arch;
p->major = ctx->major;
memcpy(p->argv, ctx->argv, sizeof(ctx->argv));
p->ctime = ctx->ctime;
p->dummy = ctx->dummy;
p->in_syscall = ctx->in_syscall;
p->filterkey = kstrdup(ctx->filterkey, GFP_KERNEL);
p->ppid = current->pid;
p->prio = ctx->prio;
p->current_state = ctx->current_state;
}
/**
* audit_syscall_exit - deallocate audit context after a system call
* @valid: success/failure flag
* @return_code: syscall return value
*
* Tear down after system call. If the audit context has been marked as
* auditable (either because of the AUDIT_RECORD_CONTEXT state from
* filtering, or because some other part of the kernel write an audit
* message), then write out the syscall information. In call cases,
* free the names stored from getname().
*/
void audit_syscall_exit(int valid, long return_code)
{
struct task_struct *tsk = current;
struct audit_context *context;
context = audit_get_context(tsk, valid, return_code);
if (likely(!context))
return;
if (context->in_syscall && context->current_state == AUDIT_RECORD_CONTEXT)
audit_log_exit(context, tsk);
context->in_syscall = 0;
context->prio = context->state == AUDIT_RECORD_CONTEXT ? ~0ULL : 0;
if (!list_empty(&context->killed_trees))
audit_kill_trees(&context->killed_trees);
if (context->previous) {
struct audit_context *new_context = context->previous;
context->previous = NULL;
audit_free_context(context);
tsk->audit_context = new_context;
} else {
audit_free_names(context);
unroll_tree_refs(context, NULL, 0);
audit_free_aux(context);
context->aux = NULL;
context->aux_pids = NULL;
context->target_pid = 0;
context->target_sid = 0;
context->sockaddr_len = 0;
context->type = 0;
context->fds[0] = -1;
if (context->state != AUDIT_RECORD_CONTEXT) {
kfree(context->filterkey);
context->filterkey = NULL;
}
tsk->audit_context = context;
}
}
static inline void handle_one(const struct inode *inode)
{
#ifdef CONFIG_AUDIT_TREE
struct audit_context *context;
struct audit_tree_refs *p;
struct audit_chunk *chunk;
int count;
if (likely(hlist_empty(&inode->i_fsnotify_marks)))
return;
context = current->audit_context;
p = context->trees;
count = context->tree_count;
rcu_read_lock();
chunk = audit_tree_lookup(inode);
rcu_read_unlock();
if (!chunk)
return;
if (likely(put_tree_ref(context, chunk)))
return;
if (unlikely(!grow_tree_refs(context))) {
printk(KERN_WARNING "out of memory, audit has lost a tree reference\n");
audit_set_auditable(context);
audit_put_chunk(chunk);
unroll_tree_refs(context, p, count);
return;
}
put_tree_ref(context, chunk);
#endif
}
static void handle_path(const struct dentry *dentry)
{
#ifdef CONFIG_AUDIT_TREE
struct audit_context *context;
struct audit_tree_refs *p;
const struct dentry *d, *parent;
struct audit_chunk *drop;
unsigned long seq;
int count;
context = current->audit_context;
p = context->trees;
count = context->tree_count;
retry:
drop = NULL;
d = dentry;
rcu_read_lock();
seq = read_seqbegin(&rename_lock);
for(;;) {
struct inode *inode = d->d_inode;
if (inode && unlikely(!hlist_empty(&inode->i_fsnotify_marks))) {
struct audit_chunk *chunk;
chunk = audit_tree_lookup(inode);
if (chunk) {
if (unlikely(!put_tree_ref(context, chunk))) {
drop = chunk;
break;
}
}
}
parent = d->d_parent;
if (parent == d)
break;
d = parent;
}
if (unlikely(read_seqretry(&rename_lock, seq) || drop)) { /* in this order */
rcu_read_unlock();
if (!drop) {
/* just a race with rename */
unroll_tree_refs(context, p, count);
goto retry;
}
audit_put_chunk(drop);
if (grow_tree_refs(context)) {
/* OK, got more space */
unroll_tree_refs(context, p, count);
goto retry;
}
/* too bad */
printk(KERN_WARNING
"out of memory, audit has lost a tree reference\n");
unroll_tree_refs(context, p, count);
audit_set_auditable(context);
return;
}
rcu_read_unlock();
#endif
}
/**
* audit_getname - add a name to the list
* @name: name to add
*
* Add a name to the list of audit names for this context.
