Delay Model Expansion

Walter Brisken

National Radio Astronomy Observatory
2011 Sept 22

The delay model

Define $T(\vec{x}, \vec{R}, t)$ as the absolute delay model where
\vec{x} is the receiver location (ITRF)
\vec{R} is the source location α, δ (ICRF) and distance, t is the time

Note that:

* $T \geq 0$
* T is a metric

Define $\tau(\vec{x}, \vec{R}, t) \equiv T(\vec{x}, \vec{R}, t)-T(\vec{\oplus}, \vec{R}, t)$ where $\vec{\oplus}(t)$ is the Earth center ${ }^{1}$. This choice of an origin sets the Doppler reference frame. For receivers on Earth, $|\tau|<22 \mathrm{~ms}$.

[^0]
Example: Goddard's CALC/SOLVE package

A realization of τ for VLBI that includes

* The rotation state of \oplus
* Atmospheric refraction
* Earth tides
* Gravitational potentials of \odot, \oplus, and the planets
* Aberration

Additional features in CalcServer

* Plate tectonics
* Near field gravitational potentials in solar system
* Wavefront curvature for near field objects
* Ocean loading

Some more definitions

* Gradient on first slot:

$$
\vec{\nabla}_{1} \tau(\vec{x}, \vec{R}, t) \equiv\left(\frac{\partial \tau}{\partial x_{1}}, \frac{\partial \tau}{\partial x_{2}}, \frac{\partial \tau}{\partial x_{3}}\right)
$$

* Unit gradient vector:

$$
\hat{\nabla} f=\frac{\vec{\nabla} f}{|\vec{\nabla} f|}
$$

* Derivatives w.r.t. tangent plane coordinates

$$
\begin{aligned}
\frac{\partial}{\partial l} \tau(\vec{x}, \vec{R}(\alpha, \delta, D), t) & =\frac{1}{\cos \delta} \frac{\partial}{\partial \alpha} \tau(\vec{x}, \vec{R}(\alpha, \delta, D), t) \\
\frac{\partial}{\partial m} \tau(\vec{x}, \vec{R}(\alpha, \delta, D), t) & =\frac{\partial}{\partial \delta} \tau(\vec{x}, \vec{R}(\alpha, \delta, D), t)
\end{aligned}
$$

Coordinate system for baseline vectors

First, define the celestial north pole:

$$
\hat{N}(t)=\hat{\nabla}_{1} \tau\left(\vec{\oplus},\left(0^{\circ}, 90^{\circ}, \infty\right), t\right)
$$

Then the basis vectors for a source at \vec{R} and time t are:

$$
\begin{aligned}
\hat{w}(t) & =-\hat{\nabla}_{1} \tau(\vec{\oplus}, \vec{R}, t) \\
\hat{u}(t) & =\frac{\hat{w} \times \hat{N}}{|\hat{w} \times \hat{N}|} \\
\hat{v}(t) & =\hat{w} \times \hat{u}
\end{aligned}
$$

Note that the antenna coordinates are not explicitly used; all information comes via the delay model.

Calculation of a dirty image

The expression for the dirty image given measured voltages $v_{p}(t)$ is:

$$
I^{\mathrm{D}}(l, m)=\sum_{j \neq k} \int d t v_{j}^{*}(t) v_{k}(t) e^{2 \pi i \nu\left(\tau_{k}(l, m, t)-\tau_{j}(l, m, t)\right)}
$$

where $\tau_{p}(l, m, t)$ is shorthand for $\tau\left(\vec{x}_{p}, \vec{R}(\alpha(l, m), \delta(l, m), \infty), t\right)$ which can be expanded as

$$
\tau_{p}(l, m, t)=\tau_{p}(t)+u_{p} l+v_{p} m+\mathcal{O}\left(l^{2}+m^{2}\right)+\cdots
$$

where $\tau_{p}(t)=\tau_{p}(l=0, m=0, t)$. Defining the visibility as

$$
V_{j k, t}=\left\langle v_{j}^{*}(t) v_{k}(t) e^{2 \pi i \nu\left(\tau_{k}(t)-\tau_{j}(t)\right)}\right\rangle
$$

results in a familiar equation

$$
I^{\mathrm{D}}(l, m) \approx \sum_{t} \sum_{j \neq k} V_{j k, t} e^{2 \pi i \nu\left(l u_{j k, t}+m v_{j k, t}\right)}
$$

Calculation of a dirty image (continued)

The coefficients of l and m are

$$
\begin{aligned}
u_{j k, t} & =-c\left(\frac{\partial}{\partial l} \tau_{k}(t)-\frac{\partial}{\partial l} \tau_{j}(t)\right) \quad \text { and } \\
v_{j k, t} & =-c\left(\frac{\partial}{\partial m} \tau_{k}(t)-\frac{\partial}{\partial m} \tau_{j}(t)\right)
\end{aligned}
$$

These "baseline vectors" are here self-consistently determined purely from the delay model. The third component of the baseline vector is directly related to the delay

$$
w_{j k, t}=-c\left(\tau_{k}(t)-\tau_{j}(t)\right)
$$

In ITRF coordinates, the baseline vector is thus

$$
\vec{B}=u \hat{u}+v \hat{v}+w \hat{w}
$$

This typically differs from the geometric baseline vector, $\vec{B}_{j k, t}^{G}=\vec{x}_{k}-\vec{x}_{j}$, by a few parts in 10^{5} with aberration being the primary difference.

