Delay Model Expansion

Walter Brisken

National Radio Astronomy Observatory

2011 Sept 22

Define $T(\vec{x},\vec{R},t)$ as the absolute delay model where

- \vec{x} is the receiver location (ITRF)
- \vec{R} is the source location α,δ (ICRF) and distance,
 - t is the time

Note that:

- $* T \ge 0$
- * T is a metric

Define $\tau(\vec{x}, \vec{R}, t) \equiv T(\vec{x}, \vec{R}, t) - T(\vec{\oplus}, \vec{R}, t)$ where $\vec{\oplus}(t)$ is the Earth center¹. This choice of an origin sets the Doppler reference frame. For receivers on Earth, $|\tau| < 22$ ms.

 $^{^1 \}mbox{Most}$ quantities discussed will be time dependent even when not made explicit.

A realization of τ for VLBI that includes

- * The rotation state of \oplus
- * Atmospheric refraction
- * Earth tides
- $\ast\,$ Gravitational potentials of $\odot,\,\oplus,$ and the planets
- * Aberration

Additional features in CalcServer

- * Plate tectonics
- * Near field gravitational potentials in solar system
- * Wavefront curvature for near field objects
- * Ocean loading

* Gradient on first slot:

$$\vec{\nabla}_1 \tau(\vec{x}, \vec{R}, t) \equiv \left(\frac{\partial \tau}{\partial x_1}, \frac{\partial \tau}{\partial x_2}, \frac{\partial \tau}{\partial x_3}\right)$$

* Unit gradient vector:

$$\hat{\nabla}f = \frac{\vec{\nabla}f}{|\vec{\nabla}f|}$$

* Derivatives w.r.t. tangent plane coordinates

$$\frac{\partial}{\partial l} \tau \left(\vec{x}, \vec{R}(\alpha, \delta, D), t \right) = \frac{1}{\cos \delta} \frac{\partial}{\partial \alpha} \tau \left(\vec{x}, \vec{R}(\alpha, \delta, D), t \right)$$

$$\frac{\partial}{\partial m} \tau \left(\vec{x}, \vec{R}(\alpha, \delta, D), t \right) = \frac{\partial}{\partial \delta} \tau \left(\vec{x}, \vec{R}(\alpha, \delta, D), t \right)$$

First, define the celestial north pole:

$$\hat{N}(t) = \hat{\nabla}_1 \tau \left(\vec{\oplus}, (0^\circ, 90^\circ, \infty), t \right)$$

Then the basis vectors for a source at \vec{R} and time t are:

$$\begin{aligned} \hat{w}(t) &= -\hat{\nabla}_1 \tau(\vec{\oplus}, \vec{R}, t) \\ \hat{u}(t) &= \frac{\hat{w} \times \hat{N}}{|\hat{w} \times \hat{N}|} \\ \hat{v}(t) &= \hat{w} \times \hat{u} \end{aligned}$$

Note that the antenna coordinates are not explicitly used; all information comes via the delay model.

Calculation of a dirty image

The expression for the dirty image given measured voltages $v_p(t)$ is:

$$I^{\rm D}(l,m) = \sum_{j \neq k} \int dt \, v_j^*(t) v_k(t) e^{2\pi i \nu (\tau_k(l,m,t) - \tau_j(l,m,t))}$$

where $\tau_p(l,m,t)$ is shorthand for $\tau\left(\vec{x}_p,\vec{R}\left(\alpha(l,m),\delta(l,m),\infty\right),t\right)$ which can be expanded as

$$\tau_p(l,m,t) = \tau_p(t) + u_p l + v_p m + \mathcal{O}(l^2 + m^2) + \cdots$$

where $\tau_p(t)=\tau_p(l=0,m=0,t).$ Defining the visibility as

$$V_{jk,t} = \left\langle v_j^*(t) v_k(t) e^{2\pi i \nu (\tau_k(t) - \tau_j(t))} \right\rangle$$

results in a familiar equation

$$I^{\mathrm{D}}(l,m) \approx \sum_{t} \sum_{j \neq k} V_{jk,t} e^{2\pi i \nu (lu_{jk,t} + mv_{jk,t})}$$

Calculation of a dirty image (continued)