* Called from fs/namei.c:getname().
*/
void __audit_getname(const char *name)
{
struct audit_context *context = current->audit_context;
if (IS_ERR(name) || !name)
return;
if (!context->in_syscall) {
#if AUDIT_DEBUG == 2
printk(KERN_ERR "%s:%d(:%d): ignoring getname(%p)\n",
__FILE__, __LINE__, context->serial, name);
dump_stack();
#endif
return;
}
BUG_ON(context->name_count >= AUDIT_NAMES);
context->names[context->name_count].name = name;
context->names[context->name_count].name_len = AUDIT_NAME_FULL;
context->names[context->name_count].name_put = 1;
context->names[context->name_count].ino = (unsigned long)-1;
context->names[context->name_count].osid = 0;
++context->name_count;
if (!context->pwd.dentry)
get_fs_pwd(current->fs, &context->pwd);
}
/* audit_putname - intercept a putname request
* @name: name to intercept and delay for putname
*
* If we have stored the name from getname in the audit context,
* then we delay the putname until syscall exit.
* Called from include/linux/fs.h:putname().
*/
void audit_putname(const char *name)
{
struct audit_context *context = current->audit_context;
BUG_ON(!context);
if (!context->in_syscall) {
#if AUDIT_DEBUG == 2
printk(KERN_ERR "%s:%d(:%d): __putname(%p)\n",
__FILE__, __LINE__, context->serial, name);
if (context->name_count) {
int i;
for (i = 0; i < context->name_count; i++)
printk(KERN_ERR "name[%d] = %p = %s\n", i,
context->names[i].name,
context->names[i].name ?: "(null)");
}
#endif
__putname(name);
}
#if AUDIT_DEBUG
else {
++context->put_count;
if (context->put_count > context->name_count) {
printk(KERN_ERR "%s:%d(:%d): major=%d"
" in_syscall=%d putname(%p) name_count=%d"
" put_count=%d\n",
__FILE__, __LINE__,
context->serial, context->major,
context->in_syscall, name, context->name_count,
context->put_count);
dump_stack();
}
}
#endif
}
static int audit_inc_name_count(struct audit_context *context,
const struct inode *inode)
{
if (context->name_count >= AUDIT_NAMES) {
if (inode)
printk(KERN_DEBUG "audit: name_count maxed, losing inode data: "
"dev=%02x:%02x, inode=%lu\n",
MAJOR(inode->i_sb->s_dev),
MINOR(inode->i_sb->s_dev),
inode->i_ino);
else
printk(KERN_DEBUG "name_count maxed, losing inode data\n");
return 1;
}
context->name_count++;
#if AUDIT_DEBUG
context->ino_count++;
#endif
return 0;
}
static inline int audit_copy_fcaps(struct audit_names *name, const struct dentry *dentry)
{
struct cpu_vfs_cap_data caps;
int rc;
memset(&name->fcap.permitted, 0, sizeof(kernel_cap_t));
memset(&name->fcap.inheritable, 0, sizeof(kernel_cap_t));
name->fcap.fE = 0;
name->fcap_ver = 0;
if (!dentry)
return 0;
rc = get_vfs_caps_from_disk(dentry, &caps);
if (rc)
return rc;
name->fcap.permitted = caps.permitted;
name->fcap.inheritable = caps.inheritable;
name->fcap.fE = !!(caps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
name->fcap_ver = (caps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
return 0;
}
/* Copy inode data into an audit_names. */
static void audit_copy_inode(struct audit_names *name, const struct dentry *dentry,
const struct inode *inode)
{
name->ino = inode->i_ino;
name->dev = inode->i_sb->s_dev;
name->mode = inode->i_mode;
name->uid = inode->i_uid;
name->gid = inode->i_gid;
name->rdev = inode->i_rdev;
security_inode_getsecid(inode, &name->osid);
audit_copy_fcaps(name, dentry);
}
/**
* audit_inode - store the inode and device from a lookup
* @name: name being audited
* @dentry: dentry being audited
*
* Called from fs/namei.c:path_lookup().