Example 1: aberration

The largest difference between \vec{B} and \vec{B}^{G} when observing a distant source is annual aberration ${ }^{2}$.

${ }^{2}$ Diurnal aberration is absorbed by the delay model.

Example 2: atmospheric refraction

Refraction in the Earth's atmosphere causes the effective location of the receiver, as probed by a distant observer, to be higher in elevation.

Example 3: object in the near field

Baseline vectors for near-field objects are non-intuitive.

Effective baselines are larger than expected since the antennas are closer to the object than is $\vec{\oplus}$. The magnitude of the effect is of order r_{\oplus} / D.

Proposal: scrap the (u, v, w) vector

Instead, compute a higher order expansion of the delay model over the region of interest:

$$
\begin{aligned}
\tau_{j}(l, m, t) & =\sum_{a, b} \frac{1}{a!b!} \frac{\partial^{a+b}}{\partial l^{a} \partial m^{b}} \tau_{j}(t) l^{a} m^{b} \\
& =\sum_{a, b} C_{a b}^{j}(t) l^{a} m^{b}
\end{aligned}
$$

with the following correspondences:

$$
\begin{aligned}
C_{00}^{j}(t) & =-\frac{w_{j}}{c}=\tau_{j}(t) \\
C_{10}^{j}(t) & =-\frac{u_{j}}{c} \\
C_{01}^{j}(t) & =-\frac{v_{j}}{c}
\end{aligned}
$$

Then store $C_{a b}^{j}$ for $a+b \leq N$ along with coordinates for the antenna pointing, the correlation center, and the center of the tangent plane.

Application 1: accurate model subtraction

Removal of a point source at location (l, m) of flux density S from a visibility database can be performed with precision, even for a source far from the delay center.

$$
V_{j k, t}^{\prime}=V_{j k, t}-S \exp \left(2 \pi i \nu \sum_{a, b \neq 0,0}\left(C_{a b}^{k}-C_{a b}^{j}\right) l^{a} m^{b}\right)
$$

Within an iterative cleaning process, an approximate dirty image calculation can be interleaved with this accurate model subtraction. Near field sources, if identifiable, can use their appropriate delay model against a separate far-field delay model for the remainder of the field.

Application 2: tangent plane (UV) shifting

Self-consistent shifting over large angles (without "generation loss") can be performed to high precision provided enough terms in the delay model are preserved. Two steps are:

1. Shift tangent plane from \vec{R}_{0} to \vec{R}_{1}

- Use model to calculate delay at various points $\vec{R}(l, m)$
- Define new plane where $\vec{R}\left(l^{\prime}=0, m^{\prime}=0\right)=\vec{R}_{1}$
- Recompute expansion coefficients, $C_{a b}^{p}$, in the new tangent plane

2. Update phases of visibilities:

$$
V_{j k, t}^{\prime}=V_{j k, t} \exp \left(2 \pi i \nu\left(\delta \tau_{k}-\delta \tau_{j}\right)\right)
$$

where $\delta \tau_{p}=\tau_{p}\left(\vec{x}_{p}, \vec{R}_{1}, t\right)-\tau_{p}\left(\vec{x}_{p}, \vec{R}_{0}, t\right)$
3. Correct for non-commutation of sampling and frequency shifting

Other possible applications

* multi-look VLBI
* improved model accountability
* astrometry
* imaging (faceted, w-projection, . . .)
- low freq, wide-field imaging with long baselines most challenging
- Faraday rotation, if modeled within τ, could predict different \vec{B} values for R and L polarization!
* RFI excision

Conclusions

* A formalism for self-consistent use of the delay model was presented
* The intimate connection between this model and interferometer geometry was demonstrated
* Near-field objects naturally fit into this formalism
* The (u, v, w) baseline vectors have limitations in their current use
* A generalization of these vectors is proposed.

Many thanks to John Morgan, Adam Deller, Kumar Golap, Sanjay Bhatnagar, and others for stimulating discussions of these concepts.

[^0]: ${ }^{1}$ Most quantities discussed will be time dependent even when not made explicit.

