No description, website, or topics provided.
Switch branches/tags
Nothing to show
Clone or download
Fetching latest commit…
Cannot retrieve the latest commit at this time.
Permalink
Type Name Latest commit message Commit time
Failed to load latest commit information.
boosting_bbvi
.gitignore
LICENSE
README.md
conda-env.txt
requirements.txt
setup.py

README.md

General

This is the source code for "Boosting Black Box Variational Inference," by Francesco Locatello, Gideon Dresdner, Rajiv Khanna, Isabel Valera, Gunnar Rätsch. https://arxiv.org/abs/1806.02185.

@article{locatello2018boosting,
  title={Boosting Black Box Variational Inference},
  author={Locatello, Francesco and Dresdner, Gideon and Khanna, Rajiv and Valera, Isabel and R{\"a}tsch, Gunnar},
  journal={arXiv preprint arXiv:1806.02185},
  year={2018}
}

Setup

  1. Setup the dependencies using conda:
conda env create -n bbbvi --file conda-env.txt
  1. Activate the environment
source activate bbbvi
  1. Install the package for development
python setup.py develop

Run

Bayesian Logistic Regression

To recreate the Bayesian Linear Regression results in Table 1 of the paper, run

python blr.py \
    --base_dist lpl \
    --exp $EXPERIMENT \
    --outdir $OUTDIR \
    --seed $seed"

Where $EXPERIMENT is either chem or wine.

Bayesian Matrix Factorization

To recreate the Bayesian matrix factorization results in Table 1 of the paper, run

python matrix_factorization.py --D $D --outdir $OUTDIR --seed $seed

Toy data (mixture model)

To recreate Figure 1 of the experiment run

python mixture_model_relbo.py \
    --relbo_reg 1.0 \
    --relbo_anneal linear \
    --exp mixture \
    --fw_variant $variant \
    --outdir $OUTDIR"

Where $variant is fixed, line_search, or fc.

License

This project is licensed under the MIT License - see the LICENSE file for details.