*/
void __audit_inode(const char *name, const struct dentry *dentry)
{
int idx;
struct audit_context *context = current->audit_context;
const struct inode *inode = dentry->d_inode;
if (!context->in_syscall)
return;
if (context->name_count
&& context->names[context->name_count-1].name
&& context->names[context->name_count-1].name == name)
idx = context->name_count - 1;
else if (context->name_count > 1
&& context->names[context->name_count-2].name
&& context->names[context->name_count-2].name == name)
idx = context->name_count - 2;
else {
/* FIXME: how much do we care about inodes that have no
* associated name? */
if (audit_inc_name_count(context, inode))
return;
idx = context->name_count - 1;
context->names[idx].name = NULL;
}
handle_path(dentry);
audit_copy_inode(&context->names[idx], dentry, inode);
}
/**
* audit_inode_child - collect inode info for created/removed objects
* @dentry: dentry being audited
* @parent: inode of dentry parent
*
* For syscalls that create or remove filesystem objects, audit_inode
* can only collect information for the filesystem object's parent.
* This call updates the audit context with the child's information.
* Syscalls that create a new filesystem object must be hooked after
* the object is created. Syscalls that remove a filesystem object
* must be hooked prior, in order to capture the target inode during
* unsuccessful attempts.
*/
void __audit_inode_child(const struct dentry *dentry,
const struct inode *parent)
{
int idx;
struct audit_context *context = current->audit_context;
const char *found_parent = NULL, *found_child = NULL;
const struct inode *inode = dentry->d_inode;
const char *dname = dentry->d_name.name;
int dirlen = 0;
if (!context->in_syscall)
return;
if (inode)
handle_one(inode);
/* parent is more likely, look for it first */
for (idx = 0; idx < context->name_count; idx++) {
struct audit_names *n = &context->names[idx];
if (!n->name)
continue;
if (n->ino == parent->i_ino &&
!audit_compare_dname_path(dname, n->name, &dirlen)) {
n->name_len = dirlen; /* update parent data in place */
found_parent = n->name;
goto add_names;
}
}
/* no matching parent, look for matching child */
for (idx = 0; idx < context->name_count; idx++) {
struct audit_names *n = &context->names[idx];
if (!n->name)
continue;
/* strcmp() is the more likely scenario */
if (!strcmp(dname, n->name) ||
!audit_compare_dname_path(dname, n->name, &dirlen)) {
if (inode)
audit_copy_inode(n, NULL, inode);
else
n->ino = (unsigned long)-1;
found_child = n->name;
goto add_names;
}
}
add_names:
if (!found_parent) {
if (audit_inc_name_count(context, parent))
return;
idx = context->name_count - 1;
context->names[idx].name = NULL;
audit_copy_inode(&context->names[idx], NULL, parent);
}
if (!found_child) {
if (audit_inc_name_count(context, inode))
return;
idx = context->name_count - 1;
/* Re-use the name belonging to the slot for a matching parent
* directory. All names for this context are relinquished in
* audit_free_names() */
if (found_parent) {
context->names[idx].name = found_parent;
context->names[idx].name_len = AUDIT_NAME_FULL;
/* don't call __putname() */
context->names[idx].name_put = 0;
} else {
context->names[idx].name = NULL;
}
if (inode)
audit_copy_inode(&context->names[idx], NULL, inode);
else
context->names[idx].ino = (unsigned long)-1;
}
}
EXPORT_SYMBOL_GPL(__audit_inode_child);
/**
* auditsc_get_stamp - get local copies of audit_context values
* @ctx: audit_context for the task
* @t: timespec to store time recorded in the audit_context
* @serial: serial value that is recorded in the audit_context
*
* Also sets the context as auditable.
*/
int auditsc_get_stamp(struct audit_context *ctx,
struct timespec *t, unsigned int *serial)
{
if (!ctx->in_syscall)
return 0;
if (!ctx->serial)
ctx->serial = audit_serial();
t->tv_sec = ctx->ctime.tv_sec;
t->tv_nsec = ctx->ctime.tv_nsec;
*serial = ctx->serial;
if (!ctx->prio) {
ctx->prio = 1;
ctx->current_state = AUDIT_RECORD_CONTEXT;
}
return 1;
}
/* global counter which is incremented every time something logs in */
static atomic_t session_id = ATOMIC_INIT(0);
/**
* audit_set_loginuid - set a task's audit_context loginuid
* @task: task whose audit context is being modified
* @loginuid: loginuid value
*
* Returns 0.
*
* Called (set) from fs/proc/base.c::proc_loginuid_write().