The coefficients of $l \mbox{ and } m$ are

$$u_{jk,t} = -c \left(\frac{\partial}{\partial l} \tau_k(t) - \frac{\partial}{\partial l} \tau_j(t) \right) \text{ and }$$
$$v_{jk,t} = -c \left(\frac{\partial}{\partial m} \tau_k(t) - \frac{\partial}{\partial m} \tau_j(t) \right).$$

These "baseline vectors" are here self-consistently determined purely from the delay model. The third component of the baseline vector is directly related to the delay

$$w_{jk,t} = -c\left(\tau_k(t) - \tau_j(t)\right)$$

In ITRF coordinates, the baseline vector is thus

$$\vec{B} = u\hat{u} + v\hat{v} + w\hat{w}$$

This typically differs from the geometric baseline vector, $\vec{B}_{jk,t}^G = \vec{x}_k - \vec{x}_j$, by a few parts in 10^5 with aberration being the primary difference.

The largest difference between \vec{B} and \vec{B}^G when observing a distant source is annual aberration².

 $^{^2\}mbox{Diurnal}$ aberration is absorbed by the delay model.

Refraction in the Earth's atmosphere causes the effective location of the receiver, as probed by a distant observer, to be higher in elevation.

Baseline vectors for near-field objects are non-intuitive.

Effective baselines are larger than expected since the antennas are closer to the object than is $\vec{\oplus}$. The magnitude of the effect is of order r_{\oplus}/D .

Proposal: scrap the (u, v, w) vector

Instead, compute a higher order expansion of the delay model over the region of interest:

$$\tau_j(l,m,t) = \sum_{a,b} \frac{1}{a!b!} \frac{\partial^{a+b}}{\partial l^a \partial m^b} \tau_j(t) l^a m^b$$
$$= \sum_{a,b} C^j_{ab}(t) l^a m^b$$

with the following correspondences:

$$C_{00}^{j}(t) = -\frac{w_{j}}{c} = \tau_{j}(t)$$

$$C_{10}^{j}(t) = -\frac{u_{j}}{c}$$

$$C_{01}^{j}(t) = -\frac{v_{j}}{c}$$

Then store C_{ab}^{j} for $a + b \leq N$ along with coordinates for the antenna pointing, the correlation center, and the center of the tangent plane.

Removal of a point source at location (l,m) of flux density S from a visibility database can be performed with precision, even for a source far from the delay center.

$$V'_{jk,t} = V_{jk,t} - S \exp\left(2\pi i\nu \sum_{a,b\neq 0,0} (C^k_{ab} - C^j_{ab})l^a m^b\right)$$

Within an iterative cleaning process, an approximate dirty image calculation can be interleaved with this accurate model subtraction. Near field sources, if identifiable, can use their appropriate delay model against a separate far-field delay model for the remainder of the field.

Self-consistent shifting over large angles (without "generation loss") can be performed to high precision provided enough terms in the delay model are preserved. Two steps are:

- 1. Shift tangent plane from $ec{R_0}$ to $ec{R_1}$
 - $\circ~$ Use model to calculate delay at various points $\vec{R}(l,m)$
 - $\circ~$ Define new plane where $\vec{R}(l'=0,m'=0)=\vec{R}_1$
 - $\circ\,$ Recompute expansion coefficients, C^p_{ab} , in the new tangent plane
- 2. Update phases of visibilities:

$$V'_{jk,t} = V_{jk,t} \exp\left(2\pi i\nu \left(\delta\tau_k - \delta\tau_j\right)\right)$$

where $\delta\tau_p=\tau_p(\vec{x}_p,\vec{R}_1,t)-\tau_p(\vec{x}_p,\vec{R}_0,t)$

3. Correct for non-commutation of sampling and frequency shifting

- * multi-look VLBI
- * improved model accountability
- * astrometry
- * imaging (faceted, w-projection, ...)
 - low freq, wide-field imaging with long baselines most challenging
 - Faraday rotation, if modeled within τ , could predict different \vec{B} values for R and L polarization!
- * RFI excision

- * A formalism for self-consistent use of the delay model was presented
- * The intimate connection between this model and interferometer geometry was demonstrated
- * Near-field objects naturally fit into this formalism
- \ast The (u,v,w) baseline vectors have limitations in their current use
- * A generalization of these vectors is proposed.

Many thanks to John Morgan, Adam Deller, Kumar Golap, Sanjay Bhatnagar, and others for stimulating discussions of these concepts.