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The delay model

Define T (~x, ~R, t) as the absolute delay model where

~x is the receiver location (ITRF)

~R is the source location α, δ (ICRF) and distance,

t is the time

Note that:

∗ T ≥ 0

∗ T is a metric

Define τ(~x, ~R, t) ≡ T (~x, ~R, t)− T (~⊕, ~R, t) where ~⊕(t) is the Earth
center1. This choice of an origin sets the Doppler reference frame. For
receivers on Earth, |τ | < 22 ms.

1Most quantities discussed will be time dependent even when not made
explicit.
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Example: Goddard’s CALC/SOLVE package

A realization of τ for VLBI that includes

∗ The rotation state of ⊕
∗ Atmospheric refraction

∗ Earth tides

∗ Gravitational potentials of �, ⊕, and the planets

∗ Aberration

Additional features in CalcServer

∗ Plate tectonics

∗ Near field gravitational potentials in solar system

∗ Wavefront curvature for near field objects

∗ Ocean loading

3 / 15



Some more definitions

∗ Gradient on first slot:

~∇1τ(~x, ~R, t) ≡
(
∂τ

∂x1
,
∂τ

∂x2
,
∂τ

∂x3

)
∗ Unit gradient vector:

∇̂f =
~∇f
|~∇f |

∗ Derivatives w.r.t. tangent plane coordinates

∂

∂l
τ
(
~x, ~R(α, δ,D), t

)
=

1

cos δ

∂

∂α
τ
(
~x, ~R(α, δ,D), t

)
∂

∂m
τ
(
~x, ~R(α, δ,D), t

)
=

∂

∂δ
τ
(
~x, ~R(α, δ,D), t

)
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Coordinate system for baseline vectors

First, define the celestial north pole:

N̂(t) = ∇̂1τ
(
~⊕, (0◦, 90◦,∞), t

)
Then the basis vectors for a source at ~R and time t are:

ŵ(t) = −∇̂1τ(~⊕, ~R, t)

û(t) =
ŵ × N̂
|ŵ × N̂ |

v̂(t) = ŵ × û

Note that the antenna coordinates are not explicitly used; all information
comes via the delay model.
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Calculation of a dirty image

The expression for the dirty image given measured voltages vp(t) is:

ID(l,m) =
∑
j 6=k

∫
dt v∗j (t)vk(t)e

2πiν(τk(l,m,t)−τj(l,m,t))

where τp(l,m, t) is shorthand for τ
(
~xp, ~R (α(l,m), δ(l,m),∞) , t

)
which can be expanded as

τp(l,m, t) = τp(t) + upl + vpm+O(l2 +m2) + · · ·

where τp(t) = τp(l = 0,m = 0, t). Defining the visibility as

Vjk,t =
〈
v∗j (t)vk(t)e

2πiν(τk(t)−τj(t))
〉

results in a familiar equation

ID(l,m) ≈
∑
t

∑
j 6=k

Vjk,te
2πiν(lujk,t+mvjk,t)
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Calculation of a dirty image (continued)

The coefficients of l and m are

ujk,t = −c
(
∂

∂l
τk(t)−

∂

∂l
τj(t)

)
and

vjk,t = −c
(
∂

∂m
τk(t)−

∂

∂m
τj(t)

)
.

These “baseline vectors” are here self-consistently determined purely
from the delay model. The third component of the baseline vector is
directly related to the delay

wjk,t = −c (τk(t)− τj(t))

In ITRF coordinates, the baseline vector is thus

~B = uû+ vv̂ + wŵ

This typically differs from the geometric baseline vector, ~BG
jk,t = ~xk − ~xj ,

by a few parts in 105 with aberration being the primary difference.
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Example 1: aberration

The largest difference between ~B and ~BG when observing a distant
source is annual aberration2.

2Diurnal aberration is absorbed by the delay model.
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Example 2: atmospheric refraction

Refraction in the Earth’s atmosphere causes the effective location of the
receiver, as probed by a distant observer, to be higher in elevation.
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Example 3: object in the near field

Baseline vectors for near-field objects are non-intuitive.

Effective baselines are larger than expected since the antennas are closer
to the object than is ~⊕. The magnitude of the effect is of order r⊕/D.
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Proposal: scrap the (u, v, w) vector

Instead, compute a higher order expansion of the delay model over the
region of interest:

τj(l,m, t) =
∑
a,b

1

a!b!

∂a+b

∂la∂mb
τj(t)l

amb

=
∑
a,b

Cjab(t)l
amb

with the following correspondences:

Cj00(t) = −wj
c

= τj(t)

Cj10(t) = −uj
c

Cj01(t) = −vj
c

Then store Cjab for a+ b ≤ N along with coordinates for the antenna
pointing, the correlation center, and the center of the tangent plane.
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Application 1: accurate model subtraction

Removal of a point source at location (l,m) of flux density S from a
visibility database can be performed with precision, even for a source far
from the delay center.

V ′jk,t = Vjk,t − S exp

2πiν
∑

a,b 6=0,0

(Ckab − C
j
ab)l

amb


Within an iterative cleaning process, an approximate dirty image
calculation can be interleaved with this accurate model subtraction.
Near field sources, if identifiable, can use their appropriate delay model
against a separate far-field delay model for the remainder of the field.
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Application 2: tangent plane (UV) shifting

Self-consistent shifting over large angles (without “generation loss”) can
be performed to high precision provided enough terms in the delay model
are preserved. Two steps are:

1. Shift tangent plane from ~R0 to ~R1

◦ Use model to calculate delay at various points ~R(l,m)
◦ Define new plane where ~R(l′ = 0,m′ = 0) = ~R1

◦ Recompute expansion coefficients, Cpab, in the new tangent
plane

2. Update phases of visibilities:

V ′jk,t = Vjk,t exp (2πiν (δτk − δτj))

where δτp = τp(~xp, ~R1, t)− τp(~xp, ~R0, t)

3. Correct for non-commutation of sampling and frequency shifting
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Other possible applications

∗ multi-look VLBI

∗ improved model accountability

∗ astrometry

∗ imaging (faceted, w-projection, . . .)

◦ low freq, wide-field imaging with long baselines most
challenging
◦ Faraday rotation, if modeled within τ , could predict different ~B

values for R and L polarization!

∗ RFI excision
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Conclusions

∗ A formalism for self-consistent use of the delay model was presented

∗ The intimate connection between this model and interferometer
geometry was demonstrated

∗ Near-field objects naturally fit into this formalism

∗ The (u, v, w) baseline vectors have limitations in their current use

∗ A generalization of these vectors is proposed.

Many thanks to John Morgan, Adam Deller, Kumar Golap, Sanjay
Bhatnagar, and others for stimulating discussions of these concepts.
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