*/
int audit_set_loginuid(struct task_struct *task, uid_t loginuid)
{
unsigned int sessionid = atomic_inc_return(&session_id);
struct audit_context *context = task->audit_context;
if (context && context->in_syscall) {
struct audit_buffer *ab;
ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_LOGIN);
if (ab) {
audit_log_format(ab, "login pid=%d uid=%u "
"old auid=%u new auid=%u"
" old ses=%u new ses=%u",
task->pid, task_uid(task),
task->loginuid, loginuid,
task->sessionid, sessionid);
audit_log_end(ab);
}
}
task->sessionid = sessionid;
task->loginuid = loginuid;
return 0;
}
/**
* __audit_mq_open - record audit data for a POSIX MQ open
* @oflag: open flag
* @mode: mode bits
* @attr: queue attributes
*
*/
void __audit_mq_open(int oflag, mode_t mode, struct mq_attr *attr)
{
struct audit_context *context = current->audit_context;
if (attr)
memcpy(&context->mq_open.attr, attr, sizeof(struct mq_attr));
else
memset(&context->mq_open.attr, 0, sizeof(struct mq_attr));
context->mq_open.oflag = oflag;
context->mq_open.mode = mode;
context->type = AUDIT_MQ_OPEN;
}
/**
* __audit_mq_sendrecv - record audit data for a POSIX MQ timed send/receive
* @mqdes: MQ descriptor
* @msg_len: Message length
* @msg_prio: Message priority
* @abs_timeout: Message timeout in absolute time
*
*/
void __audit_mq_sendrecv(mqd_t mqdes, size_t msg_len, unsigned int msg_prio,
const struct timespec *abs_timeout)
{
struct audit_context *context = current->audit_context;
struct timespec *p = &context->mq_sendrecv.abs_timeout;
if (abs_timeout)
memcpy(p, abs_timeout, sizeof(struct timespec));
else
memset(p, 0, sizeof(struct timespec));
context->mq_sendrecv.mqdes = mqdes;
context->mq_sendrecv.msg_len = msg_len;
context->mq_sendrecv.msg_prio = msg_prio;
context->type = AUDIT_MQ_SENDRECV;
}
/**
* __audit_mq_notify - record audit data for a POSIX MQ notify
* @mqdes: MQ descriptor
* @notification: Notification event
*
*/
void __audit_mq_notify(mqd_t mqdes, const struct sigevent *notification)
{
struct audit_context *context = current->audit_context;
if (notification)
context->mq_notify.sigev_signo = notification->sigev_signo;
else
context->mq_notify.sigev_signo = 0;
context->mq_notify.mqdes = mqdes;
context->type = AUDIT_MQ_NOTIFY;
}
/**
* __audit_mq_getsetattr - record audit data for a POSIX MQ get/set attribute
* @mqdes: MQ descriptor
* @mqstat: MQ flags
*
*/
void __audit_mq_getsetattr(mqd_t mqdes, struct mq_attr *mqstat)
{
struct audit_context *context = current->audit_context;
context->mq_getsetattr.mqdes = mqdes;
context->mq_getsetattr.mqstat = *mqstat;
context->type = AUDIT_MQ_GETSETATTR;
}
/**
* audit_ipc_obj - record audit data for ipc object
* @ipcp: ipc permissions
*
*/
void __audit_ipc_obj(struct kern_ipc_perm *ipcp)
{
struct audit_context *context = current->audit_context;
context->ipc.uid = ipcp->uid;
context->ipc.gid = ipcp->gid;
context->ipc.mode = ipcp->mode;
context->ipc.has_perm = 0;
security_ipc_getsecid(ipcp, &context->ipc.osid);
context->type = AUDIT_IPC;
}
/**
* audit_ipc_set_perm - record audit data for new ipc permissions
* @qbytes: msgq bytes
* @uid: msgq user id
* @gid: msgq group id
* @mode: msgq mode (permissions)
*
* Called only after audit_ipc_obj().
*/
void __audit_ipc_set_perm(unsigned long qbytes, uid_t uid, gid_t gid, mode_t mode)
{
struct audit_context *context = current->audit_context;
context->ipc.qbytes = qbytes;
context->ipc.perm_uid = uid;
context->ipc.perm_gid = gid;
context->ipc.perm_mode = mode;
context->ipc.has_perm = 1;
}
int audit_bprm(struct linux_binprm *bprm)
{
struct audit_aux_data_execve *ax;
struct audit_context *context = current->audit_context;
if (likely(!audit_enabled || !context || context->dummy))
return 0;
ax = kmalloc(sizeof(*ax), GFP_KERNEL);
if (!ax)
return -ENOMEM;
ax->argc = bprm->argc;
ax->envc = bprm->envc;
ax->mm = bprm->mm;
ax->d.type = AUDIT_EXECVE;
ax->d.next = context->aux;
context->aux = (void *)ax;
return 0;
}
/**
* audit_socketcall - record audit data for sys_socketcall
* @nargs: number of args
* @args: args array
*
*/
void audit_socketcall(int nargs, unsigned long *args)
{
struct audit_context *context = current->audit_context;
if (likely(!context || context->dummy))
return;
context->type = AUDIT_SOCKETCALL;
context->socketcall.nargs = nargs;
memcpy(context->socketcall.args, args, nargs * sizeof(unsigned long));
}
/**
* __audit_fd_pair - record audit data for pipe and socketpair
* @fd1: the first file descriptor
* @fd2: the second file descriptor
*
*/
void __audit_fd_pair(int fd1, int fd2)
{
struct audit_context *context = current->audit_context;
context->fds[0] = fd1;
context->fds[1] = fd2;
}
/**
* audit_sockaddr - record audit data for sys_bind, sys_connect, sys_sendto
* @len: data length in user space
* @a: data address in kernel space
*
* Returns 0 for success or NULL context or < 0 on error.
*/
int audit_sockaddr(int len, void *a)
{
struct audit_context *context = current->audit_context;
if (likely(!context || context->dummy))
return 0;
if (!context->sockaddr) {
void *p = kmalloc(sizeof(struct sockaddr_storage), GFP_KERNEL);
if (!p)
return -ENOMEM;
context->sockaddr = p;
}
context->sockaddr_len = len;
memcpy(context->sockaddr, a, len);
return 0;
}
void __audit_ptrace(struct task_struct *t)
{
struct audit_context *context = current->audit_context;
context->target_pid = t->pid;
context->target_auid = audit_get_loginuid(t);
context->target_uid = task_uid(t);
context->target_sessionid = audit_get_sessionid(t);
security_task_getsecid(t, &context->target_sid);
memcpy(context->target_comm, t->comm, TASK_COMM_LEN);
}
/**
* audit_signal_info - record signal info for shutting down audit subsystem
* @sig: signal value
* @t: task being signaled
*
* If the audit subsystem is being terminated, record the task (pid)
* and uid that is doing that.
*/
int __audit_signal_info(int sig, struct task_struct *t)
{
struct audit_aux_data_pids *axp;
struct task_struct *tsk = current;
struct audit_context *ctx = tsk->audit_context;
uid_t uid = current_uid(), t_uid = task_uid(t);
if (audit_pid && t->tgid == audit_pid) {
if (sig == SIGTERM || sig == SIGHUP || sig == SIGUSR1 || sig == SIGUSR2) {
audit_sig_pid = tsk->pid;
if (tsk->loginuid != -1)
audit_sig_uid = tsk->loginuid;
else
audit_sig_uid = uid;
security_task_getsecid(tsk, &audit_sig_sid);
}
if (!audit_signals || audit_dummy_context())
return 0;
}
/* optimize the common case by putting first signal recipient directly
* in audit_context */
if (!ctx->target_pid) {
ctx->target_pid = t->tgid;
ctx->target_auid = audit_get_loginuid(t);
ctx->target_uid = t_uid;
ctx->target_sessionid = audit_get_sessionid(t);
security_task_getsecid(t, &ctx->target_sid);
memcpy(ctx->target_comm, t->comm, TASK_COMM_LEN);
return 0;
}
axp = (void *)ctx->aux_pids;
if (!axp || axp->pid_count == AUDIT_AUX_PIDS) {
axp = kzalloc(sizeof(*axp), GFP_ATOMIC);
if (!axp)
return -ENOMEM;
axp->d.type = AUDIT_OBJ_PID;
axp->d.next = ctx->aux_pids;
ctx->aux_pids = (void *)axp;
}
BUG_ON(axp->pid_count >= AUDIT_AUX_PIDS);
axp->target_pid[axp->pid_count] = t->tgid;
axp->target_auid[axp->pid_count] = audit_get_loginuid(t);
axp->target_uid[axp->pid_count] = t_uid;
axp->target_sessionid[axp->pid_count] = audit_get_sessionid(t);
security_task_getsecid(t, &axp->target_sid[axp->pid_count]);
memcpy(axp->target_comm[axp->pid_count], t->comm, TASK_COMM_LEN);
axp->pid_count++;
return 0;
}
/**
* __audit_log_bprm_fcaps - store information about a loading bprm and relevant fcaps
* @bprm: pointer to the bprm being processed
* @new: the proposed new credentials
* @old: the old credentials
*
* Simply check if the proc already has the caps given by the file and if not
* store the priv escalation info for later auditing at the end of the syscall
*
* -Eric
*/
int __audit_log_bprm_fcaps(struct linux_binprm *bprm,
const struct cred *new, const struct cred *old)
{
struct audit_aux_data_bprm_fcaps *ax;
struct audit_context *context = current->audit_context;
struct cpu_vfs_cap_data vcaps;
struct dentry *dentry;
ax = kmalloc(sizeof(*ax), GFP_KERNEL);
if (!ax)
return -ENOMEM;
ax->d.type = AUDIT_BPRM_FCAPS;
ax->d.next = context->aux;
context->aux = (void *)ax;
dentry = dget(bprm->file->f_dentry);
get_vfs_caps_from_disk(dentry, &vcaps);
dput(dentry);
ax->fcap.permitted = vcaps.permitted;
ax->fcap.inheritable = vcaps.inheritable;
ax->fcap.fE = !!(vcaps.magic_etc & VFS_CAP_FLAGS_EFFECTIVE);
ax->fcap_ver = (vcaps.magic_etc & VFS_CAP_REVISION_MASK) >> VFS_CAP_REVISION_SHIFT;
ax->old_pcap.permitted = old->cap_permitted;
ax->old_pcap.inheritable = old->cap_inheritable;
ax->old_pcap.effective = old->cap_effective;
ax->new_pcap.permitted = new->cap_permitted;
ax->new_pcap.inheritable = new->cap_inheritable;
ax->new_pcap.effective = new->cap_effective;
return 0;
}
/**
* __audit_log_capset - store information about the arguments to the capset syscall
* @pid: target pid of the capset call
* @new: the new credentials
* @old: the old (current) credentials
*
* Record the aguments userspace sent to sys_capset for later printing by the
* audit system if applicable
*/
void __audit_log_capset(pid_t pid,
const struct cred *new, const struct cred *old)
{
struct audit_context *context = current->audit_context;
context->capset.pid = pid;
context->capset.cap.effective = new->cap_effective;
context->capset.cap.inheritable = new->cap_effective;
context->capset.cap.permitted = new->cap_permitted;
context->type = AUDIT_CAPSET;
}
void __audit_mmap_fd(int fd, int flags)
{
struct audit_context *context = current->audit_context;
context->mmap.fd = fd;
context->mmap.flags = flags;
context->type = AUDIT_MMAP;
}
/**
* audit_core_dumps - record information about processes that end abnormally
* @signr: signal value
*
* If a process ends with a core dump, something fishy is going on and we
* should record the event for investigation.
*/
void audit_core_dumps(long signr)
{
struct audit_buffer *ab;
u32 sid;
uid_t auid = audit_get_loginuid(current), uid;
gid_t gid;
unsigned int sessionid = audit_get_sessionid(current);
if (!audit_enabled)
return;
if (signr == SIGQUIT) /* don't care for those */
return;
ab = audit_log_start(NULL, GFP_KERNEL, AUDIT_ANOM_ABEND);
current_uid_gid(&uid, &gid);
audit_log_format(ab, "auid=%u uid=%u gid=%u ses=%u",
auid, uid, gid, sessionid);
security_task_getsecid(current, &sid);
if (sid) {
char *ctx = NULL;
u32 len;
if (security_secid_to_secctx(sid, &ctx, &len))
audit_log_format(ab, " ssid=%u", sid);
else {
audit_log_format(ab, " subj=%s", ctx);
security_release_secctx(ctx, len);
}
}
audit_log_format(ab, " pid=%d comm=", current->pid);
audit_log_untrustedstring(ab, current->comm);
audit_log_format(ab, " sig=%ld", signr);
audit_log_end(ab);
}
struct list_head *audit_killed_trees(void)
{
struct audit_context *ctx = current->audit_context;
if (likely(!ctx || !ctx->in_syscall))
return NULL;
return &ctx->killed_trees;
}
Jump to Line
Something went wrong with that request. Please try again.